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Abstract

This paper develops a new method for the synthesis of Linear Parameter-Varying (LPV)
controllers in discrete time. LPV plants under consideration have a Linear Fractional Trans-
formation (LFT) representation. In contrast to earlier results which are restricted to single-
objective LPV problems the proposed method can handle a $¢t/b1.. specifications that
can be defined channel-wise. This practically attractive extension is derived by using spe-
cific transformations of both the Lyapunov and scaling/multiplier variables in tandem with
appropriate linearizing transformations of the controller data and of the controller scheduling
function. It is shown that the controller gain-scheduling function can be constructed as an
affine matrix-valued function in the polytopic coordinates of the scheduled parameter, hence
is easily implemented on line. Finally, these manipulations give rise to a tractable and practi-
cal LMI formulation of the multi-objective LPV control problem.

Key words. LPV synthesis, mixed,/H., multi-channel control, LFT, Linear Matrix In-
equalities.

1 Introduction

LPV control technigues have received great attention in recent y&arg, [4, 14, 19]. The main

thrust of these techniques is to provide an elegant and algorithmically attractive setting for ad-
dressing the practical needs of gain scheduling or controller interpolation. The most demanding
task of these techniques amounts to solving Linear Matrix Inequality (LMI) programs which is
relatively easy with currently available Semi-Definite Programming codes. These methods have
also been constantly refined and improved in different directions19hdeneralized classes of
scaling are introduced which results in less conservative characterizatiori3, Iy B, 23], the
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authors employ parameter-dependent Lyapunov functions to take advantage of the fact that param-
eter evolutions have a limited range of speed. 1é],[a mixed technique which can handle both
scheduled and uncertain parameters is discussed. Except from isolated.8ase$4] which ei-
ther discuss computationally intensive approaches or propose somewhat conservative schemes, the
definition of a genuine mixe#i,/H. and multi-channel LPV methodology is a very challenging
issue which remains unsolved in the technical setting of LFT representations and multiplier-based
characterizations. Because of the many constraints surrounding most practical designs the devel-
opment of such a methodology is certainly of crucial importance. All these aspects have motivated
the discussion in this paper.

We develop a technique for solving the mixdg/H., multi-channel LPV control problem in
discrete time which is an extension of previous single-objective resulis/ji2]. The core of the
contribution is twofold.

e \We show that the Lyapunov variables transformations introducef] rap be applied sim-
ilarly in the context of LFT systems for a specific class of symmetric unstructured scalings.
These transformations in return permits to short-circuit the inherent strong interrelations be-
tween Lyapunov and scaling variables on one side and LPV controller variables on the other
side. An important consequence is that, similarly to the nominal case, different Lyapunov
variables and scalings can be used for each channel/specification what reduces conservatism.

e We also establish new linearizing transformations of the LPV controller state-space data
and of the controller scheduling function to achieve a full LMI program description of the
mixed Hz/H., multi-channel LPV synthesis problem. Note that these transformations are
new and are not possible with earlier developed techniques such as th@sk iftje lat-
ter are known to be impractical whatever class of scalings is used: generalized full-block
scalings or simpler diagonal scalings. Also, the techniquetin?, 21, 13, 22] fundamen-
tally hinge on the use of the Projection Lemni#)]| a tool which is inherently restricted to
single channel and single objective synthesis problems and not of any help in the problem
under consideration. Apart from new linearization transformations, we also show that the
controller gain-scheduling function can be searched for as a linear matrix-valued function in
the polytopic coordinates of the (plant) scheduled parameter, hence is easily implemented
on-line. The proposed characterization offers substantial flexibility to construct the con-
troller gain-scheduling function. A major limitation, however, lies in the fact that more
complex functions such as higher-order polynomials can play adversely in terms of LMI
solver computational time.

As a byproduct, the proposed derivation provides a different proof of the original single-objective
H. LPV synthesis problem inlf7, 2].

