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Abstract— This paper describes a distributed and decentralized 
approach for modules in a self-reconfigurable robot to select 
appropriate behaviors based on four factors: the current global 
task, the local topological location in the current configuration, 
the local state/sensor information, and the received messages 
from their neighbors. This approach does not assume any unique 
global identifiers for the modules, and is robust for 
reconfigurations of modules. The approach is enabled by the 
extended neighbor topology built upon a previous local topology 
representation and a hormone-inspired communication and 
control protocols. Experimental results on the CONRO robot 
have shown some unique features of this approach for the control 
of self-reconfigurable robots in general. 

Keywords- Self-reconfigurable robots,distributed control, 
behavior selection, distributed collaboration. 

I.  INTRODUCTION 
A self-reconfigurable system is a special type of complex 

systems that can autonomously or manually rearrange its 
software and hardware components and adapt its configuration 
(such as shape, size, formation, structure, or organization) to 
accomplish difficult missions in dynamic, uncertain, and 
unanticipated environments. A self-reconfigurable system is 
typically made from a network of homogeneous or 
heterogeneous reconfigurable modules (or agents) that can 
autonomously change their physical or logical connections and 
rearrange their configurations. Self-reconfigurable robots [1-3] 
are examples of such systems that consist of many autonomous 
modules that have sensors, actuators, and computational 
resources. These modules are physically connected to each 
other in the form of a configuration network. Since the 
topology of the network may change from time to time, the 
controller of the robot must be distributed and decentralized to 
avoid single-point failures and communication bottleneck 
among modules. These modules must have some essential 
capabilities in order to perform complex tasks in dynamic and 
uncertain environments. These capabilities are: (1) distributed 
task negotiation [9, 10] – allowing modules to agree on a global 
task to perform,  (2) distributed behavior collaboration – 
allowing modules to “translate” a global task into local 
behaviors of modules; (3) synchronization – allowing modules 
to perform local behaviors in a coordinated and timely fashion; 
and finally (4) topology monitor and discovery – allowing 
modules to detect changes/damages in the robot configuration 
and adopt behaviors or repair configurations. This paper is 
about the solutions to the second problem. 

For distributed behavior collaboration, modules must know 
their topological location in the current configuration. For 
example, for an insect-like robot to walk, the modules in the 
legs must perform different actions than the modules in the 
body. All the leg modules must perform a set of coordinated 
behaviors to generate the insect walk gait. This task is more 
complicated in self-reconfigurable robots because modules 
cannot always assume to have unique global identifiers or 
addresses. For example, module Mi could be in arm in one 
configuration and in leg in another configuration. To present 
the topological location of modules, previous approaches were 
either centralized and assumed global identifiers for modules 
[4,12] or assumed simple neighboring relations such as binary 
occupancy code (yes or no for a neighbor) for chain-based 
robots [13] and binary occupancy grids in lattice-based robots 
[14]. These approaches only allow modules to know if they 
have neighbors or not and do not represent how neighbor 
modules are connected at the “connector” level. (e.g., a 
module’s connector x is connected to the connector y of a 
neighboring module). Approaches that do consider the 
connector level, such as [5,6,7,8], only have considered 
information about the immediate neighbors. Such approaches 
are not powerful enough to support all possible behavior 
collaborations in the complex configurations. 

This paper presents a new approach to distributed behavior 
collaboration based on the concept of “path” to represent 
extended neighborhood topology at the connector level. This 
allows modules to select appropriate local behaviors for a given 
global task in a given configuration. Specifically, a behavior of 
a module is a set of actions executed sequentially. In the insect-
walk example, the relevant behaviors (among many existing 
local behaviors) of a module can be ‘Leg-Lift-Forward Move’, 
‘Leg-Down-Backward Move’, ‘Spine-Left Move’, and ‘Spine-
Right Move’. The legged gait is the result of the coordinated 
performance of these behaviors. The collection of the behaviors 
of all modules over time is called a group behavior of the 
network. Although, any random combination of the modules’ 
individual behaviors can be considered as a group behavior, 
most of them are not appropriate for accomplishing any global 
tasks. In the past, researchers have used machine-learning 
approaches to learn the mapping from the global task to 
individual behaviors [15], but they are limited to only fixed-
shape and configuration specific robots. 

