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1. INTRODUCTION

The administration of large role-based access control (RBAC) systems is a
challenging problem. A case study carried out with Dresdner Bank, a major
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European bank, resulted in an RBAC system that has around 40,000 users
and 1300 roles [Schaad et al. 2001]. In systems of such size, it is impossi-
ble for a single system security officer (SSO) to administer the entire system.
In recent years, several administrative models for RBAC have been proposed,
e.g., ARBAC97 [Sandhu et al. 1999], ARABCRAO02 [Oh and Sandhu 2002], and
CLO03 (Crampton and Loizou) [Crampton and Loizou 2003]. In all these models,
delegation is used to decentralize the administration tasks.

A major advantage that RBAC has over discretionary access control (DAC)
is that if an organization uses RBAC as its access-control model, then the or-
ganization (represented by the SSO in the system) has central control over
its resources. This is different from DAC, in which the creator of a resource
determines who can access the resource. In most organizations, even when a
resource is created by an employee, the resource is still owned by the orga-
nization and the organization wants some level of control over how the re-
source is to be shared. In most administrative models for RBAC, the SSO del-
egates to other users the authority to assign users to certain roles (thereby
granting those users certain access permissions), to remove users from cer-
tain roles (thereby revoking certain permissions those users have), etc. While
the use of delegation in the administration of an RBAC system greatly en-
hances flexibility and scalability, it may reduce the control that the organi-
zation has over its resources, thereby diminishing a major advantage RBAC
has over DAC. As delegation gives a certain degree of control to a user that
may be only partially trusted, a natural security concern is whether the orga-
nization nonetheless has some guarantees about who can access its resources.
To the best of our knowledge, the effect of delegation on the persistence of
security properties in RBAC has not been considered in the literature as
such.

In this paper, we propose to use security analysis techniques [Li et al. 2005]
to maintain desirable security properties while delegating administrative priv-
ileges. In security analysis, one views an access-control system as a state-
transition system. In an RBAC system, state changes occur via administrative
operations. Security analysis techniques answer questions such as whether an
undesirable state is reachable and whether every reachable state satisfies some
safety or availability properties. Examples of undesirable states are a state in
which an untrusted user gets access and a state in which a user who is entitled
to an access permission does not get it.

Our contributions in this paper are as follows.

* We give a precise definition of a family of security analysis problems in RBAC.
In this family, we consider queries that are more general than queries that
are considered in safety analysis [Harrison et al. 1976; Koch et al. 2002a;
Lipton and Snyder 1977; Sandhu 1988].

¢ We show that two classes of the security analysis problems in RBAC can
be reduced to similar ones in RT[«, N], a role-based trust-management lan-
guage for which security analysis has been studied [Li et al. 2005]. The re-
duction gives efficient algorithms for answering most kinds of queries in
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these two classes and establishes the complexity bounds for the intractable
cases.

Our contributions are significant in that our work presents a way to capture
and represent a large class of security properties of interest in complex RBAC
systems, such as the one discussed by Schaad et al. [2001]. Our work also
shows how several kinds of these security properties can be efficiently verified.
Our establishment of complexity bounds for the intractable cases gives us a
clear understanding of the difficulty of the problems so that future work can
develop efficient heuristics. In Section 2.2, we discuss how security analysis
is used in RBAC systems, which further demonstrates the significance of our
contributions.

The rest of this paper is organized as follows. In Section 2, we define a family
of security analysis problems in RBAC and summarize our main results. We
give an overview of the results for security analysis in RT[«, N] in Section 3.
We present the reduction from security analysis in RBAC to that in RT[«, N]
in Section 4. Related work is discussed Section 5. We conclude with Section 6.
An appendix contains proofs not included in the main body.

2. PROBLEM DEFINITION AND MAIN RESULTS

In Li et al. [2005], an abstract version of security analysis is defined in the
context of trust management. In this section, we restate the definition in the
context of general access-control schemes.

Definition 1. (Access-Control Schemes) An access-control scheme is mod-
eled as a state-transition system (I', @, F, ¥), in which I is a set of states, @ is
a set of queries, W is a set of state-change rules, and - : I' x @ — {true, false}
is called the entailment relation, determining whether a query is true or not in
a given state. A state, y € T, contains all the information necessary for mak-
ing access-control decisions at a given time. When a query, g € @, arises from
an access request, y =g means that the access corresponding to the request ¢
is granted in the state y, and y¢g means that the access corresponding to ¢
is not granted. One may also ask queries other than those corresponding to a
specific request, e.g., whether every principal that has access to a resource is
an employee of the organization. Such queries are useful for understanding the
properties of a complex access-control system.

A state-change rule, ¥ € W, determines how the access-control system
changes state. Given two states y and y; and a state-change rule vy, we write
y >y 1 if the change from y to y; is allowed by v, and y |—*>¢ y1 if a sequence

of zero or more allowed state changes leads from y to y;. If ¥ fi>,/, y1, We say
that y; is ¥-reachable from y, or simply y; is reachable, when y and  are clear

from the context.

An example of an access-control scheme is the HRU scheme, that is derived
from the work by Harrison et al. [1976]. The HRU scheme is based on the
access-matrix model [Graham and Denning 1972; Lampson 1971]. We assume
the existence of three countably infinite sets: S, O, and A, which are the sets of
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all possible subjects objects and access rights. We assume further that S C O.
In the HRU scheme:

e T is the set of all possible access matrices. Formally, each y € I is identified
by three finite sets, S, ¢ S, O, C O, and A, C A, and a function M, []:
S, x 0, — 24 where M, [s, o] gives the set of rights s has over 0. An example
of a state, y, is one in which S, = {Admin}, O, = {employeeData}US,, A, =
{own, read}, and M,[Admin, Admin] = @, and M, [Admin, employeeData] =
{own, read}. In this state, two objects exist, of which one is a subject, and the
system is associated with the two rights, own and read.

e @ is the set of all queries of the form: a € [s, 0], where a € Ais aright,s e S
is a subject, and 0 € O is an object. This query asks whether the right a exists
in the cell corresponding to subject s and object o.

e The entailment relation is defined as follows: y Fa € [s, o] if, and only if,
se€S,,0€e 0,,and a € M,[s,0]. For example, let the query q; be read <
M [Admin, employeeData]. and the query gs be own € M [Admin, Admin] Then,
for the state, y, discussed above, yq; and y Fqs.

e Each state-transition rule iy is given by a set of commands. Given v,
the change from y to y; is allowed if there exists command in ¢ such that the
execution of the command in the state y results in the state y;. An example
of ¢ is the following set of commands.

command createObject(s, 0) command grant_a(s,s’, o)
create object o if own € [s, 0]
enter own into [s, o] enter a into [s’, o]

The set of queries is not explicitly specified in Harrison et al. [1976]. It is
conceivable to consider other classes of queries, e.g., comparing the set of all
subjects that have a given right over a given object with another set of subjects.
In our framework, HRU with different classes of queries can be viewed as
different schemes.

Definition 2. (Security Analysis in an Abstract Setting) Given an access-
control scheme (I', @,F, V), a security analysis instance takes the form
(y,q, ¥, 1), where y € I is a state, ¢ € @ is a query, ¥ € V is a state-change
rule, and IT € {3, V} is a quantifier. An instance (y, ¢, ¥, 3) asks whether there
exists y; such that y +i>,/, y1 and y; Fq. When the answer is affirmative, we say
q is possible (given y and ). An instance (y, g, ¥, V) asks whether for every j;
such that y |—*>¢, y1, v1 F q. If so, we say q is necessary (given y and ).

For our example HRU scheme from above, adopt y as the start state. In
y, there is only one subject (namely, Admin) and the access matrix is empty.
The system is associated with the two rights, own and r. Let the query g be
r € M [Alice, employeeData] for Alice € S and employeeData € O. Let the state-
change rule y be the set of two commands createObject and grant_r. Then, the
security analysis instance (y, g, ¥, 3) is true. The reason is that although in
the start state y, Alice does not have the r right over the object employeeData,
there exists a reachable state from y in which she has such access. The security
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analysis instance (y, q, ¥, V) is false, as there exists at least one state reachable
from y (y itself) that does not entail the query.

Security analysis generalizes safety analysis. As we discuss in the following
section, with security analysis we can study not only safety, but also several
other interesting properties, such as availability and mutual exclusion.

2.1 A Family of Security Analysis Problems in Role-Based Access Control

We now define a family of security analysis problems in the context of RBAC by
specifying I', @, and -, while leaving ¥ abstract. By considering different possi-
bilities for W, one obtains different classes of RBAC security analysis problems
in this family. We consider two specific instances of ¥ in Sections 2.3 and 2.4.

We assume a basic level of familiarity with RBAC; readers are referred
to Ferraiolo et al. [2001] and Sandhu et al. [1996] for an introduction to RBAC.
We assume that there are three countable sets: I/ (the set of all possible users),
R (the set of all possible roles), and P (the set of all possible permissions). The
family of analysis problems is given by specializing the analysis problem de-
fined in Definition 2 to consider access-control schemes that have I', @, and +
specified as follows.

2.1.1 States (I'). T is the set of all RBAC states. An RBAC state, y, is
a 3-tuple (UA, PA, RH), in which the user assignment relation UA C Y x R
associates users with roles, the permission assignment relation PA C P x R
associates permissions with roles, and the role hierarchy relation RH C R x R
is a partial order among roles in R. We denote the partial order by >.r; > ro
which means that every user who is a member of r; is also a member of r2 and
every permission that is associated with ry is also associated with r;.

