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Abstract. This paper deals with a new heuristic for the Steiner tree
problem (STP) in graphs which aims for the efficient construction of ap-
proximate solutions in very large graphs. The algorithm is based on a
partitioning approach in which instances are divided into several subin-
stances that are small enough to be solved to optimality. A heuristic
solution of the complete instance can then be constructed through the
combination of the subinstances’ solutions. To this end, a new STP-
specific partitioning scheme based on the concept of Voronoi diagrams
is introduced. This partitioning scheme is then combined with state-
of-the-art exact and heuristic methods for the STP. The implemented
algorithms are also embedded into a memetic algorithm, which incor-
porates reduction tests, an algorithm for solution recombination and a
variable neighborhood descent that uses best-performing neighborhood
structures from the literature. All implemented algorithms are evaluated
using previously existing benchmark instances and by using a set of new
very large-scale real-world instances. The results show that our approach
yields good quality solutions within relatively short time.

1 Introduction

The Steiner tree problem (STP) in graphs is a fundamental NP-hard combi-
natorial optimization problem with numerous applications, e.g., in telecommu-
nication network design or computational biology. In the STP we are given an
undirected graph G = (V,E) whose node set V is the disjoint partition of ter-
minal nodes T , ∅ 6= T ⊂ V , and potential Steiner nodes V \ T as well as a cost
function c : E → Q+ assigning a nonnegative value to each edge. The goal is to
find a subgraph S = (VS , ES), VS ⊆ V , ES ⊆ E, of G spanning all terminals, i.e.,
T ⊆ VS , of minimum cost c(ES) =

∑

e∈ES
ce. The STP in graphs has received

significant attention from the scientific community in the last decades. Several
integer linear programming (ILP) formulations together with corresponding so-
lution methods have been developed [1] and the lower bounds arising from their
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linear programming relaxations as well as from Lagrangian relaxation or dual as-
cent have been studied, see, e.g., [2,3,4,5]. The current state-of-the-art approach
for solving instances of the STP to proven optimality has been proposed by
Polzin [4] and Daneshmand [6]. Their approach incorporates several algorithmic
techniques such as reduction tests [7], dual ascent, and construction of heuris-
tic solutions, within a branch-and-bound framework. Aside from exact methods
numerous metaheuristic approaches have been applied to the STP to compute
good solutions within shorter time, see e.g., [8,9,10].

In this work, we propose a new matheuristic and a memetic algorithm for the
STP. Our approaches, that will be detailed in the following, aim to effectively
solve very large-scale instances through the combination of graph partitioning
and state-of-the-art exact and heuristic methods for the STP. Note, that most
components of the algorithms discussed in the following are described in more
detail in the Master’s thesis of the third author of this work [11].

2 Partition-based Construction Heuristic

This section details the partition-based construction heuristic (PCH), which ap-
plies graph partitioning as a means to find a heuristic problem decomposition.
A given STP instance is heuristically divided into a set of smaller subinstances,
which are solved separately and whose solutions are combined into a feasible
solution to the original instance. In the past this concept has been applied to
compute good feasible solutions to large-scale instances of other NP-hard prob-
lems which require too much computational effort for current exact methods,
see, e.g., [12]. A general framework which follows a similar principle has been
proposed by Taillard and Voß [13]. Figure 1 visualizes the general framework and
its four main steps (partition, decompose, solve, and repair) that are described in
the following subsections, while Figure 2 depicts each stage of the process when
applied to a simple problem instance. Note that we assume that preprocessing
in the form of reduction tests has been applied prior to the PCH.

2.1 Step 1: Partition

The goal of the first step is to compute a partition of the instance graph, which
is used later on to decompose the given STP instance into subinstances. As
indicated in Figure 1, given the preferred number of partitions k and a partition
imbalance parameter d, 1 ≤ d ≤ k, a partitioning algorithm AP is applied
to divide the given graph G into k subsets each containing no more than d ·
|V |
k

nodes. The parameters k and d enable a trade-off between solution quality
and runtime, i.e., a high number of small subinstances is solved easily, but the
resulting solution quality may in turn be low.

