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Abstract—Identifying suspects based on impressions of fingers

lifted from crime scenes (latent prints) is a routine procedire

that is extremely important to forensics and law enforcemen

agencies. Latents are partial fingerprints that are usuallysmudgy,

with small area and containing large distortion. Due to thes

characteristics, latents have a significantly smaller numér of

minutiae points compared to full (rolled or plain) fingerpri nts.

The small nhumber of minutiae and the noise characteristic of
latents make it extremely difficult to automatically match latents

to their mated full prints that are stored in law enforcement

databases. Although a number of algorithms for matching ful

to full fingerprints have been published in the literature, they

do not perform well on the latent to full matching problem.

Further, they often rely on features that are not easy to extact

from poor quality latents. In this paper, we propose a new
fingerprint matching algorithm which is especially designe

for matching latents. The proposed algorithm uses a robust
alignment algorithm (descriptor-based Hough transform) to align

fingerprints and measures similarity between fingerprints ty

considering both minutiae and orientation field information. To

be consistent with the common practice in latent matching (e.

only minutiae are marked by latent examiners), the orienta-
tion field is reconstructed from minutiae. Since the proposd

algorithm relies only on manually marked minutiae, it can be

easily used in the law enforcement applications. Experimeal

results on two different latent databases (NIST SD27 and WVU
latent databases) show that the proposed algorithm outpeoirms

two well optimized commercial fingerprint matchers. Further,

a fusion of the proposed algorithm and commercial fingerprint

matchers leads to improved matching accuracy.

Index Terms—Fingerprints, latents, matching, local descrip-
tors, Minutia Cylinder Code, Hough transform.

I. INTRODUCTION

L

(a) Rollec.ir

(b) Plain

Fig. 1. Three types of fingerprint impressions. Rolled arampfingerprints
are also called full fingerprints.

There are essentially three types of fingerprints in law
enforcement applications (see Fig. 1): (i) rolled, which is
obtained by rolling the finger “nail-to-nail” either on a pap
(in this case ink is first applied to the finger surface) or the
platen of a scanner; (i) plain, which is obtained by plading
finger flat on a paper or the platen of a scanner without ralling
and (iii) latents, which are lifted from surfaces of objetttat
are inadvertently touched or handled by a person typically a
crime scenes. Lifting of latents may involve a complicated
process, and it can range from simply photographing the prin
to more complex dusting or chemical processing [2].

Rolled prints contain the largest amount of information
about the ridge structure on a fingerprint since they capture
the largest finger surface area; latents usually contaihetist
amount of information for matching or identification becaus
of their size and inherent noise. Compared to rolled or plain
fingerprints, latents are smudgy and blurred, capture only a

Aw enforcement agencies have started using fingerprighya|| finger area, and have large nonlinear distortion due to
recognition technology to identify suspects since t

essure variations. Due to their poor quality and smalhare

early 20th century [2]. Nowadays, automated fingerprinbide|atents have a significantly smaller number of minutiae com-
tification system (AFIS) has become an indispensable taol fBared to rolled or plain prints (the average number of méuti

law enforcement agencies.
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in NIST Special Database 27 (NIST SD27) [3] imagegis

for latents versusl06 for their mated rolled prints). These
characteristics make the latent fingerprint matching mnobl
very challenging.

Fingerprint examiners who perform manual latent finger-
print identification follow a procedure referred to as ACE-
V (analysis, comparison, evaluation and verification) [4].
Because the ACE-V procedure is quite tedious and time
consuming for latent examiners, latents are usually mdtche
against full prints of a small number of suspects identified
by other means, such as eye witness description or M.O.
(mode of operation). With the availability of AFIS, fingepr
examiners are able to match latents against a large fingerpri



database using a semi-automatic procedure that consistpmposed algorithms for fingerprint matching that use non-
following stages: (i) manually mark the features (minutiael minutiae features also use minutiae. For example, some al-
singular points) in the latent, (ii) launch an AFIS searahd a gorithms combine ridge orientation with minutiae informa-
(iii) visually verify the top4V (IV is typically 50) candidate tion either at feature level by including ridge orientation
fingerprints returned by AFIS. The accuracy and speed of thigormation in local minutiae descriptors [8], [9] or at $eo
latent matching procedure is still not satisfactory. Ittagdy level by combining scores from minutiae matching and global
does not meet the “lights-out mode” of operation desired lrientation field matching [9], [10].
the FBI and included in the Next Generation Identificatiopn [5 Several recent studies on fingerprint matching have focused
For fingerprint matching, there are two major problemsn the use of local minutiae descriptors [6], [8], [9], [1[02],
which need to be solved. The first is to align the two fingefd3], [14]. In most of these studies, the initial step cotssis
prints to be compared and the second is to compute a matdhusing local minutiae descriptors to obtain the alignment
score between the two fingerprints. Alignment between afatdetween two fingerprints by considering the most similar
and a rolled print is a challenging problem because latenmtsnutiae pair; then, a global consolidation step is perfedto
often contain a small number of minutiae and undergo largbtain a better matching performance. Since these algasith
skin distortion. To deal with these two problems, we proposee usually tuned and evaluated using FVC databases (plain
the descriptor-based Hough transform (DBHT), which is fingerprints) or NIST Special Database 4 (rolled fingergjint
combination of the generalized Hough transform and a lodéleir performances on latent fingerprints are unknown.
minutiae descriptor, called Minutia Cylinder Code (MCC).[6
The MCC descriptor improves the distinctiveness of mirauti
while the Hough transform method can accumulate evidence
as well as improve the robustness against distortion. MatchRecent research and development efforts on latent finger-
score computation between a latent and a rolled print is algants can be classified into three streams according to the
challenging because the number of mated minutiae is usuaitvanual input required from fingerprint examiners: consiste
small. To address this issue, we further consider oriestatiwith existing practice, increasing manual input, or redgci
field as a factor in computing match score. Since we oniganual input. Because of large variations in latent fingetpr
have manually marked minutiae for latents, a reconstroctiguality and specific requirements of practical applicagion
algorithm is used to obtain orientation field from minutiae. (crime scenes, border crossing points, battle fields), edch
The proposed matcher was tested on two latent fingerprthe three streams has its value.
databases, NIST SD27 database and West Virginia Universitymproved latent matching accuracy has been reported by
latent fingerprint database (WVU LFD). Two COTS matchenssing extended features, which are manually marked fontsite
and a state-of-the-art non-commercial fingerprint maighigl5], [16], [17], [18]. However, marking extended features
algorithm (MCC SDK) were also evaluated on the sam@rientation field, ridge skeleton, etc.) in poor qualitiefats is
databases. Our algorithm was found to perform better than trery time-consuming and might be only feasible in rare cases
other three matchers being compared on both the databa3ésis, some studies have concentrated on latent matching
Extensive experiments on fusion of matchers and effect v$ing a reduced amount of manual input, such as manually
fingerprint quality were also conducted. marked region of interest (ROI) and singular points [190][2
The rest of the paper is organized as follows: in Section However, only a small portion of latents can be correctly
related work is reviewed; in Section 1lI, all steps of our proidentified using this approach. Hence our proposed matcher
posed method are described; in Section IV, our experimentakes manually marked minutiae as input and, therefors, it i
results are presented and discussed; in Section V, we presi@msistent with existing practice. There have also beenesom
our conclusions and future work. studies on fusion of multiple matchers [21] or multiple ftte
prints [22].