Example 1. Figure 1 is an example of an RBAC state. It reflects an orga-
nization that has engineers and whose human-resource needs are outsourced
(i.e., human-resource personnel are not employees). Everyone in the organiza-
tion is an employee and, therefore, a member of the role Employee. Some of the
employees are full-time (members of the role FullTime), and the others are part-
time (members of the role PartTime). All managers are full-time employees. All
employees have access to the office and, therefore, have the permission Access.
Engineers may edit code (have the permission Edit) and human-resource per-
sonnel may view employee details (have the permission View).

We now discuss some example members of UA, PA, and RH. The user Alice
is an engineer who is a part-time employee. Therefore, (Alice, Engineer) and
(Alice, PartTime) are members of UA. All employees have access to the office and,
therefore, (Access, Employee) is a member of PA. Project leads are engineers
and, therefore, (ProjectLead, Engineer) is a member of RH (i.e., ProjectLead >
Engineer).

Given astate y = (UA, PA, RH), every role has a set of users who are members
of that role and every permission is associated with a set of users who have
that permission. We formalize this by having every state y define a function
users, : RUP — 2V as follows. For any r € R and u € U, u € users, [r] if, and
only if, either (u,r) € UA or there exists r; such that r; > r and (u,r;) € UA.
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| Manager |
ProjectLead anager Hierarchy

‘ Engineer | ‘ PartTime ‘ ’ FullTime ‘ ‘ HumanResource

’ Employee ‘

5 Permissions

RH = { (Engineer, Employee) , (FullTime, Employee),
(PartTime, Employee) , (ProjectLead, Engineer),
(Manager, FullTime) }.

PA = {(Access, Employee) , (View, HumanResource),
(Edit, Engineer) }.
UA = { (Alice, PartTime) , (Alice, Engineer),

(Bob, Manager) , (Carol, HumanResource) }.

Fig. 1. An example RBAC state with a role hierarchy, users, and permissions. Roles are shown in
solid boxes, permissions in dashed boxes, and users in ovals. A line segment represents a role-role
relationship, the assignment of a permission to a role, or the assignment of a user to a role.

For any p € Pand u € U, u € users, [p] if, and only if, there exists r; such that
(p,r1) € PA and u € users, [r1]. Note that the effect of permission propagation
through the role hierarchy is already taken into consideration by the definition
of users,, [r1].

Example 2. Let the RBAC state shown in Figure 1 be y. Then, for the role
Engineer, users, [Engineer] = {Alice}. Similarly, for the permission Access,
users, [Access] = {Alice, Bob}.

2.1.2 Queries (Q). The purpose of a query is to encode some property of
a state that is of interest. For this, we introduce the notion of user sets by
extending our definition of the function users, . The intuition is as follows. Given
a state, a user set evaluates to a set of users. A query encodes a comparison
of user sets, which evaluates (in the entailment of a query) to a comparison
of two sets of users. As we demonstrate, such a representation for a query is
quite powerful; indeed, we are able to capture several properties of interest.
The reason is that properties regarding users, roles, and permissions can all be
captured using user sets.

A query g has the form s; 3 s3, where sy, so € S, and S is the set of all user sets,
defined to be the least set satisfying the following conditions: (1) RUP C S, i.e.,
every role r and every permission p is a user set; (2) {u1, ug, ..., ur} € S, where
k>0andu; € U for 1 <i <k, i.e., a finite set of users is a user set; and (3)
s1Usg, 81 N8y, (s1) € S, where s1, s3 € S, i.e., the set of all user sets is closed with

ACM Transactions on Information and System Security, Vol. 9, No. 4, November 2006.



Security Analysis in Role-Based Access Control . 397

respect to union, intersection, and paranthesization. We extend the function
users, in a straightforward way to give a valuation for all user sets. The ex-
tended function users,: S — 2V is defined as follows: users, [{u1, us, ..., uz}] =
{1, ug, - - -, up}, users, [(s)] = users, [s], users, [s; U so] = users, [s;] U users, [sa],
and users, [s; N so] = users, [s;]Nusers, [s2]. We say a query s; 3 s is semistatic
if one of s1, s can be evaluated independent of the state, i.e., no role or permis-
sion appears in it. The reason we distinguish semistatic queries is that (as we
assert in Sections 4.1 and 4.2) a security analysis instance involving only such
queries can be solved efficiently.

2.1.3 Entailment (). Given a state y and a query s; O sp, yFs1 O s if,
and only if, users, [s1] D users, [so].

Example 3. Continuing from the previous examples, an example of a query,
g, is FullTime N Access 13 {Alice}, for the role FullTime, the permission Access
and the user Alice. This query is semistatic; the user set {Alice} can be evaluated
(to itself) independent of the state.

The query g asks whether Alice is a full-time employee that has access to
the office. To find out whether y entails q or not, we evaluate g as follows. We
evaluate the user set FullTime to the set of users {Bob}. We evaluate the user
set Access to the set of users {Alice, Bob}. We intersect the two sets of users
to obtain the set of users {Bob}. The user set {Alice} does not need further
evaluation; it is already a set of users. We now check whether the set of users
{Alice} is a subset of the set of users {Bob} and determine that y +q. If another
query g’ is Edit O ProjectLead (i.e., whether project leads can edit code),
then y ~q’.

The state of an RBAC system changes when a modification is made to a
component of (UA, PA, RH). For example, a user may be assigned to a role or a
role hierarchy relationship may be added. In existing RBAC models, both con-
straints and administrative models affect state changes in an RBAC system.
For example, a constraint may declare that roles r; and re are mutually exclu-
sive, meaning that no user can be a member of both roles. If a user u is a member
of r1 in a state, then the state is not allowed to change to a state in which u is
a member of ry as well. An administrative model includes administrative rela-
tions that dictates who has the authority to change the various components of
an RBAC state and what are the requirements these changes have to satisfy.
Thus, in RBAC security analysis, a state-change rule may include constraints,
administrative relations, and possibly other information.

In this section, we leave the state-change rule abstract for the following
reasons. First, there are several competing proposals for constraint languages
[Ahn and Sandhu 2000; Jaeger and Tidswell 2001; Crampton 2003] and for
administrative models in RBAC [Sandhu et al. 1999; Oh and Sandhu 2002;
Crampton and Loizou 2003; Ferraiolo et al. 2003]; a consensus has not been
reached within the community. Furthermore, RBAC is used in diverse applica-
tions. It is conceivable that different applications would use different classes of
constraints and/or administrative models; therefore, different classes of prob-
lems in this family are of interest.
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Given a state y and a state-change rule ¥, one can ask the following questions
using security analysis.

e Simple Safety :is s 3 {u} possible? This asks whether there exists a reachable
state in which the user set s includes the (presumably untrusted) user u. A
“no” answer means that the system is safe.

e Simple Availability : is s 3 {u} necessary? This asks whether in every reach-
able state, the (presumably trusted) user u is always included in the user set
s. A “yes” answer means that the resources associated with the user set s are
always available to the user u.

e Bounded Safety :is {u1, us, ..., u,} 3 s necessary? This asks whether in every
reachable state, the user set s is bounded by the set of users {u1, ug, ..., u,}. A
“yes” answer means that the system is safe. A special case of bounded safety
is mutual exclusion, which asks: is ¥ O (s; Nsg) necessary? This asks whether
in every reachable state, no user is a member of both user sets s; and s;. A
“yes” answer means that the two user sets are mutually exclusive.

e Liveness : is ) 3 s possible? This asks whether the user set s always has
at least one user. A “no” answer means that the liveness of the resources
associated with s holds in the system.

e Containment : is s; 3 sy necessary? This asks whether in every reachable

state, every user in the user set sy is in the user set s;. Containment can be
used to express a safety property, in which case a “yes” answer means that
the safety property holds. An example of containment for the RBAC state in
Figure 1 and some state-change rule is: “is Employee J Access necessary?,”
for the role Employee and the permission Access. This asks whether in every
reachable state, every user who has the permission Access (i.e., has access
to the office) is a member of the role Employee (i.e., is an employee). A “yes”
answer means that our desired safety property holds.
Containment can also express availability properties. For example, “is
Access O Employee necessary?” asks whether the permission Access (i.e.,
access to the office) is always available to members of the role Employee (i.e.,
employees). A “yes” answer means that the availability property holds.

We point out that that all the above properties (except for containment) use
semistatic queries and, therefore, as we mention in the context of queries in this
section, we can efficiently determine whether those properties are satisfied.

2.2 Usage of RBAC Security Analysis

In an RBAC security analysis instance (y, g, ¥, I1), the state y fully determines
who can access which resources. In addition to administrative policy informa-
tion, the state-change rule i also contains information about which users are
trusted. In any access control system, there are trusted users; these are users
who have the authority to take the system to a state that violates security re-
quirements, but are trusted not to do so. An SSO is an example of a trusted
user.

Security analysis provides a means to ensure that security requirements
(such as safety and availability) are always met, as long as users identified as
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trusted behave according to the usage patterns discussed in this section. In
other words, security analysis helps ensure that the security of the system does
not depend on users other than those that are trusted.

Each security requirement is formalized as a security analysis instance, to-
gether with an answer that is acceptable for secure operation. For example,
in the context of the RBAC system whose state in shown in Figure 1, a se-
curity requirement may be that only employees may access the office. This
can be formalized as an instance (y, q, ¥, V), where y is the current state, ¢
is Employee 3 Access, and ¢ specifies administrative policy information. The
rule ¢ should precisely capture the capabilities of users that are not trusted. In
other words, any change that could be made by such users should be allowed by
Y. The rule ¥ could restrict the changes that trusted users can make, because
these are trusted not to make a change without verifying that desirable security
properties are maintained subsequent to the change. For the example discussed
above, the acceptable answer is “yes,” as we want to ensure that everyone who
has the permission Access is an employee. The goal is to ensure that such a
security requirement is always satisfied.

