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Scaling Properties of Statistical End-to-End Bounds
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Abstract—The stochastic network calculus is an evolving new
methodology for backlog and delay analysis of networks that can
account for statistical multiplexing gain. This paper advances the
stochastic network calculus by deriving a network service curve,
which expresses the service given to a flow by the network as a
whole in terms of a probabilistic bound. The presented network
service curve permits the calculation of statistical end-to-end delay
and backlog bounds for broad classes of arrival and service dis-
tributions. The benefits of the derived service curve are illustrated
for the exponentially bounded burstiness (EBB) traffic model. It
is shown that end-to-end performance measures computed with
a network service curve are bounded by ( log ), where

is the number of nodes traversed by a flow. Using currently
available techniques, which compute end-to-end bounds by adding
single node results, the corresponding performance measures are
bounded by ( 3).

Index Terms—Network service curve, quality-of-service, sto-
chastic network calculus.

I. INTRODUCTION

THE network calculus is a framework for analyzing delays
and backlog in a network where the traffic, and sometimes

also the service, are characterized in terms of envelope func-
tions. Pioneered as deterministic network calculus in the early
1990s for the computation of worst-case performance bounds
in packet networks [10], it has played an important role in the
development of algorithms that support quality-of-service guar-
antees in packet networks.

The elegance of the network calculus becomes evident in the
min-plus algebra formulation developed in [1], [9], [16], where
service guarantees to a flow at a node (switch) are expressed in
terms of service curves [11], [21]. In this formulation, bounds
for single nodes can be easily extended to end-to-end bounds.
More concretely, suppose a flow is assigned a service curve
at the -th node on its route . Then the service
given to the flow by the network as a whole can be expressed in
terms of a network service curve as

(1)
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where is a convolution operator. With this remarkable prop-
erty, bounds for the output burstiness, backlog and delay for the
entire network are computed in the same fashion as single node
results. The resulting end-to-end delay bounds are generally
tighter than the sum of the per-node delay bounds. For example,
if the service curve at the th node is given as a constant rate
function, , one obtains from (1) that .
As a result, the end-to-end backlog and delay bounds are iden-
tical to the bounds at the first node. In this way, the min-plus
version of the network calculus provides simple end-to-end es-
timates for delay and backlog.

A drawback of the worst-case view of traffic in the determin-
istic network calculus is that it does not reap the benefits of sta-
tistical multiplexing, which can result in an overestimation of
the actual resource requirements and a low utilization of net-
work resources. This has motivated the search for a stochastic
network calculus which describes arrivals and service proba-
bilistically while preserving the elegance and expressiveness of
the original framework. By allowing even a small fraction of
traffic to violate its traffic description or performance guaran-
tees, one can achieve significant resource savings.

Most work on extending the network calculus to a proba-
bilistic setting has been concerned with deriving statistical per-
formance bounds for a single node. In the stochastic network
calculus framework, traffic arrivals and sometimes also service
at network nodes are random processes which are bounded by
probabilistic envelope functions. The first, and probably most
widely known envelope function is the exponentially bounded
burstiness (EBB) characterization for traffic arrivals [25]. The
EBB model, which has been generalized in [3], [6], [24], [26],
has been shown to imply delay and backlog bounds at simple
traffic multiplexers. In [4], [22], probabilistic arrival envelopes
were used to derive schedulability conditions for a variety of
scheduling algorithms. The authors of [6], [18] have established
a link between envelope functions and the theory of effective
bandwidth [14], which estimates bandwidth requirements to sat-
isfy given performance guarantees. Probabilistic envelope func-
tions that specify the amount of service made available to a flow
at a network node have appeared in [12], [18], [22].

A number of studies have used probabilistic single node
bounds on delay, backlog, or the burstiness of traffic departing
from a node to derive multinode performance bounds, e.g., [6],
[15], [24], [25]. Indeed, by relating output descriptions of traffic
at a node to corresponding input descriptions, one can obtain
end-to-end bounds by adding the per-node bounds. However,
such results tend to degrade rapidly as the number of nodes
traversed by a flow is increased.
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The promise of a min-plus algebra formulation of the sto-
chastic network calculus lies in the development of probabilistic
network service curves that yield multinode performance
bounds without the poor scaling properties associated with
adding per-node results. However, the development of such
a calculus has shown to be difficult. One particular challenge
is the formulation of the multinode convolution expression of
a network service curve within a probabilistic context. In [5]
it was shown that a straightforward probabilistic extension of
deterministic concepts yields a network service curves that
deteriorates with time. As a solution, the authors of [5] formu-
lated a probabilistic service curve that takes the form of (1),
however, this service curve is difficult to apply in numerical
examples. In [2], a probabilistic network service curve was
derived under the assumption that each node drops traffic that
locally violates a given delay guarantee. This dropping policy
requires that packets in each buffer are sorted according to a
deadline computed from the arrivals envelope and the service
curve. Another network service curve expression, developed in
[18], assumes that a bound is available which limits the busy
period over multiple nodes. Such a bound, however, is difficult
to obtain.

