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Abstract—In a wireless ad hoc network with multihop transmis-
sions and interference-limited link rates, can we balance power
control in the physical layer and congestion control in the trans-
port layer to enhance the overall network performance, while
maintaining the stability, robustness, and architectural modular-
ity of the network?

We present a distributive power control algorithm that cou-
ples with the original TCP protocols to increase the end-to-end
throughput and energy efficiency of the network. Under the rigor-
ous framework of nonlinearly constrained optimization, we prove
the convergence of this coupled system to the global optimum of
joint power control and congestion control, for both synchronized
and asynchronous implementations. The rate of convergence is
geometric and a desirable modularity between the transport and
physical layers is maintained. In particular, when the congestion
control mechanism is TCP Vegas, that a simple utilization in the
physical layer of the router buffer occupancy information suffices
to achieve the joint optimum of this cross layer design. Both an-
alytic results and simulations illustrate other desirable properties
of the proposed algorithm, including robustness to channel out-
age and to path loss estimation errors, and flexibility in trading-off
performance optimality for implementation simplicity.

Keywords: Congestion control, Convex optimization, Cross-layer
design, Energy-aware protocols, Lagrange duality, Power control, Net-
work utility, Transport Control Protocol, Wireless ad hoc networks.

I. INTRODUCTION

In wireless ad hoc networks with multihop transmissions and
interference-limited link rates, in order to achieve high end-to-
end throughput in an energy efficient manner, congestion con-
trol and power control need to be jointly designed and distribu-
tively implemented. Congestion control mechanisms, such as
those in Transport Control Protocol (TCP), regulate allowed
source rates so that the total traffic load on any link does not
exceed the available capacity. At the same time, the attainable
data rates on wireless links depend on the interference levels,
which in turn depend on the power control policy. This paper
proposes, analyzes, and simulates a distributed algorithm for
jointly optimal congestion control and power control. The al-
gorithm utilizes the coupling between the transport and physical
layers to increases end-to-end throughput and energy efficiency
in a wireless ad hoc network.

Congestion control mechanisms, including the congestion

avoidance phase in all variants of TCP, have recently been
shown to be distributed algorithms implicitly solving network
utility maximization problems [17], [19], [20], [21], [25], which
are linearly constrained by link capacities that are assumed to
be fixed quantities. However, network resources can some-
times be allocated to change link capacities, therefore change
TCP dynamics and the optimal solution to network utility max-
imization. For example, in CDMA wireless networks, transmit
powers can be controlled to give different Signal to Interference
Ratios (SIR) on the links, changing the attainable throughput on
each link.

This formulation of network utility maximization with ‘elas-
tic’ link capacities leads to a new approach of congestion avoid-
ance in wireless ad hoc networks. The current approach of con-
gestion control in the Internet is to avoid the development of a
bottleneck link by reducing the allowed transmission rates from
all the sources using this link. Intuitively, an alternative ap-
proach is to build (in real time) a larger transmission ‘pipe’ and
‘drain’ the queued packets out faster on a bottleneck link. In-
deed, a smart power control algorithm would allocate just the
‘right’ amount of power at the ‘right’ nodes to alleviate the
bandwidth bottlenecks, which may then induce an increase in
end-to-end TCP throughput. But there are two major difficulties
in making this idea work: pre-defining which link constitutes
a ‘bottleneck’ is infeasible, and changing the transmit power
on one link also affects the data rates available on other links,
due to the interference in wireless CDMA networks. Increas-
ing the attainable throughput on one link reduces the attainable
throughputs on other links. We need to find an algorithm that
distributively detects the ‘bottlenecks’ and optimally ‘shuffles’
the bottlenecks around in the network.

We make this intuitive approach precise and rigorous in this
paper. After reviewing the background in section II and speci-
fying the problem formulation in section III, we propose in sec-
tion IV a distributed power control algorithm that couples with
the original TCP algorithm to solve the joint problem of con-
gestion control and power control. The joint algorithm can be
distributively implemented on a multihop ad hoc network, de-
spite the fact that the data rate on a wireless link is a global
function of all the interfering powers (and violates the assump-
tion in the examples in related work [31]). Interpretations in
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terms of demand-supply coordination through shadow prices is
presented, as well as numerical examples illustrating that end-
to-end throughput and energy efficiency of the network can in-
deed be significantly increased.

It is not unexpected that performance can be enhanced
through a cross layer design in wireless ad hoc networks. The
more challenging task is to analyze the algorithm rigorously
and to make it attractive according to other design criteria [16].
First, we need to obtain the benchmark that establishes the limit
of possible performance gains obtainable through this cross
layer design. Since the overall system may not remain stable if
two subsystems are allowed to interact, we need to prove stabil-
ity of the cross layer interaction and robustness to fluctuations
of the underlying parameters. Cross layer designs usually im-
prove performance at the expense of higher complexity in com-
munication and computation, making complexity reduction an
important issue. Finally, even after crossing the layers, a high
degree of architectural modularity is desirable for practical im-
plementation and future network evolution.

Our algorithm performance analysis in sections V and VI
contains the following results:

• In section V, we prove that, under very mild conditions,
the proposed algorithm converges to the joint and global
optimum of the nonlinear congestion-power control.

• Furthermore, at equilibrium, the available data rate on each
logical link will be exactly fully utilized by all the sources
using the link. This result is proved not just for joint con-
gestion control and power control, but for any cross layer
design between congestion control and physical layer re-
source allocation.

• This desirable convergence is achieved as power control
uses the same shadow prices that are already generated
by TCP for regulating distributed users. Performance
enhancement is achieved without modifying the existing
TCP protocol stack.

• In subsection VI.A, we provide the sufficient conditions
under which convergence to the global optimum is main-
tained despite the errors in path loss estimation or packet
losses due to channel outage.

• In subsection VI.B, we propose a suite of simplified ver-
sions of the optimal algorithm to flexibly trade-off perfor-
mance with complexity.

• In subsection VI.C, we prove that the algorithm will still
converge under any finite asynchronism in practical im-
plementation, and characterize the conditions under which
asynchronous implementation does not induce a reduction
in convergence speed.

• In subsection VI.D, we show that the rate of conver-
gence of the algorithm is geometric, and provide a simple
bound on the convergence speed. Further suggestions on
choosing algorithm parameters and achieving convergence
speedup are made in subsection VI.E.

While we try to formulate and answer the question of ‘to
layer or not to layer’ for the case of layers 1 and 4 from a util-

ity maximization perspective, it is worth emphasizing that the
idea of ‘layering’ in communication network design is often
motivated by considerations on architectural modularity, evolv-
ability, and scalability. This paper investigates the motivating
question in the title only from one perspective out of several
important ones.

