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ABSTRACT 
In recent years, many computerized test systems have been developed for diagnosing students’ learning profiles. 
Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and 
precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing 
algorithms, based on ordering theory, item relational structure theory, Diagnosys, and domain experts, were 
evaluated based on the training sample size, prediction accuracy, and the use of test items by the simulation 
study with paper-based test data. Based on the results of simulation study, ordering theory has the best 
performance. An ordering-theory-based knowledge-structure-adaptive testing system was developed and 
evaluated. The results of this system showed that the two different interfaces, paper-based and computer-based, 
did not affect the examinees’ performance. In addition, the effect of correct guessing was discussed, and two 
methods with adaptive testing algorithms were proposed to mitigate this effect. The experimental results showed 
that the proposed methods improve the effect of correct guessing.  
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Introduction 
 
During the last two decades, from the functional aspect, many computerized test systems have been developed for 
estimating abilities of examinees (Chang, Lin, & Lin, 2007; Guzman & Conejo, 2005; Lewis & Sheehan, 1990; 
Sands, Water, & McBride, 1997; Sheehan & Lewis, 1992; Wainer, 2000; van der Linden, 2000; Tao, Wu, & Chang, 
2008; Yen, Ho, Chen, Chou, & Chen, 2010) or diagnosing students’ learning profiles (Appleby, Samuels, & 
Treasure-Jones, 1997; Chang, Liu, & Chen, 1998; Hwang, Hsiao, & Tseng, 2003; Liu, 2005; Tsai & Chou, 2002; 
Tselios, Stoica, Maragoudakis, Avouris, & Komis, 2006; Vomlel, 2004;Yu & Yu, 2006). From the theoretical aspect, 
some of them are based on item-response theory (IRT) (Chang et al., 2007; Guzman & Conejo, 2005; Lewis & 
Sheehan, 1990; Sands et al., 1997; Sheehan & Lewis, 1992; Wainer, 2000; van der Linden, 2000; Yen, et al., 2010), 
some of them are based on artificial intelligence techniques such as Bayesian networks (Liu, 2005; Tselios et al., 
2006; Vomlel, 2004), and others are based on knowledge structures. From the operational aspect, some of the 
computerized tests are adaptive and others are non-adaptive. The focus of this study is to construct computerized 
adaptive tests based on knowledge structures for diagnosing students’ learning profiles. 
 
The computerized adaptive test (CAT) can not only offer examinees customized items in accordance with their 
aptitudes or cognitive status, but can also shorten the test. The CAT based on IRT models can obtain efficient 
estimates of subjects’ abilities, but it cannot provide the capability to diagnose subjects’ cognitive concepts at a 
detailed level (Tatsuoka, Corter, & Tatsuoka, 2004; Yan, Almond, & Mislevy, 2004). Instead, knowledge structure- 
or artificial-intelligence-based adaptive tests can provide information about how well subjects performed on specific 
concepts, so they can achieve the diagnostic function (Appleby et al., 1997; Tatsuoka et al., 2004; Vomlel, 2004).  
 
Diagnosys, developed by Appleby et al. (1997), is a knowledge-based-computer diagnostic test of basic 
mathematical concepts. In Diagnosys, a method was proposed to estimate the knowledge structure of examinees and 
then apply this structure to build the adaptive testing process. Chang et al. (1998) have proposed adaptive test 
algorithms to construct a computerized adaptive diagnostic test based on knowledge structures constructed by the 
domain experts. The results of these two papers exhibit that the proposed algorithms have the capability of 
decreasing the use of test items and are able to precisely diagnose the cognitive status of examinees. However, the 
impact of correct guessing on the diagnoses of concepts is not considered in these studies. Correct guessing means 
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that an item is answered correctly by guessing in multiple-choice tests. In knowledge-based adaptive tests, if an item 
is answered correctly by guessing, then all prerequisite items of it are assumed to have been answered correctly. But, 
in actual fact, these prerequisite items may not have been answered correctly. In that situation, the precision of 
diagnosing results would be decreased. Moreover, the impact of correct guessing in adaptive testing would be greater 
than that in non-adaptive testing such as the traditional paper-and-pencil test.  
 
Tselios et al. (2006) used the Bayesian network to diagnose students’ problem-solving strategies with two distinct 
problems. The results show that the Bayesian network can estimate students’ problem-solving strategies very well, 
but it is not an adaptive test. Vomlel (2004) and Liu (2005) have proposed adaptive testing algorithms based on the 
Bayesian network. In their simulation study, the numbers of test items were 10 and 21, respectively. The 
experimental results show that the Bayesian network is a powerful tool to diagnose students’ learning status; 
however, it is difficult and time consuming to find the optimal adaptive testing strategy when the test is long.  
 