Until now, the derivation of a network service curve for a sto-
chastic network calculus that does not depend on implicit or ex-
plicit a priori upper limits on delay, backlog, or busy periods
has remained an open problem. The main contribution of this
paper is the construction of a probabilistic network service curve
that does not rely on a priori bounds. We show that the network
service curve derived here is applicable to a broad class of ar-
rival and service distributions. The presented probabilistic ser-
vice curve formulation is based on a definition introduced in
[12]. A recent study [20] also attempts to construct a network
service curve with a service curve as defined in [12], however,
the presented network service curve is not correct.1

We illustrate the benefits of the network service curve for
a statistical end-to-end analysis of multiplexed EBB traffic.
By contrasting end-to-end delay bounds obtained with our
service curve with bounds obtained by iterating single node
results, as proposed in [25], we show the improvements at-
tainable through our stochastic network calculus approach.
We will show that the calculus approach with network service
curve renders bounds for delay, backlog, and output burstiness
of the order in the number of nodes in the
network, as opposed to bounds obtained by adding
per-node results. Thus, this paper, for the first time, quantifies
the benefits of using network service curves in a probabilistic
setting. This presents a significant step forward toward the goal
of developing the stochastic network calculus into a practical
methodology for the analysis of networks. As a remark, in
the deterministic calculus, a network service curve leads to
end-to-end bounds that scale with , while summing up
single-node results gives bounds that scale with [17].
Thus, network service curves have comparable benefits in a
deterministic and a stochastic setting.

1The paper fails to account for the fact that the convolution of probabilistic
arrival functions with service curves over multiple nodes requires a sample path
view. This and other pitfalls in the stochastic network calculus are discussed in
[18].

The remainder of the paper is organized as follows. In Sec-
tion II, we define our notion of a statistical service curve, and
present our main result, i.e., a service curve that expresses the
service received by a flow in a network. In Section III, we use
envelope functions for a probabilistic characterization of traffic
and, together with our notion of probabilistic service, obtain
performance bounds on backlog, delay and output burstiness.
In Section IV, we discuss an application of our network service
curve to EBB traffic, and compare the resulting end-to-end delay
bounds with the bounds implied by existing single node results.
In Section V, we present a numerical example with Markov-
modulated On–Off traffic for illustration. Finally, we present
brief conclusions in Section VI.

II. NETWORK SERVICE CURVES

The input and output traffic of a flow at a network node is de-
scribed by two stochastic processes and

that are defined on a joint probability space.
represents the cumulative arrivals, and the cumulative de-
partures in . We require that and are nondecreasing,
left continuous functions with , and that

for any time . In this paper we use a contin-
uous-time framework. Extensions to a discrete-time setting are
discussed in remarks.

In a packet-switching network, the service available to a flow
at a node is determined by a scheduling algorithm (e.g., FIFO,
Fair Queueing) which sets the order of packet transmissions. A
service curve, first presented in [11], [21], is an alternate method
to describe the service received by a flow in terms of a function
which specifies a lower bound on the service. In the min-plus al-
gebra formulation of the deterministic calculus, a service curve
is a function , such that for all ,
where the convolution of two real-valued functions and is
defined as for all .

Next we define our measure of a probabilistic service guar-
antee for a flow. We adopt a variation of the definition of a statis-
tical service curve from [12], where we add a positivity require-
ment. We use the notation for the positive
part of a real number .

Definition 1 (Statistical Service Curve): A function is
a statistical service curve for an arrival process if for every
choice of and for all

(2)

where is a nonincreasing function.

We refer to the bound on the violation probability as the
error function. Note that the condition is void whenever

, and that (2) for implies that for all
. We frequently require that the function satisfies the

integrability condition

(3)

Comparing Definition 1 to probabilistic service descriptions
in the literature, we see that for each choice of , the function
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Fig. 1. Traffic of a flow through a set of H nodes.

is an effective service curve in the sense of [5], [18],
[19]. Here, choosing large amounts to increasing the latency
and decreasing the violation probability of the service guar-
antee. Compared to the service curve in [12], the enforced pos-
itivity of the statistical service curve can lead to tighter perfor-
mance bounds on backlog and output burstiness. Last, if

for some value of , then defines a deterministic ser-
vice curve almost surely.

In the continuous-time setting, we find it convenient to re-
place (2) by

(4)

for all , and that for all . Here,
is a parameter that specifies a discretization of the time scale.

We emphasize that (2) does not present an additional assump-
tion, since it can be obtained from (4) by replacing with

. The addition of the parameter simplifies the deriva-
tions to follow in Lemma 1 and Lemma 2.