Latent Fingerprint Matching

II. RELATED WORK

In this section, we review related work in four areas™ Evaluation of Latent Fingerprint Technologies

published research on full fingerprint matchingublished  NIST has been conducting a multi-phase project on Evalua-
research on latent fingerprint matching, evaluation ofnfatetion of Latent Fingerprint Technologies (ELFT) to evalukste
fingerprint technologies (ELFT), and evaluation of latext e tent feature extraction and matching techniques [23]. &aic
aminers. participating algorithms in ELFT are proprietary, we hawe n
information on the details of these algorithms. The purpise
] . . ELFT-Phase | was to assess the feasibility of latent fingretrpr
A. Full Fingerprint Matching identification systems using Automated Feature Extractiuh
The majority of the algorithms developed for fingerprinMatching (AFEM), while the purpose of ELFT-Phase Il was
matching are based on minutiae. Although minutiae carryt@actually measure the performance of state-of-the-aBMF
great amount of discriminatory information, in some casdechnology and evaluate whether it was viable to have those
additional features may help increase the accuracy. M@tstems in the operational use to reduce the amount of time
needed by latent examiners to manually mark latents thereby
1See Chapter 4 in [7] for a more comprehensive review of thiicto increasing the throughput.



are not large [27], [28], [29]. Although the exact numbers
reported in these studies may not reflect the real practice,
the qualitative conclusions are very useful. It was fourat th
latent examiners’s conclusion are not always in agreement,
especially in the case of poor quality latents [27]. In addit
the same examiner can change his/her conclusions on the same
fingerprint pair at a later time [28]. These inconsistencay m
increase under bias [29].

These issues associated with including latent examiners in
‘ : the latent identification process will only be solved whea th
(a) Good (b) Bad (c) Ugly automatic matcher can outperform latent examiners in accu-
racy. No matter how successful the application of automatic
fingerprint recognition technology might be, we cannot say
fingerprint matching is a “solved problem” before we can

In Phase |, latent images were selected from both of?—aCh the goal of outperforming latent examiners.
erational and non-operational scenarios. The most aecurat
system showed a rank-accuracy of 80% (100 latents lIl. L ATENT MATCHING APPROACH
against10, 000 rolled prints) [24]. In Phase I, latent images Given a latent fingerprint (with manually marked minutiae)
were selected from only operational environments. The-fankand a rolled fingerprint, we extract additional featuresrfro
accuracy of the most accurate system Wa2% (835 latents both prints, align them in the same coordinate system, and
againstl00, 000 rolled prints) [25]. These accuracies cannot beompute a match score between them. These three steps are
directly compared since the Phase | and Phase |l evaluatigiescribed in the following subsections. An overview of the
used different latent databases. Furthermore, the quafity proposed algorithm is shown in Fig. 3.
latents used in Phase Il is better compared to Phase I. As
shown _in Fig. 2 the qual_ity of latents varies sig_niﬁcantly. A Feature Extraction

The impressive matching accuracy reported in ELFT does _ o )
not support that the current practice of manually marking Th_e prqposed matching approach uses minutiae _and_ ort-
minutiae in latents should be changed. Although latents entation field from both latent and rplled _prlnts. Minutiae
Phase Il were selected from operational scenarios, they r&¢ manually marked by latent examiners in the latent, and
resent successful identifications in actual case exaroimgti 2utomatically extracted using commercial matchers in the
using existing AFIS technology. In the ACE-V process, whelplled print. Based on minutiae, local minutiae descrigtor

the examiner analyzes the latent image he/she decides evhefi® Puilt and used in the proposed descriptor-based alignme
the latent has value for exclusion only, value for indivibiuaand scoring algorithms. Orientation field is reconstrudteth

ization or no value. If a latent is classified as of no Valuépinutiae location and direction for the latents as proposed

no comparison is performed. If the latent is classified in orf [30], and orientation field is automatically extractedrfr

of the other two categories, then comparisons are perfornf@§ rolled print images by using a gradient-based method.
and the examiners can make an individualization, an exarysi -0C@l minutia descriptors and orientation field reconstarc

or determine the comparison to be inconclusive. So thetimte® Presented in the following subsections.

which are successfully identified constitute only a smattps 1) Local Minutia Descriptor: Local descriptors have been
all latents, which are of reasonable quality. For this reago Widely used in fingerprint matching (e.g. [11], [8], [12].}}

the ELFT-Phase Il report [25] the authors concluded thag orf®))- F€Ng and Zhou [31] evaluated the performance of local
a limited class of latents can benefit from AFEM technolog§l€SCriptors associated with fingerprint matching in foueea

NIST has conducted another evaluation of latent fingerprid@ri€s of fingerprints: good quality, poor quality, smalico

technologies using extended feature sets manually maryednaon region, and large plastic distortion. They also cogrsel

latent examiners [26]. In this evaluation, the purpose was-t classified the local descriptors as image-based, texiasee

vestigate the matching accuracy when (i) latent imagesoand®nd minutiae-based descriptors. Their results show tr&t th
(ii) sets of manually marked features were provided. Thiinutiae-based descriptor, Minutia Cylinder Code (MCQ) [6

evaluation suggested that the highest accuracy was obtaiR§/rms better in three of the four categories, and texture
when the input included both the latent image and manua sed descriptor performs better for the small common negio

marked features. catego_ry. _ . . . .
A minutia cylinder records the neighborhood information