Suppose that the system starts in a state y such that the answerto (y, g, ¥, V)
is “yes.” Further, suppose a trusted user (such as the SSO) attempts to make a
change that is not allowed by v, e.g., the SSO decides to grant certain adminis-
trative privileges to a user u. Before making the change, SSO performs security
analysis (y/, g, ¥/, V), where y’ and v’ are resulted from the prospective change.
Only if the answer is “yes,” does the SSO actually make the change. The fact
that ¢ limits the SSO from making changes does not mean that we require
that the SSO never make such changes. It reflects the requirement that the
SSO perform security analysis and make only those changes that do not violate
security properties.

This way, as long as trusted users are cooperating, the security of an access-
control system is preserved. One can delegate administrative privileges to par-
tially trusted users with the assurance that desirable security properties always
hold. By using different y’s, one can evaluate which sets of users are trusted for
a given security property. In general, it is impossible to completely eliminate
the need to trust people. However, security analysis enables one to ensure that
the extent of this trust is well understood.

2.3 Assignment and Trusted Users (AATU)

In this paper, we present solutions to two classes of security analysis problems
in RBAC. Both classes use variants of the URA97 component of the ARBAC97
administrative model for RBAC [Sandhu et al. 1999]. URA97 specifies how the
UA relation may change.

The first class is called Assignment And Trusted Users (AATU), in which a
state-change rule v has the form (can_assign, T). The relation can_assign C
R x C x 2% determines who can assign users to roles and the preconditions
these users have to satisfy. C is the set of conditions, which are expressions
formed using roles, the two operators N and U, and parentheses. (ry, ¢, rset) €
can_assign means that members of the role r, can assign any user whose role
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memberships satisfy the condition ¢, to any role r € rset. For example, (ro, (r{ U
ro) Nrs, {re, rs}) € can_assign means that a user that is a member of the role r(
is allowed to assign a user that is a member of at least one of r; and ry and is
also a member of r3, to be a member of r4 or r5. T' C U is a set of trusted users;
these users are assumed not to initiate any role assignment operation for the
purpose of security analysis. The set T is allowed to be empty.

Definition 3. (Assignment And Trusted Users — AATU) The class AATU is
given by parameterizing the family of RBAC analysis problems in Section 2.1
with the following set of state-change rules. Each state-change rule v has the
form (can_assign, T') such that a state change from y = (UA, PA, RH) to y; =
(UA1, PA1, RH,) is allowed by v = (can_assign, T if PA = PA;, RH = RH,,
UA; = UA U {(u,r)}, where (u,r) € UA and there exists (r, ¢, rset) € can_assign
such that r € rset, u satisfies ¢, and users, [r,] € T (i.e., there exists at least
one user who is a member of the role r, and is not in 7', so that such a user can
perform the assignment operation).

Example 4. In this example, we consider the question of whether a particular
user, Alice, can become a ProjectLead given a system in AATU. In our example,
we do not want Alice to become a ProjectLead unless the trusted administrator
Carol is involved. We encode this question as a security analysis instance.

For the state, y, shown in Figure 1 and discussed in the previous examples,
a state-change rule, v, in the class AATU is (can_assign, T'), where

can_assign = {{Manager, Engineer A FullTime, {ProjectLead}),
(HumanResource, true, {FullTime, PartTime})}

T = {Carol}

That is, ¢ authorizes managers to assign a user to the role ProjectLead
provided that the user is a member of the roles Engineer and FullTime. In
addition, ¥ authorizes anyone that is a member of the role HumanResource
to assign users to the roles FullTime and PartTime. Setting T' to {Carol} implies
that we wish to analyze what kinds of states can be reached via changes made
by users other than Carol.

Let g be the query ProjectLead 1 {Alice}. Then, y - ¢q. The analysis instance
(y,q, ¥, 3) asks whether there exists a reachable state in which Alice is a project
lead. The instance is false. This is because for Alice to become a member of
ProjectLead, she would first need to be a full-time employee and only Carol
can grant anyone membership to FullTime. As Carol is in T, she cannot initi-
ate any operation. If we consider, instead, the state-change rule ', with the
same can_assign as ¢ from above, but with 7' = ¢, then the analysis instance
(v,q, v, ) is true.

2.3.1 Main Results for AATU

e Ifq is semistatic (see Section 2.1), then an AATU instance (y, g, ¥, IT) can be
answered efficiently, i.e., in time polynomial in the size of the instance.

* Answering general AATU instances (y, q, ¥, V) is decidable, but intractable
(coNP-complete).
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2.4 Assignment and Revocation (AAR)

In this class, a state-change rule v has the form (can_assign, can _revoke), where
can_assign is the same as in AATU, and can_revoke C R x2F determines who can
remove users from roles. That (r,, rset) € can_revoke means that the members
of role r, can remove a user from a role r € rset. No explicit set of trusted users
is specified in AAR, unlike AATU. In AATU and AAR, the relations can_assign
and can_revoke are fixed in . This means that we are assuming that changes
to these two relations are made only by trusted users.

Definition 4. (Assignment And Revocation—AAR) The class AAR is given
by parameterizing the family of RBAC analysis problems in Section 2.1 with
the following set of state-change rules. Each state-change rule v has the form
(can_assign, can_revoke) such that a state-change from y = (UA, PA, RH) to
y1 = (UA1, PA1, RH,) is allowed by v = {(can_assign, can _revoke) if PA = PA,,
RH = RH1, and either (1) UA; = UA U {(u,r)} where (u,r) ¢ UA and there exists
(rq,c,rset) € can_assign such that r € rset, u satisfies ¢, and users, [r,] # ¢,
i.e., the user u being assigned to r is not already a member of r and satisfies
the precondition ¢, and there is at least one user that is a member of the role
r, that can perform the assignment operation; or (2) UA; U (u,r) = UA where
(u,r) ¢ UA;, and there exists (r,, rset) € can_revoke such that r € rset and
users, [r,] # ¥, i.e., there exists at least one user in the role r, that can revoke
the user u’s membership in the role r.

We assume that an AAR instance satisfies the following three properties.
(1) The administrative roles are not affected by can_assign and can_revoke.
The administrative roles are given by those that appear in the first component
of any can_assign or can _revoke tuple. These roles should not appear in the
last component of any can_assign or can_revoke tuple. This condition is easily
satisfied in URA97, as it assumes the existence of a set of administrative roles
that is disjoint from the set of normal roles. (2) If a role is an administrative role
(i.e., appears as the first component of a can_assign or can_revoke tuple), then
it has at least one user assigned to it. This is reasonable, as an administrative
role with no members has no effect on the system’s protection state. (3) If a
can_assign tuple exists for a role, then a can_revoke tuple also exists for that role.

Example 5. In this example, we ask whether it is possible that only project
leads have access to the office and whether Alice can ever edit code, both in
the same AAR system. The former is an example of an availability question,
while the latter is an example of a safety question. We encode both questions
as security analysis instances.

For the state, y, from Figure 1, an example of a state-change rule in AAR is
Y = (can_assign, can_revoke), where

can_assign = {(Manager, Engineer A FullTime, {ProjectLead}),
(HumanResource, true, {FullTime, PartTime})}

can_revoke = {(Manager, {ProjectLead, Engineer}),
(HumanResource, {FullTime, PartTime})}
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We point out that the can_assign we use in this example is the same as the
can_assign we use in Example 2.3. Then, if g is the query ProjectLead 1 Access
(i.e., only project leads have access to the office), the AAR analysis instance
(y,q, ¥, 3) is true. If ¢’ is the query Edit O {Alice} (i.e., Alice can edit code), then
the analysis instance (y, q¢’, ¥, V) is false.

2.4.1 Main Results for AAR

e Ifq is semistatic (see Section 2.1), then an AAR instance (y, q, ¥, IT) can be
answered efficiently, i.e., in time polynomial in the size of the instance.

¢ Answering general AAR instances (y, q, ¥, V) is coNP-complete.

2.5 Discussion of the Definitions

Our specifications of can_assign and can _revoke are from URA97, which is one of
the three components of ARBAC97 [Sandhu et al. 1999]. The state-change rules
considered in AAR are similar to those in URA97, but they differ in the following
two ways. (1) URA97 allows negation of roles to be used in a precondition; AAR
does not allow this. (2), URA97 has separate administrative roles; AAR does
not require the complete separation of administrative roles from ordinary roles.
AATU differs from URA97 in two additional ways. (1) AATU does not have
revocation rules. (2) AATU has a set of trusted users, which does not exist in
URA97.

The other components of ARBAC97 are PRA97 and RRA97, for administer-
ing permission-role assignment/revocation and the role hierarchy, respectively.
In this paper, we study the effect of decentralizing user-role assignment and
revocation and assume that changes to the permission-role assignment relation
and the role hierarchy are centralized, i.e, made only by trusted users. In other
words, whoever is allowed to make changes to permission-role assignment and
the role hierarchy will run the security analysis and only make changes that do
not violate the security properties. The administration of the user-role relation
is most likely to be delegated, as that is the component of an RBAC state that
changes most frequently.

AATU and AAR represent two basic cases of security analysis in RBAC.
Although we believe that they are useful, they are only the starting point.
Many other more sophisticated cases of security analysis in RBAC remain open.
For example, it is not clear how to deal with negative preconditions in role
assignment and how to deal with constraints, such as mutually exclusive roles.

