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A CHARACTERIZATION OF RATIONAL SINGULARITIES IN TERMS
OF INJECTIVITY OF FROBENIUS MAPS

By NOBUO HARA

Abstract. The notions of F-rational and F-regular rings are defined via tight closure, which is a
closure operation for ideals in a commutative ring of positive characteristic. The geometric signif-
icance of these notions has persisted, and K. E. Smith proved that F-rational rings have rational
singularities. We now ask about the converse implication. The answer to this question is yes and
no. For a fixed positive characteristic, there is a rational singularity which is not F-rational, so the
answer is no. In this paper, however, we aim to show that the answer is yes in the following sense:
If a ring of characteristic zero has rational singularity, then its modulo p reduction is F-rational for
almost all characteristic p. This result leads us to the correspondence of F-regular rings and log
terminal singularities.

1. Introduction. In [HH1], Hochster and Huneke introduced the notion of
the tight closure of an ideal in a commutative ring of characteristic p > 0. Tight
closure enables us to define classes of rings of characteristic p such as F-rational
rings [FW] and F-regular rings [HH1], and it turns out that they are closely related
with some classes of singularities in characteristic zero defined via resolution of
singularity.

By definition, rings in which all “parameter ideals” are tightly closed are said
to be F-rational. It was shown by Smith [S] that F-rational rings have rational
singularities. More precisely, she proved that F-rational rings are pseudo-rational.
Pseudo-rationality is a resolution-free (hence characteristic-free) analogue of the
notion of rational singularity [LT], and indeed, Smith’s result holds true in arbi-
trary positive characteristic. But if we consider the converse implication, we soon
confront some difficulty arising from pathological phenomena in small positive
characteristic. For any fixed characteristic p > 0, there are rational singularities
which are not F-rational (see [HW]). To avoid such difficulty we will look at
“generic behavior” of modulo p reduction from characteristic zero.

Roughly speaking, a ring in characteristic zero is said to have F-rational type
if its reduction modulo p is F-rational for p � 0 (see Definition 2.5 for a precise
definition). The characteristic zero version of Smith’s result says that a ring of
F-rational type has at most rational singularity. Unfortunately, except for some
special cases (Fedder [F1, 2]), the converse implication remained open, and is
considered to be one of the fundamental problems in the tight closure theory.
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Our main theorem answers this question affirmatively:

THEOREM 1.1. Let R be a finitely generated algebra over a field k of character-
istic zero. If R has at most rational singularity, then R is of F-rational type.

On the other hand, there is the notion of F-regular rings, which is also defined
via tight closure. A ring of characteristic p > 0 is said to be F-regular if all
ideals are tightly closed in all of its local rings. Works by Watanabe [W3] show
the similarity of F-regularity and the class of singularities called log terminal
singularity. Among others, Watanabe proved that a ring of characteristic zero has
log terminal singularity if it is of F-regular type and Q-Gorenstein. Theorem 1.1
also enables us to show the converse of his result (Theorem 5.2).

We shall briefly preview the proof of Theorem 1.1. Our starting point is a
ring of characteristic zero, so we can reduce it to characteristic p together with a
“good” resolution of singularity. Then, the key point of our proof is the injectivity
of Frobenius maps of certain local cohomology groups on the resolution space.
To analyze these Frobenius maps we employ logarithmic de Rham complex and
the Cartier operator (cf. [C], [Kz]). We see that an obstruction for the maps to be
injective lies in certain local cohomology groups. However, a slight generalization
of Deligne and Illusie’s result on the Akizuki–Kodaira–Nakano vanishing theorem
in characteristic p [DI] and the Serre vanishing theorem imply that these local
cohomologies vanish if the characteristic p is sufficiently large. Once we have
shown that the Frobenius maps are injective, we can prove that the ring is F-
rational by an argument which uses test elements as in Fedder and Watanabe’s
proof for graded rings [FW].

Our exposition is essentially based on the existence of a resolution in charac-
teristic zero [Hi]. It may be interesting if a resolution-free proof of these results
is provided.

Acknowledgments. I would like to thank Professor Kei-ichi Watanabe for
valuable discussions and comments.

Notation and conventions. Throughout this paper all rings are excellent
commutative rings with unity. For a ring R, R0 will denote the set of elements
of R which are not in any minimal prime ideal. We will often work over a field
of characteristic p > 0. In this case we always use the letter q for a power pe of
p. Also, for an ideal I of R, I[q] will denote the ideal of R generated by the qth
powers of elements of I.