. ] of a minutia as a 3D function. A cylinder contains several
D. Evaluation of Latent Examiners layers and each layer represents the density of neighboring
A latent examiner can be viewed as a slow but venmyinutiae along the corresponding direction. The cylindem c
accurate “matcher”. Because they are much slower than de concatenated as a vector, and therefore the similarity
tomatic matchers, quantitatively estimating the accuraty between two minutia cylinders can be efficiently computed.
latent examiners is not easy. Hence the numbers of fingerpifilg. 4b shows the sections of two valid cylinders associated
pairs used in several “black box” tests of latent examinevgth the two corresponding minutiae (in the latent and in the

Fig. 2. Latent fingerprints of three different quality leveh NIST SD27.
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8 Fig. 5. A latent fingerprint in NIST SD27 and the reconstrdcteientation
(a) Latent and corresponding rolled print with a mated nigeufpair field overlaid on the latent.
indicated.

based orientation field estimation methods have been pedpos
([32], [33], [34]) that use singular points as input to the
model. In the latent fingerprint matching case, it is very

challenging to estimate the orientation field based onlyhen t

image due to the poor quality and small area of the latent.
Moreover, if singular points are to be used, they need to be
manually marked (and they are not always present) in thetlate
fingerprint image.

(b) Sections of the cylinder corresponding to the minutididated in the Hence, we use a minutiae-based orientation field recon-

latent (first row) and in the rolled print (second row). struction algorithm proposed in [30] which takes manually

marked minutiae in latents as input and outputs an oriemtati

field. This approach estimates the local ridge orientatioa i

block by averaging the direction of neighboring minutiabeT

orientation field is reconstructed only inside the convek hu

o L ) .. of minutiae. Since the direction of manually marked mineitia

rolled print) indicated in Fig. 4a. A more detailed desdtpt s yery reliable, the orientation field reconstructed usthis

of the cylinder generation and of the similarity between twoy,5ach is quite accurate except in areas absent of menutia

cylinders can be found in [6]. or very close to singular points (see Fig. 5 for an example). F
2) Orientation Field Reconstruction: Orientation field can rolled fingerprints, orientation field is automatically eadted

be used in several ways to improve fingerprint matchingsing a gradient-based method [7].

performance, such as by matching orientation fields diectl

and fusing scores with other matching scores, or by enhgncin

the images to extract more reliable features. Orientatield fi B. Alignment

estimation using gradient-based method is very reliable inFingerprint alignment or registration consists of estimat

good quality images [7]. However, when the image contaimsg the parameters (rotation and translation) that align tw

noise, this estimation becomes very challenging. A few rhodéingerprints. There are a number of features that may be

Fig. 4. Sections of two cylinders associated with the tworegponding
minutiae, one in latent and other in rolled print.



used to estimate alignment parameters between two fingBlgorithm 1 Descriptor-based Hough Transform.
prints, including singular points, orientation field, rielg and Input: {m;} = {(z1,v1,01)} € M, {m.} = {(xr,yr,0,)} €
minutiae. There are also a number of methods to align two Mg, C, andCr
fingerprints: Generalized Hough Transform, local desoript Output: A set of 10 rigid transformation matrices
energy minimization, efc Initialize the accumulator array
In the latent matching case, singularities are not alwaysCompute local minutiae descriptor similariti#{) for every
present in latents, making it difficult to base the alignment possible minutiae pair using, andCg
of the fingerprint on singular points alone. To obtain malyual for all possible paim;, m, do

marked orientation field is expensive, and to automaticatlhy Compute their direction differencéy = (6, — 6;)

tract orientation field from a latent image is a very chaliegg if Ag < mazxg then

problem. Since manually marking minutiae is a common prac- Compute translation parameters,(, A,) and increase
tice for latent matching, our approach to align two fingari the voting for this set of alignment parameters:

is based on minutiae.

Local descriptors can also be used to align two fingerprints. AlBa; By, Do) = A(Ba, By, Bo) + W(Lr) - (1)
In this case, usually the most similar minutiae pair is used end if
as a base for the transformation parameters (rotation andnd for
translation), and the most similar pair is chosen based onSmoothA using a Gaussian low-pass filter
a measure of similarity between the local descriptors of theFind 10 highest peaks im
minutiae pair. for each peal¢ do

Rathaet al. introduced an alignment method for minutiae ~ Compute a rigid transformation between two fingerprints
matching that estimates rotation, scale, and translatisn p  using minutiae pairs that contributed to pefakand its
rameters using a Generalized Hough Transform [35]. Given immediate neighborhood
two sets of points (minutiae), a matching score is computed if the estimated rigid transformation is not reliakhen

for each transformation in the discretized set of all alldwe Repeat the voting in pedkand its neighborhood using
transformations. For each pair of minutiae, one minutianfro a refined range

each image (latent or full), and for given scale and rotapan Find the highest peak in the small neighborhood of
rameters, unique translation parameters can be compudet. E peakk

parameter receives “a vote” that is proportional to the imatg end if

score for the corresponding transformation. The transition end for

that gives the maximum score is considered the best one. In

our approach, the alignment is conducted in a similar waty, bu

the evidence for each parameter is accumulated based on the ) _

similarity between the local descriptors of the two invalveth® pair. The translation and rotation parameters need to be
minutiae, with the similarity and descriptor being the oneduantized to the closest bins. After the quantization, @vie
described in Section I1I-A1. is accumulated in the corresponding bin based on the sityilar

The descriptor-based Hough transform alignment algorithR¢tween the local minutiae descriptors. The assumptioe her
takes as input two sets of minutiad/, and Mg, and two 1S thgt true mated minutiae pairs will vote for very S|m|lgnts _
sets of local descriptor€, and Cg, one set correspondingOf alignment parameters, while non-mated minutiae paits wi
to the latent and one to the rolled print. Each set containd/gt€ randomly throughout the parameter space. As a result,
local descriptor for each minutia. A high level algorithm ofh® Set of parameters that presents the highest evidence is
the proposed approach to align two fingerprints given the s&pnsidered th(_e best one. Eor robustness, ten sets of alignme
of minutiae and of local descriptors is shown in Algorithm 1Parameters with strong evidence are considered.