For heuristic problem decomposition to yield good quality solutions, the in-
dependence of the subinstances plays an important role. Given an STP instance
and a set of subinstances thereof, we consider the subinstances as independent if
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Fig. 1: A partition-based procedure for heuristic solution construction.

they can be solved separately, such that the union of their solutions corresponds
to the optimal solution of the original instance. In the context of the NP-hard
STP, completely independent subinstances do not exist in general (although in
some special cases an exact decomposition is feasible [4]).

Thus we propose two heuristic graph-structure based measures which de-
scribe the independence between potential subinstances: the edge-cut between
subgraphs and the distance between terminals. The first measure is aimed at
graphs of varying density, while the second measure focuses on instances that
contain terminal clusters.

Furthermore, we introduce the concept of the guiding solution SG to enhance
our partition-based decomposition algorithms. A guiding solution is a heuristic
solution to the given instance as a whole, potentially computed by a fast con-
struction heuristic able to efficiently process large-scale instances.

Both algorithms proposed in this article aim to construct a partitioning that
splits SG into k subtrees. The goal is to group terminals together into the same
subset, if they are connected by a short path in SG. If SG is already a good
approximation of the optimal solution’s structure, the subinstances’ solutions
are also likely to be similar to parts of the optimal solution.

Edge-based Partitioning (Eb). The objective of this algorithm is to find a parti-
tioning that minimizes the edge-cut of the instance graph. Given a graphG = (V,
E) with node weights wi, i ∈ V , edge weights cij , {i, j} ∈ E, an integer k > 1
and a partition imbalance parameter d, the goal is to find a balanced partition
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Fig. 2: PCH solution construction. (a) Graph after computing a partition (par-
titions marked by the dashed lines and terminals in black). (b) Subinstances
obtained from decomposition. (c) Solutions of subinstances (bold edges indicate
computed solutions). (d) Solution to original instance after repair.

of V into k disjoint subsets V1, . . . , Vk such that
⋃k

i=1 Vi = V and such that the
weight of the edges between different subsets is minimized. Thereby, by balanced
we mean that

∑

i∈Vi
wi ≤

d
k
·
∑

i∈V wi holds for each subset Vi, 1 ≤ i ≤ k. For the
purpose of problem decomposition for the STP, we assume that a heuristic parti-
tion suffices. In our implementation this task is handled by an efficient heuristic
implemented in the publicly available partitioning framework METIS [14], which
performs in linear time with respect to the number of nodes.

In our experiments we have considered two weighting schemes with either
uniform edge weights c′e = 1, ∀e ∈ E, (minimizing the size of the edge-cut) or
transformed original weights c′e = cmax − ce, ∀e ∈ E, with cmax = maxe∈E ce
(minimizing the weight of the edge-cut). For both weighting schemes we incor-
porate heuristic information provided by the guiding solution SG through weight
scaling, where the weights c′e of edges e ∈ SG are scaled by a certain priority
factor l to become heavier than regular edges. The goal is to make these edges
less likely to be included into an edge-cut, since partition subsets should be
computed so that they decompose the guiding solution into subtrees. For our
experiments we have chosen l = 2.



Voronoi-based Partitioning (Vb). Voronoi diagrams in graphs have been suc-
cessfully applied in the STP literature to design efficient local search and re-
duction techniques [4,10]. We now propose a new partitioning scheme for the
STP derived from the concept of Voronoi diagrams. In the context of the STP,
a Voronoi-diagram assigns each Steiner node to its nearest terminal, while ties
are broken arbitrarily. Thus the Voronoi diagram defines a partitioning of the
instance graph, where each subset contains exactly one terminal, as well as all its
closest Steiner nodes. Let P denote this initial partitioning, and let p ∈ P and
p′ ∈ P be disjoint subsets. Furthermore, let d[p, p′] denote the minimum distance
between any pair of terminals t1 and t2, where t1 ∈ p and t2 ∈ p′. Subsequently,
P is iteratively coarsened until it is sufficiently close to the specified partitioning
parameters k and d. The coarsening process is performed as follows:

1. Choose a subset p ∈ P such that |p| ≤ |p′|, ∀p′ ∈ P .

2. Merge p with an adjacent subset p′, such that d[p, p′] ≤ d[p, p′′], ∀p′′ ∈ P\{p},
and |p|+ |p′| ≤ |V | · d

k
.