A Q-divisor on a Noetherian normal scheme X is a linear combination D =P
�iDi of irreducible and reduced closed subschemes Di � X of codimension

one, with coefficients �i 2 Q. The integral part of D is defined by [D] =
P

[�i]Di,
where [�i] is the largest integer which is not greater than �i. D is said to be Q-
Cartier (resp. Q-ample Cartier) if ND is a Cartier divisor (resp. an ample Cartier
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divisor) for some positive integer N. We define OX(D) := OX([D]), the sheaf
associated with the integral divisor [D].

2. Definitions and preliminaries.

Definition 2.1. [HH1] Let R be a Noetherian ring of characteristic p > 0, and
I � R be an ideal. The tight closure I� of I in R is the ideal defined by x 2 I� if
and only if there exists c 2 R0 such that cxq 2 I[q] for q = pe � 0. We say that I
is tightly closed if I� = I.

Definition 2.2. Let R denote a Noetherian ring of characteristic p > 0.
(i) [FW] A local ring (R, m) is said to be F-rational if some (or, equivalently,

every) ideal generated by a system of parameters of R is tightly closed. When R
is not local, we say that R is F-rational if every localization is F-rational.

(ii) [HH1] R is said to be weakly F-regular if every ideal of R is tightly
closed. We say that R is F-regular if every localization is weakly F-regular.

Remark 2.2.1. For an R-submodule N � M, we can define the tight closure
N�

M of N in M as well [HH1]. The only case we treat here is that (R, m) is a
d-dimensional local ring and that N = (0) � M = Hd

m(R). In this case, an element
� 2 Hd

m(R) lies in (0)� if and only if there exists c 2 R0 such that c�q = 0 in
Hd

m(R) for q = pe � 0, where �q is the image of � by the e-times iteration of the
induced Frobenius map Fe: Hd

m(R) ! Hd
m(R). When (R, m) is Cohen–Macaulay,

R is F-rational if and only if (0)� = (0) in Hd
m(R).

Remark 2.2.2. In characteristic p > 0, the following implications are known
[HH1]:

regular ) F-regular ) F-rational ) Cohen–Macaulay and normal.

Also, a Gorenstein F-rational ring is F-regular.

Definition 2.3. Let R be a Noetherian ring of characteristic p > 0 and let
I � R be an ideal. An element c 2 R0 is said to be a test element for I if for all
x 2 R, one has

x 2 I� () cxq 2 I[q] for all q = pe (e � 0).

We say that c 2 R0 is a test element if it is a test element for all ideals I � R.

PROPOSITION 2.4. (Vélez [V]) Let R be a reduced excellent local ring of char-
acteristic p > 0. If c 2 R0 is an element such that Rc is F-rational, then some power
of c is a test element for all ideals generated by a system of parameters of R.
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The existence of test elements is essential for computing tight closure. The
above result implies that if the punctured spectrum of a local ring (R, m) is F-
rational, then the “test ideal for parameters” of R is m-primary.

Given a property P defined for rings of characteristic p > 0 such as “ F-
rational” or “F-regular,” we will extend the concept to characteristic zero using
the technique of reduction modulo p.

Definition 2.5. (cf. [HR]) Let R be a finitely generated algebra over a field k
of characteristic zero. We say that R is of P type if there exist a finitely generated
Z-subalgebra A of k and a finitely generated A-algebra RA satisfying the following
conditions:

(i) RA is flat over A and RA 
A k �= R.

(ii) R� = RA
A �(s) has property P for every closed point s in a dense open
subset of S = Spec A, where � = �(s) denotes the residue field of s 2 S.

Remark 2.5.1. In condition (ii), as A is finitely generated over Z, � = �(s)
is a finite field, whence a perfect field of positive characteristic. We sometimes
abbreviate the statement in condition (ii) as “the fiber ring R� has property P
for general closed points s 2 S.” However, if R is of P type, we can replace
S = Spec A by a suitable affine open subset so that condition (ii) holds for every
closed point s 2 S.

Remark 2.5.2. When P = “F-rational” or “F-regular,” condition (ii) does not
depend on the choice of A and RA (see [HH2, 3], [V]).

Now we will recall the following well-known

Definition 2.6. Let Y be a normal variety over a field of characteristic zero.
A point y 2 Y is said to be a rational singularity if for a resolution of singularity
f : X ! Y , one has (Rif�OX)y = 0 for all i > 0. This property does not depend
on the choice of a resolution.

Remark 2.6.1. Lipman and Teissier [LT] introduced the notion of pseudo-
rational rings as a resolution-free analogue of rational singularity, which we do
not define here. We note only that in characteristic zero, Hironaka’s resolution
theorem [Hi] and the Grauert–Riemenschneider vanishing theorem [GR] guar-
antee the equivalence of rationality and pseudo-rationality. In particular, rational
singularities in characteristic zero are Cohen–Macaulay.