Given two sets of minutiae, one from the latent and the In order to make the alignment computationally efficient and
other from the rolled print being compared, translation arglso more accurate, we use a two-step approach to compute
rotation parameters can be obtained for each possible mitie alignment parameters for a fingerprint pair. The firgp ste
tiae pair (one minutia from each set). Létr;,y;,60;)} and is to perform the voting using the Descriptor-based Hough
{(x,,y-,0,)} be the minutiae sets for latent and rolled prints[ransform. If the bins are too small, the true peak in the Houg
respectively, centered at their means. Then, for each pairTsansform space cannot receive sufficient votes. On ther othe
minutiae, we have hand, if the bins are too large, they will not provide accerat

alignment parameters. The strategy we adopted is to keep the
A6 = min (||6; — 6,|,360 — [|6; = 6-1)), (2) pins relatively large, and to include a second step to coeput
( Az ) _ < Ty ) B ( cosAf  sin Af ) ( xz ) (3) "eliable alignment parameters. This second step consfsts o

Ay Yr —sinAf  cos Af uw )’ using the minutiae pairs that vote for a peak to compute a
Since the scale (resolution) is fixed in fingerprint matchin jgid t_ransfc_)rmgtlon t_)etween the two fingerprints. _The use
unigue translation parameters can be obtained for each jvoting m|nut|ae_ pairs to compute the transformatlon_glve
based on the rotation difference between the two minutiae '€ accurate alignment parameters than directly using the

peak parameters. In cases where a rigid transformatiorixnatr

2Refer to Chapter 4 of [7] for details and published work. cannot be reliably obtained, the voting is repeated inside a




neighborhood of the corresponding peak, but with a smallerWe use a simple orientation field matcher that basically
bin. A peak is chosen from this refined Hough Transforrmeasures the consistency of the orientation differenéege |

space, and used as the alignment parameters. use Euclidean distance, for example, to measure the cotiemta
differences, a small error in the rotation will contribute a
C. Smilarity Measure small amount to the orientation difference for every block

being compared, resulting in a large overall difference or

For each of thel0 different alignments, a matching SCOT& mall similarity score. In [36], the authors proposed aatise

be;[jwegn t;N? fmgf:].elrgrlnfl'_shs computed byl com??;gg MINUtgteasure for orientation field matching that can handle small
an horlen a Iotﬂ |(fa_ SI :arr]paxmum \l;atl\J/\(/a 0 th stcor?_s rotation errors. Given the aligned latent orientation fiéld
IS chosen as the Tinal matching score between the o NGy e rolled orientation fiel@g, each containind< blocks,

prlgts. _Thte ?eta:cl_s Il;lor com_putlng rlnatchlng scores of maneiti namely O (k) and Ow(k), the similarity between the two
and orientation field are given Helow. orientation fields is given by

To compute minutiae matching score under a given align-
ment, we first find the corresponding minutiae pairs (oneén th o | S| vped2(OLk)—Or(h)) |
latent, one in the rolled print). For this purpose, we aliga t 0= Z?*l Ui
minutiae sets of the two fingerprints and then find an one-to- -
one matching between the two minutiae sets using a greedynerev;. is 1 if both corresponding blockk are valid, and)
algorithm. For each minutia, in the latent, a set of candidateotherwise.
minutiae in the rolled print is found. A minutia,. in the rolled ~ The overall matching score is given by
print is_ ca_IIed a candid_ate if it _has not yet been matqh_ed to S = (1 - wo)Su + woSo, (6)
any minutia, and both its location and angle are sufficiently
close tom;. The threshold value®s for spatial distance and where the weightwo is empirically set a$.4. Fig. 7 shows
Ta for angle distance were determined empirically. Among aine example in which the fusion of minutiae matching and
candidates, the one closeststg in location is chosen as theorientation field matching scores helps improve the redtiev
matching minutia ofmn;. rank® of the true mate. The retrieval rank of the true mate

After the corresponding minutiae are found, we computmproved from2 to 1 after the fusion, while the retrieval rank
a matching score between the latent and the rolled priof. the ranki non-mate according to minutiae matcher was
Suppose that pairs of matching minutiae between the latenthanged froml to 3 after the fusion.
and the rolled print are found. The minutiae matching score
Su between the two fingerprints is given by IV. EXPERIMENTAL RESULTS

: (6)

1 — . . In this section, we first provide a description of the two
Sm = N ZSC(Z)SS(Z)’ (4)  databases used in our experiments, and the algorithms to be
=t compared with the proposed algorithm. Then we report the
wheresc(i) denotes the similarity between the minutia cylinperformances of alignment and matching. This is followed by
der codes of theth pair of matched minutiaes(i) = 1— %St the fusion of matchers and the effect of fingerprint quality.
maps the spatial distanaés(i) of the ith pair of matched Finally, we discuss the issue of computational cost.
minutiae into a similarity score, and denotes the number of
minutiae in the latent.
According to equation (4), the matching score depends oAh Laten'F Databas§ )
the number of matching minutiae, which itself is affected by Matching experiments were conducted on two differ-
the distance thresholds. However, due to large distortion ent latent fingerprint databases: NIST Special Database 27
present in many latents, it is difficult to choose an appaipri (NIST SD27) and West Virginia University Latent Fingergrin
value for Ts. While a large threshold value will lead toDatabase (WVU LFD).
more matching minutiae for distorted mated pairs, the numbe 1) NIST Special Database 27 (NIST SD27): NIST Special
of matching minutiae for non-mated pairs will increase todatabase 27 is the only publicly available database coingris
Hence, we use two different values (15 pixels and 25 pixeltent fingerprints from operational scenarios (latentected
for Ts and for each threshold, a set of matching minutiae & crime scenes). It consists B58 latent fingerprint images
found and a matching score is computed using equation (8d258 corresponding (mated) rolled prints. Both latents and
The mean of the two scores is used as the minutiae matchiffjed prints are available &00 ppi. The quality of the latents
score. Fig. 6 shows an example in which the score of tHe NIST SD27 varies, reflecting the operational (casework)
genuine pair is slightly reduced when the smaller threshdigality.
is used compared to the larger threshold, while the score ofNIST SD27 contains latent prints of three different quedti

the latent and the rank-non-maté using large threshold is termed “good”, “bad”, and “ugly”, which were classified by
greatly reduced when the smaller threshold is used. latent examiners. Some examples of latents from those three
qualities are shown in Fig. 2. Although this classificatidn o
30ne-to-one matching means that each minutia in the latemiaished to
at most one minutia in the rolled print, and vice versa. SRetrieval rank of a rolled fingerprint refers to its rank inethwhole
4The ranki non-mate refers to the non-mated rolled print whose matatandidate list which is sorted in the decreasing order othiad) score with
score with the latent ranks first among all rolled prints ia thatabase. the latent.




