
1 Introduction: the policy context
Heightened concerns over climate change, gasoline prices, and congestion have
sparked research into the influences of urban form and land-use patterns on motorized
travel, notably vehicle miles traveled (VMT). VMT per capita is widely viewed as the
strongest single correlate of environmental degradation and resource consumption
in the transport sectoröas individuals log more and more miles in motorized vehicles,
the amount of local pollution (eg particulate matter) and global pollution (eg green-
house gas, or GHG, emissions) increases, as does the consumption of fossil fuels, open
space, and other increasingly scarce resources.

Recent policy initiatives have further fueled interest in this subject. In California,
where ground transportation is responsible for 38% of greenhouse gases, state legis-
lators recently passed the Global Warming Solution Act (Assembly Bill 32, AB32) that
calls for a 25% reduction in GHG emissions below the trend line by 2020, or to 1990
levelsöin total, the elimination of 169 million tonnes of carbon dioxide and other
GHGs. Cities and counties that fail to make a good-faith effort to achieve this target
risk losing state transportation funding.

Controversy reigns over how climate-change targets might be met in states like
California. Within the transport sector, one view holds that GHG-reduction targets
can best be achieved through `sustainable mobility': for example, the introduction of
low-carbon fuels and new technologies that increase fuel efficiency so that Americans
can continue driving their cars at will, albeit with far less GHG emissions. At the
other end of the spectrum are those arguing for `sustainable urbanism': for example,
redesigning our cities and regions so there is less need to drive and, if one does,
driving can be done over shorter distances and more efficiently (eg consolidate trips
at one-stop mixed-use centers). Leading this conservation charge are new urbanists,
environmentalists, and other advocates of smart growth who contend that a bane of
modern-day living is excessive dependency on the private car. Creating more walk-
able, transit-friendly, urban landscapes, they contend, will not only reduce VMT and
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thereby curb GHGs, energy consumption, and local air pollution, but also provide for
more housing and lifestyle choices.

Adapting from Mui et al (2007), GHG emission reductions in the transport sector
will come from some combination of lowering the values of the three terms in
equation (1):
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Presently, the science seems to favor the sustainable mobility course. The relationships
of biofuels, plug-in hybrid cars, and other technological advances to GHG emissions
are deterministic: for example, cellulosic ethanol derived from Midwest prairie grass
(6 grams of CO2-equivalent per mega joule, or 6 g CO2-e/MJ) is 92% less carbon
intensive than ethanol produced from Midwest corn (76 g CO2-e/MJ) (Boies et al,
2008). The likely influences of future land-use patterns and urban form are far fuzzier.
Skepticism is reflected in the initial decision of California's Air Resources Board
(CARB), the state agency in charge of implementing AB 32, to assume that land-use
changes, or VMT reductions, will contribute to less than 2% of the state's GHG-
reduction targets (2 million of the 169 million tonnes). Politicians like certainty.
The UN Framework Convention on Climate Change reports that worldwide, most
GHG-reduction policies focus on technological fixes because they are far more politically
acceptable (Frank et al, 2007).

Despite such skepticism, a number of climate-change forecasts place a strong
emphasis on VMT reductionsöwhether through rearranging urban landscapes or regu-
lating automobile use via price signals or government fiat. Projections by the Center for
Climate Change, a nonprofit think tank based in Washington, DC, estimates that in
the absence of substantial reductions in VMT per capita, all increases in fuel-efficient
and low-carbon fuels will only slow, not reverse, the rise in per capita CO2 emissions
(Condon, 2008). A study of the Seattle,Washington, metropolitan area found that even
with an `aggressive technology' scenario, in which 75 miles per gallon were assumed
along with cuts in GHG emissions per gallon of fuel of nearly half, per capita VMT
would still need to fall nearly 20% to achieve 2050 emission targets (Frank et al, 2007).

2 Past research
Doubts about the potential GHG-reducing effects of sustainable urbanism are under-
standable in light of inconsistent research findings to date. In Growing Cooler, Ewing
et al (2008) provide a fairly rosy prognosis of the climate-stabilization potential of
smart growth. If 60% to 90% of new growth occurs in a compact form, the authors
estimate that VMTwill fall by 30% and cut US transportation CO2 emissions by 7% to
10% by 2050, relative to a trend line of continued sprawl. This is similar to what might
happen with a doubling of fuel prices in real dollar terms. In a study commissioned by
the California Air Resources Board (CARB), Ewing and Nelson (2008) estimate that
VMT reductions from compact development and transportation demand manage-
ment could achieve 7% to 8% of California GHG-reduction targetsönot the 2%
estimated by CARB. In Minnesota, VMT reductions are slated to play a more
prominent role, contributing to 14% of the state's GHG-reduction targets by 2025
(Boies et al, 2008). Such estimates are informed by the work of researchers like Bailey
et al (2008), Chatman (2003), Dunphy and Fisher (1996), Holtzclaw (1994), and Holtzclaw
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et al (2002), who show respectable elasticities (on the order of ÿ0:30) between urban
densities and VMT. Density combined with rail transit investments, some suggest,
could yield even greater dividends: Brown et al (2008), for instance, estimated that
America's densest metropolitan areas and those with mature railway networks are the
lowest carbon emitters per capita.

