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Abstract

This paper develops a new method for the synthesis of Linear Parameter-Varying (LPV)
controllers in discrete time. LPV plants under consideration have a Linear Fractional Trans-
formation (LFT) representation. In contrast to earlier results which are restricted to single-
objective LPV problems the proposed method can handle a set ofH2/H∞ specifications that
can be defined channel-wise. This practically attractive extension is derived by using spe-
cific transformations of both the Lyapunov and scaling/multiplier variables in tandem with
appropriate linearizing transformations of the controller data and of the controller scheduling
function. It is shown that the controller gain-scheduling function can be constructed as an
affine matrix-valued function in the polytopic coordinates of the scheduled parameter, hence
is easily implemented on line. Finally, these manipulations give rise to a tractable and practi-
cal LMI formulation of the multi-objective LPV control problem.

Key words. LPV synthesis, mixedH2/H∞, multi-channel control, LFT, Linear Matrix In-
equalities.

1 Introduction

LPV control techniques have received great attention in recent years [17, 2, 4, 14, 19]. The main
thrust of these techniques is to provide an elegant and algorithmically attractive setting for ad-
dressing the practical needs of gain scheduling or controller interpolation. The most demanding
task of these techniques amounts to solving Linear Matrix Inequality (LMI) programs which is
relatively easy with currently available Semi-Definite Programming codes. These methods have
also been constantly refined and improved in different directions. In [19] generalized classes of
scaling are introduced which results in less conservative characterizations. In [24, 1, 3, 23], the
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authors employ parameter-dependent Lyapunov functions to take advantage of the fact that param-
eter evolutions have a limited range of speed. In [16], a mixed technique which can handle both
scheduled and uncertain parameters is discussed. Except from isolated cases [18, 1, 14] which ei-
ther discuss computationally intensive approaches or propose somewhat conservative schemes, the
definition of a genuine mixedH2/H∞ and multi-channel LPV methodology is a very challenging
issue which remains unsolved in the technical setting of LFT representations and multiplier-based
characterizations. Because of the many constraints surrounding most practical designs the devel-
opment of such a methodology is certainly of crucial importance. All these aspects have motivated
the discussion in this paper.

We develop a technique for solving the mixedH2/H∞ multi-channel LPV control problem in
discrete time which is an extension of previous single-objective results in [17, 2]. The core of the
contribution is twofold.

• We show that the Lyapunov variables transformations introduced in [8] can be applied sim-
ilarly in the context of LFT systems for a specific class of symmetric unstructured scalings.
These transformations in return permits to short-circuit the inherent strong interrelations be-
tween Lyapunov and scaling variables on one side and LPV controller variables on the other
side. An important consequence is that, similarly to the nominal case, different Lyapunov
variables and scalings can be used for each channel/specification what reduces conservatism.

• We also establish new linearizing transformations of the LPV controller state-space data
and of the controller scheduling function to achieve a full LMI program description of the
mixed H2/H∞ multi-channel LPV synthesis problem. Note that these transformations are
new and are not possible with earlier developed techniques such as those in [20]. The lat-
ter are known to be impractical whatever class of scalings is used: generalized full-block
scalings or simpler diagonal scalings. Also, the techniques in [17, 2, 21, 13, 22] fundamen-
tally hinge on the use of the Projection Lemma [10], a tool which is inherently restricted to
single channel and single objective synthesis problems and not of any help in the problem
under consideration. Apart from new linearization transformations, we also show that the
controller gain-scheduling function can be searched for as a linear matrix-valued function in
the polytopic coordinates of the (plant) scheduled parameter, hence is easily implemented
on-line. The proposed characterization offers substantial flexibility to construct the con-
troller gain-scheduling function. A major limitation, however, lies in the fact that more
complex functions such as higher-order polynomials can play adversely in terms of LMI
solver computational time.

As a byproduct, the proposed derivation provides a different proof of the original single-objective
H∞ LPV synthesis problem in [17, 2].

The paper is structured as follows. Instrumental tools useful in future constructions are devel-
oped in Section2. A comprehensive description of the mixedH2/H∞ multi-channel, including the
synthesis LMI characterizations up to the LPV controller construction is provided in Section3.
Illustrative examples are discussed in Section4.

