
Distributed Behavior Collaboration for
Self-Reconfigurable Robots

Behnam Salemi and Wei-Min Shen
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292, USA

{salemi,shen}@isi.edu

Abstract— This paper describes a distributed and decentralized
approach for modules in a self-reconfigurable robot to select
appropriate behaviors based on four factors: the current global
task, the local topological location in the current configuration,
the local state/sensor information, and the received messages
from their neighbors. This approach does not assume any unique
global identifiers for the modules, and is robust for
reconfigurations of modules. The approach is enabled by the
extended neighbor topology built upon a previous local topology
representation and a hormone-inspired communication and
control protocols. Experimental results on the CONRO robot
have shown some unique features of this approach for the control
of self-reconfigurable robots in general.

Keywords- Self-reconfigurable robots,distributed control,
behavior selection, distributed collaboration.

I. INTRODUCTION
A self-reconfigurable system is a special type of complex

systems that can autonomously or manually rearrange its
software and hardware components and adapt its configuration
(such as shape, size, formation, structure, or organization) to
accomplish difficult missions in dynamic, uncertain, and
unanticipated environments. A self-reconfigurable system is
typically made from a network of homogeneous or
heterogeneous reconfigurable modules (or agents) that can
autonomously change their physical or logical connections and
rearrange their configurations. Self-reconfigurable robots [1-3]
are examples of such systems that consist of many autonomous
modules that have sensors, actuators, and computational
resources. These modules are physically connected to each
other in the form of a configuration network. Since the
topology of the network may change from time to time, the
controller of the robot must be distributed and decentralized to
avoid single-point failures and communication bottleneck
among modules. These modules must have some essential
capabilities in order to perform complex tasks in dynamic and
uncertain environments. These capabilities are: (1) distributed
task negotiation [9, 10] – allowing modules to agree on a global
task to perform, (2) distributed behavior collaboration –
allowing modules to “translate” a global task into local
behaviors of modules; (3) synchronization – allowing modules
to perform local behaviors in a coordinated and timely fashion;
and finally (4) topology monitor and discovery – allowing
modules to detect changes/damages in the robot configuration
and adopt behaviors or repair configurations. This paper is
about the solutions to the second problem.

For distributed behavior collaboration, modules must know
their topological location in the current configuration. For
example, for an insect-like robot to walk, the modules in the
legs must perform different actions than the modules in the
body. All the leg modules must perform a set of coordinated
behaviors to generate the insect walk gait. This task is more
complicated in self-reconfigurable robots because modules
cannot always assume to have unique global identifiers or
addresses. For example, module Mi could be in arm in one
configuration and in leg in another configuration. To present
the topological location of modules, previous approaches were
either centralized and assumed global identifiers for modules
[4,12] or assumed simple neighboring relations such as binary
occupancy code (yes or no for a neighbor) for chain-based
robots [13] and binary occupancy grids in lattice-based robots
[14]. These approaches only allow modules to know if they
have neighbors or not and do not represent how neighbor
modules are connected at the “connector” level. (e.g., a
module’s connector x is connected to the connector y of a
neighboring module). Approaches that do consider the
connector level, such as [5,6,7,8], only have considered
information about the immediate neighbors. Such approaches
are not powerful enough to support all possible behavior
collaborations in the complex configurations.

This paper presents a new approach to distributed behavior
collaboration based on the concept of “path” to represent
extended neighborhood topology at the connector level. This
allows modules to select appropriate local behaviors for a given
global task in a given configuration. Specifically, a behavior of
a module is a set of actions executed sequentially. In the insect-
walk example, the relevant behaviors (among many existing
local behaviors) of a module can be ‘Leg-Lift-Forward Move’,
‘Leg-Down-Backward Move’, ‘Spine-Left Move’, and ‘Spine-
Right Move’. The legged gait is the result of the coordinated
performance of these behaviors. The collection of the behaviors
of all modules over time is called a group behavior of the
network. Although, any random combination of the modules’
individual behaviors can be considered as a group behavior,
most of them are not appropriate for accomplishing any global
tasks. In the past, researchers have used machine-learning
approaches to learn the mapping from the global task to
individual behaviors [15], but they are limited to only fixed-
shape and configuration specific robots.