Past studies of built environments have been criticized for such statistical problems
as self-selection and model-specification biases (Boarnet, 2004; Cao et al, 2007;
Krizek, 2003). Several studies that have sought to control for endogeneity between
residential density and VMT found such weak effects that the authors concluded that
feasible changes in residential densities would not have any important effects on VMT,
GHG, or fuel use (Bhat and Guo, 2007; Boarnet and Sarmiento, 1998; Golob and
Brownstone, 2005). Several meta-analyses of the influences of density on VMT also
suggest modest effects. Ewing and Cervero (2001, page 92) found VMT to be more
strongly influenced by regional accessibility than by density: `̀ This means that dense,
mixed-use developments in the middle of nowhere may offer only modest regional
travel benefits.'' The authors estimated the `typical' elasticity between local density
and VMT to be ÿ0:05 (versus ÿ0:20 for regional accessibility). In the handbook
on `̀ Traveler response to transportation system changes: land use and site design'',
Kuzmyak et al (2003) cite a mid-point elasticity of density and VMT with similarly
low values: ÿ0:05 to ÿ0:10.

Two factors, it should be noted, account for different assessments of the role which
built environments might play in driving down VMT. One is whether density is treated
as a single, all-encompassing predictor or as a proxy for other built-environment
variables; Golob and Brownstone (2005) and Bhat and Guo (2007), for instance,
express the built environment based on population density alone. In the recent works
of Ewing et al (2008), Ewing and Nelson (2008), and Marshall (2008), density serves
as a stand-in for smart growth, soaking up the influences of three other `Ds': diversity
(of land uses), designs (which are pedestrian friendly), and destination accessibility.
At the extreme, very dense neighborhoods in Manhattan are also land-use diverse,
highly walkable (eg short block faces), and very accessible to other destinations
(courtesy of public transit, which itself can only be sustained by density). Recent
analyses, such as the one by Ewing and Nelson (2008), rely on the meta-analysis results
of Ewing and Cervero (2001) wherein the additive elasticity between VMTand the 4 Ds
was set at around ÿ0:3. An even bigger factor that appears to account for different
estimates is the assumed share of future housing stock that is new or redevelopment. In
Growing Cooler, Ewing et al (2008) assume that the share will reach two thirds by 2050,
extrapolating from the estimates of Nelson (2006) that `̀ more than half of all develop-
ment on the ground in 2025 will not have existed in 2000.'' In its calculations, CARB
applies a more modest figure of 30%ömore in line with the observations of Downs
(2004) about the rigidity of land-use changes in contemporary America.

The present study offers additional insight into the question of how much urban
form and, in particular, urban densities, influence VMT. Our analysis is nationwide in
scope, using data from 370 urbanized areas in the United States, making the findings
more generalizable, we believe, than many past studies focused on a single metropol-
itan area. Others who have turned to cross-sectional national-level data to address
this topic include Glaeser and Kahn (2008), who quantify transportation carbon
emissions of sixty-six large metropolitan areas using the 2001 National Household
Travel Survey (NHTS). A drawback of the use of urbanized or metropolitan areas
as data observations, however, is the possibility of aggregation biases. In our study,
whereas the dependent variable, VMT per capita, is measured for urbanized areas at
large, some of the key built-environment predictorsönotably, accessibility to jobs and
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to retail activitiesöare calculated at a fairly fine-grained resolution, measured by
averaging values for all 500m grid cells within each urbanized area. In addition, we
turn to structural equation modeling (SEM) to build and estimate a path model that
accounts for possible two-way relationships among variables, thus statistically control-
ling for possible endogeneity problems. Although the analysis is cross-sectional, which
limits the ability to draw cause ^ effect inferences, we believe that the robustness of the
dataset, combined with the successful estimation of a structural equation model, yield
results of policy relevance. The paper ends with a discussion of what our research
findings imply for climate-change and energy-conservation policies.

3 Research approach and data
Initially, we attempted to model the influences of temporal changes in various meas-
ures of built environment on VMT per capita during the 1993 ^ 2003 period. However,
data-incompatibility problems prompted us to focus on cross-sectional relationships
for 2003. For example, VMT data obtained from Highway Statistics, published annu-
ally by the Federal Highway Administration (FHWA), are available for 400 urbanized
areas in 2003; however, in 391 cases geographical boundaries were different in 1993.
The 400 urbanized areas with fully reported VMT data were matched with the 2000
Census and other data sources. However, geographical inconsistencies across sources
forced us to drop 30 cases, resulting in a database with 370 urbanized area observa-
tions, shown in figure 1. Given that VMT estimates were derived from local traffic
counts, the FHWA dataset is not perfect. Still, it provides, we believe, the most
reliable VMT data for US urbanized areas that is available. The VMT dataset, more-
over, is not thought to be systematically biased in one direction or another across the
370 urbanized areas and thus, we believe, is sufficient for statistical modeling purposes.