The notation used throughout the paper is fairly standard.MT is the transpose of the matrix
M. The notation TrM stands for the trace ofM. For Hermitian or real symmetric matrices ,M > N
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means thatM−N is positive definite andM ≥ N means thatM−N is positive semi-definite. In
symmetric block matrices or long matrix expressions, we use∗ as an ellipsis for terms that are
induced by symmetry.x(k) is used to denote the signalx at (discrete) timek.

2 Analysis setup

This section develops analysis tests for robustH2 andH∞ performance that will be central in the
construction of multi-objective LPV controllers. We are concerned with the robust analysis prob-
lem of an uncertain discrete-time plant subject to LFT uncertainty. In other words, the uncertain
plant is described asx(k+1)

z∆(k)
z(k)

 =

 A B∆ B1

C∆ D∆∆ D∆1

C1 D1∆ D11

 x(k)
w∆(k)
w(k)


w∆(k) = ∆(k)z∆(k), ∆(k) ∈ RN×N .

(1)

where∆(k) is a time-varying matrix-valued parameter evolving in a polytopic setP∆, defined as

P∆ := co{∆1, . . . ,∆i , . . . ,∆L} 3 0, (2)

where co stands for the convex hull and the∆i ’s denote the vertices ofP∆. It is important to
note that the parameter∆ is regarded as an uncertainty throughout this section. The LPV or gain-
scheduling problem, that is, the case where∆ is measured in real time is developed in a synthesis
context in Section3.

Closing the uncertainty channelw∆(k) = ∆(k)z∆(k) leads to the alternative state-space repre-
sentation[

x(k+1)
z(k)

]
=

{[
A B1

C1 D11

]
+

[
B∆
D1∆

]
∆(k)(I −D∆∆∆(k))−1 [C∆ D∆1 ]

}[
x(k)
w(k)

]
.

From the latter expression, we observe that the plant with inputsw and outputsz has state-space
data entries which are fractional functions of the time-varying parameter∆(k). As is standard in
the robust synthesis literature, we have used the following notation

• x for the state vector,

• w for exogenous inputs,

• z for controlled or performance variables.

2.1 RobustH2 performance

GuaranteedH2 performance can be interpreted in different ways: it provides an upper bound on
the variance of the output for all admissible parameter trajectories or alternatively, it gives an upper
bound on the worst-case (with respect to∆) output energy in response to impulse inputs. See [15]
and references therein for a detailed discussion. A characterization of guaranteedH2 performance
is provided in the following proposition.
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Proposition 2.1 (RobustH2 performance) The statements (i) and (ii), involving Lyapunov vari-
ables X and Z, scaling pairs(Q1,R1), (Q2,R2) and general slack matrix variables V, H1, F1,
H2, F2 are equivalent and enforce a boundν on the variance of the output z for all parameter
trajectories∆(k) ∈ P∆:

(i) :


−X ∗ ∗ ∗ ∗
0 Q1 ∗ ∗ ∗
0 0 −νI ∗ ∗
A B∆ B1 −X−1 0

C∆ D∆∆ D∆1 0 −R−1
1

 < 0,


−X ∗ ∗ ∗
0 Q2 ∗ ∗

C∆ D∆∆ −R−1
2 ∗

C1 D1∆ 0 −Z

 < 0, Tr(Z) < 1,

[
R1 ∆T

∆ −Q−1
1

]
> 0,

[
R2 ∆T

∆ −Q−1
2

]
> 0, ∀∆ = ∆i . (3)

(ii) :


−X ∗ ∗ ∗ ∗
0 Q1 ∗ ∗ ∗
0 0 −νI ∗ ∗

VTA VTB∆ VTB1 X− (V +VT) 0
HT

1 C∆ HT
1 D∆∆ HT

1 D∆1 0 R1− (H1 +HT
1 )

 < 0,


−X ∗ ∗ ∗
0 Q2 ∗ ∗

HT
2 C∆ HT

2 D∆∆ R2− (H2 +HT
2 ) ∗

C1 D1∆ 0 −Z

 < 0, Tr(Z) < 1,

[
R1 ∆TF1

FT
1 ∆ Q1 +F1 +FT

1

]
> 0,

[
R2 ∆TF2

FT
2 ∆ Q2 +F2 +FT

2

]
> 0, ∀∆ = ∆i . (4)