In [S], Smith proved that excellent F-rational rings are pseudo-rational. Our
main purpose is to show the converse of the following characteristic zero version.
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THEOREM 2.7. (Smith [S]) Let R be a finitely generated algebra over a field of
characteristic zero. If R is of F-rational type, then it has at most rational singularity.

3. The injectivity of Frobenius and cohomology vanishing. First we shall
review some fundamental facts about log de Rham complex and the Cartier
operator in characteristic p > 0. Concerning these subjects the reader may consult
[C] and [Kz] (see also [EV]).

Assumption 3.1. We fix the notaton to be used throughout this section. X
will denote a d-dimensional smooth variety of finite type over a perfect field
k of characteristic p > 0, and E =

Pm
j=1 Ej a reduced simple normal crossing

divisor on X, that is, a divisor with smooth irreducible components Ej intersecting
transversally.

Let us choose local parameters t1, : : : , td of X so that E is locally defined by
t1 � � � ts = 0. Then we can consider the locally free OX-module Ω1

X( log E) with
local basis

dt1
t1

, : : : ,
dts
ts

, dts+1, : : : , dtd.

We define Ωi
X( log E) =

^i
Ω1

X( log E) for i � 0. These sheaves, together with
the differential maps d, give rise to a complex Ω�

X( log E) called a log de Rham
complex. (In order to define this notion, the base ring k need not be of charac-
teristic p > 0, nor even a field.) Note that Ω0

X( log E) = OX and that Ωd
X( log E) =

!X 
OX(E), where !X = Ωd
X is the dualizing sheaf of X.

3.2. The Cartier operator. ([C], [Kz]) Let F: X ! X be the absolute
Frobenius morphism of X. F will also denote the associated map OX ! F�OX ,
etc. The push-down F�Ω�

X( log E) of the de Rham complex by F: X ! X can
be viewed as a complex of OX-modules via F: OX ! F�OX . We denote the
ith cohomology sheaf of this complex by Hi(F�Ω�

X( log E)). Then, there is an
isomorphism of OX-modules

C�1: Ωi
X( log E) �

�! Hi(F�Ω�
X( log E))

for i = 0, 1, : : : , d. In particular, the map (C�1)�1 for i = d and E = 0 induces a
map F�!X !! Hd(F�Ω�

X) �
! !X , which is identified with the canonical dual of

F: OX ! F�OX ,

F_: HomOX (F�OX ,!X) ! HomOX (OX ,!X) = !X ,

via the adjunction formula HomOX (F�OX ,!X) �= F�!X (cf. [EV, Lemma 9.20]).
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Remark 3.2.1. It is usual to use the k-relative Frobenius morphism Frel: X !
X0 to define the Cartier operator. In our situation the perfectness of the base field
k allows us to use the absolute Frobenius F instead.

LEMMA 3.3. Let the situation be as in Assumption 3.1, and B =
P

rjEj be an
effective integral divisor supported in E such that 0 � rj � p � 1 for each j.
Then we have a naturally induced complex Ω�

X( log E)(B) = Ω�
X( log E)
OX(B) of

Op
X-modules, and the inclusion map

Ω�
X( log E) ,! Ω�

X( log E)(B)

is a quasi-isomorphism.

Proof. For {: X � E ,! X, viewing Ωi
X( log E)(B) as a subsheaf of {�Ωi

X�E,
we easily see that the differential map in Ω�

X�E preserves Ω�
X( log E)(B), which

is thus a complex.
It is a local question to see whether Ω�

X( log E) ,! Ω�
X( log E)(B) is quasi-

isomorphic. So let t1, : : : , td be local parameters of X, which form a p-basis of
OX , and let the components E1, : : : , Es of E be defined by t1, : : : , ts, respectively.
We consider the complexes

K�j :=

2
40 �!

p�1M
i=0

Op
X � ti

j
d
�!

p�1M
i=0

Op
X � ti

j
dtj
t
"j
j

�! 0

3
5 ,

where "j = 1 for 1 � j � s and "j = 0 for s + 1 � j � d, and let L�j = t
�rj
j � K�j for

1 � j � s. Then Ω�
X( log E) = K�1
� � �
K

�
d , Ω�

X( log E)(B) = L�1
� � �
L
�
s
K

�
s+1


� � �
K�d (tensor products are taken over Op
X), and Ω�

X( log E) ,! Ω�
X( log E)(B) is

induced by the inclusion maps K�j ,! L�j , which are easily checked to be quasi-
isomorphisms. Hence Ω�

X( log E) ,! Ω�
X( log E)(B) is also a quasi-isomorphism

by the Künneth formula.

