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Abstract—Identifying suspects based on impressions of fingers
lifted from crime scenes (latent prints) is a routine procedure
that is extremely important to forensics and law enforcement
agencies. Latents are partial fingerprints that are usuallysmudgy,
with small area and containing large distortion. Due to these
characteristics, latents have a significantly smaller number of
minutiae points compared to full (rolled or plain) fingerpri nts.
The small number of minutiae and the noise characteristic of
latents make it extremely difficult to automatically match latents
to their mated full prints that are stored in law enforcement
databases. Although a number of algorithms for matching full
to full fingerprints have been published in the literature, they
do not perform well on the latent to full matching problem.
Further, they often rely on features that are not easy to extract
from poor quality latents. In this paper, we propose a new
fingerprint matching algorithm which is especially designed
for matching latents. The proposed algorithm uses a robust
alignment algorithm (descriptor-based Hough transform) to align
fingerprints and measures similarity between fingerprints by
considering both minutiae and orientation field information. To
be consistent with the common practice in latent matching (i.e.
only minutiae are marked by latent examiners), the orienta-
tion field is reconstructed from minutiae. Since the proposed
algorithm relies only on manually marked minutiae, it can be
easily used in the law enforcement applications. Experimental
results on two different latent databases (NIST SD27 and WVU
latent databases) show that the proposed algorithm outperforms
two well optimized commercial fingerprint matchers. Further,
a fusion of the proposed algorithm and commercial fingerprint
matchers leads to improved matching accuracy.

Index Terms—Fingerprints, latents, matching, local descrip-
tors, Minutia Cylinder Code, Hough transform.

I. I NTRODUCTION

L Aw enforcement agencies have started using fingerprint
recognition technology to identify suspects since the

early 20th century [2]. Nowadays, automated fingerprint iden-
tification system (AFIS) has become an indispensable tool for
law enforcement agencies.
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(a) Rolled (b) Plain (c) Latent

Fig. 1. Three types of fingerprint impressions. Rolled and plain fingerprints
are also called full fingerprints.

There are essentially three types of fingerprints in law
enforcement applications (see Fig. 1): (i) rolled, which is
obtained by rolling the finger “nail-to-nail” either on a paper
(in this case ink is first applied to the finger surface) or the
platen of a scanner; (ii) plain, which is obtained by placingthe
finger flat on a paper or the platen of a scanner without rolling;
and (iii) latents, which are lifted from surfaces of objectsthat
are inadvertently touched or handled by a person typically at
crime scenes. Lifting of latents may involve a complicated
process, and it can range from simply photographing the print
to more complex dusting or chemical processing [2].

Rolled prints contain the largest amount of information
about the ridge structure on a fingerprint since they capture
the largest finger surface area; latents usually contain theleast
amount of information for matching or identification because
of their size and inherent noise. Compared to rolled or plain
fingerprints, latents are smudgy and blurred, capture only a
small finger area, and have large nonlinear distortion due to
pressure variations. Due to their poor quality and small area,
latents have a significantly smaller number of minutiae com-
pared to rolled or plain prints (the average number of minutiae
in NIST Special Database 27 (NIST SD27) [3] images is21
for latents versus106 for their mated rolled prints). These
characteristics make the latent fingerprint matching problem
very challenging.

Fingerprint examiners who perform manual latent finger-
print identification follow a procedure referred to as ACE-
V (analysis, comparison, evaluation and verification) [4].
Because the ACE-V procedure is quite tedious and time
consuming for latent examiners, latents are usually matched
against full prints of a small number of suspects identified
by other means, such as eye witness description or M.O.
(mode of operation). With the availability of AFIS, fingerprint
examiners are able to match latents against a large fingerprint
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database using a semi-automatic procedure that consists of
following stages: (i) manually mark the features (minutiaeand
singular points) in the latent, (ii) launch an AFIS search, and
(iii) visually verify the top-N (N is typically 50) candidate
fingerprints returned by AFIS. The accuracy and speed of this
latent matching procedure is still not satisfactory. It certainly
does not meet the “lights-out mode” of operation desired by
the FBI and included in the Next Generation Identification [5].

For fingerprint matching, there are two major problems
which need to be solved. The first is to align the two finger-
prints to be compared and the second is to compute a match
score between the two fingerprints. Alignment between a latent
and a rolled print is a challenging problem because latents
often contain a small number of minutiae and undergo large
skin distortion. To deal with these two problems, we propose
the descriptor-based Hough transform (DBHT), which is a
combination of the generalized Hough transform and a local
minutiae descriptor, called Minutia Cylinder Code (MCC) [6].
The MCC descriptor improves the distinctiveness of minutiae
while the Hough transform method can accumulate evidence
as well as improve the robustness against distortion. Match
score computation between a latent and a rolled print is also
challenging because the number of mated minutiae is usually
small. To address this issue, we further consider orientation
field as a factor in computing match score. Since we only
have manually marked minutiae for latents, a reconstruction
algorithm is used to obtain orientation field from minutiae.

The proposed matcher was tested on two latent fingerprint
databases, NIST SD27 database and West Virginia University
latent fingerprint database (WVU LFD). Two COTS matchers
and a state-of-the-art non-commercial fingerprint matching
algorithm (MCC SDK) were also evaluated on the same
databases. Our algorithm was found to perform better than the
other three matchers being compared on both the databases.
Extensive experiments on fusion of matchers and effect of
fingerprint quality were also conducted.

The rest of the paper is organized as follows: in Section II,
related work is reviewed; in Section III, all steps of our pro-
posed method are described; in Section IV, our experimental
results are presented and discussed; in Section V, we present
our conclusions and future work.

II. RELATED WORK

In this section, we review related work in four areas:
published research on full fingerprint matching1, published
research on latent fingerprint matching, evaluation of latent
fingerprint technologies (ELFT), and evaluation of latent ex-
aminers.

