Cognitive Psychology 41, 176—-210 (2000)
doi:10.1006/cogp.1999.0728, available online at http://www.idealibrary.com on IDE §l®

Diagnostic Colors Mediate Scene Recognition

Aude Oliva and Philippe G. Schyns

University of Glasgow, Glasgow, United Kingdom

In this research, we aim to ground scene recognition on information other than
the identity of component objects. Specifically we seek to understand the structure
of color cues that allows the express recognition of scene gists. Using the L*a*b*
color space we examined the conditions under which chromatic cues concur with
brightness to allow a viewer to recognize scenes at a glance. Using different meth-
ods, Experiments 1 and 2 tested the hypothesis that colors do contribute when they
are diagnostic (i.e., predictive) of a scene category. Experiment 3 examined the
structure of colored cues at different spatial scalesthat are responsible for the effects
of color diagnosticity reported in Experiments 1 and 2. Together, the results suggest
that colored blobs at a coarse spatial scale concur with luminance cues to form the
relevant spatial layout that mediates express scene recognition. [ 2000 Academic Press

Key Words: scene; color; diagnostic information; recognition; categorization; spa-
tial scale; L*a*b*; spatia layout.

In Potter’s (1975) classical scene-recognition experiment, subjects faced
a screen on which slides of real-world scenes appeared in rapid succession
(at arate of 125 ms/slide). Their task was to press a button as soon as they
detected, e.g., a beach. Subjects’ efficiency was very high and this presents
apuzzling problem for scene analysis: how can a scene be so rapidly recog-
nized despiteitsvariability, large number of component objects, and multiple
sources of interfering factors?

Following Marr’s (1982) influential conception, scene recognition has
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been portrayed as a progressive reconstruction of input from simple local
measurements. Boundary edges, surface markers, and other visual cues are
progressively integrated into successive layers of increasingly complex rep-
resentations, the last of which assembles the identity of the scene from the
identity of a few component objects. However, this depiction does not ac-
count for al situations of recognition. Scenes are often recognized very
quickly, in a single glance—in fact, as fast as a single component object
(Biederman, Mezzanotte, & Rabinowitz, 1982; Friedman, 1979; Intraub,
1997; Potter, 1976). Under these conditions, it has been shown that visual
information could mediate scene recognition without the prior and necessary
recognition of component objects (Schyns & Oliva, 1994).

The aim of the present paper isto ground scene recognition on information
other than the identity of component objects. Specifically, we seek to under-
stand the structure of the visual information that allowsthe** express recogni-
tion'” of naturalistic, real-world scenes. Work in early vision suggests that
the early bases of recognition information are the dimensions of luminance
(brightness), chromaticity (color), and movement and depth (Livingstone &
Hubel, 1987). In this paper, we examine the contribution of chromatic cues
to scene recognition at a glance (see Oliva& Schyns, 1997; Schyns & Oliva,
1994, for the role of luminance cues). We first review the role of color in
recognition before turning to three studies that examined the conditions of
use and the structure of color cues for scene recognition.

Luminance, Color, and Recognition

Psychophysical research has revealed that early vision operates simulta-
neously with luminance and chromatic information in processing motion
(Cavanagh & Ramachandran, 1988), texture (Mcllhaga, Hine, Cole, &
Schneider, 1990), stereo vision (Logothetis, Schiller, Charles, & Hurlbert,
1990), and simple shapes (Cavanagh, 1996; Damasio, Yamada, Damasio,
Corbett, & McKee, 1980). In higher-level vision, numerous studies have
examined how luminance cues supported the recognition of faces (Breit-
meyer, 1984; Costen, Parker, & Craw, 1994; Fiorentini, Maffei, & Sandini,
1983; Schyns & Oliva, 1997, 1999; Sergent, 1986), objects (Parker et al.,
1996), and scenes (Oliva& Schyns, 1997; Parker, Lishman, & Hughes, 1992;
Schyns & Oliva, 1994). It was found that fine-scale boundary edges (from
high spatia frequencies) and coarser scale blobs (from low spatia frequen-
cies) could selectively mediate different categorizations of the same stimuli
(e.g., Oliva & Schyns, 1997; Schyns & Oliva, 1999).

In marked contrast, little is known about the role of chromatic information
in scene-recognition tasks—in fact, it is not even clear that the color dimen-
sion contributes at all to scene recognition, and so there is little research on
the structure of color cues. Turning to object-recognition studies for a possi-
ble explanation, it appears that the role of color is controversial. Color is
typically studied with two types of tasks: verification and naming. In verifi-
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cation, one lexical name is typically presented before an object picture. The
name is supposed to activate a representation in memory to match against
the input. When the activated representation comprises color cues, if these
participate in recognition, then matching should be better with colored than
with achromatic versions of the same object (Biederman & Ju, 1988; Jo-
seph & Proffitt, 1996; Sanocki, Bowyer, Heath, & Sarkar, 1998). Studies of
recognition at the basic level (Rosch, Mervis, Johnson, Grey, & Boyes
Braem, 1976) revealed that subjects verified pictures of common objects
equally fast whether they were colored or not (Biederman & Ju, 1988; Da-
vidoff & Ostergaard, 1988; Ostergaard & Davidoff, 1985). Consistent with
the ideathat colors play no role in bootstrapping recognition, Ostergaard and
Davidoff (1985) found that objects were verified equally fast, irrespective of
whether they were properly colored. Colors, however, should at least inform
the recognition of some objects. For example, orange, the color, is highly
predictive (i.e., diagnostic) of an orange, the fruit, and could therefore facili-
tate its recognition. Biederman and Ju (1988) showed that this was not even
the case: objects judged to be high in color diagnosticity were verified no
faster when colored than when black-and-white line drawings.

Object naming is the second task commonly used in studying the role of
color. In naming, a picture is shown and subjects tag a lexical name from
a restricted set of possibilities. Naming tasks produced markedly different
results. For example, Davidoff and Ostergaard (1988) found that objects like
fruits and vegetables were named faster when presented in color than when
not (see aso Davidoff & Ostergaard, 1988; Price & Humphreys, 1988;
Wurm, Legge, Isenberg, & Luekber, 1993). Colors have also been found to
affect the categorization of objects at levels higher than basic. Price and
Humphreys (1989) found that naming an object as a *‘fruit’’ or a‘‘vegeta-
ble'” was faster when it was properly colored.

Tanaka and Presnell (1999) explicitly addressed the puzzling discrepancy
between the verification and naming performances reported in the object-
recognition literature. They conducted experiments that applied the two tasks
to a set of common objects.! However, they controlled, using afeature-listing
task, the use of diagnostic colors in each object category. In the feature-
listing task, subjects saw pictures of objects (e.g., biological and human-
made) and were instructed to quickly write down their three main perceptual
features. For example, the picture of an orange could €licit the features
““round,”” ‘‘orange,”’ and ‘‘bumpy.”’ Each object was then coded for the
presence and rank of its colors in the feature listings. With this control, the
authors found faster verification and naming times for objects with higher
color-diagnosticity rankings.

1t isinteresting to note that most of these objects were used in other main studies of color
in object recognition (e.g., Biederman & Ju, 1988; Davidoff & Ostergaard, 1985; Ostergaard &
Davidoff, 1988; Price & Humphreys, 1989).
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In summary of the reviewed evidence, it appears that color diagnosticity
must be carefully controlled in recognition studies because diagnostic object
colors can contribute to recognition performance. It is one goal of this re-
search to develop a more rigorous control of color diagnosticity than feature
listings. To the extent that a scene comprises several colored objects, its
recognition speed could aso benefit from colors when these are diagnostic
of the objects themselves. However, we aready pointed out that scenes can
also be identified from scene-specific cues, not from the identity of their
objects (Biederman, 1981; Henderson, 1992; Intraub, 1997; Sanocki & Ep-
stein, 1997; Oliva& Schyns, 1997; Schyns & Oliva, 1994). Hence, asimple
generalization from object to scene colors might be audacious. Another goal
of the research is to determine the nature of the colored information that can
facilitate fast scene recognition.