3.4. Key Observation. Let D be a Q-divisor on X such that Supp(D�[D]) �
Supp(E). Then B = �p[ � D] + [ � pD] is an effective divisor supported in E
whose coefficient in each component Ej is at most p�1. Hence we have a quasi-
isomorphism of complexes of OX-modules F�Ω�

X( log E) ,! F�(Ω�
X( log E)(B))

by Lemma 3.3, and composition with C�1 in 3.2 gives an isomorphism

Ωi
X( log E) �

�! Hi(F�(Ω�
X( log E)(B))).

Tensoring with OX(� D) = OX([� D]), we have

Ωi
X( log E)(� D) �

�! Hi(F�(Ω�
X( log E)(� pD))).
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Denoting the ith cocycle and the ith coboundary of the complex F�(Ω�
X( log E)(�

pD)) by Z i and Bi, respectively, we have exact sequences of OX-modules

0 �! Z i �! F�(Ωi
X( log E)(� pD)) �! Bi+1 �! 0

0 �! Bi �! Z i �! Ωi
X( log E)(� D) �! 0

for i = 0, 1, : : : , d. Here we note that the upper exact sequence for i = 0 is nothing
but

0 �! OX(� D) F
�! F�(OX(� pD)) �! B1 �! 0.

By considering the local cohomology long exact sequences of these, we have

PROPOSITION 3.5. Let D be a Q-divisor on X such that Supp(D�[D]) � Supp(E)
and Z � X be any closed subset. Then the induced Frobenius map

F: Hd
Z(X,OX(� D)) ! Hd

Z(X,OX(� pD))

is injective if the following vanishing of local cohomologies holds:

(a) Hj
Z(X, Ωi

X( log E)(� D)) = 0 for i + j = d � 1 and i > 0;

(b) Hj
Z(X, Ωi

X( log E)(� pD)) = 0 for i + j = d and i > 0.

Considering (p�1)E�B instead of B in (3.4), we have Ωi
X( log E)(�E� [�

D]) �
!Hi(F�(Ω�

X( log E)(� E � [� pD]))), from which we obtain the following
“dual form.”

PROPOSITION 3.6. Let D be a Q-divisor on X such that Supp(D � [D]) �
Supp(E). Then the map

F_: H0(X,HomOX (F�(OX(� pD)),!X)) ! H0(X,HomOX (OX(� D),!X))

induced by the canonical dual of the Frobenius is surjective if the following condi-
tions hold:

(a) Hj(X, Ωi
X( log E)(� E � [� D])) = 0 for i + j = d + 1 and j > 1;

(b) Hj(X, Ωi
X( log E)(� E � [� pD])) = 0 for i + j = d and j > 0.

Roughly speaking, if D is an ample Q-Cartier divisor, then vanishing (b) holds
for “sufficiently large p” by the Serre vanishing theorem. On the other hand,
vanishing (a) is a variant of the Akizuki–Kodaira–Nakano vanishing theorem
[AN], which is reduced to the following

THEOREM 3.7. (Deligne and Illusie [DI]) In the situation of Assumption 3.1,
assume further that E =

Pm
j=1 Ej � X has a lifting Ẽ =

Pm
j=1 Ẽj � X̃ to the ring of
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second Witt vectors W2(k) of k, i.e., there exist a smooth scheme X̃ and a simple
normal crossing divisor Ẽ =

Pm
j=1 Ẽj over S̃ = Spec W2(k) such that X = X̃�S̃ k and

Ej = Ẽj �S̃ k. Then, if p > d = dim X, we have an isomorphism

'(X̃,Ẽ):
dM

i=0

Ωi
X( log E)[� i] �

�! F�Ω�
X( log E)

in the derived category associated to the category of OX-modules.

COROLLARY 3.8. Let X be projective over a Noetherian affine scheme and let
D be an ample Q-divisor on X such that Supp(D � [D]) � Supp(E). Assume that
E � X admits a lifting Ẽ � X̃ to W2(k) as in Theorem 3.7. Then, if i+ j > d = dim X
and if p > d, we have

Hj(X, Ωi
X( log E)(� E � [� D])) = 0.

Proof. Thanks to Theorem 3.7, using Lemma 3.3 as in 3.4, we obtain an
isomorphism

dM
i=0

Ωi
X( log E)(� E � [� D])[� i] �

�! F�(Ω�
X( log E)(� E � [� pD]))

in the derived category of OX-modules. Taking the hypercohomology we have

M
i+j=l

Hj(X, Ωi
X( log E)(� E � [� D])) �= Hl(X, Ω�

X( log E)(� E � [� pD]))

for each l. To annihilate the right-hand side, in view of the Hodge to de Rham
spectral sequence Hj(X, Ωi

X( log E)(�E�[�pD])) =) Hl(X, Ω�
X( log E)(�E�[�

pD])) (see e.g. [EV]), it suffices to show that Hj(X, Ωi
X( log E)(�E�[�pD])) = 0

for i + j = l. We iterate this procedure replacing D by pD, : : : , peD repeatedly.
Consequently, we see that if Hj(X, Ωi

X( log E)(� E � [� peD])) = 0 for i + j = l,
then Hj(X, Ωi

X( log E)( � E � [ � D])) = 0 for i + j = l. Hence the conclusion
follows from the Serre vanishing theorem applied to l > d and pe � 0.