This paper is organized as follows: Section 2 defines the 
problem of distributed behavior collaboration and uses the 
CONRO self-reconfigurable robot as an illustrative example; 



Section 3 presents the basic idea of extended neighboring 
types; Section 4 describes the process of selecting local 
behaviors based on the extended neighboring types; Section 5 
describes the D-BEST algorithm; Section 6 gives two examples 
on selecting behaviors for T-shape and snake-like 
configurations; Section 7 describes the experimental results on 
the CONRO robots; and Section 8 concludes the paper with 
future research directions. 

II. DISTRIBUTED BEHAVIOR COLLABORATIOIN 
The problem of distributed behavior collaboration can be 

defined as follows: Given a global task and a group behavior, 
selecting a correct set of local behaviors at each module and 
coordinate the selected behaviors to produce the desired global 
effects. 

The problem is very challenging due to several reasons: 
relationships among modules are not static but change with 
configurations; the number of modules in the robot is not 
known; modules have no unique global identifiers or addresses; 
modules do not know the global configuration in advance, and 
can only communicate with immediate neighbors. Under these 
circumstances, a satisfactory solution to distributed behavior 
collaboration must be distributed. Modules must select 
behaviors through local communication, and the execution of 
the selected behaviors must be synchronized. 

Formally, the problem of distributed behavior collaboration 
is a tuple (P, Q, C, A, B, t, GB), where P is a list of nodes, pi; Q 
is the list of the internal state, qi, associated with each node pi, 
such that i∈{1,…, N}; C is a list of labeled physical or logical 
links, cj, such that j ∈ {locally unique labels}; A is a set of 
actions as a node can execute, such that s ∈ {1,…, S}; B is a set 
of behaviors in the form of bm = (ax, ay az,…), such that 
m∈{1,…, M};  t is the global task given to all nodes, and GB is 
the desired group behavior in the form of behavior selection 
rules. These rules are mappings from nodes internal states to 
behaviors, Q→ B. The configuration graph of the network of 
modules is a graph consists of P nodes and C edges. A 
distributed behavior selection problem is solved if and only if  
β = GB, where β = β ∪ bpi , i ∈ {1,…, N};  meaning that the 
union of the selected behaviors of all nodes over time is equal 
to the desired group behavior. Note that the size of the network 
is dynamic and unknown to the individual nodes; also the index 
numbers are only used for defining the problem and not used in 
the solution. 

To illustrate the problem, we use the CONRO self-
reconfigurable robot as an example. CONRO is a chain-type 
self-reconfigurable robot developed at USC/ISI 
(http://www.isi.edu/robots). Figure 1 shows the schematic 
views of CONRO module and a six-legged CONRO robot.  
Each CONRO module is autonomous and contains two 
batteries, one STAMP II-SX micro-controller, two 
servomotors, and four docking connectors for connecting with 
other modules. Each connector has a pair of infrared 
transmitters/receivers to support communication as well as 
docking guidance.  

Each module has a set of open I/O ports so that various 
sensors for tilt, touch, acceleration, and miniature vision, can 

be installed dynamically. Each module has two Degrees Of 
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Figure 1: A CONRO module, the schematic view of one module, and a 

hexapod (insect) configuration with 9 modules. 
TABLE 1: LOCAL TOPOLOGICAL TYPES OF MODULES 
This Module  This Module  

b f r l Type b f r l Type 
    T0 f b   T16 
f    T1 f  b  T17 
 b   T2 f   b T18 
  b  T3  b b b T19 
   b T4 f b b  T20 
l    T5 f  b b T21 
r    T6 f b  b T22 
 b b  T7 l b b  T23 
  b b T8 l  b b T24 
 b  b T9 l b  b T25 
l b   T10 r b b  T26 
l  b  T11 r  b b T27 
l   b T12 r b  b T28 
r b   T13 f b b b T29 
r  b  T14 l b b b T30 
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Figure 2: Immediate neighborhood topological types of CONRO 

modules in different configurations: a single module, a hexapod, a 
T-shape, and a snake. 

OF2 for yaw (about 0-130° left and right). The range of yaw 
nd pitch of a module is divided to 255 steps. The internal state 
f each module includes the current values of the yaw, pitch of 
 module, and the number of the sent and received messages. 
he modules’ actions consist of moving the two degrees of 

reedom to one of the 255 positions, attaching to or detaching 
rom other modules, or sending messages to the 
ommunication links through the IR senders.  

