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Improved Watershed Transform for Medical Image
Segmentation Using Prior Information
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Abstract—The watershed transform has interesting properties
that make it useful for many different image segmentation appli-
cations: it is simple and intuitive, can be parallelized, and always
produces a complete division of the image. However, when applied
to medical image analysis, it has important drawbacks (overseg-
mentation, sensitivity to noise, poor detection of thin or low signal
to noise ratio structures). We present an improvement to the wa-
tershed transform that enables the introduction of prior informa-
tion in its calculation. We propose to introduce this information
via the use of a previous probability calculation. Furthermore, we
introduce a method to combine the watershed transform and atlas
registration, through the use of markers. We have applied our new
algorithm to two challenging applications: knee cartilage and gray
matter/white matter segmentation in MR images. Numerical vali-
dation of the results is provided, demonstrating the strength of the
algorithm for medical image segmentation.

Index Terms—Biomedical imaging, image segmentation, mor-
phological operations, tissue classification, watersheds.

I. INTRODUCTION

A. The Watershed Transform

The watershed transform [1] is a popular segmentation
method coming from the field of mathematical morphology.
The intuitive description of this transform is quite simple: if we
consider the image as a topographic relief, where the height of
each point is directly related to its gray level, and consider rain
gradually falling on the terrain, then the watersheds are the lines
that separate the “lakes” (actually called catchment basins)
that form. Generally, the watershed transform is computed on
the gradient of the original image, so that the catchment basin
boundaries are located at high gradient points.

The watershed transform has been widely used in many fields
of image processing, including medical image segmentation,
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due to the number of advantages that it possesses: it is a simple,
intuitive method, it is fast and can be parallelized (in [2], an al-
most linear speedup was reported for a number of processors
up to 64), and it produces a complete division of the image
in separated regions even if the contrast is poor, thus avoiding
the need for any kind of contour joining. Furthermore, several
researchers have proposed techniques to embed the watershed
transform in a multiscale framework, thus providing the advan-
tages of these representations [3]–[5]. Some important draw-
backs also exist, and they have been widely treated in the related
literature. Among the most important are as follows.

• Oversegmentation: When the watershed transform infers
catchment basins from the gradient of the image, the re-
sult of the watershed transform contains a myriad of small
regions, which makes this result hardly useful. The use of
a marker image [6], [7] to reduce the number of minima
of the image and, thus, the number of regions, is the most
commonly used solution. Also interesting is the utilization
of a scale space approach to select the interesting regions,
using different filters (morphological operations [8], or
nonlinear diffusion [9].)

• Sensitivity to noise: Local variations of the image can
change dramatically the results. This effect is worsened by
the use of high pass filters to estimate the gradient, which
amplify the noise. Anisotropic filters have been used to
minimize this problem [9], [10].

• Poor detection of significant areas with low contrast
boundaries: If the signal to noise ratio is not high enough
at the contour of interest, the watershed transform will be
unable to detect it accurately. Furthermore, the watershed
transform naturally detects the contours with higher value
between markers, which are not always the contours of
interest. A clear example is white matter-gray matter
surface detection, where the proximity of other, higher
contrast surfaces such as gray matter-CSF or CSF-bone
will make the task difficult for the plain watershed
transform.

• Poor detection of thin structures: When the watershed
transform is applied on the gradient image, the smoothing
associated with gradient estimation, together with usual
approach of storing gradient values only at the image pixel
positions rather than with sub-pixel accuracy, make it dif-
ficult to detect thin catchment basin areas. Often this is
critical for successful segmentation of medical images.

Lately, much interest has been raised in the medical imaging
community about segmentation algorithms that use active
contours or surfaces. Snake models [11] were first used, while
more recently another technique has received much attention:
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the level set approach [12], which represents a deformable
two-dimensional contour as a level curve of a three-dimensional
(3-D) function that is deformed by internal and external forces.
Though these approaches offer very nice behavior in many
different applications, the watershed transform presents some
advantages [13].

• The watershed lines always correspond to the most signif-
icant edges between the markers. So this technique is not
affected by lower-contrast edges, due to noise, that could
produce local minima and, thus, erroneous results, in en-
ergy minimization methods.

• Even if there are no strong edges between the markers,
the watershed transform always detects a contour in the
area. This contour will be located on the pixels with higher
contrast.

B. Overview of the Work Presented

In this paper, we present a novel modification of the wa-
tershed transform that significantly improves the watershed
transform performance by allowing the introduction of func-
tions based on prior information. After a presentation of
the standard watershed definition and the marker imposition
technique in Sections II-A and II-B, the proposed improvement
in this definition is introduced in Section II-C, along with
an efficient algorithm for its calculation. We propose, as
general-purpose functions applicable to a majority of medical
image segmentation applications, the use of differences in
probability maps, introduced in Section II-D.

Furthermore, we also propose an additional introduction of
prior knowledge in watershed segmentation through the use of a
statistical atlas. Details about this technique are given in Section
II-E.

We explain the use of the newly proposed technique for two
challenging medical image segmentation applications: knee car-
tilage and white matter/gray matter segmentation. Details about
how the newly proposed techniques can be applied to these cases
are given in Sections II-F1 and II-F2.

In Section III, results obtained for these two applications are
presented, including exhaustive validation of the knee cartilage
segmentation approach by comparison with repeated manual
segmentations, and a comparison of the brain results with those
obtained with other methods especially designed for this partic-
ular application. Section IV is dedicated to the conclusions.

II. METHODS

A. Definition of the Watershed Transform for Discrete Images

Several definitions of the watershed transform have been
promulgated: an excellent review can be found in [14], where
additional details can be found. We are going to focus on
the ones based on topographical distance, when applied to
discrete images. For this purpose, we need first to introduce two
important definitions: the lower slope and the lower neighbors.