Ordering theory (OT; Airasian & Bart, 1973; Bart & Krus, 1973) and item relational structure theory (IRS; Takeya, 
1991) were proposed for displaying the students’ item structures. In previous studies (Bart & Krus, 1973; Takeya, 
1991), OT and IRS were used for developing instruction sequences or learning progress indices. In this paper, OT 
and IRS are used to estimate knowledge structures of examinees and apply them to new adaptive test algorithms. 
One of the currently existing problems is that there are many knowledge-structure-based adaptive testing (KSAT) 
algorithms but no study to evaluate their performance. The performance of the adaptive testing algorithm, 
Diagnosys, domain experts, OT, and IRS is evaluated by using the simulation study; moreover, the effect of correct 
guessing in the multiple-choice tests are also explored in this study. In comparison to the algorithm proposed by 
Appleby et al. (1997) and the domain experts, our algorithms significantly reduce the length of time to take tests, and 
the algorithm with the best performance is selected to construct a computerized adaptive diagnostic test to be used in 
an actual Grade five diagnostic mathematics test. The experimental results show that the computerized adaptive 
diagnostic test has performed as expected.  
 

 
Adaptive test algorithms based on knowledge structures  

 
A hierarchy concept network, knowledge structure, introduced by Gagne (1977) as a way of defining prerequisite 
association of concepts, is the combination of named individual concepts, a specified level for each concept, and 
specified directed links between concepts that joins them together into a hierarchy. As shown in Figure 1, concept D 
is linked forwardly to concept C, which means that concept D must be mastered before concept C can be attempted; 
that is, concept D is a prerequisite for concept C. 
 
By using this concept network, Appleby et al. (1997) proposed an inference mechanism (adaptive testing algorithm) 
that allowed the system to reduce the number of items that are administered in computerized adaptive diagnostic test. 
As shown in Figure 1, if the student gets concept D correct then it is inferred that he or she also knows its 
prerequisites (concepts F, G, H, and I). This algorithm in computerized adaptive diagnostic test can predict students’ 
learning profiles by using fewer items than original paper-based tests. 
 
The number of links has an impact on the use of test items. As the number of links increases, the use of test items 
decreases. In this paper, we propose adaptive testing algorithms with OT and IRS respectively.  
 

 
Figure 1. The knowledge structure 
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The domain experts’ knowledge structure 
 
Once a knowledge structure is constructed by practising teachers and domain experts, it is named as the domain 
experts’ knowledge structure. The procedures for constructing a domain experts’ knowledge structure are as follows. 
First, the domain experts define the important concepts of each unit by analyzing teaching materials and objectives. 
Second, after much discussion, the domain experts decide the sequence of the concepts development and 
relationships among these concepts to depict in a tree diagram the experts’ knowledge structure for each unit. Figure 
2 is an example of part of the domain experts’ knowledge structure for a triangle unit of mathematics used in 
elementary schools of Taiwan. In the domain experts’ knowledge structure, the upper-level concepts such as “find 
the isosceles triangle” are advanced concepts, while low-level concepts such as “find the right angle” are basic-level 
concepts. Generally, an item is developed to assess knowledge on a single concept. Diagnostic tests are developed by 
the concepts defined in the domain experts’ knowledge structure.  

Figure 2. Part of the domain experts’ knowledge structure for the triangle 
 
 
Knowledge structure from Diagnosys 
 
With Diagnosys, a paper-based pre-test is developed based on domain experts’ structures and is then administered to 
collect responses from students. This data was applied to develop the inference mechanism as follows. 
 

The relative frequencies of two concepts, A and B, are defined in Table 1. As shown in Table 1, ABf  represents the 

number of students with correct answers for both concept A and concept B. If BABABAAB ffff  , then 

concepts A and B are equivalent and the relation is denoted as A↔B. Therefore, if students understand concept A, 
they will understand concept B as well, and vice versa. Moreover, if BABA ff  , then concept A could be linked 

forwards to concept B. The relation denoted as A→B means that A is a prerequisite to B. The important 
characteristic of the link A→B is twofold:  
1. If the student gets an item on concept B correct, we can infer that she or he also understands concept A.  
2. If the student gets an item on concept A incorrect, we can infer that she or he also does not understand concept B.  
 
These two rules apply transitively across the structure according to the partial ordering given by the links. For 
example, for the network, A→B→C, if a student gets an item on concept C correct then we can infer that the student 
understands concept B due to direct inferences, but also A due to indirect transitive inferences. This algorithm allows 
the system to significantly reduce the number of items administered compared with a conventional test.  
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Table 1. Relative concepts frequency table 
 A (correct) A (incorrect) 

B (correct) ABf  BAf  

 B (incorrect) BAf  BAf  

 
Some inefficient problems are posed such as the definitions of ordering relation, equivalence and transition among 
concepts lack clarity while being inoperable. To improve these limitations, a threshold model is defined in this paper: 
 If diaBAABBABAAB ffff   )/()(*  then A↔B. 