A. Full Fingerprint Matching

The majority of the algorithms developed for fingerprint
matching are based on minutiae. Although minutiae carry a
great amount of discriminatory information, in some cases
additional features may help increase the accuracy. Most

1See Chapter 4 in [7] for a more comprehensive review of this topic.

proposed algorithms for fingerprint matching that use non-
minutiae features also use minutiae. For example, some al-
gorithms combine ridge orientation with minutiae informa-
tion either at feature level by including ridge orientation
information in local minutiae descriptors [8], [9] or at score
level by combining scores from minutiae matching and global
orientation field matching [9], [10].

Several recent studies on fingerprint matching have focused
on the use of local minutiae descriptors [6], [8], [9], [11],[12],
[13], [14]. In most of these studies, the initial step consists
of using local minutiae descriptors to obtain the alignment
between two fingerprints by considering the most similar
minutiae pair; then, a global consolidation step is performed to
obtain a better matching performance. Since these algorithms
are usually tuned and evaluated using FVC databases (plain
fingerprints) or NIST Special Database 4 (rolled fingerprints),
their performances on latent fingerprints are unknown.

B. Latent Fingerprint Matching

Recent research and development efforts on latent finger-
prints can be classified into three streams according to the
manual input required from fingerprint examiners: consistent
with existing practice, increasing manual input, or reducing
manual input. Because of large variations in latent fingerprint
quality and specific requirements of practical applications
(crime scenes, border crossing points, battle fields), eachof
the three streams has its value.

Improved latent matching accuracy has been reported by
using extended features, which are manually marked for latents
[15], [16], [17], [18]. However, marking extended features
(orientation field, ridge skeleton, etc.) in poor quality latents is
very time-consuming and might be only feasible in rare cases.
Thus, some studies have concentrated on latent matching
using a reduced amount of manual input, such as manually
marked region of interest (ROI) and singular points [19], [20].
However, only a small portion of latents can be correctly
identified using this approach. Hence our proposed matcher
takes manually marked minutiae as input and, therefore, it is
consistent with existing practice. There have also been some
studies on fusion of multiple matchers [21] or multiple latent
prints [22].

C. Evaluation of Latent Fingerprint Technologies

NIST has been conducting a multi-phase project on Evalua-
tion of Latent Fingerprint Technologies (ELFT) to evaluatela-
tent feature extraction and matching techniques [23]. Since all
participating algorithms in ELFT are proprietary, we have no
information on the details of these algorithms. The purposeof
ELFT-Phase I was to assess the feasibility of latent fingerprint
identification systems using Automated Feature Extractionand
Matching (AFEM), while the purpose of ELFT-Phase II was
to actually measure the performance of state-of-the-art AFEM
technology and evaluate whether it was viable to have those
systems in the operational use to reduce the amount of time
needed by latent examiners to manually mark latents thereby
increasing the throughput.
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(a) Good (b) Bad (c) Ugly

Fig. 2. Latent fingerprints of three different quality levels in NIST SD27.

In Phase I, latent images were selected from both op-
erational and non-operational scenarios. The most accurate
system showed a rank-1 accuracy of 80% (100 latents
against10, 000 rolled prints) [24]. In Phase II, latent images
were selected from only operational environments. The rank-1
accuracy of the most accurate system was97.2% (835 latents
against100, 000 rolled prints) [25]. These accuracies cannot be
directly compared since the Phase I and Phase II evaluations
used different latent databases. Furthermore, the qualityof
latents used in Phase II is better compared to Phase I. As
shown in Fig. 2, the quality of latents varies significantly.

The impressive matching accuracy reported in ELFT does
not support that the current practice of manually marking
minutiae in latents should be changed. Although latents in
Phase II were selected from operational scenarios, they rep-
resent successful identifications in actual case examinations
using existing AFIS technology. In the ACE-V process, when
the examiner analyzes the latent image he/she decides whether
the latent has value for exclusion only, value for individual-
ization or no value. If a latent is classified as of no value,
no comparison is performed. If the latent is classified in one
of the other two categories, then comparisons are performed
and the examiners can make an individualization, an exclusion,
or determine the comparison to be inconclusive. So the latents
which are successfully identified constitute only a small part of
all latents, which are of reasonable quality. For this reason, in
the ELFT-Phase II report [25] the authors concluded that only
a limited class of latents can benefit from AFEM technology.

NIST has conducted another evaluation of latent fingerprint
technologies using extended feature sets manually marked by
latent examiners [26]. In this evaluation, the purpose was to in-
vestigate the matching accuracy when (i) latent images and/or
(ii) sets of manually marked features were provided. This
evaluation suggested that the highest accuracy was obtained
when the input included both the latent image and manually
marked features.

D. Evaluation of Latent Examiners

A latent examiner can be viewed as a slow but very
accurate “matcher”. Because they are much slower than au-
tomatic matchers, quantitatively estimating the accuracyof
latent examiners is not easy. Hence the numbers of fingerprint
pairs used in several “black box” tests of latent examiners

are not large [27], [28], [29]. Although the exact numbers
reported in these studies may not reflect the real practice,
the qualitative conclusions are very useful. It was found that
latent examiners’s conclusion are not always in agreement,
especially in the case of poor quality latents [27]. In addition,
the same examiner can change his/her conclusions on the same
fingerprint pair at a later time [28]. These inconsistences may
increase under bias [29].

These issues associated with including latent examiners in
the latent identification process will only be solved when the
automatic matcher can outperform latent examiners in accu-
racy. No matter how successful the application of automatic
fingerprint recognition technology might be, we cannot say
fingerprint matching is a “solved problem” before we can
reach the goal of outperforming latent examiners.

III. L ATENT MATCHING APPROACH

Given a latent fingerprint (with manually marked minutiae)
and a rolled fingerprint, we extract additional features from
both prints, align them in the same coordinate system, and
compute a match score between them. These three steps are
described in the following subsections. An overview of the
proposed algorithm is shown in Fig. 3.

A. Feature Extraction

The proposed matching approach uses minutiae and ori-
entation field from both latent and rolled prints. Minutiae
are manually marked by latent examiners in the latent, and
automatically extracted using commercial matchers in the
rolled print. Based on minutiae, local minutiae descriptors
are built and used in the proposed descriptor-based alignment
and scoring algorithms. Orientation field is reconstructedfrom
minutiae location and direction for the latents as proposed
in [30], and orientation field is automatically extracted from
the rolled print images by using a gradient-based method.
Local minutia descriptors and orientation field reconstruction
are presented in the following subsections.

