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Smooth trajectory planning methods
using physical limits

An Yong Lee1 and Youngjin Choi2

Abstract

In order for robots to be operated in a variety of environmental conditions, a smooth motion trajectory to goal point is

needed in accordance with actuators specifications of the robot. In this paper, a conventional cubic polynomial method

for symmetric curve (S-curve) trajectory planning is extended to the smooth (infinitely differentiable and continuous)

symmetric and asymmetric curve (AS-curve) trajectory planning derived from a smooth jerk function. In other words,

the proposed methods are able to generate the trajectory as S/AS-curve form as well as to satisfy several physical limits

such as jerk limit, acceleration limit, and velocity limit. The effectiveness of the proposed methods is shown through

comparative studies with existing method.
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Introduction

Accompanied by the development of the computer-
ized machines such as industrial robots and CNC
(computer numerical control) machines, a fast and
high precision motion control issue becomes more
and more important. For the fast motion control,
the inertias and masses of the moving parts in the
computerized machine have been designed as light
as possible, but it may cause the vibration problems
due to the decrease of the structural stiffness. On the
other hand, a smooth desired trajectory must be one
of the important issues for the fast and high precision
motion implementation. The smooth trajectory
implies infinitely differentiable and continuous func-
tion, in short C1 function, in the paper. Most tasks of
the industrial robots and CNC machines are given by
either point-to-point moving or trajectory following,
but this paper focuses on the trajectory tracking task
of the robot and CNC control systems.

The smooth behavior of the robots and CNC
machines improves a possibility for reducing the
motion error that occurs while following the desired
trajectory. When the fast and reliable motion is
required for the computerized machines, higher-
order (over third-order) polynomials are normally uti-
lized, but they may yield a retrograde motion because
they have large oscillations of the trajectories them-
selves.1 Moreover, if the jerk (derivative of acceler-
ation) is not limited within the actuator
specification, it may cause the machines being
damaged.1–3 It is also known that the jerk

minimization is required for the precise control per-
formance such as a hard disk control.4 In addition, a
residual vibration of the mechanical systems becomes
one of the important issues for the control design as
well as the desired trajectory planning. The trajectory
planning considering the frequency response of the
system was suggested in Biagiotti and Melchiorri.5

An objective function containing both terms propor-
tional to the integral of the squared jerk and the total
execution time was proposed in Gasparetto and
Zanotto6–8 for the smooth trajectory. The higher-
order polynomial functions have been utilized for
the robotic manipulation in Boryga and Grabos.9

The optimal cubic-spline planning considering phys-
ical constraints was suggested in Rivera-Guillen
et al.,10 Storey et al.,11 and Ghasemi et al.12 for the
smooth trajectory. Moreover, a coordinate-free
description for rigid body motion trajectories was sug-
gested in De Schutter.13

On the other hand, since the industrial robots and
the CNCmachines require fast real-time control in low
cost processors, the trajectory planning should be
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simple algorithms for practical use as suggested in Ahn
et al.14 and Macfarlane and Croft.15 Also, if we are to
use the higher-order polynomials considering the actu-
ator specifications simultaneously, then the computa-
tional complexity is greatly increased. As an
alternative, cubic (third-order) symmetric curve
(S-curve) trajectory planning has been used for
motion profile instead of the higher-order polyno-
mials. Advantages of the cubic S-curve trajectory plan-
ning are as follows; first it can be generated while
satisfying the physical actuator specifications such as
actuator’s velocity and acceleration limits, second it
can be realized with low computational cost.3,16–19

Indeed, we have much more trajectory generation
methods than the aforementioned, such as linear seg-
ment with parabolic blends (LSPB) and digital con-
volution-based method. The LSPB method in
Costantinescu and Croft20 and Bobrow et al.21 has
been utilized for the desired trajectory generation,
but it requires high computational effort in advance
to match the blending points. The digital convolution-
based method in Jeon and Ha22 and Lee et al.23 must
be efficient in a computational point of view, it may
have a residual error at the final stage due to the dis-
cretization effect. Also, the digital convolution-based
method was able to produce only symmetric
trajectories.

The smooth symmetric curve (S-curve) trajectory
planning method has been proposed in our previous
paper.24 In this paper, the smooth S-curve method is
extended to the asymmetric curve (AS-curve) case of
the velocity profile. When we use the asymmetric vel-
ocity profiles, the resulting motion is generated with
different starting and approaching speeds. The basic
idea of asymmetric curve velocity profiles has been
suggested in Zou et al.25 and Tsay and Lin,26 but
the jerk profile was not guaranteed to be continuous
while switching between the maximum and the min-
imum. The paper is organized as follows: the conven-
tional S-curve trajectory planning method is explained
in the next section. The section following it presents
the smooth S-curve and AS-curve trajectory planning
methods by replacing the min/max jerk profile with
the smooth jerk function. For this, several conditions
to be satisfied are developed in terms of specific time
intervals. And then the simulation and experiment are
performed to show the effectiveness of the proposed
method in a later section. And finally, conclusions are
given in the last section.