(d) 0.152 (e) 0.171 (f) 0.113 (g) 0.172
Fig. 6. Latent print in which the matching score of the gerupair is slightly reduced when small threshold value is usathpared to large threshold
value, while impostor score is greatly reduced. (a)-(c)wghthe latent, the true mate, and the rankon-mate according to large threshold, respectively.
(d)-(g) shows latent minutiae that were matched to rolledtpninutiae in the following cases: (d) true mate using sritakshold, (e) true mate using large
threshold, (f) non-mate using small threshold, and (g) mate using large threshold. In (d)-(g), the scores cormedipg to each case are included.

Fig. 7. Latent print identified at a higher rank after fusinghatiae matching scores with orientation field matchingresoThe rank of the true mate was
improved from2 to 1 after the fusion, and the rank of the highest ranked non-nva& after the fusion. (a)-(c) show minutiae and the image of (&tent,
(b) its true mate, and (c) the highest ranked non-mate aitwptd minutiae matching. (d) and (f) show latent minutiael anientation field (in blue) aligned
with minutiae and orientation field of the true mate. (e) agJdshow latent minutiae and orientation field (in blue) afidrwith minutiae and orientation field

of the ranki non-mate.
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Fig. 9. Histograms of NFIQ values of rolled prints in NIST SDand WVU
databases.

latent prints as “good”, “bad”, and “ugly” is subjective,his

been shown that such a classification is correlated with the

matching performance [15]. experienced law enforcement officers which may not be the

Another indicator of fingerprint quality that affects thecase for the WVU database. If the rolled prints correspamdin
matching performance is the number of minutiae in the lateigtthe latents are of poor quality, the number of mated masuti
print [15]. Based on the number of minutiaein latents in is small and, therefore, it is much more challenging to idgnt
NIST SD27, Jain and Feng [15] classified latents in NISthe mates of the latents at raikFig. 9 shows the histograms
SD27 into three groups: larges (> 21), medium (3 < n < of NFIQ quality [37] of the rolled prints which have corre-
22), and small ¢ < 13), containing86, 85, and 87 prints, sponding latents in NIST SD27 and in WVU databas#ss (
respectively. We present our experimental results for edchand 449 rolled prints, respectively). NFIQ defines five quality
the six quality groups based on subjective quality and ti@vels in the rangél, 5] with 1 indicating the highest quality.
number of minutiae.

We use manually marked minutiae —provided with NISE. commercial Matchers
SD27 - as features in latent fingerprints. For rolled fingatpr
images, the minutiae are automatically extracted usingvibe
commercial matchers.

2) West Mirginia University Latent Database (WVU LFD):
West Virginia University Latent Databaseonsists 0f449
latent fingerprint images collected in a laboratory envinent
and4, 740 rolled prints, including thel49 mated rolled prints
of the 449 latents. The latent images in this database

In order to compare the performance of the proposed
latent fingerprint matcher, we used two commercial fingetpri
matchers, referred to as COTS1 and COTS2. In addition, we
also used the algorithm presented in [6], [38] as a benchmark
for which the SDK was provided by the authors (MCC SDK).
It should be pointed out that none of the three matchers
awere designed specifically for the latent matching case, But

deespite our efforts, we could not find any latent fingerprint

at 1090 ppL, a!"d they were convelrteq 00 ppi for. Ul - natcher SDK or a forensic AFIS that is available for evabrati
experiments. Fig. 8 shows a latent with its correspondiiigao . .
purposes by a research lab. Still, the matchers we are using

print in the WVU latent database. Manually marked minutiae

. . L ~Ih our comparative study are well known: one of the COTS
were provided with these latents. Minutiae were autombyica o . e
. . - (VeriFinger) [39] has been widely used as a benchmark in fin-
extracted from the rolled prints using the two commercial

matchers. gerprint publications, and MCC is one of the best performing

. " . . Igorith in FVC-onGoi 40].
There is no subjective quality value assigned to the IaterﬁatgorI ms in onGoing [40]
in the WVU database. One of the objective quality measure
depends on the number of minutiae in the latent, so any latéat Alignment Performance

can be assigned an objective quality. If we apply the samein order to estimate the alignment error, we use ground truth
objective quality classification scheme as in NIST SD27 t@ated minutiae pairs from NIST SD27, which are marked
WVU database, we obta08, 80, and161 latent fingerprints by fingerprint examiners, to compute the average distance
in the objective qualities of large, medium, and small numbgetween the true mated pairs after alignmefftthe average
of minutiae, respectively. Euclidean distance for a given latent is less than a preifgpec
The two latent databases, NIST SD27 and WVU, havgumber of pixels in at least one of the ten best alignments
different characteristics: most of the latent images in NIS(peaks in the Descriptor-Based Hough Transform), then we
SD27 contain significant background noise, while in WVUWonsider it a correct alignment. This alignment perforneanc
latent images, there is a uniform background in most latenis shown in Fig. 10 for the NIST SD27 latent database. The x-
However, overall, the quality of the rolled prints in WVUaxis shows the misalignment threshldnd the y-axis shows
database is worse than the quality of rolled prints in NIST
SD27. This could be explained because in the operationa]Here we use the term ground truth minutiae to refer to mieutvhich are