The paper is structured as follows. Instrumental tools useful in future constructions are devel-
oped in Sectior2. A comprehensive description of the mixield/H., multi-channel, including the
synthesis LMI characterizations up to the LPV controller construction is provided in Séxtion
lllustrative examples are discussed in Secton

The notation used throughout the paper is fairly standiftt.is the transpose of the matrix
M. The notation TM stands for the trace &fl. For Hermitian or real symmetric matricel!,> N



means thaM — N is positive definite and1 > N means thaM — N is positive semi-definite. In
symmetric block matrices or long matrix expressions, we-uas an ellipsis for terms that are
induced by symmetry(K) is used to denote the signaht (discrete) timé.

2 Analysis setup

This section develops analysis tests for robdiseindH., performance that will be central in the
construction of multi-objective LPV controllers. We are concerned with the robust analysis prob-
lem of an uncertain discrete-time plant subject to LFT uncertainty. In other words, the uncertain
plant is described as

X(k—l— 1) A Ba B, X(k)

zp(k) = |Cr Daa Da1| |wa(k)

Z(k) Ci Dian D11 W(k) (1)
wak) = AKzKk),  AK) eRVN,

whereA(k) is a time-varying matrix-valued parameter evolving in a polytopicBgtdefined as
TAZ:CO{Al,...,Ai,...,AL}90, (2)

where co stands for the convex hull and thé denote the vertices afp. It is important to
note that the parametéris regarded as an uncertainty throughout this section. The LPV or gain-
scheduling problem, that is, the case wh&iis measured in real time is developed in a synthesis
context in Sectior3.

Closing the uncertainty channeh (k) = A(k) za (k) leads to the alternative state-space repre-
sentation

R B e A P ECH WX S Sy B

From the latter expression, we observe that the plant with inpasd outputs has state-space
data entries which are fractional functions of the time-varying paraméier As is standard in
the robust synthesis literature, we have used the following notation

e X for the state vector,
e W for exogenous inputs,

e zfor controlled or performance variables.

2.1 RobustH, performance

GuaranteedH, performance can be interpreted in different ways: it provides an upper bound on
the variance of the output for all admissible parameter trajectories or alternatively, it gives an upper
bound on the worst-case (with respectMooutput energy in response to impulse inputs. Sé&g [

and references therein for a detailed discussion. A characterization of guardpteexdormance

is provided in the following proposition.



Proposition 2.1 (RobustH, performance) The statements (i) and (ii), involving Lyapunov vari-
ables X and Z, scaling pair8Q1,R1), (Q2,Rz) and general slack matrix variables V,1HF,

H,, F, are equivalent and enforce a bourdon the variance of the output z for all parameter
trajectoriesA(K) € Pp:

[—X % %

* *
0 Q1 * * *
(i) : 0 0 —vl * * <0,
A Ba B, X1 0
| Co Dan Dm0 —R?!
[—X % * *
0 * *
C, [?AZA R | < 0, Tr(z)<1,
| Ci D 0 -z

R, AT } [Rz AT ]

1] >0, >0, VA=A, 3
|:A _Qll A _Q21 | ( )
[ —X * * * *

0 Q1 * * *
(i) 0 0 -Vl * * <0,
VIA V'By VTB; X-—(V+VT) 0
|H{Cs H{Daa H{Dnas 0 Ri— (Hi+H])
[ —X * *
0 Q2 *
<0, Tr(2)<1,
H;CA HgDM Rz—(Hz—i—Hg) ( )
e Dia 0 -Z
Ry ATF Ry ATR,
0 0, VA =A,. 4
Fra Q1+F1+F1T] ’ [FZTA Q+R+Ff > ! )

Proof: The fact that (i) enforces a boundon the variance of for all admissible parameter
trajectoriesA(k) is a standard resulb[ 19, 15]. Hence, it suffices to prove the equivalence of (i)
and (ii). Necessity of4) follows from the choice/ := X, H; := Ry, Hy := Ry, F, := —Q1 and

F, ;= —Q3 in conditions &). Sufficiency is obtained by noting that)(implies thatv, Hy, Ho, F1,