3. If |P | > k and there exists p′, go to 1.

Always choosing the subset with minimum cardinality ensures that the cre-
ated partitioning is roughly balanced, since two large subsets can only be merged
if no smaller subsets exist. Note that this procedure ensures that partitions ad-
here to the imbalance parameter d. However, it may happen that the algorithm
terminates while more than k subsets remain, since no p′ exists such the balance
property is not violated. We consider this to be acceptable, since our primary
goal is to prevent subsets from becoming too large to be solved efficiently.

To incorporate information provided by a guiding solution SG, in Step 2 of
the procedure, subsets are only merged if there exists a path between them in
SG. Thereby, two subsets are only contracted if a path connects them directly
in SG, i.e., without passing through another subset first.

2.2 Step 2: Decompose

During the decomposition step a set of subinstances I1, . . . , Ik is constructed
from the original instance I = (G, T ), where G = (V,E) is the instance graph
and T ⊂ V is the set of terminals. The decomposition is performed based on
the partition P of G computed in the previous step. We consider the following
decomposition strategy which turned out to perform best among different alter-
natives considered, see [11] for more details. Given the partition P , the edges
EP corresponding to the edge-cut defined by P are removed from E. Thus G
is split into a set of subgraphs G1, . . . , Gk. From each subgraph Gi = (Vi, Ei),
a subinstance Ii = (Gi, Ti) is constructed, where Ti = Vi ∩ T . Note that this
method implies that the union of all solutions Si of Ii will only form a partial
solution in I, since all subinstances are disjunct. The remaining edges have to
be computed in Step 4 (repair).



2.3 Step 3: Solve

The algorithm used for the exact solution of the STP which is also used for
solving subinstances is based on a branch-and-cut (B&C) approach similar
to the one proposed by Koch and Martin [1], see also [5]. For each arc (i,
j) ∈ A = {(i, j) | {i, j} ∈ E}, an arc variable xij denotes membership of
the corresponding arc to the Steiner tree (xij = 1) or not (xij = 0). Simi-
larly, additional node variables yi for i ∈ V \ T denote if i is spanned by the
Steiner tree (yi = 1) or not (yi = 0). An arbitrary terminal is chosen as root
node r. For brevity, we use the following notations: Given a set W ⊂ V , we
define δ+(W ) = {(i, j) ∈ A | i ∈ W ∧ j ∈ V \W} as the set of all arcs with tail
inside W and the head in its complement. Conversely, δ−(W ) denotes the set of
arcs pointing into W from its complement set. For short, if W contains only a
single element v, we write δ+({v}) as δ+(v) and δ−({v}) as δ−(v), respectively.

(EDCF) min
{

∑

(i,j)∈A

cijxij | (x, y) ∈ {0, 1}|A|+|V |−|T |

x(δ−(i)) = 1, ∀i ∈ T \ {r}, x(δ−(i)) = yi, ∀i ∈ V \ T (1)

x(δ−(W )) ≥ 1, ∀ W ⊂ V, r 6∈ W, W ∩ T 6= ∅
}

(2)

The objective function minimizes the weight of the selected arcs. Degree
constraints (1) ensure that each terminal except the root and all Steiner nodes
that are part of the solution have in-degree exactly one. Constraints (2) are
directed cut constraints that ensure that there is a directed path between the
root and any other terminal node.