We now state the main result of this paper. Consider a flow
with a network path through nodes, as shown in Fig. 1.
At each node, we assume that the flow receives a probabilistic
service guarantee in terms of a statistical service curve. The fol-
lowing theorem provides an expression for an end-to-end sta-
tistical network service curve in terms of the per-node service
curves. In the theorem, we use the notation
for a real function and a real number .

Theorem 1: (Statistical Network Service Curve): Consider a
flow with traffic through nodes. Let denote the
arrivals to the first node, for
the arrivals at the th node, and the depar-
tures from the last node. Assume that each node
provides a service guarantee in form of a statistical service curve

satisfying (4) for some . Assume that for all ,
the error functions satisfy the integrability condition in (3).
Then, for every choice of , the function

(5)

is a network service curve in the sense of (4), with an error
function given by

The formula for the network service curve in (5) corresponds
closely to the formulation of the deterministic calculus given in
(1). The difference is that in (5), the service curve at the -th
node is reduced by a rate . The convolution expression
in the deterministic calculus from (5) is recovered almost surely
by setting for all and then taking , , .

We remark that parameters and are technical devices.
The parameter is a relaxation of the service that reduces the
guaranteed service by a small rate. The parameter is a dis-
cretization parameter indicating a time step. Applications of the
theorem in numerical examples require to choose specific values
for these parameters. Large values of these parameters lead to
pessimistic performance bounds that hold with a small violation
probability, while smaller values increase the violation proba-
bility. In our examples we optimize over the values of these pa-
rameters. In addition, the parameter is chosen so that the value
of the error does not exceed a desired violation proba-
bility, e.g., or .

The proof of the theorem relies on sample path arguments
inspired by the deterministic calculus. To estimate the proba-
bility of departure events involving entire sample paths, we need
to transform Definition 1, which makes statements about de-
partures at any given time , into a sample path expres-
sion. This crucial step is provided in the next lemma. While it is
known how to obtain related sample path bounds for traffic ar-
rivals (as discussed in Section III), this is the first time that such
a sample path bound is established for service descriptions.

Lemma 1: Let be a statistical service curve for an arrival
process . Assume that satisfies (4) for some , and
that satisfies (3). Then, for any real number and all
,

(6)

We have slightly abused notation in order to simplify the state-
ment of the lemma. The convolution term on the left-hand side
of (6) should be read as

(7)

Proof: Given , we discretize the event in (6) on a
time scale . Let , and let be the integer

part of . Since , , and are nondecreasing, we have

and

It follows that
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where we have applied Boole’s inequality in the last step. By
(4), the last sum is bounded by

Proof of Theorem 1: Let , and be
given, and choose with . Suppose that
for a particular sample path, the inequalities

(8)

hold for all and , and that

(9)

Inserting the bound for from (8) into (9) and
expanding the convolutions yields with (7)

Note that our definition of justifies the restriction of the in-
fimum to . Collecting terms and using that

, we obtain

Iterating the argument for the remaining values of and using
the definition of , we arrive at

Using Lemma 1 for and (4) for , we
bound the violation probability by

eq. (8) fails for for some

eq. (9) fails

The proof is completed by minimizing over .

In a discrete time setting, there is no need for the parameter
appearing in (4), and we use the definition of the statistical

service curve in (2). If each node provides a service curve in
the sense of (2) with an error function , then for any choice
of

is a network service curve which again satisfies (2), with error
function

III. PERFORMANCE BOUNDS

The derivation of the statistical network service curve in The-
orem 1 does not make assumptions on the arrival functions at
a node, and holds for all deterministic or probabilistic descrip-
tions of traffic. However, applying the network service curve to
compute performance bounds for a traffic flow requires a char-
acterization for the arrivals from the flow. In the deterministic
network calculus, it is generally assumed that the arrivals from
a traffic flow are bounded or regulated by an arrival envelope

, such that for all , . A fre-
quently used envelope is , which corresponds to
a leaky bucket with rate and burst size . In a stochastic net-
work calculus, traffic arrivals are usually described in terms of
probabilistic extensions [4], [24], [25] of this envelope concept.
The following definition specifies such an extension.

Definition 2: (Statistical Envelope): A nondecreasing func-
tion is said to be a statistical envelope for an arrival process

if, for all and all

(10)

where is a nonnegative, nonincreasing function.
Note that (10) is formulated for negative as well as positive

values of . If (10) is only known to hold for nonnegative values
of , we set for .

Definition 2 is inspired by the EBB model [25], which is the
special case where is a constant-rate function and the
error function decays exponentially. The stochastically bounded
burstiness (SBB) model [24] is a generalization of the EBB
model where the condition that the error function decays ex-
ponentially is relaxed and replaced by the assumption that it de-
cays faster than polynomially. These decay conditions are used
to bound the violation probability of events involving entire ar-
rival sample paths.