F, are non-singular. Thus, one can perform the congruence transformation

diag(l,I,1,W,G;1), W:=V~ 1 Gp:=H;?!,

in the first LMI in (4). This yields the equivalent condition

—X * * * *
0 * * *
0 0 —vl * * <0. (5)
A By B WIXW—W+WT) 0

Cpr Dapn Dapg 0 GI RiG1— (G1+ GI)



One then easily infers3f from the inequalities
WIXW—W+WT) > X1 GRG;—(G1+Gj) > -R 1,

which hold wheneveK > 0 andR; > 0.
The equivalence between the last constraint8jrafd @) also follows by similar arguments.
This completes the proof of the proposition. ]

It is worth mentioning that the conditions in Propositidi are conservative in two respects.
First of all, a fixed Lyapunov functioW (x) := x" Xx (not depending on parameters) is employed
to assessi, performance of the uncertain system. This is a well-recognized source of conser-
vatism [7, 12, 11]. Secondly, we are utilizing a subclass of full-block generalized scalings with
zero off-diagonal separators in place of the class of generalized scalings or multipliers introduced
in [21]. Therefore, these tests should be refined when used for validation purpose. This sub-
class is, however, more general than the subclass of structured symmetric scalings Liged.in [
More importantly, this new characterizations also offer new potentials for deriving tractable char-
acterizations for discrete-time multi-objective LPV control problems which appears delicate using
earlier techniques.

There are a few points to have in mind to understand the condit®nand @) and their
usefulness.

¢ In (4), we getrid of the standard Lyapunov terii8, X By, ... and of the scaling ternig Ca,
RiDa1, ... by means of intermediate (slack) variameH;, Ho, F; andF,. These terms
generally impose strong limitations in multi-objective control problems since they preclude
the use of multiple Lyapunov functions or scalings. Similar ideas have been presented earlier
in [8, 9] for Linear Time-Invariant multi-objective synthesis.

e The LMI condition @) is significantly more costly than its original forn3)(because of
the additional general matrix variabl¥sandHj, Ho, F; andF, . We shall see however
that this extra computational overhead is more than offset by new capabilities in multi-
objective LPV synthesis. Firstly, multiple Lyapunov functiogsand scalings;, Q; can
be employed for each channel and specification. Secondly, from a synthesis viewpoint, new
linearizing transformations of the LPV controller data can be introduced that lead to a full
LMI characterization of the control problem.

e It might appear to the reader that the introduction of slack varidbles= 1,2 is superfluous
in the LMIs involving A, (4). This is right as long as analysis only is of interest. For the
LPV control synthesis considered later, however, the subpartofresponding to the gain-
scheduling block becomes a true variable and slack matrices again are necessary to allow
linearization of the problem.

Finally, the conditions in3) and @) guarantee well-posedness of the LFT representation in
(1). The property of well-posedness is ensured in all results in this paper and will not be discussed
further. See for instanc®]21] for discussions on this property.



2.2 RobustH., performance

The following result forH., performance parallels those for thk performance in Proposition
2.1

Proposition 2.2 (RobustH., performance) The following LMIs involving a Lyapunov variable
X, a scaling pair(Q,R) and general slack matrix variables V, H and F enforces a boyod
the Ly-induced gain of the operator mapping w into z. In different words pdrformance for the
channel(w, z) is guaranteed for all parameter trajectoriégk) € Px.

[ —X * * * T

* *

0 Q * * * *

0 0 -Vl * * *

VIA VTBy VTB; X-(V+VT) x . | <0
H'CA H'Dan H'Da 0 R—(H+HT) =«
L C]_ D]_A D11 0 0 —yI_
i T

F5A Q+AF5FT >0, VA=A, (6)

Proof: The proof is along the lines of the proof of propositidri and is omitted for brevity.
Additional details can be found i®[21]. ]

Again, condition 6) enjoys a separated structure which plays a key role in the synthesis results
to be presented below. Finally, we reemphasize the important fact that when multi-cHaramel
H.. performance constraints are specified then different Lyapunov variplasd scaling pairs
(Qj,R;j) must be used for each channel/specification.