Proof: The fact that (i) enforces a boundν on the variance ofz for all admissible parameter
trajectories∆(k) is a standard result [5, 19, 15]. Hence, it suffices to prove the equivalence of (i)
and (ii). Necessity of (4) follows from the choiceV := X, H1 := R1, H2 := R2, F1 := −Q1 and
F2 :=−Q2 in conditions (4). Sufficiency is obtained by noting that (4) implies thatV, H1, H2, F1,
F2 are non-singular. Thus, one can perform the congruence transformation

diag(I , I , I ,W,G1) , W := V−1, G1 := H−1
1 ,

in the first LMI in (4). This yields the equivalent condition
−X ∗ ∗ ∗ ∗
0 Q1 ∗ ∗ ∗
0 0 −νI ∗ ∗
A B∆ B1 WTXW− (W+WT) 0

C∆ D∆∆ D∆1 0 GT
1 R1G1− (G1 +GT

1 )

 < 0. (5)
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One then easily infers (3) from the inequalities

WTXW− (W+WT)≥−X−1, GT
1 R1G1− (G1 +GT

1 )≥−R−1
1 ,

which hold wheneverX > 0 andR1 > 0.
The equivalence between the last constraints in (3) and (4) also follows by similar arguments.

This completes the proof of the proposition.

It is worth mentioning that the conditions in Proposition2.1are conservative in two respects.
First of all, a fixed Lyapunov functionV(x) := xTXx (not depending on parameters) is employed
to assessH2 performance of the uncertain system. This is a well-recognized source of conser-
vatism [7, 12, 11]. Secondly, we are utilizing a subclass of full-block generalized scalings with
zero off-diagonal separators in place of the class of generalized scalings or multipliers introduced
in [21]. Therefore, these tests should be refined when used for validation purpose. This sub-
class is, however, more general than the subclass of structured symmetric scalings used in [17, 2].
More importantly, this new characterizations also offer new potentials for deriving tractable char-
acterizations for discrete-time multi-objective LPV control problems which appears delicate using
earlier techniques.

There are a few points to have in mind to understand the conditions (3) and (4) and their
usefulness.

• In (4), we get rid of the standard Lyapunov termsXA, XB1, ... and of the scaling termsR1C∆,
R1D∆1, ... by means of intermediate (slack) variableV, H1, H2, F1 andF2. These terms
generally impose strong limitations in multi-objective control problems since they preclude
the use of multiple Lyapunov functions or scalings. Similar ideas have been presented earlier
in [8, 9] for Linear Time-Invariant multi-objective synthesis.

• The LMI condition (4) is significantly more costly than its original form (3) because of
the additional general matrix variablesV andH1, H2, F1 andF2 . We shall see however
that this extra computational overhead is more than offset by new capabilities in multi-
objective LPV synthesis. Firstly, multiple Lyapunov functionsXj and scalingsRj , Q j can
be employed for each channel and specification. Secondly, from a synthesis viewpoint, new
linearizing transformations of the LPV controller data can be introduced that lead to a full
LMI characterization of the control problem.

• It might appear to the reader that the introduction of slack variablesFi , i = 1,2 is superfluous
in the LMIs involving ∆, (4). This is right as long as analysis only is of interest. For the
LPV control synthesis considered later, however, the subpart of∆ corresponding to the gain-
scheduling block becomes a true variable and slack matrices again are necessary to allow
linearization of the problem.

Finally, the conditions in (3) and (4) guarantee well-posedness of the LFT representation in
(1). The property of well-posedness is ensured in all results in this paper and will not be discussed
further. See for instance [2, 21] for discussions on this property.
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2.2 RobustH∞ performance

The following result forH∞ performance parallels those for theH2 performance in Proposition
2.1.