An alternate approach, introduced in [26], requires that the
arrivals satisfy an a priori sample path bound, leading to the
generalized stochastic bounded burstiness (gSBB) model. It is
shown in [26] that an arrival process which conforms to the
SBB traffic model is also gSBB, though with more pessimistic
bounds. More generally, gSBB can accommodate any arrival
model satisfying a tail estimate analogous to (3). The corre-
sponding result in our paper is provided by Lemma 2. Several re-
cent studies [3], [20], [26] have established performance bounds
for the gSBB arrival model with both deterministic and statis-
tical service descriptions. At a single node these bounds take an
especially appealing, concise form. However, in order to bound
delay and backlog along a path through a network, these results
need to be combined with a network service curve, which is not
provided in [3], [26] and incorrect in [20].

Let us comment briefly on the scope of the various traffic
models. The EBB model includes important classes such
as multiplexed regulated traffic, Markov-modulated On–Off
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traffic, and the Poisson process, but does not include distribu-
tions with heavy tails or long-range correlations. In particular,
fractional Brownian motion traffic belongs to SBB but not
EBB, satisfying (10) with and ,
where is the average traffic rate, is arbitrarily small, and

is related to the Hurst parameter. The gSBB model
was shown to contain an even richer category of traffic patterns
[26], in particular, heavy-tailed distributions where the error
function decays as a power law with .

Definition 2 allows statistical envelopes to be given by arbi-
trary nondecreasing functions, which can provide a tighter de-
scription of arrivals than the linear envelopes used in the EBB,
SBB, and gSBB traffic models. Still, linear envelopes provide
an important class of examples, for two reasons. First, to imply
any bounds on the delay and backlog at a link which provides
a constant service rate, a statistical envelope cannot grow faster
than linearly. Second, linear envelopes lend themselves to effi-
cient computations.

Definition 2 is also closely related to other probabilistic enve-
lope characterizations of traffic used in the literature. In [12], an
arrival process satisfying (10) is called -smooth with overflow
profile . For each value of , the function provides an
effective envelope, as defined in [4], with violation probability

. Finally, as shown in [6], [18], statistical envelopes can be
connected with the notion of effective bandwidth [14].

We next describe statistical performance guarantees on the
backlog and the delay

, where arrivals are bounded by statis-
tical envelopes satisfying Definition 2, and service is expressed
in terms of statistical service curves satisfying Definition 1. We
also derive a bound on output burstiness in the form of a sta-
tistical envelope for satisfying Definition 2. We point out
that similar bounds have been derived in other statistical net-
work calculus papers [2], [5], [18], [20] for a variety of arrival
and service characterizations. We state the following results for
completeness, since there are technical differences between our
definition of a statistical service curve in (2) and (4) and those
used in the literature. The theorem uses the deconvolution op-
erator , which is defined for two real functions and as

for all .
Theorem 2: (Performance Bounds): Let and de-

note the arrivals and departure processes at a node which pro-
vides a service curve satisfying (4) with some and
an error function . Let the arrivals be bounded by a statis-
tical envelope with an error function that satisfies the
integrability condition from (3). Fix , , and define

Then we have the following bounds.

1) OUTPUT BURSTINESS: provides a statistical enve-
lope for , i.e.,

(11)

for all .
2) BACKLOG BOUND: A statistical bound on the backlog at a

node is given, for , by

(12)

3) DELAY BOUND: A statistical bound on the delay is given,
for , by

(13)

where

(14)

In the theorem, the rate correction parameter may appear either
in the statistical envelope or in the statistical service curve. In
the above bounds, we have placed wherever it gives the better
performance bound.

The proof of the theorem relies on a sample path argument
analogous to the proof of Theorem 1. This is provided by the
following lemma.

Lemma 2: Assume that is a statistical envelope for , with
an error function satisfying (3). Then, for every choice of
,

(15)

for all and .

An implication of Lemma 2 is that an arrival process which
has a linear statistical envelope and an error function
satisfying (3) is of class gSBB, as in [26].

Proof: Fix . As in Lemma 1, we discretize the event
in (15) on a time scale by setting , for a given
with . By the monotonicity of and , we have

and

We estimate

where we have used Boole’s inequality in the last step. Since
is a statistical envelope for by assumption and is nonde-
creasing, we can bound the last sum by
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Proof of Theorem 2: The argument follows the corre-
sponding derivations in the deterministic calculus (see, e.g.,
[1], [8], [16]). For given , assume that for a particular
sample path

(16)

with , and

(17)

for all . Then

In the first step, we have used that and the as-
sumption in (17). Note that values do not contribute to
the infimum since . In the second step, we have
taken into the infimum and used (16), and in the last step,
we have collected terms and applied the definition of the decon-
volution.