3 Mixed Hz/H. multi-channel LPV synthesis

Before going further, we reemphasize the fact that, in contrast to the nominal multi-objective case
[20, 9], the multi-channel mixedH,/H. LPV control problem is a very challenging issue that
remains unsolved for plants described by LFT representations. The purpose of this section is to
derive a tractable and practical characterization of this problem.

3.1 Problem presentation

Hereafter, we first introduce the multi-channel mix¢g'H. LPV control problem as well as some
useful notations. We are given an LPV plant with LFT structure

X(k+ 1) A Ba B, Bo X(k)
zp(k) _ |Ca Dan Da1 Daz| |wa(k) Ac RN
Z(k) Cl DlA D11 D12 W(k) ’ (7)
y(k) C2 DZA D21 0 U(k)

wa (K) = AK z(K), A(k) € RNXN



whereA is defined in ). Herex, w, wa, z, andzy have the same meaning as in Sectihru
is the control signal, ang is the measurement signal. The p@in,z)) is now regarded as the
gain-scheduling channel, i. e., the paramétg) is measured on line and hence can be exploited
by the controller.

For the LPV plant 7) the control problem consists in seeking an LPV controller with LFT
structure

Xk (k+1) Ac  Bki  Bka | [ x(Kk)
u(k) = | Ck1 Dk1u1 Dkia y(k) |, Ax € RN o
z (k) Cka Dkai Dkaa | [wk(K) (8)
Wk (K) = MKz (k),  DxeRVN

such thatH, andH., specifications are achieved for a family of channels, z1), (w»,2), etc,
where thew;’s andz;’s are sub-vectors ofv andz, respectively (Figurd). The notationAk is

used for the controller scheduling function which is a function of the plant paraetbat is,

A = Ak (D). This scheduling function is part of the design procedure and will be determined in
the course of the derivation below.
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Figure 1: mixedH,/H.. multi-channel LPV interconnection

3.2 LMI characterization

In order to derive closed-loop characterization$lgpfandH. performance, a standard procedure
is to rewrite the LPV plantq) as an augmented LPV plant with repeated blocks of delay operators
z 1, and an augmented gain-scheduling blo&k, [2]. The resulting closed-loop data are then



described as

A O Brn O B4
4| By | B 0 O 0O O 0
Ca | Dan | Dn1 | =] C O | Dap O | Dar |+
Co | Din | Dot 0o o|lo o]lo0
C O Dian O D11
0 B, O
I 0 O 0 | 0 0 0
0 Da2 0 | K| C O | D O | D21 |, )
00 | 0 O 0 I 0
0 Dip O

with the definition
A< Bk1 Bka
K:=|Ck1 Dki1 Dk
Cka Dkar Dkaa

The new uncertainty or parameter structure associated with the closed-loo@®)distahen

given by
A 0
0 A

With each specification/channel is associated an LMI constraint of the form encountered in
Proposition®.1and2.2, LMIs (4) and ©). The desired characterization for LPV output-feedback
synthesis with multi-objective/channel specifications can be derived in four steps:

1

introduce different Lyapunov variables and scalif¥g, Z;) and(Qj,R;) for each specifi-

cation/channel. Also, aH, specification requires two pairs of scaling whereas only one is
involved in anH., specification.

2- introduce slack variablég, H andF common to all channels and specifications (this is the
conservative step).

3- write down expressions characterizififp) and H., performance for each channel using
Proposition®.1and2.2with the closed-loop datd, By, ... in (9).

4- perform adequate congruence transformations for each matrix inequality and use specific
linearizing changes of variables to end up with LMI synthesis conditions.

The derivation of the final characterizations is rather tedious and lengthy. Hereafter, we clarify
the main steps of the proposed procedure. Keeping in mind that all chdnaets), (w»,2), etc
can be handled in the very same way, we shall only consider the casélgbanlH,, performance
specification for the unique chann@l,z). This greatly simplifies the presentation below. When
various channels are under consideration one will simply stack together the corresponding LMI
constraints including additional Lyapunov variables and scalings.