Proposition 2.2 (RobustH∞ performance) The following LMIs involving a Lyapunov variable
X, a scaling pair(Q,R) and general slack matrix variables V, H and F enforces a boundγ on
the L2-induced gain of the operator mapping w into z. In different words, H∞ performance for the
channel(w,z) is guaranteed for all parameter trajectories∆(k) ∈ P∆.

−X ∗ ∗ ∗ ∗ ∗
0 Q ∗ ∗ ∗ ∗
0 0 −γI ∗ ∗ ∗

VTA VTB∆ VTB1 X− (V +VT) ∗ ∗
HTC∆ HTD∆∆ HTD∆1 0 R− (H +HT) ∗

C1 D1∆ D11 0 0 −γI

 < 0,

[
R ∆TF

FT∆ Q+F +FT

]
> 0, ∀∆ = ∆i . (6)

Proof: The proof is along the lines of the proof of proposition2.1 and is omitted for brevity.
Additional details can be found in [9, 21].

Again, condition (6) enjoys a separated structure which plays a key role in the synthesis results
to be presented below. Finally, we reemphasize the important fact that when multi-channelH2 and
H∞ performance constraints are specified then different Lyapunov variablesXj and scaling pairs
(Q j ,Rj) must be used for each channel/specification.

3 Mixed H2/H∞ multi-channel LPV synthesis

Before going further, we reemphasize the fact that, in contrast to the nominal multi-objective case
[20, 9], the multi-channel mixedH2/H∞ LPV control problem is a very challenging issue that
remains unsolved for plants described by LFT representations. The purpose of this section is to
derive a tractable and practical characterization of this problem.

3.1 Problem presentation

Hereafter, we first introduce the multi-channel mixedH2/H∞ LPV control problem as well as some
useful notations. We are given an LPV plant with LFT structure

x(k+1)
z∆(k)
z(k)
y(k)

 =


A B∆ B1 B2

C∆ D∆∆ D∆1 D∆2

C1 D1∆ D11 D12

C2 D2∆ D21 0




x(k)
w∆(k)
w(k)
u(k)

 , A∈ Rn×n

w∆(k) = ∆(k)z∆(k), ∆(k) ∈ RN×N ,

(7)

6



where∆ is defined in (2). Herex, w, w∆, z, andz∆ have the same meaning as in Section2, u
is the control signal, andy is the measurement signal. The pair(w∆,z∆) is now regarded as the
gain-scheduling channel, i. e., the parameter∆(k) is measured on line and hence can be exploited
by the controller.

For the LPV plant (7) the control problem consists in seeking an LPV controller with LFT
structure xK(k+1)

u(k)
zK(k)

 =

 AK BK1 BK∆
CK1 DK11 DK1∆
CK∆ DK∆1 DK∆∆

 xK(k)
y(k)

wK(k)

 , AK ∈ Rn×n

wK(k) = ∆K(k)zK(k), ∆K ∈ RN×N

(8)

such thatH2 andH∞ specifications are achieved for a family of channels(w1,z1), (w2,z2), etc,
where thew j ’s andzj ’s are sub-vectors ofw andz, respectively (Figure1). The notation∆K is
used for the controller scheduling function which is a function of the plant parameter∆, that is,
∆K := ∆K(∆). This scheduling function is part of the design procedure and will be determined in
the course of the derivation below.

{ }...
...

∆

K

P
z1
z2

w1
w2

y u

w∆z∆

wK
zK

∆K

wz

Figure 1: mixedH2/H∞ multi-channel LPV interconnection

3.2 LMI characterization

In order to derive closed-loop characterizations ofH2 andH∞ performance, a standard procedure
is to rewrite the LPV plant (7) as an augmented LPV plant with repeated blocks of delay operators
z−1In and an augmented gain-scheduling block [17, 2]. The resulting closed-loop data are then
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described as

 A B∆ B1

C∆ D∆∆ D∆1

C1 D1∆ D11

 :=


A 0
0 0

B∆ 0
0 0

B1

0
C∆ 0
0 0

D∆∆ 0
0 0

D∆1

0
C1 0 D1∆ 0 D11

+


0 B2 0
I 0 0

0 D∆2 0
0 0 I
0 D12 0

K

 0 I
C2 0
0 0

0 0
D2∆ 0
0 I

0
D21

0

 , (9)

with the definition

K :=

 AK BK1 BK∆
CK1 DK11 DK1∆
CK∆ DK∆1 DK∆∆

 .