The following inequalities are additionally used to initialize the branch-and-
cut procedure:

x(δ+(i)) ≥ yi ∀i ∈ V \ T (3)

xij + xji ≤ yi ∀(i, j) ∈ A, i ∈ V \ T (4)

Constraints (3) ensure that Steiner nodes that are part of the solution have
at least one outgoing arc (they were referred to as “flow-balance” constraints
in the literature). Constraints (4) express that each arc in the solution tree can
only be oriented in one way. We also add root in- and out-degree constraints:
x(δ+(r)) ≥ 1 and x(δ−(r)) = 0 (notice that one can alternatively remove root-
incoming arcs from the input graph).

Since formulation (EDCF) contains an exponential number of directed cut
constraints (2) we implemented a branch-and-cut algorithm. The branch-and-
cut is initialized with all compact constraints and with a set of cut constraints
obtained through Wong’s dual ascent algorithm [5]. Thus, the linear program-
ming (LP) bound obtained from our initial model is at least as good as the one
obtained from dual ascent and hence a significant reduction of the runtime can
typically be observed, cf. [2,4]. We also initialize the upper bound using the fea-
sible solution obtained from dual ascent. Further cut constraints are separated



using the push-relabel maximum flow algorithm [15] and we also used nested
cuts, back cuts and creep-flow to improve the number and strength of separated
inequalities per call of the separation routine, see [1] for details. Our branch-
and-cut incorporates a primal heuristic which is called after each cutting-plane
iteration, in order to compute tight upper bounds that enable effective prun-
ing of nodes of the search tree. We apply the improved implementation of the
well-known shortest path heuristic (SPH) [16], combined with a pruning step
(MST-Prune) as proposed in [17], which achieves a much better average-case
runtime than the classic implementation. MST-Prune can potentially enhance
the solution constructed by SPH by computing a minimum spanning tree on the
set of nodes contained in the solution and recursively removing Steiner nodes of
degree one. SPH followed by MST-Prune is applied to the original undirected
graph with adapted edge weights c′ij = cij ·(1−max(x̃ij , x̃ji)), ∀{i, j} ∈ E, which
are computed from the current LP solution (x̃, ỹ).

2.4 Step 4: Repair

As mentioned above, solving the subinstances generated in the decomposition
step results in a set of disconnected partial solutions. Thus a repair step is
necessary to extend these into a feasible solution for the original instance. Given
a set of solutions Si, 1 ≤ i ≤ k, to subinstances Ii, the goal is to identify a set
of edges E′ such that

⋃

1≤i≤k Si ∪ E′ is connected.
In our implementation the edges E′ are computed through the construction

of an appropriate auxiliary STP instance to which either a heuristic or exact
algorithm can be applied. The auxiliary instance is obtained from the original
graph in which partial solutions Si, 1 ≤ i ≤ k are shrunk into “super-nodes”
(more precisely, “super-terminals”), self-loops are deleted, and among parallel
edges only the cheapest ones are kept. Subsequently, (1) for the heuristic repair:
SPH is performed followed by MST-Prune with a randomly selected terminal as
root, and (2) for the exact repair we use the branch-and-cut algorithm detailed
above.

3 Partition-based Memetic Algorithm

In this section, we present a memetic algorithm (to which we refer to as MPCH )
in which PCH is applied in combination with several other problem-specific
algorithms. The objective is to exploit synergy effects arising from the interaction
between multiple algorithmic components.

Within MPCH, PCH is always supplied with already available heuristic in-
formation in the form of a guiding solution and therefore does not construct
solutions from scratch. Given a population of solutions, PCH can be interpreted
as a specialized mutation operator, which introduces new information and po-
tentially enhances a given solution. Its application is also similar to the iterative
improvement provided by a local search procedure. In the proposed algorithm
PCH is not only applied to a solution once, but several times. The solution



Data: Instance I = (G,T, c), population size popmax, maximum number of
generations g, number of iterations without improvement n

Result: The best found solution S∗ and an associated lower bound lb.