1) Local Minutia Descriptor: Local descriptors have been
widely used in fingerprint matching (e.g. [11], [8], [12], [18],
[6]). Feng and Zhou [31] evaluated the performance of local
descriptors associated with fingerprint matching in four cate-
gories of fingerprints: good quality, poor quality, small com-
mon region, and large plastic distortion. They also coarsely
classified the local descriptors as image-based, texture-based,
and minutiae-based descriptors. Their results show that the
minutiae-based descriptor, Minutia Cylinder Code (MCC) [6],
performs better in three of the four categories, and texture-
based descriptor performs better for the small common region
category.

A minutia cylinder records the neighborhood information
of a minutia as a 3D function. A cylinder contains several
layers and each layer represents the density of neighboring
minutiae along the corresponding direction. The cylinder can
be concatenated as a vector, and therefore the similarity
between two minutia cylinders can be efficiently computed.
Fig. 4b shows the sections of two valid cylinders associated
with the two corresponding minutiae (in the latent and in the
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Fig. 3. Overview of the proposed approach.

(a) Latent and corresponding rolled print with a mated minutiae pair
indicated.

(b) Sections of the cylinder corresponding to the minutia indicated in the
latent (first row) and in the rolled print (second row).

Fig. 4. Sections of two cylinders associated with the two corresponding
minutiae, one in latent and other in rolled print.

rolled print) indicated in Fig. 4a. A more detailed description
of the cylinder generation and of the similarity between two
cylinders can be found in [6].

2) Orientation Field Reconstruction: Orientation field can
be used in several ways to improve fingerprint matching
performance, such as by matching orientation fields directly
and fusing scores with other matching scores, or by enhancing
the images to extract more reliable features. Orientation field
estimation using gradient-based method is very reliable in
good quality images [7]. However, when the image contains
noise, this estimation becomes very challenging. A few model-

Fig. 5. A latent fingerprint in NIST SD27 and the reconstructed orientation
field overlaid on the latent.

based orientation field estimation methods have been proposed
([32], [33], [34]) that use singular points as input to the
model. In the latent fingerprint matching case, it is very
challenging to estimate the orientation field based only on the
image due to the poor quality and small area of the latent.
Moreover, if singular points are to be used, they need to be
manually marked (and they are not always present) in the latent
fingerprint image.

Hence, we use a minutiae-based orientation field recon-
struction algorithm proposed in [30] which takes manually
marked minutiae in latents as input and outputs an orientation
field. This approach estimates the local ridge orientation in a
block by averaging the direction of neighboring minutiae. The
orientation field is reconstructed only inside the convex hull
of minutiae. Since the direction of manually marked minutiae
is very reliable, the orientation field reconstructed usingthis
approach is quite accurate except in areas absent of minutiae
or very close to singular points (see Fig. 5 for an example). For
rolled fingerprints, orientation field is automatically extracted
using a gradient-based method [7].

B. Alignment

Fingerprint alignment or registration consists of estimat-
ing the parameters (rotation and translation) that align two
fingerprints. There are a number of features that may be
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used to estimate alignment parameters between two finger-
prints, including singular points, orientation field, ridges, and
minutiae. There are also a number of methods to align two
fingerprints: Generalized Hough Transform, local descriptors,
energy minimization, etc2.

In the latent matching case, singularities are not always
present in latents, making it difficult to base the alignment
of the fingerprint on singular points alone. To obtain manually
marked orientation field is expensive, and to automaticallyex-
tract orientation field from a latent image is a very challenging
problem. Since manually marking minutiae is a common prac-
tice for latent matching, our approach to align two fingerprints
is based on minutiae.

Local descriptors can also be used to align two fingerprints.
In this case, usually the most similar minutiae pair is used
as a base for the transformation parameters (rotation and
translation), and the most similar pair is chosen based on
a measure of similarity between the local descriptors of the
minutiae pair.

Rathaet al. introduced an alignment method for minutiae
matching that estimates rotation, scale, and translation pa-
rameters using a Generalized Hough Transform [35]. Given
two sets of points (minutiae), a matching score is computed
for each transformation in the discretized set of all allowed
transformations. For each pair of minutiae, one minutia from
each image (latent or full), and for given scale and rotationpa-
rameters, unique translation parameters can be computed. Each
parameter receives “a vote” that is proportional to the matching
score for the corresponding transformation. The transformation
that gives the maximum score is considered the best one. In
our approach, the alignment is conducted in a similar way, but
the evidence for each parameter is accumulated based on the
similarity between the local descriptors of the two involved
minutiae, with the similarity and descriptor being the ones
described in Section III-A1.

The descriptor-based Hough transform alignment algorithm
takes as input two sets of minutiae,ML and MR, and two
sets of local descriptorsCL and CR, one set corresponding
to the latent and one to the rolled print. Each set contains a
local descriptor for each minutia. A high level algorithm of
the proposed approach to align two fingerprints given the sets
of minutiae and of local descriptors is shown in Algorithm 1.

Given two sets of minutiae, one from the latent and the
other from the rolled print being compared, translation and
rotation parameters can be obtained for each possible minu-
tiae pair (one minutia from each set). Let{(xl, yl, θl)} and
{(xr, yr, θr)} be the minutiae sets for latent and rolled prints,
respectively, centered at their means. Then, for each pair of
minutiae, we have

∆θ = min (‖θl − θr‖, 360− ‖θl − θr‖), (2)
(

∆x

∆y

)

=

(

xr

yr

)

−

(

cos∆θ sin∆θ

− sin∆θ cos∆θ

)(

xl

yl

)

. (3)

Since the scale (resolution) is fixed in fingerprint matching,
unique translation parameters can be obtained for each pair
based on the rotation difference between the two minutiae in

2Refer to Chapter 4 of [7] for details and published work.

Algorithm 1 Descriptor-based Hough Transform.