There is still little psychological research on the recognition of complex
scenes per se. When scenes are used, it is to assess the role of perceptual
context in object recognition (e.g., Aginski & Tarr, 2000; Biederman et al.,
1982; Boyce, Pollatsek, & Rayner, 1989; Delorme, Fabre-Thorpe, Richard,
Fize, & Thorpe, 1998; Hollingworth & Henderson, 1998; Intraub, 1997; Sa-
nocki, Bowyer, Heath, & Sarkar, 1998). For example, Delorme et al. (1998)
presented humans and monkeys 400 pictures of food and animals in their
natural background scene contexts. Half of the pictures were colored; the
other half were gray levels. Under tachistoscopic (20—-30 ms) conditions of
presentation and speeded judgments (around 400 msin a go/no-go detection
task), color affected slower responses only in the food category. On this
basis, the authors argued for comparatively late effects of color in recogni-
tion. In contrast, Gegenfurtner (1998) showed that tachi stoscopic (30—-50 ms)
presentations of colored pictures elicited better retrieval from memory than
their luminance counterparts, illustrating that chromatic cues can index scene
memory. This color advantage occurred irrespective of whether the target
represented a human-made (e.g., streets) or a natural scene (e.g., flowers and
landscapes). However, a scene-recognition experiment of Oliva and Schyns
(1996) revealed a diagnostic influence of color. They compared the naming
speed of briefly presented (30 or 120 ms) natural, color-diagnostic (e.g.,
beach, forest, valley) and artifact, color-nondiagnostic (e.g., city, road, room)
pictures of real scenes. A panel of independent judges rated the color diag-
nosticity of the scenes. Under these conditions, natural scenes were recog-
nized faster than their luminance counterparts, but artifacts were named
equally fast. Existing data with real pictures therefore suggest that the color
is never, always, and sometimes used to recognize a scene!

Methodological Considerations

Conflicting resultsin scene recognition and the reported controversy in ob-
ject recognition stresstheimportanceof carefully controlling both thediagnos-
ticity of colors and the comparable nature of the stimuli (e.g., luminance vs
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normally colored vsabnormally col ored) beforemaking any general statement.
Todate, theliteratureon* colorsinrecognition’” hasnot alwaysacknowledged
theimportance of these controlsand it remains difficult to assesswhether col or
does or does not contribute to a speeded recognition task.

Thisresearchintroducesthel* a* b* color spacetohuman recognitionexper-
iments (see Appendix 1 for aformal presentation). L*a*b* will be used in
al our experiments to better control the diagnosticity of scene colors and the
conditions under which stimuli are visually presented. Three dimensions are
sufficient to represent all colorsof thevisible spectrum. Different three-dimen-
sional spacesare availableto represent these colors (see Appendix 1). L*a* b*
has anumber of interesting properties: First, it explicitly separates luminance
(L*) onafirst dimensionfromchroma(a* b*) onthetworemaining dimensions.
Thisenablesaformal transformation of colorswhich haslittle effect on lumi-
nance information. Second, a*b* represents colors along two col or-opponent
dimensions: a* extends from green to red and b* from blue to yellow. It is
generally agreed that the visual system processes color along such oppositions
(see Logothetis, Schiller, Charles, & Hurlbert, 1989). The second interesting
property of L*a*b* isthat it iscloseto perceptual uniformity. Inaperceptualy
uniform encoding, the Euclidian distance between any two points [L1* al*
b1*] and [L2* a2* b2*] mirrors the perceived difference of the colors they
represent (this property holds for medium to long distances in L*a*b*; see
Wyszecki & Stiles, 1982, for areview and discussions). Connelly (1996) tested
several color spaces (including L*a*b*, L*u*v*, and XYZ) to determine how
robust they were to changes in chroma (color saturation) and hue. Using digi-
tized pixelssampled from differently colored cardboards of the Munsell scale,
she observed that L*a*b* encodings produced cleaner separationswhich pre-
served the topography of perceptual distancesin humans (as expected by the
property of perceptual uniformity of L*a*b*).

The present research capitalized on these properties of L*a*b* to generate
a new and powerful method of synthesizing photographic stimuli for which
(1) a selective change of color does not affect physical luminance and (2)
color diagnosticity can be controlled. Note that thisis a significant departure
from standard methods. The common RGB encoding does not separate lumi-
nance from chromaticity, and so a change in color produces a change in
luminance. In L*a*b*, however, we can independently change the a* and
b* axes and recompose a new image whose colors have changed, but whose
physical luminance has not. To illustrate, if a* represents the green-to-red
spectrum and b* represents the blue-to-yellow spectrum, a swap of two axes
(L*b*a*) would change the color of a beach from yellow to red (see Fig.
1B). Swap is the first operator that can be applied to the color information
of ascene in L*a*b*. An inversion of values along the a* and b* axes is
the second operation. For example, an inversion of b* would create a blue
beach. Of course, the two operators are independent, and swap+invert could
synthesize agreen beach (see Fig. 1C). In our experiments, we used composi-
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tions of the swap and invert operators to produce differently colored versions
of the same scenein which luminance was held constant (examples of stimuli
are presented in Experiment 1).2 This property of L*a*b* alowed better
control of the typical conditions of stimulation of normally colored, abnor-
mally colored, and luminance-only.

We used the perceptual uniformity of L*a*b* to control the diagnosticity
of colors. Each picture was composed of a fixed number of pixels which
projected into the two-dimensional, color-opponent a*b* space. When
scenes had typical colors (e.g., the variations of yellows and browns of
deserts), the colors of their pixels formed tight, separable clusters in a*b*
(see Fig. 2). When they did not have distinct colors, their pixels overlapped
in a*b* (see Fig. 3). We could therefore select scene categories with the
constraint that their projections formed distinct, nonoverlapping, and roughly
equidistant clusters in a*b*. The computation of this control is detailed in
Appendix 2.

Three experiments which manipulated and controlled the diagnosticity of

FIG. 1. (B) The application of the operator axis swap (L*a*b* — L*b*a*) to the top
beach picture: every pixel of the green/red opposition is transposed in blue/yellow and vice
versa. Note, for example, that the yellow sand becomes redish and that the green sea becomes
blue. The bottom picture illustrates the application of the axis inversion operator to the ‘‘axis
swapped’’ middleimage: each red pixel (e.g., the sand in the middle picture) becomes greenish
and each blue pixel (e.g., the seain the middle picture) become yellow in the bottom picture.
Applications of axis swap and inversion were used to synthesize the abnormally colored scenes
of our experiments.

»
>

FIGS. 2and 3. These figuresillustrate the color histograms we used to control the color
diagnosticity of scenes in Experiment 1. To compute each histogram, we divided the a*b*
space in a lattice of 80 X 80 equally spaced bins. For each category, we retrieved the a* b*
bin of each pixel of each exemplar by transforming it from RGB to L*a*b*. We then normal-
ized the outcome by summing the pixelsin each bin and divided the total per bin by the total
number of pixels per category. The axes of each histogram represent the coordinates of each
color in the 80 X 80 lattice covering a*b*. The frequency of each color is represented in a
percentage. The high resolution of the histograms produced percentages typically varying be-
tween 0 and 1 for each of the 80 X 80 possible color bins. Increasing color intensitiesin a
“‘rainbow encoding’’ (seethe color bar in Fig. 2) mirror increasing percentages. Thistechnique
produced a different color histogram per category in a*b*. The color histograms of Fig. 2 do
not overlap, indicating that the categories were color-diagnostic whereas those of Fig. 3 do
overlap, revealing that the categories were not color-diagnostic. The upper four histograms
of Figs. 2 and 3 show the color histograms of the normally colored scenes, whereas the lower
four show the abnormally colored version. The depiction of a*b* in the center helps to under-
stand the main colors of each histogram.