Conventional S-Curve method using
min/max jerk

The conventional cubic S-curve trajectory planning is
first reviewed; here, two constant min/max values for
the jerk are utilized to generate the trajectory, but the
constant jerks make the acceleration not to be differ-
entiable. This is one of the disadvantages of the con-
ventional method. Here notice that two constant

min/max jerks are normally given as opposite signs
of the same magnitude. For given physical limits
such as Jmax (jerk limit given as an actuator specifica-
tion, note that Jmin¼ –Jmax), Amax (acceleration limit,
Amin¼ –Amax), and Vmax (velocity or speed limit), the
cubic S-curve trajectory planning is illustrated in
Figure 1. The constant jerk is integrated for the
given time interval in order to obtain the trapezoidal
acceleration profiles. Also, the acceleration and vel-
ocity profiles are sequentially integrated to obtain
the velocity and position ones, respectively. From
Figure 1, we can know that there are seven time inter-
vals. Also notice that the profiles in the figure were
obtained by applying all the zero initial/terminal con-
ditions with respect to velocity, acceleration, and jerk.
Now let us define the time intervals to be five inde-
pendent variables as follows:

Time intervals : Descriptions

tja ¼ t1� t0: acceleration ðconstant jerkÞ time

taa ¼ t2� t1: constant acceleration time

tja ¼ t3� t2: acceleration ðconstant jerkÞ time

tv¼ t4� t3: zero acceleration ðconstant velocityÞ time

tjd ¼ t5� t4: deceleration ðconstant jerkÞ time

tad ¼ t6� t5: constant deceleration time

tjd ¼ t7� t6: deceleration ðconstant jerkÞ time

As shown in Figure 1, the conventional S-curve
method generates the position profile from the rect-
angular jerk profiles by sequentially integrating them
with the corresponding initial conditions. In the con-
ventional method, since the acceleration time interval
tja is equal to the deceleration time interval tjd , the
symmetric curve (S-curve) trajectory is generated as
shown in Figure 1. In addition the constant acceler-
ation time interval taa becomes equal to the constant
deceleration time interval tad . Moreover, the conven-
tional S-curve trajectory has the constant velocity
time interval tv in the mid of the generated trajectory
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Figure 1. Jerk, acceleration, velocity, and position profiles by

conventional cubic S-curve trajectory planning.
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if the target distance is sufficiently large. Due to the
symmetric property of the conventional S-curve
method, seven time intervals (indeed, five independent
variables) are reduced to three ones as follows:

tj ¼ tja ¼ tjd : constant jerk time

ta ¼ taa ¼ tad : constant acceleration time

tv: constant velocity time

For each time interval, the S-curve trajectory is easily
generated from the initial conditions of the corres-
ponding time intervals as follows:

j ðtÞ ¼ j ðtþi Þ

aðtÞ ¼ j ðtiÞðt� tiÞ þ aðtiÞ

vðtÞ ¼
1

2
j ðtiÞðt� tiÞ

2
þ aðtiÞðt� tiÞ þ vðtiÞ

xðtÞ ¼
1

6
j ðtiÞðt� tiÞ

3
þ
1

2
aðtiÞðt� tiÞ

2

þ vðtiÞðt� tiÞ þ xðtiÞ

where ti4t4tiþ1 for i ¼ 0, 1, . . . , 6, and j ðtþi Þ, aðtiÞ,
vðtiÞ, and x(ti) represent initial conditions of jerk,
acceleration, velocity, and position trajectory of
each time interval, respectively. In particular, the ini-
tial/terminal conditions of piecewise continuous jerk
functions have the following properties: j ðt�0 Þ ¼ 0 and
j ðtþ0 Þ ¼ Jmax at t¼ 0, j ðt�1 Þ ¼ Jmax and j ðtþ1 Þ ¼ 0 at
t ¼ t1, . . . , j ðt�6 Þ ¼ 0 and j ðtþ6 Þ ¼ Jmax at t¼ t6. In add-
ition, the initial conditions of acceleration segments
should be within the actuator specifications as fol-
lows: Amin4aðtiÞ4Amax for each time interval of
i ¼ 0, 1, . . . , 6. In the case of the conventional
S-curve method, the sum of all the time intervals is
normally given by

tf,1 ¼ 4tj þ 2ta þ tv ð1Þ

Properties by actuator specifications

From the physical limits of the actuator, we can get a
few properties with respect to the constant jerk and
acceleration time parameters.

Property 1. For given actuator specifications, the
constant jerk time is upper bounded by using the
jerk and acceleration limits of the actuator as follows

tj4
Amax

Jmax
ð2Þ

where the equality is achieved if the jerk limit is con-
stantly continued until the acceleration profile arrives
at the acceleration limit.

In Property 1, the equality condition implies when
the maximum duration of the constant jerk time is
achieved. If the constant jerk time is determined
beyond the inequality of equation (2), the trajectory
is generated over the acceleration limit of the actu-
ator. Hence, Property 1 should be always satisfied
for the feasible trajectory.

Property 2. Assume that Property 1 is satisfied.
If the trapezoidal acceleration profile is generated
as shown in Figure 1, then the constant acceler-
ation time is upper bounded by using the jerk,
acceleration, and velocity limits of the actuator as
follows

ta4
Vmax

Amax
�
Amax

Jmax
ð3Þ

where the equality is achieved if the velocity profile
arrives at the velocity limit at the time instant
t3¼ 2tjþ ta in Figure 1.

The mathematical derivation of equation (3) is
given in Appendix A1. In Property 2, the equality
condition implies when the maximum duration of
the constant acceleration time is achieved.
However, as we can see in equation (3), non-posi-
tive value of ta, namely ta4 0, may appear accord-
ing to the actuator specifications. It indeed implies
that the constant acceleration time is not required
for the feasible trajectory. As an alternative, the
following property will be available for the feasible
trajectory.

Property 3. If Property 2 fails to provide a positive
ta> 0, then the constant acceleration time duration as
well as the acceleration limit are not required for the
trajectory. In other words, since ta¼ 0 and Amax is not
used for the trajectory, we again determine the
inequality condition of the constant jerk time instead
of Property 1 as follows

tj4

ffiffiffiffiffiffiffiffiffiffi
Vmax

Jmax

r
ð4Þ

where the equality is achieved if the velocity profile
arrives at the velocity limit at the time instant t3¼ 2tj
in Figure 1.