As discussed above, our key research question was whether built-environment
variables, notably density and destination accessibility, significantly influence VMT
per capita, controlling for other predictors, and if so, what is the relative magnitude
of influences. Density and destination accessibility are two of the `4 Ds' that influence

Figure 1. Geographic boundaries of 370 US urbanized areas, 2000 (source: US Census 2000).
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travel behavior (Cervero and Kockelman, 1997; DKS Associates, 2007). Our analysis
examines the influences of population as well as employment densities. As noted
above, the verdict on the impacts of density on travel are quite mixed. In our analysis,
Destination accessibility represents relative access of households to jobs as well as to
retail activities. Past research, as summarized by Ewing and Cervero (2001), generally
shows destination accessibility to be a far stronger predictor of travel behavior than is
density. Because of both data limitations and the aggregate nature of our data, we were
unable to measure the other two `Ds' of the built environment directly: diversity
(or land-use mix) and design (generally expressed in terms of walkability measures).
Our research does, however, include proxies of these two additional Ds: destination
accessibility, wherein high values generally reflect diverse, or mixed-use, environments;
and road density, wherein high values denote high road coverage and thus relatively
good connectivity for pedestrians and cyclists.

Given the complex nature of relationships between built environments, travel, and
other factors, we turned to structural equation modeling (SEM) to construct and estimate
a predictive model. As a modeling tool, SEM has gained acceptance in a range of
fields, including education, psychology, public health, and transportation (Golob, 2001;
Zhu et al, 2006). The technique involves simultaneously measuring the covariance
structure of multiple variables along designated paths so as to establish associative
relationships. SEM is particularly useful for teasing out complex multivariate data
structures and, in particular, for tracing through the relative direct and indirect
effects of variables on each other. Maximum likelihood estimation (MLE) allows
both one-way and two-way relationships between variables to be modeled. In the
case of two-way relationships (ie nonrecursive structures), potential endogeneity
biasing effects are statistically corrected through the use of MLE.

An initial step in conducting SEM is to postulate causal (or, more loosely, associa-
tive) relationships, typically expressed as a path diagram. As an exploratory technique,
SEM allows the researcher to add or drop variables and paths, and to change the
directionality of paths, based on changes in statistical fit, overall model performance,
and judgment (presumably informed by a priori theory). The analyst faces a trade-off
between presenting a complete model which captures every possible relationship but is,
as a result, potentially complex and difficult to decipher, and a simpler, parsimonious
structure which is more interpretable and captures the essence of relationships (yet
potentially omits nuanced, indirect effects). We tested a large number of possible path
combinations which logically explain relationships between built environments, trans-
portation supply, regional accessibility, socioeconomic factors, and transportation
demand. Traditional utility theories of travel demand (Ben-Akiva and Lerman, 1985;
McFadden, 1976) guided our selection of variables albeit, given the macroscale of our
analysis, the predictor variables were far more aggregate than is found in most choice
models (McFadden and Reid, 1975). The job-accessibility score of an urbanized area,
for instance, captured the performance characteristics (eg travel time) of its regional
transportation network. After several iterations, we settled on a model with reason-
ably good statistical fits, which was theoretically interpretable and, within the data
constraints we faced, informed our core research question.

Figure 2 presents the finalized path diagram for the SEM results presented in this
paper. The criss-crossing of arrows suggests a complex set of relationships, which no
doubt characterizes this topic. However, the diagram actually captures the influences
of just a handful of dimensions that bear on travel. The key policy, or dependent,
variable of interestödaily vehicle miles of travel per capita (VMT/Cap)ölies at the top
of the diagram, with predictor variables directly feeding into it via path arrows, or
indirectly through other predictors and intermediate steps. The key predictor variables
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of interest, those related to the built environment, are represented by density and
accessibility variables (shown at the bottom of the diagram). Other variables in the
model served mainly as statistical controls, reflecting factors like transportation supply
(eg Roaddenöroad density), travel choices (eg Autocom%öautomobile commute
shares), and sociodemographic factors (eg HHincömedian household income). Although
we originally attempted to estimate nonrecursive relationships, recursive estimates
(without two-way arrows between variables) yielded the best, most interpretable results.

Table 1 defines the variable names shown in the path diagram of figure 2, along
with data sources, the geographical scale of measurement, and descriptive statistics.
Two geographical scales were used for computing variables.Values for the most-aggregate
variables were drawn from each urbanized area as a whole (eg for VMT/Cap and
HHinc variables). For the destination-accessibility variables (Basicjobacc and Locretacc)

Table 1.Variable descriptions, sources, and statistics for 370 US urbanized areas.

Variable
name

Variable description Data source and
computations

Descriptive statistics

mean standard
deviation

Travel variables
VMT/Cap Vehicle miles of travel per

capita, 2003; daily vehicle
miles per person

FHWA, Highway Statistics
2003, Section V, Table HM71
& HM72

23.36 6.16

Autocom% Percent of commute trips by
private automobile; mean
estimate, 2000

CTPP, Part 3, 2000 Census;
computed and averaged over
500m grid cells from GIS
raster files

91.40 3.68

Railpaxmi/Cap Rail passenger miles per
capita, for 2003

APTA, Public Transportation
Fact Book, 53th Edition,
FHWA, Highway Statistics
2003

9.13 57.43

Transportation-supply variables
Roadden Roadway infrastructure

density, 2003; directional
miles of roadway per square
mile of urbanized land area

FHWA, Highway Statistics
2003

8.35 2.95

Railden Urban passenger rail
infrastructure density, 2003;
one-way directional fixed-
guideway track miles per
10 000 square miles of
urbanized land area