 If diaBABAAB ff   /* , then A→B. 

 
 
Ordering theory and item relational structure theory 
 
In this paper, two other item ordering theories, OT and IRS are used for estimating knowledge structures of 
examinees and to develop new adaptive test algorithms. They are described briefly below: 
 
Let ),,,( 21 nXXXX  denote a vector containing n binary item score variables. Each student taking an n-item test 

produces a vector ),,,( 21 nxxxX  containing 1 (correct) and 0 (incorrect). Then the joint and marginal 

probabilities of items on concepts A and are represented in Table 2. 
 

Table 2 The joint and marginal probabilities of concepts A and B 
 concept B 

concept A 

 1BX  0BX  Total 

1AX  )1,1(  BA XXP  )0,1(  BA XXP  )1( AXP  

0AX  )1,0(  BA XXP  )0,0(  BA XXP  )0( AXP  

Total )1( BXP  )0( BXP  1 
 

For OT, let OTBAAB XXP   )1,0(* , usually 04.002.0  OT  (Airasian & Bart, 1973; Bart & Krus, 1973), 

concept A can be linked forward to concept B. The relation is denoted as BA  this means that A is a prerequisite 
to B. If BA  and AB  , then the relation is denoted as BA   and it means concepts A and B are equivalent.  
 

For IRS, Takeya (1991) proposed another index, *
ABr , which is used to define the ordering relation from concept A to 

concept B. The definition of *
ABr  is  

IRSBABAAB XPXPXXPr  ))1()0(/)1,0((1*  

If IRSABr * , then concept A can be linked forward to concept B. Usually the rule of thumb is to set 5.0IRS . 

 
 
The performances of knowledge-structure-based adaptive testing (KSAT) algorithms  
 
As mentioned above, four methods, Diagnosys, OT, IRS, and the domain experts, can be used to define knowledge 
structures. By applying these knowledge structures, the corresponding inference mechanisms (adaptive testing 
algorithm) are established. In this paper, we refer to them as knowledge-structure-based adaptive testing (KSAT). In 
this section, the performances of adaptive testing algorithms based on the four knowledge structures with different 
thresholds are compared and evaluated by using adaptive test simulation processes with a paper-based test dataset to 
determine the best algorithm. In these simulation processes, a paper-based test is taken owing to a limitation of 
computer equipment. The reason for using simulation is that there are hundreds of combinations of knowledge 
structure-based adaptive testing (KSAT) algorithms and thresholds. Finding a real computerized dataset for each 
combination is not feasible.  
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The use of test items and prediction accuracy of each combination are considered its performance. Mathematics 

definitions are defined in Table 3. As shown in Table 3, 11
ijf represents the frequency with which student j answered 

item i correctly, both in the simulated computerized adaptive diagnostic test and in the paper-based test; 00
ijf  

represents the frequency with which student j answered item i incorrectly, both in the simulated computerized 
adaptive diagnostic test and in the paper-based test. The prediction accuracy reflects a degree of similarity in the 
examinee’s responses to the simulated computerized adaptive diagnostic test and the paper-based test. The use of test 
items is the average items administered to the examinees in the computerized adaptive diagnostic test. One of the 
goals of this paper is to find the best algorithm, which is able to achieve better prediction accuracy with fewer 
averaged use of test items. Once the best algorithm is determined by the training data, it is used in the actual 
computerized adaptive test.  
 

Table 3. Definition of prediction accuracy and utilization of test items 
  Simulated computerized adaptive diagnostic test 
  Correct (1) Incorrect (0) 
 
Paper-based test 

Correct (1) 11
ijf  10

ijf  

Incorrect (0) 01
ijf  00

ijf  

Prediction accuracy: ))()(/1(
1

0011

1




n

i
ijij

N

j

ffNnPA  where  

 :threshold , 5.0  ,01.0,0   for Diagnosys and OT ; 1 ,02.0,0   for IRS  
j : the examinee from test samples Nj ,2 , 1   

i : the item ni ,2 ,1  

Use of test items: ))(/1(
1




N

j
jnNUI  where  

 : threshold, 5.0 ,01.0,0   for Diagnosys and OT ; 1 ,02.0,0   for IRS 

jn : the number of items that are administered to the examinee j in the computerized adaptive diagnostic test  

j : the examinee from test samples Nj ,2 , 1  

 
To take an example from Figure 1, if a student has completed a paper-based test consisting of nine items, the 
response patterns are shown in Table 4. In the simulation KSAT process, if the student gets concept D correct then 
we can infer that the student also understood concepts F, G, H, and I, although they were not administered. 
Compared to the responses of the paper-based test, prediction accuracy and utilization of test items are calculated by 
the above-mentioned formula, 89.0)9/8( PA , 5UI . 