II. BACKGROUND AND RELATED WORK

Both power control in CDMA wireless networks and conges-
tion control in the Internet are extensively researched topics:

• Changing the transmit power on one link will affect the
quality of service, such as attainable date rates, on other
links. Many power control algorithms (e.g., an iterative
one in [12]) have been proposed, but the effects of user
demand regulation through end-to-end congestion control
are usually ignored.

• TCP is the predominant protocol responsible for conges-
tion control in the Internet and is being extended to wire-
less networks. Optimization-theoretic analysis is recently
conducted for variants of TCP (e.g., based on network util-
ity maximization in [17], [19], [20], [21], [25] and based
on a different nonlinear programming formulation in [2]),
but an underlying assumption is that each communication
link is a fixed-size transmission pipe provided by the phys-
ical layer.

• Although utility maximization jointly over rates and pow-
ers have been studied for cellular networks (e.g., [8]), the
inter-dependency and coupling effects between source rate
control and link capacity regulation in wireless ad hoc net-
works have not been systematically investigated, and form
the focus of this paper.

Kelly [17], [18] analyzed rate allocation through congestion
control as a distributive solution of network utility maximiza-
tion. The congestion avoidance phase of different versions of
TCP has recently been analyzed as approximated primal-dual
algorithms solving appropriately formulated utility maximiza-
tion problems. Since we will be referring to TCP Vegas as
an example in this paper and using it as the congestion con-
trol mechanism in the simulations, we now briefly review TCP
Vegas.

TCP Vegas is a sliding window based protocol that distribu-
tively regulates the allowed source rates in a mesh network [6].
Let ds be the propagation delay for the path originating from
source s, and Ds be the propagation plus queuing delay. Obvi-
ously ds = Ds when there is no congestion along all the links
used by source s. The window size ws is updated depending
on whether the difference between the expected rate ws

ds
and the

actual rate ws

Ds
is smaller than a parameter αs:

ws(t + 1) =




ws(t) + 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) < αs

ws(t) − 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) > αs

ws(t) else.

(1)
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The end-to-end throughputs are the allowed source rates
xs(t) = ws(t)

Ds(t) , which are the primal variables of a utility
maximization problem [21]. The associated dual variables (or
shadow prices) λl for TCP Vegas are shown [21] to be the queu-
ing delays along each link l, updated as follows:

λl(t + 1) =


λl(t) +

γ

cl


 ∑

s:l∈L(s)

xs(t) − cl






+

(2)

where γ > 0 is a constant, L(s) denotes the set of links tra-
versed by the connection originating from source s, and the
term 1

cl
(
∑

s:l∈L(s) xs(t) − cl) represents the queuing delay as
the ratio between packet backlog and link capacity cl.

Cross layer designs in communication networks have at-
tracted the attention of various researchers recently (overviews
in e.g., [29]). A partial list of some of the papers that focus
on OSI layers 1, 2 and 3 includes joint routing and resource
allocation based on different routing models in [23], [26], [31],
joint routing and pricing in [24], joint routing and data compres-
sion in [28], joint resource allocation and pricing in [22], joint
medium access control and physical layer diversity in [27], [32],
joint resource allocation and scheduling in [33], and joint power
control and scheduling in [10], [11]. There is another collection
of recent work focusing on design across physical and applica-
tion layers, especially for multimedia transmissions, and a col-
lection of work focusing on modification of protocols in layers
3 and 4 by utilizing certain parameters in layers 1 and 2.

This paper complements the above studies in several ways.
By extending the framework of network utility maximization
to allow for elastic link capacities, we extend the optimization-
theoretic analysis of TCP [20] to provide a quantitative frame-
work of co-design across layers 1 and 4, under which theorems
of global convergence can be proved for nonlinearly coupled
dynamics. The resulted jointly optimal congestion control and
power control algorithm enhances end-to-end throughput and
energy efficiency in wireless ad hoc networks. Echoing the con-
cern on cross layer designs in [16], we also put special emphasis
on the practical implementation issues of robustness, asynchro-
nism, complexity, and rate of convergence.

III. PROBLEM FORMULATION

Consider a wireless ad hoc network with N nodes and an
established logical topology, where some nodes are sources of
transmission, and a sequence of connected links l ∈ L(s) forms
a route originating from source s. Let xs be the transmission
rate of source s, and cl be the capacity, in terms of the attainable
data rate, on logical link l. Note that each physical link may
need to be regarded as multiple logical links.

The standard formulation of network utility maximization for
elastic traffic source [17] is to maximize the sum of individ-
ual sources’ utilities represented through continuously differen-
tiable, increasing, and strictly concave functions Us(xs), sub-

ject to the link capacity constraint:

maximize
∑

s Us(xs)
subject to

∑
s:l∈L(s) xs ≤ cl, ∀l,

x � 0
(3)

where the variables are x. Note that link capacities c are as-
sumed to be fixed parameters.

It has recently been shown (e.g., in [17], [19], [20], [21],
[25]) that congestion control mechanisms can be viewed as dis-
tributed solution methods for this utility maximization problem.
As each source updates its allowed rate (the primal variable)
through a TCP congestion avoidance algorithm, each link up-
dates a congestion indicator (the dual variable, which can be
interpreted as the ‘shadow price’ of using the link) through a
queue management algorithm, and implicitly feeds it back to all
the sources using this link. In particular, TCP Vegas is shown
[21] to be implicitly solving (3) for logarithmic utility func-
tions: Us(xs) = αsds log xs, using queuing delays as the dual
variables.

However, the scope of (3) for a CDMA-based wireless ad
hoc network is limited, because the data rates attainable on the
logical links are not fixed, and instead can be written (for a large
family of modulations) as a global and nonlinear function of the
transmit power vector P:

cl(P) =
1
T

log(1 + KSIRl(P))

where T is the symbol period, K = −φ1

log(φ2BER)
[13] where

φ1, φ2 are constants depending on the modulation and BER is
the required bit error rate. SIRl is the signal to interference ra-
tio for link l defined as SIRl = PlGll∑

k �=l
PkGlk+nl

for a given set

of path losses Glk (from the transmitter on logical link k to the
receiver on logical link l) and a given set of noises nl (for the
receiver on logical link l). The Glk factors incorporate propa-
gation loss, spreading gain, and other normalization constants.
With reasonable spreading gain, SIR is much larger than 1 and
cl can be approximated as 1

T log(KSIRl). Without loss of gen-
erality, let T be 1 time unit.