Remark 3.8.1. The above vanishing in characteristic p > 0 yields the corre-
sponding vanishing in characteristic zero. The proof uses the standard technique
of reduction modulo p and proceeds in the same way as [DI, Corollaire 2.11].
We record in 4.3 the argument thereof for the sake of completeness.

4. Proof of Theorem 1.1. In order to prove the theorem we need to show
that certain cohomology vanishing in characteristic zero inherits “uniformly” to
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characteristic p > 0 under the reduction process. For this purpose we will state
the following elementary lemma.

LEMMA 4.1. Let X be a Noetherian separated scheme of finite type over a
Noetherian ring A, and let F be a quasi-coherent sheaf on X, flat over A. Suppose
that Hi(X,F) is a flat A-module for each i > 0. Then one has an isomorphism

Hi(X,F)
A �(s) �= Hi(X�,F�)

for every point s 2 S and i � 0, where � = �(s) is the residue field of s 2 S,
X� = XA �A Spec (�), and F� is the induced sheaf on X�.

Proof. Since Hi(X�,F�) �= Hi(X,F
A�(s)) by [Hart, (III, 9.4)], it is sufficient
to show that the natural map

'i: Hi(X,F)
A M �! Hi(X,F 
A M)

is an isomorphism for any finitely generated A-module M and i � 0. To see this,
it is enough to prove that the functor Ti = Hi(X,F 
A �) is right exact [Hart,
(III, 12.5)]. When i = dim X, Ti is right exact, so 'i is isomorphic for every M.
This allows us to identify Ti with the functor Hi(X,F)
A�, which is exact since
Hi(X,F) is A-flat. Then the (left) exactness of Ti implies the right exactness of
Ti�1, and descending induction on i completes the proof.

Proof of Theorem 1.1. We may assume without loss of generality that R is an
integral domain of dimension d � 2. We divide the proof into several steps.

4.2. Reduction to characteristic p. First of all, we can blow up Y = Spec R
with respect to some ideal I � R to get a “good” resolution of singularity f : X !
Y , that is, a resolution whose exceptional set E � X is a simple normal crossing
divisor [Hi].

Now, choosing a suitable finitely generated Z-subalgebra A of k, one can
construct a finitely generated A-algebra RA, an ideal IA � RA and an A-morphism

fA: XA = Proj
�M

n�0In
A

�
�! YA = Spec RA

such that by tensoring k over A one gets back R, I � R and f : X ! Y . By
localizing A at an appropriate element, we may assume that RA is A-free, XA is
smooth over A, and that the exceptional divisor EA � XA of fA is simple normal
crossing over A.

Let ΓA be the effective Cartier divisor on XA such that OXA(�ΓA) = OXA(1).
We choose a rational number " > 0 such that the Q-divisor "ΓA has no integral
part, and set DA = �"ΓA. Then DA is an fA-ample Q-Cartier divisor supported on
EA with [� DA] = 0.
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Given a closed point s 2 S = Spec A with residue field � = �(s), we denote
the corresponding fibers over s by f�: X� ! Y� = Spec R� etc. Obviously, all
of the properties mentioned above are preserved in every closed fiber, i.e., X�

is smooth over �, E� is the simple normal crossing exceptional divisor of f�,
and D� = �"Γ� is an f�-ample Q-Cartier divisor supported on E� such that
[�D�] = 0. Moreover, the fiber ring R� over a general closed point s 2 S is not
only Cohen–Macaulay and normal [HH3, (2.3)], but one also has Hi(X�,OX�) = 0
for i > 0 (4.1), since this is true for the “generic fiber” R.

4.3. Uniform vanishing of cohomologies. Here we will show that the
following vanishing holds for general closed points s 2 S with char(�(s)) = p:

(a) Hj(X�, Ωi
X�=�

( log E�)(�E�� [� peD�])) = 0 for i + j > d and e � 0;

(b) Hj(X�, Ωi
X�=�

( log E�)(� E� � [� pe+1D�])) = 0 for j > 0 and e � 0.