Let be a digital gray value image of arbitrary dimension-
ality, which we assume to be lower complete, that is, it has no
plateaus outside the minima. The behavior of the method at the

plateaus will be explained later. The lower slope of at a pixel
is defined

(1)

where is the set of neighbors of on the grid , and
is the Euclidean distance between pixels and . Note

that the term inside the brackets is an approximation to the di-
rected gradient to the pixel . We define so that, for

, this term is zero. In this way, we keep , even
when p is a local minimum. The lower slope is necessary to de-
fine a steepest slope relation between voxels, which will be used
to calculate the watershed transform.

The concept of lower neighbors is derived directly from the
lower slope: for each image pixel , its set of lower neighbors,
denoted as , is

(2)

so the set of lower neighbors is the subset of neighboring pixels
for which the directed gradient to the pixel equals its lower
slope. If we consider only a first-order neighborhood (so all dis-
tances are equal)

(3)

Note that, though not considered explicitly in the derivation of
this equation, it also covers the case of being a local minimum,
in which and consequently the set of lower neighbors
is empty.

The mapping introduces a new relation between pixels,
which will be used for the watershed transform calculation. At
this point, we can define the concept of steepest descent.

A path between and
is called a path of steepest descent if

.
A pixel is said to belong to the downstream of pixel if there

exists a path of steepest descent between and . Conversely,
a pixel is said to belong to the upstream of if belongs
to the downstream of . Using this concept, one can define the
catchment basins in the following way [14]:

For each regional minimum in the image, its asso-
ciated catchment basin, is the set of points in the
upstream of .
Those pixels which are in the upstream of at least two minima,

i.e., for which there are at least two paths of steepest descent
which lead to different minima, do not belong to any catchment
basin and are, thus, watershed pixels. Note that, in the discrete
case, two catchment basins will not always be separated by a
connected surface of watershed pixels. Actually, these appear
only at locations where the boundary is symmetric.

In most applications, the watershed transform is not calcu-
lated directly on the image that we want to segment, but rather
on the absolute value of its gradient, which has high values at the
objects’ contours. Gradient estimation at the center of the pixels
worsens the original resolution of the image, causing problems
when the regions to segment are very thin. Calculation of the
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watershed transform using arc weights in a graph [15], [16] al-
lows the substitution of the usual gradient estimation by abso-
lute differences of gray level calculated directionally during the
flooding process, achieving in this way a higher resolution. This
idea was used in [17] for brain segmentation. The lower slope
is, thus, redefined as

(4)

where is a new function, that is calculated for the link
(in [17], they choose , thus calcu-

lating the gradient between two pixels). We can now calculate
an equivalent function for the simplified lower neighbors

(5)
This modified condition allows the use of a directional function
in substitution of the absolute value of the gradient, thus im-
proving the results, as shown in [17].

B. Marker Imposition

One of the most important drawbacks associated to the water-
shed transform is the oversegmentation that commonly results.
The usual way of predetermining the number and approximate
location of the regions provided by the watersheds technique
consists in the modification of the homotopy of the function to
which the algorithm is applied. This modification is carried out
via a mathematical morphology operation, geodesic reconstruc-
tion [18], by which the function is modified so that the minima
can be imposed by an external function (the marker function).
All the catchment basins that have not been marked are filled by
the morphological reconstruction and so transformed into non-
minima plateaus, which will not produce distinct regions when
the final watersheds are calculated.

In [6], several algorithms to calculate the geodesic recon-
struction of an image are presented. Among them, it is espe-
cially interesting in our case the one that uses queues, as it can
be easily integrated in our watershed calculation algorithm that
will be presented in Section II-C. We consider the case in which
the marker function is binary, i.e., we have a set of selected re-
gions, which we want to belong to different objects in the final
segmentation.

Let be the original grayscale image, defined in the domain
, modified by assigning value 0 to the pixels corresponding

to selected markers, the grayscale marker image, constructed
by assigning value 0 to the marker pixels, and to the rest of
the image.

1. Initialization of the queue with the boundaries of the markers

For every pixel

If and insert pixel in the queue

2. Propagation (flooding)

While the queue is not empty:

Extract pixel from the queue

For every pixel , if and ,

Add pixel to queue

In Step 2), the conditions and only
control collision of the flooding coming from different minima.
Another possibility is performing an ordered propagation, in
which the pixel with smaller value is extracted from the
queue in the first place. In Section II-C, a watershed calculation
algorithm which embeds the geodesic reconstruction process
will be introduced.

C. Proposed Improvement of the Watershed Definition

In this section, we present an original modification of the
classical watershed transform, which enables the introduction
of prior knowledge about the objects.

In practical applications, we often have available prior infor-
mation about the absolute or relative intensities of the objects.
Unfortunately, the watershed definition based on (4) does not
allow the introduction of this information in the calculation.

To be able to take advantage of this prior information, while
maintaining the desirable properties of the watershed transform
mentioned in Section I-A, we propose the utilization of a set of
lower cost functions, one for each of the objects to be detected
in the image

(6)

where is the function that quantifies the probability of
having an edge between the pixels and , given that pixel
has previously received label .

With this new definition, for example, if a bright object has to
be segmented from a darker background, the function can be
selected so that it detects a high decrease in the pixel value when
we travel from the inside to the outside of the object, and not
the opposite. Other knowledge-based conditions can be easily
introduced, depending on the application.

To be able to calculate the functions used in (6), it is assumed
that the label of pixel is already known before labeling pixel
. This can be achieved if we use a region-growing algorithm

for watershed calculation: the labels of the markers (i.e., of the
image minima after geodesic reconstruction) are known at the
start of the process, and gradually propagated to the rest of the
image, following the upstream of each minimum, as explained
in Section II-A. The seeds of the region growing process are the
markers , where is a unique label for each marker. The fol-
lowing algorithm, combining geodesic reconstruction and wa-
tershed calculation with our proposed modification, can be used.

1) Initialization: All pixels belonging to each marker
are identified and receive a particular label . The inte-
rior voxels of each marker are assigned to the subset .
The pixels at the boundary of each marker, along with all
pixels outside the markers, are assigned to the subset .

2) Select the pixel for which

where is the label previously assigned to pixel . This
pixel is removed from and subsequently
inserted into . If is empty, END; else go to Step 3).