APTA, Public Transportation
Fact Book, 53th Edition;
FHWA, Highway Statistics
2003

214.21 1 315.90

Built-environment variables
Popden Population density, 2003;

persons per square mile, in
thousands

FHWA, Highway Statistics
2003

1 718.59 878.94

Basicjobden Basic employment density,
2003; mean number of basic
(export-industry) jobs per
square mile

Department of Commerce,
County Business Patterns Zip
Code Series (CBP-Z ); FHWA,
Highway Statistics 2003; basic
jobs were distributed to job
centers with 5000 or more
workers

413.07 247.78

Locretden Local-serving retail
employment density, 2003;
mean number of local-serving
(retail, service, and trade) jobs
per square mileÐa proxy for
intensity of retail/shopping
activities

Department of Commerce,
County Business Patterns Zip
Code Series (CBP-Z ); FHWA,
Highway Statistics 2003; local-
serving jobs were distributed to
retail clusters with 1000 or
more retail jobs and assigned
to urbanized areas

137.77 76.72
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Table 1 (continued).

Variable
name

Variable description Data source and
computations

Descriptive statistics

mean standard
deviation

Built-environment variables (continued )
Basicjobacc Basic-employment accessibility

index, mean estimate, 2003;
mean number of basic-
industry jobs within
30 minutes travel time on
highway networks across
500m grid cells of urbanized
area, weighted by number of
households in grid cells

Department of Commerce,
County Business Patterns Zip
Code Series (CBP-Z ); Bureau
of Census, 2000 Census, STF-
1A; Bureau of Transportation
Statistics, NHPN version
2004.06: GIS shape files in
National Transportation Atlas
Database 2006; computed as
weighted average of 500m grid
cells from GIS raster files

139.03 643.20

Locretacc Local retail accessibility index,
mean estimate, 2003; proxy
for accessibility to retail
activities, computed as mean
number of local retail/service/
trade jobs within 30 minutes
travel time on highway
networks across 500m grid
cells of urbanized area,
weighted by number of
households in grid cells

Department of Commerce,
County Business Patterns Zip
Code Series (CBP-Z ); Bureau
of Census, 2000 Census, STF-
1A; Bureau of Transportation
Statistics, NHPN version
2004.06: GIS shape files in
National Transportation Atlas
Database 2006; computed as
weighted average of 500m grid
cells from GIS raster files

40.37 97.09

Urbanized area control variables
Urbanarea Urbanized area, in square

miles, 2003
FHWA, Highway Statistics
2003; Bureau of Census, 2000
Census, GIS shape files

240.77 431.75

HHinc Household income, median,
2000, in 1000 US$

Bureau of Census, 2000,
STF 1A

44.16 10.51

Interactive variables
Autocom% s Percent of commute trips by

private automobile in South
Region of USA, mean
estimate, 2000; averaged
across 500 m grid cells of
urbanized area, weighted by
number of households in grid
cells

CTPP, Part 3, 2000 Census;
computed as weighted average
of 500m grid cells from GIS
raster files, to convert
metropolitan-scale data to
urbanized areas

13.01 31.62

Urbanarea n Urbanized area, in square
miles, 2003, in Northeast
Region of USA

FHWA, Highway Statistics
2003; Bureau of Census, 2000
Census, GIS shape files

48.14 302.45

Locretacc n Local retail accessibility index
in Northeast Region of USA,
mean estimate, 2003; proxy
for accessibility to retail
activities, averaged over 500m
grid cells of urbanized area,
weighted by number of
households in grid cells

Department of Commerce,
County Business Patterns Zip
Code Series (CBP-Z ); Bureau
of Census, 2000 Census, STF-
1A; Bureau of Transportation
Statistics, NHPN version
2004.06; GIS shape files in
National Transportation Atlas
Database 2006

7.72 59.26

Note: FHWAÐFederal Highway Administration; APTAÐAmerican Public Transit Association;
CTPPÐCensus Transportation Planning Package; CBPÐCounty Business Patterns; GISÐ
geographic information systems; STFÐSummary Tape File; NHPNÐNational Highway Program
Network.
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as well as automobile commute shares (Autocom%), values were first calculated for
each 500m grid cell within an urbanized area; resulting values were then summed over
all grid cells in the urbanized area, and this value was then divided by the number
of grid cells weighted by number of households in each cell, yielding an `average'.
Thus accessibility to basic jobs and local retail activities was measured at a relatively
fine-grained resolution; however, the value reported for each urbanized area represents
an arithmetic average.

The path diagram in figure 2, it should be noted, contains several interaction
terms. These terms captured unique effects of predictor variables for certain region
of the USA. For example, Locretacc n expresses the influences of local-serving retail
accessibility in the 151 urbanized areas of the nine states that make up the northeast
region of the country. Inclusion of this variable improved the model fit by capturing
unique influences of local-serving retail on VMT relative to other parts of the USA.
No other unique relationships between local-serving retail and VMTwere found, and
thus no other region-specific interaction terms are shown in the model. Such regional
interaction terms allowed us to capture key variables that influence VMT per capita
differences across the nation, thus accounting for fixed effects (eg cultural, historical,
geopolitical factors).