pop← ∅
lb← 0

for popmax individuals do // Initialize population

(lb′, GA, c̃)← DA(I)
I ′ ← (GA, T, c)
S ← SPH(I ′)
S ← VND(I, S)

insertInPopulation(pop, S)
lb← max(lb, lb′)
reduce(I, c̃, lb, obj(best(pop)))

end

for g generations do // Generation step

foreach S ∈ pop do

S′ ← S
repeat

S ← PCH(I, S)
S ← VND(I, S)
S′ ← minobj(S

′, S)

until n iterations without improvement
replaceInPopulation(pop, S, S′)

end

pop← recombination(pop)

end

S∗ ← best(pop)

Algorithm 1: Partition-based Memetic Algorithm

produced in the previous iteration is subsequently used as a guiding solution in
the next step. This procedure is allowed to continue until no improving solution
has been found for a specified number of iterations. In the end, the best found
solution replaces the original guiding solution in the population.

Algorithm 1 shows the structure of MPCH whose components will be detailed
below. Basic population-based parameters are the population size popmax and
the maximum number of generations g. The parameter n restricts the number
of PCH applications without improvement. The whole procedure returns the
best found solution S∗ and an associated lower bound lb as an estimate of the
solution’s quality. In the following, let best(pop) return the best solution of the
population pop with respect to the objective value, and let obj(S) denote the
objective value of a solution S.

Generation of an initial population. In each iteration, the dual ascent algorithm
(DA) is executed with an arbitrary terminal as root node. The result is a satu-



ration graph GA, a lower bound lb′ and the reduced costs c̃. Subsequently, the
shortest path heuristic (SPH) is applied to GA to construct a feasible solution.
The result is improved through the application of variable neighborhood descent
(VND), see below. The resulting solution S is inserted into the population pop.
Finally, the currently best lower bound lb and upper bound (i.e., the objective
value of the best solution in pop), as well as the reduced costs c̃ from the current
iteration are used to apply bound-based reduction tests to the instance I. After
the population initialization, one obtains a population pop of (diverse) feasible
solutions together with a lower bound lb and a reduced instance graph G.

Generation step. In the main phase, the population is evolved for a fixed number
of generations, each of which consisting of two steps: individual improvement
and solution recombination. In the improvement step, PCH followed by VND is
applied in a multi-start fashion to each solution S ∈ pop. For the first iteration of
the multi-start procedure, S is used as a guiding solution for PCH. The guiding
solution for each subsequent iteration is the solution from the previous iteration.
The multi-start procedure continues until no improving solution has been found
within n consecutive iterations. After the termination of the multi-start, the best
obtained solution S′ replaces S in the population. In the second step, the current
population is recombined to potentially construct new high quality solutions. In
each recombination step, every solution in pop is combined with a randomly
chosen second solution while ensuring that each pair of solutions is considered
at most once. Given, such a pair of solutions S1 and S2 to create new solution
the STP is solved (either heuristically or exactly) on the union of the subgraphs
defined by the solutions. To prevent repetitive calculations of exact solutions
of subinstances that have been treated before, MPCH also employs a solution
archive storing optimal solutions of previously solved subinstances.

Variable neighborhood descent. Within variable neighborhood descent, we con-
sider the following four neighborhood structures (in the same order as presented)
from the literature using fast neighborhood evaluation recently proposed by
Uchoa and Werneck [10]:

– The Steiner node insertion neighborhood structure contains all solutions
which can be constructed from an initial solution S through the insertion of
a single Steiner nodes v /∈ VS (and edges {v, u}, u ∈ VS) and the application
of MST-Prune to the induced subgraph.

– The key-path exchange neighborhood structure contains all solutions which
can be constructed from a given solution S through exchanging a key path
P1 from S by a new key path connecting the two components of S obtained
after removing P1. Thereby, a path is called a key path if its endpoints are
either terminal nodes or Steiner nodes with degree at least three (in S) and
all inner nodes of the path are Steiner nodes of degree two.

– The key-node elimination neighborhood structure is defined by all solutions
that can be created from a given solution S by removing a single key node
(i.e., a Steiner node of degree at least three) as well as its incident key paths,
and reconnecting the resulting subtrees through a set of shortest paths.



