
On the Need for Communication in Distributed
Implementations of LTL Motion Specifications

M. Kloetzer, S. Itani, S. Birch, and C. Belta

Abstract— We revisit the problem of automatic deployment
of robotic teams from temporal logic specifications over regions
of interests in the environment. In our previous work, we
developed an algorithm that could accommodate arbitrary
communication constraints, but had two main limitations: (1) it
only allowed for communicating robots to move, and (2) it was
computationally very expensive. In this paper, we present two
approaches to address these limitations. First, we show that if
identical robots are allowed to communicate for all times, then
the computation is cheaper. Second, we develop an algorithm
to test if a given global specification can be implemented by the
robots without the move-only-when-communicate constraint.

I. INTRODUCTION

The goal in robot motion planning and control is to specify
a motion task in a rich, high-level language and have the
robot(s) automatically convert this specification into low
level primitives, such as feedback controllers and commu-
nication protocols, to accomplish the task [1]. This work is
motivated by two limitations of the current approaches to
robot motion planning and control. First, in the “classical”
motion planning problem, the specification is given simply
as “go from A to B and avoid obstacles”, where A and B
are two regions of interest in the environment. This is not
rich enough to accommodate missions that might require the
attainment of either A or B, surveillance (“reach A and then
B infinitely often”), or the satisfaction of more complicated
temporal and logic conditions about the reachability of
regions of interest (e.g.,, “Never go to A. Don’t go to B
unless C or D were visited.”). Second, the problem of
automatic deployment of robotic teams (i.e., generation of
control and communication strategies) from such rich, global
specifications is not well understood.

In our previous work [2], we considered a purely dis-
crete scenario, in which the environment was modeled as
a (partition quotient) finite graph, and a team of robots
moved among the vertices of the graph. Any two robots
were constrained to communicate only when in particular
pairs of vertices, which were specified as an arbitrary relation
over the vertices of the graph. We developed an algorithm
for the automatic generation of motion and communica-
tion strategies from arbitrary specifications given as Linear

This work was partially supported at Boston University by the NSF CNS-
0834260, ARO W911NF-09-1-0088, and AFOSR FA9550-09-1-0209.

M. Kloetzer is with the Technical University of Iasi, Romania, E-mail :
kmarius@ac.tuiasi.ro

S. Itani is with Massachusetts Institute of Technology, Cambridge, MA,
USA, E-mail: itani@mit.edu

S. Birch is with the BU Academy, Boston, MA, E-mail:
Samuel Birch@buacademy.org

C. Belta is with Boston University, MA, USA, E-mail: cbelta@bu.edu
C. Belta is the corresponding author

Temporal Logic (LTL) formulas over the vertices of the
graph. The approach had two main limitations: (1) it only
allowed for communicating robots to move, and (2) it was
computationally very expensive.

In this paper, we present two approaches to address these
limitations. First, we assume that the robots can communicate
from all vertices and that they are identical. While the first
assumption trivially eliminates limitation (1) from above,
the second assumption allows for significant decrease in
computation time. Second, we assume that the robots can
communicate only when in adjacent vertices of the graph
and develop an algorithm to test if a given global specifica-
tion can be implemented by the robots without inter-robot
communication except for to ensure collision avoidance.
We illustrate the methods with simulation and experimental
results in our Robotic Urban-Like Environment (RULE) (see
hyness.bu.edu/rule/).

The use of temporal logic for task specification and
controller synthesis in mobile robotics has been advocated
as far back as [4], and recent works include [5], [6], [7], [8],
[9]. As opposed to [8], [9], here we consider teams, rather
than just single agents. The closest related works are [6],
[7]. In [6], the specifications are given as formulas of timed
CTL and control strategies are generated using the UPPAAL
model checker. In [7], the policy for producing robot actions
is obtained by applying a game-theoretic framework. While
this allows for accommodating environmental events, the
specification language is limited to formulas in the GR(1)
fragment of LTL. This work is also related (and draws
inspiration from) recent results in concurrency theory [10].