 
Table 4. Responses for a paper-based test and a simulated computerized adaptive diagnostic test 

 Student responses 
 A B C D E F G H I 
Paper-based test 0 0 0 1 1 1 0 1 1 
Simulated computerized adaptive diagnostic test 0 0 0 1 1 1 1 1 1 

0: incorrect 1: correct 1: inferred correct  
 
 
Implementation of knowledge structure-based adaptive test (KSAT) system 
 
The knowledge structure-based adaptive testing (KSAT) system has been implemented with PHP and MySQL on 
APACHE web servers. Figure 3 shows the architecture of the knowledge structure-based adaptive testing (KSAT),  
which consists of 10 modules: Account Management Module, Item Bank Management Module, Test Management 
Module, Competency Module, Diagnosis Module, Adaptive Item Selection Module, User-profile Database, Item 
Bank Database, Knowledge Structure Database, and Test Result Database. 
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The Account Management Module provides creation and management of user accounts. The functions of Item Bank 
Management Module include items or the knowledge structure of specific unit updates, modification, and 
management. The Test Management Module can set the approach of test administration. The Competency Module 
estimates the competency of individual students or groups. The Diagnosis Module diagnoses the knowledge states of 
the student by using the response pattern of the student. The Adaptive Item Selection Module can administrate tests 
according to different adaptive test algorithms. According to the experiment results, the knowledge structure 
estimated by the ordering theory has been used to construct the adaptive test algorithm that was placed in this 
module.  
 
The following are several major interfaces of system. 
 
The user management interface in Figure 4 is multi-functional. It allows new users to have access to creating new 
user accounts, creating multiple new user accounts, importing accounts from other sources such as Excel, and giving 
access to the database. 
 
The test administration interface in Figure 5 displays the items and allows the examinees to answer the items 
presented. Since the KSAT system is an adaptive test, only one item per screen is presented.  
 
The group profile interface in Figure 6 displays the group result of the exam. For example, in concept 5 of the 
interface, 13 students passed and 19 students failed test 1. Instructors can then take this information and understand 
the distribution of students’ knowledge states and identify the strengths and weaknesses within a group. This 
information can be utilized for remedial instruction. 
 
The individual profile interface is shown in Figure 7 and 8. Upon completion of the test, the student receives a 
personalized profile including name, scores, percentile, utilization of test items, date taken, and so forth. In Figure 
14, the competency of the student for each concept in forms 1 to 3 is displayed. 
 

 
Figure 3. Architecture of knowledge structure-based adaptive testing (KSAT) system  
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Figure 4. The user management interface 

 

 
Figure 5. The test administration interface  

 

 
Figure 6. The interface for groups profiles 
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Figure 7. The profile for individual students interface 

 

 
Figure 8. The part of the diagnosis profile interface 

 
 
Experiment 1 and results 
 
The triangle unit of mathematics used in elementary schools of Taiwan was adopted to develop a paper-based test 
consisting of 35 items. The triangle mathematic test was administered to 660 selected fifth-grade students. As noted 
previously, four methods to define knowledge structures are mentioned. Three of the four methods require 
thresholds, , whereas the domain expert’s structure does not require a threshold. The threshold effects of three 
algorithms (Diagnosys, OT, and IRS) on the prediction accuracy and use of test items were explored in this 
experiment. The responses of selected students were randomly divided into two parts, training samples and test 
samples. The training samples were applied to estimate the knowledge structures, and the test samples were used to 
estimate the prediction accuracy and use of test items. This process was repeated 50 times to obtain 50 sets of 
prediction accuracy and the use of test items. The averages of prediction accuracy and use of test items were used to 
represent the algorithm performance. The standard deviations of prediction accuracy and use of test items were used 
to evaluate the stability of the four algorithms. Training samples (TS) 10, 50, 100, and 200 were used to investigate 
the impact of the sample size on the prediction accuracy and on the use of test items of different algorithms.  
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Figures 9 to 18 present the prediction accuracy and the use of test items of different adaptive testing algorithms with 
different training sample (10, 50, 100, and 200). The scale of the horizontal axis of IRS (thresholds 0.02, 0.04, . . .  
0.98) is different from those of Diagnosys and OT (thresholds 0.01, 0.02, . . . 0.50), so it is not displayed in the same 
graph. The horizontal axis represents the threshold,  , and the vertical axis represents the prediction accuracy, PA  

(Figures 9, 11, 13, 15, and 17) and the use of test items, UI  (Figures 10, 12, 14, 16 and 18). For example, in Figures 

9 and 10, if the knowledge structure of Diagnosys with 08.0  was applied, then ),20.1,821.0(),( 08.008.0 UIPA  

under the training samples, (TS) = 10. In Figures 17 and 18, if the knowledge structure of IRS with 58.0  was 
applied, then )77.23,984.0(),12.19,970.0(),33.14,952.0(),35.6,896.0(),( 58.058.0 UIPA  under the training samples 

(TS) = 10, 50, 100, and 200, respectively. The prediction accuracy and the use of test items of the algorithm based on 
domain experts’ structure are 0.917 and 18, respectively. Since constructing the domain experts’ structure does not 
need thresholds, it does not vary by thresholds.  
 