Also, as they are key variables in our analysis, the computations of the two
destination-accessibility variablesöBasicjobacc and Locretaccödeserve further expla-
nation. Destination accessibility reflects the ability to reach destinations, increasing as
a function of spatial proximity and transportation mobility. Our index is based on an
isochronic measure, representing the cumulative count of activities (ie jobs) that can be
reached within a given travel time over a transportation network (in our case, within

Figure 2. Path diagram of factors influencing vehicle miles traveled (VMT) per capita among
370 US urbanized areas, 2003 (see table 1 for description of the variables shown).
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30 minutes travel time on the highway network of an urbanized area under free-flow
conditions) (Cervero, 2005; Levinson and Krizek, 2005; Wachs and Kumagai, 1973).
We again emphasize that ours is a fairly fine-grained measure, computed for each
500 m grid cell within an urbanized area, with the mean of all grid cells representing
the `average' measure of accessibility for an urbanized level (weighted by the number
of households in each grid cell). Mathematically, the mean basic-job accessibility value
for each urbanized area in 2003 was computed as:

Basicjobacck �
1

Nk

XNk

i� 1

�
hi
X
j

Wi j bj

�
, (2)

where
i is 500m grid cell i (i � 1 to Nk );
j is job center j in the US ( j � 1 to 4446);
k is urbanized area k (k � 1 to 370);
Nk is the number of 500m grid cells in urbanized area k ;
hi is household density (number of households in 500m grid cell i, in year 2000);
bj is number of basic-job workers in job center j, in year 2003;
Wij equals 1 if ci j < c �i j and 0 otherwise;
ci j is travel time between centroid of grid i and j ;
c �i j is the predetermined highway network commuting time from i to j within which

basic jobs are cumulatively counted (30 minutes).
Local-retail accessibility (Locretacc) was similarly computed, with the term for basic-job
workers in equation (2) replaced by the count of local-retail workers in job centers.

Figure 3 maps basic-job and local retail accessibility levels within 30-minute high-
way network travel times for 500m grid cells which were computed for one of the
urbanized areasöFresno, California; darker shades reflect higher accessibility levels.
The values recorded for this one urbanized area were averaged over all the 500m grid
cells, to derive a metric on basic-job and local-retail accessibility for the `typical'
household in the region.

(a) (b)

Figure 3. (a) Basic-job accessibility and (b) local-retail accessibility for 30-minute travel-time
isochrones, plotted for 500m grid cellsöFresno, California, 2000.
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4 Empirical results and interpretations
The path model shown in figure 1 was estimated using the AMOS 7.0 software package
(SPSS Inc.). Initially, two structural equation models (SEMs) were estimated: one
expressing the variables in table 1 using a logarithmic scale and the other expressing
them in linear (nonlogarithmic) form. Since the two models produced similar good-
ness-of-fit statistics and significant levels for key predictors, we opted to present the
logarithmic model results. An advantage of a log-linear model is that parameter
estimates represent elasticities, reflecting the relative sensitivity (percentage change)
of VMT per capita to a 1% increase in each predictor variableöholding other factors
constant.

Table 2 presents the SEM results. The rows of the table show independent variables
which directly influence VMT/Cap, as well as those that influence the dependent vari-
able indirectly via other predictors. Interaction variables which capture the unique
influences of several predictors in particular regions of the country are also shown.
Coefficients on direct paths and indirect paths are shown as well, along with total
(direct� indirect) coefficients.

The bottom of table 2 shows the summary statistics of the model. Multiple meas-
ures of fit are typically used in interpreting SEM output. In addition to w 2, Kline (1998)

Table 2. Structural equation model, log ^ log estimation: model summary dependent variable:
VMT/Cap.

Independent variables Direct indirect Total
coefficient coefficient coefficient

Direct
Popden ÿ0.604 0.233 ÿ0.381
Roadden 0.419 ÿ0.005 0.415
Autocom% 0.602 0.000 0.602
HHinc 0.260 ÿ0.052 0.209
Locretden 0.097 0.024 0.121
Locretacc 0.079 0.013 0.091
Urbanarea 0.036 ÿ0.019 0.017

Interaction
Locretacc n ÿ0.140 0.000 ÿ0.140
Urbanarea n 0.121 0.000 0.121
Autocom% s 0.027 0.000 0.027

Indirect
Basicjobden ± ÿ0.075 ÿ0.075
Basicjobacc ± 0.018 0.018
Railpaxmi/Cap ± ÿ0.002 ÿ0.002
Railden ± ÿ0.003 ÿ0.003
Summary statistics
N 370
w 2 263.038
Degrees of freedom (df) 56
w 2=df 4.697
CFI (> 0:900) 0.969
NFI (> 0:950) 0.961
NNFI (> 0:900) 0.942
RMSEA (� 0:05) 0.100

Note: CFIÐcomparative fit index; NFIÐnormed fit index; NNFIÐnonnormed fit index;
RMSEAÐroot mean square error of approximation.
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and Fan et al (1999) recommend the use of the goodness-of-fit measures shown below,
with their corresponding cutoff values shown in parentheses:
comparative fit index: CFI (40:90),
normed fit index: NFI (40:95),
nonnormed fit index: NNFI (or the Tucker-Lewis Index: TLI) (40:90),
root mean square error of approximation: RMSEA (�0:05).
Our model satisfied the first three criteria and approximated the fourth. Additionally,
all path coefficients were statistically significant at the 0.05 probability level, as detailed
in table 3.