The mathematical derivation of equation (4) is
given in Appendix A2. In Property 3, the equality
condition implies when the maximum duration of
the constant jerk time is achieved without making
use of the acceleration limit of the actuator. For
given actuator specifications such as Jmax, Amax, and
Vmax, we first check whether Property 2 is able to
provide the feasible inequality condition or not. If it
is available, Properties 1 and 2 are utilized to deter-
mine the time parameters according to the distance to
be moved. Otherwise, Property 3 with ta¼ 0 is utilized
to determine the time parameter.
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Distance criteria

Let us consider the case that Property 2 provides a
feasible inequality condition. In this case, we have
two distance criteria; the first distance criterion is
defined as an unique distance that the velocity pro-
file does arrive at the velocity limit Vmax as one
point at the mid of the velocity profile as following
form

S1 ¼ Vmax
Amax

Jmax
þ
Vmax

Amax

� �
ð5Þ

where the mathematical derivation is given in
Appendix A3. The second distance criterion is
defined as the unique distance that the acceleration
profile does arrive at the acceleration limits Amax

and Amin as two points at the time instants t¼ tj
and t¼ 3tj without using Vmax due to tv¼ 0 as
follows

S2 ¼ 2Amax
Amax

Jmax

� �2

ð6Þ

where the mathematical derivation is given in
Appendix A4.

The third distance criterion is proposed for the case
that Property 2 does not provide a feasible inequality
condition. In the case, since ta¼ 0, the third criterion
is obtained as the unique distance that the velocity
profile does arrive at the velocity limit Vmax as one
point at the mid of the velocity profile without using
Amax as follows

S3 ¼ 2Vmax

ffiffiffiffiffiffiffiffiffiffi
Vmax

Jmax

r
ð7Þ

where the mathematical derivation is given in
Appendix A5.

Time parameters determination by target distance

Now we are to present how to determine the constant
jerk, acceleration, and velocity time parameters
through the comparison between the proposed dis-
tance criteria and a target distance. The target dis-
tance S to be moved is defined as the difference
between the initial position x(t0) and the terminal
x(tf), namely, S ¼ jxðtf Þ � xðt0Þj, in which tf and t0
imply the terminal and initial time instant for the tra-
jectory, respectively. Suppose that Property 2 pro-
vides a feasible inequality condition, then we have
three cases classified by the first and second distance
criteria.

Case I (when S4S1): If the target distance is
larger than the first distance criterion, then the con-
stant jerk and acceleration time parameters are deter-
mined from the upper limits of equations (2) and (3),
furthermore, the constant velocity time parameter

should be determined to accomplish the target dis-
tance as follows

tv ¼
S� S1

Vmax
ð8Þ

These results are summarized in the left column of
Table 1.

Case II (when S4S1 and S4S2): If the target dis-
tance is not sufficiently large, namely S4S1, then the
constant velocity time period is not required, thus
tv¼ 0. Also the target distance should be compared
with the second distance criterion again. Here if
S4S2, then it implies the case when the constant
acceleration time period is required to accomplish
the target distance. In this case, the constant acceler-
ation time parameter is determined with tv¼ 0 as
follows

ta ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

Amax
þ

Amax

2Jmax

� �2
s

�
3Amax

2Jmax
ð9Þ

where the mathematical derivation is given in
Appendix A6. These results are summarized in the
mid column of Table 1.

Case III (when S4S1 and S4S2): If the target
distance is very small, namely S4S1 and S4S2,
then both constant velocity and acceleration time per-
iods are not required to accomplish the target dis-
tance, thus tv¼ 0 and ta¼ 0. Integrating rectangular
jerk profiles three times becomes equal to the target
distance as follows

S ¼ 2Jmaxt
3
j ! tj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
S

2Jmax

3

r
ð10Þ

The result is summarized in the right column of
Table 1. On the other hand, suppose that Property 2
fails to provide a feasible inequality condition, namely
ta¼ 0, then we have two cases classified by the third
distance criterion.

Table 1. Three time parameters when Property 2 provides a

feasible inequality condition, where S1 and S2 are the distance

criteria defined by equations (5) and (6), respectively, and S is

the target distance to be moved.

S4S1

S4 S1 S4 S2 S4S2

tj
Amax

Jmax

Amax

Jmax

ffiffiffiffiffiffiffiffiffiffi
S

2Jmax

3

s

ta
Vmax

Amax

�
Amax

Jmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

Amax
þ Amax

2Jmax

� �2
r

� 3Amax

2Jmax
0

tv
S� S1

Vmax

0 0
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Case IV (when S4S3): If the target distance is
larger than the third criterion, then the constant
jerk time parameter is determined from equation
(4) and the constant velocity time parameter is
determined according to the target distance as
follows

tv ¼
S� S3

Vmax
ð11Þ

These results are summarized in the left column of
Table 2.

Case V (when S4S3): If the target distance is equal
to or smaller than the third distance criterion, then the
constant velocity time period is not required to
achieve the target distance, thus tv¼ 0. Integrating
the rectangular jerk profiles three times brings the
condition of equation (10) again. The result is sum-
marized in the right column of Table 2.

For the conventional S-curve method, how to
determine the constant jerk, acceleration, and velocity
time parameters according to the target distance has
been suggested till now. However, when the min/max
rectangular jerk functions are used, the generated tra-
jectory does not have infinitely differentiable prop-
erty. The next section will remedy it by introducing
the smooth jerk profile.

Smooth trajectory planning

For smooth trajectory planning, we are first to intro-
duce the smooth jerk function. Also, we will discuss
about both advantages and disadvantages of the pro-
posed method. Ultimately, the section proposes a
smooth asymmetric-curve (in short, AS-curve) trajec-
tory planning method.