This paper is organized as follows: Section 2 defines the
problem of distributed behavior collaboration and uses the
CONRO self-reconfigurable robot as an illustrative example;

Section 3 presents the basic idea of extended neighboring
types; Section 4 describes the process of selecting local
behaviors based on the extended neighboring types; Section 5
describes the D-BEST algorithm; Section 6 gives two examples
on selecting behaviors for T-shape and snake-like
configurations; Section 7 describes the experimental results on
the CONRO robots; and Section 8 concludes the paper with
future research directions.

II. DISTRIBUTED BEHAVIOR COLLABORATIOIN
The problem of distributed behavior collaboration can be

defined as follows: Given a global task and a group behavior,
selecting a correct set of local behaviors at each module and
coordinate the selected behaviors to produce the desired global
effects.

The problem is very challenging due to several reasons:
relationships among modules are not static but change with
configurations; the number of modules in the robot is not
known; modules have no unique global identifiers or addresses;
modules do not know the global configuration in advance, and
can only communicate with immediate neighbors. Under these
circumstances, a satisfactory solution to distributed behavior
collaboration must be distributed. Modules must select
behaviors through local communication, and the execution of
the selected behaviors must be synchronized.

Formally, the problem of distributed behavior collaboration
is a tuple (P, Q, C, A, B, t, GB), where P is a list of nodes, pi; Q
is the list of the internal state, qi, associated with each node pi,
such that i∈{1,…, N}; C is a list of labeled physical or logical
links, cj, such that j ∈ {locally unique labels}; A is a set of
actions as a node can execute, such that s ∈ {1,…, S}; B is a set
of behaviors in the form of bm = (ax, ay az,…), such that
m∈{1,…, M}; t is the global task given to all nodes, and GB is
the desired group behavior in the form of behavior selection
rules. These rules are mappings from nodes internal states to
behaviors, Q→ B. The configuration graph of the network of
modules is a graph consists of P nodes and C edges. A
distributed behavior selection problem is solved if and only if
β = GB, where β = β ∪ bpi , i ∈ {1,…, N}; meaning that the
union of the selected behaviors of all nodes over time is equal
to the desired group behavior. Note that the size of the network
is dynamic and unknown to the individual nodes; also the index
numbers are only used for defining the problem and not used in
the solution.

To illustrate the problem, we use the CONRO self-
reconfigurable robot as an example. CONRO is a chain-type
self-reconfigurable robot developed at USC/ISI
(http://www.isi.edu/robots). Figure 1 shows the schematic
views of CONRO module and a six-legged CONRO robot.
Each CONRO module is autonomous and contains two
batteries, one STAMP II-SX micro-controller, two
servomotors, and four docking connectors for connecting with
other modules. Each connector has a pair of infrared
transmitters/receivers to support communication as well as
docking guidance.

Each module has a set of open I/O ports so that various
sensors for tilt, touch, acceleration, and miniature vision, can

be installed dynamically. Each module has two Degrees Of
F nd

D
a
o
a
T
f
f
c

c
m
f
m
o
l

n
g
b
b
s
m
m

reedom: DOF1 for pitch (about 0-130° up and down) a

f
l

r

b

Figure 1: A CONRO module, the schematic view of one module, and a

hexapod (insect) configuration with 9 modules.
TABLE 1: LOCAL TOPOLOGICAL TYPES OF MODULES
This Module This Module

b f r l Type b f r l Type
 T0 f b T16
f T1 f b T17
 b T2 f b T18
 b T3 b b b T19
 b T4 f b b T20
l T5 f b b T21
r T6 f b b T22
 b b T7 l b b T23
 b b T8 l b b T24
 b b T9 l b b T25
l b T10 r b b T26
l b T11 r b b T27
l b T12 r b b T28
r b T13 f b b b T29
r b T14 l b b b T30

C
on

ne
ct

ed
 to

 o
th

er
 m

od
ul

es

r b T15

r b b b T31

T0

l

r
f b

T16 T1 T2 T16

T5 T5 T5

T6 T6 T6

T21 T29 T19
T5

T6

T21
A

A’

 T2

Figure 2: Immediate neighborhood topological types of CONRO

modules in different configurations: a single module, a hexapod, a
T-shape, and a snake.