2 The images used in our experiments had an average luminance of 128 (STD = 70) on a
[1...256] gray-level scale. Thetransformation of color could sometimes introduce amarginal
change so that the average luminance level would oscillate between 124 and 132.
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Forest Canyon

FIG. 2.
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scene colorsin L*a*b* were run to examine their impact on scene-recogni-
tion performance. Remember that the object-recognition literature reported
different effects with verification and naming tasks (Biederman & Ju, 1988;
Davidoff & Ostergaard, 1988; Price & Humphreys, 1988; Ostergaard & Da-
vidoff, 1985; Wurm, Legge, Isenberg, & Luekber, 1993; but see Tanaka &
Presnell, 1999). Experiments 1 and 2 therefore tested whether diagnostic
colors influence scene naming and verification, respectively. Experiment 3
addressed the issue of the nature of luminance and color cues in scale space
and their respective contributions to scene recognition.

EXPERIMENT 1

Experiment 1 tested the hypothesis that colors contribute to recognition
when they are diagnostic of a scene category. Remember that L*a*b* sepa-
rates luminance (L*) from two independent chromatic oppositions (a*, red—
green, and b*, blue—yellow). We chose four categories of scenic photographs
(canyon, forest, seashore, and desert) with the constraint that their main col-
ors stood at the opposite sides of the a*b* axes. The top four pictures of
Fig. 2 illustrate that the projections of these categories in a*b* (i.e., the
pixels of each of their exemplars) occupy four distinct, nonoverlapping, and
roughly equidistant regions. Canyons are mostly red and orange, forests
green, seashores blue, and deserts yellow (compare with the depiction of
a*b* provided in the picture). Chromatic information is therefore objectively
diagnostic of these categories in the task considered. In contrast, the projec-
tion of the four other categories (city, shops, road, and room) do not form
tight, nonoverlapping clusters in a*b*—i.e., they al occupy a similar area
of the space (see the top four pictures of Fig. 3). Color cannot be diagnostic
of these categories.®

The opposition between color-diagnostic and color-nondiagnostic scenes
is the backbone of Experiment 1: we expected faster recognition when colors
were diagnostic—i.e., the scenes represented in Fig. 2. Thereis one potential
confound with this approach. We aim to assess the role of diagnostic colors
on recognition, but the task allows a strategy independent of proper scene
recognition: subjects could learn to respond to diagnostic colors without nec-
essarily recognizing the scenes themselves. Such an effect of colors in the
task, not of colors on recognition per se, must be controlled. To this end,
we synthesized abnormally colored versions of the color-diagnostic catego-
ries with the constraint that they projected onto other well-separated regions
of a*b* as did their normally colored versions. The lower pictures of Fig.
3 illustrate the desired result that abnormally colored categories were still

% This is not to say that a given living room does not have specific colors, but that living
room, as acategory of different pictures, does not form acluster distinct from the other catego-
ries chosen.
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D

FIG. 4. The three versions of two of the scene pictures used in Experiment 1. (A and D)
Normally colored scenes (Norm). (B and E) Abnormally (Abn) colored versions. (C and F)
Luminance-only (Lum) versions.

diagnostic in the task (they had distinct modal colors), but not in the real
world (see Fig. 4 for examples of these scenes). Abnormally colored versions
were also generated for the other scenes, but for reasons to be later explained,
they could not be diagnostic in the task (see the bottom four histograms of
Fig. 3).

In sum, Experiment 1 comprised three different versions of each color-
diagnostic and nondiagnostic scenes: normally colored, abnormally colored,
and luminance-only (or gray levels, see Fig. 4). The latter served to assess
baseline recognition in the absence of any chromatic cues. We predicted
differential effects of colors on recognition: color-nondiagnostic scenes
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should be recognized equally fast irrespective of whether they are colored;
color-diagnostic scenes should be recognized faster when properly colored.

Methods

Participants

Sixteen Glasgow University students (between 18 and 25 years of age with normal or cor-
rected vision) were paid to participate in the experiment.

Simuli

The image sample comprised 160 color pictures of scenes selected from the Corel CD Photo
Library. Images were divided into four categories of color-diagnostic scenes (canyon, forest,
coastline, and desert) and four categories of color-nondiagnostic scenes (city, shopping area,
road, and room). Twenty exemplars per category represented the scenes from a variety of
viewpoints and perspectives. Note that the pictures had a similar luminance—i.e., their gray-
scale means and standard deviations were similar.

Computation of color diagnosticity in L*a*b*. Color-diagnostic categories were chosen
with the constraint that their pixels projected into clearly distinguishable clusters in a*b*.
Color-nondiagnostic categories were chosen so as not to form clear-cut clusters in a*b* (see
Appendix 2 for the details of the computation).

Computation of conditions of stimulation in L*a*b*. The experiment used three different
versions of each scene: normally colored (Norm), luminance only (Lum), and abormally col-
ored (Abn). The Norm scenes (160 pictures) were simply the original pictures. Lum stimuli
discarded the chromatic components a*b* of Norm scenes, leaving only L*, the gray levels.
To compute Abn stimuli, we transformed the colors of Norm scenes in a*b*. Remember that
axis swap in a*b* replaces red—green pixels with blue—yellow pixels and vice versa. Axis
inversion produces the opposite of a color (e.g., green pixels become red or vice versa; blue
pixels become yellow or vice versa). We applied these transformations to the original scenes
with the constraints of (1) producing tight clusters in locations of a*b* different from those
of the normally colored pictures and (2) spanning about the same colors as those of the original
stimuli. This could only apply to color-diagnostic scenes, as a distinct color mode is needed
to produce another mode with the color transformation methods described here. Figure 4 shows
two examples of the three types of stimuli. Color-nondiagnostic scenes were also color trans-
formed but this did not change the diagnosticity of their colors. The color histograms of color-
transformed scenes are shown in the lower pictures of Figs. 2 and 3.

Stimuli were presented on a Macintosh computer monitor. They were 472 X 325-pixel
images, presented at a 150-cm viewing distance to subtend 6.4 X 4.4 degrees of visual angle.
From 160 original pictures, we synthesized atotal of 480 experimental stimuli equally divided
between Norm, Abn, and Lum.

Procedure

The experiment comprised 480 trials. 160 Norm, 160 Abn, and 160 Lum. A trial started
with a 500-ms presentation of a mid-gray fixation square followed, 100 ms later, by a picture
(Norm, Abn, or Lum) displayed for 120 ms. Subjects were instructed to name aloud the image
as quickly and as accurately as they possibly could. A 1500-ms latency separated two trials.
Trias were divided into 10 blocks of 48, with within- and between-block randomization of
order of presentation across subjects. Subjects were allowed a 1-min pause between blocks.

We instructed subjects that the scenes could only belong to one of eight possible categories
(the names were explicitly listed and subjects were told to only use one of them). A voca
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key connected to the computer measured the latencies between stimulus presentation and cate-
gory name. Subjects were not shown the stimuli prior to the experiment. Eight practice trials
were used to calibrate the vocal key and to familiarize subjects with the apparatus. The experi-
ment lasted for about 50 min.