3) For each neighbor of belonging to without label
do: . Return to Step 2).
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Note that Step 2) assures that the voxels are processed in the
correct order. This is where our novel improvement expressed
in (6) is introduced in the algorithm. The algorithm can be im-
plemented in an efficient way using ordered queues. The use of
ordered queues in the region growing algorithm above solves
the problem of plateau labeling without the need for any addi-
tional preprocessing or postprocessing. Usually, pixels are pro-
cessed in ascending order, as selected in Step 2). On plateaus,
where no such order can be used, propagation is done by adding,
at each step, an additional layer of pixels neighboring those
already labeled. In case the plateau separates two catchment
basins, labeling is done by alternating propagation from both
sides. Thus, plateaus are partitioned according to pixel distances
to the markers. An exhaustive analysis of watershed calculation
algorithms and plateau handling can be found in [14].

For some pixels at the edge of the final regions, there is more
than one class which provides the same value of . These
pixels are labeled as watershed and, therefore, do not belong to
any of the regions. In our experiments, a very low number of
pixels were finally labeled as watersheds. To obtain a complete
partition of the image in separated regions, we assigned to these
pixels the label of the adjacent region whose average value was
closer to the pixel value.

D. Probability-Based Functions for Medical Image
Segmentation

The improvement in the watershed transform that we propose
in Section II-C opens a wide range of possibilities for different
applications, depending on the amount of knowledge available
about the objects. For generic image segmentation, we propose
the use of a function that measures the difference in class
probability between two neighboring pixels. We assume normal
distributions for the objects in the image, for which mean and
variance are calculated using a set of seed voxels for each class.
The seed voxels can be selected manually or using automatic
techniques, and can be the same set used as markers in the
following watershed calculation. Posterior probabilities for each
class at each pixel , are calculated using Bayes’
rule as

(7)

where is the intensity, at pixel , of the image that we want
to segment.

Structures we wish to segment typically exhibit a signifi-
cant spatial homogeneity, and so it is desirable to achieve this
behavior in the obtained probability values. Markov Random
Fields [19], [20] provide a convenient way to model local corre-
lations between pixels. In our implementation, we use the Potts’
model, a generalization of the classical Ising model for more
than two states, which defines the class probability for class
at pixel as

(8)

where are the neighbors of the voxel is the class as-
signed to pixel and is the Euclidean distance between

voxels and . The function quantifies the relation be-
tween two neighboring voxels and , in the following way:

(9)

To estimate the model, we have used iterative conditional modes
(ICM), a method first proposed by Besag [20], in which (7) and
(8) are iteratively solved. Though the method does not provide
an exact solution, it has the advantage of its fast convergence:
in the original paper by Besag, he states that few if any changes
occur after the sixth cycle. In practical applications, we have
found that for our needs it is usually enough with the first itera-
tion of ICM. (Note that in this step we do not want to classify the
voxels, but only to obtain an estimate of its probability values)

Given these definitions, we have found a useful set of con-
trast functions for the new watershed transform, , is the
following:

(10)

where and denote the posterior probabilities
of class at pixels and .

E. Automatic Calculation of Markers From an Atlas

In order to benefit from the geodesic reconstruction technique
described in Section II-B, the markers must be correctly located.
In the past, either interactive selection or ad-hoc techniques have
been usually applied for this purpose. In order to provide fully
automatic segmentation, we propose here for the first time the
automatic generation of markers from a statistical atlas. We de-
scribe a robust method for taking a prior model of the anatomy
we expect to segment in the form of a statistical atlas and pro-
jecting marker positions into the image to be segmented.

A probabilistic atlas is used, in which each voxel of the image
has associated probability values for each one of the image
classes. In this way, these probability values can be assigned,
after registration, to the voxels of the image to be segmented.
For this purpose, the nonrigid registration technique described
in [21] was used. This is an iterative method consisting of two
stages: correction of intensity differences between the images
and registration of the corrected images. Note that these are
probabilities associated only with the spatial position of the
voxels, and not with their intensities. In Fig. 1, the probability
values for gray matter , white matter , and CSF

, are shown for a registered brain MR image.
To obtain accurate results, it is absolutely necessary that all

the marker voxels for a particular object are located inside this
object in the images we want to segment: even a single false pos-
itive can produce significant errors in the final result. To assure
that, we use a skeletonization followed by an outlier removal.

• Skeletonization: Object probability images are thresh-
olded and skeletons are calculated on individual slices
using mathematical morphology techniques [22]. A
sample result of the obtained skeleton for WM ,
GM and CSF is shown in Fig. 1.

• Outlier removal: The skeletons obtained in the previous
step are used to calculate the parameters of normal dis-
tributions, as described in Section II-D. Skeleton voxels
whose probability of belonging to the associated class is
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Fig. 1. Top: Probabilistic atlas aligned with a particular case. Results for white matter, gray matter and CSF are shown. Middle: skeleton calculated for the
atlas results. Bottom: Modified skeleton after elimination of outliers. Note that a very conservative threshold has been used, to ensure that all marker voxels are
inside their corresponding objects. Our improvements in the watershed transform eliminate the need of a very accurate marker to obtain a good segmentation, thus
enabling the utilization of an automatic marker procedure such as the one shown.

smaller than a certain threshold are considered outliers and
removed, generating the corrected skeleton Sk corr

(11)

where is the Bayesian probability as calculated
in (7), and is the threshold selected for the skeleton.
A conservative threshold should be used in this case, to
assure that no false positives remain in the marker set. The
final results for this case are shown in Fig. 1.

Parameters of the normal distributions presented in Section
II-D were also calculated using the atlas registration results.
Though, for this purpose, the effect of a few outliers would

not be as critical, we found in our experiments that, for thin
structures such as gray matter or CSF, atlas registration pro-
duces nonzero results in an area that spreads significantly out
of the corresponding object. For this reason, we have used only
skeleton voxels to calculate these parameters.