Using Lemma 2 and the assumption that is a statistical ser-
vice curve, we conclude that

(18)

The proofs of the delay and backlog bounds proceed along the
same lines and are omitted.

The proof actually shows that the output burstiness satisfies
the tighter bound

where is given by the right hand side of (18). This is a
consequence of the positivity property of the statistical service
curve in Definition 1. A similar bound can be proven for the
backlog

but not for the delay. The improvement over Theorem 2 can be
noticeable at low utilizations but disappears at high utilizations.

Given a workconserving scheduler at an output link that op-
erates at a constant rate, we can describe the service available to
a tagged flow at a scheduler serving multiple flows in terms of
a service curve that expresses the capacity left unused by other
flows with traffic at this link. We refer to such a service curve
as a leftover service curve. This concept has been applied in
a deterministic setting in [9], [17], and in a probabilistic set-
ting in [18], [19], [22]. We point out that the leftover service
curve is a pessimistic estimate of the service available to the
flow, which amounts to serving the tagged flow at a lower pri-
ority than all other flows. For particular scheduling algorithms,
less pessimistic estimates have been obtained in [18], [22].

The following theorem shows that we can obtain a leftover
service curve compliant with Definition 1, whenever traffic ar-
rivals are characterized by statistical envelopes in the sense of
Definition 2. We will use the leftover service curve in Section IV
to determine the service available to a single flow at a multi-
plexer with EBB traffic arrivals.

Theorem 3 (Leftover Service Curve): Consider a workcon-
serving scheduler with constant rate serving multiple flows.
Fix a collection of flows and denote its aggregate arrival and de-
parture processes by and . Let and denote
the arrivals and departures of the aggregate of the remaining
flows. Assume that is a statistical envelope for the arrivals

that satisfies

with an error function that satisfies the integrability con-
dition in (3). Then, for any choice of and

is a statistical service curve for that satisfies (4) with error
function

If the stronger integrability condition

(19)

holds, then satisfies (3).
In the theorem, we used the notation .

Proof: Since the link provides a service curve
to the aggregate of through flows (described by ) and cross
flows (described by ), and , we have

Inserting the inequality

and collecting terms, we obtain

(20)

Fix and , . Suppose that, for a particular sample
path, we have

(21)

Using this inequality in (20) yields

By Lemma 2 with , the violation probability is bounded by

eq. (21) fails



2306 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Fig. 2. Network with cross traffic.

If , then

as required for (4). We have used that the definition of the statis-
tical envelope in (10) implies, by setting , that
for .

If the error function satisfies (19), then

by exchanging the order of integration.

Finally, we note that a leftover service curve and performance
bounds can also be obtained in a discrete time setting. As in the
case of Theorem 1, the only modification needed in Theorems
2 and 3 is that the statistical service curve needs to satisfy (2) in
place of (4), and that discrete sums appear in
place of the integrals in the error functions.

IV. AN APPLICATION WITH EBB ARRIVALS

We now present an application that relates the network ser-
vice curve and the performance bounds developed in this paper
to the literature on statistical service guarantees from the early
1990s. We demonstrate that statistical network service curves
can faithfully reproduce the single node results in [25] which
predate the service curve concept. In a multinode setting, we
show the benefits of the statistical network service curve by
comparing statistical end-to-end performance bounds computed
with the techniques from [25] (without a network service curve)
to those obtained with the results of this paper.

The network scenario that we consider is shown in Fig. 2. We
will refer to the flows which traverse the network as through
flows, and the flows which transit the network as cross flows. We
are interested in statistical multinode performance measures for
the through flows, such as an output envelope at the last node in
the network and bounds on the total delay experienced along the
path through the network. Our performance bounds hold for all
work-conserving scheduling algorithms that serve traffic from
the same flow in the order of arrival.

Network arrivals are described in terms of the EBB model
defined in [25] which is given for the arrival process by the
condition that

(22)

for any . Here, represents a bound on the long-term
arrival rate, is the decay rate of the error function, and
is a constant.

By choosing the EBB traffic model we can compare our
stochastic network calculus results with existing performance
bounds, specifically [25]. Moreover, the EBB model can
be used to describe arrival processes that have relevance in
practice, e.g., Markov-modulated On–Off processes and mul-
tiplexed regulated arrivals. Finally, and most importantly, the
EBB model lends itself to simple, closed-form performance
bounds that permit us to gain insight into the scaling properties
of network-wide bounds obtained with the stochastic network
calculus.

A. Analysis at a Single Node

We will show that the network calculus developed in this
paper can recover the results of the EBB analysis for a single
node from [25]. This demonstrates that statistical service curves
are an adequate representation of the service received by a flow
with respect to cross traffic. Reproducing the EBB analysis with
a service curve approach may help to dispel a myth that service
curves necessarily lead to inaccurate descriptions of service.