Those figures show that:  
1. Overall, the prediction accuracy and use of test items of Diagnosys and OT increase as the threshold decreases. 

The prediction accuracy and use of test items of IRS increase as the threshold increases. 
2. Compared with the results from domain expert’s structure ( )18,917.0(),( UIPA ), IRS 

( )58.8,923.0(),( 32.032.0 UIPA ), and OT ( )37.8,922.0(),( 08.008.0 UIPA ) are able to achieve higher prediction 

accuracies with less use of test items.  
3. For three test adaptive algorithms, Diagnosys, OT and IRS, the Diagnosys requires more training samples and 

higher use of test items to achieve the same or almost the same prediction accuracy in comparison to OT and 
IRS.  

4. The performance of OT is less sensitive to the training sample size than that of IRS and Diagnosys.  
 
For reducing the paper length without loss the generality, only three cases (case 1, case 2, and case 3) of means and 
standard deviations of prediction accuracies and their corresponding use of test items under the training sample size, 
200 are displayed in Table 5. Case 1, case 2, and case 3 mean the prediction accuracy, 0.90, 0.92, and 0.94, 
respectively. The reason for choosing these cases in range of 0.90 to 0.94 is that this range is around the prediction 
accuracy of domain experts’ structure and 0.94 is the maximum prediction accuracy that Diagnosys can achieve. 
 
For example, in Diagnosys, when the average of prediction accuracy and its corresponding use of test items are 0.90 
and 25.68, respectively, the standard deviations are 0.023 and 5.67, respectively. The range of standard deviations for 
prediction accuracy is 0.004 to 0.023, indicating that this simulation model is reliable. The lowest standard 
deviations of the prediction accuracy and the use of test items are all for the OT, so the OT has better performance on 
stability. 
 
According to the results of the experiment, Diagnosys requires a large sample size and a larger use of test items to 
obtain better prediction accuracy, so it is not suggested for use. OT can obtain better prediction accuracy with less 
use of test items and training samples; hence OT is implemented into the KSAT system.  
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Figure 9. The prediction accuracy of Diagnosys, OT, and expert for training samples 10 
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Figure 10. The use of test items of Diagnosys, OT, and expert for training samples 10 
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Figure 11. The prediction accuracy of Diagnosys, OT, and expert for training samples 50 
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Figure 12. The use of test items of Diagnosys, OT, and expert for training samples 50 
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Figure 13. The prediction accuracy of Diagnosys, OT, and expert for training samples 100 
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Figure 14. The use of test items of Diagnosys, OT, and expert for training samples 100 
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Figure 15. The prediction accuracy of Diagnosys, OT, and expert for training samples 200 
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Figure 16. The use of test items of Diagnosys, OT, and expert for training samples 200 
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Figure 17. The prediction accuracy of the IRS for training samples 10, 50, 100, and 200 



84 

 

0

3

6

9

12

15

18

21

24

27

30

33

36

0.0
2 0.1 0.1

8
0.2

6
0.3

4
0.4

2 0.5 0.5
8

0.6
6

0.7
4

0.8
2 0.9 0.9

8

IRS threshold

U
tilization of T

est Item

TS=10

TS=50

TS=100

TS=200

 
Figure 18. The use of test items of the IRS for training samples 10, 50, 100, and 200 

 
 

Table 5. The means and standard deviations (in brackets) of the prediction accuracy and use of test items 
  Case 1 Case 2 Case 3 

Diagnosys 
prediction accuracy 0.90 (0.023) 0.92 (0.015) 0.94 (0.016) 
use of test items 25.68 (5.67) 28.89 (2.43) 30.57 (2.17) 

IRS 
prediction accuracy 0.90 (0.010) 0.92 (0.007) 0.94 (0.007) 
use of test items 5.94 (1.003) 8.57 (1.163) 11.87 (1.400) 

OT 
prediction accuracy 0.90 (0.004) 0.92 (0.004) 0.94 (0.004) 
use of test items 5.60 (0.400) 8.37 (0.580) 10.39 (0.073) 

 
 
Improvement of the correct guessing in KSAT algorithms 
 
There are two major factors that affect the performances of adaptive testing algorithms. One is the theory to build 
knowledge structures and the other is the correct guessing of multiple-choice items. The effects of different theories 
are shown in the experiment 1, and we will discuss how to reduce the effect of the correct guessing in this section. In 
KSAT algorithms, if an item is answered correctly by guessing then all the prerequisite items of it will be assumed to 
be correct answers. This correct guessing would decrease the prediction accuracy of KSAT algorithms. Actually, the 
statistical nature of KSAT algorithms (especially OT) has the function to reduce the effect of correct guessing. Take 

OT as an example. OT, OTBAAB XXP   )1,0(* , if OTBA XXP  )1,0(  (i.e., concept A is not a 

prerequisite of concept B), then the correct guessing only affects the prediction accuracy of concept B; otherwise the 
prediction accuracy of concept A will be influenced by the correct guessing. If the threshold is small, then the effect 
of the correct guessing decreases. But the use of test items will increase.  
 