Input: {ml} = {(xl, yl, θl)} ∈ ML, {mr} = {(xr, yr, θr)} ∈
MR, CL , andCR

Output: A set of 10 rigid transformation matrices
Initialize the accumulator arrayA
Compute local minutiae descriptor similarity (W ) for every
possible minutiae pair usingCL andCR

for all possible pairml, mr do
Compute their direction difference∆θ = (θr − θl)
if ∆θ < maxθ then

Compute translation parameters (∆x,∆y) and increase
the voting for this set of alignment parameters:

A(∆x,∆y,∆θ) = A(∆x,∆y,∆θ) +W (l, r) (1)

end if
end for
SmoothA using a Gaussian low-pass filter
Find 10 highest peaks inA
for each peakk do

Compute a rigid transformation between two fingerprints
using minutiae pairs that contributed to peakk and its
immediate neighborhood
if the estimated rigid transformation is not reliablethen

Repeat the voting in peakk and its neighborhood using
a refined range
Find the highest peak in the small neighborhood of
peakk

end if
end for

the pair. The translation and rotation parameters need to be
quantized to the closest bins. After the quantization, evidence
is accumulated in the corresponding bin based on the similarity
between the local minutiae descriptors. The assumption here
is that true mated minutiae pairs will vote for very similar sets
of alignment parameters, while non-mated minutiae pairs will
vote randomly throughout the parameter space. As a result,
the set of parameters that presents the highest evidence is
considered the best one. For robustness, ten sets of alignment
parameters with strong evidence are considered.

In order to make the alignment computationally efficient and
also more accurate, we use a two-step approach to compute
the alignment parameters for a fingerprint pair. The first step
is to perform the voting using the Descriptor-based Hough
Transform. If the bins are too small, the true peak in the Hough
Transform space cannot receive sufficient votes. On the other
hand, if the bins are too large, they will not provide accurate
alignment parameters. The strategy we adopted is to keep the
bins relatively large, and to include a second step to compute
reliable alignment parameters. This second step consists of
using the minutiae pairs that vote for a peak to compute a
rigid transformation between the two fingerprints. The use
of voting minutiae pairs to compute the transformation gives
more accurate alignment parameters than directly using the
peak parameters. In cases where a rigid transformation matrix
cannot be reliably obtained, the voting is repeated inside a
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neighborhood of the corresponding peak, but with a smaller
bin. A peak is chosen from this refined Hough Transform
space, and used as the alignment parameters.

C. Similarity Measure

For each of the10 different alignments, a matching score
between two fingerprints is computed by comparing minutiae
and orientation fields. The maximum value of the10 scores
is chosen as the final matching score between the two finger-
prints. The details for computing matching scores of minutiae
and orientation field are given below.

To compute minutiae matching score under a given align-
ment, we first find the corresponding minutiae pairs (one in the
latent, one in the rolled print). For this purpose, we align the
minutiae sets of the two fingerprints and then find an one-to-
one matching3 between the two minutiae sets using a greedy
algorithm. For each minutiaml in the latent, a set of candidate
minutiae in the rolled print is found. A minutiamr in the rolled
print is called a candidate if it has not yet been matched to
any minutia, and both its location and angle are sufficiently
close toml. The threshold valuesTS for spatial distance and
TA for angle distance were determined empirically. Among all
candidates, the one closest toml in location is chosen as the
matching minutia ofml.

After the corresponding minutiae are found, we compute
a matching score between the latent and the rolled print.
Suppose thatn pairs of matching minutiae between the latent
and the rolled print are found. The minutiae matching score
SM between the two fingerprints is given by

SM =
1

N

n
∑

i=1

sC(i)sS(i), (4)

wheresC(i) denotes the similarity between the minutia cylin-
der codes of theith pair of matched minutiae,sS(i) = 1− dS(i)

2TS

maps the spatial distancedS(i) of the ith pair of matched
minutiae into a similarity score, andN denotes the number of
minutiae in the latent.

According to equation (4), the matching score depends on
the number of matching minutiae, which itself is affected by
the distance thresholdTS. However, due to large distortion
present in many latents, it is difficult to choose an appropriate
value for TS. While a large threshold value will lead to
more matching minutiae for distorted mated pairs, the number
of matching minutiae for non-mated pairs will increase too.
Hence, we use two different values (15 pixels and 25 pixels)
for TS and for each threshold, a set of matching minutiae is
found and a matching score is computed using equation (4).
The mean of the two scores is used as the minutiae matching
score. Fig. 6 shows an example in which the score of the
genuine pair is slightly reduced when the smaller threshold
is used compared to the larger threshold, while the score of
the latent and the rank-1 non-mate4 using large threshold is
greatly reduced when the smaller threshold is used.

3One-to-one matching means that each minutia in the latent ismatched to
at most one minutia in the rolled print, and vice versa.

4The rank-1 non-mate refers to the non-mated rolled print whose match
score with the latent ranks first among all rolled prints in the database.

We use a simple orientation field matcher that basically
measures the consistency of the orientation differences. If we
use Euclidean distance, for example, to measure the orientation
differences, a small error in the rotation will contribute a
small amount to the orientation difference for every block
being compared, resulting in a large overall difference or
small similarity score. In [36], the authors proposed a distance
measure for orientation field matching that can handle small
rotation errors. Given the aligned latent orientation fieldOL

and the rolled orientation fieldOR, each containingK blocks,
namely OL(k) and OR(k), the similarity between the two
orientation fields is given by

SO =
|
∑K

k=1 vke
j2(OL(k)−OR(k))|

∑K

k=1 vk
, (5)

wherevk is 1 if both corresponding blocksk are valid, and0
otherwise.

The overall matching score is given by

S = (1− wO)SM + wOSO, (6)

where the weightwO is empirically set as0.4. Fig. 7 shows
one example in which the fusion of minutiae matching and
orientation field matching scores helps improve the retrieval
rank5 of the true mate. The retrieval rank of the true mate
improved from2 to 1 after the fusion, while the retrieval rank
of the rank-1 non-mate according to minutiae matcher was
changed from1 to 3 after the fusion.