In accordance with the partition & andDaa in (9), we introduce a partition of and of its
inverseW :=V~1, a partition ofH and of its inverses := H~! and a partition of and of its

inverseE := F~1in the form
[Hll le}, G— [Gll GlZ],

V]_]_ V12:| [Wll W12:|
V= , W= R H:= —
[V21 Va2 Wor W Hz1 Hz2 Ga1 G2
£ [Fll FlZ] £ [En ElZ]
[Py Rz’ Ex1 Ex2|

By the strict nature of the LMI constraints involved and a perturbation argument, there is no loss
of generality in assuming th&b;, Wo1, Ho1, Go1, Fo1 andEy; are invertible. See for instancé][
for a detailed justification. We then introduce the notations

Vi | P Wi . |Hu | |1 Gn
My = [vm 0}, My = [0 Wﬂ], My '_[H21 O], Mg = {O GZJ,
.| Fu | |l En
e = [51 O], Me = [O EZJ.

In turn, these matrices are invertible by the assumptiong@ni\,1, Ho1, G21, Fo1 andEz;. One

can then readily verify the identities

HMg =My, GMy=MNg FMg=mMg, EMg="mE.

VMw =Ny, WMy =Ny,
For anH, specification, we perform the congruence transformations

diag(ﬂW,I"IE,I,I'IW,I'Ig), diag(I'IW,I'IE,FIc.;,I),

on the first and second inequalities (ii) of Propositibf, respectively. For ahl, specification,
we perform the congruence transformation
diaqnW7 I_IEa I 3 I_IW, I_IG7 I )
in (6) of Proposition2.2. For inequalities involving uncertainty blocks, last inequalitiestinand
(6), we perform the congruence transformation
diag(I‘IG, |_|E) .

This yields matrix inequalities which solely involves the terms

nyany MyBaNe 3B
NLGNw NN DawNe N, D |, (10)
CilMw Diale D11

and
MeXiNw, MNEQ;Me, NEIRjNg,
T T T (11)
niVvnw, MIHMG, NEIFNg,
and
+fa o]"
I‘IG{O AJ MNe. (12)

9



The variablegXj, Z;,Q;,R;) are attached to a givet, or H,, specification or channel, while
(V,W,H,G,F,E) are slack variables common to all specifications and channels.

Explicit computation and inspection of these terms reveal that by invertibilNg 051, Ho1,
Go1, F21 andEz;, one can perform the following linearizing changes of variable:

linearizing changes of variable

Dki1 = Dkau, (13)
Bc1 = V3Bk1-+V(1BoDkaa, (14)
Ck1 = Dk11CoWi1 +CiWoy, (15)
Ac = VAW VH AMG + V5 BiaCoWa
+V]1B2Ci1Wo1 4 V1 BoDk 11CoWA 1, (16)
Dkin = Dk11D2aE11+DkiaEos, (17)
Dkar := H{;Da2Dk11+H31Dka1, (18)
Bka = V41BaE11+V3Bk1D2aE11 +Vy1BoDk11D2aE11
+V,;BkaE21 4+ V{1B2Dk1aEz1, (19)
Cka := H{;CAWi1+ H{Da2Dk11CoWi1 + HJ1DiarCoWag
4+ H{1DasCk1Wb1 + H3;1CraWa1, (20)
Dkaa = H{;DanE11+H{1Da2Dk11D2aE11 + H31Dka1DoaErs
+H{1Da2Dk1aE21 + Hz1DkanEoa1, (21)
Xj = MyXNw, (22)
Qj = NIQjNe, R;j:=N§RjMNg, (23)
U = VWi +VaWey, M:=H{ ;G114 H,Go1, N:= FjE11 + F Ean (24)
A = FLAG1+FAkGor. (25)

We have adopted a bold notation for the new variables. Note that these transformations are back
and forth because of the invertibility &1, Wo1, H21, G21, F21 andEz;. The matrix inequality
terms in (L0)-(12) then become linear in the new variables:

