
 

 
 

         
 

OSPERT 2007 
Workshop on Operating Systems Platforms for 

Embedded Real-Time applications 
 

Workshop Chairs: Scott Brandt and Kevin Elphinstone 
 
 
 
 
 
 

National ICT Australia 
223 Anzac Parade 

Kensington NSW 2052 Australia 
Technical Report July 2007 

 
ISSN 1833-9646 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2007 National ICT Australia. All rights reserved.  
The copyright of this collection is with National ICT Australia.  

The copyright of the individual articles remains with their authors.  
 
 
 
 
 

National ICT Australia is funded by the Australian Government's  
Department of Communications, Information Technology, and the  

Arts and the Australian Research Council through Backing Australia's  
Ability and the ICT Research Centre of Excellence programs. 

 
 
 
 
 
 
 



 
Table of Contents 

 
Foreword……………………………………………...........…………………………………………… 
 

 

Fitting Linux Device Drivers into an Analyzable Scheduling Framework 
  Theodore P. Baker 

1 

Experimental results of aperiodic fixed-priority preemptive policies in RT-Linux 
  Luis Burdalo, Agustin Espinosa, Andres Terrasa and Ana Garcia-Fornes 

10 

Feather-Trace: A Light-Weight Event Tracing Toolkit 
  Bjoern B. Brandenburg and James H. Anderson 

19 

A Deterministic Infrastructure for Real-Time Distributed Systems 
  Claudiu Farcas and Wolfgang Pree 

29 

An OSEK/VDX Implementation of Synchronous Reactive Semantics Preserving 
Communication Protocols 

  Guoqiang Wang, Marco Di Natale and Alberto Sangiovanni Vincentelli 

38 

Coordinated Allocation and Scheduling of Multiple Resources in Real-time 
Operating Systems 

  Kartik Gopalan and Kyoung-Don Kang 

48 

Accurate Run-Time Prediction of Performance Degradation under Frequency 
Scaling 

  David Snowdon, Godfrey Van Der Linden, Stefan Petters and Gernot Heiser 

58 

Run-time mechanisms for property preservation in real-time systems 
  Juan Zamorano, Juan Antonio de la Puente, Jérôme Hugues and Tulllio Vardanega 

65 

Lazy Scheduling and Direct Process Switch --- Merit or Myths? 
  Kevin Elphinstone, David Greenaway and Sergio Ruocco 

69 

 
 
 
 



 

 
Foreword 
 
Providing an operating system platform for time sensitive applications is a challenge. The Workshop on 
Operating Systems Platforms for Embedded Real-Time applications provides a forum for researchers in 
the area to present and discuss the many issues related to real-time operating systems, including topics 
such as scheduling, quality of service, component-based development, support for multiprocessors, real-
time Linux, and power management.     
 
The workshop attracted high quality submissions. The submitted papers were peer reviewed by an expert 
program committee. We wish to express our gratitude to the members of the program committee who 
contributed their time to provide high quality reviews, which eased the job of selecting a quality program. 
 
The resulting program provided the basis for many interactive and insightful discussions during the day, 
which was a valuable experience for all involved.  
 
The authors were given the opportunity to revise and re-submit final versions of their papers based on 
the reviews, and on the discussions that developed at the workshop. The papers contained herein are the 
final versions submitted after the workshop. 
 
 

Kevin Elphinstone and Scott Brandt 
Workshop Chairs 
 
Program Committee 
 
Neil Audsley, University of York, UK 
Scott Brandt, University of California, Santa Cruz, USA 
Kevin Elphinstone, University of New South Wales, Australia 
Gerhard Fohler, University of Kaiserslauten 
Michael Hohmuth, AMD Operating Systems Research Center, Germany 
Giuseppe Lipari, Scuola Superiore Sant'Anna, Italy 
Daniel Mossé, University of Pittsburgh, USA 
Stefan Petters, National ICT Australia 
Krithi Ramamritham, Indian Institute of Technology, Bombay 
Ismael Ripoll, Universidad Politecnica de Valencia, Spain 
Andrés Terrasa, Technical University of Valencia, Spain  



Fitting Linux Device Drivers into an Analyzable Scheduling
Framework

[Extended Abstract]

Theodore P. Baker, An-I Andy Wang, Mark J. Stanovich
∗

Florida State University Tallahassee, Florida 32306-4530
baker@cs.fsu.edu, awang@cs.fsu.edu, stanovic@cs.fsu.edu

ABSTRACT

API extensions and performance improvements to the Linux oper-
ating system now enable it to serve as a platform for a range of
embedded real-time applications, using fixed-priority preemptive
scheduling. Powerful techniques exist for analytical verification of
application timing constraints under this scheduling model. How-
ever, when the application is layered over an operating system the
operating system must be included in the analysis. In particular,
the computational workloads due to device drivers and other in-
ternal components of the operating system, and the ways they are
scheduled, need to match abstract workload models and schedul-
ing polices that are amenable to analysis. This paper assesses the
degree to which the effects of device drivers in Linux can now be
modeled adequately to admit fixed-priority preemptive schedula-
bility analysis, and what remains to be done to reach that goal.

Categories and Subject Descriptors

D.4.7 [Software]: Operating Systems—organization and design;
C.3.d [Computer Systems Organization]: Special-Purpose and
Application-Based Systems—real-time and embedded systems

General Terms

design, verification

Keywords

real-time, Linux, fixed-priority scheduling, preemptive, schedula-
bility, device driver

1. INTRODUCTION
A huge amount of theoretical research has been done on real-time
scheduling [26]. This theoretical foundation enables one to design
a system that can be guaranteed to meet its timing constraints, pro-
vided the implementation adheres closely enough to the abstract

∗This material is based upon work supported in part by the National
Science Foundation under Grant No. 0509131, and a DURIP grant
from the Army Research Office.

models of the theory. More specifically, applying the theory re-
quires that the system workload corresponds to models that have
been studied, and that the system schedules the workload accord-
ing to one of the algorithms whose performance on such workloads
has been analyzed. Where a real-time system is implemented on
top of an operating system, these requirements apply to all the OS
components as well as the user-level code.

In Linux and several other POSIX/Unix-compliant [31] operating
systems, progress has been made in providing real-time constructs
so that user-level programmers can write applications that adhere
to the theory of fixed-priority preemptive scheduling. Examples in-
clude preemptive priority-based real-time scheduling of user threads,
high-precision software timers, and turning off virtual memory man-
agement for certain memory regions. Progress also has been made
toward making the OS itself adhere more closely to analyzable
models, including major reductions in non-preemptible sections
within the kernel. Benchmark numbers on existing real-time Linux
distributions, such as Montavista [22] and Timesys [32], suggest
they now provide adequate capabilities to design and implement a
wide range of hard and firm deadline real-time systems at the ap-
plication level.

However, until recently, the role of device drivers in schedulability
has not received much attention. Every operating system includes
device drivers, which are responsible for low-level interactions with
I/O devices. For embedded real-time systems, device drivers can
be especially critical, in two ways. They can play a direct role
in meeting throughput requirements and end-to-end deadlines that
involve I/O, by the way in which they schedule I/O operations. De-
vice drivers can also play a role in meeting timing constraints for
computations that do not depend on I/O, through interference; that
is, by blocking or preempting more time-critical computations. So,
without well-behaved device drivers, the ability of a system to meet
timing constraints may be limited to cases where input and out-
put activities do not have deadlines or throughput constraints, and
where there are no “storms” of I/O activity. While these are known
facts, and while some techniques have been developed for manag-
ing I/O performance and device driver interference, integration of
that work with Linux is far from mature, and more work remains to
be done.

This paper reviews the remaining work to apply fixed-priority pre-
emptive scheduling theory to Linux applications, including the ef-
fects of device drivers. It argues that some engineering problems
remain to ensure that the interference effects of device drivers fit
analyzable models, and to manage device driver scheduling to meet
timing constraints, but that the scheduling theory seems adequate.
Much larger problems remain with the analysis of I/O scheduling,

1



including device-specific real-time scheduling policies, and end-to-
end schedulability analysis involving multiple resources.

2. FIXED-PRIORITY PREEMPTIVE

SCHEDULING THEORY
This section reviews some general scheduling theory concepts and
terms, and the basic workload models used in fixed-priority pre-
emptive scheduling theory.

The goal of real-time scheduling is to ensure that, if an action is
required to execute within a specified time interval it does so. The
theory is expressed in terms of jobs, execution times, release times,
and deadlines. In those terms, the goal is to ensure that each job
receives its required execution time within its scheduling window,
which is the interval between its release time and its deadline.

A job whose own execution time fits within its scheduling window
will complete execution within the window unless it is prevented by
interference from the execution of other jobs. Verifying that a job
will be scheduled within its window requires a way to bound the
interference, i.e, to bound the set of potentially competing jobs and
the amount of time that the scheduler will allow them to execute
within the window.

A task is an abstraction for a stream of jobs, which are ordinarily
required to be executed serially with jobs of the same task. Restric-
tions on the execution times and release times of jobs within each
task serve to bound the interference the task can contribute within
the scheduling window of another task.

The most analyzed task model is the periodic task, in which a task
τi is characterized by three parameters: the worst-case execution

time, ei, of its jobs; the period, pi, between release times; the rela-

tive deadline, di, which is the length of each job’s scheduling win-
dow. A relaxation of this model is the sporadic task, in which the
period is interpreted as just a lower bound on the interval between
release times. Much is known about the analysis of sets of periodic
and sporadic tasks under various scheduling policies.

Fixed-priority preemptive scheduling is very well understood. This
theory, including what is sometimes referred to as Generalized Rate
Monotonic Analysis (e.g., [15, 1]) and Response Time Analysis
(e.g., [3]) makes it possible to verify that a set of hard-deadline
tasks will always meet their deadlines, that soft-deadline tasks will
satisfy their average response time constraint, and that the execu-
tion time of a task may vary within a certain range without causing
a missed a deadline.

The foundation of this analysis is a simple interference bound, ob-
served by Liu and Layland [19], who showed that a collection of
sporadic or periodic tasks causes the maximum amount of inter-
ference for a job of lower priority when the job is released together
with jobs of all the higher priority tasks and each task releases a job
periodically thereafter. It follows that that the interference due to a
task τi in any interval of length∆ is bounded above by ei ⌈∆/pi⌉.

Though initially limited to sets of independent preemptible peri-
odic or sporadic tasks with fixed priorities, FP schedulability anal-
ysis has been extended to allow for blocking effects, due to locks
protecting shared resources and brief intervals of increased priority
or non-preemptibility due to other causes. In this broader context,
there are two ways one task can interfere with another, namely pre-

emption interference, based on having higher priority, and blocking

interference, based on holding a non-preemptible resource that the

other task must acquire before it can continue execution.

Fixed-priority preemptive scheduling analysis also has been ex-
tended to arbitrary (aperiodic) tasks by assuming that arriving jobs
are queued and executed according to an aperiodic server schedul-

ing policy. Several aperiodic server scheduling policies have been
devised and studied, including the polling server [27], the Priority
Exchange and Deferrable Server [29, 17], and the Sporadic Server
[28]. Without considering the details of specific aperiodic server
scheduling algorithms, one can see how they permit schedulabil-
ity analysis by recognizing that they all enforce the following two
principles:

1. Bandwidth limitation: There is an upper bound on the amount
of execution time a task may consume (at a given priority) in
a given length of time, analogous to the property of a periodic
task that it never demands more than ei time in each interval
of length pi. This permits computation of an upper bound on
the amount of preemption interference the aperiodic task can
cause for other tasks in an interval of any given length. For
the Polling Server and the Sporadic Server with budget ei the
periodic task interference bound applies.

2. Priority bandwidth guarantee: There is a lower bound on the
amount of execution time that a thread can rely on being al-
lowed to contend for at a given priority in a given length
of time, also analogous to a periodic task. This can gener-
ally be translated into a guaranteed average response time to
real-time events, and sometimes used to validate hard timing
constraints.

3. FIXED-PRIORITY PREEMPTIVE

SCHEDULABILITY IN LINUX
This section reviews Linux facilities that support the design and
implementation of real-time applications to fit the theory of fixed-
priority scheduling, and discusses how well the implementation
matches the theory.

Based on the extensive body of knowledge about fixed-priority pre-
emptive scheduling, POSIX/Unix [31] operating systems standards
adopted support for scheduling threads at fixed priority (SCHED_-

FIFO and SCHED_RR) and via a variation on the Sporadic Server
policy (SCHED_SPORADIC). Several off-the-shelf operating sys-
tems provide support for these policies. Linux currently provides
support for the SCHED_FIFO and SCHED_RR policies. So far,
support for the SCHED_SPORADIC policy has only been reported
in experiments [18], but it will probably eventually appear in Linux
distributions.

Application of fixed-priority preemptive scheduling theory in the
context of an OS that has no job or task abstractions requires trans-
lation between models. The POSIX/Unix API is expressed in terms
of threads. A thread is a subprogram that may continue execution
indefinitely, alternating between states of contention for execution
and self-suspension. To apply the job and task model to a system
composed of threads, one needs to treat each point at which a thread
suspends itself (e.g., to wait for a timed event or completion of an
input or output operation) as the end of a job, and each point at
which a thread wakes up from a suspension as the beginning of a
new job.

Since the thread model does not constrain the intervals between job
releases or the worst-case execution times between suspensions,

2



systems programmed with threads present problems for schedula-
bility analysis unless some constraints are imposed on thread con-
trol flows and/or scheduling policies. Adequate constraints are en-
forced by the operating system in the case of the SCHED_SPOR-

ADIC policy, but guaranteeing that the threads scheduled by the
SCHED_RR and SCHED_FIFO policies adhere to an analyzable
release time and worst-case execution time model depends on pro-
grammer discipline.

Threads that perform input and output operations require additional
consideration. If a thread makes blocking I/O requests, the inter-
vals between job release times will depend on both the raw response
time of the I/O device and how the system schedules it. For reasons
explained in Section 8, the analysis of I/O scheduling, especially in
combination with CPU scheduling, is much more difficult than the
analysis of CPU scheduling, and is generally beyond the scope of
fixed-priority preemptive scheduling theory. A way to work around
this limitation is to move I/O out of time-critical threads, so that the
CPU and I/O scheduling problems can be modeled and analyzed
independently. In Linux, implicit I/O operations due to page fault
activity can be avoided in time-critical threads by usingmlock() and
mlockall() to lock virtual memory pages accessed by those threads
into physical memory. Explicit I/O operations can be moved out by
buffering I/O data and either using asynchronous I/O requests, like
aio_read(), or delegating the I/O to a separately scheduled server
thread. Points at which a time-critical thread requires an I/O op-
eration to be completed are deadlines for the I/O scheduler, to be
analyzed separately. For example, consider a periodic thread that
requires input and produces output, both to the same disk storage
device. The input might be requested in advance, with the next
task release time as deadline for the input operation, and the output
might be buffered, with a deadline for the output operation sev-
eral times longer than the task period. The scheduling problem is
reduced to scheduling three independent periodic tasks, one using
just the CPU, one doing disk reads, and one doing disk writes.

It is essential to bound blocking. Any work that is scheduled out-
side of the fixed-priority preemptive model is a potential source of
blocking interference. For analysis to be successful, intervals of
time over which a thread may prevent higher priority threads from
preempting must have bounded duration. In particular, it is essen-
tial to avoid situations where a high-priority thread can wait for a
mutex held by a low-priority thread, while a middle-priority thread
executes. Linux provides a way to accomplish this, using mutexes
with priority inheritance (PTHREAD_PRIO_INHERIT).

So far, it appears that the theory of fixed-priority preemptive schedul-
ing can be applied to real-time systems that make use of the POSIX/-
Unix thread scheduling policies under an operating system like
Linux, provided the user designs the application to fit the mod-
els on which the theory is based. The set of real-time (highest)
priority threads must be known. Each of them must either use
SCHED_SPORADIC to limit its maximum high-priority computa-
tional demand or use SCHED_FIFO or SCHED_RR and be verified
to fit a well-behaved workload model such as the periodic or spo-
radic task. In addition, attention must be paid to other details, such
as bounding the length of critical sections, and determining bounds
on worst-case execution times. All this may be difficult, but it is
possible in principle since all of the code is under the user’s con-
trol.

However, one must also take into account the code of the operating
system, which is not directly visible or controllable by a user but
may interfere with the schedulability. The OS must fit the models

and constraints of the fixed-priority preemptive scheduling theory.
Moreover, it is not enough that the OS admit analysis if the anal-
ysis does not eventually lead to an application that meets its tim-
ing requirements. The OS must admit analysis that is not overly
pessimistic, and it must permit an application designer to actively
manage priorities and workloads, within the OS as well as at the
application level, to meet the timing requirements.

Of course Linux was not originally designed with these goals in
mind, and it has since grown so large and complicated that the
notion of attempting major architectural changes is daunting. For
that reason, some individuals have given up on the idea of using a
general-purpose OS like Linux directly as a platform for hard real-
time applications, and developed a variety of layered schemes that
provide greater control over timing (for example, RTLinux [4, 33],
Linux/RK [23], RTAI [6], Hijack [24]). However, at the same time,
others have worked to improve the real-time support of the Linux
kernel itself (for example, [11, 12].

Probably the biggest improvement has been in bounding blocking
effects due to critical sections within the OS. Ingo Molnar [21] in-
troduced a set of high-preemptibility kernel patches, which greatly
reduced the average blocking time due to kernel activities. Deriving
an exact analytical upper bound for worst case blocking still does
not seem practical, but an empirical bound can be obtained by mea-
suring the release-time jitter of a periodic thread with the top real-
time priority, over a long time and a variety of system loads. Such
experiments for recent Linux releases with real-time patches show
that blocking interference appears to be bounded [30]. However,
in the absence of enforcement, through static or run-time checks, it
is possible that a badly written system component could disable
preemption for a longer time than observed in the experiments.
Worse, unbounded blocking could occur through locking mecha-
nisms, such as Linux kernel semaphores, that neither disable nor
implement priority inheritance. Nevertheless, if the probability of
blocking exceeding a given empirical bound (and so causing vio-
lation of an application timing constraint) can be shown to be low
enough, that may be sufficient for many real-time applications.

Given that blocking interference due the OS is bounded, more or
less, the remaining challenge is to bound preemption interference.
After elimination of the easy cases, by scheduling the system dae-
mons below the real-time priority level, it seems the remaining
potential sources of interference by operating system components
with the scheduling of application threads are in the system’s de-
vice drivers.

4. DEVICE DRIVER INTERFERENCE
Device drivers include code that is scheduled in response to hard-
ware interrupts. For example, consider a user task that makes a
blocking call to the operating system to request input from a disk
drive via a DMA interface. Typically, the driver would execute in
three phases, more or less as follows:

1. The client calls the system, and the system calls the device
driver. The device driver initiates an input operation on the
device, and blocks the client thread until the input operation
completes. The device driver code is scheduled as part of the
client thread.

2. The device signals completion of the input operation, via an
interrupt. An interrupt handler installed by the device driver
performs various operations required by the device and in-
put method, such as acknowledging the interrupt and perhaps

3



copying data from a kernel buffer to a buffer in the client
thread’s address space, then unblocks the client thread. The
scheduling of the device driver code here is interrupt-driven.

3. Eventually, execution resumes in the client thread at the point
in the device driver code where the client thread blocked.
Control flows from the device driver to the kernel and from
the kernel back to the user code. While the interrupt from
the device plays a role in determining the release time of this
phase, the device driver code is scheduled as part of the client
thread.

Since the scheduling of interrupt-driven device driver code is out-
side the direct control of the application, the ability to analyze its
effect on the ability of an application to meet timing constraints
depends on the design decisions made in the device drivers and op-
erating system kernel.

In popular processor architectures, the hardware schedules inter-
rupt handlers at a priority higher than that of any thread scheduled
by the OS1. Safe programming practice may also require that an in-
terrupt handler executes non-preemptibly, with interrupts disabled.

In addition, many operating systems schedule interrupt-triggered
device-driver code via a two-level mechanism. The Level 1 work,
which is executed in interrupt context, is very short; in essence, it
just records the fact that the interrupt has occurred, and enqueues
the event on a list for later processing. The rest of the work is done
at Level 2, in software event handlers.

In Linux, the Level 2 handlers are called softirq handlers, though
they also go by other names, such “bottom halves” and “tasklets”,
and “timers”. The softirq handlers are executed non-preemptively
with respect to the thread scheduler and other softirqs on the same
CPU, but with hardware interrupts enabled, in the order they ap-
pear in a list. The details of when these handlers are scheduled
have changed as the Linux kernel has evolved. As of kernel 2.6.20
the responsibility is divided between two schedulers and priorities.
Softirq handlers are executed by do_softirq(), which is called typi-
cally on the return path from a hardware interrupt handler. If there
are still softirqs pending after a certain number of passes through
the softirq list (meaning interrupts are coming in fast enough to
keep preempting the softirq scheduler), do_softirq() returns. Re-
sponsibility for continuing execution of softirq handlers is left to
be performed at background priority in a scheduled thread (called
ksoftirqd), or the next time do_softirq() is called in response to an
interrupt.

Both hardware interrupts and softirq’s are intended to provide fast
driver response to a particular external event, but can cause prob-
lems for schedulability analysis (see Section 6). They can also
reduce overall system schedulability. Giving all interrupt-driven
work higher priority than all work done by threads introduces a
form of priority inversion, where an action that the theory says
should logically have higher priority, in order meet its deadline,
may be preempted by an action that logically should have lower
priority. Executing handlers without preemption introduces another

1There are systems where interrupts can be assigned hardware pri-
ority levels and the CPU interrupt level can be varied, so that hard-
ware interrupt levels can be interleaved with software priority lev-
els. For example, this is possible with the Motorola 68xxx family
of processors. It is not clear why this good idea has not been more
widely adopted. Perhaps it is one of the many cases of patents on
fairly obvious little ideas that impede real technological progress.

form of priority inversion, where a job that should have higher pri-
ority is not able to preempt a job that should have lower priority.
Scheduling handlers non-preemptively also introduces a more sub-
tle potential problem, giving up a property of preemptive schedul-
ing that Ha and Liu [10, 9] call predictability. This kind of pre-
dictability is a necessary basis for schedulability analysis based on
just worst-case execution times.

Effective scheduling and analysis requires that the use of mecha-
nisms that are exceptions to the overall system scheduling model,
such as hardware interrupts and Linux softirqs, be bounded in du-
ration and frequency so that the overall interference they cause
can be modeled. The OS can provide mechanisms for drivers to
move work into preemptively scheduled threads (see Section 6), but
without creative new architectural provisions for responsibility for
bounding interrupt handler execution, it must rely on the designer
of each device driver to make use of them.

Some interrupt-driven device driver execution presents special prob-
lems, due to I/O operations that are device-driven. For example,
compare the input operations of an Ethernet interface device with
disk input operations. An interrupt due to input of a message by
a network device can occur spontaneously, due to the nature of an
open system, where requests are generated from external sources.
In contrast, an interrupt due to completion of a disk operation nor-
mally corresponds to a prior request from the kernel or a user thread,
reflecting the characteristics of a closed system (overlooking the
case in which a network request results in disk activity); so, the fre-
quency of disk requests may be managed by the application, even
if the precise timing of the completion interrupts cannot be pre-
dicted. Other kinds of input sources that may have device-driven
interrupt-scheduled workloads include asynchronous serial ports,
and streaming audio and video devices.

Since some portion of the device-driven workload is executed at
high priority, it must be bounded before other work can be guaran-
teed any level of service. For some devices, such as a video device
with periodic input behavior, this is not difficult. For other devices,
such as an Ethernet interface, one seems to be forced to choose
between bounds based on raw hardware capacity, which are unre-
alistically high, and bounds based on expected worst-case behavior
of the communication partners, which cannot be determined by lo-
cal analysis and may be unreliable. However, the kernel can help
by providing aperiodic server scheduling mechanisms that can limit
the CPU time spent on some of the interrupt-driven work of a de-
vice, as described below in Section 6. Well-designed device drivers
may go further, by applying interrupt management techniques, as
described in Section 7.

5. DEVICE DRIVER DEMANDS
Device drivers may have timing constraints, such as to stay syn-
chronized with a device or to avoid losing data. For example, con-
sider a video frame grabber (digitizer) device attached to a cam-
era, which inputs video data continuously at a rate of 30 interlaced
frames per second. The kinds of timing constraints such a driver
might have would depend on the capabilities of the device.

If the frame-grabber requires programmed I/O – i.e., it is not ca-
pable of acting as a direct-memory-access (DMA) bus master –
the driver must use the CPU to read the device’s on-board frame
buffer. That will require very close synchronization. The device
driver must read raster lines of pixels from the device fast enough
to prevent loss of data when the device wraps around and over-
writes one frame with the next. A driver designed to capture a full

4



stream of video data from such a device may be viewed as a peri-
odic task with 1/30-second period. It would have a tight release-
time jitter requirement, and a deadline of perhaps half the period,
to avoid risk of losing data. If the device generates an interrupt at a
known point in each frame, execution of the driver can be driven by
that interrupt, but it may need to use another interrupt (via a kernel
timer abstraction) to schedule itself at a specified offset from the
interrupt. If the device does not generate a frame synchronization
interrupt, the driver would need to time its own execution, and the
period would probably need to be regulated by the driver to stay
in phase with the video source, using a phased-locked-loop control
model.

If the frame-grabber is capable of DMA operation, the timing con-
straints on the driver can be relaxed by providing the device with
multiple buffers. The driver may be able to program the device
so as to choose which events cause an interrupt to be generated,
such as when a new frame has been copied to memory, or when
the number of free buffers falls below a threshold. The driver may
then be modeled as two virtual tasks: a DMA task (implemented
in hardware), and a video driver task (implemented in software) to
manage the buffers and synchronization with the consumer of the
video data. The DMA task would be periodic and would slow down
the CPU by stealing memory cycles from other tasks. If the frame
completion interrupt is used, the video driver task can be viewed
as a periodic task. Its deadline and jitter requirements would be
much looser than the case with programmed I/O, since the addi-
tional buffers allow the deadline to be longer than the period. If the
threshold interrupt is used, it may be viewed as a sporadic task with
a response-time constraint equal to the amount if time it takes the
device to consume the number of buffers that is set as the threshold.

Device drivers can have a variety of internal timing constraints.
Some cannot be expressed in terms of deadlines, because they are
point-to-point within a computation that does not permit giving up
control of the CPU. For example, in interactions between the CPU
and device there may be a minimum delay for the device to process
information from the CPU before it is able to accept the next com-
mand. If the delay is shorter than the precision of the kernel timer
mechanism, achieving adequate throughput may require that the
driver busy-wait. There are also point-to-point constraints that dic-
tate non-preemptible execution, such as a maximum delay between
actions in a sequence of interactions, beyond which the device goes
into an error state that requires it to be re-initialized and the entire
sequence to be restarted.

In general, device driver internal timing constraints must be val-
idated along with other system timing constraints, and limit the
measures that might otherwise be taken to reduce the interference
that a device driver causes for other real-time tasks. However, some
internal timing constraints that are treated as hard in the design of
a driver might better be considered as soft in the context of a par-
ticular application. The usual device driver writer’s perspective is
to treat the needs of the device as top priority. In some cases that
is wrong. For example, a device driver writer might decide to dis-
able preemption rather than risk having to reset a device and lose
time or data. In the context of an application where the overall
function of the device is not time-critical, and some data loss is ac-
ceptable, this non-preemptible section might cause a more critical
timing constraint to be missed. It is a challenge to design device
drivers in a way that provides configuration mechanisms for an ap-
plication designer to participate in resolving such trade-offs.

The scheduling of device driver execution often imposes a link be-

tween the quality of I/O service provided by the driver and the
amount of interference the device driver causes for other tasks. It
may be blocking interference, such as where disabling preemption
within a driver prevents a recoverable device malfunction and loss
of data. It may also be preemption interference, at the level of
interrupt management and thread scheduling. That is, allowing a
device to generate more interrupts or giving higher priority to a
device driver thread may allow the device driver to respond to re-
quests for attention from a device, and that may result in less idle
time for the device, a shorter response time for the next I/O request
to be processed, a higher overall throughput rate, and a reduction
in lost data. The right balance in such trade-offs will depend on
the application context, so mechanisms are needed for applications
designers to configure the scheduling of device-driver execution.

6. DEFERRING WORK TO A THREAD
The less processing is done at hardware interrupt priority the shorter
the potential duration of CPU priority inversion, and the better ac-
tual system scheduling fits the theoretical ideal. The Linux softirq
mechanism might appear to help in this regard, by deferring some
of the interrupt-triggered work, but it actually hurts. In contrast to
the use of either pure interrupts (generally non-preemptible, top pri-
ority) or regularly scheduled (preemptible, lower priority) threads,
this kind of complicated mixed scheduling mechanism is very dif-
ficult to model and analyze. If one ignores the role of the ksoftirqd

server, softirqs might be modeled as a per-CPU thread that is sched-
uled at a fixed priority, lower than the hardware interrupt priority
and higher than any other thread. A problem is that the work-
load of this thread, which is generated by many different kernel
components for a great variety of purposes, does not conform to
any analyzable model. The demotion of softirq service to be per-
formed at background priority by ksoftirqd during heavy bursts of
activity helps to bound this load for non-real-time purposes, but it
is not done in a way that can be precisely modeled like the well-
understood real-time aperiodic server scheduling algorithms.

Clearly, better schedulability can be achieved by moving the work
of softirq handlers to one or more regularly scheduled threads. If
a device is only used by non-real-time components of the system,
the response time of the driver to interrupts will probably not be
critical. (This assumption is the basis of the RTLinux [4] prac-
tice of deferring all of the Linux interrupt handlers to background
processing.) In such cases, it is sufficient to schedule the device
server in the background, at low enough priority not to preempt
any of the threads that have timing constraints. An exception may
be where the device is a bottleneck, but not necessarily, since the
techniques described below for reducing interrupts and batching
device-driven work by the driver may also result in higher through-
put. Of course, if the I/O has throughput or deadline requirements,
background scheduling is not sufficient.

It might appear that the interrupt-driven work of device drivers
could be moved directly to their client threads, to be scheduled
at a priority consistent with the continuation processing after the
I/O operation. That does not work very well, for several reasons.
One is the technical difficulty of unblocking the client task from
inside an interrupt handler without unsafe race conditions. Another
reason is that there may be several threads of different priorities
sharing access to the same device, so in that case there may be I/O
priority inversion, as higher-priority threads with pending I/O re-
quests wait for their requests to be served until the interrupt-driven
work of a prior request is executed by a lower priority client. Re-
ducing CPU priority inversion due to interrupt-driven work with-

5



��������	
����

�

���������	
����

��������	
����

�������

�

���������	
����

�������

���	
���
�

�
�
�����
�

���	
���
�

�
�
�����
�


������������� ���

��������

Figure 1: Linux softirq handling schemes.

out creating such I/O priority inversion can be accomplished by
moving work from the interrupt handler to a regularly scheduled
server thread of appropriate priority, below interrupt level, but high
enough to provide the desired level of I/O service.

Real-time variants of the Linux kernel, including those of Timesys
and Montavista, have been modified to execute device-driver inter-
rupt handlers and softirq handlers only from server threads. This
is illustrated in Figure 1. For example, in the Timesys kernel,
one thread is dedicated to processing interrupts for message-receipt
events on the network device, and another to processing message-
send events. The priority of each server thread can be set to a level
that fits the priority the service it provides. If the priority is lower
than that of any real-time thread, preemption interference effects
due to softirq’s can be ignored in schedulability analysis.

The difference in driver interference effects between running the
device-driver server threads at low versus high priority are illus-
trated in Figure 2. These super-imposed histograms show the re-
sponse time distribution for a periodic thread, with period of 100
milliseconds and an execution time of 10 milliseconds, running
at high real-time priority. I/O load was provided by sending ping
packets to the system, at random intervals between 10 and 2000 mi-
croseconds, and compiling a Linux kernel at normal user priority.
The response times that form a spike between 10 and 10.5 mil-
liseconds are from experiments in which the device driver server
threads ran at lower priority than the periodic task. The response
times that form a hump between 11.5 and 12 milliseconds are from
experiments in which the device driver server threads ran at higher
priority.

The idea of using a single interrupt server thread serving multi-
ple interrupts by using a prioritized work queue appears in a 1990
patent by Youngblood [34]. The idea of assigning a thread of ap-
propriate priority to each interrupt appears in a patent by Kleiman
in 1996 [14]. The idea of allowing the priority of interrupt server
threads to float, at the maximum priority of the set of threads that
have devices open that use the corresponding interrupt, appears on
the LynxOS 1995 patent, by Bunnell [5]. Regardless of which of
these solutions is used, one can model the interrupt-triggered exe-
cution of a driver by two tasks, one that has short jobs at interrupt
priority, and another that has longer jobs at a lower priority.