Results and Discussion

Error Rates

The results of one subject were discarded from the analysis because of
abnormally high categorization errors (over 40%). The error rates of the
remaining subjects were low (city = 5.2%; road = 4.2%; room = 4.2%;
shop = 5.7%; canyon = 5.8%; coast = 5.6%; desert = 4.9%; forest = 3%),
and did not differ across types of stimuli (Norm = 4.9%, Abn = 4.7%,
Lum = 4.9%, respectively). A two-way ANOVA (eight categories X three
stimulus types) on percentage correct categorizations did not revea a sig-
nificant difference between categories, [F(7, 98) = 1.65, ns| and type of
stimuli [F(2, 28) < 1, ns]. Subjects were therefore able to correctly catego-
rize al stimuli, and we can turn to an analysis of their reaction times.

Reaction Times

In this analysis we used only the RTs of correctly categorized trials with
latencies within 2.5 SD from the mean. A two-way, within-subject ANOVA
with type of category (color-diagnostic vs -nondiagnostic) and stimulus con-
ditions (Norm, Abn, and Lum) revealed a main effect of diagnosticity [F
(1, 14) = 32.6, p < .0001], amain effect of stimulus condition [F(2, 28) =
21.98, p < .0001], and a significant interaction [F(2, 28) = 21.82, p <
.0001; seeFig. 5].

Figure 5illustrates that chromatic information did indeed influence recog-
nition in a scene-naming task. However, the interaction circumscribes the
influence to the four color-diagnostic categories. A post hoc Tukey test re-
vealed that normally colored stimuli were recognized more quickly than the
same scenes without their colors [Lum = 804 ms, Norm = 758 ms, F(1, 28)
= 51.91, p < .0001]. In contrast, these versions of color-nondiagnostic scenes
were recognized equally as fast [Lum = 755 ms, Norm = 746 ms, F(1, 28)
< 1, ng]. This confirms that the addition of colors to luminance cues in the
color-diagnostic categories speeded their recognition.

The issue of the origin of the effect of color diagnosticity (task or prior
knowledge) can now be addressed. Remember that abnormally colored
scenes were constructed to be diagnostic in the task, but not in the real world
(whereas the normally colored versions were diagnostic in the task and in
the real world). Figure 5 shows that these scenes were in fact recognized
more slowly than their achromatic, luminance-only counterparts [Lum =
804 ms, Abn = 824 ms, F(1, 28) = 9.78, p < .02]. Such interference was
not observed for color-nondiagnostic scenes, which were again recognized
equally fast in both conditions [Lum = 756 ms, Abn = 753 mg].
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FIG. 5. Subjects’ naming reaction times in the within-subjects design of Experiment 1.
Performance was very similar across luminance-only, normally colored, and abnormally col-
ored versions of the color-nondiagnostic scenes. In contrast, facilitation of normally colored
pictures and intereference of abnormally colored pictures were observed for color-diagnostic
SCenes.

In sum, it appears that color influences recognition when it is diagnostic
of ascene category: The addition of normal colorsto an achromatic stimulus
accelerates its recognition, whereas the addition of abnormal colors impedes
it. At this stage, it is worth pointing out that these trends were observed
for all four color-diagnostic categories (see Fig. 6). However, nondiagnostic
colors had no observabl e effect on categorization speed. Appendix 3 presents
areplication of all these effects of diagnosticity with shorter, 30-ms presenta-
tions of the stimuli. Thus, there is no doubt that diagnostic colors have selec-
tive influences on the naming of scenes, even when they are very briefly
seen.

EXPERIMENT 2

Remember that object-recognition studies revealed a discrepancy between
naming tasks, which produced effects of colors, and verification tasks, which
did not. The naming task of Experiment 1 also produced effects of color.
Experiment 2 therefore had two main aims: (1) to replicate in a verification
task, and using a wider range of categories, the diagnostic effects of colors
reported in Experiment 1 and (2) to examine how the luminance and chro-
matic cues memorized to represent a scene can contribute to recognition.

In a category-verification task aname precedes a picture and subjects must
assess Whether the two match.* In Experiment 2, the name was one of eight

4 Verification tasks require ‘‘yes/no’’ responses and therefore authorize the use of many
categories while limiting the interference of number of possible responses on reaction times.
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FIG. 6. The decomposition of the reaction times for each color-diagnostic category of
Experiment 1. The trends of facilitation of normal colors and interference of abnormal colors
applied to each of the tested categories.

possible color-diagnostic categories (beach, canyon, coast, desert, field, for-
est, garden, and valley), or eight color-nondiagnostic categories (bathroom,
bedroom, kitchen, living-room, city, restaurant, road, and shop). Scenes
were normally and abnormally colored. We measured the time subjects took
to verify whether the name and the exemplar matched.

Experiment 2 comprised two types of trials. positive and negative. In posi-
tive trials, name and picture matched (e.g., ‘‘beach’” followed by a beach
picture). In agreement with the results of Experiment 1, we expected that
subjects would match the category name faster with anormally colored scene
than with an abnormally colored scene, but only when color was diagnostic
of the category. When color was not diagnostic, we expected verifications
to be equally fast for normally and abnormally colored scene exemplars.

In negative trials, name and picture did not match. Thisis amore complex
situation because luminance and chromatic cues can differ in their mismatch
with the named category, but it can aso reveal an interesting trend. For
example, in analogy to the Stroop effect, it should be comparatively easier
tosay ‘‘'no’”’ when diagnostic colors differ between the name and the target
(asin‘‘field’ and desert) than when they match (asin‘‘garden’’ and forest).
Note that this prediction runs against most object-recognition studies which
did not report effects of colors in verification tasks (though see Tanaka &
Presnell, 1999). A subset of negative trials was designed to separate the re-
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spective contributions of memorized luminance and chromatic cues to the
verification of color diagnostic categories.

In sum, the positive trials of Experiment 2 were designed to replicate the
diagnostic effect of color in a verification task. A subset of negative trias
tested the possibility of a Stroop interference.

Methods

Participants

Twenty University of Glasgow students with norma or corrected vision (age group, 18—
25) were paid to participate in the experiment.

Simuli

We used 128 colored scenes from the Corel CD Photo Library. Each belonged to one of
16 possible categories (with 8 different pictures per category), equally distributed between 8
color-diagnostic (beach, canyon, coast, desert, field, forest, garden, and valley, see Fig. A2.1
in Appendix 2) and 8 color-nondiagnostic categories (bathroom, bedroom, kitchen, living
room, city, restaurant, road, and shopping area; see Fig. A2.2 in Appendix 2).

Computation of color diagnosticity in L*a*b*. As in Experiment 1, we computed color
histograms to assess that color-diagnostic categories had distinct colors in L*a*b* whereas
color-nondiagnostic categories overlapped (see Appendix 2).

Computation of conditions of stimulation in L*a*b*. Each scene picture came in two ver-
sions, normally (Norm) and abnormally (Abn) colored, computed in L*a*b* as explained
previously. In total, Experiment 2 comprised 256 stimuli—128 Norm + 128 Abn = 256
divided into 8 exemplars/category X (8 Nat + 8 Art) X (Norm + Abn).

Positive Trials

In positive trials, the category name and the target picture belonged to the same category.
They formed a total of 256 trials, testing all 16 categories with normally and abnormally
colored scenes.

Negative Trials

In negative trials, name and picture belonged to different categories. A total of 384 trials
tested all 16 categories using normally and abnormally colored versions of the scenes. Negative
trials comprised 3 sets. 128 using color-diagnostic scenes, 128 using color-nondiagnostic
scenes, and 128 using abnormally colored versions of color-diagnostic and color-nondiagnostic
scenes. Of these trials, we were only interested in the first color-diagnostic set to test the
Stroop interference. The others trials served as fillers.