V1 A+ Bk1Co Ax
My Anw == | 1 :
VoW [A+ B2Dk11C2  AWA1 + BoCia
V[1Ba + Bk1D2a Bka V{B1 +Bk1D21
My BaMe = | S5 Al g, — | V11

voRE [BA +ByDk11D2n  BaE11+BoDkan |’ VH B1 + B2Dk11D21

HJ;Ca + Dka1Co Cka HJ;Da1 + Dka1D21
Ny Gl = | .12 N Dpg = | 1 ,

HEATW [CA +Da2Dk11C2 - CaWa1 + Da2Cia AL Da1 + Da2Dk11D21

10



AT DaalMe = |:HI1DAA+DKA1D2A Dkaa ]
H Daa +Da2Dk11Doa  DanE11+ DaoDikaa |’

Gilw = [C1+D12Dk11C2  CiWa1+D12Ck1], Di1 = D11+ D12Dk11D21,

D1aMNg ;= [D1a +D12Dk11D2a  D1aE11+ D12Dk1a] ,
(Vi | . |Hu | (R
= |G vy ] meme= [ | mine = [ g
Thanks to these transformations, the inequalities of Proposificdhand 2.2 which do not

involve a parameter block become LMIs as desired.
Inequalities associated with the parameter block are rewritten

Ri1 R2 ATFyy AT

F\"T,z R3 AKT GLAT

FlA Ak Qa+Fu+F;  Q2+I+N
A NG QLN+ Qa+Ef;+En

>0, VA€®, j=1,.... (26)

They consist of a set indexed ljyof parameterized inequalities with respectdoRecalling that
A(K) is evolving in a polytopic sePy, that is,

L L
A= ZlouAi, Zlon =1 0o >0,
i= i=

solution candidates can be searched for in the form

L
AK (A) = -ZaiAKJ s (27)

where thelk j’s are decision variables and thgs are the polytopic coordinates 4fin 75 (see
[3] for other potential methods). Under this restriction, the constrafisdre converted into a
finite set of LMIs

Ri1 R AT AiTTFll
4 - Gl,AT AL
Rz Rs L K >0, i=1,...,L,j=1,... (28)
A AGir Qai+Fu+F;  Q2+1+N
FLOA A N+ Qs+Efj+En

wherei indexes the vertices afy and j indexes the channels and specifications.

Since for each channel amty, andH. specifications, terms are of the form just derived, we
conclude that sufficient existence conditions for the multi-objective/channel LPV control problem
can be recast as an LMI program in the variabgs Wi 1, Hi1, G11, F11, E11, Ak i and the (bold)
variables defined in1@3)-(24).

For practical needs, we provide LMI characterizationslpfindH., performance in Appendix
A.

11



Remark. When the matrix polytopéy is a hypercube centered at 0, what can always be achieved
for any hyper-rectangle by translation and scaling if necessary, then it is easily shown from the
LMI conditions 28) that solutionsik j associated with opposite points of the polytope are also
opposite of each other. As a result, the solution farflly ; }i—1 .| determine a hypercube with a
similar arrangement as the original hyperc§ide}i—1 | . With this in mind, the number of LMIs
indexed by in (28) and the number of matrix variablég ; can be reduced by a factor of 2.

3.3 LPV controller construction

Once a feasible solution of the LMI constraints (Appendix A) has been computed, the state-space
data @) of the LPV controller are readily obtained as indicated below:

e compute an SVD factorization &f —V1T1W11 and deduce invertible matricés; andWsq
according to 24). Analogously, compute an SVD factorization Mf— HJ;G;; andN—
FlTlEll and deduce invertible matricét;, G,1, Fo1 andE»; according to 24).

e compute the LPV controller data by sequentially reverting the changes of variable as speci-
fied in (13)-(22).

¢ deduce the controller gain-scheduling function as

A(D) = Fp' (Sha0ibki—FlSE, 0ifGr1) Gy

* K = 2 29
ZiLzl ai (leTAK.,iGzll - I:21T':1T1Ai6116211) : )

Hence, the scheduling function is affine in polytopic coordinates of the parameter/ldoka
practical implementation, there is no need to compute the matrix product terms on 12@).in (
Indeed Ak (A) can be rewritten as

L
Ak (D) = _Zlaiqai, with ®; := (F;" Ak iGyp — Fyy ' F11AIG11G51 ) (30)

where thed;’s are computed off line.