Zhang andWest [35] proposed a variation of the LynxOS approach.
The essential difference is that instead of scheduling the softirq
server at the maximum priority of the threads that have an open

Figure 2: Response time distributions of a task with 100 msec. period

and 10 msec. execution time, with and without device driver interfer-

ence.

file description served by the device, they use the maximum pri-
ority of the client threads that currently seem to be awaiting ser-
vice by the device. The processing time for a particular softirq
can then be charged against the client thread that it serves. This
approach makes sense for device driver execution that can logi-
cally be charged to a client thread, but not all I/O has that property.
Moreover, it suffers a potential priority inversion problem that is
similar to the case if the bottom half were executed directly by the
client thread. Consider a system with three real time processes, at
three different priorities. Suppose the low priority process initiates
a request for a stream of data over the network device, and that
between packets received by the low priority process, the middle-
priority process (which does not use the network device) wakes
up and begins executing. The network-device server thread would
have too low priority to preempt the middle-priority process, and so
a backlog of received packets would build up in the DMA buffers.
Next, suppose the high priority process wakes up and during its ex-
ecution, attempts to read from the network device. This will finally
raise the device server’s priority to that of the high priority process.
However, since the network device driver handles packets in FIFO
order, the bottom half is forced to work through the backlog of the
low-priority process’s input before it gets to the packet destined for
the high priority process. This additional delay could be enough
to cause the high priority process to miss its deadline. That would
not happen if the low-priority packets were cleared out earlier, as if
the device bottom half had been able to preempt the middle-priority
task. The LynxOS technique of doing priority inheritance through
open() operations does not have this problem.

These ideas address the problems of finding the right priority for the
interrupt-driven work of the device driver, but they do not address
the problem of how to bound the interference due device-driven
I/O.

Facchinetti et al. [7] recently proposed a way of doing this, but
without addressing the priority problem. The system executes all
Level 2 interrupt service as one logical thread, at the highest sys-
tem priority. The thread implements an ad hoc aperiodic server
scheduling policy, based on budgeting service time at the granu-
larity of individual handler executions. This imposes a bound on
the interference the server can cause lower priority threads in any
scheduling window. Otherwise, the Level 2 handlers are executed
like normal Linux softirq handlers, without preemption by threads

6



or other Level 2 handlers, in interrupt context, ahead of the applica-
tion thread scheduler. Since all devices share the same budget and
share the same priority, the system does not distinguish different
priority levels of I/O, and handles all I/O in FIFO order. This can
have undesirable consequences. For example, suppose the network
interface is flooded with incoming packets, causing the Level 2 in-
terrupt server thread to exhaust its budget. If a high priority task
then requests disk I/O, completion of the disk I/O will be delayed
until the Level 2 interrupt sever budget is replenished, and the high
priority task may not meet its deadline.

Lewandowski et al. [18], proposed a similar approach, but based
on using multiple server threads at different priorities, scheduled
by an aperiodic server policy at the thread level. They suggest the
Sporadic Server policy, since that is already supported for user-
level threads by the POSIX/Unix real-time API. This has the virtue
of both limiting the interrupt-driven interference that softirqs can
cause, regardless of the rate at which the device attempts to push
input at the system, while allowing different devices to be served at
different priorities, and with different CPU bandwidths. It does not
require any modification to existing device drivers.

Lewandowski et al. also suggest a way of empirically estimating an
upper bound on device driver interference, which can be used di-
rectly in schedulability analysis, or used to calibrate the scheduling
parameters of a sporadic server.

7. MANAGING INTERRUPTS
Just deferring Level 2 interrupt handling may not be enough. With
device-driven input devices, such as a high-speed network inter-
face card, there are situations where the Level 1 hardware interrupt
handling alone could cause real-time tasks to miss deadlines. A de-
fense against such an interrupt storm is to disable interrupts. This
technique is the basis of the new Linux API for network devices
(NAPI) [20], which is implemented by at least one driver. Once an
interrupt is received from the device the interrupt is left disabled,
at the device level. The Level 2 processing loop, which moves data
from the DMA buffers to other buffers and passes them up the pro-
tocol stack, runs with the interrupt disabled. It is only re-enabled
when the server thread executing the Level 2 loop polls, discovers
it has no more work, and so suspends itself.

This mechanism was originally introduced to reduce so-called re-

ceive live-lock, where a system is so busy handling packet inter-
rupts that it has no time left to process the data, but it has proven to
have other benefits. By preventing unnecessary interrupts, it avoids
the context-switch overhead for some packets, reducing the net ex-
ecution time per packet, and so can sustain higher data rates. In
addition, when the Level 2 packet processing is done by a thread at
low priority level, if packets arrive faster than the server thread can
handle them the DMA buffers will fill up and the device will drop
packets until the thread has caught up.

The net effect is that interrupts are throttled. A job with higher
priority than the Level 2 receive-processing thread can never be
preempted by more than one interrupt from the network device.
Since the Level 1 interrupt handler is very short, the worst-case
interference for high priority tasks is not only bounded, but very
small.

The hybrid polling/interrupt technique used in NAPI can be gener-
alized to manage the rate of interrupts from other types of devices.
However, barring device malfunctions that cause a stuck interrupt,
it should only be needed for devices that are similar to network

devices in the sense of spontaneously initiating interrupts. Many
other classes of devices will only interrupt to indicate completion
of an operation requested earlier by a client, so the rate of interrupts
can be managed by a client, by managing the rate of requests.

As time goes on, hardware devices that are capable of generating
interrupts at a high rate may provide throttling capabilities directly.
That already appears to be the case with the Intel 8254x and 8257x
gigabit Ethernet controllers [13], which provide several choices
of operating modes in which hardware interrupts may be throttled
back to fit a sporadic task model.

Although interrupt throttling ameliorates the problem of interrupt
storms, and budgeting time for processing of Level 2 interrupt han-
dling bounds direct interference from the device driver for top pri-
ority threads, these methods only indirectly address (via dropped
messages) the broader problem of managing the amount of work
being accepted into the system. That is, even at acceptable levels
of hardware interrupt and softirq activity, some form of early ad-
mission control may be needed to throttle the workload of applica-
tion tasks and to prevent possible resource exhaustion (e.g., buffer
space) that might lead to subsequent scheduling interference. Of
course, such admission control requires CPU time also, and must
be taken into account in the analysis of interference.

8. I/O SCHEDULING EFFECTS
The discussion so far leaves out I/O scheduling, that is, determi-
nation of the order and times at which I/O requests are served by
each device. Some devices in real-time embedded systems – such
as primitive sensors and actuators – do not require I/O scheduling
and can perform operations immediately in response to a command
from a thread, with no scheduling and very predictable response
time. However, there are other I/O devices – such as mass stor-
age devices, network devices, and radars – need scheduling. These
are typically devices that need to be shared between threads, have
highly variable response times, and may logically perform opera-
tions in more than one order. The quality of such I/O scheduling
can affect the ability of an application to meet both response time
and throughput requirements.

Device drivers may be involved in doing I/O scheduling. They are
also affected by I/O scheduling, since the timing and order of I/O
operations partially determines the workload of the device driver.
Consider a blocking read operating to a disk. The time at which the
disk actually performs the operation depends on what other oper-
ations are queued for the disk, the order in which they are served,
and how long it takes to process each of them.

Schedulablility analysis for I/O is difficult because responsibility
for I/O scheduling is distributed among different implementation
layers. Device driver software may make some I/O scheduling de-
cisions, but the service order and response times seen at the level of
an application task may also be influenced by the device itself and
by higher-level system software. For example, while a disk device
driver may determine the order in which it passes on the I/O re-
quests it receives, the order in which it receives those requests may
be determined by higher-level operating system components, and
the order in which the requests it sends out are actually served may
be affected by the disk drive itself, by an intermediary controller,
a multi-device driver and possibly a logical volume manager in the
case of RAID systems, and by filesystem layout. The actual com-
pletion time of an I/O request is further complicated by the addi-
tional implicit requests for file system metadata associated with the
requested I/O. Critical but infrequent error recovery mechanisms

7



at various levels can also be triggered to perform journal recovery,
parity reconstruction, and bad sector forwarding. Full response-
time analysis for disk I/O requests will require consideration of the
net effect of all these levels. Similarly complex multi-layer inter-
actions are potentially involved in determining service order for
other important classes of devices, such as data communication in-
terfaces and radars.

While it may be possible to concentrate the I/O scheduling imple-
mentation at one level, there may be a penalty in reduced control
over scheduling, or increased overhead and reduced throughput.
These are potentially complex trade-offs that need to be resolved
for each type of device, and for each application.

Another aspect of I/O scheduling that makes it difficult to analyze
is non-preemptivity. Operations on most I/O devices cannot be in-
terrupted, once started. For example, a network interface device
would not typically provide the option of interrupting transmission
of one message in order start another, nor would that make sense,
given the high overhead that such preemption would incur. Simi-
larly, given the long time it takes to get a disk head into position to
access a given sector, it would not makes sense to preempt a disk
drive in the midst of an I/O operation. As mentioned above, one
consequence of non-preemptivity is that the scheduling effects of
execution time variation in cannot be bounded by just considering
the shortest and longest cases [10, 9].

The difficulty of even single-device analysis is exacerbated by the
fact that I/O times can be context-sensitive. For example, in the
case of a disk drive the time to access a given block depends on
the position of the disk head relative to the block location and the
content of the driver’s local cache. That, in turn, depends on what
operation was scheduled before.

Another important issue that impacts schedulability analysis in-
volving I/O response times is timing constraints that span multiple
jobs, involving several different processors and precedence con-
straints. For instance, a network video server might read video
frames from a frame grabber or a local disk, perform some compu-
tation on the video data (say trans-coding or frame skipping), and
transport the requested data across the network. In this example,
there is a precedence ordering among jobs on the different devices,
and each job depends upon the successful and timely completion of
a previous task in the sequence. In addition, to achieve a reasonable
perceptual quality, the entire sequence of tasks needs to be repeated
regularly.

I/O scheduling also can involve multiple conflicting quality–of-ser-
vice criteria. For example, priority-based scheduling of disk I/O
can reduce response time for a few high-priority requests, but at
the cost of increased total processing time (for head movement and
rotational latency), which means reduced throughput. Algorithms
that provide good average throughput provide very hard-to-predict
response times. So, if a system has tasks with both response time
and throughput requirements, perhaps in the same task, it is not
clear what to do.

For the reasons given above and others, when I/O scheduling is
considered together with scheduling of the CPU and possibly other
devices, the analysis problem becomes extremely difficult. The the-
ory, so far, has very little useful to say about these problems. Some
research has been done on limited aspects of the end-to-end I/O
scheduling problem (e.g., [2, 16, 25, 8, 36]), from the perspec-
tive of either resource allocation to support QoS or co-ordinated

scheduling of specific set of resources. However, a comprehensive
theory of multi-resource allocation and schedulability analysis does
not yet seem to exist.

9. CONCLUSION
The state of practice in Linux seems close to providing adequate
support for constructing a variety of real-time systems to meet tim-
ing constraints by design, and verifying them, based on preemptive
scheduling theory. However, there remains some work to be done
at the level of device drivers.

One of the advantages of a mature, widely used, general-purpose
operating system like Linux is that it already has a large collection
of device drivers. There are good reasons for trying to reuse some
of these drivers in a real-time application. Techniques exist that
permit modeling the role of some existing device drivers in system
schedulability, including ways of bounding the interference real-
time application tasks may experience due to the Level 2 interrupt
processing, with only minor changes to the way softirq handing
is scheduled by the kernel. With further change, in the design of
device drivers, the interference due to Level 1 interrupt processing
may also be bounded.

These solutions do require tailoring of how Level 2 interrupt han-
dling is scheduled and how Level 1 interrupts are throttled, to fit
the needs of an application. That currently can only be done by
modification of the kernel and/or device driver code. It is possi-
ble in an open-source system, but is still an obstacle to widespread
use. For the adoption of such techniques with proprietary operating
systems, it is a more significant roadblock.

This situation could be improved by expanding the device driver
and user programming interfaces, to provide more visibility and
control over device driver scheduling and interrupt handling at the
application level.

It may also be advantageous to provide enforcement mechanisms
to improve the real-time quality of device drivers, which are de-
veloped independently by a large number of individuals, who are
not all fully aware of what effects their device driver might have on
the schedulability of other system components, or the relative im-
portance of driver-internal timing constraints as compared to other
requirements in a particular real-time application.

Problems that are more serious exist with regard to achieving and
verifying end-to-end timing requirements that span I/O operations,
which need to be solved better in theory before one can talk seri-
ously about how to support the theory better in an operating system.
A reasonable way to make progress is to look at restricted cases,
such as computations involving just the CPU and one I/O resource,
either modeling existing Linux I/O scheduling policies for the de-
vice or modifying the device scheduling policy to make real-time
performance more analyzable.

REFERENCES

[1] Advanced Informatics. SCAN-schedulability analysis tool.
http://www.spacetools.com/tools4/space/

272.htm.
[2] D. P. Anderson. Meta-scheduling for distributed continuous

media. Technical Report CSD-90-599, ECE Department,
University of California at Berkeley, Dec. 1990.

[3] N. C. Audsley, A. Burns, M. Richardson, and A. J. Wellings.
Hard real-time scheduling: the deadline monotonic

8



approach. In Proc. 8th IEEE Workshop on Real-Time

Operating Systems and Software, pages 127–132, Atlanta,
GA, USA, 1991.

[4] M. Barabanov. A Linux-based real-time operating system.
Master’s thesis, New Mexico Instituted of Techology,
Albuquerque, NM, June 1997.

[5] M. Bunnell. Operating system architecture using multiple
priority light weight kernel task based interrupt handling, u.
s. patent 5,469,572. http://www.upsto.gov, 1995.

[6] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes,
S. Hughes, and K. Yaghmour. DIAPM-RTAI position paper,
nov 2000. In RTSS 2000 Real-Time Operating Systems

Workshop. IEEE Computer Society, 2000.
[7] T. Facchinetti, G. Buttazzo, M. Marinoni, and G. Guidi.

Non-preemptive interrupt scheduling for safe reuse of legacy
drivers in real-time systems. In Proc. 17th IEEE Euromicro

Conference on Real-Time Systems, Palma de Mallorca, July
2005.

[8] K. Gopalan and T. Chiueh. Multi-resource allocation and
scheduling for periodic soft real-time applications. In Proc.

Multimedia Computing and Networking, San Jose, CA,
USA, Jan. 2002.

[9] R. Ha. Validating timing constraints in multiprocessor and

distributed systems. PhD thesis, University of Illinois, Dept.
of Computer Science, Urbana-Champaign, IL, 1995.

[10] R. Ha and J. W. S. Liu. Validating timing constraints in
multiprocessor and distributed real-time systems. In Proc.

14th IEEE International Conf. Distributed Computing

Systems, pages 162–171, Poznan, Poland, June 1994. IEEE
Computer Society.

[11] A. C. Heursch, D. Grambow, A. Hosrtkotte, and H. Rzehak.
Steps towards a fully preemptable Linux kernel. In Proc.

27th IFAC/IFIP/IEEE Workshop on Real-Time

Programming, Lagow, Poland, May 2003.
[12] A. C. Heursch, D. Grambow, D. Roedel, and H. Rzehak.

Time-critical tasks in Linux 2.6: Concepts to increase the
preemptability of the Linux kernel. In Linux Automation

Konferenz, Germany, Mar. 2004. University of Hanover.
[13] Intel Corporation. Interrupt moderation using intel gigabit

ethernet controllers (AP-450). Application Note, Intel
Corporation, Apr. 2007.

[14] S. Kleiman. Apparatus and method for interrupt handling in
a multi-threaded operating system kernel. U. S. Patent
5,515,538, 1996.

[15] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour. A Practioner’s Handbook for Real Time Analysis:

Guide to Rate Monotonic Analysis for Real Time Systems.
Kluwer, Boston-Dordrecht-London, 1993.

[16] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and
J. Hansen. A scalable solution to the multi-resource QoS
problem. In Proc. IEEE Real-Time Systems Symposium,
Phoenix, AZ, USA, Dec. 1999.

[17] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced
aperiodic responsiveness in a hard real-time environment. In
Proc. 8th IEEE Real-Time Systems Symposium, pages
261–270, 1987.

[18] M. Lewandowski, M. Stanovich, T. Baker, K. Gopalan, and
A. Wang. Modeling device driver effects in real-time
schedulability analysis: Study of a network driver. In Proc.

13th IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 57–68, Bellevue, WA, Apr.
2007.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal

of the ACM, 20(1):46–61, Jan. 1973.
[20] J. Mogul and K. Ramakrishnan. Eliminating receive livelock

in an interrupt-driven kernel. ACM Transactions on

Computer Systems, 15(3):217–252, 1997.
[21] I. Molnar. Preemptive kernel patches.

http://people.redhat.com/mingo/.
[22] Montavista, Inc. Montavista Linux.

http://www.mvista.com.
[23] S. Oikawa and R. Rajkumar. Linux/RK: A portable resource

kernel in linux. In Real-Time Systems Symposium

Work-in-Progress, Dec. 1998.
[24] G. Palmer and R. West. Hijack: Taking control of cots

systems for real-time user-level services. In Proc. 13th IEEE

Real-Time and Embedded Technology and Applications

Symposium, pages 133–146, Bellevue, Washington, Apr.
2007. IEEE Computer Society Press.

[25] S. Saewong and R. Rajkumar. Cooperative scheduling of
multiple resources. In Proc. IEEE Real-Time Systems

Symposium, Phoenix, AZ, USA, Dec. 1999.
[26] L. Sha, T. Abdelzaher, K. E. Årzén, A. Cervin, T. P. Baker,

A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K.
Mok. Real time scheduling theory: A historical perspective.
Real-Time Systems, 28(2–3):101–155, Nov. 2004.

[27] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some
practical problems in prioritizing preemptive scheduling. In
Proc. 7th IEEE Real-Time Sytems Symposium, 1986.

[28] B. Sprunt, L. Sha, and L. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Real-Time Systems,
1(1):27–60, 1989.

[29] J. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in
real-time environments. IEEE Trans. Computers,
44(1):73–91, Jan. 1995.

[30] G. H. Thaker. Real-time OS periodic tests.
http://www.atl.external.lmco.com/

projects/QoS/RTOS\_html/periodic.html.
[31] The Open Group. The single Unix specification, version 3.

http://www.unix.org/version3/.
[32] TimeSys, Inc. Embedded Linux development products.

http://www.timesys.com.
[33] V. Yodaiken. The RTLinux manifesto. In Proc. 5th Linux

Expo, Raleigh, NC, 1999.
[34] L. Youngblood. Interrupt driven prioritized queue. U. S.

Patent 4,980,820, 1990.
[35] Y. Zhang and R. West. Process-aware interrupt scheduling

and accounting. In Proc. 27th Real Time Systems

Symposium, Rio de Janeiro, Brazil, Dec. 2006.
[36] Y. Zhou and H. Sethu. On achieving fairness in the joint

allocation of processing and bandwidth resources: Principles
and algorithms. Technical Report DU-CS-03-02, Drexel
University, 2003.

9



Experimental results of aperiodic fixed-priority
preemptive policies in RT-Linux

L. Búrdalo, A. Espinosa, A. Terrasa and A. García-Fornes.
{lburdalo,aespinos,aterrasa,agarcia}@dsic.upv.es

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Valencia, Spain

ABSTRACT
The aim of this work is to complement the previous
work on scheduling soft tasks in hard real-time sys-
tems based on fixed-priority preemptive scheduling.
This work provides an experimental view of the most
representative policies in the literature, measuring both
their performance and overhead. The performance of
aperiodic scheduling policies has been traditionally eval-
uated by means of simulations that compute the aver-
age response times of soft tasks. In our study, the re-
sponse times of soft tasks is measured for each schedul-
ing policy in several different task sets running on top
of a real-time operating system (RT-Linux). The over-
head of each execution is also measured in order to de-
termine how the overhead can affect the performance
of such policies.

1. INTRODUCTION AND PURPOSE
Aperiodic fixed-priority preemptive scheduling poli-
cies have been studied and compared by many authors,
and their results have already shown considerable im-
provements in the response times of soft tasks; how-
ever, few of them have been incorporated to real appli-
cations. For instance, POSIX [3] only supports one of
the existing server-based scheduling policies (the Spo-
radic Server), and does not support any of the slack-
stealing-based or dual-priorities-based scheduling policies.

Previous works on scheduling policies are mainly based
on simulation because real systems are more difficult
to study. The use of simulations has many advantages.
First of all, implementation of scheduling policies is
more affordable in simulation tools than inside the ker-
nel of a RTOS. Second, simulation makes it possible to
easily generate a high number of task sets where sys-
tem parameters like task periods or execution times
can follow any probabilistic distribution. Finally, re-
sults can be extracted directly without having a tracing
facility integrated in the RTOS kernel.

Nevertheless, simulation tools also have some draw-
backs. It is not easy to model or simulate the time that
an operating system needs to decide which task to ex-
ecute next, and this time is different in each specific
scheduling policy. For this reason, most simulation-
based studies do not take this extra overhead into ac-
count or simplify it too much (in several studies, con-

text switches are considered cost-free). On the other
hand, it is very common to generate the soft workload
by using unit load. This implies that a system performs
exactly the same when each one of 10 tasks must be ex-
ecuted during 1 time unit each (10 units) than when 1
task must be executed during 10 time units.

The overhead has been considered differently in previ-
ous studies. Some studies include the overhead in the
feasibility analysis of the scheduling policy, others esti-
mate the overhead by means of the number of context
switches introduced by the policy, and still others do
not consider the overhead in any way. Unfortunately,
in some scheduling policies, overhead is not negligible
at all, specially when the system has to face high loads
or a scheduling policy tends to be highly preemptive.
As a result, it is difficult to apply the conclusions from
previous studies to real applications.

The aim of this work is to complement the previous
work on scheduling soft tasks in hard real-time sys-
tems based on fixed-priority preemptive scheduling.
This work provides an experimental view of the most
representative policies in the literature, measuring both
their performance and overhead. The performance of
aperiodic scheduling policies has been traditionally eval-
uated by means of the average response times of soft
tasks. The better the system performs, the lower the
response times of soft tasks are, always taking into ac-
count that hard deadlines cannot be missed. In our
study, the response times of soft tasks are measured
for each scheduling policy in several different task sets
running on top of a real-time operating system (RT-
Linux). The overhead of each execution is also mea-
sured in order to determine how the overhead can af-
fect the performance of such policies.

This paper is structured as follows: Section 2 presents
some previous studies about soft task scheduling poli-
cies and their main conclusions. Section 3 briefly de-
scribes our framework for measuring the performance
and the overhead of real-time applications over the RT-
Linux RTOS. Section 4 presents the design of the exper-
iments carried out for this work and presents a discus-
sion of the results of these experiments. Finally, Section
5 presents the main conclusions of the paper, as well as
some future lines of work.

10



2. PREVIOUS STUDIES
Although the number of scheduling policies and the
policies themselves differ in each particular study and
the results from the different studies are difficult to
compare, their main conclusions can be summarized.

Server-based policies improve the results obtained by
scheduling soft tasks in background when the system
load is not too high; however, as the system load grows,
these policies tend to perform like background schedul-
ing. The Deferrable Server (DS) and the Sporadic Server
(SS) are the most popular of this famiy of policies. They
mainly differ in the way the capacity of the server is re-
plenished.

Previous works on these two policies do not come to
the same conclusions. Studies in [14, 17, 4, 19] con-
clude that SS is better than DS because it allows larger
capacities and gets higher utilization values, while [15]
shows larger response times for SS than for DS. Finally,
[6] concludes that both policies have similar response
times and can get similar utilization values.

The number of context switches is studied in [15] as
an approximation of the overhead of the different poli-
cies. Server-based policies produce a much higher num-
ber of context switches than the other scheduling poli-
cies considered in the study.

Slack-stealing-based policies are taken into account in
different studies, although most of them are not suit-
able for a real system due to the high overhead that
these policies introduce in the system. However, since
[11] proved that the Dynamic Slack Stealing (DSS) policy
was optimal (it minimizes the response times of soft
tasks without missing any hard deadlines), it has been
used as a reference to compare different policies. The
only scheduling policy in this family which can be in-
cluded in a real time system is Dynamic Approximate
Slack Stealing (DASS), which is studied in [10] to show
a performance very near to DSS until the total load in
the system (hard+soft+overhead) gets to 90%, at which
point the system performance starts to degrade. Re-
sults in [12] show that DASS is very near to DSS in all
cases, although overhead is considered to be negligi-
ble.

The Dual Priorities scheduling policy (DP) is compared
to other scheduling policies in [8, 9, 12, 13]. The results
are very similar in all the studies: DP gets lower re-
sponse times than background scheduling and server-
based policies. In fact, DP performs in a similar way to
DASS when the system load is less than 90%, although
response times are better for slack-stealing-based poli-
cies. [13] also shows that DP performs better than back-
ground scheduling if and only if soft load is served in
FIFO order.

In general, all of the authors conclude that specific schedul-
ing policies obtain better results than background schedul-
ing (average response times of soft tasks are smaller),
although almost none of them take the extra overhead
into account and all of them point out that, when im-

plemented over a real system, DASS involves a much
higher overhead than server-based or DP policies.

3. FRAMEWORK AND RTOS
This study has been carried out using our framework
[7] for the automatic generation of workloads and au-
tomatic processing of the results. This framework has
been extended in order to incorporate the DASS schedul-
ing policy and the effects of gain time in some of the
scheduling policies. Gain time is the amount of time
which, even though it is included in the worst case ex-
ecution time of a task, it is not used by that task at run
time in any of the activations of the task.

The framework was built around the RTOS RT-Linux
GPL [2, 1, 5], version 3-2-pre1. This framework uses
RTL-Posix-Trace [20], which is a package that adds most
of the tracing support defined in the POSIX Trace stan-
dard to RT-Linux. RTL-Posix-Trace provides the RTOS
kernel with a standard mechanism and a set of trace
events such as scheduler interruptions, context switches,
creation, destruction, activation and suspension of tasks.
which allow the analysis of the execution of an applica-
tion by processing the generated trace-events log file.
RTL-Posix-Trace is described in more detail in [20] and
[18].

The framework receives the specification of the experi-
ment to be carried out as input, including some defini-
tion parameters such as the number of hard and soft
tasks in the system, the percentage of hard and soft
load in the system, and the scheduling policies. These
parameters of the experiment can either be fixed/random
values or a range of values, so that it is possible to in-
clude in the experiment all the different combinations
of the parameter values.

In this work, for each possible combination of the pa-
rameters, a synthetic application is generated. In this ap-
plication, hard tasks consume between 95% and 100%
of their worst case execution time and the set of hard
tasks is schedulable.

Each synthetic application is compiled and executed over
RT-Linux using each of the scheduling policies. When
launched, these synthetic applications start with an ini-
tial critical instant and then continue running until the
end of the task set hyperperiod. As a consequence, all
the scheduling policies can be studied on equal terms.

After their execution, the corresponding trace-events
log files are processed to calculate a set of metrics which
are graphically represented as a function of the dif-
ferent parameters of the experiment (for instance, re-
sponse times of tasks or average time spent by the sched-
uler in each interruption).

4. EXPERIMENTS
Two different experiments have been carried out. The
aim of the first one is to compare the specified schedul-
ing policies with each other and to study how much
and in what way the different parameters of a real time

11



system can affect its performance and overhead de-
pending on the scheduling policy being used. The aim
of the second experiment is to study how gain time sup-
port can improve the system behaviour. All the exper-
iments were run on a Pentium III 700Mhz with 512Mb
of RAM.

Figure 1 shows how each scheduling policy is repre-
sented in graphs.

Figure 1: Representation of each scheduling policy

4.1 Scheduling policies
In order to make this study as general as possible, the
most representative scheduling policies specific to sys-
tems with hard and soft load have been taken into ac-
count: Deferrable Server, Sporadic Server, Dynamic Ap-
proximate Slack Stealing, Dual Priorities, and background
scheduling.

Deferrable Server [17] and Sporadic Server [4] have been
considered since they are the most representative of
all server-based scheduling policies. The Dynamic Ap-
proximate Slack Stealing policy [10] is the only slack-
stealing-based policy that can be implemented and in-
corporated to a RTOS, since temporal and spatial over-
heads of exact and static techniques, respectively, make
these policies impracticable (more information can be
found in [16] and [11]). The Dual Priorities, which is
described in [9], has also been included in this study.

When using Dynamic Approximate Slack Stealing or Dual
Priorities, hard tasks can take advantage of the situa-
tion when a higher priority spends less than its worst
case execution time. In this paper, this is called propa-
gated gain time. When using Dual Priorities, any hard
task that has started executing at its low priority level
can delay its promotion time. In this paper, this is called
self gain time.

To consider the extra overhead due to gain time sup-
port, both Dynamic Approximate Slack Stealing and Dual
Priorities are considered with and without giving sup-
port to gain time.

4.2 Design: Experiment 1
The parameters of this experiment are the following:

• Number of hard tasks: 4, 8, 12 and 16

• Number of soft tasks: 1

• Percentage of hard load: 20%, 40% and 60%

• Percentage of soft load: 10%, 20%, 30%, 40%, 50%
and 60%

When using server-based policies, the soft task is al-
ways executed at the highest priority level until the
server runs out of capacity.

The number of possible combinations of these values is
72. For each possible combination 5 different task sets
were generated, making a total of 360 different syn-
thetic applications that were run once with each schedul-
ing policy.

In order to observe differences in the overhead, Dy-
namic Approximate Slack stealing and Dual Priorities were
considered with and without gain support.

4.3 Results: Experiment 1
This section shows the results of the entire experiment.
The performance of each scheduling policy is measured
by the average response times of the soft tasks; and
the RTOS overhead is measured by the number of con-
text switches, the average amount of time spent by the
RTOS during an interruption of the scheduler, and the
total amount of time spent by the scheduler during the
execution of each application (from the initial critical
instant to the first hyperperiod).

For each synthetic application, the values of the metrics
obtained using each scheduling policy are divided by
the value obtained using background scheduling. The
resulting ratio values are used to calculate an average
value which will represent that particular combination
of values of the experiment parameters.

By doing so, results of different synthetic applications or
even different experiments are comparable, and it is
possible to group them in a single graph as a function
of any of the experiment parameters. Thus, differences
between each policy and background scheduling and
differences among the policies themselves are clearer.

4.3.1 Soft task response times
Figures 2, 3 and 4 show the average response times of
the soft tasks as a function of the percentage of hard
load, number of hard tasks, and percentage of soft load,
respectively.

As can be observed, all the scheduling policies have
lower response times than background scheduling in
all cases, since the ratio values are always lower than
1.

Differences between all the scheduling policies and back-
ground scheduling become higher as the percentage
of hard load becomes higher (Figure 2), which means
that, as this percentage grows, all the scheduling poli-
cies behave better than background scheduling. It can
also be observed that DS and SS separate when hard
load values become high. The reason for that is that
the capacity of DS is much smaller than the capacity of

12



SS, due to the fact that the feasibility test of DS is more
restrictive than the one of SS.

On the other hand, differences between each schedul-
ing policy and background scheduling tend to be smaller
as the number of hard tasks (Figure 3) and the percent-
age of soft load (Figure 4) become higher.

It can also be observed that server-based policies al-
ways obtain higher response times than non-server-
based policies and, although SS provides lower response
times for the soft task, both server-based policies are
very similar.

The results for DASS and DP are also very similar; how-
ever, when the number of hard tasks or the percentage
of hard or soft load gets high, response times are better
for DP.

Since hard tasks were generated so that they requested
almost all their worst case execution time in each activa-
tion, very little gain time appears at run time. This ex-
plains the lack of significant improvement when sup-
porting gain time.

These results confirm what [6] concludes since both
DS and SS obtain similar response times; however, re-
sponse times obtained with SS are lower than for DS in
all cases.

DP also performs better than expected from the results
in [8, 9, 12]. Although DASS and DP get similar re-
sponse times (even more similar than in previous stud-
ies), as the system load grows, DP starts outperform-
ing DASS.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 20  25  30  35  40  45  50  55  60

R
at

io

Hard Load Utilization

SOFT TASKS REPSONSE TIME RESPECT BGND POLICY  (Hard Load)

Figure 2: Average response time of soft tasks as a function of the

hard load in the system. Relative values.