The set of 128 color-diagnostic trials was further divided into 2 subsets of 64. The first 64
trias tested the four possible mismatches between a named category and luminance and chro-
matic cues. similar luminance and similar color (SL-SC), dissimilar luminance and similar
color (DL-SC), similar luminance and dissimilar color (SL-DC), and dissimilar luminance and
dissimilar color (DL-DC) (see Table 1). Here, similar color means highly correlated color
histograms (e.g., garden and forest or valley and beach; see Table A2.3in Appendix 2). Similar
luminance denotes a similar gray-scale scene layout (e.g., afield and a desert are more similar
in luminance than a field and a forest). A panel of four judges assigned the negative trias to
the cells of Table 1 and the correlations between color histograms of color diagnostic categories
were used to confirm the assignment (see the bold correlations in Table A2.3 in Appendix
2). Each trial of Table 5 was repeated 8 times, for a total of 64 negative trias. To establish
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TABLE 1
Contingency Table of Negative Trias in Experiment 2
Same structure Different structure
Same color SS-SC DS-SC
‘‘garden’’ - forest “‘beach’” - valley
““forest’”” - garden “valey’” - beach
Different color SS-DC DSDC
“field” - desert ‘‘canyon’’ - coast
“‘desert’” - field ‘‘coast’”’ - canyon

baseline negative verifications, 64 negative trials randomized the category name presented
before a color-diagnostic picture to destroy the luminance and chromatic associations tested
in Table 1.

Procedure

A trial comprised one category name (bathroom, beach, bedroom, canyon, city, coast, de-
sert, field, forest, garden, kitchen, living room, restaurant, road, shopping area, or valley)
initially presented on the screen for 1000 ms, immediately followed by an 800-ms blank and
presentation of a scene for 120 ms. Pictures subtended 6.4 X 4.4 degrees of visual angle at
a 150-cm viewing distance. Subjects were instructed to decide as accurately and as quickly
as they possibly could whether the name and picture matched by pressing one of two keys
(half of the subjects used their right hand for the ‘‘yes’ answer and the left hand for ‘*no,"”’
the other half did the opposite). A 1000-msinterval elapsed between two trials. The experiment
comprised 640 trias split into 8 blocks of 80 trials. Presentation of blocks and trials within
blocks were randomized. Subjects were allowed a 2-min pause between blocks. Prior to the
experiment, subjects received a brief description of each scene category and its main compo-
nents. They were asked to try to form a mental picture of the named scene. We hoped that
this would mobilize al the visual dimensions of their scene representations.

Results and Discussion

Positive Trials

Subjects made very few verification errors. negative answers to positive
trialsoccurred on less than 1% of all positivetrials. We compared verification
RTsof correct positivetrials. A two-way, within-subjects ANOV A with cat-
egories (al 16 of them) and colors (Norm vs Abn) as factors revealed sig-
nificant main effects of categories[F(15, 285) = 17.33, p < .001] and colors
[F(1, 19) = 3341, p < .001] and a significant interaction [F(15, 285) =
4,114, p < .001].

Analysis of the interaction did not reveal a significant difference between
the verification RTs of normally and abnormally colored col or-nondiagnostic
scenes [Norm = 561 ms, Abn = 560 ms, F(1, 285) < 1, ns].’ In contrast,

® The mean RTs, for Norm and Abn versions of the color-nondiagnostic categories, are (SD
error in parentheses): bathroom 613—-606 (11.2), bedroom 547-535 (9.3), city 476—475 (9.3),
kitchen 559-564 (11.4), restaurant 568—560 (10.7), road 493-505 (11.6), living-room 620—
634 (10.6), and shopping area 614—605 (11.3); emphasizing that colors did not play any role.
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FIG.7. Theaveragegan in verification time as afunction of color-diagnostic category in
Experiment 2. The gain was computed by subtracting the average verification time of normally
colored scenes from the average verification time of abnormally colored scenes.

such a difference existed for color-diagnostic scenes [Norm = 560 ms and
Abn = 615 ms, F(1, 285) = 85.04, p < .0001]. Figure 7 illustrates that the
advantage of normally colored scenes applied to all of the tested categories.®
These results obtained with a verification task confirm with a larger set of
categories the main effects of diagnostic colors observed in the naming task
of Experiment 1. They indicate that color diagnosticity, not the experimental
task, accounts for the reported advantage.

Negative Trials

Remember that a subset of the negative trials, those using color-diagnostic
scenes, served to construct a Stroop interference paradigm. Subjects were
asked to form amental picture of the scene from the provided category name.
We therefore expected that when colors matched between the name and the
subsequent target picture, subjects would find it comparatively harder to es-
tablish that when they did not match. Such interference would further demon-
strate that memorized diagnostic colors are actively used over the course of
scene recognition.

Errors(i.e., saying ‘‘yes ' when the name and target differed) were negligi-

® Note that the advantage is here expressed as the absolute difference between the reaction
times to normally and abnormally colored scenes. Specific mean RTsfor Norm and Abn were
(SD in parentheses): beach, 607-631 (11.4), canyon 548-595 (10.8), coast 614- 672 (12),
desert 526559 (33), field 521-631 (11.9), forest 518-571 (12), garden 518-599 (11), and
valley 631-667 (11.4). Note that there was no positive correlation between mean RT and gain
(corr = —.25).
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ble. We analyzed the RTs of correct negativetrials using athree-way, within-
subjects ANOVA, with color (similar vs dissimilar), luminance structure
(similar vs dissimilar), and interference (baseline vs other trials) as factors.
We found a significant main effect of color [F(1, 19) = 13.58, p < .01],
no main effect of luminance [F(Z1, 19) < 1, ng], and a significant interference
[related tridls = 591 ms and baseline trials = 539 ms, F(1, 19) = 141.53,
p < .0001]. Theinteraction color X interference was significant, [F(1, 19) =
58.24, p < .0001], whereas the interaction luminance x interference was
not. Together, these results suggest that the diagnostic colors associated with
acategory name (e.g., ‘‘garden’’) interfered with the decision that the subse-
quently presented scene (e.g., forest) did not match.

This point was further explored with a decomposition of the double inter-
action, itself significant [F(1, 19) = 5.31, p < .05]. Interference on verifica
tion was stronger when category name and target picture were mismatched
in both luminance and color [118 ms interference, SL-SC = 648 ms, com-
pared to abaseline of 530 ms; F(1, 19) = 147.22, p <.0001]. A strong 80-ms
interference also appeared when only colors were similar between name and
picture[DL-SC = 605ms, itshaseline = 525ms; F(1, 19) = 67.27, p < .0001].
In contrast, no interference arose when col ors mismatched between name and
picture, irrespective of the luminance similarities (i.e., the SL-DC = 547 ms,
baseline = 544 ms, and DL-DC = 565 ms, baseline = 555 ms).

To summarize Experiment 2, positive trials revealed faster verifications
of category membership of scenes when they were color-diagnostic and
properly colored. Color-nondiagnostic categories were verified equally fast,
whether scenes were properly colored or not. Negative trials with color-
diagnostic categories reveaed a Stroop effect when colors matched between
a name and a scene from a different category. Together with the results of
Experiment 1, we can conclude that color diagnosticity, not the experimental
task itself (i.e.,, naming or verification), determines whether color exerts an
influence on speeded-scene recognition tasks (see also Tanaka & Presnell,
1999, for a similar conclusion with objects).