F. Clinical Applications

In this section, we describe the application of the presented
algorithms to two clinical applications: knee cartilage and white
matter/gray matter segmentation.

1) Knee Cartilage Segmentation: A number of diseases and
injuries affect the knee joint by damaging the cartilage. Hence,
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Fig. 2. Block diagram of the segmentation system used for knee cartilage segmentation.

an accurate measurement of the volume and thickness of carti-
lage is often crucial to obtain an adequate diagnosis and to assess
evolution of the patients under treatment.

Several studies have been carried out in order to determine the
accuracy and reliability of MR images for cartilage disease as-
sessment. Direct two-dimensional measurement on single slices
is not feasible: as their locations and orientations cannot be re-
peated exactly in longitudinal studies, it is impossible to use
them to measure changes of cartilage over time. On the other
hand, current MR protocols have shown enough accuracy and
reliability for the detection of cartilage lesions [23], [24].

An accurate segmentation of the cartilage is necessary
to calculate its total volume. Manual segmentation, used in
some studies [24], [25], is a time-consuming task that can
only be carried out by a trained expert. For these reasons, the
development of segmentation algorithms that minimize user
interaction is a very interesting challenge.

Several groups have attempted to develop fully automatic
or semi-automatic knee cartilage segmentation algorithms.
Heuristic, strongly user-guided systems have been often
proposed, as in [26], where a simple thresholding, followed
by simple user-selected operations, is used. In [27] and [28],
B-splines are fitted to a set of points, manually selected
along each articular contour curve: user interaction is, thus,
fundamental. In [29], a spline is drawn on a selected slice,
and then adjusted to the cartilage contour by optimization of a
cost function. An acknowledged challenge is the decisive role
played by the user when selecting the end points for femoral
cartilage. In [30], a more complex approach is used, including
an Active Shape Model which contains the possible variations
in shape. It is important to note that all the abovementioned
methods perform the segmentation slice by slice and not on
the whole volume at once, thus not assuring consistency in the
direction normal to the slices. An interesting approach, that
actually deals with the 3-D volume, is presented in [31]. In this
case, the user is required to perform an interactive registration
of a knee template to the subject, and then selects points
from several anatomical structures. An iterative classification
algorithm, modified by the registered template, produces the
final segmentation.

Our goal was to segment the overall cartilage volume of
the knee joint from the MR images, in order to allow cartilage
volume and thickness measures. We used the algorithm pre-
sented in Sections II-C and II-D to segment the knee cartilage

in MR images, working directly in 3-D. The use of an atlas in
this application is restricted by the movement of the knee joint,
which makes the available registration methods not usable. For
this reason, we applied our improved watershed transform using
a set of manually selected voxels as markers for each of three
classes: cartilage, bone and other tissues. Future development
of a reliable knee atlas will enable the complete automation of
the process by using the algorithm introduced in Section II-E.
This last class represents the ligament and muscle around the
cartilage. In order to reduce noise without compromising the
contrast at significant edges, the images were first filtered using
the anisotropic diffusion filter presented in [32]. In Fig. 2, the
complete block diagram for this application is shown.

2) Brain Segmentation: Accurate segmentation of cortical
gray matter is critically important in understanding structural
changes associated with central nervous system diseases such
as multiple sclerosis and Alzheimer’s disease, and also the
normal aging process. Measures of change in cortical gray
matter volume and thickness are suggested to be important
indicators of atrophy or disease progression.

Many approaches have been tried for gray matter segmen-
tation. Classification has often been used, with sophisticated
approaches such as the one presented in [33], [34], where the
expectation-maximization technique is used to correct the bias
field, and combined with an atlas, during the classification
process. In [31], a classification step is combined with spatial
information, and partial volume effects are also considered in
[35]. Also relying on a classification procedure, good results
are achieved in [36] or [37], at the expense of introducing many
heuristic corrections.

Another important research line used for cortex segmentation
uses deformable models. In [38], the active ribbon is introduced:
two coupled bidimensional contours that evolve to find the gray
matter/white matter and gray matter/CSF interfaces in a single
slice. In [39], a similar approach is carried out using coupled
level sets in three dimensions. Classification and deformable
models have also been combined [40].

In this case, we can make use of a probabilistic atlas to obtain
the initial set of markers, as presented in Section II-E. Details
about the atlas creation are given in [41]. As in the knee carti-
lage segmentation, an anisotropic diffusion filter [32] is initially
applied. The complete algorithm is, thus, very similar to the one
presented in Fig. 2, with the substitution of manual seed selec-
tion by the atlas-based algorithm.
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Two-channel images (T1- and T2-weighted) are used in this
case. This does not affect the segmentation algorithm at all, as
long as (9) can be calculated.

The whole brain segmentation process is carried out in three
steps: brain stripping, white matter/gray matter interface detec-
tion, and gray matter/CSF interface detection.

a) Brain Stripping: Most gray matter/white matter
segmentation systems need a previous, independent step to
remove the external nonbrain tissues from the images. Several
methods to extract this surface have been presented. In [42],
a review of these methods is presented, classifying them in
three types: manual segmentation, threshold with mathematical
morphology operations, and surface-model-based. Manual
segmentation takes a huge amount of expert time, making it
unusable in practical scenarios. Mathematical morphology
techniques can be used to correct the results obtain by an initial
thresholding step [43]–[45], but usually, these methods involve
highly ad-hoc procedures, difficult to automate when applied to
images acquired with different protocols. Deformable models
[36], [42] seem to be more robust, but they still require the
inclusion of many heuristic procedures in the method, and they
are difficult to apply to images with a range of contrast types.

We have used our improved watershed transform to perform
the brain stripping operation. The markers used were, for the
brain, the combined skeletons of gray and white matter and
CSF, obtained as explained in Section II-E, and for the external
volume, the voxels for which the spatial probability obtained
after registration with the atlas is zero:

(12)

where and represents the markers for the
intracranial cavity (ICC) and the external objects, respectively.