4.3.2 Number of context switches
Figures 5, 6 and 7 show the number of context switches
as a function of the the percentage of hard load, num-
ber of hard tasks, and percentage of soft load in the
system.

All the graphs show ratio values that are very close to
1, which means that there is little difference between

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 4  6  8  10  12  14  16

R
at

io

Number of Hard Tasks

SOFT TASKS REPSONSE TIME RESPECT BGND POLICY  (Number of Hard Tasks)

Figure 3: Average response time of soft tasks as a function of the

number of hard tasks in the system. Relative values.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 10  15  20  25  30  35  40

R
at

io

Soft Load Utilization

SOFT TASKS REPSONSE TIME RESPECT BGND POLICY  (Soft Load)

Figure 4: Average response time of soft tasks as a function of the

soft load in the system. Relative values.

the number of context switches of each scheduling pol-
icy and background scheduling. However, ratio val-
ues tend to become higher as the percentage of hard or
soft load becomes higher, while it tends to be lower
as the number of hard tasks is greater (background
scheduling provokes more context switches than the
other policies as the number of hard tasks grows).

For DASS, supporting gain time always leads to more
context switches, specially for high values of the pa-
rameters of the experiment. Hard tasks always con-
sume almost all of their worst case execution time, but
not all. As a consequence, small amounts of gain time
appear whenever a hard task finishes executing. If this
happens when there is no slack available in the system,
system slack becomes greater than 0, which usually
provokes a context switch. However, since gain time
is so small, the system runs out of slack soon, which
provokes another context switch.

Server-based policies are the most preemptive of all,
and only DASS with gain time support provokes more
context switches for high values of hard tasks, hard
load or soft load.

13



The number of context switches was already used as a
measure of the system overhead in [15], where server-
based policies were also the ones with more context
switches; however, differences among policies are less
significant than those shown in [15] (the number of
context switches for server-based policies got up to 5
times the value for background scheduling). This may
be because, in [15], an extra task was considered in the
system that preempted hard tasks in order to let soft
ones execute.

0.85

0.90

0.95

1.00

1.05

1.10

1.15

 20  25  30  35  40  45  50  55  60

R
at

io

Hard Load Utilization

NUMBER OF CONTEXT SWITCHES RESPECT BGND POLICY  (Hard Load)

Figure 5: Number of context switches as a function of the hard

load in the system. Relative values.

0.85

0.90

0.95

1.00

1.05

1.10

1.15

 4  6  8  10  12  14  16

R
at

io

Number of Hard Tasks

NUMBER OF CONTEXT SWITCHES RESPECT BGND POLICY  (Number of Hard Tasks)

Figure 6: Number of context switches as a function of the number

of hard tasks in the system. Relative values.

4.3.3 Scheduler overhead
The scheduler overhead has been measured in two dif-
ferent ways: the average amount of time spent by the
RTOS scheduler in a single interruption and the total
amount of time spent by the scheduler during the exe-
cution of each synthetic application.

Figures 8, 9 and 10 show the average amount of time
spent by the RTOS in a single scheduling interruption
action as a function of the percentage of hard load, the
number of hard tasks and the percentage of soft load
in the system.

The results show that the percentage of hard or soft
load do not have any important influence over the av-

0.85

0.90

0.95

1.00

1.05

1.10

1.15

 10  15  20  25  30  35  40

R
at

io

Soft Load Utilization

NUMBER OF CONTEXT SWITCHES RESPECT BGND POLICY  (Soft Load)

Figure 7: Number of context switches as a function of the soft load

in the system. Relative values.

erage time of a scheduling interruption, while it is in-
fluenced directly by the number of hard tasks in the
system, specially for slack-stealing-based scheduling
policies. This is because the main overhead of these
policies comes from the calculation of the available slack
for each hard task in the system. This slack has to be
calculated for all hard tasks whenever any task ends its
execution; thus, more hard tasks imply more schedul-
ing time.

The average time spent by the scheduler for the two
slack-stealing-based policies is much higher than for
the rest of them, which explains differences between
the response time results presented in this work and
previous studies like [12].

Differences between the two server-based policies are
not too important either, although DS has lower values
as expected.

The results do not show any significant increase in over-
head when supporting gain time for DASS, or for DP.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

 20  25  30  35  40  45  50  55  60

R
at

io

Hard Load Utilization

AVG SCHEDULING TIME RESPECT BGND POLICY  (Hard Load)

Figure 8: Average time for a single scheduling interruption as a

function of the hard load in the system. Relative values.

Finally, Figures 11, 12 and 13 show ratio values for the
total amount of time spent by the RTOS in scheduling

14



1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

 4  6  8  10  12  14  16

R
at

io

Number of Hard Tasks

AVG SCHEDULING TIME RESPECT BGND POLICY  (Number of Hard Tasks)

Figure 9: Average time for a single scheduling interruption as a

function of the number of hard tasks in the system. Relative values.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

 10  15  20  25  30  35  40

R
at

io

Soft Load Utilization

AVG SCHEDULING TIME RESPECT BGND POLICY  (Soft Load)

Figure 10: Average time for a single scheduling interruption as a

function of the soft load in the system. Relative values.

during the execution of each synthetic application.

The resulting graphs are almost parallel horizontal lines,
which means that the total amount of time spent by
the scheduler during the execution has the same evolu-
tion for all the scheduling policies and for background
scheduling. The only difference among them is the
magnitude of the time spent by the scheduler with each
policy.

Slack-stealing-based policies show much more over-
head than the other policies. Differences between the
two server-based scheduling policies are not impor-
tant, although SS consumes more CPU. DP policies con-
sume some more time than server-based, but not as
much as DASS.

Differences between supporting or not supporting gain
time are not as significant as differences among the dif-
ferent policies.

4.4 Design: Experiment 2
The parameters of this experiment are the following:

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

 20  25  30  35  40  45  50  55  60

R
at

io

Hard Load Utilization

TOTAL SCHEDULING TIME RESPECT BGND POLICY  (Hard Load)

Figure 11: Total amount of time spent by the scheduler as a func-

tion of the hard load in the system. Relative values.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

 4  6  8  10  12  14  16

R
at

io

Number of Hard Tasks

TOTAL SCHEDULING TIME RESPECT BGND POLICY  (Number of Hard Tasks)

Figure 12: Total amount of time spent by the scheduler as a func-

tion of the number of hard tasks in the system. Relative values.

• Number of hard tasks: 4, 8, 12 and 16

• Number of soft tasks: 1

• Percentage of hard load: 60%, 70% and 80%

• Percentage of soft load: 10%, 20%, 30% and 40%

When using server-based policies, the soft task is al-
ways executed at the highest priority level until the
server runs out of capacity.

The number of possible combinations of these values is
36. For each possible combination, 5 different task sets
were generated, making a total of 180 different syn-
thetic applications that were run once with each schedul-
ing policy.

4.5 Results: Experiment 2
For this experiment, only response times of soft tasks
were considered. Figures 14, 15, 16 and 17 show these
response times as a function of the percentage of gain
time in hard tasks, the percentage of hard load, the
number of hard tasks and the percentage of soft load
in the system.

15



1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

 10  15  20  25  30  35  40

R
at

io

Soft Load Utilization

TOTAL SCHEDULING TIME RESPECT BGND POLICY  (Soft Load)

Figure 13: Total amount of time spent by the scheduler as a func-

tion of the soft load in the system. Relative values.

DASS obtains better results when supporting gain time.
Differences between the two versions of DASS tend
to increase when the percentage of hard load in the
system is higher. For DP, differences between consid-
ering or not considering gain time are less important.
The best results are obtained when considering self gain
time rather than propagated gain time. Except for low
percentages of hard or soft load or small task sets, all
DP versions obtain lower response times than DASS
without gain time.

These results differ from those in [9, 12], since here DP
outperforms DASS when the number of hard tasks or
the system load grow.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0  10  20  30  40  50

R
at

io

Hard Tasks Gain Time

SOFT TASKS REPSONSE TIME RESPECT BGND POLICY  (Hard Tasks Gain Time)

Figure 14: Average response time of soft tasks as a function of

hard tasks gain time in the system. Relative values.

5. CONCLUSIONS AND FUTURE WORK
This study complements some previous work on the
performance of scheduling policies for soft tasks in fixed-
priority preemptive real-time systems. The main ob-
jective of this study was to determine whether or not
the results of such previous work were maintained for
real applications.

In order to do this, we selected the most representative
policies and integrated them into our instrumented ver-

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 60  65  70  75  80

R
at

io

Hard Load Utilization

SOFT TASKS REPSONSE TIME RESPECT BGND POLICY  (Hard Load)

Figure 15: Average response time of soft tasks as a function of the

hard load in the system. Relative values.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 4  6  8  10  12  14  16

R
at

io

Number of Hard Tasks

SOFT TASKS REPSONSE TIME RESPECT BGND POLICY  (Number of Hard Tasks)

Figure 16: Average response time of soft tasks as a function of the

number of hard tasks in the system. Relative values.

sion of RT-Linux. Then, we ran a large number of task
sets for each policy and measured several aspects of
each execution, including the response time of soft tasks,
the execution time of each scheduler execution and the
number of context switches. The overall goals of the
experiment are to measure the different policies in equal
terms and to determine how the overhead affects the
performance in each case.

The results are presented in such a way that they show
the average values of each aspect (response time, sched-
uler overhead and number of context switches) as a
function of each experiment parameter (number of hard
tasks, soft load utilization and hard load utilization).
In this way, we can characterize the effects of each pa-
rameter independently.

The main conclusions of the experiment results are the
following:

• All the scheduling policies improve the results of
the background policy, even including the effects
of the overhead in the execution.

• Due to the overhead, the performance of the DASS

16



0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 10  15  20  25  30  35  40

R
at

io

Soft Load Utilization

SOFT TASKS REPSONSE TIME RESPECT BGND POLICY  (Soft Load)

Figure 17: Average response time of soft tasks as a function of the

soft load in the system. Relative values.

policy is worse than expected (in the simulation
studies) and it is outperformed by the Dual Prior-
ities policy. This confirms the conclusions of [9].
However, the DASS still performs better than any
of the server-based policies.

• Server-based policies produce higher response times
for soft tasks than the DASS and Dual Priorities
policies, in spite of the fact that they also pro-
duce lower overhead. The two policies (DS and
SS) do not differ very much in their performance
when the system load is not too high. DS has a
more restrictive feasibility test which allows less
capacity than SS for high values of system hard
load. This makes DS performance worse than SS.
However, SS is more difficult to implement and
produces more overhead.

• DASS provides lower response times when gain
time is considered; however, this difference is less
important for the DP policy.

Future lines of work will include an exhaustive test-
ing of the scheduling policies in different scenarios in
order to determine the best policy for each case. The
testing framework will be furtherdeveloped to extend
and combine such policies and to propose new ones;
for example, to find ways to combine multiple servers
in the same application (at the same priority, or at dif-
ferent priorities) in order to improve the overall per-
formance.

Acknowledgements
This work is partially supported by the TIN2005-03395
project, which is co-funded by the Spanish government
and FEDER funds.

6. REFERENCES
[1] http://rtportal.upv.es/.

[2] http://www.rtlinuxfree.com/.

[3] 1003.1, 2004 EDITION IEEE Standard for
Information Technology Portable Operating System
Interface (POSIX). IEEE, 2004.

[4] L. Sha B. Sprunt and J. Lehozky. Aperiodic task
scheduling for hard real-time systems. The
Journal of Real-Time Systems, (1):27–60, 1989.

[5] M. Barabanov. A linux-based real-time operating
system. Master’s thesis, Institute of Mining and
Technology, New Mexico, Jun 1997.

[6] G. Bernat and A. Burns. New results on fixed
priority aperiodic servers. In IEEE Real-Time
Systems Symposium, pages 68–78, 1999.

[7] Luis Antonio Búrdalo Rapa, Agustín
Espinosa Minguet, Ana Ma. García-Fornes, and
Andrés Terrasa Barrena. Framework for the
development and evaluation of new scheduling
policies in rt-linux. In OSPERT 2006, pages 42–51,
2006.

[8] R. Davis. Dual priority scheduling: A means of
providing flexibility in hard real-time systems.
Technical Report YCS230, University of York,
UK, May 1994.

[9] R. Davis and A. Wellings. Dual priority
scheduling. In RTSS ’95: Proceedings of the 16th
IEEE Real-Time Systems Symposium (RTSS ’95),
page 100, Washington, DC, USA, 1995. IEEE
Computer Society.

[10] R. I. Davis. Approximate slack stealing
algorithms for fixed priority preemptive systems.
Technical Report YCS 217, Department of
Computer Science, University of York, Nov 1993.

[11] R. I. Davis. Scheduling slack time in fixed
priority preemptive systems. Technical Report
YCS93217, Department of Computer Science,
University of York, 1993.

[12] A. García-Fornés, A. Terrasa, and V. Botti.
Planificación de tareas aperiódicas en sistemas
de tiempo real estricto. NOVATICA,
Septiembre:22–30, 1997.

[13] B. Gaujal, N. Navet, and J. Migge. Dual-priority
versus background scheduling: A path-wise
comparison. Real-Time Systems, (25):39–66, 2003.

[14] T. M. Ghazalie and T. P. Baker. Aperiodic servers
in a deadline scheduling environment. Real-Time
Syst., 9(1):31–67, 1995.

[15] J. Goossens and C. Macq. Performance analysis
of various scheduling algorithms for real-time
systems composed of aperiodic and periodic
tasks. In CISSAS’99, 1999.

[16] J. Lehoczky and S. Ramos-Thuel. An optimal
algorithm for scheduling soft-aperiodic tasks
fixed-priority preemptive systems. In
IEEE Society Press, editor, Proc. IEEE Real-Time
Systems Symposium, pages 110–123, December
1992.

[17] J. Lehoczky, L. Sha, and Jay K. Strosnider.
Enhanced aperiodic responsiveness in hard
real-time environments. In IEEE Society Press,
editor, Proc. IEEE Real-Time Systems Symposium,
pages 261–270, December 1987.

[18] V. Lorente, A. Espinosa, A. García-Fornes, and
A. Crespo. Measuring execution time of code by
means of posix tracing. In 27th IFAC/IFIP/IEEE
Workshop on Real-Time Programming, WRTP’03,

17



2003.

[19] J. Strosnider, J. P. Lehoczky, and L. Sha. The
deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time
environments. IEEE Transactions on Computers,
1(44):73–91, 1995.

[20] A. Terrasa, A. García-Fornes, and I. Pachés. An
evaluation of the posix trace standard
implemented in RT-Linux. In IEEE Intl Symposium
on Performance Analysis of Systems and Software,
2001.

18



Feather-Trace: A Light-Weight Event Tracing Toolkit∗

Björn B. Brandenburg and James H. Anderson
The University of North Carolina at Chapel Hill

Abstract
We present a light-weight event tracing toolkit for real-
time operating systems on the Intel x86 platform. Our
approach is wait-free, multiprocessor-safe, and intro-
duces very low overhead. Only a single unconditional
jump instruction is required to distinguish between en-
abled and disabled events. As a case study, we traced
the locking behavior of the Linux kernel and several
soft real-time multimedia applications. Our results pro-
vide strong support for the wide-spread assumption that
short non-nested critical sections are the common case
in practice.

1 Introduction
When developing operating systems and embedded sys-
tems, event tracing facilities are an essential tool. Such
facilities allow developers to trace the behavior of the
system being developed by collecting performance and
state data while the system in question executes for later
offline analysis. The ability to better understand ob-
served behaviors and to obtain high-resolution timing
information greatly helps to both debug failures and im-
prove performance. Thus, it is not surprising that there
has been considerable recent interest in tracing frame-
works [5, 7, 11, 19, 20].

Prior work. For general-purpose operating systems,
powerful and flexible solutions have been developed and
integrated into commercially-available products. For ex-
ample, the DTrace facility of the Solaris 10 operating
system, developed by Sun Microsystems [5], offers flex-
ible dynamic instrumentation support. By embedding
a virtual machine inside the kernel, it allows event data
to be safely gathered and processed at arbitrary locations
inside the kernel by compiled trace scripts. Such flexibil-
ity comes at a price, however. The DTrace implementa-

∗Work supported by a grant from Intel Corp., by NSF grants
CNS 0408996, CCF 0541056, and CNS 0615197 and by ARO grant
W911NF-06-1-0425. The first author was also supported by a Ful-
bright fellowship.

tion is complex and requires many operating-system ser-
vices such as run-time symbol information, which may
not be present in (space-constrained) embedded systems.
Further, interrupts are disabled while executing trace
scripts, which makes it unfit for use in real-time sys-
tems. Other dynamic instrumentation approaches based
on binary re-writing such as kerninst [12] also require
substantial in-kernel infrastructure. The K42 kernel [8]
provides a lock-free, unified performance monitoring fa-
cility. While it provides a high-performance event trac-
ing facility, its implementation is closely tied to the
memory-management implementation of the K42 oper-
ating system, and thus cannot be easily ported to other
operating systems. Disabled events incur an overhead
of four instructions [19], some of which access main
memory and affect branch prediction. Also, the use
of potentially unbounded lock-free retry loops in K42’s
buffer implementation may restrict its applicability in
hard real-time environments. The Ferret framework has
been designed specifically for the Dresden Real-Time
Operating System Project (DROPS) [10] and is based on
a rather heavy-weight architecture. It is designed to al-
low tracing of real-time and best-effort tasks, system ser-
vices, and the microkernel. However, the reliance on an
event-structure description language and a custom tool
chain restricts the portability of the framework. While
tools that capture instruction-level execution traces such
as Nirvana [1] provide a wealth of information for of-
fline analysis, their use for obtaining real-world timing
information is limited due to high overheads.

Motivation and contributions. In this paper, we
present a light-weight, multiprocessor-safe tracing
toolkit called Feather-Trace. Our motivations in produc-
ing this toolkit were two-fold. First, our research group
has been engaged in an ongoing development effort in-
volving a system called LITMUSRT [3, 4, 17], which
extends the base Linux kernel so that different schedul-
ing and synchronization methods can be loaded as plug-
in components. The primary focus of our LITMUSRT-
related research has been scheduling and synchroniza-
tion support for multiprocessor real-time systems. Our

19



current development platform for LITMUSRT is a four-
processor machine. In order to debug scheduling and
synchronization code in LITMUSRT, we needed a trac-
ing mechanism that could be used on a multiproces-
sor with very low overhead, and that could be invoked
anywhere in the kernel. We found that existing tracing
mechanisms were ill-suited for our purposes. Second,
in devising and evaluating synchronization mechanisms
implemented in LITMUSRT [2, 3], we desired to have
a better understanding of locking patterns that are typi-
cal of “real-world” systems, so that we could optimize
these mechanisms for common-case scenarios. Linux it-
self is certainly a real-world system, so we desired to
trace its behavior to assess the frequency, duration, and
degree of nesting in lock accesses. To validate our trace
data, we also instrumented several soft real-time mul-
timedia applications. Again, we found existing tracing
facilities to be unsuitable for our purposes. Rather than
providing a complete tracing framework, we found that
our needs were best met by a highly-portable toolkit that
can be easily integrated into existing operating systems
with some “glue code.” In Feather-Trace, trace events
are checked via a single unconditional jump instruction,
and trace data is collected in wait-free buffers that can be
efficiently accessed on different processors. Although
we were motivated by the specific concerns just noted in
producing Feather-Trace, because it is very light-weight,
can be used anywhere in the kernel, and it is portable,
it should be of use to others engaged in kernel-related
research. To the best of our knowledge, Feather-Trace
is the first static tracing toolkit that achieves a single-
instruction overhead in the case of both enabled and dis-
abled tracing events.

The rest of this paper is organized as follows. In Sec-
tion 2, we present Feather-Trace. In Section 3, as a case
study, we present some measurements of the locking be-
havior of the Linux kernel and several soft real-time ap-
plications. Finally, in Section 4, we conclude.

2 Feather-Trace
To trace the execution of an operating system, a toolkit
must provide methods to embed “triggers” in the pro-
gram text and to collect data for offline analysis. The
purpose of a trigger is to redirect the flow of execution
to a user-provided callback function that can take ap-
propriate actions such as collecting performance data or
checking invariants for debugging purposes.

To be of practical use, several requirements must
be met. First, it should be possible to selectively en-
able and disable triggers, since it is likely that only
a specific aspect of an operating system is being in-

spected at any time. Second, no assumption concern-
ing the execution context and preemptivity should be
made so that triggers can be placed anywhere in the
kernel, including interrupt handlers. Third, the frame-
work should be multiprocessor-safe and it should not in-
troduce additional mutual-exclusion requirements—by
“multiprocessor-safe,” we mean that tracing actions on
one processor should not adversely affect other proces-
sors. Further, to increase portability and suitability for
embedded platforms, only very little support should be
required from the operating system. Of course, any over-
heads introduced by the tracing framework must be kept
at a minimum. This implies that the trigger code should
be short and affect neither cache performance nor the
processor’s branch prediction accuracy negatively. Ide-
ally, a disabled trigger should incur no costs.

2.1 Event Trigger
In Feather-Trace, event triggers are realized as C pre-
processor macros (ft eventX(), where X is the num-
ber of arguments) that insert trigger code realized with
inline assembly instructions. Thus, as is always the case
with static instrumentation, events can only be added at
compile time. While this may be an unacceptable limi-
tation in the case of general-purpose operating systems
such as Solaris, dynamic instrumentation has the dis-
advantage that enabled events incur the (considerable)
costs of a CPU exception [10]. Also, if a custom ex-
ception handler were to be required, then adding tracing
to an existing operating system would require intrusive
modifications of its exception-handling code, thereby
drastically increasing development effort.

The trigger code must accomplish three tasks. First,
it must determine whether the event is enabled. If it is
enabled, it must collect the necessary context informa-
tion and invoke the callback function associated with the
event. Finally, it must restore the processor context so
that the original code surrounding the trigger can pro-
ceed correctly.

To achieve the goal of negligible overhead, the de-
cision whether to invoke the callback function must
be made as quickly as possible. Therefore, we chose
the following approach (illustrated in Fig. 1): the
ft eventX() macro precedes the invocation of the
callback function with an unconditional jump instruc-
tion (jmp) that skips over the rest of the trigger code.
Thus, events are initially disabled. To enable an event,
the offset parameter of the jump instruction is set to zero,
which effectively disables the jump. As a result, the re-
quired context information is pushed on the stack and
control is transferred to the callback function.

Since the trigger code is less than 128 bytes long, in

20



push arguments

...
...

...

call callback

cleanup stack
...

...
...

JMP OFFSET

(a)

push arguments

...
...

...

call callback

cleanup stack

...
...

...

JMP 0

(b)

Figure 1: An illustration of the trigger assembly code.
(a) In the disabled state, the jump instruction will skip
the invocation of the callback. (b) In the enabled state,
the jump instruction’s offset is zero.

the Intel x86 instruction set, the unconditional jump in-
cluding the offset can be encoded in two bytes. The jump
instruction code in the first byte (0xeb) is followed by
a signed eight-bit integer, which is the offset of the de-
sired destination. To enable or disable an event, only the
offset must be changed. Since eight-bit write operations
to arbitrary byte-aligned addresses are guaranteed to be
atomic on the Intel x86 platform, enabling and disabling
events is multiprocessor-safe.

To summarize: events can be safely enabled and dis-
abled on multiprocessors. No operating-system support
is necessary and no locking/mutual-exclusion support is
required. If an event is disabled, then only one additional
instruction is executed compared to the case if there were
no trigger code present. On the other hand, if an event
is enabled, then only one additional instruction is exe-
cuted compared to a normal function call. Determining
whether a given event is enabled with only a single in-
struction that does not access memory (and which also
has no effects on either branch prediction or pipelining)

r

�������������
�������������
�������������

�����������
�����������
�����������

RMarker

Slot

B F F

w

10 2 3

Figure 2: An illustration of a wait-free bufer for n = 4

and f = 2. Slot 0 is ready, Slot 1 is busy and being
written, Slots 2 and 3 are free. The current read index
r points to the next ready slot (Slot 0), and the current
write index w points to the next free slot (Slot 2).

in both the enabled and the disabled case is arguably op-
timal. An additional small overhead can be incurred be-
cause the compiler may be forced to (re-)load some reg-
isters before and after the trigger code. This effect can
be reduced by placing triggers mainly at the start and
end of functions.

2.2 Data Collection
A tracing framework is of no utility if it does not offer
a method to collect data. To keep the overhead of en-
abled events low, any trace data should be temporarily
accumulated in an in-memory buffer and be transferred
to stable storage after a certain number of samples have
been obtained. To support multiprocessors, such a buffer
must allow for multiple concurrent writers and, for sim-
ilar reasons as is the case for triggers, should not rely on
mutual exclusion to achieve correctness. While read op-
erations should be possible in parallel with write opera-
tions, there is usually no great need for multiple readers,
since typically a single reader is tasked with flushing the
buffer to stable storage.

To attain the stated goals, Feather-Trace provides
a wait-free FIFO-buffer implementation to store event
data. The buffer is said to be wait-free since no locks are
required and each read and write operation completes
in a bounded number of steps (such is not the case when
lock-free retry loops are used). Our implementation sup-
ports arbitrarily many concurrent writers. To simplify
the data structure and to improve performance, we allow
only one concurrent reader.

As illustrated in Fig. 2, a buffer consists of n slots.
Slots may be of arbitrary but uniform size s. Each slot
is associated with a slot marker that indicates the cur-
rent state of the slot. A slot may be either free, busy,
or ready. For each buffer, the number of free slots f

(a signed 32-bit integer), the current write index w, and
the current read index r (both unsigned 32-bit integers)
are maintained. We require that n divides the maxi-
mum value that an unsigned 32-bit integer can store, i.e.,

21



unsigned i n t r = 0 , w = 0 , e = 0 ;
i n t f = n ;

s t a r t w r i t e ( void ∗∗ p t r ) {
unsigned i n t i d x ;
i f ( f e t c h a n d d e c ( f ) <= 0 ) {

/∗ b u f f e r f u l l ∗ /
a t o m i c i n c ( f ) ;
a t o m i c i n c ( e ) ;
∗ p t r = NULL;
re turn 0 ;

} e l s e {
/∗ s l o t r e s e r v e d ∗ /
i d x = f e t c h a n d i n c (w) % n ;
marker [ i d x ] = SLOT BUSY ;
∗ p t r = & s l o t [ i d x ] ;
re turn 1 ;

}

f i n i s h w r i t e ( void ∗ p t r ) {
unsigned i n t i d x ;
i d x = ( p t r − & s l o t [ 0 ] ) / s ;
marker [ i d x ] = SLOT READY ;

}

r e a d ( void ∗ d e s t ) {
unsigned i n t i d x ;
i f ( f = = n )

/∗ n o t h i n g a v a i l a b l e ∗ /
re turn 0 ;

i d x = r % n ;
i f ( marker [ i d x ] = = SLOT READY ) {

memcpy ( d e s t , & s l o t [ i d x ] , s ) ;
marker [ i d x ] = SLOT FREE ;
r ++;
a t o m i c i n c ( f ) ;
re turn 1 ;

} e l s e
re turn 0 ;

}

Figure 3: Pseudo-code for the methods used to access
the wait-free buffers provided by Feather-Trace.
2
32

mod n = 0. This allows us to ignore integer over-
flows, which is a minor performance improvement.
To detect missed samples, the number of failed writes
is stored in the error count e. (A write fails if the
buffer is full.) Pseudo-code for the buffer access meth-
ods is given in Fig. 3. The implementation relies
on the atomic XADD (“exchange and add”) instruction,
which is used to realize fetch and dec/inc() and
atomic inc(). Writers access the buffer by first in-
voking start write() to obtain a pointer to a free
slot. A slot is reserved in two steps. First, the number
of free slots f is read and decremented atomically to re-
serve a slot. If a reservation can be made (f > 0 holds),
then the next free slot is obtained by atomically read-
ing and incrementing w. Since n divides 2

32, a potential
overflow of w does not need to be handled. The slot
is marked as busy to prevent a concurrent reader from

observing incomplete data. If no slot is available, then
the reservation is canceled by atomically incrementing
f and the error count e. The single reader accesses the
buffer by first checking whether there exist non-free slots
by comparing f and n. If there exists such a slot, then
the reader checks the slot’s state, and if the slot is ready,
copies the slot’s contents to a reader-provided location
such as I/O buffers.

The multi-writer, single-reader, wait-free FIFO
buffer provided by Feather-Trace offers a low-overhead
method to store uniformly-sized data items. The limita-
tion of uniformly-sized items can be easily dealt with by
providing several buffers of different sizes. As both the
provided event triggers and FIFO buffers are designed to
minimize overheads, Feather-Trace can be used to trace
highly performance-critical code sections. For example,
as explained in more detail in the next section, we have
used the toolkit to measure critical section lengths in the
Linux kernel. This was made possible in part because
the code used to obtain and store time stamps, including
the event trigger, consists of only 61 instructions, which
is a negligible overhead in most cases.

Since the toolkit is minimally intrusive and makes no
assumptions on the availability of operating-system ser-
vices, it can be easily integrated into existing code bases.
For example, we have used Feather-Trace to obtain event
traces in both the Linux kernel and the FreeBSD ker-
nel by implementing a custom device driver that ex-
ports the accumulated event data to user space. Further,
by pre-loading Feather-Trace (packaged in a shared li-
brary) into dynamically linked user space applications,
we were able to record the locking behavior of various
soft real-time multimedia applications.

3 Case Study: Locking in Linux
One motivation for the development of Feather-Trace
was to allow us to obtain empirical results on the fre-
quency, degree of nesting, and duration of critical sec-
tions in “real-world” systems. In prior work, Devi et
al. [6] measured the length of critical sections accessing
common data structures in order to generate task sets
for schedulability-analysis purposes [6]. The method
employed by them, however, cannot give insight into
the nesting depth and the distribution of lock requests,
as it relies on measuring synthetic tasks. Other studies
have assessed the impact of lock-free synchronization
on large scientific applications [15, 16]. Unfortunately,
these benchmarks are mostly concerned with overall per-
formance and do not reveal the nature of individual criti-
cal sections. In this paper, we seek to provide additional
data points on “real-world” locking behavior by measur-

22



ing critical sections in both the Linux kernel under vari-
ous workloads and several soft real-time applications.

In the following subsections, we say that a lock re-
quest has a nesting depth of n if the processor already
was holding n locks at the time of the request. Further,
we define the critical section length of a lock to be the
length of the time interval that starts when the lock is
successfully acquired and ends just before it is released
again, i.e., the cost of acquiring the lock itself is not in-
cluded.

3.1 Kernel Modifications
We modified the Linux kernel, version 2.6.20,
to capture timing information on critical section
lengths. The Linux kernel employs two differ-
ent kinds of locks, spinlocks (contention is handled
by busy-waiting) and semaphores (processes are sus-
pended in case of contention). To trace spinlocks,
we changed the locking primitives spin lock(),
read lock(), write lock(), and the correspond-
ing unlock primitives (as well as special cases such as
spin lock irqsave()) to include event triggers af-
ter a lock has been acquired and before a lock is released.
To trace semaphores, we modified mutex lock(),
down(), and related primitives such as down read()
in a similar fashion. At each event, a time stamp was
obtained by reading the TSC register (which can be read
from both user and kernel space) and the sample con-
sisting of the time stamp, the CPU on which the event
occurred, the address of the lock involved, and the type
of the event (enter critical section, or exit critical sec-
tion) was stored in a Feather-Trace buffer. That buffer
was made available to user space by means of a custom
character device driver.

3.2 Setup of the Experiments
To obtain insight into the kernel’s locking behavior, we
executed various test workloads and captured locking
events during several intervals of 60 seconds each. Our
particular test platform is an SMP consisting of two 32-
bit Intel(R) Xeon(TM) processors running at 2.70 GHz,
with 8K instruction and data caches, and a unified 512K
L2 cache per processor, and 2 GB of main memory.

The results of three workloads are presented in this
paper. First, we obtained a trace from an otherwise idle
system. Second, we traced the locking behavior of the
Linux kernel while compiling a copy of the kernel itself.
Last, we used the stress utility [18] to generate a test
load of three processes that stressed the memory man-
agement and I/O subsystems of the kernel.