To improve this situation, two methods are proposed with KSAT. Take Figure 1 as an example, these two methods 
are described in the following. 
 
Most difficult item (MDI) method: Suppose item C is answered correctly, then the most difficult item (suppose this 
is item B) in its prerequisite items will be presented to the examinee. If item B is answered correctly, then item C and 
its prerequisite items are recorded correct; otherwise, C is recorded and other prerequisite items should be taken by 
the examinee.  
 
Prerequisite Item method (PI method): If item C is answered correctly, then the item with the largest number of 
prerequisite items (for example, item D) in C’s prerequisite items will be presented to the examinee. If item D is 
answered correctly, then item C and its prerequisite items are recorded as correct; otherwise, C is recorded as 
incorrect and other prerequisite items should be taken by the examinee. If none of the prerequisite items of C have a 
prerequisite item, then a randomly selected item is applied to the examinee.  
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Experiment 2 and results 
 
In this experiment, the performance of nine adaptive testing algorithms, Diagnosys, Diagnosys+MDI, Diagnosys+PI, 
OT, OT+MDI, OT+PI, IRS, IRS+MDI, and IRS+PI, were evaluated by using the same data set as Experiment 1. The 
use of test items and prediction accuracy were obtained by five-fold cross-validation. Results were presented in 
Table 6. For example, in Table 6, when the threshold was 0.01, the prediction accuracy of Diagnosys, 
Diagnosys+MDI, and Diagnosys+PI were 0.956, 0.996, and 0.992, respectively, and their corresponding use of test 
items were 32.64, 34.70, and 34.53. A Wilcoxon-Signed-Ranks test was used to compare the performances among 
nine models (Table 7). In Table 7, “Diag+MDI to Diag” indicates that the performance between original Diagnosys 
and Diagnosys with MDI was compared. Due to different thresholds, the performance of Diag+MDI, OT+MDI, and 
IRS+MDI were not explored. The results are as follows. 
1. In Table 7, the results of the Wilcoxon-signed-ranks test revealed that Diagnosys, OT, and IRS, the prediction 

accuracies, adaptive testing algorithms with the most-difficult-item method (MDI) and prerequisite method (PI) 
both perform better than the original adaptive testing algorithms (z = −3.422 ~ −3.409, p = 0.001). Otherwise, in 
Diagnosys, Diagnosys+MDI outperform Diagnosys+PI (z = −3.415, p = 0.001); in OT, OT+MDI outperform 
OT+PI (z = −3.066, p = 0.002); in IRS, IRS+MDI outperformed IRS+PI (z = −3.482, p = 0.000).Overall, the 
performance of adaptive testing algorithms with the most difficult item (MDI) method was better than that of 
adaptive testing algorithms with the prerequisite method (PI method). 

2. In Table 6, under the same (or almost the same) prediction accuracies, the use of test items in the proposed 
KSAT+MDI and KSAT+PI are fewer than those in the original KSAT algorithms. For example, in Table 6, 
when the prediction accuracies of Diagnosys, Diagnosys+MDI, and Diagnosys+PI are 0.945, 0.943, and 0.945, 
respectively and their corresponding use of test items are 31.85, 24.23, and 30.81. When the prediction accuracy 
of OT, OT+MDI, and OT+PI are 0.991, 0.991, and 0.991, respectively, their corresponding use of test items are 
27.27, 26.25, and 26.18. When the prediction accuracy of IRS, IRS+MDI, and IRS+PI are 0.991, 0.991, and 
0.991, respectively, their corresponding use of test items are 27.75, 26.38, and 27.47 (see grayed cells). 

3. In Table 6, OT+MDI and OT+PI outperform Diagnosys+MDI, Diagnosys+PI, IRS+MDI, and IRS+PI at the 
same prediction accuracies. The only exception is at the prediction accuracy of 0.997, where the use of test items 
of OT+PI and IRS_MDI are 31.46 and 30.82, respectively (see bold cells).  