Consider the first node in the network from Fig. 2. We assume
that the aggregate arrivals of the through flows, denoted by ,
and the aggregate arrivals of the cross flows, denoted by , are
each EBB arrival processes with bounds and on their long-
term rates. For simplicity, both arrival processes are assumed to
have the same parameters and . Following [25],
this subsection uses a discrete time domain. In Section IV-B we
will return to a continuous time domain, as it results in simpler
expressions for the desired bounds.

It was shown in ([25, Theorem 2]) that the output traffic
has the EBB characterization

(23)
for all .
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The same output bound can be obtained in the network cal-
culus with a statistical service curve. The EBB characterization
of the cross traffic says that is a statistical enve-
lope in the sense of Definition 2, with error function

. To characterize the service available to the through
flows, we use a leftover service curve. As explained at the end
of Section III, the discrete-time version of Theorem 3 implies
that for any choice of

is a statistical service curve for in the sense of (2), with error
function

Next we use that is a statistical envelope for the
through flows. The discrete-time version of Theorem 2 implies
that, for , the function

is a statistical envelope for the departure process of the through
flows, with error function

By setting , we obtain (23). The backlog bound
of [25] can be similarly recovered, and the discrete counterpart
of Theorem 2 provides a stronger delay bound than the one sug-
gested in [25].

This example demonstrates that the separation of the statis-
tical analysis of the through flows (in terms of a statistical en-
velope) from those made for the service of the cross flows (in
terms of a statistical service curve) does not lead to more pes-
simistic bounds than a direct analysis of the backlog process.

B. Analysis of End-to-end Delay Bounds

We turn to the problem of deriving network performance
bounds for the through flows in the network from Fig. 2.
The purpose of this section is to compare two strategies for
computing statistical end-to-end bounds. The technique sug-
gested in [25] is to analyze bounds at each node iteratively,
using the EBB characterization of the output in (23). Network
performance bounds are obtained by adding the per-node
delay bounds. This approach has also been used in related
works that compute statistical end-to-end delay bounds for
other traffic models, e.g., [6], [15], [24], [25]. Network service
curves offer an alternate technique of reducing the analysis of
a network to the analysis of a single node. In the deterministic
network calculus under worst-case traffic scenarios it is known
that network service curves render better bounds than adding
per-node delay bounds. This observation is appropriately called
’pay-bursts-only-once’ in [17]. The results in this section
establish the corresponding result in the probabilistic EBB
context. We note that the statistical network service curves
derived in [2], [5] share this property. However, this is the first
time that the benefit of the ’pay-bursts-only-once’ property in

a stochastic context is established by a direct comparison with
results from the literature that rely on summing up per-node
bounds. (The assumptions on the service curves in [2] and
[5] make such a comparison difficult). Our results will show
that adding per-node delay bounds results in a network delay
bound that increases with in the number of nodes,
whereas the delay bounds with network service curve grow
with .

All derivations in this subsection, including those of the per-
node service bounds, are done in the framework of the network
calculus, that is, we use statistical envelopes to describe arrivals
and service curves to describe service. This is justified by the re-
sult of the previous subsection that the network calculus can re-
produce the input–output relation and performance bounds ob-
tained by a direct analysis of the backlog process at a single
node.

As shown in Fig. 2, the network has workconserving nodes
arranged in series, with the capacity of each node set to

. We use and to denote the arrivals and departures of
the through flows at the -th node, with for

. As before, we assume that the through and cross
flows have EBB characterizations with the same values for
and and long-term bounds on their rates given by and .

At each node, the service available to the through flows is
given by a leftover service curve. Since the cross flows at each
node are described in terms of the EBB model, it follows that

is a statistical envelope for the cross flows with error function

By Theorem 3, for any choice of , , the function

is a statistical service curve for the through flows at node . The
service curve can be formulated more elegantly by replacing
with , yielding

(24)

The resulting error function is

1) Adding Per-Node Bounds: Here, we calculate delay
bounds according to Theorem 2 for each node, and then add the
per-node delay bounds to obtain network bounds. The service
available to the through flows at each node is given by (24). To
apply the theorem we need to also have a statistical envelope
of the arrivals at each node. We will show by induction that
the arrivals at each node are characterized by a statistical
envelope

(25)

in the sense of Definition 2, with error function

(26)
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where is a free parameter. In other words, the
arrivals at each node comply with the EBB traffic model, with
identical rates at each node, but with a reduced decay rate and
an increased constant at subsequent nodes .

For , there is nothing to show, since the arrivals of
the through flows at the first node are characterized by the EBB
traffic model from (22). To make the inductive step, we will use
the following lemma.

Lemma 3: For any positive numbers ,
and any

where .