Smooth jerk function

A smooth (infinitely differentiable and continuous)
jerk function as a sinusoidal one is introduced as
shown in Figure 2. Since the time integration of the
sinusoidal function will often require integrating by
part according to sequential integration from the
jerk to the position. Thus, we will make use of the
numerical (Euler) integration to get the acceleration,

velocity, and position trajectories from the following
discretized sinusoidal jerk function

j ðn�TÞ ¼ Jmax 1� cos
2�

tj
ðn�T� tiÞ

� �� �
ð12Þ

for ti 5 n�T5 tiþ1 with i¼ 0, 6, where �T implies
the sampling time, tj is the jerk time duration, n is
the integer so that nDT¼ t. For i¼ 2, 4, Jmax of
equation (12) is replaced with Jmin¼ – Jmax. Since
the acceleration, velocity, and position profiles are
obtained by the numerical integration, we have
only to determine three time interval parameters
such as tj, ta, and tv, for smooth S-curve trajectory.
Property 1 obtained from the rectangular jerk func-
tion should be modified because the sinusoidal jerk is
utilized.

Property 10. The shape of the jerk function of equa-
tion (12) is symmetric and the areas A and A0 in the
function must be equal to each other as shown in
Figure 2. Hence, the jerk time parameter is upper
bounded by using the jerk and acceleration limits of
the actuator as follows

tj4
2Amax

Jmax
ð13Þ

where we should notice that tja ¼ tjd ¼ tj for the
S-curve trajectory and tja 6¼ tjd for the AS-curve
trajectory.

Equation (13) in Property 10 is derived from the
fact that the shaded area of Figure 2 should be
equal to or smaller than the acceleration limit of the
actuator, namely 1

2 Jmax tj4Amax. The jerk time dur-
ation of equation (13) becomes two times larger than
that of equation (2). It would be the cost paid for the
smooth trajectory. In the sequel, Properties 2 and 3 in
the previous section will be also modified for the
smooth trajectory.

Property 20. For given acceleration profile obtained
by integrating the proposed jerk functions, since the
areas B and B0 in Figure 3 are equal to each other, the

Table 2. Three time parameters when Property 2 fails to

provide a feasible inequality condition, namely when ta¼ 0,

where S3 is the distance criterion defined by equation (7).

S4 S3 S4S3

tj

ffiffiffiffiffiffiffiffiffi
Vmax

Jmax

s ffiffiffiffiffiffiffiffiffiffi
S

2Jmax

3

s

ta 0 0

tv
S� S3

Vmax

0

Figure 2. The shape of the proposed jerk function

equation (12).
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constant acceleration time is upper bounded as
follows

ta4
Vmax

Amax
�
2Amax

Jmax
ð14Þ

where we should also notice that taa ¼ tad ¼ ta for the
S-curve trajectory and taa 6¼ tad for the AS-curve
trajectory.

Equation (14) is derived from the fact that the area
of acceleration profile shown in Figure 3 should be
equal to or smaller than the velocity limit of the actu-
ator, in other words, it is obtained from 1

2Amaxtjþ
Amaxta þ

1
2Amaxtj4Vmax with the maximum jerk time

duration tj ¼
2Amax

Jmax
. As we can see in equation (14), the

inequality condition might be infeasible according to
the actuator specifications such as ta40. It implies
that the constant acceleration time duration is not
required for the feasible trajectory. For the case of
ta¼ 0, we are to modify Property 3 as follows:

Property 30. If equation (14) fails to provide the feas-
ible condition, then the constant acceleration time
duration is not required, namely ta¼ 0. Also,
since the Amax is not utilized for the trajectory,

we should determine again the jerk time parameter
as follows

tj4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vmax

Jmax

s
ð15Þ

Equation (15) is derived from the fact that
1
4 Jmaxt

2
j þ

1
4 Jmaxt

2
j4Vmax due to ta¼ 0.

Extensions to AS-curve

The modified properties in the previous section are
extended to asymmetric curve (AS-curve) cases in
this section. The AS-curve can be generated by
using the different magnitude levels of jerk functions
for acceleration and deceleration segments. For
instance, the smooth AS-curve trajectory planning is
illustrated in Figure 4, by using the given physical
limits such as Jacc and Aacc for acceleration (in
short, acc) segment, and Jdec and Adec for deceleration
(in short, dec) segment. Differently from the S-curve,
we should consider five time intervals (tja , tjd , taa , tad ,
tv) for the AS-curve because tja 6¼ tjd and taa 6¼ tad . The
jerk time parameters for acc/dec segments are
obtained from the Property 10 as follows

tja4
2Aacc

Jacc
and tjd4

2Adec

Jdec
ð16Þ

Also we can get the constant acc/dec time parameters
from Property 20 as follows

taa4
Vmax

Aacc
�
2Aacc

Jacc
and tad4

Vmax

Adec
�
2Adec

Jdec
ð17Þ

If equation (17) fails to provide the feasible condi-
tions, namely taa40 and tad40, then both acceler-
ation and deceleration limits, such as Aacc and Adec,
are not required for the trajectory planning. For the

Figure 3. The shape of the acceleration profile obtained by

using the proposed jerk functions.
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case of taa ¼ tad ¼ 0, the jerk time parameters should
be determined from Property 30 as follows

tja4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vmax

Jacc

s
and tjd4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vmax

Jdec

s
ð18Þ

For simplicity, let us introduce the ratio parameter
between acc and dec time segments as follows

tjd ¼ kr tja and tad ¼ kr taa

where

kr ¼

ffiffiffiffiffiffiffiffi
Jacc
Jdec

r
¼

Aacc

Adec
ð19Þ

Also, we can easily confirm that the ratio satisfies
equations (16), (17), and (18). However, if we use
the ratio parameter of equation (19), it brings a con-
straint for physical limits to be satisfied. In other
words, we have three independent parameters and
one dependent parameter among Jacc, Jdec, Aacc, and
Adec. If we assign the jerk limit of the actuator to be
Jacc, then Jdec would be determined by the ratio par-
ameter and vice versa. Now we are to use the ratio of
equation (19) for notational simplicity.