The new uncertainty or parameter structure associated with the closed-loop data (9) is then
given by [

∆ 0
0 ∆K(∆)

]
.

With each specification/channel is associated an LMI constraint of the form encountered in
Propositions2.1and2.2, LMIs (4) and (6). The desired characterization for LPV output-feedback
synthesis with multi-objective/channel specifications can be derived in four steps:

1- introduce different Lyapunov variables and scalings(Xj ,Z j) and(Q j ,Rj) for each specifi-
cation/channel. Also, anH2 specification requires two pairs of scaling whereas only one is
involved in anH∞ specification.

2- introduce slack variablesV, H andF common to all channels and specifications (this is the
conservative step).

3- write down expressions characterizingH2 and H∞ performance for each channel using
Propositions2.1and2.2with the closed-loop dataA , B∆, ... in (9).

4- perform adequate congruence transformations for each matrix inequality and use specific
linearizing changes of variables to end up with LMI synthesis conditions.

The derivation of the final characterizations is rather tedious and lengthy. Hereafter, we clarify
the main steps of the proposed procedure. Keeping in mind that all channels(w1,z1), (w2,z2), etc
can be handled in the very same way, we shall only consider the case of anH2 andH∞ performance
specification for the unique channel(w,z). This greatly simplifies the presentation below. When
various channels are under consideration one will simply stack together the corresponding LMI
constraints including additional Lyapunov variables and scalings.
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In accordance with the partition ofA andD∆∆ in (9), we introduce a partition ofV and of its
inverseW := V−1, a partition ofH and of its inverseG := H−1 and a partition ofF and of its
inverseE := F−1 in the form

V :=
[

V11 V12

V21 V22

]
, W :=

[
W11 W12

W21 W22

]
, H :=

[
H11 H12

H21 H22

]
, G :=

[
G11 G12

G21 G22

]
,

F :=
[

F11 F12

F21 F22

]
, E :=

[
E11 E12

E21 E22

]
.

By the strict nature of the LMI constraints involved and a perturbation argument, there is no loss
of generality in assuming thatV21, W21, H21, G21, F21 andE21 are invertible. See for instance [6]
for a detailed justification. We then introduce the notations

ΠV :=
[

V11 I
V21 0

]
, ΠW :=

[
I W11

0 W21

]
, ΠH :=

[
H11 I
H21 0

]
, ΠG :=

[
I G11

0 G21

]
,

ΠF :=
[

F11 I
F21 0

]
, ΠE :=

[
I E11

0 E21

]
.

In turn, these matrices are invertible by the assumptions onV21, W21, H21, G21, F21 andE21. One
can then readily verify the identities

VΠW = ΠV , WΠV = ΠW, HΠG = ΠH , GΠH = ΠG FΠE = ΠF , EΠF = ΠE.

For anH2 specification, we perform the congruence transformations

diag(ΠW,ΠE, I ,ΠW,ΠG), diag(ΠW,ΠE,ΠG, I),

on the first and second inequalities (ii) of Proposition2.1, respectively. For anH∞ specification,
we perform the congruence transformation

diag(ΠW,ΠE, I ,ΠW,ΠG, I)

in (6) of Proposition2.2. For inequalities involving uncertainty blocks, last inequalities in (4) and
(6), we perform the congruence transformation

diag(ΠG,ΠE) .

This yields matrix inequalities which solely involves the terms ΠT
VAΠW ΠT

VB∆ΠE ΠT
VB1

ΠT
HC∆ΠW ΠT

HD∆∆ΠE ΠT
HD∆1

C1ΠW D1∆ΠE D11

 , (10)

and
ΠT

WXjΠW, ΠT
EQ jΠE, ΠT

GRjΠG ,
ΠT

WVΠW, ΠT
GHΠG, ΠT

EFΠE ,
(11)

and

ΠT
G

[
∆ 0
0 ∆K

]T

ΠF . (12)
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The variables(Xj ,Z j ,Q j ,Rj) are attached to a givenH2 or H∞ specification or channel, while
(V,W,H,G,F,E) are slack variables common to all specifications and channels.