 

Table 6. The prediction accuracy and use of test items (in brackets) of Diagnosys, OT, and IRS with MDI or PI 

Diag  
threshold 

Diag 
Diag 

+MDI 
Diag 
+PI 

OT  
threshold

OT 
OT 

+MDI
OT 
+PI 

IRS 
threshold 

IRS 
IRS 

+MDI
IRS 
+PI 

0.01 
0.956  

(32.64) 
0.996 

(34.70)  
0.992  

(34.53) 
0.01 

0.995 
(29.98)

0.998 
(31.51)

0.997
(31.46)

0.58 
0.991 

(27.75) 
0.997

(30.82)
0.996

(30.68)

0.015 
0.945  

(31.85) 
0.993 

(34.50)  
0.992  

(34.45) 
0.015 

0.991 
(27.27)

0.996 
(29.18)

0.995
(29.16)

0.56 
0.987  

(26.44) 
0.996

(30.16)
0.995

(30.03)

0.02 
0.935 

(31.02)  
0.990 

(34.25)  
0.985  

(34.05) 
0.02 

0.985 
(24.41)

0.991
(26.25)

0.991
(26.18)

0.54 
0.985  

(25.20) 
0.995

(28.89)
0.993 

(28.73)

0.025 
0.927  

(30.22) 
0.986 

(33.92)  
0.978 

(33.58) 
0.025 

0.979 
(22.14)

0.987
(24.07)

0.986 
(23.94)

0.52 
0.981 

(23.50) 
0.992 

(27.59)
0.991

(27.47)

0.03 
0.918  

(29.31) 
0.983 

(33.50)  
0.969 

(32.93) 
0.03 

0.972 
(19.42)

0.981 
(21.59)

0.980 
(21.42)

0.5 
0.977 

(21.82) 
0.991

(26.38)
0.989 

(26.21)

0.035 
0.920 

(29.50)  
0.982 

(33.43)  
0.966  

(32.62)
0.035 

0.966 
(17.06)

0.976
(19.13)

0.975 
(19.01)

0.48 
0.974  

(20.79) 
0.988 

(25.17)
0.987

(25.04)

0.04 
0.912 

(28.14)  
0.975 

(32.43)  
0.945  

(30.81) 
0.04 

0.960 
(15.59)

0.972 
(17.68)

0.969 
(17.43)

0.46 
0.969  

(19.47) 
0.985 

(23.85)
0.983 

(23.73)

0.045 
0.908 

(27.20)  
0.972 

(31.83)  
0.928  

(29.31) 
0.045 

0.955 
(14.50)

0.967
(16.54)

0.966 
(16.32)

0.44 
0.967 

(18.52) 
0.983 

(22.86)
0.982 

(22.72)

0.05 
0.896 

(23.55)  
0.958 

(28.52)  
0.903 

(24.97) 
0.05 

0.949 
(13.30)

0.962 
(15.43)

0.962 
(15.27)

0.42 
0.960  

(16.47) 
0.978 

(20.62)
0.976

(20.41)

0.055 
0.893 

(22.40)  
0.954 

(27.36)  
0.899  

(23.76) 
0.055 

0.943 
(11.95)

0.958 
(14.23)

0.956 
(14.06)

0.4 
0.956 

(15.17) 
0.974 

(19.29)
0.973 

(19.21)

0.06 
0.883 

(19.27)  
0.943 

(24.23)  
0.886  

(20.39) 
0.06 

0.938 
(11.07)

0.954 
(13.31)

0.954 
(13.29)

0.38 
0.949 

(13.54) 
0.968 

(17.38)
0.967 

(17.20)
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0.065 
0.877  

(17.56) 
0.938 

(22.55)  
0.880  

(18.71) 
0.065 

0.933
(9.99)

0.951
(12.45)

0.950
(12.36)

0.36 
0.945 

(12.66) 
0.964 

(16.42)
0.963 

(16.23)

0.07 
0.873  

(16.37) 
0.934 

(21.40)  
0.876 

(17.52) 
0.07 

0.929
(9.36)

0.947
(11.79)

0.947
(11.70)

0.34 
0.936 

(10.99) 
0.959 

(14.52)
0.957 

(14.34)

0.075 
0.863 

(13.57) 
0.924 

(18.63) 
0.866 

(14.73) 
0.075 

0.925
(8.73)

0.944
(11.10)

0.943
(11.03)

0.32 
0.930 
(9.97) 

0.953 
(13.34)

0.949 
(13.09)

0.08 
0.861 

(12.70) 
0.922 

(17.76) 
0.864 

(13.85) 
0.08 

0.920
(8.18)

0.941
(10.67)

0.939
(10.46)

0.30 
0.925 
(9.04) 

0.949 
(12.21)

0.945 
(11.92)

Note: Diag refers to Diagnosys. 
 

Table 7. The results of Wilcoxon-Signed-Ranks tests among nigh models 
 Diag 

+MDI 
v.s.Diag 

Diag 
+PI v.s. 

