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INTRODUCTION

The mammalian gap junction is a cellular structure be-
tween adjacent cells, wherein the apposed cellular mem-
branes are separated by an apparent gap of approximately 3
nm (Fig. 1). Gap junctions are formed by connexin proteins
[1, 2]. The distribution of connexins is tissue- and cell-spe-
cific [1-3]. A gap junctional channel may be composed of
one or more types of connexin protein [4]. The combination
of connexins determines the characteristics of the gap junc-
tional channel, such as conductance, permeability, or gating
[4-7]. Gap junctional proteins are rapidly turned over in the
cell, having relatively short half-lives ranging from 1 to 3 h
[8]. Gap junctions are important for cellular interactions and
signal transduction because they allow for nonspecific trans-
fer of low-molecular-weight molecules [4, 5, 7-9]. Gap junc-
tions are believed to be critical in regulating growth and
development of organs and tissues in normal and patholog-
ical conditions [4, 5, 7, 8].

Gap junctions and several connexins have been identi-
fied within ovarian tissues including follicles, corpora lutea
(CL), ovarian blood vessels, and stroma of several species
[10-24]. Ovarian follicles or CL represent adult organs that
exhibit periodic growth, differentiation, and regression dur-
ing each estrous cycle [25-28]. The rate of growth of ovar-
ian structures is relatively high, and tightly regulated and
coordinated [26, 29, 30], resembling the rate of growth of
embryonic or postnatally growing tissues [31]. Therefore,
the presence of gap junctions in the ovaries may be im-
portant for control of growth. In addition, gap junctional
communication among ovarian cells is probably involved
in control of steroid hormone production, signal transduc-
tion, and luteolysis [15, 32-34].

The aim of this review is to describe the current concepts
concerning the presence and possible roles of gap junctions
in the ovaries.

GAP JUNCTION STRUCTURE AND FUNCTION

The mammalian gap junction (junction communicans,
nexus) is a junction of communication or electrical cou-
pling between adjacent cells that can be open or closed (i.e.,
a “gated” channel [2, 4, 8, 35-38]). When open, mamma-
lian gap junctions permit exchange of nutrients, ions, and
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regulatory molecules of less than about 1 kDa (e.g., calcium
ions, cAMP, inositol 1,4,5-triphosphate) between contact-
ing, communication-competent cells [4, 8, 39, 40].

Gap junctions are ubiquitous in multicellular organisms.
They are present in almost all mammalian tissues except cir-
culating blood cells and adult skeletal muscles [8]. Gap junc-
tions are composed of two symmetrical structures that create
an intracellular channel that allows passage of ions and small
molecules from cell to cell. Each cell of the pair contributes
a structure termed a connexon, and two connexons form one
intracellular channel (Fig. 1). Connexons float laterally in the
plasma membrane until a match is made with a connexon of
an adjacent cell [2]. Connexons are composed predominantly
of gap junctional proteins termed connexins. The connexin
(Cx) family of 13 proteins includes Cx26, Cx30, Cx30.3,
Cx31, Cx31.1, Cx32, Cx33, Cx37, Cx40, Cx43, Cx45, Cx46,
and Cx50, which, in general, are named on the basis of their
molecular size [1-3, 41-45]. Connexins Cx26, Cx30.3, Cx32,
Cx40, Cx43, and Cx45 have been identified in the ovaries of
several species [10-24]. Connexins have been shown to be
specific gap junctional proteins [1, 2]; therefore, the localiza-
tion of connexins is widely used for identification of gap junc-
tions in a variety of tissues [11, 16, 46-51].

Gap junctions often aggregate to form gap junctional
plaques at a particular locus on the plasma membrane. The
number of plaques between adjacent cells is thought to be
proportional to the rate of metabolic cooperation among
these cells. Thus, fewer plaques may indicate a reduced
ability to communicate, which in turn may suggest that the
cells act more independently of each other [2]. It has been
shown that about 20% of the surface of ovarian granulosa
cells is occupied by gap junctions [52]. In contrast, luteal
cells appear to have fewer gap junctions arranged in smaller
plaques [15, 53].