We have now specified the following network utility maxi-
mization with ‘elastic’ link capacities:

maximize
∑

s Us(xs)
subject to

∑
s:l∈L(s) xs ≤ cl(P), ∀l,

P,x � 0
(4)

where the optimization variables are both source rates x and
transmit powers P. The key difference from the standard utility
maximization (3) is that each link capacity cl is now a function
of the new optimization variables: the transmit powers P.

Problem (4) may be modified by adding simple constraints on
maximum transmit powers allowed at each node: Pi ≤ Pi,max,
and by augmenting the objective function with a cost term
−∑i Pi of total powers used. It turns out these two modifica-
tions do not lead to new technical challenges in designing an op-
timal distributed algorithm. For simplicity of presentation, we

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



will focus on (4) that captures the essence of the problem and
challenges. However, note that even without the local power
upper bounds or the total power cost term, arbitrary increase in
powers do not lead to higher network utility, because all link
rates are interference limited.

The nonlinearly constrained optimization (4) may be solved
through centralized computation using the recently developed
geometric programming technique in [9], [15]. However, in
the context of wireless ad hoc networks, new distributive algo-
rithms are needed to solve (4). The primary challenge is that
there are two global dependencies in (4):

• Source rates x and link capacities c are globally coupled
across the network, as reflected in the range of summation
{s : l ∈ L(S)} in each of the constraints in (4).

• Each link capacity cl(P), in terms of the attainable
throughput under a given power vector, is a global func-
tion of all the interfering transmit powers.

Our first goal in this paper is to distributively find the joint
and globally optimal solution (x∗,P∗) to (4) by breaking down
these two global dependencies.

IV. ALGORITHM, INTERPRETATIONS, AND NUMERICAL

EXAMPLE

We first present the following distributive algorithm and will
later prove that it converges to the joint and global optimum of
(4) and possesses several other desirable properties of a cross
layer design. We first present the ideal form of the algorithm,
assuming no propagation delay and allowing significant mes-
sage passing overhead. Some of these practical issues will be
investigated in section V. We emphasize that items 3 and 4 in the
algorithm can couple with any TCP congestion control mecha-
nisms to solve the corresponding network utility maximization
[20]. To make the algorithm and its analysis concrete, we will
focus on TCP Vegas (as reflected in items 1 and 2 below) and
the corresponding logarithmic utility maximization.

Jointly Optimal Congestion-control and Power-control
(JOCP) Algorithm

1) During time slot t, at each intermediate node, queuing
delay λl is implicitly updated:

λl(t+1) =


λl(t) +

γ

cl(t)


 ∑

s:l∈L(s)

xs(t) − cl(t)






+

.

(5)
2) At each source, total delay Ds is measured and used to

update the TCP window size, and consequently source
rate xs:

ws(t + 1) =




ws(t) + 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) < αs

ws(t) − 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) > αs

ws(t) else.
(6)

xs(t + 1) =
ws(t + 1)

Ds(t)
.

3) Each transmitter j calculates a message mj(t) ∈ R+

based on locally measurable quantities, and pass the mes-
sage to all other transmitters through a flooding protocol:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj
.

4) Each transmitter updates its power based on locally mea-
surable quantities and the received messages, where κ >
0 is a constant:

Pl(t + 1) = Pl(t) +
κλl(t)
Pl(t)

− κ
∑
j �=l

Gljmj(t). (7)

We first present some intuitive arguments on this algorithm
before proving the convergence theorem and discussing the
practical implementation issues. Taking in the current values

of λj(t)SIRj(t)
Pj(t)Gjj

as the messages from other transmitters indexed
by j, the transmitter on link l adjusts its power level in the next
time slot in two ways: first increase power directly proportional
to the current shadow price (e.g., queuing delay in TCP Vegas)
and inversely proportional to the current power level, then de-
creases power by a weighted sum of the messages from all other
transmitters, where the weights are the path losses Gij . Intu-
itively, if the local queuing delay is high, transmit power should
increase, with more moderate increase when the current power
level is already high. If queuing delays on other links are high,
transmit power should decrease in order to reduce interference
on those links.

Note that to compute mj , the values of queuing delay λj ,
signal-interference-ratio SIRj , and received power level PjGjj

can be directly measured by node j locally. This algorithm only
uses the resulted message mj but not the individual values of
λj , SIRj , Pj and Gjj . To conduct the power update, Gij fac-
tors are assumed to be estimated through training sequences.
In practical wireless ad hoc networks, Gij are stochastic rather
than deterministic, mobility of the nodes changes the values of
Gij , and path loss estimations can be inaccurate. The effects of
the fluctuations of Gij will be discussed in subsection VI.A.

We also observe that the power control part of the joint algo-
rithm can be interpreted as the selfish maximization of a local
utility function of power by the transmitter of each link:

maximizePl
Ul(Pl)

where Ul(Pl) = λlcl − βlPl and βl =
∑

j �=l

(
GljSIRj

Gjj

)
λj

Pj
.

This complements the standard interpretation of congestion
control as the selfish maximization by each transmitter of a lo-
cal utility function Us(xs) of its source rate.

The unmodified source algorithm (6) and queue algorithm
(5) of TCP, together with the new power control algorithm (7),
form a set of distributed, joint congestion control and resource
allocation in wireless ad hoc networks. As the transmit powers
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change, SIR and thus data rate also change on each link, which
in turn change the congestion control dynamics. At the same
time, congestion control dynamics change the dual variables
λ(t), which in turn change the transmit powers. Figure 1 shows
this nonlinear coupling of ‘supply’ (regulated by power con-
trol) and ‘demand’ (regulated by congestion control), through
the same shadow prices λ that are used by TCP Vegas to reg-
ulate distributed demand: λ now serves the second function of
cross layer coordination in the JOCP Algorithm.

Shadow Price

(Supply)(Demand)

  Shadow Price     Shadow Price

P

cx

x

Power Control
Transmit Node

TCP 
Source Node

Node Queue
Intermediate

Fig. 1. Nonlinearly coupled dynamics of joint congestion and power control.

It is important to note that there is no need to change the exist-
ing TCP congestion control and queue management algorithms.
All that is needed to achieve the joint and global optimum of (4)
is to utilize the values of queue length in designing power con-
trol algorithm in the physical layer. This approach is comple-
mentary to some recent suggestions in the Internet community
to pass physical layer information to better control routing and
congestion in upper layers.

Using the JOCP Algorithm (5,6,7), we simulated the above
joint power and congestion control for various wireless ad hoc
networks with different topologies and fading environments.
The advantage of such a joint control can be captured even in
a very small illustrative example, where the logical topology
and routes for four multi-hop connections are shown in Figure
2. The path losses Gij are determined by the relative physical
distances (which we vary in different experiments).

4

3
2

  1

Fig. 2. The logical topology and connections for an illustrative example.