: ked by latent examiners by looking at the latent and ttreesponding
database such as NIST SD27, rolled prints were captured %ﬁéd print at the same time, and we use the term manuallkedaminutiae

to refer to minutiae which are also marked in the latent bgrinexaminers,
6To request WVU latent fingerprint database, please contacAmin A.  but without looking at the true mate (rolled print).
Ross (http://www.csee.wvu.eduloss/) at Integrated Pattern Recognition and 8The alignment is deemed as incorrect if the average distaeteeen
Biometrics Lab (http://www.csee.wvu.edufoss/i-probe/). mated minutiae pairs after alignment is larger than thieshold.
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Fig. 12. Example of alignment error due to the small numberwd mated (b) WVU LFD

minutia pairs in the overlapping area between a latent anadnated rolled

print. Note that there is only one aligned minutiae pair here Fig. 13, Performance of COTS2, MCC SDK, and Proposed Matafhen

the union of manually marked minutiae (MMM) extracted froatehts and
automatically extracted minutiae by COTS2 from rolled fwirs input to the
matchers.

the percentage of correctly aligned latent fingerprints tin a

least one of the ten top alignments. For comparison, we show

the accuracy of aligning the minutiae sets based on the pe@Rél realistic, we built a large background database ofdolle
of the Generalized Hough Transform (GHT) and based on thgints by including the258 mated rolled prints from NIST
most similar minutiae pair (according to the MCC simila)tty SD27, the4, 740 rolled prints from WVU database, and we
Two latent alignment examples are given in Fig. 11 to shoadded27,000 rolled prints from the NIST Special Database
the alignment results by DBHT and GHT. As we can sek4 [41]. Therefore, the total number of rolled prints in the
from this figure, the proposed algorithm is superior to GHIpackground database isl,998 from a combination of the
in challenging cases where the number of minutiae is smaliolled prints in the three databases.

There are very few errors in alignment if we set the Minutia Cylinder Code (MCC) is used as local descriptor
threshold value of misalignment & pixels. One of the for minutiae in our experiments. The local descriptors arié b
reasons for these failure cases is there are a very smalleunitsing MCC SDK, which uses the bit-based implementation
of true mated minutia pairs in the overlapping area betwien t(binary descriptors)[38]. The parameters used for MCC are
latent and mated rolled print. As a result, not many true chatéet as suggested in [38], with the number of cells along
pairs vote for the correct alignment parameters. The aleseitige cylinder diameter as6 (V). In our method, the local
of true mated pairs is due to a limited number of minutiagescriptor similarities are used in both the alignment and
in latents and the error in minutiae detection in the rollescoring process, as described in Section IlI.
print. One such example is shown in Fig. 12. Blue squaresOur matcher and MCC SDK take minutiae as input. In
represent manually marked minutiae in the latent print)(lefthe latent cases, we use manually marked minutiae. For the
red squares represent automatically extracted minutiagken rolled prints, we used both the COTS to extract minutiae.
rolled print (right), and the green line indicates the onlyet The performance of the proposed matcher using minutiae
mated minutiae pair available for this (latent, rolled) gea extracted from rolled prints using COTS2 is slightly worse o

pair. the NIST SD27 database compared to the performance using
minutiae extracted using COTS1; however, for WVU LFD, us-
D. Matching Performance ing COTS2 minutiae yielded a significantly better perforean

compared to the performance using minutiae extracted using
TS1. This demonstrates that the performance of COTS
can be significantly affected by the image quality. Overall,
8%ce minutiae extracted from COTS2 resulted in a better
%n this case, each alignment is based on one of the ten mogarsim performance, we only report the results in which minutiae
minutiae pairs. are extracted using COTS2. Fig. 13 shows the performance

In the identification scenario, the size of the backgrou
database (or gallery) significantly affects the identifrat
accuracy. Therefore, to make the problem more challengi
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(b)

Fig. 11. Two examples in which DBHT (Descriptor-Based Houghnsform) alignment is better than GHT (Generalized Holiginsform) alignment.
From left to right, latent with manually marked minutiae rresponding rolled print with automatically extracted mtine, rolled print with latent minutiae
aligned by GHT, and aligned by DBHT.

of COTS2, MCC SDK, and the proposed matcher using man- 65
ually marked minutiae in latents and automatically extect %
minutiae by COTS2 in rolled prints. The proposed approach \:Z
outperforms the other fingerprint matchers used in our study 2as

v COTS1 (Proprietary Template)
0 COTS2 (Proprietary Template)
--COTS1 (MMM and COTSL1 features) -
-e-COTS2 (MMM and COTS2 features)

It is worth noticing that the matching performance on WVU
LFD when manually marked minutiae are used is generally
worse than the performance on NIST SD27. We believe this

a

Identification Rate (%)
& 8 &

is due to a number of factors: (i) there aré latents with 2 eeen g vET YT
less than3 manually marked minutiae in WVU LFD, while NESAARAAN

the minimum number of manually marked minutiae in NIST ’ ° Rank  ° %
SD27 latents i; (ii) while the genuine (latent, rolled) pairs (a) NIST SD27

were provided with the database, after we examined the imnage
in the WVU database we identified some that appeared to be
wrongly paired; (iii) the quality of the mates (rolled pidtis
slightly worse in WVU LFD than in NIST SD27. We did not

exclude any of the latents or (latent, rolled) mated paiosnfr %As @ secocoocggzgzezene ]
the WVU database (from cases (i) and (ii)) to allow future W ]

comparisons by other researchers with our results. ]
The performance of the COTS matchers, each using its R A
own proprietary templates for latents (including autosdty

n

%
a o o o
S a 3 3

Identification Rat
N W oW s
o 8 &8 &

v
v vV

—
4

v COTSL1 (Proprietary Template)
© COTS2 (Proprietary Template)

N
=]

extracted minutiae and possibly other features), is worse e 2 COTS? (MMM and GOTS? featuree)
than using manually marked minutiae for both the databases. 0 ° Rank  ° 2”

However, the gap between the performances of manually
marked minutiae and of proprietary template is much larger
in the case of NIST SD27 than in the case of WVU laterkig. 14. Performance comparison using manually marked tiag§MMM)
database. This is probably due to the characteristics of fHi§ automatically extracted minutiae from latents.
database. Note that WVU is a laboratory collected database
and so most of the latents in it do not contain background
noise. On the other hand, in NIST SD27 the images are iof the literature. Almost all of them are based on NIST
operational casework quality and most of the latents corgai SD27. Table | shows most of the reported results on the
large amount of background noise, which poses a challengenatching performance for NIST SD27 database. There is no
automatic feature extraction. Fig. 14 shows the performarfic reported performance on the WVU latent database. It should
the two COTS matchers using both manually marked minutiae noticed that most of the reported results cannot be direct
and proprietary templates (automatically extracted nié)t compared mainly because of two factors: (i) the amount
for NIST SD27 and WVU databases. of input information related to the latent fingerprint, wic
There have been several studies on latent matching reportedld be automatically extracted features, or manuallyketir