Figure 4 shows typical examples of smooth trajec-
tory planning, in which Figure 4(a) is corresponding
to the S-curve when Jacc¼ Jdec (or kr¼ 1), Figure 4(b)
to the AS-curve when Jacc> Jdec (or kr ¼

ffiffiffi
2
p

), and
Figure 4(c) to the AS-curve when Jacc< Jdec (or
kr ¼ 1=

ffiffiffi
2
p

). In the case of the AS-curve, the sum of
all the time intervals is given by

tf,2 ¼ 2 tja þ tjd
� �

þ taa þ tad
� �

þ tv

¼ 2ð1þ krÞtja þ ð1þ krÞtaa þ tv ð20Þ

Distance criteria for AS-curve

Now, we are to modify three distance criteria derived
from the conventional S-curve method. If we can get
positive taa and tad from equation (17) (derived from
Property 20), then we have two distance criteria. The
first criterion S1 determines whether the constant vel-
ocity duration is required or not, namely whether
tv¼ 0 or not, as follows

S1 ¼
Vmax

2

Vmax

Aacc
þ
2Aacc

Jacc

� �
þ
Vmax

2

Vmax

Adec
þ
2Adec

Jdec

� �
ð21Þ

where it implies the sum of two distances of acceler-
ation and deceleration segments. Derivation of equa-
tion (21) is similar to Appendix A3.

The second criterion S2 determines whether the
constant acceleration and deceleration durations are

required or not, namely whether taa ¼ tad ¼ 0 or not,
while tv¼ 0, as follows

S2 ¼ Aacc
2Aacc

Jacc

� �2

þAdec
2Adec

Jdec

� �2

ð22Þ

where it implies the sum of two distances of acceler-
ation and deceleration segments with tv¼ 0.
Derivation of equation (22) is similar to Appendix A4.

On the other hand, if equation (17) fails to provide
the feasible inequality, then we set taa ¼ tad ¼ 0. Also,
we need to check whether the constant velocity dur-
ation is required to accomplish the trajectory or not,
namely whether tv¼ 0 or not. Thus, we have intro-
duced the third distance criterion as follows

S3 ¼ Vmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vmax

Jacc

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vmax

Jdec

s !
ð23Þ

where it implies the sum of two distances of acceler-
ation and deceleration segments with taa ¼ tad ¼ 0.
Derivation of equation (23) is similar to Appendix A5.

Time parameters for smooth AS-curve method

Now, we are ready to present how to determine five
constant time interval parameters through the com-
parison between the distance criteria (S1, S2, and S3)
proposed for the AS-curve and the target distance S.
Suppose that equation (17) (derived from Property 20)
provides the feasible inequality conditions, then we
have three cases classified by the first and second dis-
tance criteria.

Case I (when S4S1): If the target distance is
larger than the first criterion S1 of equation (21),
then four time interval parameters are determined
from the upper limits of equations (16), (17), and
the ratio parameter of equation (19). And the remain-
ing constant velocity time is determined according to
the target distance as follows

tv ¼
S� S1

Vmax
ð24Þ

These results are summarized in the left column of
Table 3.

Case II (when S4S1 and S4S2): If S4S1 and
S4S2, then the trajectory does not arrive at the vel-
ocity limit, in other words, tv¼ 0. After integrating
acceleration profile two times, we get the following
relation

S ¼
1

2
Aacc t2aa þ 3tja taa þ 2t2ja

� �
þ
1

2
Adec t2ad þ 3tjd tad þ 2t2jd

� �
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Now, if we apply the upper limits of equation (16) and
the ratio parameter of equation (19) to above equa-
tion, we have

taa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S

Aaccð1þ krÞ
þ

Aacc

Jacc

� �2
s

�
3Aacc

Jacc

tad ¼ krtaa

These results are summarized in the mid column of
Table 3.

Case III (when S4S1 and S4S2): If S4S1 and
S4S2, then the trajectory does not arrive at the phys-
ical limits of both velocity and accelerations, in other
words, tv¼ 0 and taa ¼ tad ¼ 0. After integrating jerk
profile three times, we get the following relation

S ¼
1

2
Jacct

3
ja
þ Jdect

3
jd

� �

Then by applying the upper limit of equation (16) and
the ratio parameter of equation (19) to above equa-
tion, we have

tja ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S

Jaccð1þ krÞ

3

s
and tjd ¼ krtja ð25Þ

These results are summarized in the right column of
Table 3. On the other hand, suppose that equation
(17) fails to provide the feasible inequality condition,
then taa ¼ tad ¼ 0 and we have two more cases classi-
fied by the third distance criterion.

Case IV (when S4S3): If S4S3, then the jerk
time durations are determined from upper limits of
equation (18) and the remaining constant velocity
time is determined according to the target distance
as follows

tv ¼
S� S3

Vmax
ð26Þ

These results are summarized in the left column of
Table 4.

Case V (when S4S3): If S4S3, then the constant
velocity time duration is not required to accomplish
the target distance, namely tv¼ 0. Integrating the jerk
profiles three times brings the conditions of equation
(25) again. These results are summarized in the right
column of Table 4. Till now, we have completed the
smooth AS-curve trajectory planning method. The
next section will show the effectiveness of the pro-
posed method through simulations and experiments.

Simulations and experiments

Application examples of the smooth S-curve and AS-
curve methods are first suggested with physical limits
of actuator, respectively. Also the comparative study
with the conventional method is presented to mention
both advantages and disadvantages of the proposed
smooth methods. The experimental results are finally
suggested for the verification of the practical use.