Modules can be connected together by their docking 
onnectors. Docking connectors, located at either end of each 
odule. At one end, labeled back (b for short), there is a 

emale connector, consisting of two holes for accepting another 
odule’s docking pins. At the other end, three male connectors 

f two pins each are located on three sides of the module, 
abeled left (l), right (r) and front (f). 

III. EXTENDED NEIGHBORHOOD TOPOLOGY 
When modules in a self-reconfigurable robot have 

egotiated and decided on a global task, [10], they must then 
enerate a group behavior to accomplish the task. A group 
ehavior is the result of the coordinated performance of local 
ehaviors of individual modules, while the local behaviors are 
elected based on the location of the modules relative to other 
odules. In a previous paper, [11], we represented the 
odule’s location in a configuration as the type of the module. 



Table 1 lists 32 types of CONRO module, which reflects how a 
module is connected to its immediate neighbors. Figure 2 
shows some example types in various CONRO configurations. 

The type information in Table 1 could provide modules 
with the necessary information to uniquely determine their 
location in most cases and select the appropriate local 
behaviors for the global task accordingly (see details in [11]). 
However, these types are not enough to guarantee determining 
modules’ location in a complex configuration. For example, 
consider the T-shape and the snake configurations in Figure 2. 
The modules A, and A’ are both of type T2, yet they must 
behave differently in the two different configuration. The 
module A’ must perform a sinusoidal behavior in the snake 
configuration, while the A module must keep still in the T-
shape “butter-fly” locomotion (i.e., the leg modules move in a 
cycle of up, left, down, and right, while the body modules keep 
still). 
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Figure 3: Examples of the extendable type(n). 

To solve this problem, we extend module’s type from the 
immediate neighborhood to neighbors that are n modules away. 
We call the extended type, type(n), and define it as how the 
active connection links of a given module are connected to the 
connection links of the modules of distance n. For example, in 
Figure 3, the type(0) for module A is [(bf)] because module B 
is the only one of distance zero from A, and the b connector of 
B is connected to the f connector of A. The type(1) of module 
A is [(br,bf),(bl,bf)] because this is how A is connected to 
module C and D, which are one module away (n = 1). 
Similarly, the type(0) of module A’ is [(bf)] and its type(1) is 
[(bf,bf)]. Note that module B has only immediate neighbors  
(distance = 0) and therefore it has only type(0) information. 

As we can see, although type(0) values of module A in the 
T-configuration and module A’ in the snake configuration are 
the same, they have different type(1) value. It can be proven 
that using the extended types, modules can always uniquely 
identify themselves in a configuration as long as the labels of 
connection links of modules are locally unique. The proof is 
based on having unique path between any two nodes in a tree.  
As we will show next, modules can use the extended type 
information to select the appropriate behavior based on the 
given task.  

It can be shown that the type definitions in [7,11] are 
special cases of the extended type and equivalent to type(0). In 

addition, global representation of the entire network for each 
agent is equivalent to [type(0),type(1), . . ., type(d-1)], where d 
is the diameter of the network.  

The modules can discover their extended types dynamically 
and autonomously. The solution is based on the characteristics 
of hormone-inspired messages described in [3]. Each hormone 
message contains a path field that records a list of connector-
pairs (ex. bf) through which the message has been propagated. 
When a module receives a hormone message with |path|=m, it 
will insert the path into its extended type(m-1) values. As more 
and more messages are received, the extended type information 
will be built up. Since messages are propagated through the 
network, each module will eventually build up the correct type 
values for itself.  

IV. SELECTING LOCAL BEHAVIORS VIA TYPE(N) VALUES 
 The most straightforward approach for behavior 

collaboration in a modular system is the centralized ‘gait 
control table’ [yim94], in which a designated module, called 
the central controller, is given the information about behaviors 
of other modules in the form of a table. Each column of this 
table contains the sequence of actions that a module, identified 
by its Id, has to perform over time based on its location in the 
configuration (equivalent to the behavior of the module). The 
central controller job is to send each row of the table specifying 
the actions that all modules should perform at a time.  

The ‘gait control table’ approach, however, is not an ideal 
approach for controlling the self-reconfigurable system for the 
following reasons: first, requiring the central controller to send 
actions to the rest of the modules in the configuration creates a 
communication bottleneck. In addition, if the central controller 
becomes faulty the entire system will be disabled. More 
importantly, when the network of modules restructures 
themselves, the pre-specified behaviors of the modules in the 
table might be valid anymore. The source of this difficulty is 
that modules do not know how their behaviors are chosen for 
them so that they can select new behaviors as they re-locate in 
the configuration.  