Transmit powers, as regulated by the proposed distributed
power control, and source rates, as regulated through TCP Ve-
gas window update, are shown in Figure 3. The initial condi-
tions of the graphs are based on the equilibrium states of TCP
Vegas with fixed power levels. With power control, it can be
seen that transmit powers P distributively adapt to induce a
‘smart’ capacity c and queuing delay λ configuration on the
overall network, which in turn lead to increases in end-to-end
throughput as indicated by the rise in all the allowed source
rates. Notice that some link capacities actually decrease while
the capacities on the bottleneck links rise to maximize the total
network utility. This is achieved through a distributive adapta-
tion of power, which lowers the power levels that cause most
interference on the links that are becoming a bottleneck in the
dynamic demand-supply matching process. Confirming our in-
tuition, such a ‘smart’ allocation of power tends to reduce the

spread of queuing delays, thus preventing any link from becom-
ing a bottleneck. Queuing delays on the four links do not be-
come the same though, due to the asymmetry in traffic load on
the links and different weights in the logarithmic utility objec-
tive functions.

We indeed achieve the primary goal of this co-design across
the physical and transport layers. The end-to-end throughput
per watt of power transmitted, i.e., the Throughput Power Ratio
(TPR), is 82% higher with power control. A series of simula-
tions are conducted based on different fading environments and
TCP Vegas parameter settings. Based on the resulted histogram
of TPR, We see that power control (7) increases TCP through-
put and TPR in all experiments, and in 78% of the instances, en-
ergy efficiency rises by 75% to 115%, compared to TCP without
power control. Power control and congestion control, each run-
ning distributively and coordinated through the dual variables of
queuing delay, work together to increase the energy efficiency
of multi-hop transmissions across wireless ad hoc networks.
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Fig. 3. Numerical example of joint TCP Vegas congestion control and power
control. The top left graph shows the primal variables P. The lower left graph
shows the dual variables λ. The lower right graph shows the primal variables
x, i.e., the end-to-end throughput.

V. PERFORMANCE EVALUATION: CONVERGENCE

THEOREM AND EQUILIBRIUM STATE

It is not too surprising that allowing cross layer interactions
improves the performance of wireless ad hoc networks. The
rest of this paper is devoted to the more challenging task of
proving that the JOCP Algorithm has the following desirable
properties: global convergence to the joint optimum and a de-
sirable equilibrium, robustness to parameter perturbation and
asynchronism, graceful tradeoff between complexity and per-
formance, and geometric rate of convergence.

We first show that convergence of the nonlinearly coupled
system, formed by the JOCP Algorithm and shown in Figure 1,
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is guaranteed, as long as link data rates are strictly positive and
link queuing delays are finite. These are reasonable engineering
assumptions under normal operations of a network, since a link
with zero data rate is essentially disconnected, and a queue with
a finite buffer cannot support infinite queuing delay. To make
the algorithm concrete, we again focus on the case of TCP Ve-
gas. But the proof technique is applicable to the interaction
between any TCP variants and the new power control algorithm
(7).

Theorem 1: Assume that transmit power Pl are within a
range between Pl,min > 0 and Pl,max < ∞ for each link l, and
link queuing delays λ are finite. For small enough constants
γ and κ, the distributed JOCP Algorithm (5,6,7) converges to
the global optimum of the joint congestion control and power
control problem (4).

Proof: We first associate a Lagrange multiplier λl for
each of the constraints

∑
s:l∈L(s) xs ≤ cl(P) in (4). Using the

KKT optimality conditions from optimization theory [3], [5],
solving problem (4) is equivalent to satisfying the complemen-
tary slackness condition and finding the stationary points of the
Lagrangian.

Complementary slackness condition states that at optimal-
ity, the product of the dual variable and the associated primal
constraint must be zero. This condition is satisfied since the
equilibrium queuing delay must be zero if the total equilibrium
ingress rate at a router is strictly smaller than the egress link
capacity.

We now proceed to find the stationary points of
the Lagrangian: Isystem(x,P,λ) = (

∑
s Us(xs) −∑

l λl

∑
s:l∈L(s) xs) + (

∑
l λlcl(P)). By linearity of the

differentiation operator, this can be decomposed into two
separate maximization problems:

maximizex�0

∑
s Us(xs) −

∑
s

∑
l∈L(s) λlxs,

maximizeP�0 Ipower(P,λ) =
∑

l λlcl(P).

The first maximization is already implicitly solved by the
congestion control mechanism (such as TCP Vegas for the case
of Us(xs) = αsds log xs). But we still need to solve the sec-
ond maximization, and use the Lagrange multipliers λ as the
shadow prices to allocate exactly the right power to each trans-
mitter, thus increasing the link data rates and reducing conges-
tion at the network bottlenecks. For scalability in ad hoc net-
works, this power control must also be implemented distribu-
tively, just like the congestion control part. Since the data rate
on each wireless link is a global function of all the transmit
powers, the power control problem cannot be nicely decoupled
into local problems for each link as in [31]. However, we show
that distributed solution is still feasible, as long as an appropri-
ate set of limited information is passed among the nodes.

But we first need to establish that, if the algorithm con-
verges, the convergence is indeed toward the global optimum.
We will establish that the partial Lagrangian to be maxi-
mized Ipower(P) =

∑
l λl log(SIRl(P)) is a concave func-

tion of a logarithmically transformed power vector. Let P̃l =
log Pl, ∀l, we have Ipower(P̃) =

∑
l

λl log
Glle

P̃l∑
k GlkeP̃k + nl

=
∑

l

λl

[
log(Glle

P̃l) − log

(∑
k

GlkeP̃k + nl

)]

=
∑

l

λl

[
log(Glle

P̃l) − log

(∑
k

exp(P̃k + log Glk) + nl

)]
.

The first term in the square bracket is linear in P̃, and the second
term is concave in P̃ because the log of a sum of exponentials
of linear functions of P̃ is convex, as verified below.

Taking the derivative of Ipower(P̃) with respect to P̃l, we
have

∇lIpower(P̃) = λl −
∑
j �=l

λjGjle
P̃l∑

k �=j GjkeP̃k + nj

= λl − Pl

∑
j �=l

λjGjl∑
k �=j GjkPk + nj

.

Taking derivatives again, for each of the nonlinear

−λl log
(∑

k exp(P̃k + log Glk) + nl

)
terms in Ipower(P̃),

we obtain the Hessian:

Hl =
−λl

(
∑

k zlk + nl)2

((∑
k

zlk + nl

)
diag(zl) − zlzT

l

)

where zlk = exp(P̃k + log Glk) and zl is a column vector
[zl1, zl2, . . . , zlN ]T .