Explicit computation and inspection of these terms reveal that by invertibility ofV21, W21, H21,
G21, F21 andE21, one can perform the following linearizing changes of variable:

linearizing changes of variable

DK11 := DK11, (13)

BK1 := VT
21BK1 +VT

11B2DK11, (14)

CK1 := DK11C2W11+CK1W21, (15)

AK := VT
11AW11+VT

21AKW21+VT
21BK1C2W11

+VT
11B2CK1W21+VT

11B2DK11C2W11, (16)

DK1∆ := DK11D2∆E11+DK1∆E21, (17)

DK∆1 := HT
11D∆2DK11+HT

21DK∆1 , (18)

BK∆ := VT
11B∆E11+VT

21BK1D2∆E11+VT
11B2DK11D2∆E11

+VT
21BK∆E21+VT

11B2DK1∆E21, (19)

CK∆ := HT
11C∆W11+HT

11D∆2DK11C2W11+HT
21DK∆1C2W11

+ HT
11D∆2CK1W21+HT

21CK∆W21, (20)

DK∆∆ := HT
11D∆∆E11+HT

11D∆2DK11D2∆E11+HT
21DK∆1D2∆E11

+HT
11D∆2DK1∆E21+HT

21DK∆∆E21, (21)

Xj := ΠT
WXjΠW, (22)

Q j := ΠT
EQ jΠE, Rj := ΠT

GRjΠG, (23)

U := VT
11W11+VT

21W21, M := HT
11G11+HT

21G21, N := FT
11E11+FT

21E21 (24)

∆K := FT
11∆G11+FT

21∆KG21. (25)

We have adopted a bold notation for the new variables. Note that these transformations are back
and forth because of the invertibility ofV21, W21, H21, G21, F21 andE21. The matrix inequality
terms in (10)-(12) then become linear in the new variables:

ΠT
VAΠW :=

[
VT

11A+BK1C2 AK

A+B2DK11C2 AW11+B2CK1

]
,

ΠT
VB∆ΠE :=

[
VT

11B∆ +BK1D2∆ BK∆
B∆ +B2DK11D2∆ B∆E11+B2DK1∆

]
,ΠT

VB1 :=
[

VT
11B1 +BK1D21

B1 +B2DK11D21

]
ΠT

HC∆ΠW :=
[

HT
11C∆ +DK∆1C2 CK∆

C∆ +D∆2DK11C2 C∆W11+D∆2CK1

]
, ΠT

HD∆1 :=
[

HT
11D∆1 +DK∆1D21

D∆1 +D∆2DK11D21

]
,
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ΠT
HD∆∆ΠE :=

[
HT

11D∆∆ +DK∆1D2∆ DK∆∆
D∆∆ +D∆2DK11D2∆ D∆∆E11+D∆2DK1∆

]
,

C1ΠW := [C1 +D12DK11C2 C1W11+D12CK1 ] , D11 := D11+D12DK11D21,

D1∆ΠE := [D1∆ +D12DK11D2∆ D1∆E11+D12DK1∆ ] ,

ΠT
WΠV :=

[
V11 I
UT WT

11

]
, ΠT

GΠH :=
[

H11 I
MT GT

11

]
, ΠT

EΠF :=
[

F11 I
NT ET

11

]
.

Thanks to these transformations, the inequalities of Propositions2.1 and 2.2 which do not
involve a parameter block∆ become LMIs as desired.