Gap junctions have been implicated in the regulation
and coordination of cellular metabolism and function
during growth and differentiation of organs and tissues
[2,4-6, 8, 40, 54, 55]. For example, it has been shown
that the development of adrenal cortical gap junctions
corresponds with steroidogenic output, just as the onset
of steroidogenic capacity in rat luteal cells parallels de-
velopment of gap junctions [52, 56]. After ovulation, a
gradual increase in the size of gap junctions conjoining
luteal cells parallels differentiation of the CL in the rat
[56].

Abnormal function of gap junctions may lead to devel-
opmental anomalies and abnormal cellular growth [2, 3, 55,
57-59]. For example, in transformed cell lines, there is an
inverse relationship between cell growth and gap junctional
intercellular communication; i.e., induction of gap junction-
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FIG. 1. A schematic view of the gap A
junctional channel. A) Model of intercellu-
lar channels, each formed by two connex-
ons located in the cytoplasmic membrane
of two adjacent cells; B) model of a single
connexon in the open and closed states;
C) model of a single membrane-spanning
connexin. Reproduced with minor modifi-
cations from Kandel et al. [38] by copy-
right permission of Appleton & Lange,
Norwalk, CT.
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al intercellular communication leads to growth inhibition,
whereas a blockade of gap junctional intercellular com-
munication leads to uninhibited cell growth [60, 61]. More-
over, suppression of gap junctions by injection of a con-
nexin antibody in growing embryonic tissues or cultured
cells resulted in inhibition of dye transfer, electrical cou-
pling, and/or gap junction assembly, which in the embryo
causes specific developmental defects [58, 62-64]. The
lower number of gap junctions in cancerous cells suggests
that loss of gap junctions occurs during abnormal tissue
development, accompanied by a disturbance in coordina-
tion of cell function and a subsequent loss of control of
tissue growth [2, 39]. Data concerning the presence or func-
tion of gap junctions in abnormal ovarian growth (e.g., fol-
licular or luteal cysts) or ovarian carcinoma are rudimentary
at present. For rats, it has been demonstrated that gap junc-
tions and maculae adherens are present between granulosa
cells of follicles destined to become cysts. These junctions
were lost during cyst formation, except those between mu-
ral granulosa cells [65]. This suggests that in pathological
processes the number of gap junctions diminishes, presum-
ably affecting tissue integrity.

During follicular development, gap junctions are in-
volved in regulation of meiotic differentiation and matu-
ration of the cumulus-oocyte complex [13, 66, 67]. During
growth, differentiation, and regression of the CL, gap junc-
tions mediate cellular interactions between steroidogenic
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cells and between steroidogenic and nonsteroidogenic cells,
which may be important for normal luteal function and lu-
teal regression [15, 34, 68-71]. In addition, in the granulosa
layer and developing CL, gap junctions may be necessary
for transfer of nutrients, since these tissues are avascular or
poorly vascularized, respectively [16, 25, 29, 72, 73].
Moreover, granulosa cells are ionicly coupled through gap
junctions [74], but luteal cells seem to be not coupled elec-
trically [75]. Several other cell types have been shown to
be nonelectrically coupled although they possess functional
gap junctions [76].

However, the precise role of gap junctions in the ovaries
has not been defined yet. It seems that Cx32 is not critical
for ovarian function since Cx32-deficient mice are fertile
and normal [77]. In contrast, Cx26- or Cx43-deficient mice
die at the early stages of embryonic or perinatal develop-
ment, respectively, because of several abnormalities [5, 78].
In addition, on the basis of gene knockout studies, Cx37
appears to be critical for normal follicular development and
CL formation in mice [79].

PRESENCE OF GAP JUNCTIONS IN THE OVARIES

Numerous studies have demonstrated the presence of
gap junctions and/or gap junctional proteins in ovarian fol-
licles of human and other primates {80-82], rats [10, 13,
80, 83—88], mice [11, 67, 80], rabbits [89, 90], cows [12,
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TABLE 1. Localization of the gap junctional proteins connexin (Cx) 26,
Cx32, and Cx43 in ovine ovaries.*

Ovarian compartment Protein
Surface epithelium Cx26
Follicles
Primordial and primary Cx26
Secondary Cx43
Antral
Healthy Cx26 in T**
Cx43inT and Gt
Atretic Cx43 inT

Corpora lutea
Connective tissue
Blood vessels
Parenchyma

Cx26 and Cx32
Cx26 and Cx32
Cx26, Cx32, and Cx43
Ovarian blood vessels Cx26 and Cx32
Connective tissue Cx26 and Cx32

* Taken from Grazul-Bilska et al. (15, 17, 92].
** T, theca cells.
t G, granulosa cells.