Matrix Hl is indeed negative definite: for all vectors v,

vT Hlv =
−λl

(
(
∑

k zlk + nl)
(∑

k v2
kzlk

)− (
∑

k vkzlk)2
)

(
∑

k zlk + nl)2
< 0.

(8)
This is because of the Cauchy Schwarz inequality:
(aT a)(bT b) ≥ (aT b)2 where ak = vk

√
zlk and bk =

√
zlk

and the fact that nl > 0. Therefore, Ipower(P̃ ) is a strictly
concave function of (P̃), and its Hessian is a negative definite
block diagonal matrix diag(H1,H2, . . . ,HL).

Coming back to the P solution space instead of P̃, it is easy
to verify that the derivative of Ipower(P) with respect to Pl is

∇lIpower(P) =
λl

Pl
−
∑
j �=l

λjGjl∑
k �=j GjkPk + nj

.

Therefore, the logarithmic change of variables (that provides
the needed concavity property of the maximization) simply
scales each entry of the gradient by Pl: ∇lIpower(P) =
1
Pl
∇lIpower(P̃).

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



We now use the gradient method [5], with a constant step size
κ, to maximize Ipower(P):

Pl(t + 1) = Pl(t) + κ∇lIpower(P)

= Pl(t) + κ


λl(t)

Pl(t)
−
∑
j �=l

λj(t)Gjl∑
k �=j GjkPk(t) + nj


 .

Simplifying the equation and using the definition of SIR, we
can write the gradient steps as the following distributed power
control algorithm with message passing [7]:

Pl(t + 1) = Pl(t) +
κλl(t)
Pl(t)

− κ
∑
j �=l

Gljmj(t)

where mj(t) are messages passed from node j:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj
.

This is exactly items 3 and 4 in the JOCP Algorithm.

It is known [3] that when the step size along the gradient
direction is optimized, the gradient-based iterations converge.
Such an optimization of step size κ in (7) would require global
coordination in a wireless ad hoc network, and is undesirable or
infeasible. However, in general gradient-based iterations with a
constant step size may not converge.

By the descent lemma [3], convergence of the gradient-based
optimization of a function f(x), with a constant step size κ,
is guaranteed if f(x) has the Lipschitz continuity property:
‖∇f(x1) − ∇f(x2)‖ ≤ L‖x1 − x2‖ for some L > 0, and
the step size is small enough: ε ≤ κ ≤ 2−ε

L for some ε > 0.
Since ∇f(x1) − ∇f(x2) = ∇2f(x)(x1 − x2) for all x that
are convex combination of x1 and x2, by the Cauchy Schwarz
inequality, we have

‖∇f(x1) −∇f(x2)‖ ≤ ‖∇2f(x)‖‖x1 − x2‖,

i.e., f(x) has the Lipschitz continuity property if it has a Hes-
sian bounded in l2 norm.

The Hessian H of
∑

l λlcl(P) can be verified to be

Hll =
∑
j �=l

λj

(
Gjl∑

k �=j GjkPk + nj

)2

− λl

P 2
l

, (9)

Hli =
∑
j �=l,i

λjGjlGji(∑
k �=j GjkPk + nj

)2 , i 
= l. (10)

Since λ are finite, it is obvious that ‖H‖2 is upper bounded.
The upper bound can be estimated by the following inequality:

‖H‖2 ≤
√

‖H‖1‖H‖∞
where ‖H‖1 is the maximum column-sum matrix norm of H,
and ‖H‖∞ is the maximum row-sum matrix norm.

Therefore, the power control part (7) converges for a small
enough step size κ:

ε ≤ κ ≤ 2 − ε

L′

where

(L′)2 = maxi

(∑
l

∑
j �=l,i

λjGjlGji(∑
k �=j

GjkPk+nj

)2
+

∣∣∣∣∣∑j �=l λj

(
Gjl∑

k �=j
GjkPk+nj

)2

− λl

P 2
l

∣∣∣∣∣
)

×maxl

(∑
i

∑
j �=l,i

λjGjlGji(∑
k �=j

GjkPk+nj

)2
+

∣∣∣∣∣∑j �=l λj

(
Gjl∑

k �=j
GjkPk+nj

)2

− λl

P 2
l

∣∣∣∣∣
)

and ε can be any small positive number ≤ 2
1+L′ .

It is known [21] that TCP Vegas converges for a small enough
step size 0 < γ ≤ 2αmindmincmin

LmaxSmaxx2
max

, where αmin and dmin

are the smallest TCP source parameters αs and ds among the
sources, respectively, xmax is the largest possible source rates,
cmin is the smallest link data rate, Lmax is the largest num-
ber of links a path can have, and Smax is the largest number of
sources sharing a link.

Convergence of TCP Vegas assumes that cmin 
= 0. Since
SIRl is lower bounded by Pl,minGll∑

j �=l
Pj,maxGlj+nl

, each cl is lower

bounded by a strictly positive number. (In fact, the formulation
in (4) assumes high SIR in the first place.) Consequently, TCP
Vegas (6,5) also converges. The JOCP Algorithm converges as
the congestion control and power control parts both converge
and are coupled by vector λ that converges.

Since cl can be turned into a concave function in P̃, each
constraint

∑
s:l∈L(s) xs − cl(P) ≤ 0 in (4) is an upper bound

constraint on a convex function in (x, P̃). So problem (4) can
be turned into maximizing a strictly concave objective function
over a convex constraint set. The established convergence is
thus indeed toward a unique global optimum.

In addition to convergence guarantee, total network utility∑
s Us(xs) with power control can never be smaller than that

without power control, because by allowing power adaptation,
we are optimizing over a larger constraint set. Note that an in-
crease in network utility

∑
s Us(xs) is not equivalent to a higher

total throughput
∑

s xs, since Us can be any increasing, strictly
concave functions of xs. However, empirical evidence from
simulation suggests that at least in the logarithmic utility case of
TCP Vegas, both throughput and energy efficiency will indeed
rise significantly after power control (7) regulates bandwidth
supply, and dual variables λ balance demand with supply.

Now that the existence and joint optimum of the equilibrium
point (x∗,P∗) of the JOCP Algorithm is established, we need
to address the following question about the equilibrium point:
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will the power control part ‘produce’ more link capacities than
needed by the sources? We answer this question in the fol-
lowing general theorem that covers TCP Vegas under any type
of elastic link capacities, where link capacity cl(θ) can be any
concave function of some physical layer resources θ:

maximize
∑

s αsds log xs

subject to
∑

s:l∈L(s) xs ≤ cl(θ), ∀l,

θ,x � 0
(11)

There can be different algorithms to implement resource allo-
cation in the physical layer and congestion control in the trans-
port layer. Coordinating these two layers through the Lagrange
dual variables λ leads to a desirable equilibrium:

Theorem 2: The global optimum of joint TCP Vegas conges-
tion control and resource allocation (11) is such that the capac-
ity on each link becomes fully utilized by all the sources that
traverse through it:

c∗l (λ
∗) =

∑
s:l∈L(s)

x∗
s(λ

∗), ∀l.