3. OVERVIEW OF SECURITY ANALYSIS IN RT[«, N]

In Li et al. [2005], study security analysis in the context of the RT family of
role-based trust-management languages [Li et al. 2002, 2003]. In particular,
security analysis in RT[«,N] and its sublanguages is studied. RT[«,N] is a
slightly simplified (yet expressively equivalent) version of the R7T; language
introduced in Li et al. [2003] (RT[«,N] is called SRT in Li et al. [2005]). In
this section, we summarize the results for security analysis in RT[«, N]. We
summarize the concepts from and results for RT[«, N] so that we can leverage
those results in the security analysis of the RBAC schemes that we consider in
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Simple Member
syntax: K.or— K
meaning:  members(K.r) D {K;}
LP clause: m(K,r, K;)
Simple Inclusion
syntax: Kr+— Ki.r
meaning:  members(K.r) O members(K.rq)
LP clause: m(K,r,?Z):— m(K1,7m,?72Z)
Linking Inclusion
syntax: Kr«—— Kri.ry
meaning:  members(K.r) 2 Uy, ck.,., members(K;.r2)
LP clause: m(K,r,?Z):— m(K,r1,?Y), m(?Y,r2,72)
Intersection Inclusion
syntax: Kir+— Ki.riNKsry
meaning:  members(K.r) 2 members(K;.r1) N members(Ks.73)
LP clause: m(K,r,?Z) :— m(K1,r1,7Z), m(Ka,12,?2Z)

Fig. 2. Statementsin RT[«, N]. There are four types of statements. For each type, we give the syn-
tax, the intuitive meaning of the statement, and the LP (logic-programming) clause corresponding
to the statement. The clause uses one ternary predicate m, where m(K,r, K1) means that K, is a
member of the role K.r. Symbols that start with “?” represent logical variables.

this paper (AATU and AAR). In Section 4, we reduce security analysis in AATU
and AAR to that in RT[«, N].

3.1 Syntax of RT[«, N]

The most important concept in the RT languages is also that of roles. A role in
RT[«, N] is denoted by a principal (corresponding to a user in RBAC) followed
by a role name, separated by a dot. For example, when K is a principal and r is
a role name, K .r is a role. Each principal has its own name space for roles. For
example, the “employee” role of one company is different from the “employee”
role of another company. A role has a value that is a set of principals that are
members of the role.

Each principal K has the authority to designate the members of a role of
the form K .r. Roles are defined by statements. Figure 2 shows the four types
of statements in RT[«, N]; each corresponds to a way of defining role mem-
bership. A simple-member statement K.r «— K; means that K; is a member
of K’s r role. This is similar to a user assignment in RBAC. A simple inclu-
sion statement K.r «— K;.ry means that K’s r role includes (all members of)
K’s ri role. This is similar to a role-role dominance relationship K;.ry = K.r.
A linking inclusion statement K.r «— K.ri.ro means that K.r includes K;.ro
for every K; that is a member of K.r;. An intersection inclusion statement
K.r «— Kq,.ri N Kg.rg means that K.r includes every principal who is a mem-
ber of both K;.r1 and Ks.re. Linking and intersection inclusion statements
do not directly correspond to constructs in RBAC, but they are useful in ex-
pressing memberships in roles that result from administrative operations. Our
reduction algorithms in Sections 4.1 and 4.2 use linking and intersection inclu-
sion statements to capture user-role memberships affected by administrative
operations.
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3.2 States

An RT[«, N] state yT consists of a set of RT[«, N] statements. The semantics of
RT[«, N] is given by translating each statement into a datalog clause. (Datalog
is a restricted form of logic programming (LP) with variables, predicates, and
constants, but without function symbols.) (See Figure 2 for the datalog clauses
corresponding to RT[«, N] statements.) We call the datalog program resulting
from translating each statement in 7 into a clause that is the semantic pro-
gram of yT, denoted by SP(y 7).

Given a datalog program, DP, its semantics can be defined through several
equivalent approaches. The model-theoretic approach views DP as a set of
first-order sentences and uses the minimal Herbrand model as the semantics.
We write SP(yT) &= m(K,r, K’) when m(K,r, K') is in the minimal Herbrand
model of SP(yT).

3.3 State-Change Rules

A state-change rule is of the form ¥ = (G, S), where G and S are finite sets of
roles.

¢ Rolesin G are called growth-restricted (or g-restricted); no statements defining
these roles can be added. (A statement defines a role if it has the role to the
left of “<—”.) Roles not in G are called growth-unrestricted (or g-unrestricted).

* Roles in S are called shrink-restricted (or s-restricted); statements defining
these roles cannot be removed. Roles not in S are called shrink-unrestricted
(or s-unrestricted).

3.4 Queries

Li et al. [2005] consider the following three forms of queries:

e Membership: A.r 3{D,...,D,}
Intuitively, this means that all the principals D4,...,D, are mem-
bers of A.r. Formally y"HAr I {Di,...,D,} if and only if
{(Z |SP(yT) =m(A,r, Z)y 2 {Dy,...,D,}.

e Boundedness: {D.,...,D,} 3 Ar
Intuitively, this means that the member set of A.r is bounded by the given set
of principals. Formally, yT +{D, ..., D,} 3 A.rif, and only if, {D1, ..., D,} 2
{Z | SP(yT) =Em(A,r, Z)).

e Inclusion: XudJAr
Intuitively, this means that all the members of A.r are also members of X .u.
Formally, y"+X.u 3 Ar if, and only if, {Z | SP(yT) £ m(X,u,Z)} D {Z |
SP(y") Em(A,r, Z)}.

Each form of query can be generalized to allow compound role expressions
that use linking and intersection. These generalized queries can be reduced
to the forms above by adding new roles and statements to the state. For in-
stance, {} J ArnNAj;.rire can be answered by adding B.u; <— A.r N B.ug,
B.us <— B.us.re, and B.ug <— Ay.r1 to y7, in which B.uy, B.us, and B.us are
new g/s-restricted roles, and by posing the query {} 3 B.u;.
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3.4.1 Main Results for Security Analysis in RT[«,N]. Membership and
boundedness queries (both whether a query is possible and whether a query
is necessary) can be answered in time polynomial in the size of the input. The
approach taken in Li et al. [2005] uses logic programs to derive answers to
those security analysis problems. This approach exploits the fact that RT[«, N]
is monotonic in the sense that more statements will derive more role member-
ship facts. This follows from the fact that the semantic program is a positive
logic program.

Inclusion queries are more complicated than the other two kinds. In Li et al.
[2005], only the V case (i.e., whether an inclusion query is necessary) is studied.
It is not clear what the security intuition is of an 3 inclusion query (whether
an inclusion query is possible); therefore, it is not studied in Li et al. [2005].
The problem of deciding whether an inclusion query is necessary, i.e., whether
the set of members of one role is always a superset of the set of members
of another role is called containment analysis. It turns out that the computa-
tional complexity of containment analysis depends on the language features. In
RTI[ ], the language that allows only simple member and simple inclusion state-
ments, containment analysis is in P. It becomes more complex when additional
policy language features are used. Containment analysis is coNP-complete
for RT[N] (RT[] plus intersection inclusion statements), PSPACE-complete for
RT[«] (RT[] plus linking inclusion statements), and decidable in coNEXP for
RT[«, N].

4. SOLVING AATU AND AAR BY REDUCTIONS TO SECURITY ANALYSIS
IN RT[«, N]

In this section, we solve AATU (Definition 3) and AAR (Definition 4). Our ap-
proach is to reduce each of them to security analysis in RT[«, N]. Each reduction
is an efficiently computable mapping from an instance of AATU/AAR to a se-
curity analysis instance in RT[«, N]. We precisely articulate the properties of
the reductions in Propositions 1 and 4, respectively. Intuitively, the reductions
preserve the results of security analysis across the mapping.

4.1 Reduction for AATU

The reduction algorithm AATU_Reduce is given in Figure 4; it uses the
subroutines defined in Figure 3. Given an AATU instance (y = (UA, PA, RH),
g =81 Jd8g, ¥ ={can_assign,T), I1 € {3,V}), AATU_Reduce takes (y, g, ¥) and
outputs (yT,q7, ¢T), such that the RT[«, N] analysis instance (y7, qT, v, IT)
has the same answer as the original AATU instance.

In the reduction, we use one principal for every user that appears in y, and
the special principal Sys to represent the RBAC system. The RT[«,N] role
names used in the reduction include the RBAC roles and permissions in y
and some additional temporary role names. The RT[«, N] role Sys.r represents
the RBAC role r and the RT[«, N] role Sys.p represents the RBAC permission
p. Each (u,r) € UA is translated into the RT[«, N] statement Sys.r «— u. Each
ri1 > rgistranslated into the RT[«, N] statement Sys.ro «— Sys.ry (asr; is senior
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1 Subroutine Trans(s, 77) {

2 /% Trans(s,yT) returns an RT[«,N] role corresponding
3 to the user set sx/

4 if s is an RBAC role then return Sys.s;

5 else if s is an RBAC permission then return Sys.s;
6 else if s is a set of users then {

7 name=newName () ; foreach u€ s {

8 7T += Sys.name+«—u;}

9 return Sys.name; }

10 else if (s = s1 U s2) then {

11 name=newName () ; 7T+=Sys.name<—Trans(sl,'yT);

12 4T += Sys.name«—— Trans(s2,~77);

13 return Sys.name; }

14 else if (s = s1 N s2) then {

15 name=newName () ;

16 4T +=Sys.name «— Trans(s1,77) N Trans(s2,77);

17 return Sys.name; }

18 } /+ End Trans */

19

20 Subroutine QTrans(s, ~7) {

21 /+* Translation for users sets that are used at top
22 level in a query =/

23 if s is a set of users then return s;
24 else return Trans(s,'yT);

25 } /+ End QTrans /

26

27 Subroutine HTrans(s, ~7) {

28 if s is an RBAC role then return HSys.s;

29 else if (s = s1 U s2) then {

30 name=newName () ; T += Sys.name«—— HTrans(s1,77);
31 4T += Sys.name«—HTrans(s2,77); return Sys.name; }
32 else if (s = s1 N s2) then {

33 name=newName () ;

34 4T +=Sys.name «— HTrans(s1,77) N HTrans(s2,77);

35 return Sys.name; }

36 } /+ End HTrans */

Fig. 3. Subroutines Trans, QTrans, and HTrans are used by the two reduction algorithms. We as-
sume call-by-reference for the parameter y7.

to re, any member of r; is also a member of r3.) Each (p,r) € PA is translated
into Sys.p «— Sys.r (each member of the role r has the permission p.)