Diag 

OT 
+MDI 
to OT 

OT+PI 
to OT 

IRS 
+MDI to 

IRS 

IRS 
+PI to 
IRS 

Diag 
+MDI to 
Diag+PI 

OT+MDI 
to OT+PI 

IRS+MDI to 
IRS+PI 

Z 
value 

−3.422* −3.422* −3.409* −3.410* −3.411* −3.409* −3.415* −3.066* −-3.482* 

Note. * indicate the statistically significant at 01.0  
 

 

Evaluation of the KSAT system 
 
To evaluate the performance of the KSAT system, an experiment has been conducted. This experiment aimed to 
evaluate the efficiencies of use of test items and prediction accuracy in administering the computerized adaptive test. 
One hundred and twenty-three students from fifth-grade classes of Taiwanese elementary schools participated in this 
experiment. The procedure was conducted as follows. First, all students received a knowledge-structure-based 
adaptive testing (KSAT) based on OT algorithm (threshold = 0.05).The content of the test was on the triangle unit, as 
mentioned above. Then, when the students completed the adaptive portion of the test, the system administered the 
rest of the 35 items in order to compute the prediction accuracy. Finally, the use of test items and prediction accuracy 
were computed. 
  
After completion of the test, the results of the use of test items and prediction accuracy were 11.42% and 93%, 
respectively. The results show that the KSAT system can decrease the use of test items and are able to precisely 
diagnose the cognitive status of examinees. 
 
These results are consistent with the results of OT case in the previous simulation experiment (the use of test items: 
13; prediction accuracy: 95%). The two different interfaces, paper-based and computer-based, do not affect the 
examinees’ performance in adaptive tests. 
 
For exploring the performances of OT+MDI and OT+PI in this system, since the responses of all 35 items were 
available, this data set was applied to simulate OT+MDI and OT+PI processes. This simulated result shows that the 
use of test items and prediction accuracy of OT+MDI and OT+PI processes were (11.3, 94%) and (11.2, 94%), 
respectively. This implies OT+MDI and OT+PI have better performance than original OT, which is similar to the 
results of experiment 2.  

 
 

Discussions and conclusions 
 

In this paper, some traditional item ordering theories (OT and IRS) that were used to develop instruction sequences 
or learning progress indices were applied to develop the computerized adaptive testing processes. The performances 
of the adaptive testing algorithms based on the item structures constructed by OT, IRS, Diagnosys, and domain 
experts were evaluated. Three findings were found from the experimental results. First, OT and IRS based KSAT 
algorithms provide better prediction accuracy with less the use of test items. Second, OT-based KSAT algorithm is 
less sensitive to the training sample size. Third, the estimation error of OT method is less than others and this means 
that the diagnostic results estimated by OT-based KSAT is more stable. From the theoretic view of OT, 
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)1,0(*  BAAB XXP  is the probability of violating the ordering relationship of BA  ; that is directly related to the 

prediction error. From the definition and explanation of IRS in Takeya (1991), *
ABr  is designed to be a coefficient that 

has the benefits of both *
AB and the correlation coefficient of items A and B. However, this modification reduces the 

direct relationship with the prediction error and affects the performance of IRS. The definition of 
Diagnosys,

BABAAB ff /*   shows that the error frequency 
BA

f  is divided by
BAf  , and this cause the relationship 

between *
AB  and the prediction error is reduced. From these observations, it is reasonable that OT has the best 

performance.  
 
The performance of knowledge structure-based adaptive testing (KSAT) is affected by the correct guessing. Two 
methods, most difficult item method (MDI) and prerequisite item (PI) method, were proposed to deduce the 
possibilities of guessing. The experimental results show that both methods can improve the effect of correct guessing 
and have better performances than original methods.  
 
Since OT has the best performance, it was selected to implement the KSAT system. The performance of the KSAT 
system shows that under the 93 percent prediction accuracy, the use of test items is 11.42. That is, on average, 
students need only complete one third of 35 items in the original paper-based exam when the KSAT system is 
applied. This result is close to that of the simulation study in experiment 1 and shows that the simulation process 
adopted in this study is valid and suitable. 
 
From the above discussions, this study has three contributions. First, some evaluation methods for KSAT algorithms 
were applied to find the best adaptive testing algorithm among domain experts, OT, IRS, and Diagnosys, and OT-
based KSAT algorithm has the best and stable performance. Second, two methods, the most difficult item method 
(MDI) and the prerequisite item (PI) method were proposed to improve the effect of correct guessing in KSAT 
algorithms. Finally, an OT-based adaptive testing system was developed and evaluated. Upon completion of the 
adaptive test, a diagnosis profile about the student’s state of learning or understanding was provided to do the 
subsequent actions, such as tailored instruction or remediation in applied educational settings. Another two directions 
are considered in the future study. First, OT, IRS, and Diagnosys were used to analyze the ordering relationship of 
dichotomous items, those methods for polytomous items will be considered in the next step. The second is to develop 
constructed response items and their automatic scoring mechanism to enhance the function of the KSAT system. 
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