Proof: We first form the partial La-
grangian Icongestion(x,λ) of (11):

∑
s αsds log xs −∑

l λl

∑
s:l∈L(s) xs. Consider its maximization over x:

maximizex


∑

s

αsds log xs −
∑

s

∑
l∈L(s)

λlxs


 ,

which can be solved by differentiating with respect to xs to
obtain the optimal source rates as a function of λ:

x∗
s(λ) =

αsds∑
l∈L(s) λl

. (12)

Substituting this back into Icongestion(x,λ), the optimized
value of the partial Lagrangian is

∑
s

αsds log

(
αsds∑
l∈L(s) λl

)
−
∑

s

αsds.

At the same time, for a fixed λ, resource θ is being optimized
over to maximize the other partial Lagrangian Iresource(θ) =∑

l λlcl(θ), resulting in the optimized link capacities c∗(λ).

Now we add the optimized values of both partial Lagrangians
to obtain the Lagrange dual function g(λ) = I(x∗,θ∗,λ) =
Icongestion(x∗,λ) + Iresource(θ∗,λ). By strong duality, solv-
ing (11) is equivalent to minimizing g(λ) over λ � 0, i.e., we
need to optimize

−
∑

s

αsds log


 ∑

l∈L(s)

λl


+

∑
l

λlc
∗
l (λ) (13)

over λ. At optimality, the derivative of (13) with respect to λ
must be 0, i.e.,

c∗l (λ
∗) =

∑
s:l∈L(s)

βs
1∑

l′∈L(s) λ∗
l′

, ∀l

where the right hand side is equal to
∑

s:l∈L(s) x∗
s(λ

∗) by (12).
Therefore,

c∗l (λ
∗) =

∑
s:l∈L(s)

x∗
s(λ

∗), ∀l.

This theorem shows that at equilibrium, resources will be al-
located and source rates adjusted such that the the resulted link
capacities are just enough to accommodate the traffic flows.
Roughly speaking, supply meets demand ‘tightly’. The La-
grange multipliers are effective enough in coordinating the
transport layer with the physical layer that link capacities will
not be ‘produced’ more than needed. The focus of this paper
on wireless ad hoc networks with power control is certainly a
special case covered by Theorem 2.

VI. SOME PRACTICAL ISSUES: ROBUSTNESS,
COMPLEXITY REDUCTION, ASYNCHRONOUS

IMPLEMENTATION, AND CONVERGENCE SPEED

In this section, we present results on some practical issues
related to the proposed JOCP Algorithm.

A. Robustness

We start with the robustness properties of the JOCP Algo-
rithm, focusing on the following aspects:

1) The effects of wrong estimates of path losses at various
nodes. Even with an accurate estimation, mobility of the
nodes and fast variation of the fading process may lead
to a mismatch between the Gij used in the power update
algorithm and the Gij that actually appear in the link data
rate formula.

2) The effects of packet loss due to wireless channel outage
during deep fading.

First, it is assumed in the power control algorithm (7) that the
pass loss factors Gij are perfectly estimated by the receivers.
It is useful to know how much error in the estimation of Gij

can be tolerated without losing the convergence of joint power
control and TCP congestion control.

Denoting the error in the estimation of Gij at time
t as ∆Gij(t), and suppressing the time index on
λ(t),P(t), SIR(t),∆Gij(t), we provide a sufficient con-
dition in the following

Proposition 1: Convergence to the global optimum of (4) is
achieved through the JOCP Algorithm (5,6,7) with Gij estima-
tion errors, if there exists a T such that for all times t ≥ T , the
following inequality holds:

∑
l

∑
j �=l

∑
k �=l(GjlGkl − ∆Gjl∆Gkl)

λjλkSIRjSIRk

PjPkGjjGkk

> 2
∑

l

∑
j �=l

λlλjGjl

PlPjGjj
SIRj − λ2

l

P 2
l

.

Proof: In minimizing a function f(x) through the gra-
dient iterations, it is easy to show that if there is an error e in
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the gradient and the search direction becomes ∇f(x) + e, then
convergence to the correct stationary point is maintained in the
region {x|‖∇f(x)‖ ≥ e}.

In our optimization problem, an error in Gij produces an er-
ror e in the gradient vector where

el =
∑
j �=l

∆Glj
λjSIRj

PjGjj
.

The region of convergence {P|‖∇Ipower(P)‖ ≥ e} with the
above error can be calculated and then simplified to be the ex-
pression in the above proposition.

While Proposition 1 gives an analytic test of convergence un-
der wrong estimates of Gij for any network, empirical experi-
ments can be carried out in simulations where the Gij factors in
(7) are perturbed randomly within a range. Results of one typi-
cal experiment is shown in the lower left graph in Figure 4, for
the same network topology and logical connections as in Figure
2. In this simulation, the Gij factors are generated at random
between +25% and −25% of their true values. It can be seen
that the algorithms converge to the same global optimum after
a longer and wider transient period.
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Fig. 4. Robustness of joint power control and TCP Vegas. Top left case is the
baseline performance of the four end-to-end throughput. Top right case shows
that a larger step size in the algorithm accelerates convergence but also leads to
larger variance. Bottom left case shows that the algorithm is robust to wrong
estimates of path losses. Bottom right case shows robustness against packet
losses on links with wireless channel outage.

Another peculiar feature of wireless transmissions is that dur-
ing deep fading, SIR on a link may become too small for correct
decoding at the receiver. This channel outage induces packet
losses on the link. Consequently the queue buffer sizes become
smaller than they should have been. Analysis of TCP in such
lossy environment has been carried out, for example in [1]. In
our framework of nonlinear optimization, since queuing delays
are implicitly used as the dual variables λ in TCP Vegas, such

channel variations lead to incorrect values of the dual variables.
Sources will mistake the decreases in total queuing delay as in-
dications of reduced congestion levels, and boost their source
rates through TCP update accordingly. Having incorrect pric-
ing on the wireless links may thus prevent the joint system from
converging to the global optimum.