20-22], and sheep [17, 91, 92]. For elegant micrographs of
gap junctions in ovarian follicles evaluated by electron mi-
croscopy or freeze-fracture preparation, the reader is re-
ferred to other papers [11, 52, 66,76, 80-82, 85, 86, 88,
89].

Gap junctions or Cx43 were detected as early as the
primordial or primary follicles in rats and cows [14, 18, 22,
86]. In addition, Cx26 was detected in the oocytes of pri-
mordial or primary follicles in cows and sheep ([17, 22];
Table 1), and Cx32 was present in mouse and bovine oo-
cytes [12, 67]. As follicular development progresses, an in-
crease in the number and size of gap junctions and/or the
expression of Cx26 or Cx43 has been observed in the gran-
ulosa and theca of small, medium, and large antral follicles
and in the area of contact between the oocyte and cumulus
cells of several species ([10, 11, 17-19, 21, 22, 24, 74, 92];
Table 1). However, the number of gap junctions, or the
expression of Cx43 or Cx45, has been shown to decline in
rat preovulatory follicles probably due to disintegration or
retraction of granulosa and cumulus cells, removal of gap
Jjunctions or parts of them from the cell surface by endo-
cytotic processes, and/or changes in phosphorylation state
of connexin(s) [24, 74,76, 93, 94]. The decline is most
likely caused by the preovulatory LH surge [11, 24, 66, 76,
93,94]. On the other hand, the expression of Cx30.3 in
granulosa cells of large follicles was greater than in gran-
ulosa cells of the small follicles in rats [19].

In atretic follicles of rats or sheep, expression of Cx26,
Cx32, or Cx43 was low or not detectable in the granulosa
layer, but Cx43 was present in a theca layer ([14, 17, 18,
92]; Table 1). In contrast, in cows, Cx32 was detected in
the granulosa layer of every atretic follicle, whereas Cx43
was present in the granulosa and/or theca layers of some
atretic follicles [22]. In fact, in cows Cx32 seems to be
present only in atretic follicles and may serve as a marker
of atresia [22].

After ovulation, the CL is formed primarily by hyper-
plasia and functional differentiation of the cells of the ovu-
lated follicle [26, 29, 30, 91, 95]. Whereas the number of
gap junctions declines in preovulatory follicles (as de-
scribed above), after ovulation gap junctions develop as
differentiation of the CL progresses [56], and Cx43 ex-
pression in developing CL is high [16]. By electron mi-
croscopy, gap junctions have been demonstrated in luteal
tissues of humans and other primates ([23, 81, 96-98]; Fig.

FIG. 2.

Electron micrographs of the gap junctions (arrows) in A) baboon
CL from the midluteal phase of the estrous cycle (magnification X30 000);
B) bovine cultured luteal cells from the midluteal phase of the estrous
cycle (magnification X24 600); C) a greater magnification (X82 000) of
junctional complexes from B. A) Reproduced from Khan-Dawood et al.
23] and B and C) reproduced from Redmer et al. [53] by copyright per-
mission of The Endocrine Society, Baltimore, MD.
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FIG. 3. Dual immunohistochemical staining for the presence of A) Cx43
(dark brown points) and 3B-hydroxysteroid dehydrogenase (33-HSD; light
blue cytoplasmic staining of steroidogenic luteal cells) and B) Cx43 (dark
brown points) and lectin BS-1 (light blue staining of endothelial cells) in
a section of an ovine CL from Day 5 of the estrous cycle. Control sections
did not exhibit any positive staining (data not shown). In A, note the
presence of Cx43 on the borders between small steroidogenic cells (small
arrow), between large steroidogenic cells (large arrow), between steroid-
ogenic and nonsteroidogenic cells (large arrowhead), and between non-
steroidogenic cells (small arrowheads). In B, note the presence of Cx43
on the borders between small and large steroidogenic cells (small arrow),
between large steroidogenic cells (large arrows), and between steroido-
genic and endothelial cells (large arrowheads). Bar = 20 pm; all micro-
graphs are of the same magpnification. CL were fixed in Bouin’s solution,
paraffin-embedded, sectioned, and then incubated with antibodies against
Cx43 (gift from Drs. E.M. Hendrix and W.J. Larsen (Univ. Of Cincinnati,
[47]) and then with antibody against 3B-HSD [29] or lectin (from Ban-
deiraea Simplicifolia, BS-1, 20 wg/ml; Sigma). Primary antibodies were
detected by using a biotinylated secondary antibody (goat antirabbit;
Zymed, San Francisco, CA). The color reaction was developed by using
the avidin-biotin complex (ABC) system (Vectastatin; Vector Labs., Burlin-
game, CA) for Cx43 and alkaline phosphatase substrate kit lll (Vector Blue;
Vectors Labs.) for 38-HSD and lectin (Grazul-Bilska et al., unpublished
results).