II. PRELIMINARIES

Definition 1: A transition system is a tuple T =
(Q, Q0,→,Π,!), where Q is a set of states, Q0 ⊆ Q is
a set of initial states, →⊆ Q×Q is a transition relation, Π
is a finite set of atomic propositions (or observations), and
!⊆ Q×Π is a satisfaction relation.

For q ∈ Q, let Πq = {π ∈ Π | q ! π}, Πq ∈ 2Π, denote the
set of all propositions satisfied at q. A trajectory or run of T
starting from q is an infinite sequence r = r(1)r(2)r(3) . . .
with the property that r(1) = q, r(i) ∈ Q, and (r(i), r(i +
1)) ∈→, for all i ≥ 1. A trajectory r = r(1)r(2)r(3) . . .
defines a word over the set 2Π, w = w(1)w(2)w(3) . . .,
where w(i) = Πr(i). The set of all words of T is called
the (ω-) language of T .

An equivalence relation ∼⊆ Q × Q over the state space
of T is proposition preserving if for all q1, q2 ∈ Q and all
π ∈ Π, if q1 ∼ q2 and q1 ! π, then q2 ! π. A proposition

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3­8, 2010, Anchorage, Alaska, USA

978­1­4244­5040­4/10/$26.00 ©2010 IEEE 4451

preserving equivalence relation naturally induces a quotient
transition system T/∼ = (Q/∼, Q0/∼,→∼,Π,!∼). Q/∼ is
the quotient space (the set of all equivalence classes). The
transition relation →∼ is defined as follows: for P1, P2 ∈
Q/∼, P1 →∼ P2 if and only if there exist q1 ∈ P1 and
q2 ∈ P2 such that q1 → q2. The satisfaction relation is
defined as follows: for P ∈ Q/∼, we have P !∼ π if and
only if there exist q ∈ P such that q ! π. Q0/∼ is the set
of all P ∈ Q/∼ containing at least one q ∈ Q0.

Definition 2: A proposition preserving equivalence rela-
tion ∼ is a bisimulation of T = (Q, Q0,→,Π,!) if for all
states p, q ∈ Q, if p ∼ q and p → p′, then there exist q′ ∈ Q
such that q → q′ and p′ ∼ q′.

If ∼ is a bisimulation, then T/∼ is called a bisimulation
quotient of T , and the transition systems T and T/∼ are
called bisimilar. Bisimilar systems are equivalent with re-
spect to the satisfaction of properties specified as formulas
of temporal logics such as LTL, CTL, and CTL* [11].

Here we consider motion specifications given as formulas
of a fragment of Linear Temporal Logic (LTL) [12] called
LTL−X , which we will simply denote by LTL. Informally,
its formulas are recursively defined over a set of propositions
Π, by using the standard boolean operators and a set of
temporal operators. The boolean operators are ¬ (negation),
∨ (disjunction), ∧ (conjunction), and some temporal op-
erators that we use include U (standing for “until”), "
(“always”), ♦ (“eventually”). LTL formulas are interpreted
over infinite words over the set 2Π, like those generated by
transition system T . The expressivity of LTL makes it suited
for specifying motion tasks, such as reachability (“reach
π1 eventually”, written as ♦π1), reachability and obstacle
avoidance (“reach π1 eventually, while always avoiding π2”,
written as ♦π1 ∧ "¬π2), convergence tasks (“reach π1

eventually and stay there for all future times” - ♦"π1), etc.
Checking whether the language of a transition system T

satisfies an LTL formula φ over Π is called model checking.
Available off-the-shelf packages for LTL model checking
include NuSMV [13] and SPIN [14]. In short, given a
transition system T and an LTL formula φ over its set of
propositions, a model checker will return the initial states
for which the language satisfies the formula. If the language
generated from a state does not satisfy the formula, the model
checker returns a counterexample. Among the several runs
of T satisfying a formula φ, there are some with a particular
structure of a prefix followed by infinitely many repetitions
of a suffix. If there exists a run of T satisfying φ starting
from an initial state, then there always exists a run with the
above particular prefix-suffix structure from that state [14].
Such a run is of particular interest to us.