4 Computational Results

In this section, our computational results are presented and analyzed. All algo-
rithms are implemented in C++ and compiled using GCC 4.8.1 with the full
compiler optimization flag (-O4). The B&C approach for model (EDCF) builds
upon IBM CPLEX 12.5, METIS [14] is used for computing a k-way graph par-
tition, and bossa [18] for preprocessing of STP instances. The test runs of all
experiments for which we report runtimes, have been computed on a single core
of an Intel Xeon E5540 2.53 GHz with 24 GB RAM.

Test instances have been selected by multiple criteria. We focused on large,
sparse instances, since these are the primary focus of our algorithm. Sets ES,
VLSI, and TSPFST have been chosen from the SteinLib [19]. The set VLSI con-
tains 10 instances with a low ratio of terminals, while ES and TSPFST contain 16
and 10 instances, respectively, with a relatively high number of terminals, see [11]
for more details. In addition, we use new large-scale real-world instances (10 par-
ticularly large instances from set I and 22 instances from set GEO) from telecom
applications [20]. These are on average larger than the instances contained in
the SteinLib, with up to 70 000 nodes and 110000 edges after preprocessing.

4.1 Evaluation of the Partitioning Algorithms

We first evaluate the proposed partitioning algorithms. For comparison purposes,
each algorithm is applied together with the heuristic repair algorithm, since this
configuration is expected to require the lowest runtime. This choice does not
have any impact on the performance of partitioning, since the application of
these techniques is independent from each other.

Table 1 details the solution quality obtained from the different partitioning
schemes. Each column contains results for a different partitioning scheme and
the given parameters k and d. The following abbreviations are used: Eb and V b
denote the edge-based and Voronoi-based partitioning schemes, cu and corig are
the uniform and original weighting strategies for Eb, while SG denotes the use
of a guiding solution. This guiding solution is constructed by applying SPH and
MST-Prune in the auxiliary graph generated by dual ascent. Note that instance
set GEO is not considered in this initial experiments, since the structure of these
instance is quite similar to the one of instances from set I.

We note that the results confirm that the parameters k and d affect PCH
as intended. In most cases, a clear progression is visible concerning runtime
(cf. [11]) and solution quality when the values of |T |/k and d are increased. The
creation of larger, imbalanced subinstances yields an improved solution quality,
but increases the runtime, since the created subinstances take longer to be solved.
Furthermore, we observe that V b outperforms Eb with respect to the obtained
solution quality in almost all cases. In addition, the solution quality obtained
when using Eb heavily depends on the chosen parameter values which is not true
for V b. Our results also clearly indicate that the edge-cut of a graph is not a
good measure to encourage the construction of good quality solutions. For V b we



Table 1: Comparing partitioning schemes in PCH w.r.t. the average gaps between
the computed solutions and the known optimum for each method [%]. Smallest
average gaps per considered setting are marked bold.