In this case, as the regions to segment are not homogeneous, it
is not possible to use differences in probability calculations for
the improved watershed transform. Instead, we use directional
intensity differences, defined as:

(13)

Note that here the improvement proposed for the watershed
transform allows substitution of the usual gradient calculation
by an asymmetric gradient, thus avoiding the effect of many spu-
rious contours.

b) White Matter/Gray Matter and Gray Matter/CSF
Surface Detection: After eliminating the nonbrain voxels, the
white matter/gray matter surface is detected, using as markers

for the white matter, and
for the gray matter. Probability maps are calculated as explained
in Section II-D, and (10) is applied.

In the last step, the gray matter/CSF surface is obtained in the
same way, this time using the segmented white matter, along
with , as inside markers, and as outside
markers.

III. RESULTS

In order to demonstrate the advantages of the proposed tech-
nique, it was tested on the two applications presented in Sections
II-F1 and II-F2: delineation of the knee cartilage and full seg-
mentation of white matter and gray matter of the brain. In both
cases, we used MR images, one channel in the knee application,
and two (T1- and T2-weighted) for the brain. Processing was
carried out totally in 3-D, both for classification and for water-
shed calculation. A significant effort was realized to validate the
obtained results: in the knee images, a total of 43 whole volume
manual segmentations of 7 cases were used, thus allowing for
a study of intra- and interobserver variation obtained using our
method, along with a direct comparison between manual and au-
tomatic segmentation. In the brain images, a standard data set,
the BrainWeb [46] was used, to enable a direct comparison with
other systems designed specifically for that purpose.

Numeric validation was done globally in all cases, by quan-
tifying the accuracy of the segmentation in the whole dataset.
For specific applications, sometimes more local validation of
results would also be desirable. Here, a generic validation has
been deemed adequate for our generic segmentation method.

In the following sections, the particular details of the segmen-
tation algorithm for these applications, along with the results of
the validation tests, are presented. The results demonstrate an
accurate behavior of the algorithm on two different applications,
and suggest its applicability on several other medical image seg-
mentation tasks.

A. Knee Cartilage Segmentation

MR scans of the knee were acquired using a high-
resolution fat-saturated 3-D SPGR sequence, with
(0.23 0.23 1.5 mm ) resolution. Then the procedure
described in Section II-F1 was used for segmentation. In all
cases, around 50 marks for each class (cartilage, bone and
other tissues) were manually selected, taking 5 to 10 min
for a whole dataset. Results, including a three-dimensional
reconstruction of the segmented cartilage, are shown in Fig. 3.
The images show the difficulties associated to the application
(thin structures, overlapping gray levels), and the ability of our
system to obtain accurate segmentation of cartilage tissue.

1) Validation: MR scans from four volunteers were used for
the tests. Subjects 1, 2 and 3 were scanned once, and the images
were segmented manually, slice by slice, by an expert, taking
typically more than 2 h per scan.

Subject 4 was scanned four times. Scan 1 was taken in the
same conditions as the previous subjects. Then a half-voxel
shift was applied and Scan 2 was acquired. After moving the
volunteer out of the scanner for 20 min and repositioning the
knee, Scans 3 and 4 were acquired, again with a half-voxel
shift applied after Scan 3. In this way, we wanted to check
the consistency of our segmentation algorithm against the
partial volume and repositioning effects. These four scans were
segmented five times each by two different experts (a total of
40 segmentations) to check intraobserver and interobserver
variations.

a) Intraobserver and Interobserver Assessment: In order
to use the segmentation for monitoring of disease progression,
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Fig. 3. Sample segmentation results from subject 3. In the right side, 3-D reconstructions from two different positions are shown. As can be seen, our algorithm
is able to segment accurately the whole cartilage volume.

TABLE I
MEAN SENSITIVITY, SPECIFICITY AND DICE COEFFICIENTS, IN PERCENTAGE, OF THE REPEATED SEGMENTATIONS FOR EACH OF THE FOUR SCANS OF THE

FOURTH SUBJECT, COMPARED TO RESULTS USING OUR ALGORITHM. EACH SCAN WAS SEGMENTED FIVE TIMES BY EACH EXPERT

AND FIVE MORE TIMES BY OUR METHOD WITH DIFFERENT SEED SETS

it is extremely important that the intra- and interobserver varia-
tions are kept small: only in this way, an accurate assessment of
the progression of the degenerative diseases can be done.

For each scan of the Subject 4, the ground truth cartilage was
determined by the STAPLE method [47], [48]. The STAPLE
algorithm estimates from a collection of segmentations both the
unknown ground truth and performance parameters for each
segmentation. For intraobserver assessment, mean values of
sensitivity, specificity and the Dice similarity coefficient (ratio
between intersection and sum of the volumes compared) of
the five manual segmentation repetitions of each scan carried
out by each expert, compared to the ground truth provided by
STAPLE, are shown in Table I. These values were obtained by
measuring the overlap between each of the five segmentations
and the ground truth. To determine interobserver variation, a

comparison was performed between the ground truth results for
the two segmenters: the related parameters for this interobserver
assessment are also shown in Table I.

Finally, the variability of our method was estimated. Five
segmentations were done using different sets of starting points,
and then combined using STAPLE. The results of comparison
between each of the five segmentations and the combined one,
shown in Table I, demonstrate the superior consistency of the
presented method, compared to manual segmentation. The
small variability of the results when using different marker
sets demonstrates a small dependence on the marker location,
minimizing user guidance and opening the possibility of using
ad-hoc techniques for automatic marker selection. This perfor-
mance can be crucial to understand the smallest real detectable
change in the assessment of new treatments or drugs.
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TABLE II
ANALYSIS OF THE RESULTS OBTAINED WITH OUR ALGORITHM AND