EXPERIMENT 3

Experiments 1 and 2 have established that diagnostic colors participate in
the recognition of real-world scenes. This raises the question of the nature
of the chromatic cues tapping into the recognition mechanisms. Schyns and
Oliva (1994; see also Oliva & Schyns, 1997) reported that coarse-scale lumi-
nance cues (around 2 cycles/degree of visua angle, corresponding to 8
cycles/image) could mediate the accurate classification of scenes into broad
categories (e.g., room, city, highway, mountain, and so forth). At a coarse
scale, however, a scene cannot be identified from its objects (see the most
filtered scenesin Fig. 8) and scene specific configural information must medi-
ate its recognition.
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FIG. 8. The different conditions of stimulation used in the free-categorization task of
Experiment 3 in the colored and luminance-only conditions. The upper sceneis color-diagnos-
tic, whereas the lower scene is not.

Even if it has been observed that pictures of natural scenes do have color
information represented in medium to high spatial frequencies (Parraga et
al., 1998), the visua system tends to perceive chromatic information at
coarser scales better than luminance information (Mullen, 1985).” The re-
ported effects of color should therefore arise from the spatial layout of crude
color information.

Experiment 3 examined the hypothesis that the addition of colors to
luminance cues improves the efficiency of scene categorization. To this
end, we low-passed 24 colored scenes (12 color-diagnostic and 12 color-
nondiagnostic) starting with a cutoff of 0.5 cycle/degree climbing progres-
sively to 8 cycles/degree of visual angle (see the examples presented in Fig.
8). This produced a spectrum of scene information at different scales. One
subject group categorized these scenes. To isolate the role of color, a second

" It has been observed that the contrast sensitivity for chromatic information drops off faster
at high spatial frequency than luminance contrast. This perceptual constraint would suggest that
useful color information would tend to be in the lower part of the spatial frequency spectrum.
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group categorized the luminance-only versions of the same scenes. We could
therefore measure the gains in categorization performance that arose from
the addition of color cuesto luminanceinformation at different spatial scales.

On the basis of previous experiments, we expected categorization perfor-
mance to be high (i.e., superior to 70% accuracy) for luminance-only images
with a spatial frequency content above 2 cycles/degree of visual angle. The
results of Experiments 1 and 2 also led us to predict that if colored blobs
are useful categorization cues, then adding colors at different levels of spatial
scales should offer a differential advantage to color-diagnostic and color-
nondiagnostic scenes. Namely, scenes at very low resolutions should benefit
more from the addition of colors when these are diagnostic of the category.
Color-nondiagnostic scenes could also benefit from color, but not from very
low resolutions (because the organization of colored blobs is not diagnostic
of the category considered). Together, these results would establish that col-
ored blobs can be the diagnostic information required for scene recognition.

Methods

Participants. Thirty University of Glasgow students (between 18 and 25 years of age with
normal or corrected vision) were paid to participate in the experiment. They were randomly
assigned to one of two experimental conditions.

Simuli. We selected atotal of 24 scenes, each from a different category, with the constraint
that they could be individually named. The sample comprised 12 color-diagnostic scenes
(beach, canyon, coast, desert, field, forest, lake, mountain, port, river, countryside road, and
valley) and 12 color-nondiagnostic scenes (bathroom, bedroom, kitchen, living-room, office,
stairs, skyscraper, city center, highway, restaurant, shopping area, and street).

Each scene was low-passed at six different levels, 0.5, 1, 1.5, 2, 4, and 8 cycles/degree of
visual angle.® Filtering was independently performed in L*, a*, and b*; luminance-only stimuli
were L* (see Fig. 8). In total, the experiment comprised 144 colored images and their 144
luminance counterparts.

Procedure. Participants sat 150 cm away from the computer screen so that each scene
subtended 6.4 X 4.4 degrees of visual angle. Images were randomly presented one at atime
for 150 ms. In a free naming task, subjects were instructed to name each scene they saw.
Instructions emphasized that pictures were scenic photographs quickly displayed on the screen
with some of them blurred, that the pictures only represented indoor and outdoor scenes, and
that there were no close-up views of objects. Subjects were told to look at the entire picture
to determine the displayed scene. Instructions also specified that identification should be as
precise as possible, using only one or two words to categorize each scene (e.g., garage, class-
room, garden, and so forth). Subjects were told not to use imprecise names such as ‘‘indoor’”’
or ‘“‘outdoor.”” To minimize response biases, subjects did not see the actual pictures prior to
the experiment and they were not told which category names to use. They were required to
write down one answer per scene in the proper sot of a preformatted answer sheet without
receiving any form of corrective feedback. A key-press on the computer keyboard presented
the next picture. Completion of the experiment took about 1 h.

Results and Discussion
As subjects performed a free naming task, we coded their categorization
responses. Three independent judges assessed whether the names given cor-

8 These values corresponded to 1 cycle every 64 pixels of the image, for the lowest filtering,
to 1 cycle every 4 pixels, for the highest level of filtering.
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responded to the presented scenes. For example, a coast scene could be called
a coast, a sea coast, a coastline, a seashore, a bay, or a view on the ocean,
and the city scene of Fig. 8 was named a city, buildings, a street, a city
center, and an urban zone. The scene was properly categorized whenever
the name and picture were judged to be congruent. A different score (where
100% means 24 correct categorizations) was therefore computed for each
tested spatial resolution of each scenic picture.

We excluded two participants (one per group) from the analysis because
they did not follow the instructions and produced disproportionately high
errors (more than 50%). A three-way ANOVA on percentage correct cate-
gorization with between-subjects factor *‘luminance vs colored stimuli’’,
within-subjects factors ** col or-diagnostic vs -nondiagnostic scenes’’, and six
levelsof spatial filtering revealed amain effect of colors[51% vs 76% correct
for luminance and colored, respectively; F(1, 26) = 57.97, p < .001], a
main effect of filtering level [F(5, 130) = 279.17, p < .001], and no global
significant difference between correct categorizations of color-diagnostic
(64%) and -nondiagnostic (63%) scenes.

Figure 9 illustrates the significant interaction between color (the plain
lines) vs gray scale (the dashed lines) and levels of filtering, [F(5, 130) =
19.68, p < .001].The addition of colors greatly enhanced performance at
low resolutions, up to 1.5 cycles/degree, resulting in a shift of the perfor-
mance curves corresponding to the colored stimuli (the plain lines). At 0.5
cycle/degree of filtering, correct categorizations were at 36% with colored
scenes, but at only 2% (with chance 1/24 = 4.25%) for the same stimuli
without colors. The level of performance at 1 cycle/degree with colored
scenes was only attained one octave higher, at 2 cycles/degree, with their
achromatic counterparts. Consequently, correct categorizations are mostly
found with colored stimuli at coarse resolutions. Starting from 1.5 cycles/
degree, correct categorizations become more evenly distributed between lu-
minance-only and colored stimuli. Theseinitial resultsillustrate that the addi-
tion of coarse chromatic cues to the luminance blobs of a scene clearly en-
hanced its categorization, but also that the information supporting this
enhancement resided below 2 cycles/degree (or 8 cycles/image) of spatial
resolution.

Turning to the selective influence of color diagnosticity on categorization
performance, a significant interaction was found between this factor and
levels of spatial filtering [F(5, 130) = 9.26, p < .001] as well as a dou-
ble interaction [F(5, 130) = 2.77, p < .05]. A decomposition of the latter
revealed that the former was significant for the categorizations of both
luminance-only [F(5, 130) = 8.42, p < .001] and colored stimuli, F(5,
130) = 3.62, p < .01]. For colored stimuli, the early separation between
the bold and thin lines in Fig. 9 indicates an influence of diagnostic colors
on scene categorization—in fact, the difference is significant as early as 0.5
cycle/degree between color-diagnostic (49%) and color-nondiagnostic
(23%) scenes [F(1, 130) = 45.98, p < .001]. Remember that the dashed
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FIG. 9. Theresponse curve of subjects submitted to the different levels of filtering (from
0.5 to 8 cycles/degree of visual angle) of the normally colored and luminance-only versions
of color-diagnostic and color nondiagnostic scenes in Experiment 3. The figure reveals that
colored scenes (the plain lines) elicited better categorization performance than the luminance-
only version of the same scenes (the dashed lines). A further effect was observed in which
the color-diagnostic colored scenes (the thick solid line) were systematically better recognized
than the color-nondiagnostic scenes (the thin solid line) at very low spatial resolutions.

lines are the luminance-only representations of the same scenes. Figure 9
reveals a very different performance profile for these stimuli. At very low
resolutions (below 1.5 cycles/degree) performance is almost identical. At
higher resolutions, however, performance is better for color-nondiagnostic
scenes, suggesting that these levels represent useful luminance cues, at least
for the scenes considered.