Edge-based partitioning (METIS) New Voronoi-based
partitioning

|T |/k d cu corig cu, SG corig, SG - SG

ES 10 1 8.88 9.13 8.57 8.13 1.54 0.98

2 1.99 1.43 1.37 1.05 1.03 0.69

3 1.82 1.24 1.29 0.94 0.97 0.63

100 1 3.41 3.90 1.35 1.53 0.37 0.18

2 0.67 0.64 0.58 0.42 0.22 0.14

3 1.63 0.95 0.80 0.75 0.20 0.13

VLSI 10 1 55.39 44.57 45.02 42.67 3.30 1.25

2 8.65 7.95 5.22 4.62 1.29 0.97

3 11.82 12.92 6.61 6.74 1.00 0.81

100 1 25.50 25.15 19.99 20.09 1.86 0.65

2 3.30 1.61 1.34 1.14 0.63 0.58

3 3.27 1.46 1.23 1.11 0.71 0.68

TSPFST 10 1 7.42 7.33 8.50 7.50 1.69 1.12

2 1.82 1.34 1.37 1.14 1.07 0.82

3 1.80 1.30 1.33 1.12 0.98 0.81

100 1 4.55 4.24 4.03 4.02 0.43 0.28

2 0.59 0.53 0.40 0.73 0.35 0.19

3 0.57 0.34 0.41 0.35 0.23 0.14

I 10 1 0.903 0.863 0.986 0.826 0.094 0.039

2 0.241 0.198 0.144 0.125 0.056 0.028

3 0.234 0.201 0.149 0.112 0.046 0.028

100 1 0.340 0.296 0.320 0.281 0.094 0.011

2 0.090 0.109 0.058 0.083 0.038 0.006

3 0.097 0.076 0.065 0.111 0.016 0.006

observe that increasing d generally leads to better results. The exception is the
VLSI instance set, for which d = 2 achieves the best results. We conclude that
in instances which contain only a very small percentage of terminals, making
subsets in a partition too big may lead to less favorable results than creating
smaller subsets and connecting them heuristically. We also note that the average
runtime of V b is typically lower than the one of Eb and even for those cases where
Eb was faster the difference was typically less than a second. We note that the
running times of V b are significantly larger than those of Eb only when using
large values of d on instance set I. This is, however, compensated by better
solution quality. We further note that using a guiding solution speeds up V b for
all considered parameter values. Overall, we conclude, that V b performs much
better both with respect to solution quality and runtime, and is also a much more



robust strategy with respect to the choice of parameters. Thus, only V b with a
guiding solution is used when referring to PCH in the remaining experiments.

4.2 Comparison to other Methods

Tables 2 and 3 compare average gaps to the best known objective values (which
are proven optimal values except for several of the GEO instances) and average
runtimes grouped by instance set, see also Figure 3 for a graphical representation.
In the listed results SPH+VND refers to applying the shortest path heuristic
(SPH) followed by VND, and DA+VND to a variant of SPH+VND applied to
the auxiliary graph which remains after execution of the dual ascent algorithm.
The latter may not only provide better solutions but more importantly also
provides a lower bound for the estimation of the solution’s quality. PCH+VND
refers to a using PCH as initial solution for VND using the best parameters
from preliminary experiments (i.e, Voronoi-based partitioning with k = |T |/100,
d = 3, guiding solution, and heuristic repair), see also [11]. Thereby, the guiding
solution is produced as in DA+VND. MPCH is the memetic algorithm with
parameters g = 3, popmax = 10, n = 2, which have been determined in pre-
liminary experiments, see also [11], and using the exact solution recombination.
PCH is internally applied as in PCH+VND.

In all variants, the time limit for each exact solution of a subinstance is set
to t = 100s. Finally, HGPPR refers to the hybrid GRASP with perturbations
and path relinking proposed by Ribeiro et al. [9] which has been rerun on our
environment. The publicly available implementation [18] has been configured as
follows: The number of iterations for the GRASP is fixed to 128. For the path
relinking phase, no restriction is enforced, and the algorithm only terminates if
no improved solution can be found based on the current population. Adaptive
path relinking is used, which means that the program tests the runtime of two
different path relinking algorithms for a few iterations, and chooses the faster
one. In the following, we present both solution quality and runtime for only
the GRASP phase and also the full procedure. The results after the GRASP
phase are denoted by HGP, while the result of the full procedure are denoted by
HGPPR. We note that although HGPPR has been applied to all instance sets
in our experiments, we have been unable to record any meaningful results for
the instance set GEO, since the used implementation failed to process this type
of instance correctly. In addition to the heuristic approaches, we also show the
results for the B&C with a time limit of 24 hours. Note that we did not compare
to the state-of-the-art exact approach of Polzin [4] and Daneshmand [6] since
their implementation is not publicly available.

We observe that the combination of SPH and VND produces good quality so-
lutions fast, even for larger instances. The dual ascent implementation typically
yields slightly better solutions but needs significantly more time for large-scale
instances. We see that a single iteration of PCH with local search yields excellent
results in a small amount of time and that for the large instances with many
terminals, a single iteration of PCH yields a better bound than HGPPR. The



Table 2: Comparison of different methods w.r.t. the average gaps between the
obtained and the best known solution values [%]. Smallest average gaps among
the VND-based methods and among the other methods marked bold.