Following the proof for Proposition 1, we have the follow-
ing sufficient condition for convergence, with outage-induced
packet loss on link l denoted as ∆yl:

Proposition 2: Convergence to the global optimum of (4)
is achieved through the JOCP Algorithm (5,6,7) with packet
losses, if there exists a T such that for all times t ≥ T , the
following inequality holds:

∑
l

[
1

P 2
l

(
λ2

l −
(

∆yl

cl

)2
)

+
∑

j �=l

(
GjlSIRj

GjjPj

)2
(

λj −
(

∆yj

cj

)2
)]

> 2
∑

l

∑
j �=l

(
λjλl − ∆yl∆yj

clcj

)
GjlSIRj

GjjPlPj
.

Because the chance of having simultaneous channel outage
at all links is small, it is reasonable to expect that only few ∆yl

are nonzero at any time. We again empirically experiment with
channel outage induced packet loss on various links, and a typ-
ical result is shown in the lower right graph in Figure 4 where
the underlying outage probability is 20%. The convergence is
slower but still maintained toward the same optimal solution.

B. Complexity reduction

Another practical issue concerning the JOCP Algorithm is
the tradeoff between performance optimality and implementa-
tion simplicity. The increases in TCP throughput and energy
efficiency have been achieved with a rise in the communica-
tion complexity of message passing and in the computational
complexity of power update. There can be many terms in the∑

j �=l Gljmj(t) sum in (7) as the number of transmitters in-
creases. Fortunately, those transmitters far away from transmit-
ter l will have their messages be correspondingly multiplied by
a smaller Glj ∝ d−α

lj (where dlj is the distance between node
l and node j and α ranges between 2 and 6). Their messages
mj will therefore be given much smaller weights in the power
update.

This leads to a simplified power control algorithm, where
only messages from a small set Jl of other transmitters are
passed to the transmitter on link l. Naturally, if there are V
elements in set Jl, they should correspond to the nodes with
the V largest Glj toward node l. The power update equation
becomes:

Pl(t + 1) = Pl(t) +
κλl(t)
Pl(t)

− κ
∑
j∈Jl

Gljmj . (14)

Following the proof for Proposition 1, the following suffi-
cient condition of convergence with the simplified algorithm
can be shown:
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Proposition 3: Convergence to the global optimum of (4) is
achieved through the simplified version of the JOCP Algorithm
(5,6,14), if there exists a T such that for all time t ≥ T , the
following inequality holds:

∑
l

∑
j∈Jl

(
GjlλjSIRj

GjjPj

)2

> 2
∑

l

∑
j �=l

λlλjGjl

PlPjGjj
SIRj − λ2

l

P 2
l

.

(15)

The reduction in complexity can be measured by the ratio

∆COM =
∑

l |Jl|
N(N − 1)

where N is the total number of transmitters in the network. Ob-
viously, 0 ≤ ∆COM ≤ 1, and a smaller ∆COM represents
a simpler and less optimal message passing and power update.
The effectiveness of complexity reduction through partial mes-
sage passing depends on the path loss matrix G. While the
intuition is clear: the reduced-complexity versions do not work
well for network topologies where nodes are evenly spread out,
we do not yet have an analytic characterization on the trade-
off between ∆COM and energy efficiency enhancement or the
maximized network utility.

C. Asynchronous implementation

The algorithmic analysis thus far has been limited to the case
where propagation delay is insignificant and all the local clocks
are synchronized, which is not practical in large wireless ad
hoc networks. In this subsection, we investigate the stability of
the algorithm under asynchronous implementation, either due
to variable propagation delays or clock asynchronism.

Suppose each source updates xs and each transmitter updates
Pl at asynchronous time instances, using possibly outdated vari-
ables such as λl and mj in their update. At least one local up-
date is carried out sometime within a window of D time slots,
and the variables used in the update can be delayed up to D
time slots. We have the following

Proposition 4: The asynchronous JOCP Algorithm con-
verges if and only if D is finite.

Proof: When D = ∞, the diagonal dominance condition
[4] must be satisfied for the Hessian H of the partial Lagrangian
Ipower(P), i.e., Hll ≥

∑
i�=l |Hli|, ∀l, which in general is not

true, based on the formula of H in (9).

For a finite D, convergence of gradient-based method is
maintained if the function being optimized are non-negative and
has the Lipschitz continuity property, and the constant step sizes
are smaller than 1

D [4]. Nonnegativity and Lipschitz continuity
are indeed satisfied for both partial Lagrangians Icongestion(x)
and Ipower(P). Thus convergence is maintained if

κ ≤ min
{

1
D

,
2 − ε

L′

}
(16)

γ ≤ min
{

1
D

,
2αmindmincmin

LmaxSmaxx2
max

}
. (17)

This result shows that the proposed algorithm is able to sup-
port asynchronous implementation as long as the constants κ, γ
are small enough. The effect of asynchronism is to reduce the
maximum step sizes allowed if convergence is to be maintained,
thus reducing the convergence speed. However, in the case of
sufficiently small asynchronism:

D ≤ min
{

L′

2 − ε
,
LmaxSmaxx2

max

2αmindmincmin

}
,

delay in message passing and asynchronism in rate-power up-
dates become the loose constraints in (16,17), and do not cause
any reduction in step sizes and convergence rate.

D. Rate of convergence

So far we have focused on the equilibrium behaviors of the
JOCP Algorithm. This subsection provides a preliminary anal-
ysis on its rate of convergence. Rate of convergence for any
distributive algorithm on wireless ad hoc networks is particu-
larly important because the network topology are dynamic and
source traffic may exhibit a low degree of stability. A key ques-
tion for practical implementation of the proposed cross layer
design is whether the coupled nonlinear dynamics between TCP
and power control can proceed reasonably close to the equilib-
rium before the network topology, routing, and source charac-
teristics change dramatically.

Convergence analysis for distributive nonlinear optimization
can take several different approaches. We focus on the more
practical local analysis approach, which investigates the rate
of convergence after the algorithm reaches a point reasonably
close to the optimum. Because our algorithm nonlinearly de-
pends on the path loss matrix G, exact and closed-form results
on the rate of convergence is very difficult to obtain. Nonethe-
less, the following result on the geometric convergence property
and a bound on the convergence speed can be proved.

Let U (k) be the network utility at the kth iteration of the
JOCP Algorithm, and U∗ be the maximized network utility. Let
e(k) = |U (k)−U∗| be the error. Let P(k) be the power vector at
the kth iteration, and P∗ be the optimizer. Denote by M (k) the
largest eigenvalues of the kth iteration Hessian of Ipower(P(k)),
and m(k) the smallest eigenvalue. Let M = lim supk→∞ M (k)

and m = lim supk→∞ m(k), and assume M,m ∈ R. Let H
be the limit of the Hessian derived in (9) as k → ∞, and the
entries of H be denoted as Hij .