WITH THE STANDARD WATERSHED TRANSFORM. SENSITIVITY,
SPECIFICITY AND DICE COEFFICIENT WERE CALCULATED BY USING

MANUAL SEGMENTATIONS AS GROUND TRUTH. THE IMPORTANCE OF

THE PROPOSED MODIFICATIONS IS DEMONSTRATED BY THE CLEARLY

SUPERIOR RESULTS. AS IS SHOWN, OUR ALGORITHM IS ABLE TO

SEGMENT DIFFERENT SCANS WITH CONSISTENT ACCURACY

b) Comparison With Manual Segmentations: We com-
pared the results obtained using our algorithm with the ground
truth provided by manual segmentations. For the fourth subject,
the ground truth results provided by STAPLE, as described
above, were used. Values of sensitivity, specificity and Dice
coefficient are shown in Table II. Results for the standard
watershed transform, computed on the gradient of the original
image using the same set of markers, are also presented: com-
parison with our new algorithm demonstrates the importance
of our improvements.

c) Robustness With Repositioning and Partial Volume
Effect: Clinical assessment of cartilage loss progression typi-
cally involves repeated scans with uncontrolled repositioning.
For this reason, it is necessary to check the consistency of our
method when the same knee is scanned in different positions.
Scans from subject 4, acquired as described above, were used
for this purpose. Total volumes were calculated for the seg-
mentations carried out by experts 1 and 2 and by our program,
after determining the ground truth for each of them using the
STAPLE method. Table III shows the coefficient of variation
for each expert, for the combined segmentations of both
experts, and for the algorithm presented. Our method shows a
performance comparable or superior to the manual segmenters.

B. Brain Segmentation

Two channel MR brain images were obtained with resolu-
tion (0.9375 0.9375 1.5 mm ), and segmented as explained
in Section II–F2. Sample results are given in Fig. 4, where the
accuracy of our method can be appreciated. An aspect of spe-
cial difficulty for a majority of brain segmentation algorithms is
the detection of thin sulci; the observation of results in Fig. 4
shows how our proposed system is capable of their accurate
segmentation.

Due to the low contrast contour between white and gray
matter, compared to other contours with higher contrast in
the neighborhood, the application of the plain watershed
transform here would yield clearly inaccurate results. In order
to determine which parts of the algorithm (marker generation
from the atlas, substitution of the gradient by probability maps,
the proposed improvement in the watershed transform) were

TABLE III
COEFFICIENT OF VARIATION FOR THE VOLUMES OF THE 4 SCANS OF SUBJECT

4, CALCULATED FOR EACH EXPERT, FOR BOTH EXPERTS COMBINED,
AND FOR OUR METHOD

responsible for the quality of the results shown in Fig. 4,
additional segmentations were performed. In Fig. 5, results are
shown for comparison. The images at the left column were
obtained using the same atlas-generated markers, but with
a conventional watershed transform applied on the gradient
image. Those at the central column were obtained with the
same markers, substituting the gradient by differences in the
probability maps, but still using the classic watershed trans-
form. The right column shows the results obtained using our
algorithm. From the observation of these results, it is evident
that the watershed improvement proposed here is essential to
obtain accurate results. As mentioned above, the detection of
thin structures, usually a major drawback of the watershed
transform, is significantly improved through the use of our
novel algorithm.

Validation: Quantifying the quality of the segmentation is
difficult in real patient images, as the ground truth is unknown.
We have used the Brain Web MR simulation program [46],
for which both MR images and ground truth segmentation are
available online. We obtained T1–T2 images, with 3% noise
and 20% inhomogeneity. It is important to note that the atlas
used is absolutely independent from the BrainWeb dataset, thus
keeping algorithm development and validation totally separated.
Our results, for white matter and gray matter, are shown in
Table IV. It is interesting to compare the performance of our
system to other groups that have tried this operation on the
same phantom recently, as Van Leemput et al. [49], or Zeng
et al. [39]. Two issues must be mentioned to fully understand
the results. In Van Leemput et al., results were obtained using
1 and 3 channels, while in our case 2 channels were used.
Both results are shown for comparison. In Zeng et al., the
segmentation algorithm is designed specifically to detect the
cerebral cortex, and so it does not achieve acceptable results in
the brain stem and the cerebellum. For this reason, the authors
provide the gray matter validation results only for selected sets
of 49 frontal coronal slices and 56 top axial slices. Results
shown for our algorithm correspond to the whole volume,
including brain stem and cerebellum. As can be seen, though
our system is a general-purpose one, the results are comparable
to specialized brain segmentation systems.

IV. CONCLUSION

We have presented a new segmentation algorithm, based on
an improved watershed transform, which enables the use of dif-
ferent prior information-based difference functions for different
objects, instead of the usual gradient calculation. In the par-
ticular applications presented, these functions were calculated
from the probability values for each voxel and each class.

For applications where atlases are available, another improve-
ment was presented, by using the atlas to generate markers for
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Fig. 4. Results for brain segmentation on four sample slices, and 3-D reconstructions. Top: result of the brain stripping process. Middle: Gray matter/white matter
surface. Bottom: Gray matter/CSF surface. Note the accurate performance of the algorithm when dealing with very thin structures.

the watershed transform. For this purpose, after the registration
step, skeletonization and outlier elimination were performed.

We applied the algorithm to two important applications:
knee cartilage segmentation and white matter/gray matter
segmentation in MR images. In knee cartilage validation,
seven scans were used; our algorithm demonstrated similar
or superior performance to that of manual segmentation by
experts. Brain segmentation was performed using the BrainWeb

simulator. In this case, an atlas was used, so the process was
totally automatic. The results, using our general algorithm,
were similar to those of state of the art systems, specifically
designed for this application.

The method presented showed convincing accuracy on the
two applications in which it was tested. These results also
suggest that the system could be used in many different medical
image segmentation problems.
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Fig. 5. Left column: results obtained using a conventional watershed algorithm on the gradient image. Middle column: results using conventional watersheds on
the difference of probabilities. Right column: results using our proposed algorithm. In all cases, the same atlas-generated markers were used. Arrows were used to
highlight some specific regions where significant differences with the proposed algorithm are evident. The images show the importance of our improvements on
the watershed transform in the quality of the final results.