Inequalities associated with the parameter block are rewritten
Rj ,1 Rj ,2 ∆TF11 ∆T

RT
j ,2 Rj ,3 ∆K

T GT
11∆T

FT
11∆ ∆K Qj ,1 +F11+FT

11 Qj ,2 + I +N
∆ ∆G11 QT

j ,2 +NT + I Qj ,3 +ET
11+E11

 > 0, ∀∆ ∈ P∆ , j = 1, . . . . (26)

They consist of a set indexed byj of parameterized inequalities with respect to∆. Recalling that
∆(k) is evolving in a polytopic setP∆, that is,

∆ :=
L

∑
i=1

αi∆i ,
L

∑
i=1

αi = 1, αi ≥ 0,

solution candidates can be searched for in the form

∆K(∆) :=
L

∑
i=1

αi∆K ,i , (27)

where the∆K ,i ’s are decision variables and theαi ’s are the polytopic coordinates of∆ in P∆ (see
[3] for other potential methods). Under this restriction, the constraints (26) are converted into a
finite set of LMIs

Rj ,1 Rj ,2 ∆T
i ∆T

i F11

RT
j ,2 Rj ,3 GT

11∆T
i ∆T

K ,i

∆i ∆iG11 Qj ,1 +F11+FT
11 Qj ,2 + I +N

FT
11∆i ∆K ,i QT

j ,2 +NT + I Qj ,3 +ET
11+E11

 > 0, i = 1, . . . ,L, j = 1, . . . (28)

wherei indexes the vertices ofP∆ and j indexes the channels and specifications.
Since for each channel andH2 andH∞ specifications, terms are of the form just derived, we

conclude that sufficient existence conditions for the multi-objective/channel LPV control problem
can be recast as an LMI program in the variablesV11, W11, H11, G11, F11, E11, ∆K ,i and the (bold)
variables defined in (13)-(24).

For practical needs, we provide LMI characterizations ofH2 andH∞ performance in Appendix
A.
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Remark. When the matrix polytopeP∆ is a hypercube centered at 0, what can always be achieved
for any hyper-rectangle by translation and scaling if necessary, then it is easily shown from the
LMI conditions (28) that solutions∆K ,i associated with opposite points of the polytope are also
opposite of each other. As a result, the solution family{∆K ,i}i=1,...,L determine a hypercube with a
similar arrangement as the original hypercube{∆i}i=1,...,L. With this in mind, the number of LMIs
indexed byi in (28) and the number of matrix variables∆K ,i can be reduced by a factor of 2.

3.3 LPV controller construction

Once a feasible solution of the LMI constraints (Appendix A) has been computed, the state-space
data (8) of the LPV controller are readily obtained as indicated below:

• compute an SVD factorization ofU−VT
11W11 and deduce invertible matricesV21 andW21

according to (24). Analogously, compute an SVD factorization ofM−HT
11G11 and N−

FT
11E11 and deduce invertible matricesH21, G21, F21 andE21 according to (24).

• compute the LPV controller data by sequentially reverting the changes of variable as speci-
fied in (13)-(21) .

• deduce the controller gain-scheduling function as

∆K(∆) := F−T
21

(
∑L

i=1 αi∆K ,i −FT
11∑L

i=1 αi∆iG11
)

G−1
21

:= ∑L
i=1 αi

(
F−T

21 ∆K ,iG
−1
21 −F−T

21 FT
11∆iG11G

−1
21

)
.

(29)

Hence, the scheduling function is affine in polytopic coordinates of the parameter block∆. In a
practical implementation, there is no need to compute the matrix product terms on line in (29).
Indeed,∆K(∆) can be rewritten as

∆K(∆) :=
L

∑
i=1

αiΦi , with Φi :=
(
F−T

21 ∆K ,iG
−1
21 −F−T

21 FT
11∆iG11G

−1
21

)
(30)

where theΦi ’s are computed off line.

Remark. An enriched class of scheduling functions∆K(∆) can be employed in place of a mere
linear expression in (27). This, however, can play adversely in terms of computational time since
additional variables are searched for. If structured symmetric scalings were used, and the controller
was forced to replicate the parameter block of the plant, i.e.,∆K := ∆, then it can be showed that
LMIs involving ∆ blocks disappear. This simpler characterization is then equivalent to those in
[17, 2] for the single-objectiveH∞ control problem. It is, however, more conservative than that
proposed in this paper.