To see this, we fix i � 0 and consider the quasi-coherent sheaf

FA =
M
n�0

Ωi
XA=A( log EA)(� EA � [� nDA])

on XA. For each j, Hj(XA,FA) is a finitely generated module over R(XA, DA) =L
n�0 H0(XA,OXA(nDA)), which is a finitely generated graded A-algebra. So, by

generic freeness, further localization of A allows us to assume that Hj(XA,FA)
is A-free. Then, its graded piece Hj(XA, Ωi

XA=A( log EA)( � EA � [ � nDA])) is a
locally free A-module. Hence for every n � 0 and s 2 S = Spec A with � = �(s),
one has

Hj(XA, Ωi
XA=A( log EA)(� EA � [� nDA]))
A �(s)

�= Hj(X�, Ωi
X�=�( log E�)(� E� � [� nD�]))

by Lemma 4.1. In particular, if the right-hand side vanishes for some s 2 S, then
it does for every s 2 S. This implies vanishing (a) for every s 2 S, since there
exists a closed point s 2 S such that the fibers E� � X� over s satisfy the lifting
property in (3.8) and that char(�(s)) > d = dim X�. Indeed, for a closed point t
of Spec (A
Z Q), the closure T of t in S = Spec A with reduced scheme structure
is generically étale over Spec Z, so that we can choose a closed point s 2 T at
which T is étale over Spec Z such that p = char(�(s)) > d. Then the maximal
ideal mT ,s of OT ,s is generated by p, and E� � X� over � = �(s) admits a lifting
to OT ,s=m2

T ,s = W2(�(s)) (cf. proof of [DI, Corollaire 2.7]).
On the other hand, by the Serre vanishing, there exists an integer n0 inde-

pendent of s 2 S such that Hj(X�, Ωi
X�=�

( log E�)(�E�� [�nD�])) = 0 for j > 0
and n � n0. Since the closed points s 2 S with char(�(s)) � n0 form a dense
open subset of the maximal spectrum of A, we get vanishing (b).
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4.4. Notation change. From now on we fix a general closed point s 2 S
with residue field � = �(s) of characteristic p, and work over �. Taking this
into account, we change the notation so that R, X, D, E and f : X ! Y denote
the corresponding closed fibers over s 2 S (which had been denoted by R�, X�

etc., so far). Then vanishing (a) and (b) in (4.3), together with (3.6) applied
to a Q-divisor peD, implies that F_: H0(X,HomOX (F�(OX( � pe+1D)),!X)) !
H0(X,HomOX (OX(� peD),!X)) is surjective for all e � 0. Composing these, we
see that

(Fe)_: H0(X,HomOX (Fe
�(OX(� qD)),!X)) ! H0(X,HomOX (OX ,!X))

is surjective for all q = pe.
Now to prove the theorem it is sufficient to show that the new R is F-rational.

We will prove this by contradiction, so let P 2 Y = Spec R be a prime ideal such
that the localization RP is not F-rational. We can choose P so that Spec RP n fPg
is F-rational. Then, we further replace R by the local ring RP and everything by
the base change to RP over R. Note that the surjectivity of the above map (Fe)_

implies the surjectivity of the corresponding map after localization.
At last we have come to the following situation.

4.5. The injectivity of Frobenius. We first summarize our new notation.
(R, m) is a d-dimensional Cohen–Macaulay normal local ring essentially of finite
type over a perfect field � of positive characteristic p such that Spec R n fmg
is F-rational. f : X ! Y = Spec R is a resolution of singularity with simple
normal crossing exceptional divisor E � X and D is an f -ample Q-Cartier divisor
supported on E such that [� D] = 0.

Let Z = f�1(y) be the fiber of f over the closed point y of Y = Spec R.
Then by duality, the surjectivity of the map (Fe)_ in 4.4 implies that the e-times
iterated Frobenius map

Fe: Hd
Z(X,OX) ! Hd

Z(X,OX(� qD))

is injective for every q = pe.
Our goal is to show (0)� = (0) in Hd

m(R) under this setup and the additional
condition Hd�1(X,OX) = 0, which comes from the rationality of our singularity
(cf. 4.2).

4.6. Conclusion of the proof. Since Rif�OX = 0 for i > 0, one has

Hd�1(X � Z,OX�Z) �= Hd�1(Y � fyg,OY�fyg) �= Hd
m(R).
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Now we consider the direct system f� � � ! OX(�nD) ! OX(� (n + 1)D) !
� � �g indexed by n 2 Z. (Note that �D � 0.) Since E is a Cartier divisor, the
inclusion {: X�E ,! X is an affine morphism, and the limit of the direct system
is {�OX�E. Therefore, lim

�!
Hd�1(X,OX( � nD)) = Hd�1(X, {�OX�E) = Hd�1(X �

E,OX�E). Similarly one has lim
�!