TABLE IV
DICE COEFFICIENTS OBTAINED BY OUR SYSTEM ON THE BRAINWEB

PHANTOM, COMPARED WITH OTHER APPROACHES. (NOTE: IN VAN LEEMPUT

et al., RESULTS SHOWN WERE OBTAINED USING 1 AND 3 CHANNELS,
WHILE IN OUR CASE, 2 CHANNELS WERE USED. IN ZENG et al., GRAY

MATTER SEGMENTATION IS VALIDATED ONLY ON SELECTED FRONTAL AND

AXIAL AREAS, WHILE OUR SYSTEM SOLVED THE MORE CHALLENGING

PROBLEM OF WHOLE BRAIN SEGMENTATION.)

ACKNOWLEDGMENT

The authors would like to thank Dr. M. Brem and Dr. G.
Welsch for manually segmenting most of the knee scans.

REFERENCES

[1] S. Beucher and F. Meyer, “The morphological approach to segmenta-
tion: The watershed transform,” in Mathematical Morphology in Image
Processing, E. R. Dougherty, Ed. New York: Marcel Dekker, 1993,
vol. 12, pp. 433–481.

[2] A. N. Moga and M. Gabbouj, “Parallel image component labeling with
watershed transformation,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 19, pp. 441–450, May 1997.

[3] J. M. Gauch, “Image segmentation and analysis via multiscale gradient
watershed hierarchies,” IEEE Trans. Image Processing, vol. 8, pp.
69–79, 1999.

[4] O. F. Olsen and M. Nielsen, “Multi-scale gradient magnitude watershed
segmentation,” in ICIAP’97–9th Int. Conf. on Image Analysis and Pro-
cessing, ser. Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 1997, vol. 1310, pp. 6–13.

[5] E. Dam and M. Nielsen, “Non-linear diffusion for interactive multi-
scale watershed segmentation,” in MICCAI 2000: Fourth International
Conference on Medical Image Computing and Computer-Assisted In-
tervention, ser. Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 2000, vol. 1935, pp. 216–225.

[6] J. L. Vincent, “Morphological grayscale reconstruction in image anal-
ysis: Applications and efficient algorithms,” IEEE Trans. Image Pro-
cessing, vol. 2, pp. 176–201, 1993.

[7] S. Beucher, “Watershed, hierarchical segmentation and waterfall algo-
rithm,” in Mathematical Morphology and Its Applications to Image Pro-
cessing, Dordrecht, The Netherlands: Kluwer, 1994, pp. 69–76.

[8] P. Jackway, “Gradient watersheds in morphological scale-space,” IEEE
Trans. Image Processing, vol. 5, pp. 913–921, June 1996.

[9] J. Weickert, “Fast segmentation methods based on partial differential
equations and the watershed transform,” in Proc. DAGM Symp., 1998,
pp. 93–100.

[10] J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden, D. Van Dyck,
and E. Raman, “Watershed-based segmentation of 3D MR data for
volume quantization,” Magn. Reson. Imag., vol. 15, pp. 679–688, 1997.

[11] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, pp. 321–331, 1987.

[12] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” Int.
J. Comput. Vis., vol. 22, pp. 61–79, 1997.

[13] H. T. Nguyen, M. Worring, and R. V. D. Boomgaard, “Watersnakes: En-
ergy-driven watershed segmentation,” IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 25, pp. 330–342, March 2003.

[14] J. B. T. M. Roerdink and A. Meijster, “The watershed transform: Defini-
tions, algorithms and parallelization strategies,” Fundamenta Informat-
icae, vol. 41, pp. 187–228, 2000.

[15] F. Meyer, “Color image segmentation,” in Proc. 4th Int. Conf. Image
Processing, 1992, pp. 523–548.

[16] R. Lotufo and A. Falcao, “The ordered queue and the optimality of the
watershed approaches,” in Proc. Int. Symp. Mathematical Morphology,
2000.

[17] J. P. Thiran, V. Warscotte, and B. Macq, “A queue-based region growing
algorithm for accurate segmentation of multi-dimensional digital im-
ages,” Signal Processing, vol. 60, pp. 1–10, 1997.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 14, 2009 at 17:40 from IEEE Xplore.  Restrictions apply.



458 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 4, APRIL 2004

[18] C. Lantuejoul and F. Maisonneuve, “Geodesic methods in image anal-
ysis,” Pattern Recogn., vol. 17, pp. 117–187, 1984.

[19] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and
the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 6, pp. 721–741, 1984.

[20] J. Besag, “On the statistical analysis of dirty pictures,” J. Roy. Statist.
Soc. B, vol. 48, pp. 259–302, 1986.

[21] A. Guimond, A. Roche, N. Ayache, and J. Meunier, “Three-dimensional
multimodal brain warping using the demons algorithm and adaptive in-
tensity corrections,” IEEE Trans. Med. Imag., vol. 20, pp. 58–69, Jan.
2001.

[22] J. Serra, Image Analysis and Mathematical Morphology. New York:
Academic, 1982, vol. 1.

[23] D. T. Felson, R. C. Lawrence, M. C. Hochberg, T. McAlindon, P. A.
Dieppe, M. A. Minor, S. N. Blair, B. M. Berman, J. F. Fries, M. Wein-
berger, K. R. Lorig, J. J. Jacobs, and V. Goldberg, “Osteoarthritis: New
insights. Part 2: Treatment approaches,” Anna. Intern. Med., vol. 133,
pp. 726–737, 2000.

[24] F. Eckstein, M. Schnier, M. Haubner, J. Priebsch, C. Glaser, K. H. En-
glmeier, and M. Reiser, “Accuracy of cartilage volume and thickness
measurements with magnetic resonance imaging,” Clin. Orthop. Related
Res., vol. 352, pp. 137–148, 1998.

[25] C. G. Peterfy, C. F. van Dijke, D. L. Janzen, C. C. Gluer, R. Namba,
S. Majumdar, P. Lang, and H. K. Genant, “Quantification of articular
cartilage in the knee with pulsed saturation transfer subtraction and fat-
suppressed MR imaging: Optimization and validation,” Radiology, vol.
192, pp. 485–491, 1994.