IV. EXPERIMENTAL RESULTS

In this section, we first provide a description of the two
databases used in our experiments, and the algorithms to be
compared with the proposed algorithm. Then we report the
performances of alignment and matching. This is followed by
the fusion of matchers and the effect of fingerprint quality.
Finally, we discuss the issue of computational cost.

A. Latent Databases

Matching experiments were conducted on two differ-
ent latent fingerprint databases: NIST Special Database 27
(NIST SD27) and West Virginia University Latent Fingerprint
Database (WVU LFD).

1) NIST Special Database 27 (NIST SD27): NIST Special
Database 27 is the only publicly available database comprising
latent fingerprints from operational scenarios (latents collected
at crime scenes). It consists of258 latent fingerprint images
and258 corresponding (mated) rolled prints. Both latents and
rolled prints are available at500 ppi. The quality of the latents
in NIST SD27 varies, reflecting the operational (casework)
quality.

NIST SD27 contains latent prints of three different qualities,
termed “good”, “bad”, and “ugly”, which were classified by
latent examiners. Some examples of latents from those three
qualities are shown in Fig. 2. Although this classification of

5Retrieval rank of a rolled fingerprint refers to its rank in the whole
candidate list which is sorted in the decreasing order of matching score with
the latent.
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(a) (b) (c)

(d) 0.152 (e) 0.171 (f) 0.113 (g) 0.172

Fig. 6. Latent print in which the matching score of the genuine pair is slightly reduced when small threshold value is usedcompared to large threshold
value, while impostor score is greatly reduced. (a)-(c) shows the latent, the true mate, and the rank-1 non-mate according to large threshold, respectively.
(d)-(g) shows latent minutiae that were matched to rolled print minutiae in the following cases: (d) true mate using small threshold, (e) true mate using large
threshold, (f) non-mate using small threshold, and (g) non-mate using large threshold. In (d)-(g), the scores corresponding to each case are included.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 7. Latent print identified at a higher rank after fusing minutiae matching scores with orientation field matching scores. The rank of the true mate was
improved from2 to 1 after the fusion, and the rank of the highest ranked non-matewas3 after the fusion. (a)-(c) show minutiae and the image of (a) alatent,
(b) its true mate, and (c) the highest ranked non-mate according to minutiae matching. (d) and (f) show latent minutiae and orientation field (in blue) aligned
with minutiae and orientation field of the true mate. (e) and (g) show latent minutiae and orientation field (in blue) aligned with minutiae and orientation field
of the rank-1 non-mate.
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Fig. 8. A latent and its corresponding rolled print in WVU latent database.
The NFIQ quality of the rolled print is4.

latent prints as “good”, “bad”, and “ugly” is subjective, ithas
been shown that such a classification is correlated with the
matching performance [15].

Another indicator of fingerprint quality that affects the
matching performance is the number of minutiae in the latent
print [15]. Based on the number of minutiaen in latents in
NIST SD27, Jain and Feng [15] classified latents in NIST
SD27 into three groups: large (n > 21), medium (13 < n <

22), and small (n ≤ 13), containing86, 85, and 87 prints,
respectively. We present our experimental results for eachof
the six quality groups based on subjective quality and the
number of minutiae.

We use manually marked minutiae –provided with NIST
SD27 – as features in latent fingerprints. For rolled fingerprint
images, the minutiae are automatically extracted using thetwo
commercial matchers.

2) West Virginia University Latent Database (WVU LFD):
West Virginia University Latent Database6 consists of449
latent fingerprint images collected in a laboratory environment
and4, 740 rolled prints, including the449 mated rolled prints
of the 449 latents. The latent images in this database are
at 1000 ppi, and they were converted to500 ppi for our
experiments. Fig. 8 shows a latent with its corresponding rolled
print in the WVU latent database. Manually marked minutiae
were provided with these latents. Minutiae were automatically
extracted from the rolled prints using the two commercial
matchers.

There is no subjective quality value assigned to the latents
in the WVU database. One of the objective quality measure
depends on the number of minutiae in the latent, so any latent
can be assigned an objective quality. If we apply the same
objective quality classification scheme as in NIST SD27 to
WVU database, we obtain208, 80, and161 latent fingerprints
in the objective qualities of large, medium, and small number
of minutiae, respectively.

The two latent databases, NIST SD27 and WVU, have
different characteristics: most of the latent images in NIST
SD27 contain significant background noise, while in WVU
latent images, there is a uniform background in most latents.
However, overall, the quality of the rolled prints in WVU
database is worse than the quality of rolled prints in NIST
SD27. This could be explained because in the operational
database such as NIST SD27, rolled prints were captured by

6To request WVU latent fingerprint database, please contact Dr. Arun A.
Ross (http://www.csee.wvu.edu/∼ross/) at Integrated Pattern Recognition and
Biometrics Lab (http://www.csee.wvu.edu/∼ross/i-probe/).
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Fig. 9. Histograms of NFIQ values of rolled prints in NIST SD27 and WVU
databases.

experienced law enforcement officers which may not be the
case for the WVU database. If the rolled prints corresponding
to the latents are of poor quality, the number of mated minutiae
is small and, therefore, it is much more challenging to identify
the mates of the latents at rank-1. Fig. 9 shows the histograms
of NFIQ quality [37] of the rolled prints which have corre-
sponding latents in NIST SD27 and in WVU databases (258
and449 rolled prints, respectively). NFIQ defines five quality
levels in the range[1, 5] with 1 indicating the highest quality.

B. Commercial Matchers

In order to compare the performance of the proposed
latent fingerprint matcher, we used two commercial fingerprint
matchers, referred to as COTS1 and COTS2. In addition, we
also used the algorithm presented in [6], [38] as a benchmark,
for which the SDK was provided by the authors (MCC SDK).
It should be pointed out that none of the three matchers
were designed specifically for the latent matching case. But,
despite our efforts, we could not find any latent fingerprint
matcher SDK or a forensic AFIS that is available for evaluation
purposes by a research lab. Still, the matchers we are using
in our comparative study are well known: one of the COTS
(VeriFinger) [39] has been widely used as a benchmark in fin-
gerprint publications, and MCC is one of the best performing
algorithms in FVC-onGoing [40].