The translation of the can_assign relation is less straightforward.
Each (r,,r.,r) € can_assign is translated into the RT[«,N] statement
Sys.r «— Sys.r,.r N Sys.r.. The intuition is that a user u,, who is a member
of the role r, assigning the user u to be a member of the r role, is represented
as adding the RT[«, N] statement u,.r «— u. As u, is a member of the Sys.r,
role, the user u is added as a member to the Sys.r role if, and only if, the user
u is also a member of the r, role.

In the reduction, all the Sys roles (i.e., Sys.x) are fixed (i.e., both g- and s-
restricted). In addition, for each trusted user v in 7', all the roles starting with
u are also g-restricted; this is because we assume that trusted users will not
perform operations to change the state (i.e., user-role assignment operations).
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37 AATU_Reduce ((y=(UA,PA,RH), q=s1 ds2, 1 = (can-assign,T)))

38 {

39 /* Reduction algorithm for AATU */

40 )

41 ' = 0; ¢ = QTrans(s;,~v") JQTrans (s2,~77) ;

42  foreach (us,r;) € UA { 4T+= Sysrje—u;; }
43 foreach (r;,7;) € RH { 4T += Sys.rj«—Sys.ri; }
44  foreach (pi,rj) € PA { 4"+= Sys.p;«—Sys.rj; }
45 foreach (ai,s,rset) € can_assign {

46 if (s==true) { foreach r € rset {

47 4T += Sys.ar—Sys.a;.r; } }

48 else { tmpRole=Trans(s,~7) ;

49 foreach r € rset { name=newName () ;

50 +T+= Sys.name «—Sys.a;.r;

51 ~T+= Sys.r«—Sys.name N tmpRole

52} }} .

53 foreach RT role name z appearing in 77 {

54 G+=Sys.z; S+=Sys.z; foreach user ue T { G+=u.z; } }

54 return (', ¢', (G,9));
55 } /+ End AATU_Reduce x/

Fig. 4. Reduction algorithm for AATU.

We may also make roles starting with trusted users s-restricted; however, this
has no effect, as no statement defining these roles exists in the initial state.

Example 6. Consider the state-change rule i we discussed in Exam-
ple 4, in which can_assign consists of the two tuples (Manager, Engineera
FullTime, ProjectLead) and (HumanResource, true, {FullTime, PartTime}), and
T = {Carol}. Let y be the RBAC state (shown in Figure 1) and let q be the query
ProjectLead O Alice. We then represent the output of AATU_Reduce ({y, q, ¥))
as (yT,qT, yT). q7 is Sys.ProjectLead 3 {Alice}. The following RT statements
in 7 result from UA:

Sys.Engineer «— Alice Sys.PartTime «— Alice
Sys.Manager «— Bob Sys.HumanResource «— Carol

The following statements in y” result from RH:

Sys.Employee «— Sys.Engineer Sys.Employee «— Sys.FullTime
Sys.Employee «— Sys.PartTime Sys.Engineer «— Sys.ProjectLead
Sys.FullTime «— Sys.Manager

The following statements in y 7 result from PA:

Sys.View «— Sys.HumanResource Sys.Access <— Sys.Employee
Sys.Edit «— Sys.Engineer

The following statements in y T result from can_assign. The first two statements
reflect the ability of a member of HumanResource to assign users to FullTime
and PartTime with no precondition and the remaining statements reflect the
ability of a member of Manager to assign users to ProjectLead provided that
they are already members of FullTime and Engineer.

Sys.FullTime «— Sys.HumanResource.FullTime
Sys.PartTime «— Sys.HumanResource.PartTime
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Sys.NewRoley «— Sys.Engineer N Sys.FullTime
Sys.NewRole, «— Sys.Manager.ProjectLead
Sys.ProjectLead «— Sys.NewRole; N Sys.NewRole,

yT = (G, S), where G is the growth-restricted set of roles and S is the shrink-
restricted set of roles. G consists of every role of the form Sys.x and every role
of the form Carol.x. The latter is included in G because Carol is in the set of
trusted users T'. S consists of every role of the form Sys.x. It is clear that the
security analysis instance (y7, qT, w7, 3) is false, as Alice can never become a
member of Sys.ProjectLead. If we adopt as the state-change rule 1//1T , that is the
same as T except that T' = ¢, then roles of the form Carol.x would be growth-
unrestricted. There also exists a state le that is reachable from y 7, which has
the following statements, in addition to all the statements in y7.

Carol.FullTime <— Alice Bob.ProjectLead «<— Alice

These statements are necessary and sufficient for Sys.ProjectLead<«—Alice to
be inferred in ;. Thus, the security analysis instance (y7, ¢7, ¢TI, 3) is true.

The following proposition asserts that the reduction is sound, meaning that
one can use RT security analysis techniques to answer RBAC security analysis
problems.

ProposITION 1. Given an AATU instance (y,q, v, 1), let (yT,qT,yT) =
AATU_Reduce({y, q, ¥)), then:

e Assertion 1: For every RBAC state y' such that y r—*>,/, y’, there exists an
RT[«, N state yT’ such that yT + ,r yT' and y'+q if and only if yT'+qT.

» Assertion 2: For every RT[«, N] state yT’ such that yT |i>,/jT yT', there exists
an RBAC state y' such that y |—*>¢, vy and y't+q if and only if yT'+qT.

See Appendix 1 for the proof. As we discuss in detail in Tripunitara and Li
[2004], the above proposition asserts that AATU_Reduce is security-preserving
in the sense that an AATU analysis instance is true if, and only if, the
RT[«, N] analysis instance that is the output of AATU_Reduce is true. That
is, AATU_Reduce preserves the answer to every security analysis instance. We
argue the need for assertion 1 in the proposition by considering the case that
there exists a reachable state y’ in the RBAC system, but no corresponding
reachable state y 7’ in the RT[«, N] system produced by AATU_Reduce. Let the
corresponding query be ¢. If y’+q, then let IT be 3, and if y'q, then let IT
be V. In the former case, the security analysis instance in RBAC is true, but
the instance in the RT[«, N] system that is the output of AATU_Reduce is false.
In the latter case, the analysis instance in RBAC is false, but the instance in
RT[«, N] is true. Therefore, for AATU_Reduce to preserve the answer to every
analysis instance, we need assertion 1.

Similarly, we argue the need for assertion 2 by considering the contrary
situation. Let y7’ be a reachable state in RT[«, N] for which there exists no
corresponding state in RBAC. Let the corresponding query in RT[«, N] be ¢~ .
IfyT'+q7, thenlet IT be 3, and let IT be V otherwise. Again, AATU_Reduce would

ACM Transactions on Information and System Security, Vol. 9, No. 4, November 2006.



Security Analysis in Role-Based Access Control . 409

not preserve the answer to a security analysis instance and we would not be
able to use the answer to an analysis instance in RT[«, N] as the answer to the
corresponding instance in RBAC.

THEOREM 2. An AATU instance (y,q, ¥, I1) can be solved efficiently, i.e., in
time polynomial in the size of the instance, if q is semistatic.

Proor. Let the output of AATU_Reduce corresponding to the input (y, q, ¥)
be (yT,qT, yT).If q is semistatic, we observe that ¢” is semistatic as well. Fur-
thermore, AATU_Reduce runs in time polynomial in its input. We know from
Li et al. [2005] that in RT[«, N], a security analysis instance with a semistatic
query can be answered in time polynomial in the size of y”. Therefore, in con-
junction with Proposition 1, we can conclude that a security analysis instance
with a semistatic query in the RBAC system can be answered in time polyno-
mial in the size of the system (i.e., the size of (y,q, ¥)). O

THEOREM 3. An AATU instance (y,q, ¥, I1) is coNP-complete.

Proor. We show that the general AATU problem is coNP-hard by reducing
the monotone 3SAT problem to the complement of the AATU problem. Mono-
tone 3SAT is the problem of determining whether a boolean expression in con-
junctive normal form with, at most, three literals in each clause such that the
literals in a clause are either all positive or all negative, is satisfiable. Monotone
3SAT is known to be NP-complete [Garey and Johnson 1979].

Let ¢ be an instance of monotone 3SAT. Then ¢ =ci A...c; AC 1A ... ATy,
where cy, ..., ¢; are the clauses with positive literals and ¢; .1, ..., ¢, are the
clauses with negative literals. Let p1, ..., ps be all the propositional variables
in ¢. For each clause with negative literals ¢; = (= pr, V = pi, V — Dy, ), define
dr = = ¢ = (pr, A Pk, A Diy)- Then, ¢ is satisfiable if, and only if, ¢; A ...c; A
—(d;11V...Vvdy)issatisfiable. Letn = (c1 A... A¢) = (dj11 V... Vd,), where
— is logical implication. Then,c1 A...c; A= (dj11 V...V dy,) = — n. Therefore,
¢ is satisfiable if, and only if, 5 is not valid. We now construct y, ¥, and g in an
AATU instance such that ¢ =z J z4 is true for user sets z; and z5 in all states
reachable from y if, and only if, 5 is valid.