Hd�1(X�Z,OX(�nD)jX�Z) = Hd�1(X�E,OX�E).

For n � 0 let

'n: Hd�1(X,OX(� nD)) ! Hd�1(X � Z,OX(� nD)jX�Z)

and

 n: Hd
m(R) = Hd�1(X � Z,OX�Z) ! Hd�1(X � Z,OX(� nD)jX�Z)

be the natural maps, and define a filtration on Hd
m(R) by

Filtn(Hd
m(R)) :=  �1

n (Image 'n).

Then
[

n�0
Filtn(Hd

m(R)) = Hd
m(R), since the direct limit map lim

�!
'n is an isomor-

phism.
For each q = pe we consider the commutative diagram with exact rows

Hd�1(X,OX) = 0 ! Hd
m(R) ! Hd

Z(X,OX) ! 0

# Fe

# Hd
m(R) # Fe

#  q

Hd�1(X,OX(�qD))
'q
! Hd�1(X�Z,OX(�qD)) ! Hd

Z(X,OX(�qD)) ! 0,

where the Frobenius Fe: Hd
Z(X,OX) ! Hd

Z(X,OX(� qD)) on the right-hand side
is injective (4.5).

Now let � 6= 0 2 Hd
m(R). Then �q := Fe(�) =2 Filtq(Hd

m(R)) for all q = pe

from the above diagram. On the other hand, we can choose an integer N > 0
such that all nonzero elements of mN are test elements for parameter ideals
(Proposition 2.4). Since (0 : mN) in Hd

m(R) is a finitely generated R-module,
one has (0 : mN) � Filtn1 (Hd

m(R)) for some n1 2 Z. Thus, if we pick a power
q = pe � n1, then �q =2 (0 : mN) in Hd

m(R). Hence there is some test ele-
ment c 2 mN for parameters such that c�q 6= 0. Consequently, � =2 (0)� in
Hd

m(R), whence (0)� = (0) in Hd
m(R). Thus we conclude that R is F-rational, as

required.

Actually, the proof of Theorem 1.1 contains a more general statement, as
follows.
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THEOREM 4.7. Let (R, m) be a d-dimensional normal local ring which is a “gen-
eral” modulo p reduction of a (not necessarily rational) singularity in characteristic
zero with at most isolated nonrational locus. Let f : X ! Y = Spec R be a resolution
of singularity reduced from characteristic zero as in 4.2–4.5. Then one has

Hd�1(X,OX) �= (0)� in Hd
m(R).

Proof. Let the notation be as in 4.5 and let f 0 = f jX�Z: X � Z ! Y � fyg.
From the assumption we have Rif 0�OX�Z = 0 for i > 0, and Y �fyg is F-rational
by Theorem 1.1. Hence Hd�1(X� Z,OX�Z) �= Hd�1(Y �fyg,OY�fyg) �= Hd

m(R).
Also, the Grauert–Riemenschneider vanishing in characteristic zero [GR] tells
us that Hd�1

Z (X,OX) = 0 after passing to general modulo p reduction, so that
the natural map Hd�1(X,OX) ! Hd�1(X � Z,OX�Z) is injective. Thus we can
view Hd�1(X,OX) as a submodule of Hd

m(R), and the argument in 4.6 shows
(0)� � Hd�1(X,OX) in Hd

m(R).
On the other hand, since Hd�1(X,OX) has finite length as an R-module, it is

killed by some c 2 R0. Hence c�q = 0 for all � 2 Hd�1(X,OX) and q = pe, proving
Hd�1(X,OX)
� (0)�.

Remark 4.7.1. The length of the R-module Hd�1(X,OX) is an important in-
variant of the singularity called the “geometric genus” (cf. [Wg]). By the aid
of [W2, Corollary 2.6], Theorem 4.7 gives an affirmative answer to the Strong
Vanishing Conjecture posed by Huneke and Smith [HS, 3.9].

5. Applications. In this section we shall present two applications of the
results obtained so far. First we make use of Theorem 1.1 to establish the corre-
spondence of F-regular rings with so called log terminal singularities. Second we
will consider F-rationality (and F-regularity) of some graded rings. It is perhaps
unneccessary to say that the graded case is only a special case, but it provides
interesting examples.

Definition 5.1. (cf. [KMM]) Let Y be a normal variety over a field of char-
acteristic zero. Y is said to have log terminal singularity if the following two
conditions hold:

(i) Y is Q-Gorenstein, i.e., the canonical divisor KY of Y is Q-Cartier.
(ii) Let f : X ! Y be a resolution whose exceptional set is a simple normal

crossing divisor with irreducible components E1, : : : , Er. Condition (i) allows us
to write

KX = f �KY +
rX

i=1

aiEi
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for some ai 2 Q, where KX is the canonical divisor of X. Then ai > �1 for each i.