Proposition 5: The joint congestion control and power con-
trol algorithm converges geometrically, i.e., there exist q > 0
and β ∈ (0, 1) such that for all k, e(k) ≤ qβk. With an ap-
propriate constant parameter κ, the rate of convergence (of the
power control part) is at least M ′−m′

M ′+m′ , where

M ′ = max
i


Hii +

∑
j �=i

|Hij |
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m′ = min
i


Hii −

∑
j �=i

|Hij |

 .

Proof: It is known [3] that the convergence of a gradient-
based maximization of a nonlinear function f(x) is geometric
if the convergent point x∗ is not singular, i.e., the Hessian of f
at x∗ is negative definite. As shown in the convergence proof
of Theorem 1, the Hessian of Ipower(P̃) is indeed negative def-
inite. Interestingly, the Hessian would have been only nega-
tive semidefinite (and may be singular) had there not been the
strictly positive noise terms nl > 0 in (8).

From the local analysis results in [3], it can be shown

that lim supk→∞
‖P(k+1)−P∗‖2

‖P(k)−P∗‖2 equals lim supk→∞ max{|1 −
κm(k)|2, |1 − κM (k)|2}. Therefore, choosing κ = 2

M+m gives

a rate of convergence that is at least M−m
M+m . Finding the exact

values of the largest and smallest eigenvalues of H in closed
form is very difficult. However, by Gersgorin’s theorem [14],
all eigenvalues of H must lie in the following union:

⋃
i

{z : |z − Hii| ≤
∑
j �=i

|Hij |}.

Therefore, the largest value an eigenvalue can assume is M ′ =
maxi

(
Hii +

∑
j �=i |Hij |

)
, and the smallest value an eigen-

value can assume is m′ = mini

(
Hii −

∑
j �=i |Hij |

)
. The

worst case convergence rate is when M = M ′ and m = m′.
The proposition follows.

A similar result holds for the rate of convergence of the con-
gestion control part. However, we add the cautionary note that
the above lower bound on the rate of convergence is based on
the worst case scenario and can be orders of magnitude loose.
Depending on the path loss environment in an ad hoc network,
our numerical simulations show that the actual convergence
speed is often much faster than the bound in Proposition 5.

E. Further algorithmic enhancements

In concluding our performance analysis of the JOCP Algo-
rithm, we briefly outline a couple of algorithmic enhancements
that can be readily accomplished.

It is desirable to choose a constant step size that is neither
so large that the algorithm diverges (violating the conditions in
sections V and VI.C) nor so small that the convergence is too
slow (as bounded in subsection VI.D). One way to accomplish
this is to let each source and each transmitter autonomously de-
crease the step sizes at each time slot t according to the follow-
ing rule:

γ(t) = κ(t) =
1
t
.

Such a diminishing sequence of step sizes also makes the algo-
rithm even more robust: errors in queuing delays λ and path
losses G that are proportional to the magnitudes of λ and G

can be tolerated without losing the algorithm’s convergence to
the joint and global optimum (x∗,P∗).

It is also possible to speed up the convergence of the algo-
rithm by diagonally scaling the distributed gradient method:

Pl(t + 1) = Pl(t) + κW∇lIpower(P)

where W ideally should be the inverse of the Hessian H of
Ipower(P). Since forming this inverse will require extensive
global coordination and centralized computation, we approxi-
mate the inverse by letting

W = diag(H−1
ii ).

Substituting the expression for Hii in (9) and simplifying the
expressions, we arrive at the following accelerated algorithm:

Pl(t + 1) = Pl(t) + κ

λl(t)
Pl(t)

−∑j �=l Gljmj(t)
λl(t)
P 2

l
(t)

−∑j �=l
(Gljmj(t))2

λj(t)

. (18)

Therefore, by passing an additional message: the explicit value
of shadow price λj(t) from node j, the jointly optimal conges-
tion control and power control algorithm can converge faster.

VII. LIMITATIONS AND EXTENSIONS

This paper is limited in a number of aspects:

• Our analysis has focused on the equilibrium state of joint
congestion control and power control. We only have lim-
ited results on the rate of convergence, and very little un-
derstanding of the transient or stability properties of the
algorithm.

• We have assumed that the time scale of power con-
trol and congestion control is longer than the time scale
needed for channel coding and modulation to achieve cl =
log(KSIRl), and shorter than the time scale of dynamic
changes in network topology and routing.

• Our physical layer model assumes some given codes and
modulations under high SIR. When SIR is comparable to
1, the constraint

∑
s:l∈L(s) xs ≤ cl(P) may not be con-

vertible into an upper bound constraint on a convex func-
tion in (x,P), and the partial Lagrangian solution may
only provide a performance bound.

• Our transport layer model is accurate only for the ‘ele-
phant’ traffic using long-lived TCP flows, but not for short
TCP sessions.

• There are physical layer design variables other than power,
e.g., coding parameters, interleaver depth, and modulation
types, that can be adapted to change the supportable data
rates on a wireless link.

In addition to rate and power controls, two other obvious
mechanisms to reduce bottleneck congestion are scheduling
over different time slots and routing through alternate paths.
Neither has been investigated jointly with the algorithm in this
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paper. We are extending the framework of nonlinearly con-
strained optimization to incorporate other layers in wireless ad
hoc networks (or in wired networks e.g., as recently done in
[30]), where the optimization variables represent design param-
eters in each layer being considered, the constraint functions
model the physical or economic constraints, and the objective
function can be utility functions of source rates and also other
system parameters. Similar to the results in this paper, we then
need to answer the questions on equilibrium state behavior, suit-
able decomposition for distributed solution, convergence and
performance of the algorithms, and tradeoff among optimality,
complexity, and robustness. Optimization-theoretic framework
may provide a rigorous approach to answer other versions of the
question ‘to layer or not to layer’ from different perspectives.

VIII. CONCLUSION

We present a distributed power control algorithm that cou-
ples with the original TCP algorithms to increase end-to-end
throughput and energy efficiency of multihop transmissions in
wireless ad hoc networks. No modification to the existing TCP
protocols is needed to achieve the optimal balancing between
bandwidth demand (regulated through TCP) and supply (reg-
ulated through power control). We prove that the nonlinearly
coupled system converges to the global optimum of the joint
congestion control and power control problem. The conver-
gence is geometric and can be maintained under any finite asyn-
chronism. The proposed algorithm is robust to wireless channel
variations and path loss estimation errors. Suboptimal but much
simplified versions of the algorithm are presented for scalable
architectures. Throughout the paper, we expand the scope of
network utility maximization methodology to handle nonlinear,
elastic link capacities. This extension enables us to rigorously
prove that the proposed JOCP Algorithm has the above desir-
able properties in achieving the optimal balance between the
transport and physical layers in wireless ad hoc networks.
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