The performance contrasts between colored and luminance stimuli at low
resolution suggest that a spatial organization of coarse colored blobs s cru-
cial information for early scene-recognition mechanisms. Objects cannot be
identified at such resolution and so the configuration itself (or coarse spatial
layout) appears to present sufficient classification information. However, a
diagnostic organization of colored blobs cannot be the only factor that ex-
plains performance: color-nondiagnostic scenes were themsel ves better cate-
gorized than their luminance counterparts (see the difference between the
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thin lines, solid and dashed). Image segmentation could explain this discrep-
ancy. With luminance as the only source, image segmentation depends on
luminance contrasts. Colors add two supplementary sources of possible con-
trasts (the red—green and blue—yellow oppositions) and segmentation is bet-
ter constrained. A better segmentation of blobs also promotes a more effec-
tive categorization of the scenes they represent.

In sum, Experiment 3 examined the nature of the chromatic and luminance
information that can tap into scene-categorization mechanisms. It was found
that the addition of colorsto coarse luminance blobs enhanced their categori-
zation. It was also shown that the contribution of colors across spatial scales
depended on their diagnosticity. Thus, a coarse organization of diagnostically
colored blobs (together with their easier segmentation) is in itself effective
information for scene categorization.

GENERAL DISCUSSION

This paper reported three experiments that investigated the influence of
color on real-world scene recognition. We reported converging evidence that
colors play a primary role in speeded scene recognition and that coarse spa-
tial layouts were powerful scene recognition cues.

Using afast identification task, Experiment 1 revealed that color influences
recognition when it is diagnostic of a category. The addition of normal colors
to an achromatic stimulus facilitated its naming, whereas the addition of
abnormal colors interfered with naming. In contrast, colors had no observ-
able effects on the naming of color-nondiagnostic scenes. Turning to a veri-
fication task in Experiment 2, we also found selective effects of diagnostic
colors. Subjects were faster to judge the category membership of color-diag-
nostic scenes when these were properly colored. In contrast, colors had no
observable effects on the verification of color-nondiagnostic scenes. These
results with a verification task replicated the findings of the naming task in
Experiment 1 and demonstrated that color diagnosticity, not the experimental
task itself, was the main factor explaining the effects of color on scene recog-
nition. Furthermore, interference effects obtained with negative trials in Ex-
periment 2 confirmed that memorized diagnostic scene colors intervene in
recognition. Turning to the cues responsible for these effects in Experiment
3, we found that the addition of colors to luminance cues enhanced scene
categorization but only at a coarse spatial scale, particularly when colors
were diagnostic. We therefore conclude that a coarse organization of diag-
nostically colored blobs could effectively support the categorization of com-
plex visual scenes.

Color and Scene Representations

The consistent effects of color diagnosticity reported in our experiments
suggest that people do represent scene colors in memory. The role of color
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as a primary scene recognition cue should therefore be reexamined (remem-
ber that people could correctly identify colored scenes at very low spatial
resolutions). The absence of an effect for color-nondiagnostic scenes catego-
ries does not mean that their colors are not represented in memory. The
methods we have used (reaction times in anaming task in Experiment 1 and
in a verification task in Experiment 2) are not powerful enough to diagnose
the absence of a color encoding in memory. That is, colors could still be
memorized, but have so little predictive value that they do not have an ob-
servable effect on naming and verification latencies. Gegenfurtner, Sharpe,
and Wichmann (1995) asked subjects to learn colored and black-and-white
versions of the same scenes to be later tested on their familiarity with these
scenic pictures. It was found that subjects performed better with memorized
colored images, suggesting that they memorized color information. It would
be interesting to test whether color diagnosticity interacts with such judg-
ments of scene familiarity. Color-diagnostic scenes could be color-trans-
formed to be more typical of their category and therefore be judged more
familiar, even when subjects did learn scene exemplars with colors different
from those of the tested exemplars.

Coarse Scene Layouts for Scene Recognition

Therole of the global scene context inthe recognition of local objectsisan
important issue in recognition and eye movement studies (see Henderson &
Hollingworth, 1999, for a thorough review). The notion of a scene context,
scene ‘‘gist,”” or scene spatial layout, however, remains to be precisely de-
fined (Rensink, 2000). In fact, it is only recently that its role in the recogni-
tion of complex pictures has been acknowledged (Epstein & Kanwisher,
1998; Kersten, 1997; Schyns & Oliva, 1994; Sanocki & Epstein, 1997). One
goal of this study wasto further specify the information content of the scene
gist and to demonstrate its sufficiency for scene categorization. Remember
that in Experiment 3, natural scenes (color-diagnostic and color-nondiagnos-
tic) were both recognized from coarse colored information.

Sanocki and Epstein (1997) suggested that the spatial layout was a repre-
sentation including information about the ground plane (its extent and loca-
tion), the positions of component objects and surfaces, and the distance rela-
tions within the scene. It appears that organization of colored blobs on a
coarse scale represents some of this information. The sky and the ground
plane can be differentiated from the colored blobs, and the color contrasts
between the blobs on the ground plane can be used to measure the positions
of the main objects and surfaces and their relative relations within the image.
Itisclear from the results of al our experiments (but particularly from those
of Experiment 3) that the addition of color facilitatesthe initial segmentation
of the image.

Note that the initial recognition information forming the gist is specific
to the scene itself. It is not derived from the identity of the objects (textural
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information, detailed contours, and cast shadows are not well represented on
coarser scales). Therole of coarse scene backgroundsin object identification
clearly deserves further exploration because the identification of the former
could facilitate the processing of the latter, both in humans and machines
(e.g., Oliva, Torralba, Guerin-Dugue, & Herault, 1999; Swain, & Ballard,
1991; Vailaya, Jain, & Zhang, 1998).

CONCLUDING REMARKS

Our results with naturalistic scenes suggest that colors should not be dis-
missed in recognition studies. Colored blobs can mediate the recognition of
scenes without prior recognition of their objects. Color is therefore an impor-
tant property of the relevant spatial layout that mediates express scene recog-
nition.

APPENDIX 1

Three variables can represent al colors of the visible spectrum. Three
dimensions can therefore represent each colored pixel of a digitized image.
In 1931, the Comission Internationale de I’ Eclairage (CIE) set up a number
of different standards for encoding colors. The best known is probably Red
Green Blue (RGB), which encodes each pixel as a linear combination of
three monochromatic dimensions. One problem with RGB is that it does
not separate luminance from chromatic information: changing the colors of
a pixel also modifies its luminance. To perform this separation, CIE pro-
posed another basis, called XYZ, immediately derivable from RGB, in which
Y represents luminance and X and Z are two additional axes from which
color can be readily extracted. The following matrix multiplication sum-
marizes the linear transformation between the XYZ and RGB spaces (see
Wysczecki & Stiles, 1982):

X 0412453 0357580 0.180423 | | R
Y | = | 0212671 0715160 0072169 | | G |. 1
z 0.019334 0119193 0950227 | | B

If it is practical to separate luminance and chromatic information, it is
psychologically interesting when this separation mirrors perception. In 1976,
CIE proposed L*a*b*, a 3D color basis derived from XYZ, which explicitly
separates luminance on one dimension (L*) from chroma on the two re-
maining dimensions (a*b*). Figure A1.1 summarizes the organization of the
spacefor afixed luminance value. The a* axis represents the green/red oppo-
sition (green for a* <0 and b* > 0 and red for a* > 0 and b* = 0), whereas



202 OLIVA AND SCHYNS

FIG. A1l ThelL*a*b* color space for afixed luminance level. We used L*a*b* in our
experiments to synthesize new stimuli and control the diagnosticity of scene colors.

b* represents the blue/yellow opposition (blue for a* = 0 and b* <0, yellow
for a¥ = 0 and b* > 0). Stimuli for which a* = b* = 0 are achromatic.
Thefollowing nonlinear equations produce L* a*b* coordinatesfrom XYZ.