4 Illustrative examples

In this section, we provide illustrations of the proposed method and comparison results with earlier
techniques. We consider an LFT plant (borrowed from [9]) of the form described in (1) and (2).
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We shall use the following partitioning notations for parameter and performance channels:

w∆︷ ︸︸ ︷wδ1

wδ2

wδ3

 =

∆︷ ︸︸ ︷δ1 0 0
0 δ2 0
0 0 δ3


z∆︷ ︸︸ ︷zδ1

zδ2

zδ3

 ,

z :=


z1

z2

z3

z4

 , w =
[

w1

w2

]
.

State-space data of the LFT plant are given in Appendix B.

4.1 Single-objective comparisons

It is first assumed thatδi , i = 1,2,3 are gain-scheduling variables with

δ1 = δ2 = δ3 |δi | ≤ 0.2.

Using different techniques, LPV controllers are synthesized to minimize theH∞ performanceγ of
the channel(w,z). Results are recapped in Table1.

method [17, 2] method [13, 22] proposed method method [21]
γ 22.07 21.98 21.98 21.98

Table 1:H∞-performance with various methods

Note that performance levels are nearly the same for all used methods. As theoretically pre-
dicted, the proposed method achieves a performance level which is always better than that of
method [17, 2] (structured symmetric scalings), and worse than that of method [21] (full-block
scalings). One cannot draw definitive conclusions from comparisons with method [13, 22] since
there is no inclusion relationships between the scaling sets involved. Hence, in this situation, the
advantage of either of these methods is essentially problem dependent.

4.2 A multi-objective example

Hereafter, we consider a multi-objective application of our technique. The gain-scheduling vari-
ables are nowδ1, δ2 with the normalization constraints|δi | ≤ 0.2, i = 1,2. The input-output pair
(wδ3,zδ3) is now regarded as theH∞-performance channel. TheH2 norm of the channel(w,z) is
then minimized subject to various constraints on theH∞ performance. This yields the tradeoff
curve in Figure2.

It is interesting to note that the problem becomes infeasible when the parametersδ1 andδ2 are
handled as uncertain parameters as opposed to scheduling variables except for very large values
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of the H∞ index associated withδ3. This enlightens the positive feature of the gain-scheduling
nature of the controller. A tradeoff point which provides a fairly good balance betweenH2 andH∞
criteria is pointed in Figure2.

20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

H
 ∞

  performance

H
 2

  p
er

fo
rm

an
ce

tradeoff point: (40.0,  27.8) 

18.1 

29.6 

Figure 2:H2/H∞ tradeoff curve in LPV synthesis

5 Conclusion

In this paper, we have developed a new method for addressing the mixedH2/H∞ multi-channel
LPV control problem in discrete-time. We have introduced new conditions forH2 andH∞ perfor-
mances of LPV systems. These conditions are then combined with appropriate transformations
on the controller data and on the controller scheduling function to end up with an LMI program
description of the solutions. A very favorable feature is that different Lyapunov/scaling pairs can
be used for each specification and channel what immediately reduces conservatism as compared
to earlier methods. Extensions of this method to the continuous-time case and to more general
classes of Lyapunov functions or scalings still remain challenging and will be considered in a
future research.

Appendix A - LMIs for mixed H2/H∞ multi-channel LPV synthesis

The formulas below describe the structure of the LMI constraints that must be encoded. One must
have in mind that for multiple channel specifications, the matrices

B1

D∆1

D11

D21

 , [C1 D1∆ D11 D12]
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appearing in the descriptions below should be modified in the appropriate way. Also, variablesXj ,
Z j , Q j , Rj , ν j andγ j should be introduced for each channel and specification indexed byj what
reduces conservatism. All other variables are common to all channels and specifications.
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Appendix B - State-space data


A B∆ B1 B2

C∆ D∆∆ D∆1 D∆2

C1 D1∆ D11 D12

C2 D2∆ D21 0

 :=



2 0 1
1 0.5 0
0 1 −0.5

1 0 1
0 0 0
0 0 0

0 0
1 0
0 0

1
0
0

0 0 0
0 1 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

1
0
0

1 0 0
0 1 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0
0 0
0 0
0 0

0
0
0
1

0 1 0 0 1 0 0 1 0


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