(b) WVU LFD
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TABLE |

COMPARISON OF RANK-1 ACCURACIES REPORTED IN THE LITERATURE S
FOR THENIST SD27DATABASE. 70
Work Manual Input Background | Rank-1 Ac- %55
Size curacy (%) S
Jain and Feng [15]] Minutiae, 29,257 74.0 5
Skeleton,  SP, g
ROI,  RQM, g
RFM, RWNHO Eh
Proposed Matchell Minutiae 31,998 57.4 45, ->-COTS2 (MMM and COTS? features)
--Proposed Matcher (MMM and COTS2 features)|
+ COTSZ —+Proposed Matcher + COTS2
Proposed Matcher | Minutiae 31,998 53.5 “% 5 Ok 15 20
Paulinoet al. [42] Minutiae, SP,| 27,258 48.0
RO () NIST sD27
Jain and Feng [15]] Minutiae 29,257 34.9
Yoon et al. [20] SP, RO 27,258 26.0 e

o
]

features such as minutiae, singular points, quality map, et
or a combination of both; and (ii) some differences in the
composition of the background databases and their size. In

m |
Table | we show the reported rankaccuracy, the manual //H** |
input (for latents) used in each method, and the size of the o7 i AT CoTS e

background database used. One of the results that could be - proposed Matcher (W and COTS? features)
almost directly compared to our results is the reported +ank 5

1 accuracy §4.9%) in [15] when only manually marked

minutiae is used as input, which is the same scenario as (b) WVU LFD

in our proposed matcher. The proposed matcher achievesi@17. Score-level fusion of the proposed matcher and QOGS NIST
significantly higher rank- accuracy 0f53.5% with similar SD27 and WVU databases.

background database size and images as in [15].

Fig. 15 shows examples of latent prints in WVU LFD local lizati h ¢ b
correctly identified at rank-by the proposed matcher. Everpecause ocal normalization was shown to perform better

though the number of minutiae in the latents is small, thdhan global normalization in the identification scenari8][4
could still be correctly identified. The ranks of the true emat lthough the proposed matcher and COTS2 matcher have

using COTS2 matcher ar871 and 181, respectively similar strength, the fusion weights selecté®(@nd0.2) were

Fig. 16 shows examples of Iatent, prints in NIST sp27°t equal because of the large range of the Scores. for the
and in WVU LFD whose mated full prints are not includeé:OT82 matcher. T_he performance improvement obtained by
in the top20 candidates by the proposed matcher, but wel’ge score-level fusion of COTS2 matcher and the proposed

correctly identified at rank-by COTS2 matcher. The ranksmatcher is_ ShOV.V” in Fig. .17 for both the databases. Some
of these latents using the proposed matcher3ags and 64, examples in which the fusion of the two matchers (COTS2

respectively. In the first latent, a large number of minutiae and proposed matcher) improved the ranks of the true mates

not have mated minutiae due to missing minutiae in the m”&(}mpared to the retm_aval _ranks by the individual matchers
; ﬁﬁparately are shown in Fig. 18 and 19. Note that like those

pairs in which many more minutiae could be matched. |r|1]1ate_d pairs (shown in Fig. 15 and Fig. 16). identified at rank-

the second case, we can see that the minutiae marked in W |'t:her (1)38 thr? t;’]\'% mﬁtchersﬁ ma:ce(-jl %alrs (c'jshoy\;n n F'g'k18
latent are relatively sparse, while the minutiae autora#itic an | Igl:.) )f_Wf Ic ﬁt fme_ltc e_:_sh alled to K enrt]' y at ran -f
extracted in the rolled print are denser. These facts matad ol @lso benefit from the fusion. The reason is the scores o

neighborhoods (and descriptors) very different between tHon-mated pairs given by the tWO. matchers are_npt consistent
latent and its true mate, leading to a low match score. Improvements were also obtained by combining the pro-
’ posed matcher and other matchers in our study (COTS1 and

MCC SDK), but they are not reported here because the fusion

E. Fusion of Matchers performance with COTS2 was consistently better than the

We noticed that the two most accurate matchers (the pierformance of COTS1 and of MCC SDK. We also performed
posed and COTS2) perform differently on different latentsank-level fusion using the highest rank and Borda Count
meaning they are complementary to each other. This suggésgfhods [44]. However, since score-level fusion showed a
that a fusion of these two matchers would result in a betteetter performance, we only report here results for soeveH
performance. We performed a score-level fusion of these tision.
matchers. The scores from COTS2 matcher were normalized to
the rangel0, 1] for each latent (local min-max normalization)r, Effect of Fingerprint Quality

Identification Rate (%)
JEr-N
& 3

o
=}

~
o

IS
RS}

10 15 20
Rank

195p: singular points, ROI: region of interest, RQM: ridge liyamap, N Se.‘:tion IV-A, we discuss hOW th_e qua"ty.Of the latent
RFM: ridge flow map, RWM: ridge wavelength map. fingerprints can be measured subjectively (assigned bwptlate



12

Fig. 15.

Latent prints correctly identified at ramkby the proposed matcher but ranked beltwby COTS2.

X

=

b) (5, 10)
&
(=
o s |
a of Ll fﬂﬁ =}
g T 'JE hh L
S =™ '"'E'EEIE =
-8 = = - l’.._ﬂ_u'ﬂ'ﬂ'ﬂ
B Z. =" & F =
o a @-E
F rF = e T o o
E'E_E' a € .G g _E-?
= lﬂ.ﬂgg_l:l a5 *a
a ety o o
5B &
a -a
(e) ®

Fig. 18. Latent print mate from NIST SD 27 identified at rahlafter score-level fusion of COTS2 and proposed matcher.fifsterow shows (a) a latent,
(b) its true mate, (c) rank-non-mate by the proposed matcher, and (d) ramlen-mate by COTS2 matcher. The second row shows (e) latemitiae,
(f-(h) latent minutiae (in blue) aligned by the proposedtehar to the rolled print minutiae shown in (b)-(d). In (l)(the numbers in parentheses indicate
the ranks that each rolled print was retrieved by the praposatcher and COTS2 matcher, respectively.