Example of smooth S-curve trajectory planning

Let us assume that we have an actuator with physical
limits such as Jmax¼ 20m/s3, here Jmax¼ Jacc¼ Jdec

Table 3. Five time parameters when equation (17) (derived from Property 20) provides the feasible inequality condition,

where S1 and S2 are the distance criteria defined by equations (21) and (22), respectively.

S4S1

S4 S1 S4 S2 S4S2

tja
2Aacc

Jacc

2Aacc

Jacc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S

Jaccð1þ krÞ

3

s

tjd krtja krtja krtja

taa

Vmax

Aacc

�
2Aacc

Jacc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S

Aaccð1þ krÞ
þ

Aacc

Jacc

� �2
s

�
3Aacc

Jacc

0

tad
krtaa

krtaa
0

tv
S� S1

Vmax

0 0

Table 4. Five time parameters when equation (17) fails to

provide the feasible inequality condition, namely when

taa
¼ tad

¼ 0, where S3 is the distance criterion defined by

equation (23).

S4 S3 S4S3

tja

ffiffiffiffiffiffiffiffiffiffiffi
2Vmax

Jacc

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S

Jaccð1þ krÞ

3

s

tjd krtja krtjd

taa
0 0

tad
0 0

tv
S� S3

Vmax

0
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for the S-curve, Amax¼ 3m/s2, here Amax¼Aacc¼

Adec, and V max¼ 2m/s. Since the given actuator spe-
cifications provide the feasible inequality condition
from equation (17), we can find the first and second
distance criteria from equations (21) and (22), here,
S1¼ 1.933m and S2¼ 0.540m.

First let us assume that the target distance is
S¼ 5m. Since the target distance is larger than the
first criterion, S4S1, we can find three nonzero time
intervals tj, here tj ¼ tja ¼ tjd for the S-curve, ta, here
ta ¼ taa ¼ tad , and tv from Table 3. The resultant

plots are shown in Figure 5(a). Also, we can confirm
from Figure 5(a) that all the profiles were generated
by making active use of the physical actuator
limits. Second, if we choose the target distance
S¼ 1.9m, then it corresponds to the conditions
S4S1 and S4S2 in Table 3. Accordingly, the
time interval parameters are easily determined with
tv¼ 0. Also, we can confirm from Figure 5(b) that all
the profiles were generated within the physical actu-
ator limits without the constant velocity time dur-
ation. Third, if S¼ 0.5m, then it corresponds to
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Figure 5. Simulation results for smooth S-curve corresponding to Cases I, II, III, IV, and V: (a) when S> S1 (Case I); (b) when S4 S1

and S> S2 (Case II); (c) when S4 S1 and S4 S2 (Case III); (d) when S> S3 (Case IV); (e) when S4 S3 (Case V).
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the conditions S4S1 and S4S2 in Table 3. Here, we
can confirm from Figure 5(c) that all the profiles
were generated within the physical actuator limits
without the constant velocity and acceleration time
durations.

On the other hand, assume that the physical limits
are Jmax¼ 20m/s3, Amax¼ 10m/s2, and Vmax¼ 4m/s.
Then, since the given actuator specifications do not
provide the feasible inequality condition from equa-
tion (17), we should find the third distance criterion
from equation (23), here, S3¼ 5.059m. Fourth, if the
target distance is given as S¼ 8m, then the time
interval parameters are found from the condition
S4S3 in Table 4. Now, we can confirm from
Figure 5(d) that all the profiles were generated
within the physical actuator limits without the con-
stant acceleration time duration. Fifth, if S¼ 4m, it
corresponds to the condition S4S3 in Table 4. Also,
we can confirm from Figure 5(e) that all the profiles
were generated within the physical actuator limits
without the constant velocity and acceleration time
durations.

Example of smooth AS-curve trajectory planning

For given physical limits of actuator such as Jacc¼
20m/s3, Jdec¼ 10m/s3, Aacc¼ 4m/s2, and Vmax¼

2m/s, the ratio parameter is determined to be
kr ¼

ffiffiffi
2
p

from equation (19), and then Adec¼

2.828m/s2 is accordingly determined from the
ratio parameter kr. Since the given actuator specifi-
cations provide the feasible inequality condition
from equation (17), we can find both the first and
second distance criteria as S1¼ 2.172m and
S2¼ 1.545m.

First, if S¼ 8m, then five nonzero time intervals are
determined from the condition S4S1 in Table 3. The
resultant profiles are suggested in Figure 6(a). Second,
if S¼ 2m, then it corresponds to the conditions S4S1

and S4S2 in Table 3. The generated profiles are
shown in Figure 6(b). Third, if S¼ 1.5m, then it cor-
responds to the conditions S4S1 and S4S2 in Table 3.
The result is shown in Figure 6(c).

On the other hand, let us assume that the
physical limits of actuator are Jacc¼ 20m/s3,
Jdec¼ 10m/s3, Acc¼ 7m/s2, and Vmax¼ 4m/s. With
kr ¼

ffiffiffi
2
p

, we can find Adec¼ 4.949m/s2. Then, since
the given actuator specifications do not provide the
feasible inequality condition from equation (17), we
should find the third distance criterion S3¼ 6.107m.
Fourth, if S¼ 8m, then we can determine three non-
zero time intervals from the condition S4S3 in
Table 4. The corresponding profiles are shown in
Figure 6(d). Fifth, if S¼ 4m, then it corresponds
to the condition S4S3 in Table 4. The result is
shown in Figure 6(e). From Figure 6, we can con-
firm that all the profiles were generated within the
physical limits of the actuator while making active
use of them.

Till now, we have shown the effectiveness of
smooth S-curve and AS-curve trajectory planning
methods through above two examples. The next
section will suggest the comparison results
between the conventional and the proposed smooth
methods.