The captured event traces were analyzed offline as
follows. After filtering incomplete event sequences (i.e.,

lock accesses that were missing one of the two ex-
pected timestamps), the remaining lock requests were
annotated with their respective nesting depth. Incom-
plete sequences may occur at both the beginning and the
end of the trace interval and when there is insufficient
buffer space available. The clock speed of the processors
(2.70 GHz) was used to convert raw cycle-count times-
tamps to microseconds. Finally, histograms of the nest-
ing level and the critical section length (with a bin size
of 0.1µs), the cumulative distribution, and the average
critical section length were computed for both spinlocks
and semaphores.

3.3 Results
After filtering, the traces contained valid events for a
total of 2,366,122 (idle system), 25,002,249 (compile
test), and 70,807,495 (stress test) spinlock and 51,360
(idle system), 4,880,570 (compile test), and 18,998,386
(stress test) semaphore acquisitions.

The distribution of the spinlock nesting depth is
shown in Fig. 4. The maximum nesting depth in the
presented data is four under load and three on an idle
system. One can clearly see that the vast majority of
lock acquisitions are non-nested, e.g., under load, more
than 85 percent of all lock requests have a nesting depth
of zero. When comparing the nesting depth distribution
of an idle system to the distribution observed during the
stress test, one can see two trends. First, maximum nest-
ing depth increases from three to four (nesting depths as
deep as six have been observed in traces not presented
here, but occur so rarely that they are hard to repro-
duce), which reveals that there exist deeply nested lock
requests that are only required very seldomly. Second,
the percentage of non-nested lock requests increases un-
der load, which can be attributed to the fact that the num-
ber of shared objects that are mostly accessed in a non-
nested fashion increases under load. As can be seen in
Fig. 6, critical sections protected by semaphores are less
frequently subject to nesting as those protected by spin-
locks. Semaphore requests exceeding two levels of nest-
ing were not observed in any of the traces.

In Fig. 5, the distribution of spinlock critical section
lengths is depicted. While the distributions do have a
long tail, more than 96 percent of all observed critical
sections are shorter than 5µs. Inset (a) depicts the dis-
tribution of an idle system. Since system-call activity
is low, most lock requests are issued by interrupt han-
dlers. One can clearly see two distinctive spikes as a
result, because the critical sections encountered in pe-
riodic activities such as the timer-interrupt service rou-
tine contribute the majority of observed critical sections.
The average critical section length observed in an idle

23



0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100
idle system

nesting depth

pe
rc

en
t o

f l
oc

k 
re

qu
es

ts

79.298%

19.086%

1.606% 0.010%

(a)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100
make −j8 bzImage

nesting depth

pe
rc

en
t o

f l
oc

k 
re

qu
es

ts

86.573%

10.871%

2.534%
0.022% <0.001%

(b)

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100
stress −i 1 −m 2

nesting depth

pe
rc

en
t o

f l
oc

k 
re

qu
es

ts

89.054%

8.643%

2.288%
0.015% <0.001%

(c)

Figure 4: Distribution of nested spinlock accesses in the
Linux kernel under various work loads.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40
idle system

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40
make −j8 bzImage

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40
stress −i 1 −m 2

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(c)

Figure 5: Distribution of spinlock critical section length
in the Linux kernel. More than 96 percent of all observed
critical sections were shorter than 5µs.

24



0 1 2
0

10

20

30

40

50

60

70

80

90

100
idle system

nesting depth

pe
rc

en
t o

f l
oc

k 
re

qu
es

ts

53.9378%

46.0622%

(a)

0 1 2
0

10

20

30

40

50

60

70

80

90

100
make −j8 bzImage

nesting depth

pe
rc

en
t o

f l
oc

k 
re

qu
es

ts

94.200%

5.775%
0.025%

(b)

0 1 2
0

10

20

30

40

50

60

70

80

90

100
stress −i 1 −m 2

nesting depth

pe
rc

en
t o

f l
oc

k 
re

qu
es

ts

92.965%

7.035%

(c)

Figure 6: Distribution of nested semaphore accesses in
the Linux kernel under various work loads.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
idle system

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(a)

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
make −j8 bzImage

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(b)

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
stress −i 1 −m 2

critical section length (in microseconds)

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

(c)

Figure 7: Distribution of semaphore critical section
length. Under load, more than 93 percent of all observed
critical sections were shorter than 13µs.

25



system was 0.67µs. The distribution of critical section
lengths observed in the compile benchmark is shown
in inset (b). The impact of the periodic activities de-
creases noticeably compared to an idle system. As a
result of the kernel actually doing “real” work on be-
half of user-space processes, the critical section lengths
are spread out over a wider range. The average critical
section length observed in this benchmark increased to
0.81µs. The trend continues in inset (c), which depicts
the distribution observed under the stress test. In this
case, the kernel has to service many “expensive” sys-
tem calls, so that the center of the distribution is shifted
noticeably to the right. The average observed critical
section length was 1.24µs. In Fig. 7, the distribution of
semaphore critical section lengths is shown. Critical sec-
tions protected by semaphores are typically significantly
longer than those protected by spinlocks. The average
observed critical section lengths were 6.3µs (stress test),
6.4µs (compile test), and 14.9 µs (idle system).

3.4 Soft Real-Time Applications
Since the Linux kernel may not be representative of real-
time applications, we conducted similar experiments
with several multimedia applications running on top of
Linux 2.6.23-rc3 to ensure the validity of our conclu-
sions. The results for three of the benchmarks are shown
in Figs. 8 and 9. (Because the distributions did not con-
tain characteristic spikes, we chose to present them as
cumulative distributions instead.) With each tested ap-
plication, we used Feather-Trace to instrument the ac-
quisition and release of user space binary semaphores
as provided by the POSIX thread (pthread) library.
As was the case with the kernel, cycle-count times-
tamps were used to determine the beginning and end
of a critical section. The data depicted in Insets (a)
and (b) was obtained by instrumenting two popular open
source video players (Video Lan Client (VLC) [13] and
Xine [14]) over a period of one hour. Inset (c) shows
the behavior of Tux Racer [9], an interactive 3D video
game, over a period of about one minute. Since these
applications need to ensure that both visual and audio
content is presented to the user in a timely manner they
can be considered to be soft real-time applications.

Fig. 8 clearly shows the nesting characteristics of the
three applications. While nesting almost never occurs
in Tux Racer, and only very rarely in Xine, it is used
more commonly in the VLC video player. However,
non-nested accesses, which make up more than 70 per-
cent of the critical sections, are still the common case.
A nesting level greater than three was never observed in
the tested multimedia applications.

Distributions of critical section lengths are depicted

in Fig. 9. As opposed to the nesting levels, the cu-
mulative critical section length distributions of the in-
strumented applications are somewhat similar. In all
cases, more than 95 (99) percent of the critical sections
are shorter than 5µs (10µs). This indicates that critical
sections in multimedia applications are typically even
shorter than those observed in the kernel. This observa-
tions is also supported by a significantly lower average
critical section length (compared to the average length
of in-kernel semaphore-protected critical sections).

Our results strongly support the wide-spread assump-
tion that the vast majority of critical sections in many
settings are short and non-nested. While deep nest-
ing does occur in practice, nesting depths of three or
more occur only rarely. Critical sections longer than 5µs
(13µs) are rare in the case of spinlocks (semaphores, un-
der load) in the kernel. In multimedia applications, they
tend to be even shorter. Thus, our data supports the claim
that the common case in practice is short, non-nested
lock requests.

4 Conclusion
This paper presented Feather-Trace, a new light-weight
static tracing toolkit that is both highly portable and can
be used for performance data collection as well as de-
bugging purposes. Because Feather-Trace uses neither
locks nor retry loops, it is suitable for hard real-time en-
vironments. Further, since disabled events incur only
the negligible overhead of one additional instruction per
event, there is no need to remove Feather-Trace in pro-
duction releases.

As a case study and to support our ongoing work
on multiprocessor real-time synchronization, we used
Feather-Trace to obtain the frequency, duration, and de-
gree of nesting in lock accesses in both the Linux kernel
under various workloads and soft real-time applications.
Our measurements strongly support the wide-spread as-
sumption that short, non-nested critical sections are by
far the common case in practice.

As mentioned in the introduction, we believe that
Feather-Trace may be of interest to a wider audience of
embedded and real-time systems developers. Our imple-
mentation is available under a permissive open source
license at the first author’s home page1.

References
[1] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,

R. Murray, M. Drinić, D. Mihoĉka, and J. Chau. Frame-
work for instruction-level tracing and analysis of pro-

1http://www.cs.unc.edu/˜bbb/feathertrace/ .

26



0 1 2 3
0

10

20

30

40

50

60

70

80

90

100
VLC 0.8.6c: one hour TV replay

nesting depth

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

71.0500%

14.6649%
11.8054%

2.4797%

(a)

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100
Xine−lib 1.1.7: one hour TV replay

nesting depth

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

98.2695%

1.3523% 0.3781% 0.0001%

(b)

0 1
0

10

20

30

40

50

60

70

80

90

100
Tuxracer 0.61

nesting depth

pe
rc

en
t o

f c
rit

ica
l s

ec
tio

ns

99.9522%

0.0478%

(c)

Figure 8: Distribution of nested mutex accesses in mul-
timedia applications.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100
VLC 0.8.6c: one hour TV replay

observed length (in µs)
 P(X ≤ 1) = 87.55%, P(X ≤ 5) = 98.35%, P(X ≤ 10) = 99.43%

cu
m

ul
at

ive
 d

ist
rib

ut
io

n 
of

 c
rit

ica
l s

ec
tio

n 
le

ng
th

 (i
n 

pe
rc

en
t)

 1
00

%
 =

 4
69

12
05

, a
vg

. l
en

gt
h 

= 
3.

99
93

63
 µ

s

(a)

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100
Xine−lib 1.1.7: one hour TV replay

observed length (in µs)
 P(X ≤ 1) = 57.15%, P(X ≤ 5) = 97.33%, P(X ≤ 10) = 99.17%

cu
m

ul
at

ive
 d

ist
rib

ut
io

n 
of

 c
rit

ica
l s

ec
tio

n 
le

ng
th

 (i
n 

pe
rc

en
t)

 1
00

%
 =

 3
05

55
85

6,
 a

vg
. l

en
gt

h 
= 

1.
43

90
40

 µ
s

(b)

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100
Tuxracer 0.61

observed length (in µs)
 P(X ≤ 1) = 96.34%, P(X ≤ 5) = 99.31%, P(X ≤ 10) = 99.64%

cu
m

ul
at

ive
 d

ist
rib

ut
io

n 
of

 c
rit

ica
l s

ec
tio

n 
le

ng
th

 (i
n 

pe
rc

en
t)

 1
00

%
 =

 4
18

2,
 a

vg
. l

en
gt

h 
= 

0.
55

35
76

 µ
s

(c)

Figure 9: Distribution of mutex critical section length in
multimedia applications. Note, that 99% of the critical
sections were shorter than 10µs.

27



gram executions. In VEE ’06: Proceedings of the sec-
ond international conference on Virtual execution envi-
ronments, 2006.

[2] A. Block, H. Leontyev, B. Brandenburg, and J. Ander-
son. A flexible real-time locking protocol for multipro-
cessors. In Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications, August 2007. To appear.

[3] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev,
and J. Anderson. Synchronization on real-time multipro-
cessors: To block or not to block, to suspend or spin? In
submission, 2007.

[4] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT: A testbed for empirically compar-
ing real-time multiprocessor schedulers. In Proceedings
of the 27th IEEE Real-Time Systems Symposium, 2006.

[5] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dy-
namic instrumentation of production systems. In Pro-
ceedings of USENIX ’04, 2004.

[6] U. Devi, H. Leontyev, and J. Anderson. Efficient syn-
chronization under global EDF scheduling on multipro-
cessors. In Proceedings of the 18th Euromicro Confer-
ence on Real-Time Systems, 2006.

[7] IBM Linux Technology Center. Dynamic probes. Home-
page. http://dprobes.sourceforge.net/.

[8] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. D. Silva, M. Ostrowski, J. Ap-
pavoo, M. Butrico, M. Mergen, A. Waterland, and V. Uh-
lig. K42: Building a complete operating system. In Pro-
ceedings of EuroSys 2006, 2006.

[9] J. Patry. Tux Racer.
Homepage. http://tuxracer.sourceforge.net/.

[10] M. Pohlack, B. Döbel, and A. Lackorzynski. Towards
runtime monitoring in real-time systems. In Proceedings
of the Eighth Real-Time Linux Workshop, 2006.

[11] Red Hat, IBM, Intel, and Hitachi. System tap. Home-
page. http://sourceware.org/systemtap/.

[12] A. Tamches and B. P. Miller. Fine-grained dynamic in-
strumentation of commodity operating system kernels. In
Proceedings of the Third Symposium on Operating Sys-
tems Design and Implementation, 1999.

[13] The VideoLan Project. VideoLan Client.
Homepage. http://www.videolan.org/.

[14] The Xine Project. Xine Libraries and UI.
Homepage. http://xinehq.de/.

[15] P. Tsigas and Y. Zhang. Evaluating the performance of
non-blocking synchronization on shared-memory multi-
processors. In Proceedings of the 2001 ACM SIGMET-
RICS Int’l Conf. on Measurement and Modeling of Com-
puter Systems, 2001.

[16] P. Tsigas and Y. Zhang. Integrating non-blocking syn-
chronisation in parallel applications: performance advan-
tages and methodologies. In Proceedings of the the Third
Int’l Workshop on Software and Performance, 2002.

[17] UNC Real-Time Group. LITMUSRTproject. Homepage.
http://www.cs.unc.edu/˜anderson/litmus-rt/.

[18] A. Waterland. stress. Homepage. http:// weather.ou.edu/
˜apw/projects/stress/.

[19] R. W. Wisniewski and B. Rosenburg. Efficient, unified,
and scalable performance monitoring for multiprocessor
operating systems. In Proceedings of SC 2003, 2003.

[20] K. Yaghmour. Linux trace toolkit. Homepage.
http://www.opersys.com/LTT/.

28



A Deterministic Infrastructure for Real-Time Distributed
Systems

Claudiu Farcas
Calit2, University of California

San Diego, USA
cfarcas{at}soe.ucsd.edu

Wolfgang Pree
C. Doppler Lab Embedded Software Systems

University of Salzburg, Austria
wolfgang.pree{at}cs.uni-salzburg.at

ABSTRACT
The development of reliable software for real-time systems is cur-
rently a challenge. Moreover, changing the underlying platform for
simple purposes such as a processor upgrade may severely affect
the behavior of the real-time software. Working with distributed
systems is even more difficult, and transitioning from one system
to another is typically impossible.

We address these problems through a development framework
for deterministic and portable real-time software using the Timing
Definition Language (TDL). It enables transparent, yet determin-
istic distribution of real-time components regardless of the target
platform and its deployment architecture. In this paper, we intro-
duce the algorithms and internal mechanisms for transparent real-
time distribution, and analyze the interactions between the user-
functionality, the virtual machine of the language, the communica-
tion subsystem, and the underlying platform.

1. INTRODUCTION
The advances in computational hardware and the corresponding

promises for real-time process control make ”embedding” com-
puters into many systems a common practice. Complex applica-
tions typically require distributed systems for reasons of depend-
ability (fault-tolerance), scalability, localization. A distributed sys-
tem may be more reliable than a single node system as through
replication faults on a node may be corrected by the other nodes;
thus, maintaining a high degree of dependability of the overall sys-
tem. It can also be extended by adding more processing nodes to
solve a computational-intensive job, in comparison with the case
of a single node system where a more powerful processor may be
too costly, require too much power, or simply be unavailable. On
the other hand, the complexity of the distributed systems is several
orders of magnitude more significant and harder to deal with than a
single-node system. Migrating from a single-node solution to a dis-
tributed system is hardly possible with the traditional development
methodologies for real-time systems. Even simple changes in the
topology of a distributed system or addition of new nodes become
a challenge in most applications.

To address these problems our approach for real-time distribu-
tion relies on a high-level component-oriented language that makes
the timing an explicit part of the real-time software design and de-
couples the timing from the implementation of the computational
tasks of an application. The Timing Definition Language (TDL) [17,
5] is a high-level description language for specifying the explicit
timing requirements of a time-triggered [11] application, which
may be constructed out of several independently developed compo-
nents. The actual functionality can be implemented in any imper-
ative language available for the target platform, e.g. C, C++, Java,
and later linked with the compiled TDL source. TDL relies on the
Logical Execution Time (LET) abstraction introduced in the Giotto
language [7], but goes beyond with a component model, improved
syntax and semantics, and full support for distribution.

LET means that the observable temporal behavior of a computa-
tional task is independent from its physical execution. The LET of a
TDL computation is always equal with its invocation period and we
only assume that its physical execution is fast enough to fit some-
where within the logical start and end points. Thus, it is always
defined which value is in use at which time instant and there are
no race conditions or priority inversions involved. LET introduces
a unit-delay behavior [7], which may appear as a disadvantage.
However, it provides determinism, composition [9], and platform
abstraction, which are more relevant for safety-critical systems.

This paper focuses on the algorithms and mechanisms for trans-
parent hard real-time distribution and the interplay of the compo-
nents of the run-time system. We present the distribution from the
logical point of view of the developer and then from the underly-
ing run-time system of TDL. We introduce an algorithm to bridge
the gap between the task and network communication scheduling,
and detail the interactions between the user-functionality, the vir-
tual machine of the language, the communication subsystem, and
the underlying platform. We introduce an abstraction layer for dis-
tribution and present the algorithms for data encapsulation and state
synchronization across the network.

We begin with an overview of the TDL component model and
its capabilities for structuring complex real-time applications. Sec-
tion 3 describes the notion of transparent distribution available with
TDL and briefly presents the development tool-chain. In Section 4,
we analyze the internals of the TDL run-time system, and introduce
the algorithms that govern the interactions and synchronization of
its constituents, namely the TDL scheduler, the virtual-machine (E-
Machine) for logical timing, and the communication layer TDL-
Comm. An evaluation in Section 5 illustrates our approach through
a running example. We complete the article with a section of re-
lated work and our conclusions.

29



Import
relationship

Comparator1 Comparator2

RefSignal1 RefSignal2

Filter1 Filter2 Filter3 Filter4

10ms5ms0ms 15ms 20ms

LET Semantics
Mode periods

Module M1

Sampler mode
public task

Filter
LET=5ms

S

Module M2

Generator mode
public task
RefSignal
LET=10ms

Module M3

Process mode

task
Comparator
LET=10ms

A

Figure 1: TDL Modules and LET semantics

2. TDL COMPONENT MODEL
The TDL component model relies on the concept of a module,

which may encapsulate an entire application or parts of a complex
application.The TDL modules may work independently or may col-
laborate to implement a complex behavior. The component model
allows for decomposing existing complex applications into smaller,
more manageable parts, each with specific timing and functionality,
and provides the means for deterministic component interaction.
Developers can reuse existing modules to extend the functionality
of an application or create new applications.

The TDL module acts as the unit of composition and distribution,
and may import one or more other modules as depicted in Figure 1.
Computation results or environment state can be exported from a
module to any other module that imports it. Typically, a devel-
oper may import the values of some task output ports by declaring
the corresponding task as public. This feature introduces data de-
pendencies between modules as one module provides data services
to other client modules. It is important to note that LET is always
preserved, i.e., adding a new module to an application will never af-
fect the observable temporal behavior of other modules. The TDL
compiler performs schedulability analysis using the worst-case ex-
ecution time for tasks on the target platform and issues an error if
LET cannot be maintained (e.g., wcet is too large).

Modes.. The mode of a module is a set of periodically executed
activities such as task invocations, actuator updates, and mode-
changes. The period of an activity within a mode is equal with the
mode period divided by the invocation frequency of that activity
within the mode. A module has an unique start mode.

The mode-change protocol of TDL is different from Giotto, re-
quiring new schedulability analysis [4]. A TDL module changes
at run-time its mode independently of other modules. Within a
module, TDL enforces harmonic mode switches – the mode switch
must not break the LET of any task invocation within the current
mode of the module. This restriction enables deterministic mode
switches in distributed applications. Furthermore, mode switches
in a module may break the LET of tasks from other modules, which
are not affected by the mode switch. TDL mode changes are re-
garded as instantaneous.

Tasks are computational units in TDL. A task has a set of input,
state, and output ports, along with an external implementation re-
ferred through symbolic linking. A task invocation within a mode
represents the execution of a task instance within the period of that
mode. TDL regards the tasks as scheduled elements with logical
execution time [9]. From the logical point of view, a task reads its
inputs at the release time, then it runs continuously until its termi-

nation time, when its computation results are available to the envi-
ronment and other tasks; whereas, from the platform point of view,
the task starts at some point in time after it was released, may be
preempted by some other tasks or the RTOS, and completes before
the end of its LET. The underlying assumption, which we have to
verify [4], is that the run-time system and the scheduling mecha-
nisms used for the physical execution allow each task to complete
before its deadline.

Sensors and actuators exchange information between the envi-
ronment and the tasks of a module. TDL assumes that the external
functional implementation of the sensor getters and actuator set-
ters executes in logical zero time, i.e., orders of magnitude faster
than the smallest task computation. Practical implementations may
simply read or write to dedicated memory locations or I/O ports.

Guards are lightweight Boolean functions operating on sensor
or task output values. Depending on their result at run time, they
condition the execution of corresponding tasks, actuator updates,
or mode switches.

Ports interface TDL entities within a module and between mod-
ules. There can be input, output, or state ports, each with a distinct
type (int, byte, float, etc.). Only tasks can have state ports. To im-
plement the LET mechanism, the TDL tasks have two copies of
the output ports: internal and visible. The internal output ports are
updated directly by the task functionality code, whereas the visible
ports are updated through drivers by the TDL runtime environment
at the end of the LET of the task.

The drivers as introduced by Giotto are no longer syntactically
explicit in TDL. Nevertheless, a TDL driver still performs the port-
value copying operations under the LET semantics. The improved
syntax of TDL allows the TDL compiler to automatically perform
the type checking between ports and then generate the drivers which
transport the port values between the interconnected TDL entities.

3. TRANSPARENT DISTRIBUTION
We use the term transparent distribution [5] in the context of

hard real-time application with respect to two aspects. Firstly, at
runtime a TDL application behaves exactly the same, no matter if
all modules (i.e., components) are executed on a single node or
if they are distributed across multiple nodes. The logical timing is
always preserved, only the physical timing, which is not observable
from the outside, may be changed. Secondly, for the developer of
a TDL module, it does not matter where the module itself and any
imported modules are executed. The TDL tool-chain and runtime
system frees the developer from the burden of explicitly specifying
the communication requirements of modules. It should be noted
that in both aspects transparency applies not only to the functional
but also to the temporal behavior of an application.

The advantage of transparent distribution for a developer is that
the TDL modules can be specified without having the execution on
a potentially distributed platform in mind. The only place where
distribution is visible is for the system integrator, who must specify
the module-to-node assignment.

The development process for TDL relies on the tool-chain from
Figure 2. It consists of the following functional components: a
TDL compiler, a visual editor fully integrated with the Matlab/
Simulink environment, and a corresponding run-time environment.
The TDL compiler has a plug-in architecture, which allows its ex-
tension with other tools such as automatic glue-code and bus sched-
ule generators for a target platform. Worst-case execution analy-
sis [20] can be plugged into the visual editor to enable schedulabil-
ity analysis within the TDL compiler. In this paper, we focus on the
TDL runtime environment and briefly mention the relevant aspects
of the other tools.

30



Matlab/Simulink

TDL 
Compiler

ANSI-C code 
generator

plug-in

AST

Visual TDL 
Editor

C Code generation

TDL 
runtime

Bus 
Scheduler 

plug-in
config

config
(wcet)

C Glue code

Bus schedule

AST

E-Code

C functionality

.tdl 
modules

ANSI - C 
Compiler, 

Linker

Executable 
(binary)

Libraries

Platform specifics
(makefiles, OIL,..)

Figure 2: TDL tool-chain for distribution

For distributed systems, the Bus-Schedule Generator tool [6] is a
compiler plugin that automatically compiles offline the communi-
cation schedule. Its configuration file contains the list of computing
nodes, the assignment of TDL modules to nodes, and the proper-
ties of the communication channels (e.g., bus rate, minimum and
maximum packet sizes). The tool analyzes the import relationships
in the TDL modules to identify their remote dependencies and the
set of messages required for exchanging the information between
producer tasks and consumer entities such as tasks, actuators, or
guards. It then tries to generate a TDMA communication schedule
that satisfies the requirements of the TDL modules and their mode
changes. The schedule specifies which node sends information at
which time; the structure of the information depends on the current
modes at run-time [6].

As a first step towards fault-tolerance TDL supports module repli-
cation. The replicas are identified from the module-to-node assign-
ment in the configuration file of the tool. We send the messages
produced in all service-provider modules and we process them in
all their stubs through majority voting. By scheduling the repli-
cated messages as any other message, the tool also achieves tem-
poral isolation between replicas that improves the recovery chances
from transient failures.

4. RUN-TIME MECHANISMS
We introduce in Figure 3 the TDL runtime environment consist-

ing of three logical components deployed on each node: virtual
machine, scheduler, and communication layer. The virtual machine
supervises the logical behavior of the application and its interaction
with the environment. The TDL Scheduler performs the mapping
of platform time to logical time, the invocation of the virtual ma-
chine and the communication layer, and the preemption and dis-
patching operations of the user tasks. The communication layer
handles the distribution aspects.

4.1 E-Machine
For portability reasons, TDL reuses the approach of a virtual ma-

chine, the E-Machine introduced in Giotto [8], to handle the logical
aspects of its runtime environment. In addition to Giotto, the TDL
E-Machine handles parallel and distributed modules. It executes a
small set of instructions (TDL E-Code [17]) related only with the
logical aspects of a module: when and which tasks to release, and
which drivers to execute for the correct information flow between
ports. The functionality of the module runs in the native code of
the platform for maximum performance.

In distributed systems, a service-provider module and its client
modules (there can be more than one module importing a service
provider module) may be placed on different nodes. The TDL com-
piler generates a stub of the service-provider module on each node

Platform (Hardware + RTOS)
Platform Abstraction Layer

E-Machine TDL Scheduler TDLComm

E-
Code

Tasks

Ports

MessagesDrivers

Sensors / Actuators

N
od

e 
co

nf
ig

Bu
s 

sc
he

du
le

M
od

ul
e

Figure 3: Run-Time Environment

that does not contain it but contains one of its clients. A stub mod-
ule is a logical image of a service-provider module. It does not
contain any functionality for tasks, but only their output ports. This
concept enables the seamless distribution of modules in the system
and improves the performance on the nodes containing the client
modules as they do not have to locally execute the service module.
Nevertheless, the communication layer must synchronize the state
(mode, port values, timing) of a service provider module with all
its stubs (see Section 4.3).

From a logical point of view, the E-Machine executes the E-Code
in logical zero time, for each module individually, regardless of its
type, i.e. ”normal” module or stub module. From the platform
point of view, the TDL Scheduler that invokes the E-Machine ac-
counts the time spent interpreting E-Code and adjusts its decisions
accordingly.

The TDL compiler generates an E-Code file per module as a
compact representation of the activities defined in that module and
their timing information. It also includes the dependency informa-
tion related with the import relationships between modules. The
Code-Generator Plugin converts this information into the corre-
sponding drivers and associated glue-code. Thus, the E-Machine
can simply execute the E-Code instructions and call the appropri-
ate drivers to ensure the correct intra- and inter-modules data flow.

4.2 TDL Scheduler
The TDL Scheduler is the actual bridge between the TDL se-

mantics and the underlying platform (real-time operating system,
computing hardware, and distributed system architecture). Its pur-
pose is to run the E-Machine for each module at the right time as
defined by the TDL semantics and then to execute the released tasks
according to a specific scheduling policy. In a distributed setup, it
furthermore has to coordinate the exchange of data between the
nodes via the TDLComm layer.

To support the parallel composition of modules and to execute
them on the same node, we have to allocate a fraction of the CPU
time to each module of the node. Traditionally, we would solve this
problem with clock-driven scheduling [13] via a static time-sharing
mechanism, or CPU partitioning. Within a scheduling cycle of the
GCD of all activity periods from all modules, we would allocate
for each module a time quantum proportional with the maximum
load the module generates on the CPU. However, this approach
introduces a high context-switch overhead on the running system,
because of the infinitesimal time quantum required to implement
this mechanism.

As alternative, we could use a on-line scheduling algorithm, such
as Rate Monotonic (RM) or Earliest Deadline First (EDF) [12]. In
the following, we present a scheduling approach for TDL using
EDF on the global set of tasks from all modules. Conceptually, the
modules are simply logical constructs; hence, from a scheduling

31



perspective we can treat equally all tasks from all modules. The
only property that matters for EDF scheduling is the deadline of
the task, regardless of its parent module. In addition, as the ap-
plication is strictly time-triggered and we know at compile time all
task and mode periods, we can benefit from this apriori information
to reduce the run-time scheduling overhead by using precompiled
tables. The TDL Scheduler avoids unnecessary context switches
by running only when it has to invoke the E-Machine/TDLComm
or when a task completes. Consequently, it allows a better CPU
utilization than the partitioning approach. Note that its sleeping in-
terval is not constant as it changes with every scheduling decision.

Using the EDF algorithm, we build for every module a set of
dispatch tables DT [M ], one for each of its modes, which captures
at compile-time the dispatching order of the tasks within a mode.
The dispatch table DT [M ]m of a mode m contains a set of entries,
each entry consisting of a task and its relative deadline since the
beginning of the mode. On single node systems, these deadlines
are simply multiples of the task periods; whereas for distributed
systems, the bus schedule reduces the available time for the pro-
ducer task executions by moving their deadlines sooner, at the start
time of the corresponding messages. Note that also other schedul-
ing policies (e.g., power-aware) can be used to build the dispatch
tables.

For each module M , we have an associated dispatch table index
iM , which points to a task entry in the dispatch table of the current
mode DT [M ]m that has a deadline closest to the current logical
time. Each time the E-Machine releases a task, it adds the task to
the set of active tasks Tasksa[M ] of that module. It also resets the
index iM when it performs a mode switch in a module or starts a
new cycle of a mode. The set of active tasks in a module is al-
ways correlated with the dispatch table of the current mode of that
module.

We introduce Algorithm 1 for parallel execution of multiple mod-
ules using a lightweight EDF scheduling with precompiled dispatch
tables. The complexity of the algorithm is O(‖Modules[N ]‖),
where ‖Modules[N ]‖ represents the number of modules on a node
N , because we have to perform EDF scheduling only among a sin-
gle task per module. Note that it is not possible to create a dispatch
table for all tasks from all modules because they can switch their
modes independently. Also, creating dispatch tables for all combi-
nations of modes from all modules is highly unpractical.

We note with t the current absolute logical time and with tm the
absolute logical time when the mode m started its current period.
We use tm to convert from the deadlines relative to the beginning of
the mode to the absolute deadlines required by the EDF algorithm.

The algorithm proceeds through five steps: update the state of
the system (value and time), perform the network communication,
perform the logical actions according to the LET semantics, sched-
ule the active user tasks, dispatch one task, and sleep until the task
completes or a precomputed timeout expires.

Algorithm 1: Task/Bus scheduling
// Step 1 − UPDATE STATE
tbegin ← Get Current Time()
Save Task Context and Preempt(τold)

// account for elapsed time, where t is the logical time
// and δ is the waiting interval from the previous invocation
if (t− tbegin < δ) // a task completed sooner

// update δ to reflect elapsed time
δ ← t− tbegin

end if
Update Time(t, δ)
Update Time(EMachineWait, δ)

// Step 2 − COMMUNICATION
NetWait← NextPacket.time − t mod NetworkPeriod
if (NetWait = 0)

Invoke(TDLComm) // data exchange required
end if

// Step 3 − LOGICAL ACTIONS
if (EMachineWait = 0)

// at least one module has to perform logical activities
Invoke(E−Machine) // returns Time to Next Activity
EMachineWait← Time to Next Activity

end if

// Step 4 − USER−TASKS SCHEDULING
δ ←∞ // retains closest task deadline from all modules
foreach M ∈ Modules // all modules of this node

// skip past entries
increment(iM ) while(t− tm >= DT [M ]m[iM ].dln)
i← iM // seek the first active task
while(i < ‖DT [M ]m‖)

if (δ > DT [M ]m[i].dln − tm and DTm[i].τ ∈ Tasksa[M ])
δ ← DT [M ]m[i].dln − tm
τnew ← DT [M ]m[i].τ
break

else
i← i + 1

end if
end while

end foreach // τnew has the closest deadline from all modules

// Step 5 − DISPATCHING & WAITING
δ ←minimum(δ, EMachineWait, NetWait)
toverhead ← Get Current Time() − tbegin

δ ← δ − toverhead // account for elapsed time
Set Alarm for Sleep(δ) // will sleep after dispatching the task
Dispatch Task(τnew) // start/resume the execution of task τnew

In the step 1, we first preempt a previously running task and save
its current state. The time interval δ represents the sleeping interval
of the TDL Scheduler from its previous invocation. We first ver-
ify that the Scheduler slept for the required interval or that a task
completed sooner and thus the Scheduler was invoked to dispatch
another task. We then update the current logical time t and the time
interval until the next logical activity from a module, i.e. the mo-
ment when the E-Machine has to execute the E-Code of a module.