Remark. An enriched class of scheduling functiofg(A) can be employed in place of a mere
linear expression in7). This, however, can play adversely in terms of computational time since
additional variables are searched for. If structured symmetric scalings were used, and the controller
was forced to replicate the parameter block of the plant,Ae:= A, then it can be showed that

LMIs involving A blocks disappear. This simpler characterization is then equivalent to those in
[17, 2] for the single-objectiveH,, control problem. It is, however, more conservative than that
proposed in this paper.

4 lllustrative examples

In this section, we provide illustrations of the proposed method and comparison results with earlier
techniques. We consider an LFT plant (borrowed fr@hy ¢f the form described inl) and @).

12



We shall use the following partitioning notations for parameter and performance channels:

Wa A Y4\
— ———

Wg, 01 O 0 Z5,
Ws, | =10 O 0] |2z,],
W, 0 0 63 | Z5,

4

Z.= 2 , W= W1 .
Z3 W2 |
Z4

State-space data of the LFT plant are given in Appendix B.

4.1 Single-objective comparisons
Itis first assumed tha;, i = 1,2, 3 are gain-scheduling variables with
01 =0,=203 ‘6|| <0.2.

Using different techniques, LPV controllers are synthesized to minimizelghgerformancey of
the channe(w, z). Results are recapped in Taldle

| method L7, 2] | method 13, 2] | proposed methodl method P1]
y| 2207 | 2198 | 2198 | 2198

Table 1:Hs-performance with various methods

Note that performance levels are nearly the same for all used methods. As theoretically pre-
dicted, the proposed method achieves a performance level which is always better than that of
method [L7, 2] (structured symmetric scalings), and worse than that of metAtjd({ull-block
scalings). One cannot draw definitive conclusions from comparisons with metBoa2 since
there is no inclusion relationships between the scaling sets involved. Hence, in this situation, the
advantage of either of these methods is essentially problem dependent.

4.2 A multi-objective example

Hereafter, we consider a multi-objective application of our technique. The gain-scheduling vari-
ables are nowd;, &, with the normalization constraintg;| < 0.2, i = 1,2. The input-output pair
(ws,,Z5,) is now regarded as the.-performance channel. The, norm of the channelw, z) is
then minimized subject to various constraints on ltheperformance. This yields the tradeoff
curve in Figure2.

It is interesting to note that the problem becomes infeasible when the parateded, are
handled as uncertain parameters as opposed to scheduling variables except for very large values

13



of the H., index associated withs. This enlightens the positive feature of the gain-scheduling
nature of the controller. A tradeoff point which provides a fairly good balance beti#gandH..
criteria is pointed in Figuré.
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30-
tradeoff point: (40.0, 27.8)

201
18.1

10 L 1 L L L L L
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H_ performance

Figure 2:H,/H. tradeoff curve in LPV synthesis

5 Conclusion

In this paper, we have developed a new method for addressing the kixétl, multi-channel

LPV control problem in discrete-time. We have introduced new conditionslf@ndH., perfor-

mances of LPV systems. These conditions are then combined with appropriate transformations
on the controller data and on the controller scheduling function to end up with an LMI program
description of the solutions. A very favorable feature is that different Lyapunov/scaling pairs can
be used for each specification and channel what immediately reduces conservatism as compared
to earlier methods. Extensions of this method to the continuous-time case and to more general
classes of Lyapunov functions or scalings still remain challenging and will be considered in a
future research.

Appendix A - LMIs for mixed H,/H. multi-channel LPV synthesis

The formulas below describe the structure of the LMI constraints that must be encoded. One must
have in mind that for multiple channel specifications, the matrices

[C1 Dia D11 Dio]

14



appearing in the descriptions below should be modified in the appropriate way. Also, vaXigbles
Zj, Qj, Rj, vj andy; should be introduced for each channel and specification indexgdubyat
reduces conservatism. All other variables are common to all channels and specifications.
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Appendix B - State-space data
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