Comparative study with the conventional method

The conventional method suggested in the section
‘‘Conventional S-curve method using min/max
jerk’’ and the proposed smooth S-curve planning
method are compared to show the differences
between them more clearly. When the target distance
is given as S¼ 5m, if the physical limits are equal to
the values (Jmax¼ 20m/s3, Amax¼ 3m/s2, and
Vmax¼ 2m/s) given in the first simulation of section
‘‘Example of smooth S-curve trajectory planning’’,
then the phase portraits between the velocity and
acceleration can be drawn as in Figure 7(a),
here notice that the blue lines are differentiable but
the red dotted line have four non-differentiable
points in Figure 7(a). Also the terminal time of con-
ventional S-curve method is tf,1¼ 3.317 s from equa-
tion (1) and that of the proposed method is
tf,2¼ 3.467 s from equation (20). Since the proposed
method makes use of the sinusoidal jerk functions, it
takes a little bit more time to arrive at the target
distance. Indeed, the time difference between them
becomes

tf,2 � tf,1 ¼
Amax

Jmax
ð27Þ

where we can confirm that the time difference of
tf,2� tf,1¼ 0.15 s is exactly equal to Amax/Jmax¼

3/20¼ 0.15 s.
Now let us move to the AS-curve case. When the

target distance is given as S¼ 8m, if the physical
limits are equal to the values (Jacc¼ 20m/s3, Jdec¼
10m/s3, Aacc¼ 4m/s2, Adec¼ 2.828m/s2, Vmax¼

2m/s) given in the first simulation of
section ‘‘Example of smooth AS-curve trajectory
planning’’, then we can confirm the smooth trajec-
tory as shown in Figure 7(b). Here, notice that the
red dotted lines have four non-differentiable points
in Figure 7(b).

Aforementioned, the proposed method brings the
smooth trajectory as an advantage, but it requires a
little bit more time to arrive at the target distance as a
disadvantage. As an alternative of the additional
elapsed time, if it is possible to choose the peak
value of the sinusoidal jerk function as twice max-
imum jerk of the conventional method, then we
can make the terminal time of both methods to
be the same values without changing the acceleration
and velocity limits. For example, when the physical
limits are given as Jacc¼ 1.25m/s3, Jdec¼ 0.625m/s3,
Aacc¼ 6.72m/s2, Adec¼ 4.75m/s2, and Vmax¼ 2.5m/s,
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if the peak values of the sinusoidal jerk functions
can be chosen as Jaccpeak ¼ 2:5 m=s3 ¼ 2Jacc and
Jdecpeak ¼ 1:25 m=s3 ¼ 2Jdec, then both the conven-
tional and the proposed methods make the trajec-
tories to be terminated at the same time as shown in
Figure 8.

Experimental results

The brushless EC-i40 (manufactured by Maxon
Motor) DC motor is used for the experiment.
According to the specifications of EC-i40, the nom-
inalspeed (maximum continuous speed) is

8940 r/min¼ 936.2 rad/s, the nominal torque
(maximum continuous torque) is 0.0708Nm and the
rotor inertia is 2.43� 10�6 kgm2. Now, let us deter-
mine the physical limits from above motor specifica-
tions as follows

Vmax ¼ 936:2 rad=s : nominal speed

Aacc ¼
0:0708

2:43� 10�6

¼ 29, 135:8 rad=s2 :
nominal torque

rotor inertia
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Figure 6. Simulation results for smooth AS-curve corresponding to Cases I, II, III, IV, and V: (a) when S> S1 (Case I); (b) when S4 S1

and S> S2 (Case II); (c) when S4 S1 and S4 S2 (Case III); (d) when S> S3 (Case IV); (e) when S4 S3 (Case V).
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Figure 8. Performance comparisons between the conventional and the proposed methods when peak values of the sinusoidal jerk

functions are twice max/min jerk values: (a) jerk profile; (b) acceleration profile; (c) velocity profile; (d) position profile.
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Since the EC-i40 does not provide the data related to the
jerk, we assume that the ratio between the jerk and
acceleration is similar to the ratio between the acceler-
ation and velocity (approximately 30 times). Then we
have:

Jacc ¼ 30� 29,135:8 ¼ 874,074 rad=s3 : 30 � Aacc

Also we assume that the deceleration is a half of the
acceleration, namely kr¼ 2. Now the remaining phys-
ical limits are determined as follows:

Jdec ¼ 218,518:5 rad=s3 : Jacc=k
2
r

Adec ¼ 14,567:9 rad=s2 : Aacc=kr

In addition, the peak values of sinusoidal jerk func-
tions are determined as twice max/min jerks such as
Jaccpeak ¼ 2Jacc and Jdecpeak ¼ 2Jdec. Using above physical
limits and the target distanceS¼ 62.8 rad, we are able to
make the trajectories as shown in Figure 9 by using the
conventional and the proposed methods. Notice that
the generated trajectories are corresponding to the
Case III (tv¼ 0 and ta ¼ taa ¼ tad ¼ 0).

The controller for EC-i40 motor is chosen as the
Elmo motor driver (solo whistle) with velocity mode.
For given desired trajectories in Figure 9, the PI con-
troller embedded in the Elmo motor driver is applied

in order to compare the performance difference
between both methods. During the experiments, the
velocity profiles were obtained as shown in
Figure 10(a). Since the measured velocity profiles
were noisy, the low-pass filter was applied and then
we could get the filtered velocity profiles of
Figure 10(b). Also we could confirm that the experi-
mental velocity profiles suggested in Figure 10(b) are
very similar to the desired velocity profiles of
Figure 9(c). In addition, the velocity/position errors
between the desired and actual (filtered) velocity/pos-
ition were suggested in Figure 10(c) and (d). As we
could see in Figure 10, the proposed smooth trajec-
tory could bring a little bit smaller errors than the
conventional method thanks to the smoothness of
the generated trajectory. This would be another
advantage of the proposed method.