Figure 4 plots the elasticities of seven independent variables which directly affect
VMT/Cap, along with three interaction variables. The strongest predictors are popula-
tion densities, automobile commuting modal shares, and roadway density, followed by
household income. The direct effects of population density are quite high, yielding an
elasticity estimate well above that found in most previous studies (Ewing and Cervero,
2001). High automobile-commuting shares are, as expected, also strongly associated
with high VMT/Cap, with the highest elasticity in the southern region of the USA
(elasticity � 0:602� 0:027 � 0:629). This is consistent with recent findings of Glaeser
and Kahn (2008) that per capita emissions are largest in southern metropolitan areas.
From figure 4, high provisions of road infrastructure are also associated with high
VMT/Cap, as is the control variable, household income.

Figure 4 also shows that the direct influences of local retail density and accessi-
bility on VMT/Cap are fairly modest, as is the effect of urban area size. High densities
and access to retail, service, and trade activities are seen to have an inducement effect
on motorized travel, consistent with the arguments of Crane (1996) that high acces-
sibility lowers transportation costs, thus spawning more travel. High retail densities,

0.027

0.602

0.260

0.419 ÿ0:604

0.121

0.036

ÿ0:140

0.079

0.097

Figure 4. Structural equation model: direct effects.
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we note, reflect the clustering of retail activities in shopping centers and indoor malls
(owing in part to how this variable was measuredö1000 or more retail-service jobs
assigned to retail clusters). High accessibility to and densities of major retail shopping
centers likely induce travel not only by spurring shopping (particularly large-volume
purchases) but also due to factors like site designs (eg plentiful free parking) which
promote access by private car. The northeast region, we note, represents an exception,
with a net elasticity of ÿ0:061 (0:079ÿ 0:140). This could reflect the presence of more
walkable neighborhoods with traditional retail districts in many northeastern cities
than are found in other parts of the USA. The other key non-residential land-use
variables in the datasetöbasic-job density and accessibilityöhad no statistically sig-
nificant direct effects on VMT/Cap, operating instead indirectly through other variables.

Urban railway supply and ridership were hypothesized to be significant negative
correlates of VMT/Cap. Tables 2 and 3 reveal that the relationships were in fact very

Table 3. Structural equation modeling path estimations (elasticities).

To From Coefficient p-value

VMT/Cap < Autocom% 0.602 0.025
VMT/Cap < Autocom% s 0.027 0.000
VMT/Cap < HHinc 0.260 0.000
VMT/Cap < Locretden 0.097 0.000
VMT/Cap < Locretacc n ÿ0.140 0.000
VMT/Cap < Popden ÿ0.604 0.000
VMT/Cap < Roadden 0.419 0.000
VMT/Cap < Urbanarea 0.036 0.036
VMT/Cap < Urbanarea n 0.121 0.000
VMT/Cap < Locretacc 0.790 0.000

Autocom% s < Popden ÿ0.931 0.000
Autocom% < HHinc ÿ0.070 0.000
Autocom% < Popden ÿ0.039 0.000
Autocom% < Railpaxmi/Cap ÿ0.004 0.000
Autocom% < Roadden 0.029 0.000
Autocom% < Basicjobacc 0.007 0.000
Railpaxmi/Cap < Railden 0.707 0.000
Urbanarea n < Popden ÿ0.152 0.001
Urbanarea n < Railden 0.091 0.000
Urbanarea n < basicjobacc ÿ0.056 0.000
Urbanarea < basicjobden 0.233 0.036
Urbanarea < HHinc ÿ0.579 0.000
Urbanarea < Locretden ÿ0.394 0.002
Urbanarea < Popden ÿ0.970 0.000
Urbanarea < Railden 0.073 0.000
Urbanarea < Locretacc 0.749 0.000
Roadden < Popden 0.422 0.000
Roadden < Urbanarea ÿ0.047 0.006
HHinc < Basicjobacc 0.099 0.000
Popden < Basicjobacc 0.466 0.000
Popden < Railden 0.024 0.000
Locretacc < Locretden 0.340 0.047
Locretacc < Popden 0.977 0.000
Locretden < Basicjobden 0.722 0.000
Locretden < Popden 0.230 0.000
Basicjobacc < Basicjobden 0.605 0.000
Basicjobacc < Popden 0.810 0.000
Basicjobden < Railden 0.057 0.000
Basicjobden < Roadden 0.303 0.005
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weak and indirect. Other researchers have found stronger effects. Bailey et al (2008)
found that public transit in the USA influenced VMT directly as well as secondarily
through land-use effects. Availability of a rail station within ÅÙÆ mile and a bus stop
within ÃÙÆ mile of one's residence was associated with fewer miles driven. The authors
estimate that, without any public transit services, American households would drive
102.2 more miles per year, adding 37 million metric tonnes of carbon dioxide emissions.
Brown et al (2008) also found an association: among the 100 largest US metropolitan
areas, New York, and San Francisco rank first and second in passenger miles of rail
transit usage per capita, and fourth and twentieth in carbon footprint per capita,
respectively. Since transit and land-use relationships unfold over time, in the case of
our analysis, we suspect that the absence of reliable longitudinal data limited our
ability to capture large significant relationships between railway track mileage and
VMT/Cap.