2), rats, mice, and rabbits [56, 99, 100], and dogs [101]. In
addition, gap junctional structures have been shown in cul-
tured bovine luteal cells ([53]; Fig. 2), but, at present, there
are no reports demonstrating the presence of gap junctions
by using conventional electron microscopy in CL of do-

mestic ruminants. However, several other techniques, in-
cluding immunohistochemistry, Western immunoblot, and
dye transfer in conjunction with laser cytometry, indicate
that gap junctions are present in CL of cows and ewes [15—
17, 20-23, 33, 53, 68, 92, 102].

Recent studies have shown the presence of Cx26, Cx32,
and/or Cx43 in luteal tissues and/or cultured luteal cells of
rats, monkeys, cows, and sheep ([15-18, 23, 24, 92]; Table
1). Patterns of expression of connexins change throughout
the estrous cycle [16, 17,23, 92]. Staining for connexins
appears punctate, localized mostly to the cellular borders,
but Cx26 and Cx36 were also detected in the cytoplasm of
some steroidogenic or nonsteroidogenic luteal cells [16,
17, 92]. Early in luteal development in sheep, Cx26 is pres-
ent only within connective tissue tracts and in association
with the larger blood vessels, but in mature CL Cx26 is
detected within the parenchyma, mostly in connective tis-
sue and blood vessels, but also in the cytoplasm and on the
borders of some luteal cells [17]. In contrast, Cx32 is pres-
ent within the parenchymal lobules and in luteal connective
tissue during the early luteal phase in sheep, but as the
estrous cycle progresses, Cx32 is present primarily in con-
nective tissue and blood vessels and only occasionally in
the cytoplasm of the parenchymal cells [17]. In addition,
the distribution of Cx26 and Cx32 is heterogeneous, with
stronger staining in the periphery of the CL [17]. The ex-
pression of Cx43 in luteal tissues is greatest during the
early and midluteal phases and is decreased during the late
luteal phase of the estrous cycle [16, 23]. Cx43 is present
on the borders of steroidogenic luteal cells in vivo and in
vitro [16, 92, 102]. For bovine luteal cells in vitro, Cx43 is
present on the borders between small luteal cells and be-
tween small and large luteal cells but is only rarely ob-
served on the borders between large luteal cells [16]. For
ovine luteal cells in vitro, Cx43 is present on the borders
among all steroidogenic cell types [92].

With the aid of dual staining techniques, we have been
able to localize Cx43 on the borders between steroidogenic
luteal cells and endothelial cells (Fig. 3). This suggests that
steroidogenic and endothelial cells may be connected by
gap junctional channels. Such a possibility may exist during
the early luteal phase, when newly created capillaries in the
CL are devoid of basement membranes [29, 72]. It has been
demonstrated for several tissues that endothelial cells may
make direct contact with subjacent cells by traversing the
capillary basement membrane [103, 104]. However, similar
data are not available for luteal tissues. In the CL, endo-
thelial cells comprise more than 50% of the total cells
[105, 106], and the CL is extensively vascularized [26, 72,
102, 107, 108)]. The capillary network is so dense, in fact,
that the majority of steroidogenic cells are in direct contact
with at least one capillary vessel [26, 72, 107]. This sug-
gests that endothelial cells are critical to support luteal
function. For luteal tissues, several studies have demon-
strated interactions between parenchymal and endothelial
cells in cows and sheep [26, 34, 102, 109, 110]. However,
whether functional gap junctional intercellular communi-
cation (GJIC) occurs between luteal steroidogenic and en-
dothelial cells remains to be determined.