Our approach for solving this problem is based on using the 
extended types to uniquely identify the location of modules in a 
configuration, and use them to select the correct local behaviors 
by the modules for the given global task. For example, as 
shown in Figure 4, for a quadruped to accomplish the ‘Move 
forward’ task, the ‘front left leg’ module and ‘back right leg’ 
will select ‘Swing Backward’ behavior, while the ‘front right 
leg’ module and the ‘back left leg’ module will select the ‘Lift 
and Swing Forward’ behavior and modules of types ‘front 
spine’ and ‘back spine’ will select ‘bend left’ and ‘bend right’, 
respectively. Figure 4b shows the robot after the modules have 
performed their selected behaviors. In general, the group 
behavior to accomplish “Move forward” consists of the 
following behaviors: the ‘front left leg’ and the ‘back right leg’ 
perform the ‘Lift and Swing Backward’ behavior, while the 
‘front right leg’ and the ‘back left leg’ is performing the ‘Swing 
Forward’ behavior, and then the two groups switch their 
behaviors. In the next section we present a flexible algorithm 
called Distributed BEhavior SelecTion (D-BEST) for behavior 
selection, which is based on the extended neighboring types. 
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Figure 4: (a) The module types in a four-legged self-reconfigurable robot; 
(b) The selected local behaviors of each module for “move forward”. 

V. THE D-BEST ALGORITHM 
Using the extended types as the condition for selecting 

behaviors will provide the modules with the information they 
require to autonomously collaborate to select new behaviors. 
Figure 5 illustrates the basic idea of the behavior collaboration 
based on the extended types. Initially, modules communicate 
their currently selected behaviors to their neighbors by sending 
hormone messages and wait for receiving new hormone 
message. This initial behavior could be a Null behavior. The 
communicated hormone message content consists of the type 
of the message, in this case of type <Behavior-selection>, and 
an initially empty path field, represented by <(path)>. 

 When a new hormone message is received, the module 
updates the path field of the message, updates its extended type 
based on the received path and propagates the message to its 
neighbors. Then it uses the current extended type to select a 
behavior from a lookup table representing the desired group 
behavior. This process will continue until all modules receive 
and propagate the initiated hormone messages. 

 

 

 

 

 

  

 

 

 

 

 
Figure 5:  Basic idea of behavior selection based on the extended types 

Although this approach can dynamically adapt to the changes 
in the topology of the network, it has two problems. First, an 
initiated message from a module will be propagated to all other 
modules in the configuration. This means that the total number 
of communicated messages will be O(N2), where N is the 
number of modules. The second problem is that when the 
diameter of the configuration is large, the size of the path field, 
and therefore the size of the message, will be large. This will 
considerably slow down the communication when the 
bandwidth is narrow. 

To solve these two problems, we limit the maximum length 
of the path field in the messages. For example, if the maximum 
length of path is set to k, a message will stop being propagated 
after k hops. In this situation, if there are N agents in the 
network, and each agent has the average number of a active 
connectors, the number of communicated messages will be 
O(N) (since at most  a*N messages will be initiated and each 
message will be communicated k times therefore k*a*N 
messages). The tradeoff of this solution is that the created 
extended type will be partial, and therefore might not be 
enough for some modules to select the correct local behaviors.  

This problem can be solved by including the modules’ 
selected behaviors in the communicated hormone messages and 
representing the group behavior as a set of decision rules based 
on the partial paths and received behaviors. In this situation, the 
content of the hormone messages and decision rules are shown 
in Figures 6a 6b, respectively. 

<Behavior-selection><(path)><Selected behavior> 
(a) 

 
if (received path == X) and 
(received behavior == Y) 
then (select local behavior Z) 

     (b) 
Figure 6:  a) the format of the hormone messages. b) the format of the 

decision rules 

The basic idea of this solution is that receiving the selected 
behavior of an extended neighbor gives an overview about the 
configuration of the module around that module, which 
combined with the received partial path can be used for 
selecting the correct behavior.  

This control algorithm has some unique features that are 
different from previous approaches. Unlike the approaches 
based on the pre-assigned behaviors, this controller can adapt 
with the dynamic self-reconfiguration of the network, prevent 
communication bottleneck and is robust to individual modules 
failure. In addition, D-BEST is more flexible and powerful than 
the approaches for behavior selection based on immediate 
neighboring connection patterns as D-BEST uses both 
immediate and extended neighboring modules connection 
pattern for behavior selection.  