The bus scheduler tool provides the communication schedule for
each node in the form of a table, which lists the packets and their
timing. Thus, at step 2, we lookup in this table the time of the fol-
lowing packet and compare it with the current time correlated with
the network cycle time. If they match, we invoke the TDLComm
layer to send or receive that packet.

Afterward, at step 3, we evaluate the existence of an immedi-
ate logical activity to perform. In the case, when any module has
such upcoming logical activity (e.g. beginning or end of a task’s
LET, actuator updates, mode switches), we invoke the E-Machine
to execute the E-Code of the appropriate modules.

Reaching the step 4, we proceed to the actual scheduling of the
active tasks from all modules. We process all modules and skip
the entries in the dispatch table of their currently executing modes
that have the deadlines less than the current logical time relative to
the beginning of the corresponding mode. We then select as the
next dispatch-able task the first task that is active in the dispatch
table, as it would have the closest deadline. We cannot increment
the dispatch index at this point as it could be that more tasks have
the same deadline but have not been released yet (the alternative of
keeping track of both released and running tasks requires twice the
amount of memory than the simple set of active tasks Tasksa[M ]).

32



TDL Scheduler

Fault-Tolerance

Send Receive

Clock 
Synchronization

Encapsulation Extraction

packets

packets

Packet Exchange

Messages Ports

Communication 
Protocol

Optional FT Layer

Bus Schedule

Logical
Time

Mappings

Figure 4: TDLComm services

We update δ with the current closest deadline and the supposed next
task to dispatch τnew. After we iterate through all modules, we
obtain the smallest sleep/dispatch interval until we have to invoke
the scheduler again.

At step 5, we compute the waiting interval as the minimum be-
tween the time until the next dispatching, logical, and communica-
tion actions. We then subtract from the computed δ the overhead
of communication, scheduling, and E-Code execution, to obtain a
more accurate estimation of the time allocated to the next dispatch-
ing task.

With the information about the next task to dispatch and an esti-
mation of its running time, the Scheduler can prepare its next invo-
cation, dispatch the task and sleep. From the calculation of δ, we
can see that the algorithm is invoked repeatedly, but without a fixed
period.

We implemented the algorithm on top of existing real-time op-
erating systems such as OSEK [16] or RT-Linux by enforcing the
dispatching operations through task/thread priorities. In contrast
with classical implementations of EDF on top of fixed-priority op-
erating systems requiring a large number of priority levels [3], our
algorithm can work with just three priority levels: high - for the
task/thread implementing the TDL runtime (scheduler, E-Machine,
TDLComm), medium - for the next/current task to dispatch, and
low - all other active tasks. In this way, we still have linear com-
plexity O(‖Modules[N ]‖) because the RTOS scheduler becomes
a dispatcher of the first active job (TDL scheduler or dispatched
task).

4.3 TDLComm
The TDLComm layer abstracts the physical exchange of infor-

mation between the nodes of a distributed system. From a logical
point of view, using the precompiled scheduling information, the
TDLComm layer performs at run-time three steps: the encapsu-
lation of port values from service provider modules into packets,
the transmission of the packets over the communication medium,
and the extraction of stub-port values from the packets received on
the client node (see Figure 4). Each node contains the subset of
the global communication schedule relevant for its activities. This
subset contains also the failure-management information about the
replicated messages how to consolidate them.

For its time-triggered transmission and reception of packets, the
TDLComm layer relies on the TDL Scheduler to invoke its func-
tionality at moments of time defined by the communication sched-
ule. On the other hand, it provides the clock-synchronization ser-
vice on each node of the system, and introduces constraints on
the scheduling of the tasks that exchange values over the network.
Thus, the close cooperation between the TDLComm layer and the
TDL Scheduler is crucial for a successful implementation of the
transparent distribution concept of TDL.

The TDLComm layer uses an innovative TDMA protocol [6]
that dynamically multiplexes the messages over a static schedule.

To handle the independent mode switches of TDL modules, this
protocol considers the communication period as the smallest in-
terval where mode switches cannot occur, that is the GCD of the
mode-switch periods of all producer modules. The resulting com-
munication period equally divides the period of any mode of a pro-
ducer module into a fixed number of phases. The phases of a mode
are mutually exclusive, and any producer module may change its
mode only at phase boundaries.

According to this TDMA protocol, any node is allowed to send
messages in statically defined slots only. The run-time environ-
ment implements a mechanism for global clock synchronization
over the network [14]. The data exchange model implemented by
the scheduling tool adheres to the Producer-Consumer model. The
nodes that generate information (the producers), trigger the sending
of information over the network. Contrary to the classical Client-
Server model, in the Producer-Consumer model the consumers (the
nodes that need the information) do not send any requests to the
producers.

Messages, Datagrams, and Packets.
A message represents a data exchange between the ports of a pair

of TDL entities from two modules located on different nodes in a
distributed system. It corresponds to a value exchange operation
between sets of ports, discarding the output ports of the producer
entity that are not used by a consumer entity. It has a fixed size
equal with the sum of the sizes of the producer port types, and two
time constraints derived from the availability of the corresponding
port values and the latest allowable receive moment (i.e., the end of
the LET of the producer task).

The algorithm of the bus scheduler tool identifies the messages
from producer tasks per each phase of a mode, and then it associates
a message with the phase at the end of the producer’s task LET. As
the phase and the mode in which a message is produced change at
run-time, we also associate to each message a tag that encapsulates
this information.

A message belongs to a particular task instance; thus, it is not
periodic. The number of messages depends on the periods of the
producer tasks, the number and period of mode switches, and pos-
sibly on the number and periods of the consumer entities [4].

A datagram represents a collection of messages exchanged at the
same time instant. It contains one or more messages; thus, it refers
indirectly to one or more task entities that provide output values
from the same or different modules of a node. A datagram has a
fixed size equal with the sum of the sizes of each of its message
constituents. During the generation of the communication sched-
ule, the scheduling algorithm may grow or shrink the size of a data-
gram by adding or removing messages; however, once a feasible
communication schedule is found and generated, the allocation of
messages to datagrams remains fixed.

We refer to a packet as the unit of information to send on the
communication channel. A packet has a minimum and maximum
size derived from the physical properties of the communication
channel and the low-level data-exchange protocol. Any packet may
contain one datagram only, but more packets may refer to the same
datagram. Thus, we can consider a packet as a physical instance
of a datagram on the communication channel. Note that in contrast
with a datagram, a packet contains actual port-value information,
whereas a datagram acts just as a logical container. The order and
timing of the packets is fixed within a communication round and
expressed statically in the communication schedule. In addition to
the actual message data, a packet may contain control information
such as tags, timestamps, or other communication-protocol related
information.

33



time
1

1

M1

M2

2 3

2

4

LET Comparator

LET Filter

TDLComm2

bus

TDLComm1

2 4

Node 1

Node 2

stop 
driver

stop 
driver

release driver release driver

terminate driverM1 stub

timeM1

M2

LET task1

LET task2

TDLComm2

bus

TDLComm1
Node 1

Node 2

release 
driver

release 
driver

terminate 
driverM1 stub terminate 

driver

terminate 
driver

buffering buffering

direct r/w direct r/w

stop 
driver

stop 
driver

time
1

1

M1

M2

2 3

2

4

TDLComm2

bus

TDLComm1

2 4

release driver release driver

terminate driverM1 stub
terminate 
driver

direct r/w direct r/w

a) Stop drivers initiated encapsulation b) TDLComm initiated encapsulation

LET Semantics
if M1 and M2 were on the same node

terminations

releases

physical instance

There are no physical tasks

Figure 5: Information exchange between nodes

A packets has two important attributes: direction and time. The
direction specifies the type of operation the TDLComm layer has to
perform with the packet. The time attribute for a sending operation
reflects the logical time when the TDLComm layer of a node con-
taining a producer module has to send the packet; whereas, for the
receiving operation it reflects the logical time when the packet was
already received by the network processor of the node containing
the client module, and stored in the processor’s local buffers or the
main memory. In addition, a packet has an index and a datagram
reference.

Sending information
We identified two means for capturing the information from a pro-
ducer module intended for its stubs. The original approach of TDL
relies on the stop drivers of the producer tasks. In this case, af-
ter the completion of the tasks, their stop-drivers copy the relevant
internal port values to the TDLComm layer as presented in Fig-
ure 5 (a). On the client-node side, the terminate driver of the stub
of the service-provider module performs the port-value copy oper-
ation from the TDLComm layer into its visible ports at the end of
the LET of the producer task. The release driver of the client task
reads the value from the visible output ports of the stub as if the
producer task was running on the same node. With this approach,
there are multiple drawbacks from the additional meta-information
required at the producer module within the task stop-drivers and at
the stub module within the task-termination drivers about the TDL-
Comm data-structures, operational mode of the module, and logical
time. This requires different glue-code (containing the drivers) for
the provider module in the case of single-node versus distributed
systems.

We take a better approach that gives the TDLComm layer di-
rect access to the relevant internal ports at the moments defined by
the TDL Scheduler and the communication schedule as depicted
in Figure 5 (b). Thus, TDLComm reads directly the internal out-
put ports of the producer task, encapsulates them into a packet and
sends the packet to the other nodes. On the client-module side,
the corresponding TDLComm layer invoked by the TDL Sched-
uler at the receiving time extracts the port values from the received
packet and stores them directly into the internal output ports of the
stub module. Hence, the stop-drivers are no longer needed, the
stub task-termination drivers are simply identical with its service-
provider module, and the glue-code of the service provider module
remains the same regardless of the system architecture. Note that
under any circumstances the internal output port values are avail-
able only to the TDLComm layer before the end of the LET of
the corresponding task. All the user tasks in the system can access
only the visible output port values, which retain their previous val-
ues until the termination event of the task (when the termination
driver updates them from the values of internal output ports).

The overhead of copying the data from the main memory to the
network processor memory may be negligible, but on slow systems
it has to be evaluated and considered as networking overhead when
performing the time-safety checking of the distributed system and
at runtime within the TDL Scheduler.

The transmission of the computation results of a producer mod-
ule to its stubs requires a data encapsulation phase. For this pur-
pose, we introduce the Algorithm 2 that computes first the phase of
the current mode of a module and creates a corresponding tag from
the module, mode, and phase. It then starts building a new packet
by matching the set of possible messages with the previously iden-
tified tag. As the tag captures the dynamic state of the module and
there may be more than one message with the same tag, it packs
the tag and the content of the corresponding ports into the packet.
For the case where multiple messages from different modules and
phases are merged into a larger frame, we have to repeat the algo-
rithm for each module.

Algorithm 2: Dynamic packet encapsulation
// t is the current time
// m ∈ Modes[M ] is the current mode of M
// tm is the time when the current mode period started
// d is the datagram corresponding to the NextPacket to send

NextPacket.data← ∅ // first construct a new packet
foreach M ∈ Modules[N ] // all modules on the node N

φm = (t− tm) mod NetworkPeriod // compute phase
tag ← (M, m, φm) // tuple expressing module dynamics
Store Tag(NextPacket.tags, tag) // add tag
foreach msg ∈ d // process all messages

if (msg.tag = tag)
v ← InternalPortValue(msg.PortReference)
NextPacket.data← NextPacket.data ∪ {v}

end if
end foreach

end foreach
// Send NextPacket and advance its index

Receiving information
The extraction of port values from the packets relies on the tag
information from a received packet. Hence, we introduce the Al-
gorithm 3 that first identifies the tag of the received packet and then
decodes the state of the producer module, its mode, and current
phase.

When the node containing a client module and a stub of the ser-
vice provider module receives the packet, the producer module may
have changed into a new mode at the beginning of the communi-
cation cycle. In this case, we change the mode of the stub module
and update its mode start time t′m and phase φ′

m. We proceed to
the extraction of the packet’s content and store the received values

34



Internal out Visible out

I
D
L
E

I
D
L
E

I
D
L
E

4

Active

1

1

2

1 Act.

3

2
I
D
L
E

2

Fault-Tolerance

Send Receive
Encapsulation

Extraction
packet

Datagrams

Fault-Tolerance

packet

Datagrams

Terminate 
driver

Physical Bus

0ms 2ms 20ms

RefSignal
portsInternal out Visible out

Node 1

TX RX
TDLComm Actions

Data

Control

5ms 8.5ms 10ms

I
D
L
E

Instance number

12ms 15ms 17.5ms

I
D
L
E

Generator mode period Sampler 
mode period

Network period

Deadlines

Terminate 
driver

Filter
ports

8.5ms, 18.5ms, ...

Terminate 
driver

RefSignal 
stub ports

Internal out Visible out

Terminate 
driver

Filter stub
ports

Internal out Visible out

Terminate 
driver

Comparator ports

Internal out Visible out

1

0ms 20ms

Node 2

E-Machine/
TDLComm

TDL Scheduler

8.8ms 10ms

M3: Comparator I
D
L
E

18.8ms

I
D
L
E

Process mode periodNetwork period

M1, M2 Stubs

15.5ms

8.8ms, 18.8ms, ...

Release
driver

E-Machine Actions

Active

M1:Filter task
M2:RefSignal task User space

Kernel spaceTDL Scheduler
E-Machine/
TDLComm

Task releases

Figure 6: Data flow between modules through TDLComm

into the corresponding internal ports of the stub module.
The protocol implemented by TDLComm brings flexibility in

static communication scheduling, by allowing dynamic mapping
of messages over the same frames. Nevertheless, it still provides
deterministic communication patterns and a solid foundation for
transparent distribution.

Algorithm 3: Stub synchronization
// t is the current time
// Mstub is a stub module for M
// m ∈ Modes[M ] is the current mode of M
// m′ ∈ Modes[Mstub] is the current mode of Mstub

// tm is the time when the current mode period started
// t′m is the time when the current stub mode period started
// d is the datagram corresponding to the NextPacket to receive

foreach tag ∈ NextPacket.tags
(M, m, φm)← tag // decode tag
φ′

m = (t− t′m) mod NetworkPeriod // compute stub phase
// synchronize timing of producer and stub
if (m′ 6= m) // producer has changed mode during this phase

t′m ← bt/NetworkPeriodc ·NetworkPeriod
m′ ← m // update mode of stub and its start time
φ′

m ← φm // update mode phase
end if
foreach msg ∈ d // process all messages

if (msg.tag = tag)
v ← FetchPortValue(NextPacket.data)
SetInternalValue(msg.PortReference, v)

end if
end foreach

end foreach // internal ports & mode of stub are synchronized

5. EVALUATION
We take as example the application containing the three modules

from Figure 1. In this simple application, each module has only
one operating mode containing one task. The first module has a
sensor connected to the input of the Filter task, which is invoked
with a period of 5ms. The RefSignal task of the second module
has a period of 10ms and only state ports to retain its state between
consecutive invocations. The third module has no sensor inputs
but imports the other two modules to access the outputs of their
tasks. The Comparator task is invoked every 10ms to perform some
computations and provide their result to the environment via an
actuator.

From a logical point of view, the three module run in parallel
regardless of the underlying platform and its capabilities. The LET
semantics dictate that the first output of the RefSignal goes to the
second invocation of the Comparator (in the second cycle of the
Process mode). Similarly, the output of the second instance of the
Filter reaches the second instance of the Comparator, then the fourth
output of Filter reaches the third output of the Comparator and so
on. This is the so-called unit-delay behavior (see Figure 1).

We consider now the case of a distributed system, where the first
two modules are located on the node 1 and the third module on the
node 2. Figure 6 presents on the upper part the CPU scheduling,
and in the lower part the mechanism for transparent distribution
(without the clock synchronization service).

On the first node, the TDL Scheduler invokes the TDLComm
layer to perform the clock synchronization of the two nodes, and
then it invokes the E-Machine to initialize the ports of the tasks
and release the tasks of both modules. The deadline of the Filter
task is sooner than the deadline of the RefSignal task; therefore, the
Scheduler dispatches the Filter task and keeps the RefSignal task
into the active state. The run-time environment of node 2 performs
the same steps and dispatches the Comparator task.

The two nodes run in parallel, each executing one task until the
moment of 2ms, when the Filter task completes its execution. The
scheduler of the first node is invoked and dispatches the RefSignal
task, whereas the second node continues its computations undis-
turbed. At 5ms, the scheduler of the first node preempts the RefSig-
nal task to invoke the E-Machine that first executes the termination
drivers of the Filter task and then releases a new instance of this
task. At this point both tasks on the first node have the same dead-
line of 10ms. We assume that the scheduler dispatches the Filter
task that completes its computations sooner than its first instance
(around 6.5ms). The scheduler dispatches the remaining RefSignal
task that shortly completes its computations.

Meanwhile, the second node completed the execution of the Com-
parator task around 7ms and idles. We assume that the communi-
cation schedule specifies the sending of a packet from the first node
to the second at 8.5ms. As there is no other active task, the node 1
remains idle until this moment. The scheduler on node 1 invokes its
TDLComm layer to capture the internal output port values of the
two tasks. The results are encapsulated and transmitted over the
network in 300us, reaching the second node at the time of 8.8ms.
The Scheduler of the first node returns to the idle state, whereas the
Scheduler of the second node wakes up and executes its TDLComm

35



layer to extract the data from the received packet and update the in-
ternal output ports of the two stub modules. Afterward, it reenters
the idle state until the beginning of a new mode cycle.

When the logical time reaches 10ms, on both nodes, the TDL
Scheduler invokes the TDLComm layer for clock synchronization
and then invokes the E-Machine. The virtual machine executes on
the first node the termination drivers of both tasks, thus making
their outputs available to the environment. Afterward, it begins
a new mode cycle in each module and releases new instances of
the Filter and RefSignal tasks. On the second node, the E-Machine
executes the stub termination drivers and makes the computation
results of the two modules from the first node available to the lo-
cal environment. Thus, the release drivers of the Comparator task
read the correct values as if all modules were executed on the sec-
ond node. The new cycle of the third module begins with another
release and dispatch of the Comparator task.

0

5000

10000

15000

20000

25000

30000

35000

CPU cycles

1 2 3 4 5

avg TDL

max TDL

avg overall

max overall

Sets of M1, M2, M3

Sets of M1, M2
0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5

avg TDL

max TDL

avg overall

max overall

CPU cycles

Non distributed

Distributed

Figure 7: CPU utilization

In the second network cycle, assuming that the sensor values re-
quire less filtering, and the comparison takes less time, all tasks
from all modules complete their execution sooner than in the first
network cycle. Nevertheless, the behavior is still the same and the
communication pattern remains unchanged. It also matches the be-
havior of the modules on a faster single-node system, thus, illus-
trating the benefits of our approach for distribution.

In Figure 7, we measured using Avrora [18] the number of CPU
cycles required for the execution of the TDL runtime environment
and the overall utilization. The system under evaluation is an At-
mel AVR microcontroller with TDL running on the bare hardware
(microkernel design). We start with one set of the three modules
on a single node. We continue by adding sets of (M1, M2, M3)
up to 15 modules per node and observe that the CPU utilization
grows linearly with the number of modules to execute. In correla-
tion with previous research for Giotto [10], our measurements in-
dicate aprox. 1.5% CPU utilization on a similar platform, proving
that executing parallel modules increases the development flexibil-
ity at no performance penalty. In the second graph, we distribute
the module M3 on a second node connected via CAN (with our
TDMA protocol on top), and use sets of (M1, M2) for testing. The
CPU utilization on the first node drops significantly and the sys-
tem maintains its observable behavior unchanged. Thus, we can
make better use of the available resources of the target platform in
a distributed system.

6. RELATED WORK
Giotto [7], the precursor of TDL, is primarily an abstract mathe-

matical concept and there exist only simple prototype implementa-
tions, which show some of the potential of LET: static time-safety
checks and platform-independent embedded code (E-Code) exe-
cuted by virtual machines. Its main focus are the single-node sys-
tems with limited support for task-level distribution. The developer
has to annotate the Giotto source code with network specific pa-
rameters such as the hostname and ports; thus, mixing the platform-
independent and platform-dependent code. The actual implementa-
tion of the communication has to be coded manually with so-called
scheduling-code instructions. In other words, no tools automati-
cally generate the message schedules for the bus communication.

Our approach is more realistic and takes into account the com-
plexity of the real-world applications, where entire parts of an ap-
plication are distributed - modules. The key elements for the trans-
parent distribution in this case are the stub module concept and the
TDLComm layer that decouples the distribution aspects from the
rest of the run-time environment and frees the developer from the
burden of developing individual modules towards a distributed so-
lution. The integrated communication and task scheduling make
our approach a feasible solution for distribution, with support for
parallel module execution with data dependencies between mod-
ules regardless of their placement on the network.

TTP [19] protocol and its related tools provided by the TTTech
company approach the problem of building real-time distributed
system with proprietary, expensive, high-confidence hardware that
features membership services, time-triggered transmission of mes-
sages and distributed clock synchronization. In addition, in its cur-
rent state the developer has to consider in advance the platform
topology, the number and type of messages exchanged between the
nodes. The schedule itself is then generated with the TTPplan tool,
but it cannot support multiple application modes. The possibility
of independent mode switches on each node, by arbitrary modules
is simply out of the modeling possibility of the current tools.

Our approach abstracts from the communication infrastructure
through transparent distribution, which shields the developer from
ever defining each message individually or even designing for a
particular distributed platform. Modules can be developed indepen-
dently and later integrated without affecting their timing behavior.

FlexRay [1, 2] is an emerging high-speed fault-tolerant protocol
for control applications. A group of companies including BMW,
Volkswagen, DaimlerChrysler, Bosch, Philips, and Freescale is ac-
tively developing it, with its specifications in the final phase. Apart
from time-triggered operations, its focus is flexibility. Thus, it can
operate in both active star and passive bus topologies, and can ac-
commodate both static and dynamic parts in its communication
rounds. Node may be connected through one or two communica-
tion channels (for redundancy), and may transmit the same data on
both channels, or different data on both channels, in a given current
time slot. However, given its age it is mostly implemented using
proprietary ASIC chips and its adoption in the automotive industry
has still to gain momentum. The development tools for it have also
limited capabilities, comparable with the ones for the TTP proto-
col. Thus, the potential of the protocol remains still hindered by
inappropriate software.

The presented approach is currently under evaluation on this
platform and preliminary results show that it is possible to gain
the benefits of using this protocol and accompanying hardware in
addition to the transparent distribution of the TDL components. A
description of the model-driven development process for a FlexRay
platform using TDL is available in [15].

36



7. CONCLUSIONS
The presented development methodology goes significantly be-

yond Giotto and relives the developer from the burden of explicitly
designing the application for a distributed system and allows the in-
tegration of an application out of individually developed modules.
It also reduces the dependence on proprietary networking technolo-
gies for real-time systems, while still benefiting from their capabil-
ities when such networking options are available. Future research,
implementation, and testing efforts are required to show the scal-
ability of transparent distribution in complex scenarios. Remain-
ing challenges are better heuristics for generating communication
and task execution schedules to account for power/bandwidth us-
age or other dynamic environments, and strategies for avoiding the
re-generation of schedules when components are added or modi-
fied.

8. REFERENCES
[1] J. Berwanger, C. Ebner, and et al. FlexRay - The

Communication System for Advanced Automotive Control
Systems. In SAE World Congress, Detroit, MI, Apr. 2001.
Society of Automotive Engineers Press. 2001-01-0676.

[2] F. Bogenberger, B. Müller, and T. Führer. Protocol overview.
FlexRay International Workshop: The Communication
System for Advanced Automotive Control Applications, Apr.
2002.

[3] G. C. Buttazzo. Rate monotonic vs. EDF: Judgement day.
Embedded Systems, pages 67–83, Sept. 2003.

[4] E. Farcas. Scheduling Multi-Mode Real-Time Distributed
Components. PhD thesis, Department of Computer Science,
Univ. of Salzburg, Austria, 2006.

[5] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent
distribution of real-time components based on logical
execution time. In Proc. of LCTES. ACM Press, 2005.

[6] E. Farcas, W. Pree, and J. Templ. Bus Scheduling for TDL
Components. LNCS - Dagstuhl Conference on Architecting
Systems with Trustworthy Components, May 2006.

[7] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A
time-triggered language for embedded programming. In
Proc. of EMSOFT, LNCS 2211, pages 166–184. Springer,
2001.

[8] T. Henzinger and C. Kirsch. The Embedded Machine:
Predictable, portable real-time code. In Proc. of the PLDI,
pages 315–326. ACM Press, 2002.

[9] C. Kirsch. Principles of real-time programming. In Proc.
International Workshop on Embedded Software (EMSOFT),
LNCS 2491, pages 61–75. Springer, 2002.

[10] C. Kirsch, M. Sanvido, and T. A. Henzinger. A
programmable microkernel for real-time systems. Proc. of
VEE, 2005.

[11] H. Kopetz. The Time-Triggered Model of Computation. In
Proc. of the IEEE Real-Time Systems Symposium, 1998.

[12] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in hard real-time environments. Journal
of the ACM, 20(1):46–61, Jan. 1973.

[13] J. W. S. Liu. Real-time Systems. Prentice Hall, 2000.
[14] G. Menkhaus, M. Holzmann, and S. Fischmeister.

Time-triggered Communication for Distributed Control
Applications in a Timed Computation Model. In 23rd Intl.
Digital Avionics Systems Conference. IEEE Press, 2004.

[15] A. Naderlinger, J. Pletzer, W. Pree, and J. Templ.
Model-Driven Development of FlexRay-Based Systems with
the Timing Definition Language. Mineapolis, May 2007.

[16] OSEK Group. OSEK/VDX Operating System v2.2.3, and
OSEKtime - Time-Triggered OS v1.0, 2005.

[17] J. Templ. TDL Specification and Report. Technical report,
University of Salzburg, Austria, http://www.
softwareresearch.net/site/publications/C059.pdf, 2004.

[18] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable
sensor network simulation with precise timing. IEEE Press,
Los Angeles, CA, 2005.

[19] C. G. TTTech. TTP/C Protocol Specification, Version 1.0.
Wien, Austria, June 2002.

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,
T. Mitra, F. Muller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström. The Worst-Case Execution Time Problem –
Overview of Methods and Survey of Tools. Tech. Report.
Mälardalen University, Sweden, Mar. 2007.

37



 ! "#$%&'() *+,-.+.!/0/12! 23 #4!5672!289 :.05/1;. #.+0!/159

<7.9.7;1!= >2++8!150/12! <72/252-9

∗

 !"#$%&' (%&'

1
)%*+" ,$ -%.%/0

2
1/20*." 3%&'$"4%&&$56$&+0&.0//$

1

'0*%/78900+:;20*<0/0=;07! >%*+";7$&%.%/09'>;+"> %/20*."900+:;20*<0/0=;07!

1
?&$40*:$.= "@ A%/$@"*&$% %. B0*<0/0=C A1C ?31

2
 0&0*%/ )"."*: DE,C (%**0&C )FC ?31

 !"#$%&#

 !"#$%&"&'( )*+#,-.* / )0 1&2*3( +%* -"#%*+(-"43!

'(*2 -" 1&2*356+(*2 2*(-4" 7&8( 9&% ,$* 2*.*3&:1*",

&9 *16*22*2 #&",%&3 +::3-#+,-&"(; <" ,$-( :+:*%= 8*

:%*(*", (*1+",-#( :%*(*%.-"4 -1:3*1*",+,-&"( &9  )

#&11'"-#+,-&" 9&% 1'3,-5%+,* ,+(>(; ?$* -1:3*1*",*2

:%&,&#&3( 2*@"* ,$* +((-4"1*", &9 -"2*A*( &9 ($+%*2

6'B*%( ,& 8%-,*% +"2 %*+2*% ,+(>( +, +#,-.+,-&" ,-1*=

%+,$*% ,$+" +, *A*#',-&" ,-1*= +"2 ,$*%*9&%* %*C'-%*

>*%"*353*.*3 ('::&%,; D* :%&.-2* ,$* 2*,+-3( &9 ,8&

#&"(,+",5,-1* (&3',-&"(= 2*.*3&:*2 -" ,$* E 3+"4'+4*=

+"2 '(-"4 ,$* +',&1&,-.* F GH F (,+"2+%2 9&% :&%,+5

6-3-,! +"2 %*'(+6-3-,!; )'"5,-1* #&1:3*A-,! +"2 1*15

&%! %*C'-%*1*",( +%* 2-(#'((*2 9&% ,$* ,8& :%&,&#&3 -15

:3*1*",+,-&"( +"2 ,%+2*&B( +%* +"+3!I*2;

' ()#$*+,&#-*)

 !"#$%&'(#" "#)#$!*+#,- !. #+&#""#" /#'$%-0+#

(!.-1'/# '0+( '- 0+*/!)0,2 34'$0-5 &5 #,'&$0,2 "#(02,%

-0+# )#/067'-0!, '," (0+4$'-0!, '," .!(-#/0,2 /#4(#8

95,7:/!,!4( /#'7-0)# ;9<= +!"#$( :')# &##, -/'"0-0!,%

'$$5 4(#" 0, -:# "#(02, !. :'/"1'/# $!207 '," +!/# /#%

7#,-$5 .!/ +!"#$0,2 7!,-/!$%"!+0,'-#" #+&#""#" '*%

*$07'-0!,(8 9< >#/!%-0+# (#+',-07( 0( )#/5 *!*4$'/ &#%

7'4(# !. -:# ')'0$'&0$0-5 !. -!!$( .!/ (0+4$'-0!, ',"

.!/+'$ )#/067'-0!, !. -:# (5(-#+ */!*#/-0#(8 ?:#,

0+*$#+#,-0,2 ' :02:%$#)#$ +!"#$ 0,-! 7!"#@ 0- 0( 0+%

*!/-',- -! */#(#/)# 0-( (#+',-07(@ (! -! /#-'0, -:# /#%

(4$-( !. -:# (0+4$'-0!, '," )#/067'-0!, (-'2#(8 A!1%

#)#/@ -:0( /#340/#( -:'- ,$* %'"5,-1* 6*$+.-&% 8$*" ,$*

9'"#,-&"( +%* -1:3*1*",*2 6! + :%&4%+1 8-,$ + @"-,*

*A*#',-&" ,-1* +"2 :&((-63! ('6J*#, ,& :%**1:,-&" -(

:%&.+63! *C'-.+3*", ,& ,$*  ) 1&2*3 8-,$ I*%& *A*#'5

,-&" ,-1* +"2 "& :%**1:,-&"8 B, 2#,#/'$@ "#6,0,2 (47:

' */!)'&$5 7!//#7- 0+*$#+#,-'-0!, 0( ,!,%-/0)0'$8

∗
 !"# $%&' $(# #)**%&+,- ./ +!, 01234561271 8"9(#:

;(<, =/#+,># 2,#,(&;! 3,?+,& @!++*A55$$$B9"9(#;(<,B%&9CB  !,"&

#)**%&+ "# 9&(+,D)<</ (;'?%$<,-9,-B

. /0 1*+23 %)+ 425)-#-*)"

B, !4/ (5,7:/!,!4( /#'7-0)# +!"#$@ ' (5(-#+ 0( ' ,#-%

1!/C !. -'(C( 7!++4,07'-0,2 4(0,2 *!/-(8 D$$ -'(C( 0,

-:# +!"#$ /#'7- '- -:# ('+# -0+# ;(5,7:/!,!4($5= ',"

*#/0!"07'$$5@ '- -:# 6+(* %+,* !. -:# (5(-#+8 D /#'7-0!,

+'5 &# -:# 7!+*4-'-0!, !. ' .4,7-0!, -:'- 4*"'-#( -:#

)'$4#( !. -:# !4-*4- *!/-( '( .4,7-0!, !. -:# -'(C (-'-#

'," *!((0&$5 !. -:# )'$4#( '- -:# 0,*4- *!/-(8 E:# .4,7%

-0!, '$(! 4*"'-#( -:# (-'-# '( ' .4,7-0!, !. -:# (-'-#

'," -:# 0,*4-(8 D$-#/,'-0)#$5@ ' /#'7-0!, +'5 &# ' (,',5

,*% +#',0,2 -:'- -:# !4-*4- )'$4#( '," -:# (-'-# '/#

$#.- 4,7:',2#"8 D77!/"0,2 -! -:# 9< +!"#$@ -:# /#'7%

-0!, !774/( 0, I*%& ,-1*@ +#',0,2 -:'- -:# !4-*4-( ',"

-:# (-'-# "#*#," 0,(-',-',#!4($5 !, -:# 0,*4- )'$4#(8

E:# 0+*$07'-0!, !. -:# >#/! #F#74-0!, -0+# (#+',-07(

0( -:'- -:# 0,*4- )'$4#( 1'(, 6* 2*,*%1-"*2 '- -:# -0+#

-:# -'(C 0( '7-0)'-#" .!/ ' ,!, (-4--#/ /#'7-0!,8 D77!/"%

0,2 -! -:# *!((0&$# #F0(-#,7# !. *!/-( !. #0-:#/ 0,*4-

!/ !4-*4- -5*#@ ' -'(C 7', 7!,(#34#,-$5 &# ' /#'"#/@ '

1/0-#/@ !/ &!-:8 G5 4(0,2 ' */!*#/ "#6,0-0!, !. (-4--#/%

0,2 /#'7-0!,(@ 0- 0( *!((0&$# -! "#6,# -'(C( -:'- 4*"'-#

-:#0/ !4-*4-( '," (-'-# !,$5 '- +4$-0*$#( !. -:# &'(# *#%

/0!"8 B, -:# .!$$!10,2@ 1# 10$$ '((4+# -:'- -:#(# -'(C(

*#/.!/+ -:#0/ /#'7-0!, '- (47: +4$-0*$# *#/0!"(8

H'7: 9< -'(C 0( -:#, 0+*$#+#,-#" &5 ' /4,%-0+#

-'(C@ #F#74-#" 4,"#/ -:# 7!,-/!$ !. -:# !*#/'-0,2 (5(%

-#+8 E:# -'(C #F#74-0!, -0+# 0( 6,0-# '," 0- 7', &#

*/##+*-#" '77!/"0,2 -! 0-( */0!/0-58 D /4,%-0+# -'(C

7', 0+*$#+#,- !,# !/ +!/# 9< -'(C(8 H'7: 0+*$#+#,%

-'-0!, -'(C τi 0( 7:'/'7-#/0>#" &5 ' (#- !. *'/'+#-#/(I

*/0!/0-5 πi@ *#/0!" Ti@ 7!+*4-'-0!, -0+# Ci@ 1!/(- 7'(#

/#(*!,(# -0+# Ri@ '," /#$'-0)# "#'"$0,# di8 E'(C( '/#

(7:#"4$#" &5 */0!/0-5 10-: */##+*-0!,8 97:#"4$'&0$0-5

!. -'(C( /#340/#( -:'- Ri ≤ di8

J4/ 0+*$#+#,-'-0!, '((4+#( -:'- Ri ≤ Ti@ 1:07:

0+*$0#( -:'- !,$5 !,# '7-0)# 0,(-',7# .!/ #'7: -'(C #F%

0(-( '- ',5 -0+#8 K#- ai(j) &# -:# '7-0)'-0!, -0+# !. -:#
jth 0,(-',7# !. τi8 L,"#/ -:# 9< (#+',-07(@ 20)#, -:'-

-:# #F#74-0!, -0+# 0( >#/!@ -:# '7-0)'-0!, -0+# ai(j)
7'*-4/#( '$(! -:# (-'/- -0+# '," -:# 6,0(: -0+# !. -:#

38



 !"# $% &!%'# () τi*

+#& w !%, ri ,#%(&# ! -.$&#. !%, (%# () $& .#!,#. *

+#& ow(j) /# &0# (1&21& !  ('$!&#, -$&0 &0# jth $% &!%'#

()  !%, iri(j) /# &0# $%21& !  ('$!&#, -$&0 &0# jth

$% &!%'# () ri* 3# ,#4%# ζi(t) &( /# &0# %1"/#. ()

&$"# &0!& &! 5 ! 0! (''1..#, 12 &( &$"# "6 $*#*

ζi(t) = sup{m|ai(m) ≤ t},

-0#.# &0# sup () !% #"2&7  #& $ ,#4%#, &( /# 8#.(*

9% &0# :#%#.!; '! #6 '(""1%$'!&$(% $ /#&-##%

(%# -.$&#. !%, $& #$ % #&'$ ( #)'$ .#!,#. 6 !"(%:

-0$'0 #&'$ 0!<# 0$:0#. 2.$(.$&76 !%, #)'$ 0!<# ;(-#.