Functional gap junctions in a variety of tissues may be
demonstrated by using 1) laser cytometry to evaluate the
rate of recovery of fluorescence after specific photobleach-
ing of a fluorescent dye in selected cells [15, 33, 53] or the
transfer of fluorescent Lucifer Yellow dye after microinjec-
tion of selected cells [111-113], or 2) electrophysiological
techniques like current or voltage clamps to evaluate junc-
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Fig. 4. Fluorescence recovery after photobleaching (FRAP) analysis of ovine luteal cells in situ (luteal tissue slice). A) Two fluorescently labeled cells (#1
and #2) were selected for laser photobleaching with a third cell (#3) serving as an unbleached control. B) Immediately after photobleaching, cells #1 and
#2 lost about 45% of initial fluorescence. C) Eight min after photobleaching, cells #1 and #2 recovered a portion of their initial fluorescence from contiguous
unbleached cells, indicating functional gap junctions. D) An increase in fluorescence recovery over the 8-min scanning period was monitored in the selected
cells. The rate of FRAP for cell #1 was 2.6% and for cell #2 was 1.3% per minute. Total recovery after the 8-min period for cell #1 was 21%, and for cell
#2 was 10%, which is comparable to that of cultured luteal cells [15, 33, 53, 68, 117]. CL were obtained from superovulated ewes (n = 3; [33]) on Day
10 of the estrous cycle, cut into approximately 2-mm cubes, covered with a low melting temperature agarose (FMC BioProducts, Rockland, ME), and cut
into slices approximatley 50 um thick by using a Vibratome (Technical Products International, St. Louis, MO). Poly-L-lysine coated dishes (0.25 mg/ml
double distilled H,O; Sigma, St. Louis, MO) were used to hold tissue slices in place during 30- to 40-min incubation in serum-free medium [33, 53], which
was followed by laser cytometry [15, 33, 53]. These data are from an unpublished experiment (Grazul-Bilska et al.).

tional conductance [114-116]. Cell-to-cell communication
among granulosa, theca, or luteal cell types has been dem-
onstrated by using laser cytometry methods in our labora-
tory under in vitro conditions [15, 20, 33, 53, 68, 117].
More recently, we have also demonstrated GJIC among lu-
teal cells in situ (Fig. 4). These data demonstrate for the
first time that GJIC exists in intact, living luteal tissues,
and, furthermore, corroborates our previous work utilizing

in vitro techniques to study functional gap junctions. In
addition, intercellular coupling has been demonstrated be-
tween ovine cumulus cells and oocytes by using intracel-
lular markers derived from 3H-labeled choline, uridine, and
inositol [118], and among porcine granulosa cells by using
dual-electrode whole-cell clamping and dye transfer [111].
These studies have provided evidence that functional gap
junctions exist among ovarian cells.
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TABLE 2. Effects of LH and PGF,_, on GJIC of bovine and ovine luteal
cell types throughout the estrous cycle.*
Stages of the Cell Treatment!
Species  estrous cycle types** LH PGF,, LH+PGF,,
Cow Early-luteal S-S NE* NE NE
L-S NE NE NE
Mid-luteal S-S T T NE
L-S NE NE NE
Late-luteal 5-S T NE NES
L-S NE NE NE
Ewe Early-luteal S-S T J Ts
L-S T NE NE
L-L NE NE NE
Mid-luteal S-S T 1 T
L-S T NE T
LL NE T T
Late-luteal S-S NE NE NE
L-S T NE T
LL NE T T

* Data taken from Redmer et al. {53] and Grazul-Bilska et al. [68, 117]
for cow; and Grazul-Bilska et al. [33] for ewe.

** Cell types: S-S, small luteal cells in contact only with small luteal cells;
L-S, large luteal cells in contact only with small luteal cells; L-L, large
luteal cells in contact only with large luteal cells.

t Cells were incubated with or without hormones, LH (100 ng/ml; bovine
LH B-5 or ovine NIADDK-oLH-25), PGF,, (1 uM; Upjohn Corp., Kala-
mazoo, M), and LH plus PGF,, for 16-24 h before analysis of GJIC.
+NE, no effects; T, stimulatory effects (p < 0.05); 1, inhibitory effects (p
< 0.05) compared with control (no treatment).

$ Inhibitory effects (p < 0.05) for LH + PGF,, compared with respective
LH-treatment.