In this paper, the problem of finding runs of T satisfying
a formula φ is of special interest. To this goal, one can
use an off-the-shelf model checker. Indeed, by feeding T
and ¬φ into a model checker, if the formula is not satisfied
at a state, the model checker will return that initial state
together with a counterexample, which is a run satisfying
φ. However, the user does not have full control over the
structure of the produced counterexamples. Even though

some model checkers (e.g., SPIN) allow to retrieve the
“shortest” counterexample, this might not satisfy a particular
structure of interest. An attractive alternative is to use the
tool proposed in [9], in which we construct the set of all
satisfying runs, and allow the user to choose runs with
specific structure. In particular, we can look for runs in
the prefix-suffix form, for runs which are “minimal” with
respect to pre-defined transition costs, for runs that do not
have finitely many consecutive repetitions of a symbol, etc.

III. DEFINITIONS AND PROBLEM FORMULATION

Let
G = (P,→G) (1)

be a graph, where P = {p1, . . . , pk} is the set of vertices
and →G⊂ P × P is a relation modelling the set of edges.
For example, G can be the quotient graph of a partitioned
environment, where P is a set of labels for the regions
in the partition, and →G is the corresponding adjacency
relation. In the particular case study considered in this
paper, G is a graph representation of a city, where P is
a set of labels for roads, intersections, and parking spaces,
and →G shows how these are accessible from each other.
Assume we have a team of n, n < k, robots that can
move between adjacent vertices of G. We assume that they
have identical communication capabilities, which are induced
by the environment. Explicitly, the set of communication
constraints is defined as

C = (P,→C), (2)

where →C⊂ P ×P is a symmetric and reflexive relation. In
other words, if two robots are at pi and pj , respectively, then
they can directly communicate if and only if (pi, pj) ∈→C .
We assume that the communication is instantaneous, and
each robot can act as a communication relay. In other
words, any two robots in a connected component of C can
instantaneously communicate.

We model the motion capabilities of each robot i, i =
1, . . . , n on the graph G using a transition system Ti, defined
as follows:

Ti = (Qi, q0i ,→i,Πi,!i), i = 1, . . . , n, (3)

where
• Qi = P is the set of states;
• q0i ∈ Qi is the initial location of agent i (a singleton);
• →i⊂ P × P is a reflexive transition relation satisfying
→i⊆→G ∪k

j=1(pj , pj) and →i⊆→C ;
• Πi = P ;
• !i is the trivial satisfaction relation (q,π) ∈!i if and

only if q = π.
In other words, the motion of robot i among the vertices of

G is restricted by the transition relation →i. We assume that
each robot can stay at a vertex and can only move between
adjacent vertices. However, it is not necessary that a robot
can move between any adjacent vertices. In addition, in order
to be able to avoid collision with other robots, we assume

4452

that a robot can only transit from a current vertex to a vertex
with which communication is possible.

Note that the only differences between the transition sys-
tems Ti are given by their initial states and possibly by their
transitions (for agents with different movement capabilities).
Also, for this particular definition of a transition system,
trajectories are equivalent to words. A motion of robot i on
the graph G is such an (infinite) word produced by Ti. The
occurrence of a vertex in the motion of robot i means that
the vertex is visited. Infinitely many consecutive repetitions
of a vertex means that the robot stays at that vertex for all
future times. A control strategy for robot i is an algorithm
that, for each state q ∈ Qi, determines what transition the
robot should take, and what the robot should communicate
with the other robots in its communication range.

Definition 3: The behavior of the team of robots is an in-
finite sequence of sets {p1

1, . . . , p
1
n}, {p2

1, . . . , p
2
n}, . . ., where

pj
i ∈ P and pj

i += pj
k for i += k and j = 1, 2, Each entry

{pj
1, . . . , p

j
n}, j = 1, 2, . . . denotes the set of vertices of G

occupied by the n robots. The first entry corresponds to the
initial positions of the robots {p1

1, . . . , p
1
n} = {q01 , . . . , q0n}.