. . i TABLE Il
experts as in NIST SD27) and objectively (based on thézank-1 accuRACIES FOR VARIOUS SUBJECTIVE QUALITY LEVELS OF

number of minutiae available). Rarikaccuracies are shown LATENTS IN NIST SD27.
for each quality separately in Tables Il, lll, and IV for both

the latent databases. We can see that the matching perfecemar Qﬂ\?,“ty CO;::B(%) COEZ?, ) MCAE é%) "r°p5°§ %d 2
is highly correlated with the number of minutiae availaliie i [~Good 55.7 705 69.3 75.0
the latent prints. The performance of the proposed matcher | _Bad 36.5 36.5 318 47.1
consistently better over all qualities and for both the dases. Ugly 212 341 259 376

The quality of full prints also has a large impact on

the matching accuracy. In Fig. 9, the histograms of NFI€he quality of the rolled prints in WVU database is slightly
quality values for the corresponding rolled prints in esatiet worse than the quality of the rolled prints in NIST SD27. The
database are shown. According to the NFIQ quality measuMNF1Q quality measure is an integer value in the ramge 5,
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Fig. 19. Latent print mate from WVU LFD identified at rankafter score-level fusion of COTS2 and proposed matcher.fif$terow shows (a) a latent, (b)
its true mate, (c) rank- non-mate by the proposed matcher, and (d) ramien-mate by COTS2 matcher. The second row shows (e) latemnitia, (f)-(h)
latent minutiae (in blue) aligned by the proposed matchethéorolled print minutiae shown in (b)-(d). In (b)-(d), thembers in parentheses indicate the
ranks that each rolled print was retrieved by the proposetthmaand COTS2 matcher, respectively.

TABLE Il

RANK-1 ACCURACIES FOR VARIOUS OBJECTIVE QUALITY VALUES OF
LATENTS IN NIST SD27 ( ARGE, MEDIUM AND SMALL REFER TO THE
NUMBER OF MINUTIAE IN THE LATENT).

Quality | COTS1 (%) | COTS2 (%) | MCC (%) | Proposed (%)
All 38.0 47.3 42.6 53.5
Large 59.3 73.3 70.9 75.6
Medium 435 45.9 435 56.5
Small 11.5 23.0 13.8 28.7
TABLE IV

RANK-1 ACCURACIES FOR VARIOUS OBJECTIVE QUALITY VALUES OF
LATENTS IN WVU LFD (LARGE, MEDIUM AND SMALL REFER TO THE
NUMBER OF MINUTIAE IN THE LATENT).

Quality | COTS1 (%) | COTS2 (%) | MCC (%) | Proposed (%)
All 35.6 45.4 44.3 47.9
Large 63.5 73.1 74.0 74.5
Medium 28.8 45.0 375 45.0
Small 3.1 9.9 9.3 14.9
TABLE V

RANK-1 ACCURACIES FOR LATENTS GROUPED ACCORDING TOIFIQ
QUALITY VALUES OF CORRESPONDING ROLLED PRINTS INNIST SD27.

Quality COTS1 (%) | COTS2 (%) | MCC (%) | Proposed (%)
All 38.0 47.3 42.6 53.5
NFIQ < 3 42.1 54.9 49.4 60.4
NFIQ > 3 30.9 34.0 30.9 415
TABLE VI

RANK-1 ACCURACIES FOR LATENTS GROUPED ACCORDING TOIFIQ
QUALITY VALUES OF CORRESPONDING ROLLED PRINTS IWVU LFD.

Quality COTS1 (%) | COTS2 (%) | MCC (%) | Proposed (%)
All 35.6 45.4 44.3 47.9
NFIQ < 3 36.9 50.0 48.0 52.4
NFIQ > 3 34.4 411 40.6 433

wherel is the highest quality and is the worst quality. We
observed a significant difference in the matching perforcean
when the latents were divided into the following two quality
groups: (i) rolled prints are of good quality (NFIQ valuelg
and3), and (i) rolled prints are of poor quality (NFIQ values
of 4 and5). The difference in matching performance between
good NFIQ and poor NFIQ qualities for all matchers ranges
from 11 — 21% for NIST SD27, while it ranges frort — 9%

for WVU database (see Tables V and VI). As an example, the
rank-1 accuracy of COTS2 matcher on NIST SD275i69%
and34.0% for good and poor NFIQ quality, respectively.

G. Computational Cost

The implementation of our matching algorithm is in Matlab.
The speed of our matcher running in a PC with Intel Core
Quad CPU and Windows XP operating system is arouid
matches per second. Multi-thread capability was not iz
The majority of the running time7(0%) is spent matching the
local minutiae descriptors. In a C/C++ implementations thi
matching would be much faster than in Matlab because of the
nature of the MCC descriptors (binary). We did not spend time
optimizing the code for speed.

V. CONCLUSIONS ANDFUTURE WORK

We have presented a fingerprint matching algorithm de-
signed for matching latents to rolled/plain fingerprintsieth
is based on a descriptor-based Hough Transform alignment.
A comparison between the alignment performance of the
proposed algorithm and the well-known Generalized Hough
Transform shows the superior performance of the proposed
method. We also reported matching results for two different
latent fingerprint databases with a large background databa
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of around32K rolled prints. We compared the performanc¢o]
of the proposed matcher with three different state-of-the-
art fingerprint matchers. Experimental results show that t{121]
proposed algorithm performs better than the three fingetrpri
matchers used in the study across all image qualities. [#]
score-level fusion of the proposed matcher and one of the
commercial matchers (COTS2) shows a further boost in ttes]
matching performance.

We plan to include a texture-based descriptor to improve tf]zé']
matching accuracy especially when the overlap between the
latent and rolled prints is small. This was suggested in.[317°]
In our future work, following the recommendations in [26],
[15], we plan to include additional automatically extratte
features to improve the matching performance without an il
crease in manual labor (latent examiner’s markups). Algfou
the proposed matcher is more accurate than the two COTS
matchers, they are significantly faster. We also plan to ldgve [27]
an indexing algorithm to speed up latent matching.
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