In y, we have a role a (which is for administrators) and UA contains (A, a),
where A is a user (i.e., the role a is not empty in terms of user-membership).
With each propositional variable p; in n, we associate a role r;. For each r;,
we add (a, true, r;) to can_assign. That is, anyone can be assigned to the role
ri. We let T (the set of trusted users) be empty. For each j such that 1 <
J =< 1, we associate the clause ¢; = (pj, vV pj, V pj,), with a user set s; =
(rj, Urj, Urj,). For each k such that (! + 1) < k < n, we associate the clause
di = (Pk, A Dky A Dk,), With a user set s, = (rz, N7y, N7%y). In our query ¢ =
z1 dzg,weletz; =s,1U...Us, and zg = s1N...Ns;. We now need to show that
z1 O z9 in every state reachable from y if, and only if, 5 is valid. We show that
z1 d z9 is not true in every state reachable from y if, and only if, 1 is not valid.

For the “only if” part, we assume that there exists a state ¥’ that is reachable
from y such that in y’ there exists a user u that is a member of the user set z,
but not z;. Consider a truth-assignment I for the propositional variables in 5
as follows: if u is a member of the role r; in y’, then I(p;) = true. Otherwise,
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56 AAR_Reduce ((y= (UA,PA,RH), q=s1 Js2,

57 ¥ = (can-assign, can_revoke) ))

58 { /+ Reduction algorithm for AAR x/

59 AT =0; ¢V = QTrans(s1,7%) JQTrans(s2,~77) ;
60 foreach (ui,r;) € UA {

61 T += HSys.rj«—ui; T+= RSys.rj«——u;;

62 ~T+= Sys.rj«—RSys.r;; }

63  foreach (ri,r;) € RH {

64 yT+= Sys.rj——Sys.ri; v += HSys.rj«—HSys.ri; }

65 foreach (pi,r;) € PA { ~T+= Sys.pi«—Sys.rj; }
66 foreach (as,s,rset) € can_assign {

67 if (s==true) {

68 foreach r € rset {

69 4T += HSys.r«—BSys.r; yT+= Sys.r<—ASys.r; }

70 } else { tmpRole = HTrans(s,77); /% precondition x/
71 foreach r € rset {

72 ~T+= HSys.r«— BSys.r N tmpRole ;

73 yT+= Sys.r«—ASys.r N tmpRole; }

7))

75 foreach RT role name z appearing in 'yT {

76 G+=Sys.x; S+=Sys.z; G+=HSys.z; S+=HSys.z; G+=RSys.z;

77 S+=BSys.z; S+=RSys.z; S+=ASys.z;

78 } /+ when a can_revoke rule exists for r, ASys.r and
79 RSys.r can shrink */

80 foreach (a;,rset) € can_revoke {

81 foreach r in rset { S-=RSys.r; S-=ASys.r; } }

82 return (y7, ¢%, (G,S));
83 } /+ End AAR_Reduce */

Fig. 5. AAR_Reduce: the reduction algorithm for AAR.

I(p;) = false. Under I, nis not true, as (c1 A ... A¢;)is true, but (d;41 V... v d,)
is false. Therefore, 5 is not valid.

For the “if” part, we assume that 5 is not valid. Therefore, there exists a
truth-assignment I such that (c; A ... A¢)is true, but (d;;1 Vv ... Vv d,)is false.
Consider a state y’ that has the following members in UA in addition to the
ones in y: for each p; that is true under I, (u,r;) € UA. Otherwise, (u,r;) & UA.
y’ is reachable from y and in y’, z; J z9 is not true.

To prove that the problem is in coNP, we need to show that when an in-
stance is false, there exists evidence of size polynomial in the input that can be
verified efficiently. The evidence is a user u and a sequence of n state-changes
from the start-state to some state ¥’ such that in y’, u is a member of the user
set zg, but not of z;. We know that n is bounded by the number of roles in the
system as there can be only as many user-to-role assignment operations for
a particular user as the number of roles. The verification of this evidence is
certainly efficient. Therefore, the problem is in coNP. 0O

We observe from the above proof that the AATU problem remains coNP-
complete even when every precondition that occurs in can_assign is specified as
true; the expressive power of the queries is sufficient for reducing the monotone
3SAT problem to the general AATU problem.

4.2 Reduction for AAR

The reduction algorithm for AAR is given in Figure 5. The reduction algorithm
includes in the set of principals a principal for every user in U and five special
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principals: Sys, RSys, HSys, ASys, and BSys. Again, the Sys roles simulate
RBAC roles and permissions. In this reduction, we do not distinguish whether
a role assignment operation is effected by one user or another and use only
one principal, ASys, to represent every user that exercises the user-role as-
signment operation. The roles of the principal RSys contain all the initial role
memberships in UA; these may be revoked in state changes. HSys.r maintains
the history of the RBAC role r; its necessity is argued using the following sce-
nario. A user is a member of r1, which is the precondition for being added to
another role ro. After one assigns the user to ro and revokes the user from
ri1. The user’s membership in r3 should maintain, even though the precondi-
tion is no longer satisfied (a similar justification for this approach is provided
in the context of ARBAC97 [Sandhu et al. 1999], as well). BSys is similar to
ASys, but it is used to construct the HSys roles. An administrative operation
to try to add a user u; to the role r; is represented by adding the statement
ASys.r; «—u; and BSys.r; «<—u; to yT. An administrative operation to re-
voke a user u; from the role r; is represented by removing the statements
RSys.r; «—u; and ASys.r; «<— u; if either exists in yT.

Example 7. Consider the state-change rule ¢ we discuss in Exam-
ple 5, in which can_assign consists of the two tuples (Manager, Engineera
FullTime, ProjectLead) and (HumanResource, true, {FullTime, PartTime}), and
can_revoke consists of the two tuples (Manager, {Engineer, ProjectLead}) and
(HumanResource, {FullTime, PartTime}). Let y be the RBAC state, shown in
Figure 1, and let g be the query ProjectLead 3 Alice. We then represent the out-
put of AATU_Reduce ((y,q, ¥)) as (yT,qT, vT). qT is Sys.ProjectLead 3 {Alice}.
The following RT statements in y 7 result from UA:

HSys.Engineer «— Alice RSys.Engineer «<— Alice
HSys.PartTime <— Alice RSys.PartTime <— Alice
HSys.Manager «— Bob RSys.Manager «— Bob
HSys.HumanResource «— Carol RSys.HumanResource «— Carol

Sys.Engineer «— RSys.Engineer Sys.FullTime «— RSys.FullTime
Sys.HumanResource <— RSys.HumanResource
Sys.PartTime «— RSys.PartTime

The following statements in y” result from RH:

Sys.Employee «— Sys.Engineer HSys.Employee «— HSys.Engineer
Sys.Employee «— Sys.FullTime HSys.Employee «— HSys.FullTime
Sys.Employee «<— Sys.PartTime HSys.Employee «— HSys.PartTime
Sys.Engineer «— Sys.ProjectLead  HSys.Engineer «— HSys.ProjectLead
Sys.FullTime «— Sys.Manager HSys.FullTime «— HSys.Manager

The following statements in y7 result from PA:

Sys.View «— Sys.HumanResource  Sys.Access «— Sys.Employee
Sys.Edit «— Sys.Engineer

The following statements in y 7 result from can_assign:
HSys.FullTime «— BSys.FullTime Sys.FullTime <— ASys.FullTime
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HSys.PartTime «— BSys.PartTime  Sys.PartTime «— ASys.PartTime
Sys.NewRole; «— HSys.Engineer N HSys.FullTime

HSys.ProjectLead <— BSys.ProjectLead N Sys.NewRole4
Sys.ProjectLead «— ASys.ProjectLead N Sys.NewRole4

vT = (G, S), where G is the growth-restricted set of roles and S is the shrink-
restricted set of roles. Unlike can_assign, can_revoke results only in some roles
not being added to S. G is comprised of all roles of the form Sys.x, HSys.x and
RSys.x (but not BSys.x or ASys.x). S is comprised of all roles of the form Sys.x,
HSys.x, RSys.x and ASys.x, except the roles RSys.Manager, ASys.Manager,
RSys.Engineer, ASys.Engineer, RSys.FullTime, ASys.FullTime, RSys.PartTime,
and ASys.PartTime. This is because those roles appear in can_revoke rules and,
therefore, may shrink.

There exists a state y; that is reachable from y” that has the following
statements in addition to the ones in y7.

BSys.FullTime «<— Alice ASys.ProjectLead <— Alice

We can now infer that in le , HSys.FullTime<—Alice and, therefore,
HSys.NewRole; «— Alice, and so, Sys.ProjectLead «— Alice. Thus, the security
analysis instance (y7,q7, ¥7,3) is true. If we consider, instead, the query q7,
which is Sys.PartTime 1O Alice, then as RSys.PartTime is a shrink-unrestricted
role, there exists a state yQT that is reachable from y7 in which the state-
ment RSys.PartTime «— Alice is absent. Therefore, we would conclude that
Sys.ProjectLead does not include Alice. Consequently, the analysis instance
(T, qf,yT,Vv) is false.

We are also able to demonstrate the need for the roles associated with the
principals HSys and BSys. Consider the state 7/2T that can be reached from le
by removing the statement RSys.FullTime «— Alice. Now, Sys.FullTime does not
include Alice. This is equivalent to Carol revoking the membership of the user
Alice to the role FullTime. This affects the precondition that one can be assigned
to the role ProjectLead only if one is already a member of the roles Engineer and
FullTime. Nonetheless, we observe that yZT FqT, as indeed it should. That is,
Alice should continue to be a member of ProjectLead even if subsequent to her be-
coming a member of ProjectLead, her membership is removed from FullTime. We
observe that this is the case because the role BSys.FullTime is shrink-restricted
and, therefore, one cannot remove the statement BSys.FullTime «— Alice once it
has been added and, consequently, HSys.FullTime «— Alice is true, and, there-
fore, Alice continues to be a member of the role ProjectLead (i.e., is included
in Sys.ProjectLead). Of course, Alice can later have her membership revoked
from the role ProjectLead (by Bob) and this is equivalent to the statement
ASys.ProjectLead «— Alice being removed.