A set {pj
1, . . . , p

j
n}, j ≥ 2 is added to the sequence whenever

at least one robot changes its position. An infinite number
of identical entries {pj

1, . . . , p
j
n} is added to the sequence if

the set of vertices {pj
1, . . . , p

j
n} is reached and never left.

According to Section II, the semantics of LTL formulas
over P can be defined over team behaviors. We are now
ready to formulate the main problem:

Problem 1: Given a team of n agents with motion capa-
bilities (3) and communication constraints (2) on a graph (1),
their initial non-overlapping positions, and a task specified as
an LTL formula φ over P , find individual control strategies
such that the behavior of the team satisfies the specification.
In addition, there should be no collisions among the robots.

IV. APPROACH

Definition 4: The transition system Tg = (Qg, Qg0,→g

,Πg,!g) capturing the behavior of the group of n agents is
defined as:

• Qg ⊂ Q1 × . . . ×Qn, where (q1, . . . , qn) ∈ Qg if and
only if qi += qj for i += j,

• Qg0 = (q01 , . . . , q0n),
• →g⊂ Qg × Qg is defined by (q, q′) ∈→g , with q =

(q1, . . . , qn) and q′ = (q′1, . . . , q′n), if and only if (1)
(qi, q′i) ∈→i, i = 1, . . . , n, (2) ∀i, j = 1, . . . , n with
i += j, if q′i = qj , then q′j += qi,

• !g⊂ Qg × Πg is defined by ((q1, . . . , qn), π) ∈!g if
π ∈ {q1, . . . , qn}.

In other words, the states of the transition system Tg

capture all possible ways in which the k vertices of G can be
occupied by the n robots. The configurations in which two
agents overlap (occupy the same vertex) are excluded. The
possible motions of the team are modelled by the transition
relation →g . A transition of Tg occurs when all agents
synchronously take allowed transitions (requirement (1) of
Definition 4), and we exclude the case when two agents
swap positions, since this could cause collision (requirement

(2)). Finally, each team configuration is equipped with n
predicates enumerating the locations occupied by the agents
(satisfied propositions), without explicitly specifying the ex-
act position of each agent.

In [2], we proposed a solution to Problem 1 starting from a
definition of a group transition system Tg resembling Def. 4,
but with the additional requirement that only communicating
robots were allowed to move. The group transition system
Tg was then pruned to produce a set of reduced transition
systems Tr, which had the property that all their runs were
implementable by the robots in a distributed manner, i.e.,
while satisfying the communication constraints (Eqn. 2).
Implementability consisted in the additional “transitivity”
constraint, which required switching communicating groups
to share a robot, which in return led to a token and message-
passing communication protocol. Runs of Tr satisfying the
LTL specification were then projected to individual runs
of Ti, which were then implemented in each robot. This
approach had two main disadvantages. First, only com-
municating robots were allowed to move at a given time.
Informally, a resulting motion could be seen as starting with
a connected (with respect to the communication graph (2))
group of robots. As the group moved, robots could leave
or join the moving group. At all times, there was a robot
(not necessarily the same) that kept track of the evolution of
the team through the use of a token-based communication
algorithm, and which decided the control strategy of all
the robots communicating with it. Second, because of the
construction of the reduced transition systems Tr , which
were necessary to “keep track” of the team evolution, the
method was very expensive.

V. IDENTICAL ROBOTS WITH NO COMMUNICATION
CONSTRAINTS

In this section, we assume that the robots are all identical
and can all communicate with each other from all vertices
of G. Let a denote the map taking an (ordered) n-tuple
and producing the corresponding set, i.e., a((q1, . . . , qn)) =
{q1, . . . , qn}. Over the states of Tg , we define an equivalence
relation ∼a⊂ Qg ×Qg by

((q1, . . . , qn), (q′1, . . . , q′n)) ∈∼a if
a((q1, . . . , qn)) = a((q′1, . . . , q′n)) (4)

It is obvious that ∼a is a proposition preserving equiva-
lence relation. In addition, we can prove that the transition
system Tg/∼a is a bisimulation quotient (see Def. 2). The
proof is omitted due to space constraints (a related proof can
be found in [15]).