Remark 5.1.1. We have implications similar to Remark 2.2.2:

regular ) log terminal ) rational ) Cohen–Macaulay and normal.

Also, a Gorenstein rational singularity is log terminal.

In [W3], Watanabe proved that a ring in characteristic zero has log terminal
singularity if it is of F-regular type and Q-Gorenstein (see also [Ha], [Mc]).
Conversely we have

THEOREM 5.2. Let R be a finitely generated algebra over a field of characteristic
zero. If R has at most log terminal singularities, then R is of F-regular type.

Proof. The question is local, so we may replace Spec R by an affine open
subset, and assume that K(r)

R
�= R, where r is the order of the canonical class cl(KR)

of R. Then, by our assumption, the canonical covering S =
Lr�1

i=0 K(�i)
R of R has

Gorenstein rational singularity [Kw, Proposition 1.7], whence has F-rational type
by Theorem 1.1. By the standard argument, we can choose a finitely generated
Z-algebra A contained in the base field k, and flat, finitely generated A-algebras
RA � SA such that one gets back R � S after tensoring k over A and that RA

is a direct summand of SA as an RA-module. Then for a general closed point of
Spec A with residue field �, S� is Gorenstein and F-rational, so, F-regular. This
forces R� to be F-regular, because a direct summand of an F-regular ring is also
F-regular [HH1].

5.3. The graded case. ([FW], [HW]) Through the remainder of this paper
we will treat the case that R =

L
n�0 Rn is a normal graded ring finitely generated

over a perfect field R0 = k of characteristic p > 0 with d = dim R � 2. Then R is
represented by an ample Q-Cartier divisor D on X = Proj R as

R = R(X, D) :=
M
n�0

H0(X,OX(nD))Tn.

When Spec R is F-rational outside the vertex V(R+), R is F-rational if and
only if the following two conditions hold:

(i) R is Cohen–Macaulay and a(R) < 0, where a(R) is the a-invariant of R
[GW].

(ii) R is F-injective in the sense of [FW], equivalently, the induced Frobenius

F: Hd�1(X,OX(nD)) ! Hd�1(X,OX(pnD))

is injective for every (negative) integer n.
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Condition (i) corresponds to the condition that R has “rational singularity”
([Fl], [W2]), and is easier to check than condition (ii). On the other hand, if X is
smooth and Supp(D� [D]) is simple normal crossing, we can use Proposition 3.5
to check if condition (ii) holds (by setting Z = X in Proposition 3.5).

Example 5.4 [HW, Theorem 2.9] When dim R(X, D) = 2, condition (i) holds
if and only if X = P1 and deg [nD] > �2 for every positive integer n. In this case
a sufficient condition for (ii) is given by using the “fractional part” D0 of D (see
[W1]). Namely, condition (ii) holds if p does not divide the denominator of any
rational coefficient of D and if p deg D > deg (KX + D0). (Note that deg KX = �2
if X = P1.) What’s more, we can give a necessary and sufficient condition for
R = R(X, D) to be F-rational in terms of numerical data involving p and the
coefficients of D.

Example 5.5. Let X be a smooth del Pezzo surface (i.e., a smooth projective
surface with ample anti-canonical divisor �KX) of characteristic p > 0. Then
R = R(X,�KX) has at most isolated Gorenstein rational (whence log terminal)
singularity. In this case we can explicitly describe a condition for R = R(X,�KX)
to be F-regular in terms of p and the self intersection number K2

X . R is F-regular
except for the following three cases:

(i) K2
X = 3 and p = 2.

(ii) K2
X = 2 and p = 2 or 3.

(iii) K2
X = 1 and p = 2, 3 or 5.

Moreover, there are both F-regular and non F-regular cases for each of (i),
(ii) and (iii). For example, in case (i) R is not F-regular if and only if X is
isomorphic to the Fermat cubic surface in P3.
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86 (1958), 177–251.
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auf komplexen Räumen, Invent. Math. 11 (1970), 263–292.
[Ha] N. Hara, Classification of two-dimensional F-regular and F-pure singularities, Adv. Math. (to ap-

pear).
[HW] N. Hara and K.-i. Watanabe, The injectivity of Frobenius acting on cohomology and local coho-

mology modules, Manuscripta Math. 90 (1996), 301–315.
[Hart] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, New York,

1977.
[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero,

Ann. of Math. 79 (1964), 109–326.
[HH1] M. Hochster and C. Huneke, Tight closure, invariant theory and the Briançon-Skoda theorem, J.
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