Concluding remarks

The paper has proposed the smooth S-curve and AS-
curve trajectory planning methods by using the
sinusoidal jerk function. One of the big advantages
of the proposed method brought the smooth profiles
all the time, but it could be obtained at the cost of
the additional elapsed time. As an alternative to the
additional elapsed time, if it is possible to choose the
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Figure 9. Desired profiles generated from the conventional and the proposed methods: (a) jerk profile; (b) acceleration profile;

(c) velocity profile; (d) position profile.
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peak value of the smooth jerk function as twice max-
imum jerk for the conventional method, then we
showed that the terminal time of both methods
could be equal to each other. Moreover, all the pro-
files were obtained within the physical limits of the
actuator by making active use of them. Also, we
could confirm that the proposed smooth method
brings better motion control performance. Finally,
the effectiveness of the proposed method was pre-
sented through several simulations and experiments
accompanied by comparative studies with the con-
ventional method.

In future works, we are planning to apply the pro-
posed method to the medical systems such as rehabili-
tation or wearable robots because it requires smooth
jerk and acceleration behaviors for stable human–
machine interactions.
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Appendix

Derivation of equation (3)

Assume that Property 1 is satisfied. If the trapezoidal
acceleration profile is generated as shown in Figure 1,
then the constant acceleration time is upper bounded
by using the jerk, acceleration, and velocity limits of
the actuator as follows

1

2
Amaxtj þ Amaxta þ

1

2
Amaxtj4Vmax

tj ¼
Amax

Jmax
! ; ta4

Vmax

Amax
�
Amax

Jmax

ð28Þ

where the equality is achieved when the velocity pro-
file arrives at the velocity limit at the time instant
t3¼ 2tjþ ta in Figure 1.

Derivation of equation (4)

Assume that Property 2 fails to provide the positive ta.
Then both the constant acceleration time period and
the acceleration limit are not required for the trajec-
tory. In other words, since ta¼ 0 and Amax is not used
for the trajectory, we again determine the inequality
condition of the constant jerk time instead of Property
1 as follows

1

2
Jmaxt

2
j þ

1

2
Jmaxt

2
j4Vmax

; tj4

ffiffiffiffiffiffiffiffiffiffi
Vmax

Jmax

r ð29Þ
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where the equality is achieved when the velocity
profile arrives at the velocity limit at the time
instant t3¼ 2tj in Figure 1. In other words, the
equality condition implies when the maximum
duration of the constant jerk time is utilized
without making use of the acceleration limit of the
actuator.

Derivation of equation (5)

The first distance criterion is defined as an unique
distance that the velocity profile does arrive at the
velocity limit Vmax as one point at the mid of the
velocity profile as shown in Figure 11(a). As a math-
ematical form, the first distance criterion is defined by
the area of velocity profile shown in Figure 11(a) as
follows

S1 ¼ 2
1

2
Vmaxðtj þ ta þ tj Þ

� �
¼ Vmaxð2tj þ taÞ

¼ Vmax
Amax

Jmax
þ
Vmax

Amax

� �
ð30Þ

where the upper limits of constant jerk and accelera-
tion time parameters in Properties 1 and 2 were
applied to the above equation.

Derivation of equation (6)

The second criterion is defined as the unique distance
that the acceleration profile does arrive at the accel-
eration limits Amax and Aminð¼ �AmaxÞ as two points
at the time instants t¼ tj and t¼ 3tj, respectively, as
shown in Figure 11(b) without using Vmax due to
tv¼ 0. The second distance criterion is obtained by
integrating the acceleration profiles shown in
Figure 11(b) twice as follows

S2 ¼ 2
1

2
Amaxt

2
j þ

1

2
Amaxt

2
j

� �
¼ 2Amaxt

2
j

¼ 2Amax
Amax

Jmax

� �2

ð31Þ

where the upper limit of the constant jerk time
parameter in Property 1 was applied to above
equation.

Derivation of equation (7)

Since ta¼ 0, the third distance criterion is obtained as
the unique distance that the velocity profile does
arrive at the velocity limit Vmax as one point at the
mid of the velocity profile as shown in Figure 11(c)
without using Amax. The third distance criterion is
defined by the area of the velocity profile shown in

Figure 11(c) as follows

S3 ¼ 2
1

2
Vmaxð2tj Þ

� �
¼ Vmaxð2tj Þ

¼ 2Vmax

ffiffiffiffiffiffiffiffiffiffi
Vmax

Jmax

r
ð32Þ

where the upper limit of the constant jerk time
parameter in Property 3 was applied to above
equation.

Derivation of equation (9)

When S4S1 and S4S2, if the target distance is not
sufficiently large, then the constant velocity time
period is not required, thus tv¼ 0. Also, the target
distance should be compared with the second distance
criterion again. Here, if S4S2, then it implies the
case when the constant acceleration time period is
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Figure 11. Distance criteria.
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required to accomplish the target distance. After inte-
grating the first trapezoidal acceleration profile, the
maximum velocity of the trajectory is obtained as
follows

vmax ¼
1

2
Amaxtj þ Amaxta þ

1

2
Amaxtj ¼ Amaxðtj þ taÞ

and we can get the following relation

S ¼ 2
1

2
vmaxð2tj þ taÞ

� �
¼ Amaxð2t

2
j þ 3tjta þ t2aÞ ð33Þ

Now, if the upper limit of constant jerk time para-
meter of equation (2) is applied to the above equation,
then the constant acceleration time parameter is deter-
mined as follows

; ta ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

Amax
þ

Amax

2Jmax

� �2
s

�
3Amax

2Jmax
ð34Þ
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