2.$(.$&7 &0!% &0# -.$&#.* +#& delay[i] = {0, 1} /# &0#

'(""1%$'!&$(% ;$%5 ,#;!7 )(. .#!,#. !* =0# >? '("@

"1%$'!&$(%  #"!%&$' '!% /# )(."1;!&#, ! )(;;(- A

iri(j) = ow(k),

-0#.# k = max{0, ζw(ai(j)) − delay[i]}*
=0# &(2 () B$:1.# C $;;1 &.!&# &0# #D#'1&$(% () !

2!$. () &! 5 '(""1%$'!&$%: -$&0 &0# >? 8#.(@&$"#  #@

"!%&$' * =0# 0(.$8(%&!; !D$ .#2.# #%& &$"#* =0# <#.@

&$'!; !..(- '!2&1.# &0# &$"# $% &!%& -0#% &0# &! 5 

!.# !'&$<!&#, !%, '("21&# &0#$. (1&21& ).(" &0# $%@

21& <!;1# * E;#! # %(&# &0!&6 $% &0# "$,,;# () &0# 4:@

1.#6 $& $ iri
(j) = ow(k) ,1.$%:  $"1;!&$(%* =0# /(&@

i

ri (j)

ir
i (j)

               
! ! ! ! !! ! ! ! !! ! ! ! !

" " " " "" " " " "" " " " "
# # # # ## # # # ## # # # #

$ $ $ $ $$ $ $ $ $$ $ $ $ $
% % % % %% % % % %% % % % %

&
&
'
'

( ( ( ( (
( ( ( ( (
) ) ) ) )
) ) ) ) )

o

w

o o

o(k)o (k+1) (k+2)

(k) (k+1)

w w w

w w

r

i

Figure 1. How Preemption Changes the Val-

ues Read by a Reader

&(" () B$:1.# C  0(- &0# 2(  $/;# 2.(/;#" -$&0 ,!&!

&.!% )#. $% ! "1;&$@&! 5 $"2;#"#%&!&$(% -0#% /1F#. 

!.# !,,.#  #, !& #D#'1&$(% &$"#* G )! & -.$&#.6 $"@

2;#"#%&#, /7 ! 0$:0 2.$(.$&7 &! 56 '(""1%$'!&# -$&0

!  ;(- .#!,#.* =0# -.$&#. 4%$ 0# $& #D#'1&$(% 2.(@

,1'$%: (1&21& ow(k) !%, &0# .#!,#. $ #D#'1&#, .$:0&

!)&#.* 9) &0# .#!,#. 2#.)(." $& .#!, (2#.!&$(% /#@

)(.# &0# 2.##"2&$(% /7 &0# %#D& -.$&#. $% &!%'#6 &0#%

iri
(j) = ow(k)* H&0#.-$ #6 $& $ 2.##"2&#, !%, ! %#-

$% &!%'# () &0# -.$&#. 2.(,1'# ow(k + 1)* 9% '! # &0#

.#!, (2#.!&$(% 0!, %(& /##% 2#.)(."#, /#)(.#6 &0# &! 5

.#!, ow(k + 1)6 $% :#%#.!; ,$F#.#%& ).(" &0# <!;1#

ow(k)* I<#% -(. #6 $% '! # &0#  $:%!; <!;1# $ %(& .#!,

!&("$'!;;76 &0#.# $ ! 4%$&# 2.(/!/$;$&7 &0!& w(k) 2.#@

#"2& &0# .#!,#. &! 5 ri -0$;# ! .#!, $ $% 2.(:.#  6

.# 1;&$%: $% !% $%'(% $ &#%& <!;1# !%, ! ,!&! $%&#:.$&7

2.(/;#"*

3# )1.&0#. $%&.(,1'# &0# (F #&6 ,#%(&#, /7 owi(k)6
/#&-##% &0# kth

$% &!%'# () &0# .#!,#. ri(k) !%, &0#

-.$&#. $% &!%'# w(j) &0!& 2.(,1'#, &0# ,!&! '(% 1"#,

/7 &0# .#!,#.6 $*#* owi(k) = ai(k) − aw(j)6 -0#.#

j = sup{m|aw(m) ≤ ai(k)}* =0# ;!.:# & <!;1# () owi6

Owi6 $ !;-!7  "!;;#. &0!% &0# 2#.$(, () &0# -.$&#.6

$*#* Owi < Tw*

 !"#!$ %& '(!"#%)* $%(+ =0#.# !.# &-( (2&$(% 

)(. ! '(..#'& $"2;#"#%&!&$(% () !% >? "1;&$.!&# "(,#;

(%  $%:;#@2.('#  (. #D#'1&$(% 2;!&)(." * 9% !  $%:;#

&! 5 $"2;#"#%&!&$(%6 !;; &0# >? &! 5 !.# $"2;#"#%&#,

/7 !  $%:;# .1%@&$"# &! 5 J(.  ! "#$%& K6 .1%%$%: !&

&0# /! # .!&# () &0#  7 &#"* >1'0 !% $"2;#"#%&!&$(%

$ #! $#. &( '(% &.1'&6 /1& ()&#% '0!.!'&#.$8#, /7 2((.

.# (1.'# 1&$;$8!&$(%*

G "1;&$@&! 5 $"2;#"#%&!&$(% &72$'!;;7 1 # (%# &! 5

)(. #!'0 #D#'1&$(% .!&#6 !%, 2(  $/;7 "(.#* L1;&$@&! 5

$"2;#"#%&!&$(% !;;(- )(. ! "1'0 /#&&#.  '0#,1;!/$;$&76

/1& /#'!1 # () &0# 2(  $/;# 2.##"2&$(%6 '(""1%$'!&$(%

"!7 0!<# $%&#:.$&7 (. %(%@,#&#."$%$ " 2.(/;#" !%,

&0# $"2;#"#%&!&$(% .!$ # $  1# -$&0 .# 2#'& &( &0#

2.# #.<!&$(% () &0# 8#.(@&$"# #D#'1&$(% /#0!<$(.*

G%7 J.#!;@&$"#K ,!&! '(""1%$'!&$(% /#&-##% '(%@

'1..#%& &! 5 &0!& '!%%(& /# "!,# !&("$' !& &0# 0!.,@

-!.# ;#<#; "1 & /# $"2;#"#%&#, 1 $%: ! '(%'1..#%'7

'(%&.(; "#'0!%$ "* 3!$&@).##  '0#"# MCNMON '!% /#

1 #, &( 2.(&#'& ! -.$&#. !%, $& .#!,#. !:!$% & '(%'1.@

.#%& !''#  &( &0# '(""1%$'!&$(% ,!&! /7 .#2;$'!&$%:

&0# '(""1%$'!&$(% /1F#. !%, 2(  $/;7 /7 ;#<#.!:$%:

5%(-;#,:# () !''#  &$"# !%,  '0#,1;$%: '(% &.!$%& 

 1'0 ! &! 5 2.$(.$&$# !%, 2#.$(, *

3!$&@).##  '0#"# !.# &0# 2.#)#..#, '0($'# )(. &0#

$"2;#"#%&!&$(% ()  #"!%&$' @2.# #.<$%: '(""1%$'!@

&$(% 2.(&('(; ,1# &( &0#$.  $"2;$'$&7 !%, #P'$#%'7* G

(%#@&(@(%# '(""1%$'!&$(% "#'0!%$ " &0!& 2.# #.<# 

&0# >?  #"!%&$' 0! /##% 2.# #%&#, $% MQN* G &-(@

2;!'# /1F#.6 &-( /1F#. $%,#D# !%, ! .#!,#. #D#'1&$(%

R!: !.# .#S1$.#,* 9% &0# '! # ()  $%:;# 2.('#  (.  7 @

&#" 6 :$<#% &0!& &0# '(,# &0!& 12,!&# &0# $%,#D <!.$@

!/;# $ #D#'1&#, $% $,# &0# 5#.%#;6 !& &! 5 !'&$<!&$(%

&$"#6 &0#.# $ %( %##, )(. ! T("2!.#@G%,@>-!2 JTG>6

(. !%(&0#. #S1$<!;#%&K $% &.1'&$(%6 (. !%7 (&0#. "#'0@

!%$ " &0!& #% 1.# !&("$'$&7 -0#%  -!22$%: /1F#.

2($%&#. (. '("2!.$%:  &!&# <!.$!/;# *

9% &0# :#%#.!; '! # () "1;&$2;# .#!,#. &! 5 6 -!$&@).##

"#'0!%$ " '!% /#  $8#, !%, '(% &.1'&#, /7 ;#<#.!:$%:

&-( 2.(2#.&$# () &0# .#;!&$(% 0$2 /#&-##% &0# -.$&#.

!%, $& .#!,#. * =0# 4. & "#&0(, '(% $ & $% '("21&@

$%: !% #'' ( )*#+, -*( $. /0!%/#/ +#/) ( *- )#1 (2

$.0$ "0+ ) #2 , 0$ 0+3 4%& + $%/ )3 ( 0, ( $0252* 9%

MUN &0# /(1%, $ ,#4%#, )(. &0# '! # () '(""1%$'!@

&$(% ;$%5 -$&0 ! 1%$& ,#;!76 1%,#. &0# !  1"2&$(% &0!&

#!'0 &! 5 $% &!%'# &#."$%!&# /#)(.# $& %#D& !'&$<!&$(%

#<#%&* =0# 2.(&('(; $ '!;;#, VWE JV7%!"$' W1F#.@

$%: E.(&('(;K* 30#% 1%$& ,#;!7 !.# !;;(-#, (% ;$%5 6

NLPR + 2 /1F#. !.# ,#"(% &.!/;7  1P'$#%&6 -0#.# (%#

/1F#. :1!.!%&## &0!& &0# -.$&#. '!%  !)#;7 12,!&# &0#

39



 !"#$" %!"! !&% '&# ($ )'* +(,+#* -*('*(". *#!%#* "!$/$

"+!" &##% !00#$$ "' "+# -*#1('2$ . 3*(""#& %!"!4

5+# '"+#* 6#"+'% -*'1(%#$ 728#* $(9(&, !&% !0:

0#$$ -*'0#%2*#$ 7. ,2!*!&"##(&, "+!" 3*("#* !&% *#!%#*

"!$/$ &#1#* !00#$$ "+# $!6# %!"! ("#6 !" "+# $!6# "(6#4

5+# $(9# ') "+# 728#* 0!& 7# 0'6-2"#% 7. 2--#* 7'2&%:

(&, "+# &267#* ') "(6#$ "+# 3*("#* 0!& -*'%20# &#3

1! 2#$ 3+( # ! ,(1#& %!"! ("#6 ($ 0'&$(%#*#% 1! (% 7. !"

 #!$" '&# *#!%#*4 5+($ 0'&0#-" +!$ 7##& ;*$" (&"*'%20#%

<"',#"+#* 3("+ !  '0/:)*## -*'"'0' (6- #6#&"!"('&= (&

>?@ !&% >A@ <2&%#* "+# &!6# ') B'&:C '0/(&, D*("#E '*

BCD=E !$$26(&, !$ "+# 1! (%(". "(6# ') "+# %!"! "+#

3'*$" 0!$# #F#02"('& "(6# ') ! *#!%#*4 5+# "#6-'*! 

0'&02**#&0. 0'&"*' 0'&0#-" ($ ! $' 2$#% (& >G@ )'* 728#*

$(9(&, 3+( # -*#$#*1(&, "+# HI $#6!&"(0$4

J& !& HI $#6!&"(0$:-*#$#*1(&, (6- #6#&"!"('&E 3#

&##% "' #&$2*# "+!" "+# *#!%#* !00#$$#$ "+# 1! 2# -*':

%20#% 7. "+# 0'**#0" (&$"!&0# ') ! 3*("#* "!$/4 J& -!*:

"(02 !*E "+# 728#* $ '" "+!" 0'&"!(&$ "+# ("#6 -*'%20#%

7. "+# 3*("#* +!$ "' 7# %#;&#% !" "+# 3*("#*K$ !0"(1!:

"('& "(6#4 H(6( !* .E "+# 728#* ("#6 *#!% 7. ! *#!%#*

($ %#;&#% !" "+# *#!%#*K$ !0"(1!"('& "(6#4

L!"#*E !" #F#02"('& "(6#E "+# 3*("#* !&% "+# *#!%#*

3(  2$# "+# 728#* -'$("('&$ %#;&#% !" "+#(* !0"(1!"('&

"(6#4 C'"+ 3*("#* !&% *#!%#* "!$/$E +'3#1#*E !*# &'"

,2!*!&"##% "' $"!*" "+#(* #F#02"('& !" "+#(* *# #!$# "(6#

7#0!2$# ') "+# $0+#%2 (&, %# !.$4 5+#*#)'*#E (& ,#&:

#*! E "+# $# #0"('& ') "+# %!"! 728#* #&"*. "+!" 3(  

7# 3*(""#& (&"' '* *#!% )*'6 62$" 7# %# #,!"#% "' "+#

'-#*!"(&, $.$"#6 <'* "' ! +''/ -*'0#%2*# "+!" ($ ,2!*:

!&"##% "' 7# #F#02"#% !" "+# "!$/ !0"(1!"('& "(6#=4 M)

0'2*$#E "+#*# 6!. 7# 0!$#$ (& 3+(0+ "+# 3*("#* -*'%20#$

62 "(- # '2"-2"$ 7#)'*# "+# *#!%#* 0'6- #"#$ ("$ #F#02:

"('&4 J& "+($ 0!$#E "+# (6- #6#&"!"('& 62$" &#0#$$!*( .

0'&$($" ') !& !**!. ') 728#* #&"*(#$ (& 3+(0+ -'(&"#*$

<(&%#F#$= !*# !$$(,&#% "' "+# 3*("#*$ !&% "+# *#!%#*$ "'

;&% "+# *(,+" #&"*.4

D# +!1# (6- #6#&"#% %(8#*#&" 1#*$('&$ ') HI 0'6:

62&(0!"('& -*'"'0' $ 2&%#* "+# MHNOPQRS (& >T@4

MHNOPQRS ($ ! $"!&%!*% )'* !2"'6'"(1# !-- (0!"('&$

!&% (&0 2%#$ '-#*!"(&, $.$"#6 <MH=E 0'662&(0!"('&

<U'6=E &#"3'*/ 6!&!,#6#&" <BV=E !&% %#72,,(&,

<MI5J=4 J& !%%("('&E 3# !&! .9# "+# "*!%#'8$ 7#"3##&

%(8#*#&" 1#*$('&$ ') "+# -*'"'0' $ (& "#*6$ ') "(6#E

$-!0#E !&% (6- #6#&"!"('& 0'6- #F(".4 R2# "' $-!0#

 (6("!"('&E 3# '& . -*#$#&" "3' (6- #6#&"!"('&$ ') HI

0'662&(0!"('& -*'"'0' $ (& "+($ -!-#*4

 !"#$% &'(')* +$,-.)'/0/

W&. 0'662&(0!"('& $0+#6# 0'&$($"$ ') "3' -!*"$X !

728#* $(9(&, 6#0+!&($6 !&% ! 728#* (&%#F(&, -*'0#:

%2*#4 J& "+($ $#0"('&E 3# ;*$" -*#$#&" "3' 6#0+!&($6$

2$#% "' $(9# 0'662&(0!"('& 728#*$ !&% (& H#0"('& Y 3#

%#;&# "+# 0'**#$-'&%(&, -*'0#%2*#$4

5+# ;*$" 6#0+!&($6 ($ "+# RCZ -*'"'0' >Y@E 7!$#%

'& "+# !0"(1# &267#* ') *#!%#* (&$"!&0#$4 J& RCZE "+#

3*("#* 3*("#$ %!"! (&"' ! 728#* <6#$$!,# !**!.= (& !

 !"#$"%%&'()#'(*'(+,-+ 6!&&#*4 [(1#& "+# -'$$(7( (". ')

2&(" %# !.  (&/$E 3# &##% "' /##- '&# 0'-. ') "+# 02*:

*#&" !&% "+# -*#1('2$ 728#* (&%(0#$4 H'6# *#!%#*$ 6!.

$+!*# "+# $!6# 728#* $ '"E 72" (& "+# 3'*$" 0!$#E !  ')

"+#6 6!. *#\2(*# 2&(\2# #&"*(#$4 J)  !"# ($ "+# &26:

7#* ') "+# *#!%#*$ 3("+ !  '3#* -*('*(". "+!& "+# 3*("#*E

"+#& "+# $(9# ') "+# 728#* ($ NB = NLPR + 2E3+#*#  !"#

$ '"$ !*# *#$#*1#% )'*  '3#*:-*('*(". *#!%#*$E '&# #&"*.

$"'*#$ "+# 3*("#* '2"-2" 3("+ ! 2&(" %# !.E !&% !&'"+#*

#&"*. ($ )'* "+# 3*("#* "' 3*("# (&"' ! &#3 %!"! ("#64

W  +(,+#*:-*('*(". *#!%#*$ $+!*# "+# $!6# 0'-. ') "+#

728#* ("#6 3*(""#& 7. "+# -*#1('2$ 3*("#* (&$"!&0#4

5+# '"+#* 6#0+!&($6 2$#% )'* 0'662&(0!"('& 728#*

$(9(&, !  '3$ "+# 3*("#* "' 3*("# %!"! (&"' ! 728#* (&

!  !"#$"%%&  -.)-/#$"% (+,-+4 5+($ 6#0+!&($6 ($ "#*6#%

5#6-'*! U'&02**#&0. U'&"*' <5UU=E 7#0!2$# (" *#:

 (#$ '& "+# "#6-'*! -*'-#*"(#$ ') "+# "!$/$4

W$$26# "+!" $'6# 3*("#* (&$"!&0# $ +!--#&$ !" "(6#

aw(k) !&% (" 2-%!"#$ ! 728#* -'$("('& ') (&%#F % <](,:

2*# ^=4 5+# ("#6 (& -'$("('& % ($ 2$#% 7. "+# *#!%#*$

3("+ &' %# !. "+!" !*# !0"(1!"#% %2*(&, "+# (&"#*1! 

[aw(k), aw(k + 1)) !&% 7. "+# 2&(" %# !. *#!%#*$ !0"(:

1!"#% (& [aw(k + 1), aw(k + 2))4

5+# 728#* $ '" 3("+ (&%#F % 62$" *#6!(& 1! (% 2&"( 

!&. ') "+'$# *#!%#* (&$"!&0#$ +!$ ;&($+#% ("$ #F#02:

"('&4 ]2"2*# (&$"!&0#$ ') "+# 3*("#* 2$# 728#* $ '"$

3("+ (&%#F#$ n + 1, n + 2E !&% $' '&E 2&"( E #1#&"2!  .E

"+# (&%#F 3*!-$ !*'2&% "+# 0(*02 !* 728#* !&% ,'#$

7!0/ "' -'$("('& n− 14 W 0'**#0" 728#* $(9(&, 62$"

#&$2*# "+!" !  "+# *#!%#* (&$"!&0#$ "+!" 2$#% "+# ("#6

3("+ (&%#F % ;&($+#% 2$(&, ("E 3+#& $'6# )2"2*# 3*("#*

(&$"!&0# ,'#$ 7!0/ "' -'$("('& % !&% '1#*3*("#$ ("4 5+#

w

wi

d
i

T
w

wi
l    =

wi
O

i

... ...
n−1 n

n−1

n

..
.

R
i

buffer

writer
instance

 index n

k

n+delay[i]

k+delay[i] k+delay[i]+1

n+delay[i]

lifetime

n+delay[i]+1

n+delay[i]+1

delay[i] T +         + R  

O

Figure 2. Buffering Sizing Mechanism Based

on Spatially-In-Order Writes

6!F(626  ()#"(6# ') "+# %!"! -*'%20#% 7. "+# 3*("#*

)'* "+# *#!%#* riE %#&'"#% 7. li ($X

li = delay[i] × Tw + Owi + Ri.

J)  # ($ "+# &267#* ') *#!%#*$ ') ! ,#&#*(0 3*("#*E "+#

728#* $(9# *#\2(*#% 7. "+# 3*("#* ($X

NB = max
1≤i≤NR

⌈

li

Tw

⌉

. <_=

40



 !"#$#%#& '()&*(*+$,$-#+

 ! " #$%&'()*+)*,- ./0%&12%& 312,*',".4 *3(2%3%!'

,",*+!5 ,0% 2*!4 &%2"- 31., 6% %71"2 ,+ +!% 8+) )%"&%).

9*,0 " ()*+)*,- 0*:0%) ,0"! ,0% 9)*,%)5 90*2% 8+) )%"&%).

9*,0 " 2+9%) ()*+)*,-5 *, /"! 6% %*,0%) ;%)+ +) +!%< =

("*) +8 >")*"62%. ? !"5 #"$%@ )%8%). ,+ ,0% *!&%$%. +8

,0% 2",%., 9)*,,%! *,%3 "!& ,0% ()%>*+1. +!%<

A+) /+!>%!*%!/%5 B"62% C .0+9. ,0% !+,",*+!.< D")*'

"62%.  !"5 #"$%5 &'()5 "!& WrtInit &%#!%& 8+) %"/0

+1,(1, (+), *! ,0% .-.,%3< =22 )%"&%). "!& 9)*,%).

.0")% "))"- Buf[SysNB] 8+) /+331!*/",*+!< B0% ,+,"2

61E%) .*;% )%71*)%& 6- ,0% .-.,%35 *+,&-5 *. .*3(2- ,0%

.13 +8 61E%) .*;%. +8 "22 9)*,%). "!& NBwo *. /+3(1,%& ".

.(%/*#%& 6- ,0% FGH +) BIIH ()+,+/+2.5 )%.(%/,*>%2-<

SysNB =
∑

1≤o≤SysNOP

NBwo ?J@

 ! "#$%&' () '&*+&',  - "#$%&' () .*,/,

+&0*1 02"/ +&0*1 3,45! '&0*.26& 7'2('2.1

8'.3"2. 2"2.2*0 (#.7#. 6*0#& 7'2 .*,/ 7'2('2.1

Buf[] ,9*'&+ :($$; %#))&' <1, = .(.*0 %#))&' ,2>&

<1, 35 "#$%&' () 2"7#. 7('., <1, ?5 "#$%&' () (#.7#. 7('.,

:#' %#))&' ,0(. @2.9 0*.&,. +*.*

7'&6 %#))&' ,0(. @2.9 2$$&+2*.& 7'&62(#, +*.*

 A5! "#$%&' () 0(@&'B7'2('2.1 '&*+&',

Read[i] %#))&' ,0(. :#''&".01 #,&+ %1 '&*+&' 2

Table 1. Notations Used to Describe a System

4.1 The Dynamic Buffering Protocol

B0% 0*:0'2%>%2 (.%1&+'/+&% +8 ,0% FGH ()+,+/+2 *.

.0+9! *! A*:1)% K5 ". &%#!%& *! LMN<

 !"! #"$%&"%$'(

 !"#  $#% &#'()  !"# *'"+,-./*0)

1'22"3' 4$5,-40)  !"# 6/*,-6/*0)

)$*"'$

 !"#$ "#%& "#'( ()(!*"#%& "#'(

&#'( 7  $#) · · ·
 $# 7 89:+8#'';<) 4$5, $#0 7 · · ·

· · ·
89:+8#'';< =

#'>$#: ?∈,@%-./*AB095 &#'( 6=?∧∀9∈,@%-./*0 *'"+,90 6=?)

 

+,-'$ .$*,$*"/ 0'!1'$

 !"#$ "#%& "#'( ()(!*"#%& "#'(

95 ;+'C"D,90< · · ·
*'"+,90 7 &#'() · · · 7 4$5,*'"+,900)

'C2' · · ·
*'"+,90 7  $#) *'"+,9078*EE)

2*34'$ 5$*,$*"/ 0'!1'$

 !"#$ "#%& "#'( ()(!*"#%& "#'(

6/*,90 7 &#'() · · · 7 4$5,6/*,900)

Figure 3. Code for Writer/Readers in [4]

B0%)% ")% &*E%)%!, 9"-. ,+ *3(2%3%!, ,0%

./01."$$23 ()+/%&1)% ,0", *. 1.%& ,+ #!& " 8)%% 61E%)

.2+, 6- ,0% 9)*,%) ", *,. "/,*>",*+! ,*3%< O% ()%.%!,

0%)% "! *3(2%3%!,",*+! 9*,0 " /+!.,"!, %$%/1,*+!

,*3%<

./01."$$23 31., 6% %$%/1,%& ", ,0% "/,*>",*+! ,*3%

+8 ,0% 9)*,%)5 6- ,0% 4%)!%25 +) ", ,0% 0*:0%., ()*+)*,-

2%>%2< = 2+!: %$%/1,*+! ,*3% *. ,0%)%8+)% 0*:02- 1!&%.*)'

"62%5 "!& 9% ")% *!,%)%.,%& *! ,)"&*!: +E .+3% 3%3+)-

.("/% 8+) "! *3(2%3%!,",*+! 9*,0 " /+!.,"!, %$%/1,*+!

,*3% 1.*!: " 1.% 8)%% 2*., ". .0+9! *! A*:1)% M<

=! "))"- *3(2%3%!,",*+! +8 ,0% 2*., /+!,"*!. ,9+

#%2&.P ,0% 1.% /+1!, ?!,$@ "!& ,0% !%$, 8)%% .2+, *!&%$

?&$45."$$@< B0% .,"), +8 ,0% 8)%% 2*., *. *!&*/",%& 6-

."$$61 "!& ,0% 8)%% 2*., *. ,%)3*!",%& 6- " >"21% +8 '

C< Q*!/% ,0% >"21%. +8 ,0% !,$ #%2&. "2+!: ,0% 8)%% 2*.,

")% "22 ;%)+.5 ,+ .">% 3%3+)-5 ,0% ,9+ /+213!. /"! 6%

/+3("/,%& *!,+ +!%5 /+!,"*!*!: ,0% >"21% +8 ,0% !%$,

8)%% .2+, *!&%$ +) ,0% 1.% /+1!,< B0% 8)%% %!,)- /"!

6% +6,"*!%& 6- :%,,*!: ,0% ."$$61 >"21%5 "!& 2*., 1('

&",%. /"! 6% (%)8+)3%& *! /+!.,"!, ,*3%< A*:1)% R

.0+9. ,0% &"," .,)1/,1)%. +8 ,0% *3(2%3%!,",*+!< B0%

"))"- 78,9' 0". "! %!,)- 8+) %"/0 ,".4 .(%/*8-*!: *,.

()*+)*,- "!& " )%8%)%!/% ,+ *,. *!(1, "!& +1,(1, (+),

*!8+)3",*+!< B0% *!(1, (+), &%./)*(,+) /+!,"*!. ,0%

/+331!*/",*+! .+1)/% (+),5 ,0% 2*!4 &%2"-5 "!& ,0% )%2'

",*>% ()*+)*,- +8 ,0% )%"&%) 9*,0 )%.(%/, ,+ *,. 9)*,%)<

Q*3*2")2-5 ,0% +1,(1, (+), &%./)*(,+) .(%/*#%. ,0% ()+('

%),*%. +8 %"/0 +1,(1, (+),5 *!/21&*!: ,0% )%8%)%!/% ,+

,0% 2*., +8 ,0% 8)%% 62+/4.5 ."$$615 ,0%  !" "!& #"$%

>")*"62%. "!& -!:61 "!& &-5 90*/0 .(%/*8- " /+!,*:1+1.