In the remainder of this section we discuss the results shown in tables 2 and 3 in
greater detail, focusing on the direct and indirect effects of built-environment variables.
Diagrams which trace the cumulative effects of indirect paths on VMT/Cap are used to
estimate `net' elasticities.

4.1 Direct and indirect effects of population density
The direct elasticity between population density and VMT/Cap among the 370 urban-
ized areas is fairly high: all else being equal, a 1% increase in population density is
associated with a 0.6% decline in VMT/Cap. However, this significant negative direct
effect is offset by positive indirect effects, yielding a net, or total, elasticity of ÿ0:381.

The positive indirect effects of population density on VMT/Cap are revealed by the
paths shown in figures 5 and 6. Figure 5(a) shows that high population density lowers
VMT/Cap through its association with lower auto-commuting shares [with composite
indirect elasticities of ÿ0:039� 0:602 (or 0.024) and ÿ0:931� 0:027 (or ÿ0:025)]. [See
Asher (1981) for discussions on the path-analysis method of decomposing elasticities
into direct and indirect components.] Figure 5(b) shows that the tendency of urbanized
areas with high population densities to consume less land area (holding other factors
constant) further lowers VMT/Cap (slightly more in the northeast region), though again
the composite indirect effect is quite modest.

The remaining indirect effects shown in figures 5(c) and 6 are positive, offsetting
the negative association of population on VMT/Cap. Figure 5(c) shows that areas
with higher population densities tend to also have higher road-infrastructure den-
sities, a factor which induces travel. This estimated indirect effect is quite high:
�0:177 (0:422� 0:419). While dense urban areas do not generally build new road
capacity any faster than less dense ones (Carruthers and Ulfarsson, 2008), histor-
ically, transportation infrastructure investments have been targeted at the nation's
densest, largest urbanized areas. Figure 6(a) shows the other significant positive
and offsetting indirect effect: via the influences of population density on local retail
accessibility and urbanized area size. Dense urban sets tend to enjoy relatively high
retail accessibility which, as discussed above, correlates with high VMT/Cap. This posi-
tive indirect effect (0:977� 0:079 � 0:077) is supplemented by a positive association
between retail accessibility and urban-area size, which tends to increase VMT/Cap
further (0:977� 0:749� 0:036 � 0:026). The other positive indirect effects shown in
figure 6 are fairly moderate in size, reflecting the influences of basic-job accessibility
[operating through urbanized area size (for an indirect effect of 0:810�ÿ0:056
60:121 � ÿ0:005) and household income (indirect effect of 0:810� 0:099� 0:260
� 0:021), for a net effect of 0.016] and local-retail density (operating through a host
of intermediaries that produce a net indirect effect of 0.027).
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The net overall indirect influences of the intermediate factors shown in figures 5
and 6 equal 0.221 (ÿ0:024 ÿ0:025 ÿ0:035 ÿ0:018 �0:177 �0:103 �0:016 �0:027).
In sum, the strong negative elasticity between population density and VMT/Cap of
ÿ0:604 is offset by the moderate positive association between population density and
three factors that increase VMT/Capöroad density, urbanized area size, and retail
accessibilityöyielding a total net elasticity of ÿ0:381. That is, weighing intermediate
effects, a doubling of population densities is associated with a 38% decline in VMT/
Cap, holding other factors constant. This net effect, we note, is close to the simple
product-moment correlation between population density and VMT/Cap of ÿ0:417. The
reconstitution of a simple correlation coefficient by the sum of direct and indirect
path coefficients suggests a fairly well-specified model that captures the predominant
influences of the policy variable, in our case `population density', on the dependent
variable VMT/Cap (Asher, 1981).

4.2 Indirect effects of basic-job density
The SEM results in tables 2 and 3 showed that basic-job density and accessibility influence
VMT/Cap indirectly. Figure 7 traces several of the indirect paths of basic-job accessibility.

0.027

0.602

ÿ0:024

ÿ0:025

ÿ0:018

ÿ0:035

0.036

0.121

ÿ0.931
ÿ0.039

ÿ0.152
ÿ0.970

0:177

0.419

0.422

Dependent variable

Key predictor

Other indirect predictors

Path

(a) (b)

(c)

Figure 5. Indirect effects of population density on VMT/Cap, via (a) automobile commuting,
(b) urbanized area, and (c) road-infrastructure density.
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The strongest indirect effect is shown in figure 7(a). Consistent with traditional urban
location theory (Lowry, 1968), basic employment prompts the formation of households,
with the resulting higher densities associated with lower VMT/Cap. Settings with higher
population densities tend to be less sprawled, which further drives down VMT/Cap. The net
indirect influence of basic-job density operating through these two intermediate variables
is ÿ0:290 [(0:466�ÿ0:604)� (0:466�ÿ0:970� 0:036)� (0:233� 0:036)]. Figure 7(b)
reveals a more complex set of intermediate steps between basic-job density and
VMT/Cap, operating through local-retail accessibility and density as well as urbanized
area size, yielding a positive indirect effect of 0:086. The effects of basic-job density on
basic-job accessibility and other intermediaries, shown in figure 7(c), are fairly small.
Overall, the intermediate positive influence of basic-job density on population density
and its corresponding negative impacts on VMT/Cap [figure 7(a)] exceed the positive
indirect effects shown in figures 7(b) and 7(c), producing a net negative indirect effect
of -0.075.