C. Alignment Performance

In order to estimate the alignment error, we use ground truth
mated minutiae pairs from NIST SD27, which are marked
by fingerprint examiners, to compute the average distance
between the true mated pairs after alignment7. If the average
Euclidean distance for a given latent is less than a pre-specified
number of pixels in at least one of the ten best alignments
(peaks in the Descriptor-Based Hough Transform), then we
consider it a correct alignment. This alignment performance
is shown in Fig. 10 for the NIST SD27 latent database. The x-
axis shows the misalignment threshold8, and the y-axis shows

7Here we use the term ground truth minutiae to refer to minutiae which are
marked by latent examiners by looking at the latent and the corresponding
rolled print at the same time, and we use the term manually marked minutiae
to refer to minutiae which are also marked in the latent by latent examiners,
but without looking at the true mate (rolled print).

8The alignment is deemed as incorrect if the average distancebetween
mated minutiae pairs after alignment is larger than this threshold.
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Fig. 10. Alignment Accuracy: percentage of correctly aligned latents vs.
misalignment threshold.

Fig. 12. Example of alignment error due to the small number oftrue mated
minutia pairs in the overlapping area between a latent and its mated rolled
print. Note that there is only one aligned minutiae pair here.

the percentage of correctly aligned latent fingerprints in at
least one of the ten top alignments. For comparison, we show
the accuracy of aligning the minutiae sets based on the peaks
of the Generalized Hough Transform (GHT) and based on the
most similar minutiae pair (according to the MCC similarity)9.
Two latent alignment examples are given in Fig. 11 to show
the alignment results by DBHT and GHT. As we can see
from this figure, the proposed algorithm is superior to GHT
in challenging cases where the number of minutiae is small.

There are very few errors in alignment if we set the
threshold value of misalignment as20 pixels. One of the
reasons for these failure cases is there are a very small number
of true mated minutia pairs in the overlapping area between the
latent and mated rolled print. As a result, not many true mated
pairs vote for the correct alignment parameters. The absence
of true mated pairs is due to a limited number of minutiae
in latents and the error in minutiae detection in the rolled
print. One such example is shown in Fig. 12. Blue squares
represent manually marked minutiae in the latent print (left),
red squares represent automatically extracted minutiae inthe
rolled print (right), and the green line indicates the only true
mated minutiae pair available for this (latent, rolled) image
pair.

D. Matching Performance

In the identification scenario, the size of the background
database (or gallery) significantly affects the identification
accuracy. Therefore, to make the problem more challenging

9In this case, each alignment is based on one of the ten most similar
minutiae pairs.
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Fig. 13. Performance of COTS2, MCC SDK, and Proposed Matcherwhen
the union of manually marked minutiae (MMM) extracted from latents and
automatically extracted minutiae by COTS2 from rolled prints is input to the
matchers.

and realistic, we built a large background database of rolled
prints by including the258 mated rolled prints from NIST
SD27, the4, 740 rolled prints from WVU database, and we
added27, 000 rolled prints from the NIST Special Database
14 [41]. Therefore, the total number of rolled prints in the
background database is31, 998 from a combination of the
rolled prints in the three databases.

Minutia Cylinder Code (MCC) is used as local descriptor
for minutiae in our experiments. The local descriptors are built
using MCC SDK, which uses the bit-based implementation
(binary descriptors)[38]. The parameters used for MCC are
set as suggested in [38], with the number of cells along
the cylinder diameter as16 (Ns). In our method, the local
descriptor similarities are used in both the alignment and
scoring process, as described in Section III.

Our matcher and MCC SDK take minutiae as input. In
the latent cases, we use manually marked minutiae. For the
rolled prints, we used both the COTS to extract minutiae.
The performance of the proposed matcher using minutiae
extracted from rolled prints using COTS2 is slightly worse on
the NIST SD27 database compared to the performance using
minutiae extracted using COTS1; however, for WVU LFD, us-
ing COTS2 minutiae yielded a significantly better performance
compared to the performance using minutiae extracted using
COTS1. This demonstrates that the performance of COTS
can be significantly affected by the image quality. Overall,
since minutiae extracted from COTS2 resulted in a better
performance, we only report the results in which minutiae
are extracted using COTS2. Fig. 13 shows the performance
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(a)

(b)

Fig. 11. Two examples in which DBHT (Descriptor-Based HoughTransform) alignment is better than GHT (Generalized HoughTransform) alignment.
From left to right, latent with manually marked minutiae, corresponding rolled print with automatically extracted minutiae, rolled print with latent minutiae
aligned by GHT, and aligned by DBHT.

of COTS2, MCC SDK, and the proposed matcher using man-
ually marked minutiae in latents and automatically extracted
minutiae by COTS2 in rolled prints. The proposed approach
outperforms the other fingerprint matchers used in our study.

It is worth noticing that the matching performance on WVU
LFD when manually marked minutiae are used is generally
worse than the performance on NIST SD27. We believe this
is due to a number of factors: (i) there are14 latents with
less than3 manually marked minutiae in WVU LFD, while
the minimum number of manually marked minutiae in NIST
SD27 latents is5; (ii) while the genuine (latent, rolled) pairs
were provided with the database, after we examined the images
in the WVU database we identified some that appeared to be
wrongly paired; (iii) the quality of the mates (rolled prints) is
slightly worse in WVU LFD than in NIST SD27. We did not
exclude any of the latents or (latent, rolled) mated pairs from
the WVU database (from cases (i) and (ii)) to allow future
comparisons by other researchers with our results.

The performance of the COTS matchers, each using its
own proprietary templates for latents (including automatically
extracted minutiae and possibly other features), is worse
than using manually marked minutiae for both the databases.
However, the gap between the performances of manually
marked minutiae and of proprietary template is much larger
in the case of NIST SD27 than in the case of WVU latent
database. This is probably due to the characteristics of the
database. Note that WVU is a laboratory collected database
and so most of the latents in it do not contain background
noise. On the other hand, in NIST SD27 the images are of
operational casework quality and most of the latents contain a
large amount of background noise, which poses a challenge in
automatic feature extraction. Fig. 14 shows the performance of
the two COTS matchers using both manually marked minutiae
and proprietary templates (automatically extracted minutiae)
for NIST SD27 and WVU databases.