.%:3%!, *! ,0% 61E%) "))"- Buf[] 8+) ,0% +1,(1, (+),.<

5

4

3

2

0

1

−1

1

5

4

5

4

3

2

0

1

−1

1

5

4

5

4

3

2

0

1

UseFreeL[6]

3

1

FreeHd = 2N
ex

tF
re

e

u
se

UseFreeL[6]

3

1

0

0

0

0

FreeHd = 2

Figure 4. A Use Free List Data Structure

ko

o

k+3

−1

k

k+1

k+2

k+3

Output Port Descriptor

N
B

OPL[SysNOP]

UseFreeL[SysNB]

F
r
e
e
H
d

c
u
r

p
r
e
v

B
u
f
H
d

o

o

I
s
H
P
R

d
e
l
a
y

S
r
c
P
t

Read[SysNIP]

IPL[SysNIP]

Buf[SysNB]

TaskL[NT]

Input Port Descriptor

io

p
r
i

O
P
H
d

N
O
P

I
P
H
d

N
I
P

i

Task Descriptor

Figure 5. Data Structure for DBP

41



 !! "#$ %&'" ($)*'+%"&') "#," '$-$' "& "#$ ),.$ ",)/ ,'$

)"&'$( +0 *&0"+12&2) !&*,"+&0)3 ,) )%$*+4$( 56 7 !"#$

% !8 ,0( 7&!"#$ %&!89 :+12'$ ; )#&<) "#$ (,", )"'2*=

 !"! #"$%&"%$'

 !"#$! %& '()!"* +  !"#$! ,-()!"*  !"#$! .-()!"* +

$/&" 0"12 $/&" 3"$-! $/&" 4"55672

$/&" .-672 $/&" 758&* $/&" $#"2

$/&" 9.-2 $/&" , 6-: $/&" 0"5;2

$/&" ,-672 < ,-=>3* 9,-?2 $/&" @#A672

$/&" 9,-2 $/&" 9@2

< %& '=>9%?2 < .-=>3* 9.-?2

$/&" :5&7>3* 9,-?2 $/&" B 54"55=>3* 9@?2

C5  &D5 @#A>3* 9@?2 C5  &D5 E"!,)1!>3* 9.-?2

()*"*!+*,!"*-)

.-=>F?G@#A67 H F2 IJ ;&" &)7 K#AA5" 1)1! JI

.-=>F?G$#" H .-=>F?G0"5; H .-=>F?G@#A672

@#A>.-=>F?G@#A67? H E"!,)1!>F?2

AL" M1 H N2 1 O 3* 9.-2 1PPQ +

.-=>1?G@#A67 H .-=>1RN?G@#A67 P .-=>1RN?G9@2

.-=>1?G$#" H .-=>1?G0"5; H .-=>1?G@#A672

@#A>.-=>1?G@#A67? H E"!,)1!>1?2

<

AL" M1 H F2 1 O 3* 9.-2 1PPQ + IJ 1)1! LA A"55 81 !JI

B 54"55=>.-=>1?G@#A67? H N2 IJ )L! A"55 JI

.-=>1?G4"5567 H .-=>1?G@#A67 P N2

AL" MS H T2 S O M.-=>1?G9@RNQ2 SPPQ +

' H S P .-=>1?G@#A672

B 54"55=>'? H ' P N2

<

B 54"55=>.-=>1?G9@RNP.-=>1?G@#A67? H RN2

<

Figure 6. DS Initialization for DBP

"2'$ ($*!,',"+&0) ,0( "#$+' +0+"+,!+>,"+&09  ) )#&<0 +0

IJ  !"#$ "#%& "#'( JI IJ ()(!*"#%& "#'( JI

IJ 5&$/ U"1!5" 1 JI · · ·
B 5V5$M1W .-=>1?G0"5;Q2 IJ 5&$/ U"1!5" ' JI

.-=>1?G0"5;H.-=>1?G$#"2 @#A>.-=>'?G$#"? H · · ·

.-=>1?G$#"H41)74"55M1Q2 · · ·
B 54"55=>.-=>1?G$#"?HN2 IJ 5&$/ "5&75" ' JI

· · · H @#A>:5&7>'??2

IJ 5&$/ "5&75" 1 JI · · ·
S H ,-=>1?G3"$-!2 V5A LA B 5V5$M$/&" 1W$/&" SQ

1A M,-=>1?G758&*Q ;L17 B 5V5$M$/&" 1W $/&" SQ+

:5&7>1?H.-=>S?G0"5;2 B 54"55=>S?RR2

58 5 1AMB 54"55=>S? HH FQ +

:5&7>1? H .-=>S?G$#"2 B 54"55=>S?H.-=>1?G4"55672

1A M,-=>1?G, 6-: HH FQ .-=>1?G4"5567 H S2

B 54"55=>:5&7>1??PP2 < <

IJ"(+'#& "#%& "#'( X,- JI V5A LA 41)74"55M$/&" 1Q

1A M,-=>'?G, 6-:HHFQ + $/&" 41)74"55M$/&" 1Q +

!N H :5&7>'?2 ! H .-=>1?G4"55672

!T H ,-=>'?G3"$-!2 .-=>1?G4"5567HB 54"55=>!?2

B 5V5$YM!TW!NQ2 "5!#") !2

< < IJ .MNQ JI

Figure 7. Application Tasks for DBP

:+12'$ ?3 "#$ *&..20+*,"+&0 %'&"&*&! $@$*2"$) ," "<&

!$A$!)B &0 ",)/ ,*"+A,"+&0 ," "#$ /$'0$! !$A$!3 ,0( (2'+01

$@$*2"+&0 56 "#$ ,%%!+*,"+&0 ",)/ *&($9  " ,*"+A,"+&0

"+.$3 +- "#$ ",)/ +) , <'+"$'3 -&' ,!! +") &2"%2" %&'")3 "#$

'() *&20" &- "#$ 52C$' +"$. '$-$''$( 56 *+), 0$$()

"& 5$ ($*'$.$0"$( ,0( +- "#$ 0$< *&20" ('&%) "& >$'&3

"#+) 52C$' )!&" +) -'$$( 56 2%(,"+01 "#$ *&''$)%&0(+01

-+))"#9  !)&3 "#$ .'+ +0($@ ,0( +") *&''$)%&0(+01 '()

*&20" ,'$ 2%(,"$(9 :&' !&<$'=%'+&'+"6 '$,($')3 "#$+'

*&''$)%&0(+01 2)$ *&20") 0$$( "& 5$ +0*'$.$0"$(9

D#$0 , ",)/ "$'.+0,"$)3 "#$ ",)/ ($*'$.$0") "#$

'() *&20" &- "#$ 52C$' )!&" -&' ,!! "#$ +0%2" %&'")

"#," '$*$+A$ (,", -'&. , #+1# %'+&'+"6 <'+"$'9 E&'$=

&A$'3 <#$0 "#$ '() *&20" &- , 52C$' +"$. 5$*&.$)

>$'&3 "#$ +"$. +) '$"2'0$( "& "#$ !+)" ,0( "#$ *&''$=

)%&0(+01 <'+"$'F) -+))"# .,6 0$$( "& 5$ 2%(,"$( 2)=

+01 &%$',"+&0) "#," ,'$ 0&" ,"&.+*9 G+0*$ -+))"# ,0(

UseFreeL[] ,'$ )#,'$( 56 $,*# <'+"$' <+"# +") !&<$'=
%'+&'+"6 '$,($')3 ,"&.+*+"6 &- "#$ *'+"+*,! )$*"+&0 ," "$'=

.+0,"+&0 "+.$ .2)" 5$ 12,',0"$$( 56 ,06 *&''$*" +.=

%!$.$0","+&09 H#$ *&0)",0" "+.$ -/0#-+))12 )#&<0 +0

:+12'$ ? ",/$) "#$ <'+"$'F) +0($@ ,) +0%2" ,0( '$"2'0)

"#$ *2''$0" -+))"# ,-"$' ,))+10+01 "#$ +0($@ &- "#$ )$*=

&0( $0"'6 &0 "#$ -'$$ !+)" ,) "#$ 0$< -+))"#9 I0($'

"#$ JKL 52C$' )+>+013 +" +) 12,',0"$$( "#," -+))"# ,!=

<,6) '$-$') "& , A,!+( $0"'69 H#$ .$.&'6 '$M2+'$.$0")

&- "#$ +.%!$.$0","+&0 +) )#&<0 +0 H,5!$ N9

 !"#!$%& '(!" )&**!+&

',-./ 0×123456*7894:×56*2;8456*2< 56*2<456*278

Table 2. DBP Memory Requirement

4.2 Temporal Concurrency Control Protocol

 !" #"$!%&'(# )%("* +& (,%-'%../0'&0+1*"1 21'-"(

'( 3("* 4+1 -!" )35"1 ('6'&7 '& -!"  "#,+1%. 8+&$310

1"&$/ 8+&-1+. 91+-+$+. : 889;< ='731" > (!+2( -!"

*%-% (-13$-31"( 4+1  889<  !" ('6" +4 -!" (!%1"* )35"1

%&* -!" )35"1 ('6" +4 "%$! 21'-"1 %1" $+#,3-"* 3('&7

?@3%-'+&( A %&* B< C'#'.%1 -+ DE9F -!"1" %1" -!1"" *"0

($1',-+1( -+ $!%1%$-"1'6" "%$! -%(GF 2'-! '-( '&,3- %&*

+3-,3- ,+1-(<  !" *%-% (-13$-31" *"$.%1%-'+& %&* -!"

Task Descriptor

o

OPL[SysNOP]

o i

IP
H

d

O
P

H
d

TaskL[NT]

IPL[SysNIP]

Buf[SysNB]N
B

B
u

fH
d

p
re

v

cu
r

Output Port Descriptor

o

d
el

ay

S
rc

P
t

Read[SysNIP]

i

N
O

P

N
IP

Input Port Descriptor

Figure 8. Data Structure for TCCP

'&'-'%.'6%-'+& $+*" '( (!+2& '& ='731" H< ?%$! 21'-"1

'( %(('7&"* % $+&-'&3+3( ("7#"&- +4 Buf[]F '*"&-'I"* )/
-!" ,%'1 (BufHd, NB)F %( (!+2& '& ='731" >< J( (!+2&
'& -!" )35"1 '&*"K'&7 ,1+$"*31" '& ='731" BLF %.. -!"

42



 !"! #"$%&"%$'

 !"#$! %& '()!"* +  !"#$! ,-()!"* +  !"#$! .-()!"* +

$/&" ,-012 $/&" $#"2 $/&" 3"$-!2

$/&" 4,-2 $/&" 5"672 $/&" 168&*2

$/&" .-012 $/&" 9#:012 ; .-<=3* 4.->2

$/&" 4.-2 $/&" 492

; %& '<=4%>2 ; ,-<=3* 4,->2

?6  &@6 A"!.)B!=3* 4,->C9#:=3* 49>2 $/&" D6&1=3* 4.->2

()*"*!+*,!"*-)

,-<=E>F$#" G ,-<=E>F5"67 G ,-<=E>F9#:01 G E2

9#:=,-<=E>F9#:01> G A"!.)B!=E>2

:H" IB G J2 B K 3* 4,-2 BLLM +

,-<=B>F9#:01 G ,-<=BNJ>F9#:01 L ,-<=BNJ>F492

,-<=B>F$#" G ,-<=B>F5"67 G ,-<=B>F9#:012

9#:=,-<=B>F9#:01> G A"!.)B!=B>2

;

Figure 9. DS Initialization for TCCP

 !"# $%& " '(()  % *( $&%+(""(),

-'./#( 0123 '% *%%##(($/'4 %$(&! /%' /" &(56/&()

7%& &(!)(&" !  (&8/'! /%'  /8(, 9/'+(  :( ;&/ (& ;&/ ("

)! ! /' % ! +/&+6.!& *6<(&3  :(  !"# $%%&' "/8$.= /'>

+&(8(' " ()$ 8%)6.%  :( *6<(& "/?(3 !') &( 6&'"  :(

&(8!/')(& !"  :( '(; ()$, 1(+!6"(  :(&( 8!= *( 86.>

 /$.( ;&/ (&" /'  :( "=" (83  :(  !"# $%%&'  !#(" !"

!&468('  :( /')(@ %7  :( ;&/ (& !') &( 6&'" / " 56(6(

&(7(&('+(  $%%*#, A:( 8(8%&= &(56/&(8(' " %7  :(

OP  !"#$ "#%& "#'( PO OP ()(!*"#%& "#'( PO

OP 6&$/ Q"B!6" B PO · · ·
,-<=B>F5"67 G ,-<=B>F$#"2 OP 6&$/ Q"B!6" ' PO

,-<=B>F$#" G RB)1R"66IBM2 9#:=,-<='>F$#"> G · · ·
· · ·

OP 6&$/ "6&16" B PO OP 6&$/ "6&16" ' PO

BS G .-<=B>F3"$-!2 · · · G 9#:=D6&1='>>2

B: I.-<=B>F168&*M · · ·
D6&1=B> G ,-<=BS>F5"672 $/&" RB)1R"66I$/&" B1TM +

68 6 "6!#") I,-<=B1T>F$#"LJM\
D6&1=B> G ,-<=BS>F$#"2 U ,-<=B1T>F492

; OP ,IJM PO

Figure 10. Application Tasks for TCCP

/8$.(8(' ! /%' !&( ":%;' /' A!*.( B,

 !"#!$%& '(!" )&**!+&

',-./ 0×123456*7894:×56*2;8 56*2<456*278

Table 3. TCCP Memory Requirement

4.3 Comparison of DBP and TCCP

C&%8  :( !*%D( )/"+6""/%'3 / /" +.(!&  :! 8%&( %$>

(&! /%'" !&( '(()() ! #(&'(. .(D(. 7%&  :( ;&/ (& !')

.%;(&>$&/%&/ = &(!)(&" /'  :( 012 +!"(, C6& :(&8%&(3

.%;(&>$&/%&/ = &(!)(&" 86" 6$)! (  :( ":!&() 6"( 7&((

./" *(7%&(  :(/&  (&8/'! /%' !') !'= +%&&(+ /8$.(8('>

 ! /%' 86" 46!&!' (( 86 6!. (@+.6"/%', E " +%'" !' 

(@(+6 /%'  /8(  !"# $%%&' &(56/&(" 8%&( 8(8%&= !')

:!" !))/ /%'!.  /8( %D(&:(!), F%8$!&() ;/ : 0123

AFF2 &(56/&(" ! "8!..(& !8%6' %7 8(8%&= 7%& !6@/.>

/!&= )! ! " &6+ 6&(" !') / /" "/8$.(& "/'+(  :( AFF2

+!' !+:/(D( ! +%'" !'  /8(  !"# $%%&' ;/ :%6 /' &%>

)6+/'4 (@ &! )! ! " &6+ 6&(", G%;(D(&3  :( *6<(& "/?(

*!"() %'  :(  (8$%&!. +%'+6&&('+= +%' &%. /" :/4:.=

)($(')(' 6$%'  :(  (8$%&!. $&%$(& /(" %7  :( ;&/ (&

!') &(!)(&  !"#"3 !') / 8!= *( 86+: .!&4(&  :!'  :(

012 +!"(, A:(  &!)(%<" !8%'4  /8(3 8(8%&=3 !') /8>

$.(8(' ! /%' +%8$.(@/ = '(()  % *( !'!.=?()  % "(.(+ 

 :( *(" /8$.(8(' ! /%',

 !"#$%&'(

9H "(8!' /+">$&("(&D/'4 $&% %+%." '(() #(&'(.>.(D(.

"6$$%&  % !""/4' &(!)/'4 !') ;&/ /'4 *6<(& /')(@(",

A% "6$$%& $%& !*/./ = %7 &(!.> /8( !$$./+! /%' "%7 >

;!&(3 HAI9 J2E " !')!&)" "6+: !" I9KLMN0O3

2I9EO PQR3 !') µEAHIS PTUR :!D( *((' )(D(.%$(), E'

 :/" $!$(&3 ;( +:%%"( I9KLMN0O !"  :( I9 $.! 7%&8

7%& %6& /8$.(8(' ! /%', A:( I9KLMN0O " !')!&)

%&/4/'! () 7&%8 C&!'+( !') V(&8!'= !') /" ;/)(.=

6"() /'  :( !6 %8% /D( /')6" &=,

A:&(( $&%+(""/'4 .(D(." !&( )(W'() /' I9KL, C&%8

:/4:(&  % .%;(& $&/%&/ =3  :(= !&( /' (&&6$ .(D(.3 .%4/>

+!. "+:()6.(& .(D(.3 !')  !"# .(D(., A% "6$$%& )("/4'

&(6"( !')  % (!"( 6$4&!)(3 7%6& +%'7%&8!'+( +.!""(" !&(

)(W'() !++%&)/'4  %  :( '68*(& %7 !+ /D( !+ /D! /%'"

%7 !  !"#3  :(  !"#  =$(3 !')  :( '68*(& %7  !"#" $(&

$&/%&/ = .(D(., 1!"() %' ;:( :(&  :(= +!' (' (& ! ;!/ 

" ! ( *= +!../'4  :( +,!-./%"- #(&'(. "(&D/+(3  !"#" !&(

+! (4%&/?() !" (/ :(& *!"/+ %& (@ (')(), J *!"/+  !"#

/" '% !..%;()  % ;!/ %' !' (D(' , X/'/868 &(56/&(>

8(' " !&( )(W'() 7%&  :( 7%6& +%'7%&8!'+( +.!""(" !"

":%;' /'  :( +%.68'" %7 A!*.( Y,

<!*#' =>/&.?&?

<@@A <@@B =@@A =@@B

C-%/#D%& E'/# &

2, F&*

<3G 2, <3G F&*

3!*H ;.*/!.'&* =3G 2, =3G 2,

I ,J 3!*H* .,/

K

AL

#. 5-*D&.? 5/!/& 1E.6 @,)$M ,J <3N=39

O A 3!*HN8"#,"#/6 2, F&* 2, F&*

I ,J = &./*N3!*H P K

I ,J 8"#,"#/6 Q& &%* K AL

R&*,-"'&* R=5S5@T=UVQ=R K1#.'%-?#.+ R=5S5@T=UVQ=R9

;./&".!% R&*,-"'&* B

E%!") A

EDD%#'!/#,. C,?& A

Table 4. MinimumRequirements for OSEK CC

E' I9KL3  :( #(&'(. 76'+ /%'!./ = /'+.6)("  :(

 !"# 8!'!4(8(' 3 /' (&&6$ 8!'!4(8(' 3 "='+:&%>

'/?! /%'3 !.!&83 /' &!>$&%+(""%& 8(""!4( :!')./'43

!') (&&%&  &(! 8(' , J  !"# +!' *( !+ /D! () *=

(/ :(& 0(-!/,-%1,23 %& 45,!"1,23 !') 86" +!..

1%$6!",-%1,23 *(7%&( / "  (&8/'! /%',

J' E' (&&6$ 9(&D/+( H%6 /'( ZE9H[ :!" ! " ! /+!..=

!""/4'() $&/%&/ = .(D(. :/4:(&  :!'  :%"( %7  :(  !"#",

A:( I9KL I9 " !')!&) "$(+/W("  ;% +! (4%&/(" %7

E9H", J' E9H %7 +! (4%&= T /" '% !..%;()  % 6"( !'=

#(&'(. "(&D/+(" !') +!''% *( $&((8$ (), E9H" %7 +! (>

4%&= \ !..%; +!../'4 #(&'(. $&/8/ /D(" !')3 !  :( (') %7

 :(/& (@(+6 /%'3 &("+:()6./'4 %++6&" /7  :(&( /" '% % :(&

$(')/'4 /' (&&6$ ,

43



 !"#$%&"'()*'&" #)" +, )#$',-,. +! /0'"1 ,-,"*0 &%

0,2)3$&%,04 5" ,-,"* '0 &6",. +! )" ,7*,".,. *)08

)". '* #)" +, 0,* +! ,'*$,% ) +)0'# *)089 )" ,7*,".,.

*)089 &% ,-," ) #)*,1&%! : ; <9 +/* *$, 8,%",= 3%'2'*'-,

 !"#$%&'# #)" &"=! +, '"-&8,. +! ,7*,".,. *)0804

5=)%20 )%, 2)")1,. '" ) =)!,%,. 2)"",%4 5* =,)0*

&", #&/"*,% '0 1,",%)*,. >%&2 ) $)%.6)%, &% 0&>*6)%,

*'2,%4 ?$, #&/"*,% #)" +, /0,. )0 ) *'2, %,>,%,"#, >&%

)=)%2 1,",%)*'&"4 5" )=)%29 )00&#')*,. 6'*$ ) #&/"*,%9

#)" +, /0,. *& )#*'-)*, ) *)089 0,* )" ,-,"*9 &% #)== )

#)==+)#8 %&/*'",4 @ AB 0/33&%*0 )+0&=/*, )". %,=)*'-,

)=)%209 0'"1=, '"0*)"#, &% #!#='#4

C'")==!9 *$, $&&8 %&/*'", 2,#$)"'02 '0 /0,. >&% ,%D

%&% $)".='"19 *%)#'"19 )". .,+/11'"1 3/%3&0,04 ?$'0

2,#$)"'02 )==&60 )33='#)*'&" 03,#'E# >/"#*'&")='*! *&

+, 3%&#,00,. +! *$, @ AB @ 6$," 8,%",= ,-,"*0 &#D

#/%4 5 $&&8 %&/*'", $)0 ) 3%'&%'*! *$)* '0 $'1$,% *$)"

)== )33='#)*'&" *)080 )". #)""&* +, 3%,,23*,. +! ; <0

'" #)*,1&%! :4

5.1 OSEK Development Process

C'1/%, FF '==/0*%)*,0 *$, @ AB .,-,=&32,"*

3%&#,004 ?$, @;G H@ AB ;23=,2,"*)*'&" G)"D

1/)1,I JFFK .,#=)%)*'&"0 )%, /0,. *& #&"E1/%, )" @ AB

)33='#)*'&"4 ?$, @;G .,0#%'3*'&" &> )" @ AB )33='D

#)*'&" #&"0'0*0 &> ) 0,* &> @;G &+L,#*09 #$)%)#*,%'(,.

+! )**%'+/*,0 )". %,>,%,"#,04 <,>,% *& ?)+=, M >&% )==

@ AB @;G &+L,#*0 )". *$,'% 3%&3,%*',04 5" @;G #&"D

 !"#$% &'()'%*+, -%'()'+) .%%+/!0%# -%) 1#2#+#($#

345 ,#6 7 7

 - ,#6 (= 1)

-8.85-9 5-:1:--3;:<5=:9

75-:>:8-:1?@3:@<9 ;**A69

5-:4.1.&:8:1.33:--

.44& <: ,#6 (≥ 1) 7 7

8.-B ,#6 C≥ 1D
41@ 1@8E9 -3;:<5=:9 &:--.>:9 :?:F89

.38@?.8@ F9 .58 -8.18 1:- 513:

3 5F8:1 (*

&.G.== H:<?.=5:9

7

8@3B-4:1I.-:9 &@F3E3=:

1:- 513: (* 1:- 513:41 4:18E 7

:?:F8 (* &.-B 7

@-1 (* 3.8:> 1E &:--.>:91:- 513:

&:--.>: (* F 8@J@3.8@ F9 #%$K 7

FH&:--.>: (* -@L:@FI@8-9 #%$K @4<5

3 & (* (= 1) 3 &8@&:I.-:9 #%$K 7

@4<5 (* -@L:@FI@8-9 #%$K 7

F& (* (= 1) 7 7

Table 5. OIL Objects and Their Properties

E1/%)*'&" '0 #&23&0,. &> *6& 3)%*0N *$, '23=,2,"D

*)*'&" .,E"'*'&" )". *$, )33='#)*'&" .,E"'*'&"4 ?$,

>&%2,% .,E",0 )== 0*)".)%. )". )33='#)*'&"D03,#'E# )*D

*%'+/*,0 )". *$,'% 3%&3,%*',0 >&% ) 3)%*'#/=)% @ '2D

3=,2,"*)*'&" 6$'=, *$, =)**,% .,E",0 *$, 0,* &> &+L,#*0

)". *$,'% #&%%,03&".'"1 )**%'+/*, -)=/,0 >&% )" @ AB

)33='#)*'&"4

5" @;G #&"E1/%)*'&" E=,9 #&.,. 2)"/)==! &% 1,",%D

)*,. )/*&2)*'#)==!9 '0 >,. *&  !0*,2 O,",%)*&% H OI9

6$'#$ )/*&2)*'#)==! #&"E1/%,0 ) 8,%",= +! #$&&0'"1 *$,

%,P/'%,. 2&./=,0 )". #/0*&2'('"1 *$, .)*) 0*%/#*/%,

)**%'+/*,04 ?$, 0&/%#, #&., &> *$, )33='#)*'&" *)0809

*$, 0,=,#*,. 2&./=, E=,0 >%&2 *$, @ AB @ 8,%",= ='D

+%)%!9 )". *$, )..'*'&")= )33='#)*'&" E=, 3%&./#,. +!

 O )%, #&23'=,. )". ='"8,. *&1,*$,% *& 3%&./#, )"

,7,#/*)+=, E=, >&% *$, )33='#)*'&"4

Make Utilities

User Specified

Third Party Tools, & Related Files

OSEK Components, Tools, & Related Files

(OIL)

OSEK Builder

C Code

Object Library Files

Compiler

Linker

Executable File

Kernel Library

OSEK OS

C Code

Optional

System Generator 

(SG)

C Code

Configuration Files

Application

User’s Source Code

Files Produced by SG

Figure 11. Application Development Process

 !"#$ %&'()&)*+,+-.*/ .0 "1 ")2

&,*+-3/ 45)/)56-*7 45.+.3.(/

5>*,% *$, .,0#%'3*'&"0 &>  < 0,2)"*'#0 3%,0,%-'"1

3%&*&#&=0 )". &> *$, @ AB +)0'#09 6, .,0#%'+, *$,'%

'23=,2,"*)*'&" '" ) 3&%*)+=, QRRF #&">&%2)"#, #=)004

S=,)0, "&*,9  !"# $%&!'&(' )*&%+(*$  ) ,-./ &(* +$*'0

&!' ! 1 '234&%2 ! % %5* 6*(!*" 2$ (*7+2(*'4 ?$, '2D

3=,2,"*)*'&" *$)* 6)0 3%,-'&/0=! %,>,%%,. )0 6*(!*"8

"*9*" 6'== &>*," +, 3,%>&%2,. +! ) $'1$,% 3%'&%'*! *)08

&% @0 $&&8 %&/*'",0 *$)* #)""&* +, '"*,%%/3*,. )". #)"

*$,%,>&%, 1/)%)"*,, )*&2'#'*!4 ;" QRRF )". QRR:9

,-,"*0 )%, "&* )-)'=)+=, )". *$, )=)%2 2,#$)"'02 '0 *$,

&"=! 6)! *& )#*'-)*, 3,%'&.'# *)0804  '"#, *$, 2'"'2/2

%,P/'%,2,"*0 )==&6 &", )=)%2 &"=!9 6, /0, '* *& 3,%'D

&.'#)==! )#*'-)*, ) (")*!#+,&- *)08 *$)*9 '" */%"9 )#*'D

-)*,0 *$, )33='#)*'&" *)080 )* *$,'% %)*,04 (")*!#+,&-

'0 3,%'&.'#)==! )#*'-)*,. +! )" )=)%29 0*)*'#)==! #&"E1D

/%,. )0 #!#='#9 ,-,%! ./01 *'2, /"'*09 6$'#$ .,"&*, *$,

O%,)*,0* R&22&" T'-'.,% &> *$, <)*,0 &> )33='#)*'&"

*)0804

?$, .)*) 0*%/#*/%,0 >&% *$, *)08 (")*!#+,&- )%, .,D

#=)%,. '" C'1/%, F:4 ?$, )%%)! TickL[] $)0 .'2,"0'&"

2/319 *$, G,)0* R&22&" U/=*'3=, &> *$, <)*,0 &> )3D

3='#)*'&" *)0804 A)#$ TickL[i] ,"*%! $)0 *6& E,=.0N

0")*4( )". )"5&4 0")*4( 3&'"*0 *& *$, E%0* *)08 &" *$,

.'03)*#$ *)+=, DTab[] )". )"5& '".'#)*,0 *$, "/2+,%

&> *)080 *$)* ",,. *& +, )#*'-)*,. )* *$'0 03,#'E# #"+6

-)=/,4 ?$, )%%)! DTab[] #&"*)'"0 *$, *)080 *$)* ",,. *&
+, )#*'-)*,. >%&2 tick = 0 *& tick = LCMR− 14 ?$,

,"*%',0 &> DTab[] )%, /0,. *& '".,7 *$, *)080 '" *$, *)08

.,0#%'3*&% )%%)! 3%,0,"*,. ,)%=',%4

?$, *&3 %'1$* #&=/2" '" C'1/%, F: '0 *$, '"'*')='()D

*'&" &> *$, .)*) 0*%/#*/%,0 /0,. +! (")*!#+,&-4 ?$,

+&**&2 3)%* &> *$, E1/%, 0$&60 *$, (")*!#+,&- '2D

44



 !"#$%$&'() *)'& +,( -.$/! 0.'1&

/&%2"& 3'"45)&%6 7 &'"4 8 9:; ': 8 <;

".$%  '/=>?; 1(% @A 8 <; A B CDEF; AGGH 7

".$% /'I!; 3'"4CJAKL '/=>? 8 9:;

M 3'"4CJCDEFK; 3'"4CJAKL/'I! 8 <;

1(% @' 8 <; ' B N3; 'GGH 7

".$% &'"4; '1 @AO3$/4CJ'KL%$&!88<H 7

".$%  3$PJ30'I!K; 'Q 8 3'"4CJAKL/'I! G ':;

 3$PJ'QK 8 ';

D(R=2&! 30'I! 3'"4CJAKL/'I!GG;

".$% 30'I! 8 <; M M

1(% @'8<; 'BN3; 'GGH 7 '1 @3'"4CJAKL/'I! S8 <H 7

30'I! G8 \ 3'"4CJAKL '/=>? 8 ':;

CDEF,3$/4CJ'KL%$&!; ': G8 3'"4CJAKL/'I!;

M M M

*R=#!R!)&$&'() (1 3$/4 ?'/=$&".!%

 !"# @$%"&!'()*+H 7

&'"4 8 @&'"4G:H O CDEF;

'1 @3'"4CJ&'"4KL '/=>? S8 9:H 7

1(% @4 8 <; 4 B 3'"4CJ&'"4KL/'I!; 4GGH 7

'?T 8  3$PJ4G3'"4CJ&'"4KL '/=>?K; ,U &$/4 '? U,

1(% @'8<; 'B3$/4CJ'?TKLNV-; 'GGH 7 ,U +%'&!%/ U,

'?TQ 8 3$/4CJ'?TKLV->? G ';

· · · ,U 4!%)!# #!W!# +%'&!% "(?! U,

M

1(% @'8<; 'B3$/4CJ'?TKLN*-; 'GGH 7 ,U %!$?!%/ U,

'?TQ 8 3$/4CJ'?TKL*->? G ';

· · · ,U 4!%)!# #!W!# %!$?!% "(?! U,

M

X"&'W$&!3$/4@'?TH;

M M

3!%R')$&!3$/4@H;

M

Figure 12. Task Dispatcher

 !"#"$%&%'($) *+,'$- '%. "/"0+%'($1 %2" 0(+$%",  !"#

'. '$0,"#"$%"3 #(3+!( $%&') 42"$1 %2" 5&!+" (6 %2"

7"!3 (!)*+, (6 TickL[tick] '. 02"08"3) 96 '% '. :;

<:1 $( %&.8 $""3. %( =" &0%'5&%"3) >%2",?'."1 %2"

%&.8. '$ DTab[]1 &. . "0'7"3 =@ %2" -(!)*+,. )!/01 &,"

 ,(0".."3) A(, "&02 (6 %2"#1 %2" 3'. &%02",  ,(0"..".

'%. '$ +% &$3 (+% +%  (,%.1  ",6(,#'$- %2" ,"&3 (, ?,'%"

 ,(0"3+,". . "0'7"3 =@ %2" "&,!'",  ,(%(0(!.) B "0'6;

'0&!!@1 '% 0&!!. 2!3,2400-1 %( 7$3 & .&6" =+C", .!(%

6(, "&02 (+% +%  (,%) A(, "&02 ,"&3",1 '% 3"7$". %2"

=+C", .!(% %2&% %2" %&.8 ?'!! =" +.'$- 3+,'$- '%. "/"0+;

%'($) 42"$1 ,!)*5 "604 &0%'5&%". %2" %&.8 =@ 0&!!'$-

7" !85 095)# &$31 &% %2" "$31 0&!!. 904:!35 095)#

%( %",#'$&%")

 ,-. @%/%'H 7

· · · ,U ')'& 'R=#!R!)&$&'() /=!"'1'" $2T'#'$%6  0 U,

· · · ,U ')'&  0 %!Y2'%!? P6 =%(&("(# U,

· · · ,U ')'& ?'/=$&".!% $/ ') Z'[ :Q U,

0!&F!#X#$%R@?'/=X#$%R\ <\ ]D FH;

3!%R')$&!3$/4@H;

M

Figure 13. General Structure of Task Init

42" 3&%& .%,+0%+,". (6 %2" 0(##+$'0&%'($  ,(%(0(!.