Note that there is a significant decrease in the number of
states from Tg to Tg/∼a , because Tg/∼a has only k!/((k −
n)!n!) states (i.e., n! times fewer than Tg). Since Tg/∼a is
a bisimulation quotient, Tg and Tg/∼a are equivalent with
respect to the satisfaction of LTL formulas (see Section II).
Therefore, we can use the tool developed in [9] for producing
runs of Tg/∼a satisfying formula φ. Then, from these we will
produce runs of the original Tg , and finally runs of each Ti.

4453

Specifically, let us denote by r = r(1)r(2)... the ob-
tained run (if it exists) of Tg/∼a starting from r(1) =
a((q01 , . . . , q0n)) = {q01 , . . . , q0n}. Let us denote the run
of Tg that we want to find by rTg = rTg (1)rTg (2)..., with
rTg (1) = (q01 , . . . , q0n). For finding rTg (2), we find all
states p ∈ Qg such that (rTg (1), p) ∈→g and a(p) = r(2).
The bisimulation relation between Tg and Tg/∼a guarantees
that there exists at least one such state p. If there are more, we
choose one corresponding to the minimum number of robots
leaving their currently occupied region (for avoiding robots
spending energy in unnecessary movements). We apply this
method iteratively to find a run rTg with a prefix-suffix
structure as defined above. To find the robot specific runs,
we simply project each state of rTg on states of Ti, using n
trivial projection maps γi : Qg → Qi, γi((q1, . . . , qn)) = qi,
i = 1, . . . , n. Note that the runs of Ti and the run rTg of Tg

inherit the same prefix-suffix structure of run r of Tg/∼a .
To guarantee that the individual runs map to the satisfying
run of Tg , communication among the robots is necessary
anytime they transit from a region to another. However, the
communication protocol consists in the simple exchange of a
synchronization signal. An example for this case is presented
in Sec. VII (Case Study 1).

VI. INDEPENDENT DISTRIBUTED IMPLEMENTATIONS

In this section, we present an approach allowing us to
determine if the robots can satisfy the team LTL task
by executing individual plans, without synchronization (as
in Sec. V) or explicit communication through token and
message passing (as in [2]). The robots should only be
able to sense whether an adjacent region is occupied by
another robot in order to avoid collisions. The main idea
is the following. First, we find a run of Tg satisfying
the LTL formula. Second, we find the set of all possible
executions that can be generated by the agents while they
follow the individual projections of the run of Tg , but without
synchronizing (as they did in Sec. V). This will be described
as the language of a transition system. Then we test if this
language violates the LTL formula (by using our model
checking tool [9]). If there is no word violating the formula,
we conclude that synchronization is not necessary and the
individual agent runs provide a solution to Problem 1. If the
formula is violated by at least one word, then we decide that
synchronization is necessary, and the general approach from
[2] has to be involved to find a solution.

We now describe the above ideas formally. Assume that by
using the tool from [9] with inputs Tg and φ we obtain a run
r of Tg starting from the initial state and satisfying the LTL
formula φ. If no such run exists, we conclude that Problem
1 is unfeasible (by using the approach from [2] we will
also get no run, since the language of the reduced transition
system Tr is included in the language of Tg). Furthermore,
for simplicity of exposition, we assume that the run r has a
suffix of length one (if this is not the case, the definitions
for Tsi and Tp given below become more complicated).