OF2 for yaw (about 0-130° left and right). The range of yaw
nd pitch of a module is divided to 255 steps. The internal state
f each module includes the current values of the yaw, pitch of
 module, and the number of the sent and received messages.
he modules’ actions consist of moving the two degrees of

reedom to one of the 255 positions, attaching to or detaching
rom other modules, or sending messages to the
ommunication links through the IR senders.

Modules can be connected together by their docking
onnectors. Docking connectors, located at either end of each
odule. At one end, labeled back (b for short), there is a

emale connector, consisting of two holes for accepting another
odule’s docking pins. At the other end, three male connectors

f two pins each are located on three sides of the module,
abeled left (l), right (r) and front (f).

III. EXTENDED NEIGHBORHOOD TOPOLOGY
When modules in a self-reconfigurable robot have

egotiated and decided on a global task, [10], they must then
enerate a group behavior to accomplish the task. A group
ehavior is the result of the coordinated performance of local
ehaviors of individual modules, while the local behaviors are
elected based on the location of the modules relative to other
odules. In a previous paper, [11], we represented the
odule’s location in a configuration as the type of the module.

Table 1 lists 32 types of CONRO module, which reflects how a
module is connected to its immediate neighbors. Figure 2
shows some example types in various CONRO configurations.

The type information in Table 1 could provide modules
with the necessary information to uniquely determine their
location in most cases and select the appropriate local
behaviors for the global task accordingly (see details in [11]).
However, these types are not enough to guarantee determining
modules’ location in a complex configuration. For example,
consider the T-shape and the snake configurations in Figure 2.
The modules A, and A’ are both of type T2, yet they must
behave differently in the two different configuration. The
module A’ must perform a sinusoidal behavior in the snake
configuration, while the A module must keep still in the T-
shape “butter-fly” locomotion (i.e., the leg modules move in a
cycle of up, left, down, and right, while the body modules keep
still).

 Type(0): [(bf)]
Type(1): [(br,bf),(bl,bf)]

D

C

B
b f

r
b

l b

Type(0): [(rb)]
Type(1): [(fb,rb),(bl,rb)]

Type(0): [(br), (bl),(fb)]

Type(0): [(lb)]
Type(1): [(fb,lb),(br,lb)]

A

Figure 3: Examples of the extendable type(n).

To solve this problem, we extend module’s type from the
immediate neighborhood to neighbors that are n modules away.
We call the extended type, type(n), and define it as how the
active connection links of a given module are connected to the
connection links of the modules of distance n. For example, in
Figure 3, the type(0) for module A is [(bf)] because module B
is the only one of distance zero from A, and the b connector of
B is connected to the f connector of A. The type(1) of module
A is [(br,bf),(bl,bf)] because this is how A is connected to
module C and D, which are one module away (n = 1).
Similarly, the type(0) of module A’ is [(bf)] and its type(1) is
[(bf,bf)]. Note that module B has only immediate neighbors
(distance = 0) and therefore it has only type(0) information.

As we can see, although type(0) values of module A in the
T-configuration and module A’ in the snake configuration are
the same, they have different type(1) value. It can be proven
that using the extended types, modules can always uniquely
identify themselves in a configuration as long as the labels of
connection links of modules are locally unique. The proof is
based on having unique path between any two nodes in a tree.
As we will show next, modules can use the extended type
information to select the appropriate behavior based on the
given task.

It can be shown that the type definitions in [7,11] are
special cases of the extended type and equivalent to type(0). In

addition, global representation of the entire network for each
agent is equivalent to [type(0),type(1), . . ., type(d-1)], where d
is the diameter of the network.