The following proposition asserts that the reduction is sound.

ProPOSITION 4. Given an AAR instance (y,q,y,T1), let (yT,qT,yT) =
AAR_Reduce({y, q, ¥)), then:
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e Assertion 1: For every RBAC state y' such that y r—*>1/, y’, there exists an
RT[«, N] state yT" such that yT > ,r yT" and y'q if, and only if. yT'+q".
 Assertion 2: For every RT[«, N] state yT’ such that yT r—*wr vy T’ there exists

an RBAC state y' such that y r—*w v and y'tq if and only if yT'+qT.

The proofis in Appendix 2. Our comments regarding the need for assertions 1
and 2 to preserve answers to security analysis instances, which we make in the
previous section in the context of AATU_Reduce, apply to the above proposition
in the context of AAR_Reduce as well. If either of the assertions does not hold,
then we cannot use the answer to the RT[«, N] analysis instance as the answer
to the corresponding RBAC instance.

THEOREM 5. An AAR instance (y,q, V¥, 1) can be solved efficiently, i.e., in
time polynomial in the size of the instance, if q is semistatic.

Proor. Let the output of AAR_Reduce for the input (v, q, ) be (yT,qT, vT).
If g is semistatic, so is g7. As AAR_Reduce runs in time polynomial in its input
and g7 can be answered in time polynomial in the size of y7 (which is shown by
Li et al. [2005]), g can be answered in time polynomial in the size of the system
(i.e., the size of (v, q, ¥)). Thus, an AAR instance with a semistatic query can
be solved efficiently. O

THEOREM 6. An AAR instance (y,q, ¥, I1) is coNP-complete.

Proor. We deduce that an AAR instance is in coNP from the fact that
AAR_Reduce runs in time polynomial in the size of the system and the corre-
sponding security analysis problem in the RT[N] system that is the output of
AAR_Reduce is coNP-complete. (RT[N] is a sublanguage of RT[«, N] that allows
only the first, second, and fourth kinds of statements from Figure 2.) That is, if
q is not true in every state reachable from y, then we offer as counterproof the
algorithm AAR_Reduce and the counterproof in the RT[«, N] system that ¢7 is
not true in every state reachable from y 7.

We can show that the general AAR problem is coNP-hard in almost exactly
the same way that we show the result for the AATU problem in the proof for
Theorem 3. The only difference is that for every role r;, which is associated
with a propositional variable p;, apart from a rule in can_assign, we add the
rule (a,r;) to can_revoke. We construct the query ¢ the same way as in that
proof and show in the same way that ¢ is true in every state reachable from y
if, and only if, n is valid. O

5. RELATED WORK

Simple safety analysis, i.e., determining whether an access-control system
can reach a state in which an unsafe access is allowed, was first formal-
ized by Harrison et al. [1976] in the context of the well-known access matrix
model [Lampson 1971; Graham and Denning 1972], and was shown to be un-
decidable in the HRU model [Harrison et al. 1976]. There are special cases for
which safety is decidable for the HRU model; safety is decidable if (1) no sub-
jects or objects are allowed to be created, (2) at most one condition is used in a
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command, but subjects or objects cannot be destroyed, or (3) only one operation
is allowed in a command.

Following that, there have been various efforts in designing access-control
systems in which simple safety analysis is decidable or efficiently decidable,
e.g., the take-grant model [Lipton and Snyder 1977], the schematic protection
model [Sandhu 1988], and the typed access matrix model [Sandhu 1992].

One may be tempted to reduce the security analysis problem defined in this
paper to a problem in one of the other models, such as HRU, and use existing
results. However, this approach has several difficulties. First, we consider dif-
ferent kinds of queries, while only safety is considered in other models. It is
not clear, for instance, how one would reduce containment in RBAC to safety in
HRU. Second, even when we restrict our attention to simple safety, the reduc-
tion of either AATU or AAR into HRU results in a set of command schemas that
does not fall into any known decidable special case of HRU. (1) New users are
implicitly created when being assigned to roles. (2) Because of preconditions
in AATU and AAR, an assignment operation requires checking both the com-
mand initiator’s privileges and the user’s role memberships. The resulting HRU
command schema would not be mono-conditional. (3) Adding a user to a role
results in the user attaining several permissions simultaneously. The resulting
command in HRU is unlikely to be mono-operational. Last, but not least, even
if some further restricted subcases of RBAC security analysis can be reduced
to decidable subcases of HRU, no efficient algorithm exists for those cases. For
example, even in the subcase where no subjects or objects are allowed to be cre-
ated, safety analysis in HRU remains PSPACE-complete (which implies that
it is NP-hard).

Recently, Li et al. [2005] proposed the notion of security analysis and studied
security analysis in the context of RT[«, N], a role-based trust-management
language. They showed that a security analysis instance in RT[«, N] involving
only semistatic queries can be solved efficiently (in time polynomial in the size
of the start-state in the analysis) and, for more general queries, they showed
that the analysis is decidable, but intractable.

Crampton and Loizou [2003] claim that “if administrative (or control) permis-
sions are assigned to subjects, then the safety problem is undecidable. Indeed,
Munawer and Sandhu [1999] and Crampton [2002] have shown independently
that the safety problem for RBAC96 is undecidable.” We disagree with this
claim, and we show in this paper that simple safety (and even more sophisti-
cated analysis) can be decidable when administrative permissions are given to
subjects. The simulation by Munawer and Sandhu [1999] suggests only that
when an overly complicated administrative model is added to RBAC96, safety
analysis may be undecidable.

The work by Koch et al. [2002a] considers safety in RBAC with the RBAC
state and state-change rules posed as a graph formalism [Koch et al. 2002b].
They show that safety (defined as whether a given graph can become a subgraph
of another graph) is decidable provided that a state-change rule does not both
remove and add components to the graph that represents the protection state.
It is not clear what import the property of safety, as defined in the context of the
graph-based formalism, has in the context of an RBAC system. In particular,
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it is not clear whether the notion of safety as defined in that work captures
the notions of simple or bounded safety, or containment that we discuss in
Section 2.1. Also, specific complexity bounds for deciding safety are also not
provided in that work and, therefore, it is not clear how useful the decidability
result for safety is. In particular, we do not know whether safety can be decided
efficiently. Furthermore, the administrative model (set of state-change rules)
considered in that work is limited in that all roles are considered to be of the
same type and, therefore, roles correspond to nodes in the graph, each of which
has the same label as another. Consequently, we cannot express preconditions
to user-role assignment as we can with ARBAC97 and the administrative mod-
els considered in this paper. Such preconditions, as we discuss in Section 2.3,
are expressions formed using roles. Recently, the graph-based formalism [Koch
et al. 2002b] has been extended to consider a more realistic and flexible admin-
istrative model [Koch et al. 2004]. This new administrative model considers
state-change rules that consist of commands such as addEdge and deleteEdge.
The commands do not satisfy a criterion for the decidability of the safety prop-
erty that was shown in Koch et al. [2002a]; some of the commands remove and
add components to the graph. Whether safety (as defined for the graph-based
formalism) is indeed decidable or not, given the new state-change rules, is not
known. Our work differs from that work in that we consider a general class of
queries, and provide specific algorithms and complexity bounds. In addition, our
state-change rules are based on ARBAC97, whose usefulness has been argued
in the literature [Sandhu et al. 1999].

Previous work on ensuring security properties in RBAC takes the approach of
using constraints [Ahn and Sandhu 2000; Crampton 2003; Jaeger and Tidswell
2001]. In this approach, a set of desirable properties are explicitly specified as
constraints on the relations in an RBAC state. Each time the state of an access-
control system is about to change, these constraints are checked. A change
is allowed only when these constraints are satisfied. We believe that security
analysis and constraints are complementary. Constraints directly specify de-
sirable properties on the state of an RBAC system. Security analysis uses con-
ditions specified on what kinds of state changes are allowed and infer security
properties on all reachable states. An advantage of using constraints is that
sophisticated conditions can be specified and enforced efficiently. In the secu-
rity analysis approach, fewer security properties can be analyzed efficiently,
because of the need to analyze potentially infinitely many reachable states. On
the other hand, the constraint approach requires that the system controls all
changes to the RBAC state, because of the need to perform constraint checking.
Security analysis can handle decentralized control by allowing the parts of a
state that are not controlled by the system to change freely. It can be used to
help enforce security properties even when the RBAC system itself is main-
tained in a decentralized manner and one cannot ensure that constraints are
checked when some part of the RBAC state changes. Another advantage of se-
curity analysis is that it can be performed less often than checking constraints.
Analysis only needs to be performed when changes not allowed by the state-
transition rule are made, while constraints need to be evaluated each time a
state changes.

ACM Transactions on Information and System Security, Vol. 9, No. 4, November 2006.



416 . N. Li and M.V. Tripunitara

6. CONCLUSION AND FUTURE WORK

We have proposed the use of security analysis techniques to maintain desirable
security properties while delegating administrative privileges. More specifi-
cally, we have defined a family of security analysis problems in RBAC and
two classes of problems in this family, namely AATU and AAR, based on the
URA97 component of the ARBAC97 administrative model for RBAC. We have
also shown that AATU and AAR can be reduced to similar analysis problems in
the RT[«, N] trust-management language, establishing an interesting relation-
ship between RBAC and the RT (role-based trust management) framework.
The reduction gives efficient algorithms for answering most kinds of queries in
these two classes and helps establish the complexity bounds for the intractable
cases.