There have been several studies on latent matching reported
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Fig. 14. Performance comparison using manually marked minutiae (MMM)
and automatically extracted minutiae from latents.

in the literature. Almost all of them are based on NIST
SD27. Table I shows most of the reported results on the
matching performance for NIST SD27 database. There is no
reported performance on the WVU latent database. It should
be noticed that most of the reported results cannot be directly
compared mainly because of two factors: (i) the amount
of input information related to the latent fingerprint, which
could be automatically extracted features, or manually marked
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TABLE I
COMPARISON OF RANK-1 ACCURACIES REPORTED IN THE LITERATURE

FOR THENIST SD27DATABASE.

Work Manual Input Background
Size

Rank-1 Ac-
curacy (%)

Jain and Feng [15] Minutiae,
Skeleton, SP,
ROI, RQM,
RFM, RWM10

29, 257 74.0

Proposed Matcher
+ COTS2

Minutiae 31, 998 57.4

Proposed Matcher Minutiae 31, 998 53.5

Paulinoet al. [42] Minutiae, SP,
ROI10

27, 258 48.0

Jain and Feng [15] Minutiae 29, 257 34.9

Yoon et al. [20] SP, ROI10 27, 258 26.0

features such as minutiae, singular points, quality map, etc,
or a combination of both; and (ii) some differences in the
composition of the background databases and their size. In
Table I we show the reported rank-1 accuracy, the manual
input (for latents) used in each method, and the size of the
background database used. One of the results that could be
almost directly compared to our results is the reported rank-
1 accuracy (34.9%) in [15] when only manually marked
minutiae is used as input, which is the same scenario as
in our proposed matcher. The proposed matcher achieves a
significantly higher rank-1 accuracy of53.5% with similar
background database size and images as in [15].

Fig. 15 shows examples of latent prints in WVU LFD
correctly identified at rank-1 by the proposed matcher. Even
though the number of minutiae in the latents is small, they
could still be correctly identified. The ranks of the true mates
using COTS2 matcher are1871 and181, respectively.

Fig. 16 shows examples of latent prints in NIST SD27
and in WVU LFD whose mated full prints are not included
in the top20 candidates by the proposed matcher, but were
correctly identified at rank-1 by COTS2 matcher. The ranks
of these latents using the proposed matcher are3626 and64,
respectively. In the first latent, a large number of minutiaedo
not have mated minutiae due to missing minutiae in the rolled
print, and therefore the score is not as high as for impostor
pairs in which many more minutiae could be matched. In
the second case, we can see that the minutiae marked in the
latent are relatively sparse, while the minutiae automatically
extracted in the rolled print are denser. These facts make local
neighborhoods (and descriptors) very different between the
latent and its true mate, leading to a low match score.

E. Fusion of Matchers

We noticed that the two most accurate matchers (the pro-
posed and COTS2) perform differently on different latents,
meaning they are complementary to each other. This suggests
that a fusion of these two matchers would result in a better
performance. We performed a score-level fusion of these two
matchers. The scores from COTS2 matcher were normalized to
the range[0, 1] for each latent (local min-max normalization)

10SP: singular points, ROI: region of interest, RQM: ridge quality map,
RFM: ridge flow map, RWM: ridge wavelength map.
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Fig. 17. Score-level fusion of the proposed matcher and COTS2 for NIST
SD27 and WVU databases.

because local normalization was shown to perform better
than global normalization in the identification scenario [43].
Although the proposed matcher and COTS2 matcher have
similar strength, the fusion weights selected (0.8 and0.2) were
not equal because of the large range of the scores for the
COTS2 matcher. The performance improvement obtained by
the score-level fusion of COTS2 matcher and the proposed
matcher is shown in Fig. 17 for both the databases. Some
examples in which the fusion of the two matchers (COTS2
and proposed matcher) improved the ranks of the true mates
compared to the retrieval ranks by the individual matchers
separately are shown in Fig. 18 and 19. Note that like those
mated pairs (shown in Fig. 15 and Fig. 16) identified at rank-1
by either one the two matchers, mated pairs (shown in Fig. 18
and Fig. 19) which both matchers failed to identify at rank-
1 also benefit from the fusion. The reason is the scores of
non-mated pairs given by the two matchers are not consistent.

Improvements were also obtained by combining the pro-
posed matcher and other matchers in our study (COTS1 and
MCC SDK), but they are not reported here because the fusion
performance with COTS2 was consistently better than the
performance of COTS1 and of MCC SDK. We also performed
rank-level fusion using the highest rank and Borda Count
methods [44]. However, since score-level fusion showed a
better performance, we only report here results for score-level
fusion.

F. Effect of Fingerprint Quality

In Section IV-A, we discuss how the quality of the latent
fingerprints can be measured subjectively (assigned by latent
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Fig. 15. Latent prints correctly identified at rank-1 by the proposed matcher but ranked below20 by COTS2.

Fig. 16. Latent prints whose mates were not retrieved in the top 20 candidates by the proposed matcher but correctly identifiedat rank-1 by COTS2 matcher.

(a) (b) (5, 10) (c) (1, 30848) (d) (3617, 1)

(e) (f) (g) (h)

Fig. 18. Latent print mate from NIST SD 27 identified at rank1 after score-level fusion of COTS2 and proposed matcher. Thefirst row shows (a) a latent,
(b) its true mate, (c) rank-1 non-mate by the proposed matcher, and (d) rank-1 non-mate by COTS2 matcher. The second row shows (e) latent minutiae,
(f)-(h) latent minutiae (in blue) aligned by the proposed matcher to the rolled print minutiae shown in (b)-(d). In (b)-(d), the numbers in parentheses indicate
the ranks that each rolled print was retrieved by the proposed matcher and COTS2 matcher, respectively.

experts as in NIST SD27) and objectively (based on the
number of minutiae available). Rank-1 accuracies are shown
for each quality separately in Tables II, III, and IV for both
the latent databases. We can see that the matching performance
is highly correlated with the number of minutiae available in
the latent prints. The performance of the proposed matcher is
consistently better over all qualities and for both the databases.