The modules can discover their extended types dynamically
and autonomously. The solution is based on the characteristics
of hormone-inspired messages described in [3]. Each hormone
message contains a path field that records a list of connector-
pairs (ex. bf) through which the message has been propagated.
When a module receives a hormone message with |path|=m, it
will insert the path into its extended type(m-1) values. As more
and more messages are received, the extended type information
will be built up. Since messages are propagated through the
network, each module will eventually build up the correct type
values for itself.

IV. SELECTING LOCAL BEHAVIORS VIA TYPE(N) VALUES
 The most straightforward approach for behavior

collaboration in a modular system is the centralized ‘gait
control table’ [yim94], in which a designated module, called
the central controller, is given the information about behaviors
of other modules in the form of a table. Each column of this
table contains the sequence of actions that a module, identified
by its Id, has to perform over time based on its location in the
configuration (equivalent to the behavior of the module). The
central controller job is to send each row of the table specifying
the actions that all modules should perform at a time.

The ‘gait control table’ approach, however, is not an ideal
approach for controlling the self-reconfigurable system for the
following reasons: first, requiring the central controller to send
actions to the rest of the modules in the configuration creates a
communication bottleneck. In addition, if the central controller
becomes faulty the entire system will be disabled. More
importantly, when the network of modules restructures
themselves, the pre-specified behaviors of the modules in the
table might be valid anymore. The source of this difficulty is
that modules do not know how their behaviors are chosen for
them so that they can select new behaviors as they re-locate in
the configuration.

Our approach for solving this problem is based on using the
extended types to uniquely identify the location of modules in a
configuration, and use them to select the correct local behaviors
by the modules for the given global task. For example, as
shown in Figure 4, for a quadruped to accomplish the ‘Move
forward’ task, the ‘front left leg’ module and ‘back right leg’
will select ‘Swing Backward’ behavior, while the ‘front right
leg’ module and the ‘back left leg’ module will select the ‘Lift
and Swing Forward’ behavior and modules of types ‘front
spine’ and ‘back spine’ will select ‘bend left’ and ‘bend right’,
respectively. Figure 4b shows the robot after the modules have
performed their selected behaviors. In general, the group
behavior to accomplish “Move forward” consists of the
following behaviors: the ‘front left leg’ and the ‘back right leg’
perform the ‘Lift and Swing Backward’ behavior, while the
‘front right leg’ and the ‘back left leg’ is performing the ‘Swing
Forward’ behavior, and then the two groups switch their
behaviors. In the next section we present a flexible algorithm
called Distributed BEhavior SelecTion (D-BEST) for behavior
selection, which is based on the extended neighboring types.

b f b f

A’

b f

Type(0): [(bf)]
Type(1): [(bf,bf)]

‘front left leg' ‘back left leg’

‘front spine’ ‘back spine’

Swing Backward Lift-swing forward

‘front right leg’ ‘back right leg’ Lift-swing forward Swing Backward

Bend left Bend right

(b) (a)

Figure 4: (a) The module types in a four-legged self-reconfigurable robot;
(b) The selected local behaviors of each module for “move forward”.

V. THE D-BEST ALGORITHM
Using the extended types as the condition for selecting

behaviors will provide the modules with the information they
require to autonomously collaborate to select new behaviors.
Figure 5 illustrates the basic idea of the behavior collaboration
based on the extended types. Initially, modules communicate
their currently selected behaviors to their neighbors by sending
hormone messages and wait for receiving new hormone
message. This initial behavior could be a Null behavior. The
communicated hormone message content consists of the type
of the message, in this case of type <Behavior-selection>, and
an initially empty path field, represented by <(path)>.

 When a new hormone message is received, the module
updates the path field of the message, updates its extended type
based on the received path and propagates the message to its
neighbors. Then it uses the current extended type to select a
behavior from a lookup table representing the desired group
behavior. This process will continue until all modules receive
and propagate the initiated hormone messages.