It can be seen that the shorter the maximum size of the path 
results the smaller number of communicated message. This 
feature can be utilized at the design time of the decision rules 
for a desired group behavior in the following way. Starting 
from the smallest maximum length (k =0) the designer of the 
group behavior will write the rules that can uniquely select the 
correct behaviors for the modules. If there is ambiguity in 
selecting behaviors for the possible configurations, the k will be 
increased to provide the modules with more information such 
that the ambiguity is resolved. This characteristic of the D-
BEST algorithm allows the number of the communicated 
message to be a function of the complexity of the desired group 
behavior and/or possible configurations. 

 Send 
<Behavior-selection><()> 

to all neighbors 

A message  
received ? 

Update message path field
Update extended types 
based on the received  
message’s path fields 
Propagate received 

Select a behavior  
from a lookup table based  

on the current extended types 

Yes 

No 



VI. EXAMPLE 
In this section we present two examples of applying 

 D-BEST algorithm for selecting behaviors in T-shape and 
snake-like configurations.  

Figure 7 shows the rules for the Butterfly locomotion of a 
T-shape configuration. In this example Butterfly_Spine, 
CAT_0, Move_East and Move_West are different behaviors. In 
this example, the maximum path length is chosen to be zero,  
k = 0, meaning that immediate neighboring modules will not 
propagate the received messages. According to rules 1, if a 
module receives a message from one of it left or right 
connectors, it will be a spine module otherwise it can be a spine 
or a module in a snake configuration. Based on this rule, 
module B can select the correct behavior, Butterfly_Spine. 
However, module A does not know if it is a spine module or in 
the snake configuration. Rule 4 can resolves this issue by 
determining the module cannot be part of a snake configuration 
if the neighboring module B has selected Butterfly_Spine. 
Rules 2 and 3 will be used by the side legs to select the correct 
direction for their movements. If module A applies rule 1, it 
will consider the possibility of being part of a snake by 
selecting the CAT0 (sinusoidal motion starting from angle zero 
for caterpillar move). This selection will be corrected if at some 
point rule 4 is applicable.   

 

 

 

 

 
Figure 7:  Decision rule for Butterfly locomotion. 

In a situation that module A is actually part of snake 
configuration then the rules shown in the next example, Figure 
8, will be applicable and the behaviors for the caterpillar move 
will be selected. 

In the example of Figure 8, CAT0 to CAT120 are the 
behaviors for performing the sinusoidal motion starting form 0 
to 120 degrees, respectively. In this example k = 1 meaning that 
the initiated messages will be sent to extended neighbors of 
distance one. We can see that in the case of k = 1, there will be 
an ambiguity in the extended types of modules C and D as they 
both have the same type(0) and type(1) while they are expected 
to perform different behaviors. However, using the received 
behaviors from the neighboring modules that have had selected 
correct behaviors without ambiguity, i.e. modules B and E, will 
allow these modules to select the correct behaviors. 

 
It is important to notice that all the rules in figures 7 and 8 

are part of a single database and in the behavior selection 
process all of them will be investigated. Hence, as the 
configuration of the network dynamically changes, the selected 
behaviors will be consistent with the current configuration. 

 
Figure 8:  Decision rule for Caterpillar locomotion 

VII. EXPERIMENTAL RESULTS 
We have implemented and tested the D-BEST algorithm in 

two sets of experiments. The first is on the real CONRO 
modules for locomotion. The second is on a simulated CONRO 
robot in a Newtonian mechanics simulation environment called 
Working Model 3D. Movies for these experiments can be 
found at http://www.isi.edu/robots. 

All modules are loaded with the same control program. In 
some cases for different configurations, we have loaded 
different sets of rules. For economic reasons, the power of the 
modules is supplied independently through cables from an off-
board power supplier. But all modules are running as 
autonomous systems without any off-line computational 
resources. 

For the snake configuration, we have experimented with 
caterpillar movement with different lengths ranging from 1 
module to 10 modules. With no modification of programs, all 
these configurations can move and snakes with more than 3 
modules can move properly as caterpillar. The average speed of 
the caterpillar movements is approximately 30cm/minute. To 
test the ability of on-line reconfiguration, we have dynamically 
“cut” a 10-module running snake into three segments with 
lengths of 4, 4, and 2, respectively. All these segments adapt to 
the new configuration and continue to move as independent 
caterpillars. We also dynamically connected two or three 
independent running caterpillars with various lengths into a 
single and longer caterpillar. The new and longer caterpillar 
would adapt to the new configuration and continue to move in 
the caterpillar gait. These experiments show that the described 
approach is robust to changes in the length of the snake 
configuration. 