REGULATION OF GAP JUNCTIONS IN OVARIAN
CELLS

In a variety of tissues, the structure and function of gap
junctions are regulated by numerous factors, including hor-
mones, growth factors, and intracellular regulators [32, 41,
43, 52, 55, 57, 85, 88, 111-113, 119-123]. Unfortunately,
data concerning the regulation of gap junction function in
the ovary are sparse. For cells from ovarian structures, we
and others have demonstrated that the stage of follicular or
luteal development as well as hormones and second mes-
sengers affects the number of gap junctions, connexin ex-
pression, or GJIC.

The stages of follicular or luteal development affect ex-
pression of Cx43 and GJIC. During preantral follicular de-
velopment, Cx43 was present only in the granulosa layer,
but in antral follicles Cx43 was detected in the granulosa
and theca layers, and the intensity of staining appeared to
be greater in large than in small or medium antral follicles
of sheep [17, 92]. In addition, large and medium follicles
expressed more Cx43 than did small follicles of cows [21].
For luteal tissues, expression of Cx43 was greater during
the early and midluteal phases compared with the late luteal
phase of the estrous cycle [16, 23]. In addition, the rate of
GJIC between bovine small luteal cells or between small
and large luteal cells from the early and midluteal phases
were significantly greater than for those from the late luteal
phase in cows [68]. These data indicate that when luteal
cells are in the rapid growth (proliferative) or differentiation
phases of luteal development, Cx43 expression and GJIC
are greater than during luteal regression. Although we do
not yet know their specific roles, these dramatic changes in
structural and functional gap junctions indicate an impor-
tant role in follicular and luteal growth, differentiation, and
regression.

Effects of several hormones on gap junctions of ovarian

follicles have been reported. Human CG, FSH, and estro-
gens affected the morphology of gap junctions in rat ovar-
ian follicles [8S5, 86, 88]. Hypophysectomy decreased the
total surface area of gap junctions in granulosa and theca
cells [85]. This effect was reversed by estrogens but not by
progesterone. Estrogen treatment increased the total surface
area of gap junctions 5-fold above that of nontreated control
rats in granulosa but not theca cells [85]. Administration of
exogenous progesterone and hCG to hypophysectomized
rats had no effect on the size and frequency of gap junctions
in the granulosa layer, but it increased those in the theca
layer [85]. In addition, FSH stimulated gap junction growth
and turnover in rat granulosa cells [86]. Risek et al. [124]
reported an increase in Cx43 mRNA in rat ovaries after
estradiol administration.

Godwin et al. [111] reported that protein kinase A reg-
ulates GJIC of porcine granulosa cells. After injection of a
protein kinase A inhibitor, granulosa cells become com-
munication-incompetent, and this effect was reversed by
injection of active C subunit from protein kinase A or by
FSH. Protein kinase C had a positive effect on GJIC of
granulosa cells under basal conditions but reduced GJIC
when the enzyme was maximally activated [111]. In por-
cine granulosa cells, Godwin et al. [111] observed that the
effects of protein kinase A and protein kinase C on GJIC
were reversible and suggested that the amplitude of the ef-
fect was a reflection of interactions between these two en-
zyme systems. LH, which controls ovulation and luteal
function in most mammalian species [21, 71, 108, 125], af-
fects gap junction function in follicles and CL. Several in-
vestigators have shown that in rat follicles during the preo-
vulatory period or after hCG injections, the area and/or
number of gap junctions or Cx43 expression diminishes
[13, 66, 74, 88, 94, 126], which indicates that just before
ovulation LH decreases gap junction function within folli-
cles. In contrast, LH has been demonstrated to increase
GJIC among bovine and ovine luteal cells [68, 117]. For
bovine luteal cells from the mid and late luteal phases, LH
increased the rate of GJIC between small luteal cells but
did not affect the rate of communication between small and
large luteal cells ([53, 68]; Table 2). GJIC between bovine
large luteal cells was negligible and was not affected by
LH [53]. For ovine luteal cells from the early and midluteal
phases, LH increased the rate of GJIC between small and
large luteal cells and also between small luteal cells ([33];
Table 2). LH has been shown previously to increase luteal
progesterone secretion, cell size, and blood flow in several
species [71, 108, 125, 127]. Our data demonstrate that LH
increases GIIC between luteal cell types in cows and ewes,
which indicates that the luteotropic effects of LH also in-
clude control of luteal GJIC. In addition, these data agree
with those from other cell systems, in which protein hor-
mones (e.g., hCG, FSH, thyroid-stimulating hormone) have
been shown to affect gap junctions in their target organs
{52, 88,112, 119, 121}.