A proof of the lemma is given in the Appendix.
Assume that for some , we already know that a sta-

tistical envelope for the arrivals at node is given by (25) and
(26). Since the service of the through flows at the -th node is
described by the service curve in (24), Theorem 2.1 implies
that

is a statistical envelope for the output from the -th node, with
error function

Applying Lemma 3 with , and , and then
minimizing over by setting , we conclude that

(27)

which completes the induction.
We next obtain a statistical bound for the delay at node
from Theorem 2. Set

according to (14). Then we get from Theorem 2 that

where the error function is given by (27). Replacing by
gives

(28)

To obtain a bound for the network delay , we add the
delay bounds at each node

Inserting the bounds from (28) and using Lemma 3 to take the
infimum, we get

(29)

with

(30)

The value of the free parameter that minimizes the violation
probability in (29) under the constraint is
given by

(31)

At this point, we can compute the probability that a given
delay bound is exceeded. In our numerical examples, we deter-
mine a delay bound so that , where is
a given violation probability. Setting the right-hand side of (29)
to and solving for gives

(32)

Since the optimal value for depends on by (31), this is an im-
plicit equation for . In our numerical computations, we obtain
an explicit near-optimal bound by first setting
and computing the corresponding delay from (32). We then
determine from (31) with in place of , and finally obtain
the desired delay bound from (32).

From (30) it follows that grows linearly in the
number of nodes . Thus, with the quadratic term in (32), we
conclude that the delay bound in (32) scales as .

2) Using the Network Service Curve: We now derive net-
work delay bounds for for the same scenario using the
statistical network service curve from Section II.

Fix . Starting from the leftover service curves
in (24), we apply Theorem 1 to obtain the statistical network
service curve

with error function

where we have again used Lemma 3 to compute the infimum
appearing in the formula for from Theorem 1.

Recall the statistical envelope formulation of the through
flows at the first node, which is given by , with error
function . Having an arrival characterization
and a network service curve, we can apply Theorem 2.3 to
obtain a bound on the network delay. From (14), we find that
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It follows from Theorem 2 with replaced by
that

(33)

with

(34)

where we have once more used Lemma 3 and optimized over the
parameter in the formula for the error function in Theorem 2.
The minimizing value of the free parameter for a given value
of is given by

(35)

Solving for the delay bound in (33) with the right hand side
set equal to , we get

(36)

In our numerical example, we use the same two-step procedure
as for (32) to find a good value for . We compute from (36)
with set equal to , then insert for into
(35) for an improved value for , which we use to determine
the delay bound from (36). It is apparent from (34) that
grows polynomially in the number of nodes, and hence the delay
bound in (36) is of order .

The same techniques can be used to obtain statistical bounds
on the network backlog. Adding per-node bounds for the
backlog yields

(37)

where is given by (30). Here, the optimal choice is
. Using the network service curve yields

with given by (34). In this case, the optimal choice for
is

With this choice, evaluates to

So, a backlog bound can be explicitly calculated as follows:

Remarks:
a) We want to add that an explicit optimization for may

prove difficult if the error function is not exponential.
However, the delay bounds are not very sensitive to the

Fig. 3. On–Off traffic model.

TABLE I
PARAMETERS OF ON-OFF SOURCES

choice of in proximity to the optimum. Thus, an exact
optimization can often be replaced by an iterative proce-
dure, as outlined below (32) and (36).

b) If it can be assumed that cross traffic at subsequent nodes
is independent and arrival traffic has an effective band-
width characterization, other techniques are applicable
that yield exact expressions for the backlog. Specifically,
as shown in [7], the bound in (37) can be refined as

where is related to an effective bandwidth equation. As
recently shown in [13], this leads to improved scaling
properties.

V. NUMERICAL EXAMPLE

We next give a numerical example that illustrates the benefits
of using network service curves for the computation of statistical
end-to-end delay bounds. We consider the network and arrival
scenario shown in Fig. 2. Arrivals of cross flows and arrivals
of through flows at the first node are each described as an ag-
gregate of independent Markov-modulatedd On-Off processes.
This type of process, which has been used for modeling voice
channels, falls into the category of the EBB traffic model. We
will show plots that compare the delay bounds obtained through
adding per-node bounds (from Section IV-B1) to those obtain-
able with a network service curve (from Section IV-B2).

The Markov-modulatedd On–Off arrival process of an arrival
flow, illustrated in Fig. 3, is a continuous time process with
support given by a homogeneous two-state Markov chain
which is described in terms of the generator matrix

Here, denotes the transition rate from the “On” state to the
“Off” and to denote the transition rate from the “Off” state to
the “On” state. In the “On” state, the arrival process transmits at
the peak rate , and no arrivals occur in the “Off” state.