For the legged configuration, we have experimented 
various configurations derived from a 6-leg robot. These 

1) If  path = ((bl) or path = (br)) 
then select Butterfly_Spine 

else select CAT_0 
 

2) If path = (rb)  
and behavior = Butterfly_Spine 
then select Move_West  

3) If path = (lb)  
and behavior = Butterfly_Spine  
then select Move_East 
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If path = (bf) and behavior = CAT_0 
then select CAT_30
If path = (bf,bf) and behavior = CAT_30 
then select CAT_90
If path = (bf) and behavior = CAT_30 
then select CAT_60
If path = (bf,bf) and behavior = CAT_60 
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configurations can walk on different number of legs without 
changing the program and the rules. While a 6-leg robot is 
walking, we dynamically removed one leg from the robot and 
the robot can continue walk on the remaining legs. The 
removed leg can be any of the 6 legs. We then dynamically 
removed a pair of legs (the front, the middle, and the rear) from 
the robot, and observed that the robot can continue walk on the 
remaining 4 legs. We then systematically experimented 
removing 2, 3, 4, 5, and 6 legs from the robot, and observed 
that the robot would still walk if the remaining legs can support 
the body. In other cases, the robot would still attempt to walk 
on the remaining legs even if it has only one leg. Although we 
have only experimented robots with up to 6 legs, these results 
can scale up to large configurations such as centipedes that 
have many legs. 

In another experiment with the four-legged configuration, 
while the robot was executing the Walk task, we detached the 
two spine modules. The resulting configuration was two 
separate T-shape robots. In this situation each T-shape robot 
continues the locomotion by executing the Butterfly Stroke 
gait. Later, two T-shape robots were re-connected and the 
resulting four-legged robot re-initiated the four-legged Walking 
gait. 

To test this approach for the self-reconfiguration task, we 
developed the rules for the ‘Snake to T-shape’ self-
reconfiguration task. In this experiment, the self-
reconfiguration task was given manually to one the middle 
module of a snake-shape robot consisting of seven modules. 
After completion of this task the behaviors for the T-shape 
butterfly gait was generated.  

To test the autonomous reaction of the robot to the 
environmental stimulus, we installed two tilt-sensors on one of 
the modules in the snake configuration and loaded in all 
modules a set of rules for flipping back the robot to the normal 
orientation. Initially, a ‘Caterpillar Move’ task was manually 
given to the snake-shape robot. Then, while it was moving as a 
caterpillar, we manually pushed the snake to its side or flipped 
it upside down such that the tilt-sensors were activated. We 
observed that based on the output signals of the sensors, new 
tasks such as FlipLeft, FlipRight, or FlipOver was generated. 
Consequently, new behaviors were initiated to bend modules 
appropriately to flip the robot back to the correct orientation. 

In parallel with the experiments on the real CONRO robot, 
we have also implemented the described approach on a 
simulated CONRO robot in a software Newtonian simulation 
environment called Working Model 3D. Using this three-
dimensional dynamics simulation program, we have designed a 
set of virtual CONRO modules to approximate the physical 
properties of the real modules, including their mass, motor 
torques, joints, coefficient of friction, moments of inertia, 
velocities, springs, and dampers. The controller is implemented 
in Java and runs on each simulated module. We have 
experimented with and demonstrated successful locomotion in 
various configurations, including snakes with different length 
(3-12 modules) and insects with different numbers (4-6) of 
legs. 

VIII. CONCLUSION AND FUTURE WORK 
This paper described a distributed and decentralized 

solution for agents to select appropriate local behaviors based 
on their extended topological type and a given global task. The 
concept of extended type can guarantee modules to uniquely 
determine their location in the current configuration without 
assuming any global unique identifiers. The method is robust to 
configuration changes and scalable up to large systems. The 
proposed method has been tested on the physical CONRO self-
reconfigurable robots and the results have demonstrated the 
desired properties described in the paper. As the future work, 
we will study the conditions for performing successful self-
reconfiguration and locomotion tasks based on the received 
messages and develop a complete set of rules for performing all 
possible self-reconfiguration and locomotion tasks. 
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