If the run r is of form r = (q(1)
1 , q(1)

2 ,. . .,
q(1)
n)(q(2)

1 , q(2)
2 , . . . , q(2)

n) . . . (q(s)
1 , q(s)

2 ,. . .,q(s)
n) . . ., where

Fig. 1. The topology of the city and the road, intersection, and parking
labels for the two case studies from Sec. VII.

state (q(s)
1 , q(s)

2 , . . . , q(s)
n) is the suffix and is infinitely

repeated, then the individual run of agent i is ri =
q(1)
i , q(2)

i , . . . , q(s)
i , q(s)

i , . . ., i = 1, . . . , n. Next, in each
individual run, we collapse all finite successive repetitions
of the same symbol (except for the suffix, which consists
of infinitely many repetitions) into a single occurrence (i.e.,
if ∃i ∈ {1, . . . , n}, j ∈ {1, . . . , s − 1} such that q(j)

i =
q(j+1)
i , then we remove q(j+1)

i from ri, and repeat until no
such i and j can be found). This is motivated by the fact
that the agents do not synchronize while moving, and the
removed repetitions correspond to synchronizations in run
r modeling an agent that waits in the same location until
other agents reach some specific locations. For simplicity,
let each individual run (without successive repetitions) be
denoted by ri = qi1 , qi2 , . . . , qisi

, . . ., where qisi
is infinitely

repeated (the runs might now have prefixes of different
lengths, because of the performed collapsing).

Next we construct the set of all possible n-tuples that
can be generated by the team of agents, while each agent
i individually (without synchronization) follows run ri. For
this, we first construct a small transition system Tsi for
each agent, and then we construct a special kind of product
automaton of all these transition systems, with the guarantee
that the set of words generated by the obtained product will
be exactly the desired set of tuples.

Definition 5: Transition system Tsi = (Qsi, Qsi0,→si

,Πsi ,!si), i = 1, . . . , n, is defined as:
• Qsi = {qi1 , qi2 , . . . , qisi

} ⊂ P is the set of states,
• Qsi0 = qi1 = q0i is the initial location of agent i,
• →si⊂ Qsi × Qsi is defined by (qij , qij) ∈→si , ∀j ∈
{1, . . . , si}, and (qij , qij+1) ∈→si , ∀j ∈ {1, . . . , si−1},

• Πsi = P ,
• !si⊂ Qsi × Πsi is the trivial satisfaction relation

(q, π) ∈!si if and only if q = π.
Each transition system Tsi, i = 1, . . . , n, corresponds

to agent i following run ri (transitions exist only between
successive states of ri, together with self-loops in any state).
The self-loops are included to correctly create the product
transition system from Definition 6. Informally, agent i takes
a self transition if it is slower than other moving agents - this
is necessary since there is no synchronization.

Definition 6: The product of Tsi, i = 1, . . . , n is defined

4454

as Tp = (Qp, Qp0,→p,Πp,!p), where:
• Qp ⊂ Qs1× . . .×Qsn is defined by (q1, . . . , qn) ∈ Qp

if and only if qi += qj for i += j,
• Qp0 = (q11 , . . . , qn1),
• →p⊂ Qp × Qp is defined by (q, q′) ∈→p, with q =

(q1, . . . , qn) and q′ = (q′1, . . . , q′n), if and only if (1)
(qi, q′i) ∈→si , i = 1, . . . , n, and (2) q += q′ or q = q′ =
(q1s1

, . . . , qnsn
),

• Πp = P ,
• !p⊂ Qp × Πp is defined by ((q1, . . . , qn), π) ∈!p if

π ∈ {q1, . . . , qn}.
Transition system Tp captures all possible transitions that

can appear in any Tsi, i.e., all possible configurations that
can be attained by the team, while each robot follows
its run on its own (without synchronization). This fact is
guaranteed by requirement (1) from the transition relation
of Tp. Requirement (2) from the transition relation of Tp

eliminates self-loops in all states of Tp, except for the
state corresponding to suffixes of runs ri. This is because
we use LTL−X formulas and there is no need to capture
finitely many successive repetitions of the same tuple in the
generated word.