For (X/Xo, Y/Yo, Z/Z) > 0.01,

v 3
L* = 116 () — 16
Y,

0

B 1/3 1/37
sl ()
[\ Xo Yo/ |

1/3 1/37]
sl 9
[\ Yo %) |

where [X, = 0.950456 Y, = 1.0 Z, = 1.088754] isthe so-called ** CIE Illumi-
nant D65, aso commonly known as *‘standard daylight white.”’
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APPENDIX 2

In al of our experiments, color-diagnostic categories were chosen with
the constraint that their pixels projected into clearly distinguishable clusters
in a*b*. Color-nondiagnostic categories were chosen so as not to form clear-
cut clusters in a*b*. Thus, the overlap of the projections of categories in
a*b* (their color histograms) can be used to control the diagnosticity of
scene colors in the experiment. To compute the projections of categoriesin
color space, wefirst divided a*b* in alattice of 80 x 80 equally spaced bins.
For each category, we retrieved the a*b* bin of each pixel of each exemplar
by transforming the pixel from RGB to L*a*b*, as detailed in Egs. (1) and
(2) of Appendix 1. We then normalized the outcome by summing the pixels
in each bin and dividing the total per bin by the total number of pixels per
category. This technique produced a different color histogram per category
in a*b*. To measure the distinctiveness of the color histograms, we com-
puted their pairwise correlations. Note that pairwise correlations assume an
underlying Euclidian color space. Remember that L*a*b* is perceptualy
homogeneous for long distances in the space. Thus, our choice of scene cate-
goriesthat are distant from one another in L* a*b* licensesthe use of pairwise
correlations between color histograms to measure similarities of scene colors
in this space. This computation requires that the 80 X 80 dimensional color
histogram be transformed into a 80% normalized vector. It is important to
stress what this metric really does:. It compares the frequencies of each color,
summed across the pixels and scenes of two categories without respect to
the spatial location of the pixels of any given color.

Tables A2.1 and A2.2 provide the correlations for the color-diagnostic
and color nondiagnostic categories of Experiment 1, respectively. Average
pairwise correlations were .15 for color-diagnostic categories (SD = .17, see
Table A2.1) and .8 (SD = .05) for color-nondiagnostic categories, indicating

TABLE A2.1
Correlations between the Color Histograms of the
Color-Diagnostic Scenes in Experiment 12

Canyon Desert Coast
Forest .06° .05 17
.18 19 14
Canyon 48 .04
.39 .07
Desert 12
2

2 Numbers in bold refer to the correlations of the
abnormally colored versions of the scenes [Mean =
19 (D = 11)].

®Mean = .15 (D = .17).
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TABLE A2.2
Correlations between the Color Histograms of the
Color-Nondiagnostic Scenes in Experiment 12

City Room Road
Shop 710 76 32
.56 .62 .63
City 85 83
.88 .83
Room 8
.86

@ Numbers in bold refer to correlations of the ab-
normally colored versions of the scenes [Mean =
.72 (D = .140].

> Mean = .8 (3D = .05).

TABLE A2.3
Correlations between the Color Histograms of the Color-Diagnostic Scenes
in Experiment 22

Canyon Desert Coast Field Forest Garden Valley

Beach .18 22 42 3 .39 3 .53
Canyon .38 .01 .07 .03 14 .07
Desert .05 .16 .02 .03 .09
Coast 14 .18 .01 .36
Field .39 A4 44
Forest .46 .6

Garden .38

2 Numbers in bold refer to scene pairs chosen to compose the contingency table of negative
trials (see Table 1). [Mean = .24 (SD = .18)].

TABLE A24
Correlations between the Color Histograms of the Color-Nondiagnostic Scenes
in Experiment 22

City Room Road Bath Bedroom Kitchen Restaurant

Shop .59 .76 .37 57 51 .62 .68
City .67 43 .36 .35 72 51
Room A48 57 .61 .83 71
Road 44 .39 A7 51
Bath .66 51 .62
Bedroom .53 .69
Restaurant .61

“Mean = .56 (D = .13).
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FIG. A2.1. The color histograms of the 8 color-diagnostic categories used in Experi-
ment 2.

Bathroom Bedroom Kitchern
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FIG. A2.2. The color histograms of the 8 color-nondiagnostic categories used in Experi-

ment 2. A comparison with Fig. A2.1 reveals that the color-nondiagnostic categories have
more overlap in their color histograms than color-diagnostic categories.
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alow vs high overlap for color-diagnostic scenes vs -nondiagnostic catego-
ries, respectively. The bold numbers represent the pairwise correlations of
color-transformed scenes. Their average was of .8 (SD = .05) for color-
diagnostic scenes and .72 (SD = .14) for color-nondiagnostic scenes.

Tables A2.3 and A2.4 provide the correlations for the color-diagnostic
and color-nondiagnostic categories of Experiment 2, respectively. Average
pairwise correlations between color histograms were comparatively higher
(mean = .56, D = .13) for color-nondiagnostic than for color-diagnostic
(mean = .24, SD = .18) categories, indicating a greater color overlap in the
former. Figures A2.1 and A2.2 present the projections of the categories in
a*b*.

APPENDIX 3

Experiment 1 was fully replicated with a design in al points identical
except that stimuli were presented for 30 ms (instead of 120 ms). With 16
participants, the trends werein all points similar to those observed with 120-
ms exposures. A two-way ANOVA on the categorization latencies with Nat
vs Art categories and Lum vs Nat vs Abn stimuli also revealed a significant
main effect category type [F(1, 15) = 16.27, p < .001], a significant effect
of stimulus condition [F(2, 30) = 27.68, p < .0001], and a significant inter-

860

O Abn
B Lum
O Norm

850 -
840 -

830 -
820 -
810 -
800 -
790 -

Reaction Time (ms)

780

770 -

760

Color-diagnostic Color-nondiagnostic
FIG.A3.1. Subjects naming reaction timesin the 30-msreplication of the within-subjects
design of Experiment 1. Performance was very similar across luminance-only, normally col-
ored, and abnormally colored versions of the color-nondiagnostic scenes. Facilitation of nor-
mally colored pictures and interference of abnormally colored pictures were observed for
color-diagnostic scenes.
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870
O Abn
i ~ & Lum
850 |
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» 830 .
g
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= '
- —
S 790 =
3 b
a4 ke
Bedn
A
| b
750 | B
T

Coast Canyon Desert Forest
Color-diagnostic categories

FIG. A3.2. The decomposition of the reaction times for each color-diagnostic category
of the 30-ms replication of Experiment 1. The trends of facilitation of normal colors and
interference of abnormal colors applied to each tested category.

action [F(2, 30) = 25.69, p <.0001; see Fig. A3.1]. Asin experiment 1, the
reported effects of color diagnosticity were true of al tested categories (see
Fig. A3.2).
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