0:077� 0:026 � 0:103
0:021 ÿ 0:005

0:22� 0:006ÿ 0:001 � 0:027
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0.749
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0.260 0.121

ÿ0:056

0.036
0.097

0.079

0.749

0.230 ÿ0:394

0.340

Dependent variable

Key predictor

Other indirect predictors

Path

(a) (b)

(c)

Figure 6. Indirect effects of population density on VMT/Cap, via (a) local retail-accessibility,
(b) basic-job accessibility, and (c) local-retail density.
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5 Conclusion
Across the USA, VMT is steadily rising. Between 1970 and 2005 average annual VMT
per American household increased by almost 50%, from 16 400 to 24300 (Bureau of
Transportation Statistics, 2007, table 1-32).With rising VMT, increased GHG emissions
are inevitable given the prevalence of internal combustion engines as a means of
propulsion. Indeed, carbon emissions from highway transport in major metropolitan
areas are estimated to have increased by 8.6% from 2000 to 2005öfaster than VMT
growth (Brown et al, 2008).

A debate has ensued over the potential role of the built environment, and particularly
of compact growth, in stabilizing global climates. Our research, drawn from the
experiences of 370 US urbanized areas in 2003, reveals that higher population densities
are strongly associated with reduced VMT/Cap. The high direct elasticity of ÿ0:604,
however, is offset by the travel-inducing effects of denser roadway infrastructure and
higher access to retail shopping and the services typically found in dense urban

ÿ0:282ÿ 0:008 � ÿ0:290 0:70� 0:019ÿ 0:004 � 0:086

0.036ÿ0:604

ÿ0:970

0.466 0.233
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0.079

0.749

0.340

ÿ0:394

0.722

0.015 ÿ0:004

0.1210.260

ÿ0:056

0.099

0.605

Dependent variable

Key predictor

Other indirect predictors

Path

(a) (b)

(c)

Figure 7. Indirect effects of basic-job density on VMT/Cap, via (a) population density and
urbanized area, (b) local ^ retail density, and (c) basic-job accessibility, household income,
and urbanized area.
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settings. Our best estimate of the net elasticity of population density and VMT/Cap is
ÿ0:381. Although we sought to measure destination accessibility directly in our mod-
els, we believe that, for the most part, population density functioned as a surrogate,
at least in part, of the other Ds of the built environment: namely, designs that are
pedestrian friendly and diverse land uses.

The positive association of population density and road density, and the counter-
vailing influence this has on VMT, could be called the `Los Angeles effect'. The city of
Los Angeles averages the highest overall population density in the USA, matched by a
thicket of criss-crossing freeways and major arteries that form a dense road network
(Eiden, 2005). The city also averages the highest level of vehicular travel per capita, and
the worst traffic congestion in the USA, according to the Texas Transportation Institute
(Schrank and Lomax, 2007). Eiden (2005, pages 7 ^ 8) calls this dysfunctional combina-
tion of high population and road densities the `̀ worst of all worlds'' and concludes that
`̀ because traffic congestion increases exponentially with car density and city size, so do
the externalities associated with car travel''. In Los Angeles, population densities are
generally too high for a car-dependent city, yet they are not organized along linear
corridors, such as is found in transit-friendly cities like Stockholm and Curitiba
(Cervero, 1998), to draw sufficient travelers to public transit. Such population densities
are too high for cars, and too poorly organized for transitöthey are, by and large,
dysfunctional densities.

Our research findings are consistent with those of other researchers who claim
that urban planning and city design should be part of the solution in stabilizing
global climates. Although in our study we found a moderately strong negative
elasticity between population density and VMT/Cap, we also found that the positive
association between neighborhood density and roadway provisions, as well as retail
accessibility, moderated these effects. By extension, this suggests that the largest VMT
reductions would come from creating compact communities which have below-average
roadway provisions, more pedestrian/cycling infrastructure, and in-neighborhood retail
activities which invite nonmotorized travel.

Our findings lend further credence to the accumulating body of evidence that the
built environment should not be written off, and in some settings could very well play a
pivotal role in lowering VMT, GHGs, and petroleum consumption. Pricing, city
design, and urban management work on the demand side of the transportation sector's
energy/carbon equation. Biofuels, plug-in hybrids, and technological advancements can
provide supply-side fixes. To skew public policy excessively in one direction risks falling
far short of climate-stabilization and energy-conservation targets. City design, along
with other demand-side strategies such as carbon and congestion pricing, should
supplement supply-side strategies as much as possible. Fortunately, the two sets of
strategies are often complementary. Higher motoring prices, for example, promote
compact development, a built form suitable for fleets of lightweight, low-emissions
vehicles. A strategic and balanced policy of sustainable mobility and sustainable urban-
ism, we believe, offers the best hope of shrinking the urban transportation sector's
environmental footprint in coming years.
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