Figure 5: Basic idea of behavior selection based on the extended types

Although this approach can dynamically adapt to the changes
in the topology of the network, it has two problems. First, an
initiated message from a module will be propagated to all other
modules in the configuration. This means that the total number
of communicated messages will be O(N2), where N is the
number of modules. The second problem is that when the
diameter of the configuration is large, the size of the path field,
and therefore the size of the message, will be large. This will
considerably slow down the communication when the
bandwidth is narrow.

To solve these two problems, we limit the maximum length
of the path field in the messages. For example, if the maximum
length of path is set to k, a message will stop being propagated
after k hops. In this situation, if there are N agents in the
network, and each agent has the average number of a active
connectors, the number of communicated messages will be
O(N) (since at most a*N messages will be initiated and each
message will be communicated k times therefore k*a*N
messages). The tradeoff of this solution is that the created
extended type will be partial, and therefore might not be
enough for some modules to select the correct local behaviors.

This problem can be solved by including the modules’
selected behaviors in the communicated hormone messages and
representing the group behavior as a set of decision rules based
on the partial paths and received behaviors. In this situation, the
content of the hormone messages and decision rules are shown
in Figures 6a 6b, respectively.

<Behavior-selection><(path)><Selected behavior>
(a)

if (received path == X) and
(received behavior == Y)
then (select local behavior Z)

 (b)
Figure 6: a) the format of the hormone messages. b) the format of the

decision rules

The basic idea of this solution is that receiving the selected
behavior of an extended neighbor gives an overview about the
configuration of the module around that module, which
combined with the received partial path can be used for
selecting the correct behavior.

This control algorithm has some unique features that are
different from previous approaches. Unlike the approaches
based on the pre-assigned behaviors, this controller can adapt
with the dynamic self-reconfiguration of the network, prevent
communication bottleneck and is robust to individual modules
failure. In addition, D-BEST is more flexible and powerful than
the approaches for behavior selection based on immediate
neighboring connection patterns as D-BEST uses both
immediate and extended neighboring modules connection
pattern for behavior selection.

It can be seen that the shorter the maximum size of the path
results the smaller number of communicated message. This
feature can be utilized at the design time of the decision rules
for a desired group behavior in the following way. Starting
from the smallest maximum length (k =0) the designer of the
group behavior will write the rules that can uniquely select the
correct behaviors for the modules. If there is ambiguity in
selecting behaviors for the possible configurations, the k will be
increased to provide the modules with more information such
that the ambiguity is resolved. This characteristic of the D-
BEST algorithm allows the number of the communicated
message to be a function of the complexity of the desired group
behavior and/or possible configurations.

 Send
<Behavior-selection><()>

to all neighbors

A message
received ?

Update message path field
Update extended types
based on the received
message’s path fields
Propagate received

Select a behavior
from a lookup table based

on the current extended types

Yes

No

VI. EXAMPLE
In this section we present two examples of applying

 D-BEST algorithm for selecting behaviors in T-shape and
snake-like configurations.

Figure 7 shows the rules for the Butterfly locomotion of a
T-shape configuration. In this example Butterfly_Spine,
CAT_0, Move_East and Move_West are different behaviors. In
this example, the maximum path length is chosen to be zero,
k = 0, meaning that immediate neighboring modules will not
propagate the received messages. According to rules 1, if a
module receives a message from one of it left or right
connectors, it will be a spine module otherwise it can be a spine
or a module in a snake configuration. Based on this rule,
module B can select the correct behavior, Butterfly_Spine.
However, module A does not know if it is a spine module or in
the snake configuration. Rule 4 can resolves this issue by
determining the module cannot be part of a snake configuration
if the neighboring module B has selected Butterfly_Spine.
Rules 2 and 3 will be used by the side legs to select the correct
direction for their movements. If module A applies rule 1, it
will consider the possibility of being part of a snake by
selecting the CAT0 (sinusoidal motion starting from angle zero
for caterpillar move). This selection will be corrected if at some
point rule 4 is applicable.