While security analysis is especially effective in cases that the associated
problems are tractable, as we have demonstrated in this paper, several secu-
rity analysis problems can be intractable or even undecidable. Consequently,
administrators may be constrained in the kinds of queries they can pose or
the states in which they can allow the RBAC system to be. In any case, unless
efficient heuristics can be developed for the intractable cases, security analysis
may not be effective or usable.

Much work remains to be done for understanding security analysis in RBAC.
The family of RBAC security analysis defined in this paper can be parame-
terized with more sophisticated administrative models, e.g., those that allow
negative preconditions, those that allow changes to the role hierarchy or role-
permission assignments, and those that allow the specification of constraints,
such as mutually exclusive roles.

Commercial products, such as database management systems, include sup-
port for RBAC and for decentralized administration. We believe that security
analysis will be effective in such contexts; a detailed discussion those RBAC
schemes and security analysis in their context is part of future work. Security
analysis is also applicable in several other access-control schemes, including
UCON [Park and Sandhu 2004; Zhang et al. 2004, 2005], which extends RBAC.
The use of security analysis in such schemes is also part of future work.

Appendix 1. Proof for Proposition 1

Proor. For Assertion 1: A state change in AATU occurs when a user assign-
me?t operation is successfully performed. For every RBAC state y’ such that
Yy =y v, let v, 1, ..., vm be RBAC states suchthat y = yp >y y1 >y -+ >y
¥m = v'. We construct a sequence of RT[«, N] states y7, y74,...,yT,, as fol-
lows: y§ = yT; for each i = [0..m — 1], consider the assignment operation that
changes y; to y;,1, let it be the operation in which a user u; adds (u,r) to the
user-role assignment relation. The state 7/151 is obtained by adding u;.r <—u
toyT. Let y7' be L.

Step one: Prove that if y’ - g then y7’  qT. It is sufficient to prove the
following: for each i € [0..m], if y; implies that a certain user u is a member
of a role r (or has the permission p), then y”, implies that u is a member of
the RT[«,N] role Sys.r (or Sys.p). We use induction on i to prove this. The
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base case (i = 0) follows directly from the AATU_Reduce algorithm; lines 42-44
reproduces UA, RH, PA in the RT[«, N] state yOT . For the step, assumes that
the induction hypothesis holds for yy, ..., y;, consider y;,1. Let the operation
leading to y;;+1 be one in which u; assigns u to a role r. Since both sequences
of states are increasing, we only need to consider role memberships implied
by ;11 but not y;; these are caused (directly or indirectly) by this assignment.
There must exists a (ry,c,r) € can_assign to enable this assignment; thus in
i, 41 is a member of the role r, and u satisfies the condition ¢. By induction
hypothesis, in y, u; is a member of Sys.r, and u satisfies the condition c.
From the translation and the construction of yi:il, yi?;l has the following state-
ments: uy.r <— u, Sys.r «— Sys.r,.r, and Sys.r «— Sys.name N tmpRole (where
tmpRole corresponds to the precondition ¢). Furthermore, in Vi-Tw u1 is a mem-
ber of the role r, and u satisfies the condition c. Therefore, u is a member of the
Sys.r rolein y1 .

Step two: Prove that if 7’ - q7 then y’ I q. It is sufficient to show that if an
RT[«, N] role membership is implied by y7’, then the corresponding RBAC role
membership (or permission possession) is also implied. A detailed proof uses
induction on the number of rounds in which a bottom-up datalog evaluation
algorithm outputs a ground fact. Here, we only point out the key observations.
(For details of similar proofs, see the Appendix in Li et al. [2005].) A RT[«, N]
role membership is proved by statements generated on lines 42-52. The first
three cases correspond to the UA, RH, PA. For the last case, there must exist a
statement u;.r «— u in y7’, and it implies that u is a member of the role Sys.r.
By the construction of 7/, the user u has been assigned to the role  during the
changes leading to y'.

For Assertion 2: Given an RT[«, N] state ¥’ such that yT fin yT’, we can
assume without loss of generality that y7’ adds to y” only simple member
statements. We also only need to consider statements defining u;.rj, where u;
is a user in y and r; is a role in y. Consider the set of all statements in 7"
having the form u;.r; <— u;. For each such statement, we perform the following
operation on the RBAC state, starting from y, have u; assign u;, to the role r;.
Such an operation may not succeed either because u; is not in the right adminis-
trative role or because u;, does not satisfy the required precondition. We repeat
to perform all operations that could be performed. That is, we loop through all
such statements and repeat the loop whenever the last loop results in a new
successful assignment. Let 3’ be the resulting RBAC state. It is not difficult to
see that y’ implies the same role memberships as y7’, using arguments similar
to those used above. O

Appendix 2. Proof for Proposition 4

Proor. For Assertion 1: A state change in AAR occurs when a user assign-
ment or a revocation operation is successfully performed. Given any RBAC
state y’ such that y fin/, v/, let yo,v1,...,Ym be RBAC states such that
Y =Y Fy V1 Py o By vm = ¥'. We construct a sequence of RT[«, N]
states y T, ¥74,...,yT,, as follows: yT, = yT; for each i = [0..m — 1], consider
the operation that changes y; to y;,1. If it is an assignment operation in which a
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user u1 adds (u,r) to the user-role assignment relation, the state yizl is obtained
by adding Sys.r «— u and BSys.r «—u to yiT. For each revocation that revokes
a user u from a role r, we remove (if they exist) from the RT[«, N] state, the
statements ASys.r «<—u and RSys.r <—u. Let yT’ be y,L.

Step 1: Prove that if y’ - g then yT' - gT. Step 1a: We prove that in 7",
HSys.r captures all users that are ever a member of the role r at some time,
ie., for each i € [0..m], if u € users,,[r], then u is a member of the RT[«, N]
role HSys.r in y,I (SP(y”,) = m(HSys, r, u)). We prove this by induction on i.
The basis (i = 0) is true, since in y” we reproduce UA and RH in the definition
of the HSys roles (see lines 60—64 in Figure 5); furthermore, the HSys roles
never shrink. For the step, we show that if (u,r) € UA; 1, then u is a member
of the RT[«, N] role HSys.r in y,I. This is sufficient for proving the induction
hypothesis because the effect of propagation through role hierarchy is captured
by the definition of HSys roles. If (u,r) € UA;, 1, then either (u,r) € UA (in which
case HSys.r «—u e yT’), or there is an assignment operation that assigns
u to r (in which case BSys.r «—u € yT’). Let (ry,c,7) € can_assign be an
administrative rule used for this assignment, then in y;, the user u satisfies
c¢. By induction hypothesis u’s role memberships in y; is captured in u’s role
memberships in HSys.r; therefore, u would satisfy the translated precondition
tmpRole. Therefore, u is a member of the role HSys.r in y,I (because of the
statement HSys.u «— BSys.r NntmpRole).

Step 1b: We prove thatin y 7’ the Sys roles capture all the role memberships in
y'. It is sufficient to prove the following: let UA’ be the user assignment relation
iny’. If (u,r) € UA', then u is a member of the role Sys.r in y 7’ If (u,r) € UA, then
either (u,r) € UA and this is never revoked (in which case RSys.r «—u € T
and this statement is never removed, therefore RSys.r <—u € y7"), or there is
an assignment operation in C, and this assignment is not revoked after it (in
which case ASys.r «—u e y7").

Step two: Prove thatif y7’' g7, then y’ I q. It is sufficient to show that if an
RT[«, N] role membership is implied by 7/, then the corresponding RBAC role
membership (or permission possession) is also implied. A detailed proof uses
induction on the number of rounds in which a bottom-up datalog evaluation
algorithm outputs a ground fact. Here, we only point out the key observation.
A RT[«, N] role membership is proved by statements generated on lines 60-65
or 71-74. The first three cases correspond to the UA, RH, PA. For the last
case, there must exist a statement ASys.r «—u in y”’ and it implies that u
is a member of the role Sys.r. By the construction of 7/, the user u has been
assigned to the role r during the changes leading to y’ and the assignment is
not revoked after that.

We only need to also consider statements defining u;.rj, where u; is a user
in y and r; is a role in y. Consider the set of all statements in yT’ having the
form u;.rj <— uy,. For each such statement, we perform the following operation
on the RBAC state, starting from y, have u; assign u; to the role r;. Such an
operation may not succeed either because u; is not in the right administrative
role or because u; does not satisfy the required precondition. We repeatedly
perform all operations that could be performed. That is, we loop through all
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such statements and repeat the loop whenever the last loop results in a new
successful assignment. Let y’ be the resulting RBAC state. It is not difficult to
see that y’ implies the same role memberships as y7’, using arguments similar
to those used above.

For Assertion 2: Among the RT[«, N] roles, Sys roles and HSys roles are
fixed; ASys roles can grow or shrink; RSys roles can shrink but not grow; BSys

roles can grow but not shrink. Given an RT[«, N] state ¥’ such that y7 > 7
yT’, we can assume without loss of generality that y7” adds to y” only simple
member statements. Consider the set of all statements in y7’ defining ASys,
BSys, and RSys roles. We construct the RBAC state y’ as follows. (1) For every
statement BSys.r «<— uin 7", assign the user u to the role 7. Repeat through all
such statements until no new assignment succeeds. Using arguments similar
to those used for proving assertion 1, it can be shown that now the RBAC roles
have the same memberships as the HSys roles. (2) Do the same thing for all
the ASys.r «— u statements. At this point, all the role memberships for the Sys
rolesin y T’ are replicated in the RBAC roles, because all the HSys memberships
have been added. (3) Remove the extra role membership in the RBAC state, i.e.,
those not in the Sys roles. The ability to carry out this step depends upon the
requirement (in Definition 4) that if there is a can_assign rule for a role, then
there is also revoke rule for the role. O
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