We assume that there are through flows and cross flows
at each node. Through flows at the first node and cross flows
are stochastically independent. For the sake of simplicity, we
assume that all arrival processes are homogeneous and that there
is an equal number of through and cross flows . We
want to emphasize that computing examples for heterogeneous
flows does not pose a problem, other than increasing notation.
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Fig. 4. End-to-end delay bounds of Markov-modulated On–Off arrivals as a function of the number of flows N +N (H = 1; 2; 5; 10, " = 10 , T = 10 ms
(low burstiness), T = 100 ms (high burstiness), N = N ). We show the following cases: (a) T = 10 (adding per-node bounds); (b) T = 10 (network sevice
curve); (c) T = 100 (adding per-node bounds); (d) T = 100 (network sevice curve).

Next, following [6], we quickly derive an EBB characteriza-
tion of independent On–Off flows. The moment-generating
function of a single On–Off flow is bounded by

, where

(see [14]). The quantity is called “effective capacity” in
[23] and has the property that . The rate

represents the average rate of the flow.
For independent flows we can bound the moment gener-

ating function by . By the Chernoff bound, we can write

For each choice of , this provides us with an EBB char-
acterization for the through flows and the cross flows in the net-

work from Fig. 2. Delay bounds for the through flows are pro-
vided by (29) and (33) from the previous section. Finally, we
numerically optimize the resulting delay bounds over .

In the example, the capacity of each node in the network is
set to Mbps, and time is measured in milliseconds.
The parameters of the flows are given in Table I. We consider
two types of flows, with identical peak rate 1.5 Mbps
and average rate 0.15 Mbps . We introduce a param-
eter to describe the burstiness of a flow. is the
expected time for the Markov chain to change states twice. For
flows with given peak rate and given mean rate , a larger
value of indicates a higher degree of burstiness. In Table I,
we use for flows with low burstiness and for
flows with high burstiness. Last, the violation probability for the
end-to-end delay bounds is set to .

In Fig. 4 we show the probabilistic end-to-end delay bounds
of flows as a function of the number of flows . We
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Fig. 5. End-to-end delay bounds for fixed network utilization levels of U = 10%; 50%, and 90% as a function of the number of nodes H in the network
(T = 10 ms, " = 10 , N = N ).

consider networks where the number of nodes traversed by the
through flows is set to and . The maximum
number of flows at each node is given by flows.
In Fig. 4(a) and (b) we show the delay bounds obtained by
adding per-node bounds from Section IV-B1 and by using the
network service curves from Section IV-B2, respectively. For
a single node , both techniques yield the same delay
bounds. The benefits of network service curves become pro-
nounced when the number of nodes traversed by the through
flows is increased. Fig. 4(c) and (d) show similar plots for flows
that are more bursty. Here, the delay bounds are higher, un-
derlining that bursty flows have a lower statistical multiplexing
gain.

In Fig. 5 we present end-to-end delay bounds for the same
setting as in Fig. 4. The delay bounds are represented as a func-
tion of the number of nodes . We set the number of flows so
that the node utilization level is set to , and
of the capacity, where . We only consider flows where

ms. In Fig. 5, we depict the delay bounds obtained
by adding per-node bounds as dashed lines, and the bounds ob-
tained with network service curves as solid lines. The figure il-
lustrates the bounds of end-to-end delays with net-
work service curves, and the polynomial bounds seen
when adding per-node results. When the number of nodes
grows large, the scaling properties dominate even the effects of
the traffic load. For , the bounds obtained with network
service curves on a highly (90%) loaded link are smaller than
the delay bounds obtained without network service curves at a
lightly (10%) loaded link.

VI. CONCLUSION

We have extended the state-of-the-art of the stochastic net-
work calculus by deriving a network service curve formula-
tion that is applicable to a broad class of traffic and service
characterizations. The formulation of such a service curve in
the presented general form has been a long-standing research

problem. Using the network service curve, we calculated sta-
tistical end-to-end delay and backlog bounds which are vastly
superior to bounds obtained by adding delay bounds of single
nodes. For EBB traffic arrivals, we showed that for a flow that
traverses nodes and encounters cross traffic at each node, our
network calculus with statistical network service curves gives
statistical end-to-end delays that are bounded by ,
as opposed to bounds rendered by the method of adding
per-node bounds. An immediate research problem suggested by
this paper relates to the tightness of the bounds.
Another extension is a systematic investigation that studies the
impact of traffic and service assumptions on scaling properties
of network bounds.

APPENDIX

PROOF OF LEMMA 3

We need to minimize

(38)

subject to the constraint that
, where is given. This problem has a unique solution by

the strict convexity of . The Lagrange multiplier condition for
the minimum takes the form

(39)

where the Lagrange multiplier is determined by the con-
straint. Equation (39) allows to express the minimizing values

in terms of . Inserting these values into (38) shows
that the minimum of is given by

(40)
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Let be as in the statement of the lemma and set .
Since , (39) implies

(41)

where we have used the constraint and the definition of and
in the last line. Inserting (41) into (40) completes the proof.
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