Prostaglandin F,, (PGF,,) is the hormone that probably
is responsible for luteal regression at the end of the estrous
cycle and pregnancy in most mammalian species [71, 108].
PGF,, increased GJIC between bovine small luteal cells
from the midluteal phase of the estrous cycle ([68]; Table
2). In contrast, PGF,, decreased GJIC between ovine small
luteal cells from the early and midluteal phases ([33]; Table
2). In addition, PGF,, increased GJIC between ovine large
luteal cells from the mid and late luteal phases of the es-
trous cycle ([33]; Table 2). Moreover, PGF,, diminished the
stimulatory effect of LH on GJIC between bovine and
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TABLE 3. Effects of second messengers on GJIC of bovine and ovine luteal cell types throughout the estrous cycle.*

Treatment**
cAMP PKC Calcium
Stages of the A23187
Species estrous cycle Cell types**  dbcAMP Rp-cAMPS TPA H-7 A23187 EGTA +EGTA
Cow Early-luteal S-S NE NE { NE NE NE NP
Y L-S NE NE d NE l NE NP
Mid-luteal S-S T { { NE NE NE NP
L-S NE { J NE { NE NP
Late-luteal 5-S T NE { NE NE NE NP
L-S T { { NE { NE NP
Ewe Early-luteal S-S T NE d NE NE NE d
Y L-S ) NE d NE { NE d
L-L T l { NE { NE 1
Mid-luteal S-S T 1 { NE NE NE {
L-S T l l NE l NE {
L-L i) { l NE l NE l
Late-luteal 5-S T l N NE NE NE N
L-S ) d { NE d NE l
L-L T d L NE d NE l

* Taken from Grazul-Bilska et al. [68, 117] for cow; and Grazul-Bilska et al. [137] for ewe.
** Cell types: S-S, smali luteal cells in contact only with small luteal cells; L-S, large luteal cells in contact only with small luteal cells; L-L, large luteal

cells in contact only with large luteal cells.

t Cells were incubated with or without dbcAMP (1 mM for cows and 2 mM for ewes; Sigma, St. Louis, MO), Rp-cAMPS (100 pM for cows and 300
uM for ewes (BioLog, Life Institute, Lajolla, CA), TPA (100 ng/ml, Sigma); H-7 (100 uM, Seikagaku Corp., Tokyo, Japan for cow, and Toronto Research
Chemicals, Canada for ewe), A23187 (1 M, Sigma) or EGTA (100 pM, Sigma) for 2 h before analysis of GJIC.

*NE, no effects; T, stimulatory effects (p < 0.05); {, inhibitory effects (p < 0.05) compared with control (no treatment); NP, not performed.

ovine small luteal cells ([33, 68; Table 2). However, GJIC
between bovine and ovine small and large luteal cells was
not affected by PGF,, ([33, 68]; Table 2). Thus, the varied
actions of PGF,, that may contribute to functional and
structural luteolysis now include the modulation of cell-to-
cell communication among luteal cell types, in addition to
a direct cytotoxic effect, reduced ovarian blood flow, un-
coupling of LH receptors from adenylate cyclase, reduced
steroidogenic enzyme activity and progesterone production,
decreased LH receptor concentrations, changed membrane
fluidity, changed luteal cell populations, and increased ly-
sosomal enzyme activity [128—131]. The observation that
PGF,, diminished GJIC between luteal cell types suggests
that inhibition of cellular interactions may be involved in
the luteolytic effects of PGF,,. Others have suggested that
during luteolysis PGF,, induces a factor from large luteal
cells that affects small luteal cells [108, 132]. In agreement
with these data, prostaglandins have been shown to affect
gap junctions and/or gap junctional communication in sev-
eral other cell types [120, 133].