Figure 7: Decision rule for Butterfly locomotion.

In a situation that module A is actually part of snake
configuration then the rules shown in the next example, Figure
8, will be applicable and the behaviors for the caterpillar move
will be selected.

In the example of Figure 8, CAT0 to CAT120 are the
behaviors for performing the sinusoidal motion starting form 0
to 120 degrees, respectively. In this example k = 1 meaning that
the initiated messages will be sent to extended neighbors of
distance one. We can see that in the case of k = 1, there will be
an ambiguity in the extended types of modules C and D as they
both have the same type(0) and type(1) while they are expected
to perform different behaviors. However, using the received
behaviors from the neighboring modules that have had selected
correct behaviors without ambiguity, i.e. modules B and E, will
allow these modules to select the correct behaviors.

It is important to notice that all the rules in figures 7 and 8

are part of a single database and in the behavior selection
process all of them will be investigated. Hence, as the
configuration of the network dynamically changes, the selected
behaviors will be consistent with the current configuration.

Figure 8: Decision rule for Caterpillar locomotion

VII. EXPERIMENTAL RESULTS
We have implemented and tested the D-BEST algorithm in

two sets of experiments. The first is on the real CONRO
modules for locomotion. The second is on a simulated CONRO
robot in a Newtonian mechanics simulation environment called
Working Model 3D. Movies for these experiments can be
found at http://www.isi.edu/robots.

All modules are loaded with the same control program. In
some cases for different configurations, we have loaded
different sets of rules. For economic reasons, the power of the
modules is supplied independently through cables from an off-
board power supplier. But all modules are running as
autonomous systems without any off-line computational
resources.

For the snake configuration, we have experimented with
caterpillar movement with different lengths ranging from 1
module to 10 modules. With no modification of programs, all
these configurations can move and snakes with more than 3
modules can move properly as caterpillar. The average speed of
the caterpillar movements is approximately 30cm/minute. To
test the ability of on-line reconfiguration, we have dynamically
“cut” a 10-module running snake into three segments with
lengths of 4, 4, and 2, respectively. All these segments adapt to
the new configuration and continue to move as independent
caterpillars. We also dynamically connected two or three
independent running caterpillars with various lengths into a
single and longer caterpillar. The new and longer caterpillar
would adapt to the new configuration and continue to move in
the caterpillar gait. These experiments show that the described
approach is robust to changes in the length of the snake
configuration.

For the legged configuration, we have experimented
various configurations derived from a 6-leg robot. These

1) If path = ((bl) or path = (br))
then select Butterfly_Spine

else select CAT_0

2) If path = (rb)
and behavior = Butterfly_Spine
then select Move_West

3) If path = (lb)
and behavior = Butterfly_Spine
then select Move_East

4) If (path = (fb) or path = (bf))
and behavior = Butterfly_Spine
then select Butterfly_Spine

DB C

bf bfbf b

Type(0): [(bf)]
Type(1): [(bf,bf)]

Type(0): [(fb),(bf)]
Type(1): [(fb,fb), (bf,bf)]

Type(0): [(fb),(bf)]
Type(1): [(bf,bf)]

Type(0): [(fb),(bf)]
Type(1): [(fb,fb)]

E

ff b

F

fb

Type(0): [(fb)]
Type(1): [(fb,fb)]

A DB C

bf bfbf b

Type(0): [(bf)]
Type(1): [(bf,bf)]

Type(0): [(fb),(bf)]
Type(1): [(fb,fb), (bf,bf)]

Type(0): [(fb),(bf)]
Type(1): [(bf,bf)]

Type(0): [(fb),(bf)]
Type(1): [(fb,fb)]

Type(0): [(fb),(bf)]
Type(1): [(bf,bf)]

Type(0): [(fb),(bf)]
Type(1): [(fb,fb)]

E

ff b

F

fb

Type(0): [(fb)]
Type(1): [(fb,fb)]