Note that, to achieve collision avoidance, in the construc-
tion of Qp in Definition 6, we exclude the situations in
which two or more agents occupy the same location. This
requires all agents to be able to sense if the next (adjacent)
location is free before moving from the current location.
If the next location is occupied, the agent needs to wait
until the location becomes free. This sensing capacity can,
of course, be implemented if the agents can communicate
when in adjacent regions. Since there is no synchronization
when different agents change locations, the probability of
two agents taking transitions to exactly the same location at
exactly the same time is zero, and thus the described simple
protocol guarantees collision avoidance. Such a protocol
was not necessary in the approaches from [2] and Sec.
V, since collision avoidance was guaranteed by the global
construction of the team run. Finally, note that the “move-
only-when-communicate” restriction from the run r of Tg

disappears as a result of collapsing identical successive
repetitions from its projections to individual agents.

By construction, the language of Tp contains all and only
the words that can be generated by the unsynchronized team
movement when each agent i follows its run ri, i = 1, . . . , n.
If the language of Tp satisfies formula φ, then we conclude
that the unsynchronized movement (with collision avoidance,
as mentioned above) is a solution to Problem 1. If this is
not the case, we conclude that synchronization is necessary,
and therefore the approach developed in [2] is necessary. An
illustrative example is presented in Sec. VII (Case Study 2).

VII. DEPLOYMENT OF TEAMS OF AUTONOMOUS CARS IN
THE ROBOTIC URBAN-LIKE ENVIRONMENT (RULE)
Our urban environment is an easily reconfigurable collec-

tion of roads, intersections, traffic lights, and parking spaces.
An example is given in Fig. 1. In our previous work [3], we
showed that a simple set of composition rules allows for the

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 2. Snapshots from our RULE simulator showing the car motions
satisfying the specification given by the LTL formula in Eqn. (5). Initially,
C1 (red) is on road R1 and C2 (green) is on road R5. Both cars cross
intersection I1 and drive through R3 ((b), (c)) and R2 before parking at
P1 and P2 ((d)) (part (P1 ∧ P2) ∨ (P2 ∧ P3) of the specification). They
both leave and take R2 ((e)), before C2 goes back on R1 ((f)), and then
back on R2 ((g)), and through R3 goes to P4 and parks there (h)) (part
♦!P4 of the specification). Car C1 keeps on moving on the route R1 -
R2 - R3, therefore satisfying the !♦(R1 ∧♦R2) part of specification φ3
(the suffix configurations are not shown).

construction of any Manhattan-type urban environment from
a small number of “modules”. The “cars” in our city are
Khepera III robots (see [3] or hyness.bu.edu/rule/
for implementation details). Robot deployment is achieved
through a user-friendly graphical interface.

Formally, an urban environment is a graph (Eqn. (1)),
where P is a set of labels for roads, intersections, and parking
spaces, and→G shows how these features are connected. The
motion of a car in the urban environment can be described
as a transition system Ti (Eqn. (3) and the accompanying
text). Note that, in reality, the transition system describing
the motion of a robot has inputs, i.e., each transition is
enabled by a symbol from an input set. These inputs can be
generated by the environment (e.g., the color of a traffic light)
or by the robot itself (e.g., turn left in an intersection, park).
However, since (by construction) this transition system with
inputs is deterministic, i.e., at each state, an input determines
a unique transition to another state, the inputs can be dropped
and the transition system takes the form in Eqn. (3). In
[3], we show that under reasonable “liveness” assumption
about environmental events, a transition system of the type
(3) captures the motion of each robot correctly.

We present two case studies illustrating the two deploy-
ment methods described in Secs. V and VI. Both case studies
refer to the city topology from Fig. 1. We assume two robots
(cars) are available, which are labeled by C1 and C2.

Case Study 1: Consider the following specification:
“Park at P1 and P2 or at P2 and P3. Then keep on driving
in between R1 and R2. Park at P4 and stay there for all
future times.”