The quality of full prints also has a large impact on
the matching accuracy. In Fig. 9, the histograms of NFIQ
quality values for the corresponding rolled prints in each latent
database are shown. According to the NFIQ quality measure,

TABLE II
RANK -1 ACCURACIES FOR VARIOUS SUBJECTIVE QUALITY LEVELS OF

LATENTS IN NIST SD27.

Quality COTS1 (%) COTS2 (%) MCC (%) Proposed (%)
All 38.0 47.3 42.6 53.5

Good 55.7 70.5 69.3 75.0
Bad 36.5 36.5 31.8 47.1
Ugly 21.2 34.1 25.9 37.6

the quality of the rolled prints in WVU database is slightly
worse than the quality of the rolled prints in NIST SD27. The
NFIQ quality measure is an integer value in the range1 to 5,
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(a) (b) (2, 42) (c) (1, 29408) (d) (48, 1)

(e) (f) (g) (h)

Fig. 19. Latent print mate from WVU LFD identified at rank1 after score-level fusion of COTS2 and proposed matcher. Thefirst row shows (a) a latent, (b)
its true mate, (c) rank-1 non-mate by the proposed matcher, and (d) rank-1 non-mate by COTS2 matcher. The second row shows (e) latent minutiae, (f)-(h)
latent minutiae (in blue) aligned by the proposed matcher tothe rolled print minutiae shown in (b)-(d). In (b)-(d), the numbers in parentheses indicate the
ranks that each rolled print was retrieved by the proposed matcher and COTS2 matcher, respectively.

TABLE III
RANK -1 ACCURACIES FOR VARIOUS OBJECTIVE QUALITY VALUES OF

LATENTS IN NIST SD27 (LARGE, MEDIUM AND SMALL REFER TO THE
NUMBER OF MINUTIAE IN THE LATENT).

Quality COTS1 (%) COTS2 (%) MCC (%) Proposed (%)
All 38.0 47.3 42.6 53.5

Large 59.3 73.3 70.9 75.6
Medium 43.5 45.9 43.5 56.5
Small 11.5 23.0 13.8 28.7

TABLE IV
RANK -1 ACCURACIES FOR VARIOUS OBJECTIVE QUALITY VALUES OF
LATENTS IN WVU LFD (LARGE, MEDIUM AND SMALL REFER TO THE

NUMBER OF MINUTIAE IN THE LATENT).

Quality COTS1 (%) COTS2 (%) MCC (%) Proposed (%)
All 35.6 45.4 44.3 47.9

Large 63.5 73.1 74.0 74.5
Medium 28.8 45.0 37.5 45.0
Small 3.1 9.9 9.3 14.9

TABLE V
RANK -1 ACCURACIES FOR LATENTS GROUPED ACCORDING TONFIQ

QUALITY VALUES OF CORRESPONDING ROLLED PRINTS INNIST SD27.

Quality COTS1 (%) COTS2 (%) MCC (%) Proposed (%)
All 38.0 47.3 42.6 53.5

NFIQ ≤ 3 42.1 54.9 49.4 60.4
NFIQ > 3 30.9 34.0 30.9 41.5

TABLE VI
RANK -1 ACCURACIES FOR LATENTS GROUPED ACCORDING TONFIQ

QUALITY VALUES OF CORRESPONDING ROLLED PRINTS INWVU LFD.

Quality COTS1 (%) COTS2 (%) MCC (%) Proposed (%)
All 35.6 45.4 44.3 47.9

NFIQ ≤ 3 36.9 50.0 48.0 52.4
NFIQ > 3 34.4 41.1 40.6 43.3

where1 is the highest quality and5 is the worst quality. We
observed a significant difference in the matching performance
when the latents were divided into the following two quality
groups: (i) rolled prints are of good quality (NFIQ value of1, 2
and3), and (ii) rolled prints are of poor quality (NFIQ values
of 4 and5). The difference in matching performance between
good NFIQ and poor NFIQ qualities for all matchers ranges
from 11− 21% for NIST SD27, while it ranges from2− 9%
for WVU database (see Tables V and VI). As an example, the
rank-1 accuracy of COTS2 matcher on NIST SD27 is54.9%
and34.0% for good and poor NFIQ quality, respectively.

G. Computational Cost

The implementation of our matching algorithm is in Matlab.
The speed of our matcher running in a PC with Intel Core2
Quad CPU and Windows XP operating system is around10
matches per second. Multi-thread capability was not utilized.
The majority of the running time (70%) is spent matching the
local minutiae descriptors. In a C/C++ implementation, this
matching would be much faster than in Matlab because of the
nature of the MCC descriptors (binary). We did not spend time
optimizing the code for speed.

V. CONCLUSIONS ANDFUTURE WORK

We have presented a fingerprint matching algorithm de-
signed for matching latents to rolled/plain fingerprints which
is based on a descriptor-based Hough Transform alignment.
A comparison between the alignment performance of the
proposed algorithm and the well-known Generalized Hough
Transform shows the superior performance of the proposed
method. We also reported matching results for two different
latent fingerprint databases with a large background database
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of around32K rolled prints. We compared the performance
of the proposed matcher with three different state-of-the-
art fingerprint matchers. Experimental results show that the
proposed algorithm performs better than the three fingerprint
matchers used in the study across all image qualities. A
score-level fusion of the proposed matcher and one of the
commercial matchers (COTS2) shows a further boost in the
matching performance.

We plan to include a texture-based descriptor to improve the
matching accuracy especially when the overlap between the
latent and rolled prints is small. This was suggested in [31].
In our future work, following the recommendations in [26],
[15], we plan to include additional automatically extracted
features to improve the matching performance without an in-
crease in manual labor (latent examiner’s markups). Although
the proposed matcher is more accurate than the two COTS
matchers, they are significantly faster. We also plan to develop
an indexing algorithm to speed up latent matching.
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