A

If path = (bf,bf) and behavior = CAT_0
then select CAT_60
If path = (bf) and behavior = CAT_0
then select CAT_30
If path = (bf,bf) and behavior = CAT_30
then select CAT_90
If path = (bf) and behavior = CAT_30
then select CAT_60
If path = (bf,bf) and behavior = CAT_60
then select CAT_120

If path = (bf) and behavior = CAT_60
then select CAT_90
If path = (bf,bf) and behavior = CAT_90
then select CAT_150
If path = (bf) and behavior = CAT_90
then select CAT_120
If path = (bf,bf) and behavior = CAT_120
then select CAT_0
If path = (bf) and behavior = CAT_120
then select CAT_150
If behavior <> CAT * then select CAT_0

If path = (bf,bf) and behavior = CAT_0
then select CAT_60
If path = (bf) and behavior = CAT_0
then select CAT_30
If path = (bf,bf) and behavior = CAT_30
then select CAT_90
If path = (bf) and behavior = CAT_30
then select CAT_60
If path = (bf,bf) and behavior = CAT_60
then select CAT_120

If path = (bf) and behavior = CAT_60
then select CAT_90
If path = (bf,bf) and behavior = CAT_90
then select CAT_150
If path = (bf) and behavior = CAT_90
then select CAT_120
If path = (bf,bf) and behavior = CAT_120
then select CAT_0
If path = (bf) and behavior = CAT_120
then select CAT_150
If behavior <> CAT * then select CAT_0

D

B

Type(0): [(rb)]

Type(0): [(br),(bl),(fb)]

Type(0): [(lb)]

bf
r

b

l b

Type(0): [(bf)]

A
C

configurations can walk on different number of legs without
changing the program and the rules. While a 6-leg robot is
walking, we dynamically removed one leg from the robot and
the robot can continue walk on the remaining legs. The
removed leg can be any of the 6 legs. We then dynamically
removed a pair of legs (the front, the middle, and the rear) from
the robot, and observed that the robot can continue walk on the
remaining 4 legs. We then systematically experimented
removing 2, 3, 4, 5, and 6 legs from the robot, and observed
that the robot would still walk if the remaining legs can support
the body. In other cases, the robot would still attempt to walk
on the remaining legs even if it has only one leg. Although we
have only experimented robots with up to 6 legs, these results
can scale up to large configurations such as centipedes that
have many legs.

In another experiment with the four-legged configuration,
while the robot was executing the Walk task, we detached the
two spine modules. The resulting configuration was two
separate T-shape robots. In this situation each T-shape robot
continues the locomotion by executing the Butterfly Stroke
gait. Later, two T-shape robots were re-connected and the
resulting four-legged robot re-initiated the four-legged Walking
gait.

To test this approach for the self-reconfiguration task, we
developed the rules for the ‘Snake to T-shape’ self-
reconfiguration task. In this experiment, the self-
reconfiguration task was given manually to one the middle
module of a snake-shape robot consisting of seven modules.
After completion of this task the behaviors for the T-shape
butterfly gait was generated.

To test the autonomous reaction of the robot to the
environmental stimulus, we installed two tilt-sensors on one of
the modules in the snake configuration and loaded in all
modules a set of rules for flipping back the robot to the normal
orientation. Initially, a ‘Caterpillar Move’ task was manually
given to the snake-shape robot. Then, while it was moving as a
caterpillar, we manually pushed the snake to its side or flipped
it upside down such that the tilt-sensors were activated. We
observed that based on the output signals of the sensors, new
tasks such as FlipLeft, FlipRight, or FlipOver was generated.
Consequently, new behaviors were initiated to bend modules
appropriately to flip the robot back to the correct orientation.

In parallel with the experiments on the real CONRO robot,
we have also implemented the described approach on a
simulated CONRO robot in a software Newtonian simulation
environment called Working Model 3D. Using this three-
dimensional dynamics simulation program, we have designed a
set of virtual CONRO modules to approximate the physical
properties of the real modules, including their mass, motor
torques, joints, coefficient of friction, moments of inertia,
velocities, springs, and dampers. The controller is implemented
in Java and runs on each simulated module. We have
experimented with and demonstrated successful locomotion in
various configurations, including snakes with different length
(3-12 modules) and insects with different numbers (4-6) of
legs.