The specification translates to the following LTL formula:

♦((P1 ∧ P2) ∨ (P2 ∧ P3)) ∧"♦(R1 ∧♦R2) ∧♦"P4 (5)

By using the method described in Sec. VI, we find that an
independent distributed solution is not possible. We therefore

4455

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 3. The car motions satisfying the specification from Eqn. (6). Initially, C1 is on road R1 and C2 is on road R5. A simple inspection of all snapshots
shows that R6 is always avoided (the ¬!R6 part of the specification). Car C2 visits both R2 ((c), (d), (e)) and R4 ((f)), which corresponds to ♦R2∧♦R4.
Car C1 parks in P2 ((e) - (h)) and then car C2 parks in P4 ((h)), which guarantee that ♦(P2 ∧ P4) is satisfied.

allow the robots to communicate for all times (through the
wireless network) and apply the method from Sec. V, which
is possible since the cars are identical. The produced motion
of the team (in the RULE simulator) is described in Fig. 2
and the corresponding caption. The movie of the correspond-
ing experiment is available at hyness.bu.edu/rule.

Case Study 2: Consider the following specification:
“Never use road R6. Visit roads R2 and R4 - the order
does not matter. Parking spaces P2 and P4 should be both
occupied at some time in the future.”

The specification translates to the following LTL formula:

"¬R6 ∧ ♦R2 ∧ ♦R4 ∧ ♦(P2 ∧ P4) (6)

By applying the method described in Sec. VI, we find that
an independent distributed solution is possible. The produced
motion of the team (in the RULE experimental setup) is
described in Fig. 3 and the corresponding caption.

VIII. CONCLUSION AND DISCUSSION

We presented some results on automatic deployment of
robotic teams from LTL specifications over features of inter-
est in a partitioned environment. This work can be seen as
extension of our previous results from [2]. In particular, we
show that if we allow identical robots to communicate for
all times, we can decrease the computational complexity. In
addition, we develop an algorithm that can test when a global
specification can be executed by the team with no need for
communication, except for inter-robot collision detection. We
illustrate the two methods through experimental trials in our
Robotic Urban-Like Environment (RULE).

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge, UK: Cambridge
University Press, 2006.

[2] M. Kloetzer and C. Belta, “Distributed implementation of global tem-
poral logic motion specifications,” in IEEE International Conference
on Robotics and Automation, Pasadena, CA, 2008.

[3] M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and S. B. Andersson,
“Automatic deployment of autonomous cars in a robotic urban-like
environment (rule),” in IEEE International Conference on Robotics
and Automation, Kobe, Japan, 2009.

[4] M. Antoniotti and B. Mishra, “Discrete event models + temporal
logic = supervisory controller: Automatic synthesis of locomotion
controllers,” in IEEE International Conference on Robotics and Au-
tomation, May 1995.

[5] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in 43rd IEEE
Conference on Decision and Control, December 2004.

[6] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
motion planning: A timed automata approach,” in Proceedings of the
2004 IEEE International Conference on Robotics and Automation,
New Orleans, LA, April 2004, pp. 4417–4422.

[7] H. K. Gazit, G. Fainekos, and G. J. Pappas, “Where’s waldo? sensor-
based temporal logic motion planning,” in IEEE Conference on
Robotics and Automation, Rome, Italy, 2007.

[8] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: a temporal logic approach,” in Proceedings of
the 2005 IEEE Conference on Decision and Control, Seville, Spain,
December 2005.

[9] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[10] M. Mukund, “From global specifications to distributed implementa-
tions,” in Synthesis and control of discrete event systems. Kluwer,
2002, pp. 19–34.

[11] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoreti-
cal Computer Science: Formal Models and Semantics, J. van Leeuwen,
Ed. North-Holland Pub. Co./MIT Press, 1990, vol. B, pp. 995–1072.

[12] E. M. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[13] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv version 2: An
opensource tool for symbolic model checking,” in Proc. International
Conference on Computer-Aided Verification (CAV 2002), ser. LNCS,
vol. 2404. Copenhagen, Denmark: Springer, July 2002.

[14] G. Holzmann, The Spin Model Checker, Primer and Reference Manual.
Reading, Massachusetts: Addison-Wesley, 2004.

[15] M. Kloetzer and C. Belta, “LTL planning for groups of robots,” in
IEEE International Conference on Networking, Sensing, and Control,
Ft. Lauderdale, FL, 2006.

4456