Cyclic AMP is a second messenger that is important for
signal transduction within luteal tissues [108, 134]. More-
over, CAMP agonists stimulate progesterone production by
luteal cells in several species [117, 135-137]. In our ex-
periments with cultured bovine and ovine luteal cells,
cAMP agonists increased GJIC. Forskolin and dibutyryl
cAMP (dbcAMP) increased GJIC between small luteal
cells, and between small and large luteal cells from the mid
and/or late luteal phases of the estrous cycle in cows ([53,
117]; Table 3). Similarly, dbc AMP increased GJIC between
ovine luteal cell types ([137]; Table 3). The cAMP antag-
onist, Rp-cAMPS, decreased the rate of communication be-
tween bovine or ovine luteal cell types ([117, 137; Table
3). These data indicate that cAMP is involved in the reg-
ulation of gap junctional communication in luteal tissues.

In sheep, even though both cell types contain functional
cAMP-dependent protein kinases, increased intracellular
concentrations of cAMP did not influence progesterone se-

cretion by large luteal cells but stimulated progesterone
production by small luteal cells [135, 138]. Our results sug-
gest that another role of intracellular cAMP may be to reg-
ulate contact-dependent cellular interactions among luteal
cells. In numerous other cell types, cCAMP stimulates gap
junctional communication and/or gap junctional conduc-
tance, and/or expression and phosphorylation of gap junc-
tion proteins [32, 41, 42, 48, 139-141].

Other intracellular regulators like protein kinase C or
calcium, which are involved in the control of luteal function
[71, 125, 142, 143], also affect GJIC of luteal cells. Acti-
vation of protein kinase C by using TPA (12-O-tetradeca-
noylphorbol 13-acetate) completely inhibits GJIC among
bovine or ovine luteal cell types, but a protein kinase C
antagonist (H-7) has little effect ([68, 137]; Table 3). In
addition, a calcium ionophore (A23187) can decrease GJIC
between small and large luteal cells and between large lu-
teal cells in cows and sheep ([68, 137]; Table 3). Use of a
chelator (EGTA) to maintain a low level of calcium in the
culture medium augments the inhibitory effects of a calci-
um ionophore on GJIC among all ovine luteal cell types
examined ([137]; Table 3). Activation of protein kinase C
has been shown to inhibit GJIC in numerous cell types by
affecting channel permeability and connexin trafficking an-
d/or synthesis [55, 57]. In addition, increasing intracellular
calcium concentrations can result in loss of GJIC in several
cell types [41, 42, 144]. However, calcium does not affect
gap junction function directly at physiological conditions
[41].

Numerous studies demonstrated that second messengers
are important regulators of gap junction function in many
tissues including ovaries [15, 41, 42, 53, 117, 143, 144]. In
addition, gap junctions are important for transfer of second
messengers within tissues [144]. Interestingly, a reciprocal
relationship exists between gap junctions and second mes-
sengers. That is, gap junctions are dynamically regulated
by second messenger pathways, and the extent by which
second messengers are spread from one cell to another de-
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pends on the permeability and conductance of gap junctions
[42].

SUMMARY AND FUTURE DIRECTIONS

Gap junctions and GJIC play an essential role in the
integrated regulation of growth, differentiation, and func-
tion of organs and tissues. Ovarian follicles and CL possess
structural and functional gap junctions, which are important
for the coordination of cellular interactions during follicular
and luteal growth, differentiation, and regression. The pres-
ence of gap junctions, expression of connexins, and rate of
GJIC depend on the stage of follicular or luteal develop-
ment and are affected by various regulators of ovarian func-
tion. Nonetheless, our current knowledge of the role of gap
junctions in ovarian function is still limited, and future re-
search on the regulation of cellular interactions and gap
Junction function during critical periods of follicular and
luteal development will be needed to provide further insight
into the control of growth and differentiation of normal
(e.g., ovarian) as well as abnormal (e.g., tumor) tissues.

We suggest that future studies address the following
questions: 1) How does alteration of gap junction function
and/or structure affect growth, differentiation, or regression
of follicles or CL? 2) Are differences in the rate of GJIC
at the various stages of follicular or luteal development due
to differences in the number or functional status (open vs.
closed) of gap junctions? 3) What is the mechanism of ac-
tion of extracellular and intracellular regulators on ovarian
gap junction function (e.g., do these regulators affect the
number of gap junctions, the functional states of gap junc-
tion [open vs. closed], or synthesis and/or trafficking of gap
junction proteins)? 4) How is gene expression for the gap
junctional proteins affected by stage of development or reg-
ulators of ovarian function? By understanding the role of
gap junctions in ovarian growth and differentiation, we
should be able to better understand and regulate ovarian
function during normal as well as abnormal states.
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