VIII. CONCLUSION AND FUTURE WORK
This paper described a distributed and decentralized

solution for agents to select appropriate local behaviors based
on their extended topological type and a given global task. The
concept of extended type can guarantee modules to uniquely
determine their location in the current configuration without
assuming any global unique identifiers. The method is robust to
configuration changes and scalable up to large systems. The
proposed method has been tested on the physical CONRO self-
reconfigurable robots and the results have demonstrated the
desired properties described in the paper. As the future work,
we will study the conditions for performing successful self-
reconfiguration and locomotion tasks based on the received
messages and develop a complete set of rules for performing all
possible self-reconfiguration and locomotion tasks.

ACKNOWLEDGMENT
We are grateful that this research is sponsored by AFOSR

under award numbers F49620-01-1-0020 and F49620-01-1-
0441.

REFERENCES
[1] Yim, M., Y. Zhang, D. Duff, Modular Robots. IEEE Spectrum, 2002
[2] Rus, D., Z. Butler, K. Kotay, M. Vona,, Self-Reconfiguring Robots.

ACM Communication, 2002.
[3] Shen, W.-M., B. Salemi, and P. Will., Hormone-Inspired Adaptive

Communication and Distributed Control for CONRO Self-
Reconfigurable Robots. IEEE Transaction on Robotics and Automation,
2002. 18(5): p. 700-712..

[4] Yim, M., Locomotion with a unit-modular reconfigurable robot (Ph.D.
Thesis), in Department of Mechanical Engineering. 1994, Stanford
University.

[5] Stoy, K., WM. Shen and P. Will. Global Locomotion from Local
Interaction in Self-reconfigurable robots. in IAS-7. 2002.

[6] Salemi, B., WM. Shen and P. Will. Hormone Controlled Metamorphic
Robots. in ICRA. 2001.

[7] Stoy, K., Shen,WM., Will, P.,, Using Role-Based Control to Produce
Locomotion in Chain-Type Self-Reconfigurable Robots. IEEE/ASME
Transactions on Mechatronics, 2002. 7(4): p. 410.

[8] Murata, S., E. Yoshida, H. Kurokawa, K. Tomita, S. Kokaji, Self-
Repairing Mechanical Systems. Autonomous Robots, 2001. 10: p. 7-2.

[9] Shen, W.-M., B. Salemi, and P. Will, Hormone-Inspired Adaptive
Communication and Distributed Control for CONRO Self-
Reconfigurable Robots, IEEE Transactions on Robotics and
Automation, 18(5), October, 2002.

[10] Behnam Salemi, Peter Will, Wei-Min Shen, Distributed Task
Negotiation in Self-Reconfigurable Robots, International Conference on
Intelligent Robots and Systems. Las Vegas, October 2003.

[11] Salemi, B., WM. Shen and P. Will. Hormone Controlled Metamorphic
Robots. in ICRA. 2001.

[12] H. Kurokawa, et. al., M-TRAN II: Metamorphism From a Four-Legged
Walker to a Caterpillar. International Conference on Intelligent Robots
and Systems. Las Vegas, October 2003.

[13] Y. Zhang et.al., Phase Automata: a programming model of locomotion
gaits for scalable chai-type modular robots. International Conference on
Intelligent Robots and Systems. Las Vegas, October 2003.

[14] R. Fitch, Z. Butler, D. Rus, Reconfiguration Planning for Heterogeneous
Self-reconfiguring Robots. International Conference on Intelligent
Robots and Systems. Las Vegas, October 2003.

[15] P. Maes and R. Brooks, "Learning to Coordinate Behaviors,"
Proceedings of AAAI-90: The American Conference on Artificial
Intelligence, pp. 796-802 AAAI Press/MIT Press, Boston, MA, August
1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