SPH+VND DA+VND PCH+VND MPCH HGP HGPPR B&C

ES 0.82 0.57 0.12 0.04 0.32 0.09 0.005

TSPFST 0.88 0.70 0.14 0.03 0.31 0.09 0.037
VLSI 1.41 0.99 0.33 0.17 0.30 0.10 0.186
I 0.0264 0.0167 0.0019 0.0008 0.0100 0.0044 0.0000

GEO 0.9815 0.8595 0.2654 0.0681 - - 0.0478

Table 3: Comparison of different methods w.r.t. the average runtimes [s]. Smallest
average runtimes among the VND-based methods and among the other methods
are marked bold.

SPH+VND DA+VND PCH+VND MPCH HGP HGPPR B&C

ES 0.08 0.21 4.47 69.55 148.51 365.96 56.11

TSPFST 0.13 0.26 19.16 261.02 167.29 380.07 201.54
VLSI 0.11 0.39 37.77 117.63 47.33 76.76 458.13
I 4.14 31.31 156.95 1621.09 6262.05 63134.15 21906.91
GEO 2.02 10.78 200.28 1515.36 - - 20229.57

required runtime is also extremely low, in particular compared to the long run-
times of HGPPR. We conclude that PCH outperforms the other algorithms if
there are many terminal nodes.

Concerning MPCH, the number of iterations and exact recombination leads
to a significant runtime increase compared to PCH. Despite the fact that MPCH
is costly with respect to runtime, it clearly pays off regarding solution quality.
Note that an improvement is achieved in all cases compared to PCH+VND.
Moreover, MPCH also outperforms HGPPR in the majority of cases.

We note that the bossa framework containing HGPPR does not employ the
improved local search strategies. They employ Steiner node insertion/elimination
and key-path exchange but not their improved implementations which yield a
quite huge runtime for large-scale instances with many nodes. This clearly high-
lights the importance of the improved implementations of the neighborhood
exploration. We assume that the runtime of HGPPR can be improved greatly
through the application of these implementations. We also note that though
B&C is an exact method, it is quite competitive to the other methods. The av-
erage runtimes for the sets ES, TSPFST and VLSI are not that far away from
the ones of the more sophisticated heuristics considered. The worst performance
is achieved for the VLSI instances which are known to be very hard for ILP based
approaches due to their regular cost structure. For ES, the average runtime and
gap are even better than for other approaches. The average runtime for the I
instance set is large, but not as large as the one of HGPPR. Only MPCH seems
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Fig. 3: A graphical representation of the performance comparison from Table 2
and Table 3 comparing PCH+VND, MPCH, HGPPR and B&C.

to achieve an average gap close to B&C. We therefore conclude, that B&C is a
very powerful approach by itself, and that even if the time available for exact
solution is limited, acceptable results can be achieved.

5 Conclusions

In this article, a new partition based construction heuristic (PCH) for effectively
solving large scale STP instances has been proposed. PCH combines a novel ap-
proach to STP graph partitioning with state-of-the-art exact and heuristic meth-
ods. The approach has also been incorporated into a partition-based memetic
algorithm (MPCH). Computational experiments have been performed on stan-
dard benchmark instances from the literature and new real-world instances from
telecommunications. The obtained results show that PCH is able to produce high
quality solutions (with gaps close to zero) and is competitive to other state-of-
the-art methods for the tested instances. In addition, the algorithm’s runtime
is orders of magnitude faster than the other methods for large-scale instances.
The introduced concept of Voronoi-based partitioning clearly outperforms other
tested variants and performs excellent in particular on sparse graphs and when
the relative number of terminals is relatively high or when a natural clustering of
terminals exists in an instance. Further improvements with respect to solution
quality have been achieved in MPCH which come, however, at the price of a
significantly higher runtime.
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