[26] M. A. Piplani, D. G. Disler, T. R. McCauley, T. J. Holmes, and J. P.
Cousins, “Articular cartilage volume in the knee: Semiautomated deter-
mination from three-dimensional reformations of MR images,” Radi-
ology, vol. 198, pp. 855–859, 1996.

[27] Z. A. Cohen, D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarasi, E. J.
Ciaccio, and G. A. Athesian, “Knee cartilage topography, thickness, and
contact areas from MRI: In-vitro calibration and in-vivo measurements,”
Osteoarthritis Cartilage, vol. 7, pp. 95–109, 1999.

[28] T. Stammberger, F. Eckstein, M. Michaelis, K. H. Englmeier, and M.
Reiser, “Interobserver reproducibility of quantitative cartilage mea-
surements: Comparison of B-spline snakes and manual segmentation,”
Magn. Reson. Imag., vol. 17, pp. 1033–1042, 1999.

[29] J. A. Lynch, S. Zaim, J. Zhao, A. Stork, C. G. Peterfy, and H. K. Genant,
“Cartilage segmentation of 3D MRI scans of the ostheoarthritic knee
combining user knowledge and active contours,” Proc. SPIE, vol. 3979,
pp. 925–935, 2000.

[30] S. Solloway, C. E. Hutchinson, J. C. Waterton, and C. J. Taylor, “The use
of active shape models for making thickness measurements of articular
cartilage from MR images,” Magn. Reson. Med., vol. 36, pp. 943–952,
1997.

[31] S. K. Warfield, M. Kaus, F. A. Jolesz, and R. Kikinis, “Adaptive, tem-
plate moderated, spatially varying statistical classification,” Med. Image
Anal., vol. 4, pp. 43–55, 2000.

[32] K. Krissian, G. Malandain, and N. Ayache, “Directional anisotropic
diffusion applied to segmentation of vessels in 3D images,” in
Scale-Space Theory in Computer Vision, ser. Lecture Notes in Com-
puter Science. Berlin, Germany: Springer-Verlag, 1997, vol. 1252,
pp. 345–348.

[33] W. M. Wells III, W. E. L. Grimson, R. Kikinis, and F. A. Jolesz, “Adap-
tive segmentation of MRI data,” IEEE Trans. Med. Imag., vol. 15, pp.
429–442, Aug. 1996.

[34] K. M. Pohl, W. M. Wells III, A. Guimond, K. Kasai, M. E. Shenton,
R. Kikinis, E. Grimson, and S. K. Warfield, “Incorporating nonrigid
registration into expectation-maximization algorithm to segment MR
images,” in Proc. 5th Int. Conf. Medical Image Computing and Com-
puter-Assisted Intervention (MICCAI 2002), 2002, pp. 564–571.

[35] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg,
and R. M. Leahy, “Magnetic resonance image tissue classification using
a partial volume model,” Neuroimage, vol. 13, pp. 856–876, 2001.

[36] A. M. Dale, B. Fischl, and M. I. Sereno, “Cortical surface-based anal-
ysis. I. Segmentation and surface reconstruction,” Neuroimage, vol. 9,
pp. 179–194, 1999.

[37] P. C. Teo, G. Sapiro, and B. A. Wandell, “Creating connected represen-
tations of cortical gray matter for functional MRI visualization,” IEEE
Trans. Med. Imag., vol. 16, pp. 852–863, Dec. 1997.

[38] C. A. Davatzikos and J. L. Prince, “An active contour model for mapping
the cortex,” IEEE Trans. Med. Imag., vol. 14, pp. 65–80, Mar. 1995.

[39] X. Zeng, L. H. Staib, R. T. Schultz, and J. S. Duncan, “Segmentation and
measurement of the cortex from 3-D MR images using coupled surfaces
propagation,” IEEE Trans. Med. Imag., vol. 18, pp. 100–111, Oct. 1999.

[40] C. Xu, D. Pham, and J. Prince, “Finding the brain cortex using fuzzy
segmentation, isosurfaces, and deformable surfaces,” in Proc. XVth Int.
Conf. Information Processing in Medical Imaging (IPMI 97), 1997, pp.
399–404.

[41] J. Rexilius, “Physics-Based Nonrigid Registration for Medical Image
Analysis,” masters thesis, Med. Univ. Luebeck, Luebeck, Germany,
2001.

[42] S. Smith, “Fast robust automated brain extraction,” Human Brain Map.,
vol. 17, pp. 143–155, 2002.

[43] L. Lemieux, G. Hagemann, K. Krakow, and F. G. Woermann, “Fast,
accurate, and reproducible automatic segmentation of the brain in
T1-weighted volume MRI data,” Magn. Reson. Med., vol. 42, pp.
127–135, 1999.

[44] M. Brummer, R. Mersereau, R. Eisner, and R. Lewine, “Automatic de-
tection of brain contours in MRI data sets,” IEEE Trans. Med. Imag.,
vol. 12, pp. 153–166, June 1993.

[45] M. S. Atkins and B. Mackiewich, “Fully automatic segmentation of the
brain in MRI,” IEEE Trans. Med. Imag., vol. 17, pp. 98–107, Feb. 1998.

[46] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, and A. C. Evans,
“BrainWeb: Online interface to a 3D MRI simulated brain database,”
Neuroimage, vol. 5, no. 4 part 2/4 S245, 1997.

[47] S. K. Warfield, K. H. Zou, and W. M. Wells III, “Validation of image
segmentation and expert quality with an expectation-maximization
algorithm,” in Proc. 5th Int Conf. Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2002), 2002, pp. 298–306.

[48] S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and
performance level estimation (STAPLE): An algorithm for the validation
of image segmentation,” IEEE Trans. Med. Imag., vol. 23, 2004, to be
published.

[49] K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens, “Auto-
mated model-based tissue classification of MR images of the brain,”
IEEE Trans. Med. Imag., vol. 18, pp. 897–908, Oct. 1999.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 14, 2009 at 17:40 from IEEE Xplore.  Restrictions apply.