3'.0+.."3 '$ B"0%'($ D $""3 %( =" '$'%'&!'E"3 %( (=%&'$

& 0(,,"0% "/"0+%'($) 9$ &33'%'($1 %2" 3&%& .%,+0%+,".

(6 %2" %&.8 ,!)*5 "604 &," '$'%'&!'E"3 &. .2(?$ '$ A'-;

+," <F =@ %2" >BGH %&.8 !3! 1 IA'-+," <JK1 "/"0+%"3

&% .@.%"# .%&,%+ ) 42" 3&%& .%,+0%+,". .%(,'$- .%&%'0

'$6(,#&%'($1 .+02 &. !)+;'1 &," &!.( '$'%'&!'E"3 &% .@.;

%"# .%&,%+ ) L".'3". '$'%'&!'E'$- 3&%& .%,+0%+,".1 %&.8

!3! &!.( ."%. %2" 0@0!'0 &!&,#1 ,!)*7<54:1 &..(0'&%"3

?'%2 %&.8 ,!)*5 "604)

6.1 OSEK Communication Implementation in C

9$ %2'. ."0%'($1 ?" .2(? %2" 3&%& .%,+0%+,".1 %2"

3"0!&,&%'($.1 &$3 %2" 3"7$'%'($. 6(, ,!)*5 "6041 %2"

&  !'0&%'($ %&.8.1 &$3 !3! 6(, "&02 '# !"#"$%&%'($)

42" 3"0!&,&%'($ (6 %2" 3&%& .%,+0%+,". %2&% &," 0(##($

%( %2" %?( '# !"#"$%&%'($. '. '$ A'-+," <D)

^ 5Z*N5 N3 _ ^ 5Z*N5 06/N*- _ ^ 5Z*N5 30'I! _

^ 5Z*N5 CDEF _ ^ 5Z*N5 06/NV- _ ^ 5Z*N5 06/N` _

^ 5Z*N5 ]D F _

R!//$[! `21J06/N`K; ".$% F!$?J06/N*-K;

R!//$[! a%&*)'&J06/NV-K 8 7_\ · · · M;

Figure 14. Common DS Declaration

 !"!" #$%

A'-+," <M .2(?. %2" 3&%& .%,+0%+,".1 ?2'02 &," & 0(#;

='$&%'($ (6 %2(." +."3 6(, ,!)*5 "604 '$ A'-+," <F

&$3 6(, *LN '$ A'-+," M ?'%2 &33'%'($&! 7"!3. '$ %2"

%&.8 3".0,' %(,) 9$ &33'%'($ %( *4! &$3 45 01 & 7"!3

0&!!"3 ,=30 '. &33"3 6(, %2"  +, (." (6 3"%"0%'$- ?2"$

& 0($%"/% .?'%02 '. "/"0+%"3 + ($ %2" %",#'$&%'($ (6 &

!(?",  ,'(,'%@ ,"&3",) O 7"!3 0&!!"3 =>304 '. &33"3 %(

%2"  (,% 3".0,' %(,.) 42" 0(,,". ($3'$- 3"0!&,&%'($.

&," .2(?$ '$ A'-+,". <P1 <D1 &$3 <F) 42" ,!)*5 "604

tick

kt

t

o

o

Output Port Descriptor

TaskL[NT]

k+3

−1

k

k+1

k+2

k+3

t

t

o

i

o

io

DTab[TSize]TickL[LCMR] Buf[SysNB]

UseFreeL[SysNB]

Read[SysNIP]

IPL[SysNIP]

OPL[SysNOP]

D
i
s
p
H
d

s
i
z
e

r
a
t
e

p
r
i

d
o
n
e

O
P
H
d

N
O
P

I
P
H
d

N
I
P

o
w
n
e
r

S
r
c
P
t

d
e
l
a
y

I
s
H
P
R

F
r
e
e
H
d

o
w
n
e
r

c
u
r

p
r
e
v

B
u
f
H
d

N
B

Input Port Descriptor

Task Descriptor

t

Figure 15. CTDBP Implementation DS

%&.8 2&. %2" .&#" .%,+0%+," &. .2(?$ '$ A'-+," <F &$3

%2" 8",$"!;!"5"! 0(3" 6(, %2" *LN 6,(# A'-+," Q '. "/";

0+%"3) B'#'!&,!@1 %2" !3! %&.8 2&. %2" .&#" .%,+0%+,"

(6 A'-+," <J) A'-+," <Q .2(?. %2" &  !'0&%'($;!"5"! 0(3"

,"R+',"3 =@ *LN) S"  ,( (." %( +." %2" 2((8 #"02;

&$'.#  ,(5'3"3 =@ >BGH %( !"% !(?",; ,'(,'%@ ,"&3",.

&%(#'0&!!@ + 3&%" %2" =+C", 6,"" !'.% &% %",#'$&%'($

%'#") B "0'70&!!@1 ?" +." %2" ;=) 95)#+==# %( "/"0+%"

45



 !"#$! %& '()!"* +  !"#$! ,-()!"* +  !"#$! .-()!"* +

$/&" "&!01 $/&" 23)0"1 $/&" 23)0"1

$/&" 4"51 $/&" 6"00781 $/&" 9"$-!1

$/&" 82)01 $/&" $#"1 $/&" 80:&*1

$/&" ,-781 $/&" 4"0;1 $/&" . 7-<1

$/&" =,-1 $/&" >#?781 @ .-AB9* =.-C D +

$/&" .-781 $/&" =>1 +EFEFEFE@F

$/&" =.-1 @ ,-AB9* =,-C D + · · ·
@ %& 'AB=%C D + +EFGFGFGFGFE@F @1

+EFEFGFEFEFEFE@F · · · @1
· · · @1 $/&" H 06"00AB9* =>C1

Figure 16. DS Declaration for DBP

 !"#  !$$ %&'()! " #$%& '$()*+(,-$$, #$%&! "

*+(,./%01&$23 4 5+6(37 89+: %&; <; ,; 2%=; )>; )?7

· · · @3)*+(,AB %&!7

CD5/E'./,018D:0 4 · · · %5  *+(,./%&01&$23! "

· · · 2%= 4 *+(,./%&01FA'7

· · · 4 CD5/G3+&/,007 5$:  <4H7 <I2%=7 <JJ! "

· · · , 4 < J *+(,./%&01A'-&7

*+(,./%01&$23 4 ):D37 · · · KL  M %2 N%O P LK

KL +)$Q%8 9$$, 8$&3 LK R

*3:Q%2+)3*+(, !7 R

R R

Figure 17. OSEK Implementation of Applica-

tion Task for DBP

 !"#$#! % &'!$#() *+() $,' $'"-#) $#() (. $,'&' $ &/&0

1#)!' $,'  !"#$%"&'!!& "(*$#)' '2'!*$'&  $ ' !, !()3

$'2$ &4#$!,  )5 .("  %% $,' $ &/& #) $,' &6&$'-7  8 9

(!)* #&  55'5 $( $,' $ &/ 5'&!"#+$("0 :,' 8 9 #)5#3

! $'& .(" 4,#!, $ &/& $,'  !"#$%"&'!!& )''5& $( ;'

'2'!*$'5  )5  %&( ')&*"'& $, $ $,' (+'" $#()& #) $,'

 !"#$%"&'!!&  "' ()%6 '2'!*$'5  $ $ &/ $'"-#) $#()

$#-'0 :,' (!)* 8 9 (. ' !, $ &/ #& &'$ $( . %&'  $ $,'

;'9#))#)9 (. $,' $ &/7  )5 !, )9'5 $( $"*' 4#$, $,'

% &$ $ &/ #)&$"*!$#()0

 !"#$%"&'!!& <=#9*"' >?@7 A"&$ (;$ #)& $,' #5')3

$#A'" (. $,'  !$#B' $ &/ ;6 ! %%#)9 $,' C1DE FGH

+*#$%"&,-0 :,')7 #$ !,'!/& 4,'$,'" #$& (!)* 8 9 #&

&'$ $( $"*'0 H. &(7 $,' *+5 $'& "'I*#"'5 ;6 $,' !(--*3

)#! $#() +"($(!(%  "' +'".("-'50

 !"!# $%%&

TaskL[NT]

t

o

OPL[SysNOP]

o i

IP
H

d

O
P

H
d

ra
te

IPL[SysNIP]

Buf[SysNB]N
B

B
u
fH

d

p
re

v

cu
r

o

Read[SysNIP]d
el

ay

S
rc

P
t

N
IP

N
O

P

i

Input Port DescriptorTask Descriptor

Output Port Descriptor

si
ze

D
is

p
H

d

tick

DTab[TSize]TickL[LCMR]

Figure 18. TCCP Implementation DS (MPT)

=#9*"' >J &,(4& $,' 5 $ &$"*!$*"'& *&'5 .(" $,'

C1DE #-+%'-')$ $#() (. :KKG  &  !(-;#) $#() (.

$,(&' #) =#9*"'& >L  )5 J 4#$, $,'  55#$#() % .%#* A'%50

K(-+ "'5 4#$, =#9*"' >M7 $,' 5 $ &$"*!$*"'& .(" $,'

:KKG #-+%'-')$ $#()  "' &#-+%'"7 &#)!' )( ;((//''+3

#)9 #& "'I*#"'5 ;6 $,' /0)(/.**120 :,' 5'!% " $#()&

 "' &,(4) #) =#9*"' >N7 >O7  )5 >L0

():D8) *+(,S2):T " ():D8) E'S2):T " ():D8) A'S2):T "

89+: :+)37 89+: 8D:7 89+: M:8')7

89+: E'-&7 89+: =:3#7 89+: &36+T7

89+: FE'7 89+: CD5-&7 RA'./MT(FA'0 4 "

89+: A'-&7 89+: FC7 "U; UR;

89+: FA'7 RE'./MT(FE'0 4 " · · ·
R *+(,./F*0 4 " "H; H; H; UR; R7

"U;U;U;U;UR; · · · R7 · · · R

Figure 19. DS Declaration for TCCP
1#-#% " $( $,' #-+%'-')$ $#() (. $,' PQG 5#&!*&&'5

#) 1'!$#() R0>0>7 $,' (0"3%#45*. $ &/ '2'!*$'& $,'

/'")'%3%'B'% !(5'7  )5 $,' 0)0# $ &/ '2'!*$'& $,' #)#3

$# %#S $#() !(5'0 :,' 5'A)#$#() (.  ++%#! $#() $ &/&

&, "'& $,' & -' &$"*!$*"' 4#$, #$& !(*)$'"+ "$ #) =#93

*"' >?7 ;*$ #& &#-+%'" ;'! *&' $,'"' #& )( $'"-#) $#()

!(5' .(" $,' #)+*$ +("$&  )5 )( ,((/ "(*$#)'0

 !"!' ()*+,),-./.01- %1)*/2031-

H) $,#& &'!$#()7 4' !(-+ "' $,' $4( #-+%'-')$ $#()&0

: ;%' R &,(4& $,' -'-("6 "'I*#"'-')$&0 PQG "'I*#"'&

-("'  *2#%# "6 5 $ &$"*!$*"'& $, ) :KKG7 #)!%*5#)9

$,' !(*)$'"T."''3%#&$ &$"*!$*"'0 :,' ;*U'" &#S'& .(" $,'

PQG  )5 $,' :KKG  "' )($ !(-+ " ;%' &#)!' $,'6  "'

; &'5 () 5#U'"')$ ;*U'" &#S#)9 -'!, )#&-&7 ;*$ PQG

! ) ;' *&'5 $( , B' &- %%'" -'-("6 "'I*#"'-')$& V>LW0

:,' PQG #-+%'-')$ $#() #& -("' !(-+%'2 ;'! *&' (.

 !"#"$"% $&'! ()**'+)

,-.

/×0123×45*06.27×45*08.2 45*0-2

9×:;<=214>?)245*0-2@ 45*06.

1;;.

7×012A×45*06.2B×45*08.2 45*0-T2

9×:;<=214>?)2@ 45*06.

Table 6. Memory Requirement Comparison

$,' !(5' "'I*#"'5 .(" A)5#)9 $,' ."'' ;*U'"  )5 .("

 !!(*)$#)9 .(" $,' ;*U'" *& 9'7  )5 $,' )'!'&&#$6 $(

*+5 $' $,' &, "'5 *&' ."'' %#&$0 =*"$,'"-("'7 &#)!' $,'

,((/ -'!, )#&- #& - #)%6 5'&#9)'5 .(" 5';*99#)9  )5

'""(" - ) 9'-')$7 $,' *&' (.  !"#$%"&'!!& #)$"(5*!'&

 $#-' (B'",' 5  $ ' !, !()$'2$ &4#$!,0

6.2 OIL Configuration File

H) $,#& &'!$#()7 4' 5'A)' $,' CHX !()A9*" $#() A%'

.(" $,' #-+%'-')$ $#() (. $,' !(--*)#! $#() +"($(3

!(%&0 =#9*"' LY &,(4& $,' ; &#! &$"*!$*"' (.  ) CHX

!()A9*" $#() A%'0 H)&#5' $,' !()$ #)'" 6 7 5'!% " $#()7

(;Z'!$&  "' &$ $#! %%6 &+'!#A'50 :,'  ++%#! $#() $ &/&

 "' 5'A)'5 ;6 $,' 9')'"#! 5'!% " $#() (. 833$%"&9:0

[' &'$ $,' ;6'<-7=<  $$"#;*$'  & /7==7 #)5#! $#)9  

.*%%6 +"''-+$#B' &!,'5*%#)9 +(%#!60 \)5'" $,'  &&*-+3

$#() $, $ $,' 5' 5%#)'& (.  ++%#! $#() $ &/&  "' )($

46



 !"#$%&'! ( ) *+,-*.

/0 !1234145676895 :4; 0/ <='> 8586 ?

!@A"%@%(<=<! ( 1B '%> ' ? A&! &!<C ) D#8.

· · · 'EF%:G"% ) ( (.

H. // %5I 9; 1B '%> ' =E<!$=<! ( ) J.

/0 =2238K76895 :4; 0/ =G< '<=&< ) <&G% ?

EAG 1BEAG ? // K9567854L =AA@ :% ) =22@9I4M.

/0  '  NO4K6 0/ H.

 ' 1B ' ? H.

'<=<G' ) '<=(:=&:. /0 =37L1  NO4K6 0/

'<=&<GAF  > ) P="'%. ="=&@ I8Q2=37L1 ?

%&& &F  > ) P="'%. E G(<%& ) 'BQ<814L.

'FG<: R(F  > ) P="'%. =E<! ( ) =E<!$=<%<='>?

A&%<='>F  > ) P="'%. <='> ) I8Q276KS4L.

A '<<='>F  > ) <&G%. H.

G'%T%<'%&$!E%!: ) P="'%. =G< '<=&< ) <&G% ?

G'%&%''EF%:G"%& ) P="'%. ="=&@<!@% ) M.

H. ECE"%<!@% ) TE:&.

/0 <7QU  NO4K6 0/ =AA@ :% ) =22@9I4M.

<='> =22<7QU#O ? H.

A&! &!<C ) D#O. H.

'EF%:G"% ) PG"". /0 E9V564L  NO4K6 0/

=E<!$=<! ( ) J. E G(<%& 'BQ<814L ?

=G< '<=&< ) P="'%. @!(ECE"% ) W.

H. @=D="" R%:$="G% ) W.

· · · <!E>'A%&X='% ) W.

<='> I8Q276KS4L ? H.

A&! &!<C ) D#I. /0 =223 @9I4  NO4K6 0/

'EF%:G"% ) ( (. =AA@ :% =22@9I4M ?

=E<!$=<! ( ) J. $="G% ) =G< .

=G< '<=&< ) P="'%. H.

H. H. // %5I 9; 1BEAG

Figure 20. OIL Configuration File

 !"#$"! $%#& $%"'! !"()"*$'+" )"!',-(. $%"  !"#$ "#%&

#$$!'/0$" '( ("$ $, ,&" 1#( !"20'!"- '& 344567 8)9

):'*#$',& $#(;( #!" )"!',-'* #&- #!" #*$'+#$"- /< $#(;

'()*+,-./0. $%"!"=,!" $%" #$$!'/0$"  1"%2" 3" '( ("$

$, 4 5267 >,! $#(; (7(,. $%" *,&? 0!#$',& '( ('@':#!:<

()"*'?"-. A'$% $%"  1"%2" 3" #$$!'/0$" $0!&"- $, ,&

#&- # ('& :" #)):'*#$',& @,-" #((' &"- $, $%"  889%:6

#$$!'/0$"7 B#(; '()*+,-./0 #*$'+#$"( $%" #)):'*#$',&

$#(;( #&- )"!=,!@( )#!$ ,= $%" *,@@0&'*#$',& )!,$,9

*,: ,)"!#$',&( ,& /"%#:= ,= $%" ;"!&":7 B%"!"=,!". '$(

)!',!'$< (%,0:- /" %' %"! $%#& $%,(" ,= #:: #)):'*#$',&

$#(;(. #&- '$( 2!;6:156 #$$!'/0$" '( ("$ $, &%&. '&-'*#$9

'& # &,&9)!""@)$'+" (*%"-0:'& 7 B#(; '()*+,-./0 '(

#*$'+#$"- /< #& #:#!@. '()* <+0=. (, '$(  1"%2" 3" #$9

$!'/0$" '( ("$ $, 4 526 #&- #& #:#!@ ,/C"*$ '( ()"*'?"-

#**,!-'& :<7 B%" #:#!@ '( #((,*'#$"- A'$% # *,0&$"!.

A%'*% '( #& ,/C"*$ -"?&"- '& $%" DEF ?:"7 B%" #:#!@

'( *,&? 0!"- $, #*$'+#$" $#(; '()*+,-./0 $%!,0 % ("$9

$'& '$( #$$!'/0$"  !"#%& #(  !"#$ "6" 2>7 >'&#::< $%"

#:#!@G(  1"%2" 3" #$$!'/0$" '( ("$ $, "316 #&- $%" )"9

!',- ,= '()* <+0= '( ("$ $, ?!:37

H%"& $%" *,&($#&$ $'@" 4(7'40//@A '( 0("-. $%"

#$,@'*'$< ,= $%" $"!@'&#$',& *,-" $%#$ 0)-#$"( $%"

(%#!"- 0(" =!"" :'($ '(  0#!#&$""- /< $%" 8B),"+)C;BBC

@"*%#&'(@. A%'*% '( $0!&"- ,& /< ("$$'& $%" *,!!"9

(),&-'& #$$!'/0$" 8%2"" 2>;%%> #( BIJK '& $%" DL

,/C"*$ #( (%,A& '& >' 0!" MN7

 !"#$%&'("#' )#* +&,-./, 0",1

H" )!"("&$"- $A, ),!$#/:" DLKO '@):"@"&$#$',&(

=,! (<&*%!,&,0( !"#*$'+" ("@#&$'*( )!"("!+'& *,@@09

&'*#$',& )!,$,*,:(7 H" (%,A"- -"$#':"- -#$# ($!0*$0!"(

#&- '@)"!#$'+" *,-" =,! $%" -<&#@'* /0P"!'& )!,$,*,:

A'$% *,&($#&$ $'@" *,@):"Q'$<7 D0! DLKO '@):"@"&9

$#$',& @""$( $%" @'&'@0@ !"20'!"@"&$( ,= 3445 =,!

),!$#/':'$<7 4,@)#!'(,& ,= -'P"!"&$ +"!(',&( ,= $%" '@9

):"@"&$#$',& (%,A( $%#$ B44R 0("( # (@#::"! #@,0&$

,= #0Q':'#!< -#$# ($!0*$0!"( #&- '$ %#( # :,A"! '@):"9

@"&$#$',& *,@):"Q'$<. A'$% !"()"*$ $, S3R7 8( ,& ,9

'& A,!;. A" #!" *,&-0*$'& "Q)"!'@"&$( A'$% -'P"!"&$

+"!(',&( ,= $%" '@):"@"&$#$',&( ,= $%" )!"("&$"- )!,9

$,*,:( $, ($0-< #&- +"!'=< $%" $"@),!#:. ()#$'#:. #&-

'@):"@"&$#$',& *,@):"Q'$< $!#-",P(7

2/3/,/#$/'

 !" #$ %&'( )(* +$ ,-.(/0 1+ 2-334 )/4(5&.6(6-/ .')*'.78.9:'

;'5&)(9/; 26. ;-3:9<.65'//6. .')3=:9;' /4/:';/0> ?'5&$

@'<$ A%B CDD0 E(9F'./9:4 62 A6.G0 H)4 !IIJ$

 C" #$ %&'( )(* +$ ,-.(/0 1+ :&.''=/36: )/4(5&.6(6-/

.')*'.78.9:'. ;'5&)(9/; 26. ;-3:9<.65'//6. .')3=:9;' /4/=

:';/0> ?'5&$ @'<$ A%B CDK0 E(9F'./9:4 62 A6.G0 #)(-).4

!IIJ$

 L" M$ B5)92' )(* N$ %)/<90 1O(:'P.):9(P ;6*'3=Q)/'* *'/9P( )(*

<.'';<:9F' /5&'*-39(P 9( ;9R'* :9;'= )(* 'F'(:=:.9PP'.'*

/4/:';/0> 9(  !" #$%&' $()*+,+)-+0 #-34 CSST$

 T" %$ B62.6(9/0 B$ ?.9<)G9/0 )(* N$ %)/<90 1+ ;';6.4=6<:9;)3

Q-U'.9(P <.6:6563 26. <.'/'.F):96( 62 /4(5&.6(6-/ /';)(:95/

-(*'. <.'';<:9F' /5&'*-39(P0> .,(-++/0)12 (* !"+  !" 3$4

#4'56& -()*+,+)-+0 V5:6Q'. CSSK$

 W" #$ %&'( )(* +$ ,-.(/0 1X66<=2.'' )/4(5&.6(6-/ *):) /&).=

9(P 9( ;-3:9<.65'//6. .')3=:9;' /4/:';/ Q)/'* 6( :9;9(P

<.6<'.:9'/0> 9( .,(-7 (* !"+  !" %&$'3 $()*+,+)-+0 !III$

 K" Y$ Z6<':[ )(* #$ @'9/9(P'.0 1?&' (6(=Q365G9(P 8.9:' <.6=

:6563 (Q8\ + /63-:96( :6 ) .')3=:9;' /4(5&.6(9[):96( <.6Q=

3';0> 9( .,(-++/0)12 (* !"+ 89!" :### %&''0 ]'5';Q'.

!IIL$

 J" H$ ,)3')(90 +$ '̂..).90 X$ H)(P'.-5)0 )(* +$ B$ _9(5'(:'3390

1`a59'(: ';Q'**'* /62:8).' *'/9P( 89:& /4(5&.6(6-/ ;6*=

'3/0> 9( .,(-++/0)12 (* !"+ ;!" 3$4 #4'56& -()*+,+)-+0

CSSW$

 D" b$ c)(P0 H$ ]$ M):)3'0 )(* +$ B)(P96F)((9=_9(5'(:'3390

1+( 6/'G7F*R 9;<3';'(:):96( 62 /4(5&.6(6-/ .')5:9F' /'=

;)(:95/ <.'/'.F9(P 56;;-(95):96( <.6:65653/0> ?'5&$ @'<$

E%,7``%B=CSSJ=D!0 ``%B ]'<:$0 E(9F'./9:4 62 %)3926.(9)0

,'.G'3'40 #-(' CSSJ$

 I" NVBOd0 1NVBOd /:)(*).*$> )F)93)Q3' ): S662Y//ZZZ,29Q8W,

K91$

 !S" ;95.6O?@VM0 1;95.6O?@VM /:)(*).*0 F'./96( T$S$> )F)93=

)Q3' ): ZZZ,Q7U71VL7[37N,9L\/<& (/!<& (/: E/$

 !!" VB`Z0 1VB`Z 9;<3';'(:):96( 3)(P-)P' eVOXf0 F'./96(

C$W$> )F)93)Q3' ): S662Y//ZZZ,9Q4U[]IW,9L\$

 !C" H$ ]$ M):)3'0 b$ c)(P0 )(* +$ B)(P96F)((9=_9(5'(:'3390

1V<:9;9[9(P :&' 9;<3';'(:):96( 62 56;;-(95):96( 9( /4(=

5&.6(6-/ .')5:9F' ;6*'3/0> 9( '<=>0!!+/ !( !"+ #4'56&

$()*+,+)-+0 CSSJ$

47



Coordinated Allocation and Scheduling of Multiple
Resources in Real-time Operating Systems

Kartik Gopalan and Kyoung-Don Kang
Computer Science, State University of New York at Binghamton

Binghamton, NY 13902-6000
{kartik,kang}@cs.binghamton.edu

ABSTRACT
Distributed real-time embedded (DRE) systems are key com-

ponents of critical infrastructure including surveillance, tar-

get tracking, electric grid management, traffic control, avion-

ics, and communications systems. They require (1) the coor-

dinated management of multiple resources, such as the CPU,

network, and disk, (2) end-to-end (E2E) real-time guaran-

tees across the use of multiple resources, and (3) feedback

control across multiple resources. None of these properties

is supported as a first-class feature within the state-of-the-

art real-time operating systems, but are left out as an in-

convenient detail to be managed by DRE application pro-

grammers. In this paper, we shed light on this fundamental

problem and make the case for greater research into the de-

velopment of theory and a runtime systems for coordinated

allocation and scheduling of multiple resources in real-time

operating systems. We also present the outlines of our pro-

posed solution approach, called the Multiple Resource Al-

location and Scheduling (MURALS) framework, that aims

to bridge this gap between the need for E2E timing require-

ments and the techniques to coordinate the use of multiple

resources.

1. INTRODUCTION
Distributed real-time embedded (DRE) systems are key com-

ponents of critical infrastructure including surveillance, tar-

get tracking, electric grid management, traffic control and

safety, process control, robotics, avionics, communication

systems, and even real-time networked games. DRE systems

in these applications are required to use multiple heteroge-

neous resources, such the CPU, network bandwidth, main

memory, and secondary storage, The heterogeneity of re-

sources and their interactions calls for coordinated manage-

ment across these resources to meet end-to-end (E2E) dead-

lines. While real-time scheduling for a single resource in iso-

lation has been studied extensively, relatively little work has

been done for integrated allocation and scheduling of multi-
ple heterogeneous resources to meet E2E timing constraints.

Absence of coordination across multiple resources can lead

to failure in meeting E2E timing guarantees in critical DRE

systems.

An example DRE application is a surveillance network [37,

49], which consists of a group of cameras (and other sensors)

connected over an area of interest. Each camera periodically

captures a video frame, which is compressed by an embedded

processor and transmitted over a wired or wireless LAN to a

command and control (C2) center. A C2 server receives com-

pressed video frames from multiple cameras across the LAN

and executes several concurrent activities, such as to moni-

tor the battlefield or traffic status. The server decompresses

the video frames, displays the video on monitors, processes

each frame for surveillance purposes, triggers alarms for se-

curity or safety reasons if necessary, and logs the data to

a storage device. In this example, an E2E real-time task

is associated with an E2E deadline to support the required

application QoS. It also consists of multiple distributed sub-

tasks using different system resources. A subtask depends

upon the successful and timely completion of the previous

subtask(s) in the sequence, forming precedence constraints.

To summarize, the following characteristics of DRE appli-

cations emerge: (1) Multiple heterogeneous resources are

used; (2) The resource usages within an application are or-

dered forming a precedence graph; and (3) Execution of a

repetitive sequence of correlated subtasks is bounded by an

E2E deadline. Our focus is on the applications with the

above characteristics.

In this paper, we make the case for greater research into

the development of theory and runtime systems for coordi-

nated allocation and scheduling of multiple resources. We

discuss four key open research problems and possible solu-

tion strategies.

(1) Deadline Partitioning Techniques: Given a DRE

task that requires the use of multiple resources to meet its

E2E deadline, one needs a deadline partitioning algorithm

during admission control and resource allocation that ap-

portions the the E2E delay budget among the subtasks of

the DRE task. Careful deadline partitioning is important

because it determines the load on each individual resource.

In particular, tighter delay budget at a resource can lead to

higher resource load, resulting in fewer admissible E2E DRE

tasks in future. We investigate algorithms to efficiently par-

tition E2E deadlines among multiple underlying resources.

The goal is to increase the success ratio, i.e., the fraction

of submitted DRE tasks that are admitted and completed

within their E2E deadlines. The key idea is to reduce the

extent of load imbalance among different resources during

deadline assignment to prevent formation of resource bot-

tlenecks. Although deadline assignments in multiprocessor

systems have previously been studied [51], most existing re-

search considers only a single isolated resource.

(2) Coordinated Runtime Scheduling of Multiple Re-
sources: While an effective deadline partitioning algorithm

48



is necessary to assign a delay budget to each subtask of

an E2E task, it is not sufficient by itself to guarantee that

the E2E deadline will be met. During task execution, one

needs explicit coordination across runtime schedulers of dif-

ferent resources to ensure that each subtask is scheduled

to complete before its assigned sub-deadline. This is not

the case in traditional RTOSs where scheduling decisions at

one resource are made oblivious of the scheduling decisions

at other resources. It thus becomes the DRE application

writer’s responsibility to manage any cross resource timing

dependencies among subtasks. We illustrate this problem

and suggest possible approaches to address such scheduling

dependencies at runtime.

(3) Statistical Performance Guarantees: Reserving re-

sources for worst-case load requirements may lead to re-

source under-utilization in the common case of low offered

load. Additionally, a number of DRE applications, such as

visual tracking and traffic monitoring, can adapt to a small

probability of violations in their E2E guarantees. In this

light, the multiple resource allocation techniques could po-

tentially exploit the statistical multiplexing nature of the

resource usage among concurrent DRE tasks to improve the

system’s overall resource utilization efficiency. Thus one

needs statistical multi-resource allocation algorithms, such

as online measurement-based techniques, that can exploit

the statistical multiplexing nature of the resource usage and

distinct tolerance levels to QoS violations, to reduce overall

resource requirements of DRE applications. We investigate

the role of resource allocation algorithms that exploit statis-

tical multiplexing effects across multiple resources not just

along the traditional ‘bandwidth’ dimension, but also along

an orthogonal ‘delay’ dimension. We outline algorithms that

can support tasks with distinct probabilistic delay guaran-
tees, i.e., if certain tasks can tolerate more delay violations,

they can reserve less resources than the other tasks tolerat-

ing fewer violations.

(4) Feedback Control Across Multiple Resources.
Workloads may dynamically vary in DRE applications. For

example, the image processing frequency and compression

ratio may change depending on the presence or absence of

objects indicating security breaches or traffic jams. Further,

resource could be overbooked due to statistical multiplex-

ing. As a result, E2E deadlines can be missed. Thus one

requires control theoretic techniques to support E2E tim-

ing guarantees across multiple resources in unpredictable

environments. In general, statistical approaches can provide

high-level resource usage monitoring and QoS management,

while control theoretic approaches can support fine-grained

QoS management to ensure that, for example, no more than

1% of E2E deadlines are missed in average, no more than

1.5% of deadlines are missed even when the system is in

a transient state, and a transient miss ratio overshoot, if

any, decays within the specified settling time. Statistical

and control theoretic approaches for QoS management have

been studied separately; however, interactions between them

have rarely been investigated [66]. We outline possible ap-

proaches for applying a combination of statistical and con-

trol theoretic techniques in multiple resource environments.

We also present the outlines of our proposed solution ap-

proach, called the Multiple Resource Allocation and Schedul-

Transmit Video Frame
Over Network

Video Frame
Uncompress & Process

Trigger Alarms Log results

Subtask  1

Subtask  2

Subtask  3 Subtask  4

100 ms 
E2E  Delay   

Figure 1: A task precedence graph for video surveil-
lance with an E2E deadline.

ing (MURALS) framework and describe the ongoing devel-

opment a proof-of-concept MURALS testbed on top of an

commodity RTOS. The testbed includes not only kernel-

level coordinated resource allocation mechanisms but also

declarative APIs for E2E QoS specification. The API allows

DRE application programmers to specify E2E tasks, their

deadlines, periods, and precedence constraints across mul-

tiple resources. This information is utilized by kernel-level

measurement-based QoS mapping scheme to automatically

derive the low-level resource requirements from high-level

performance requirements. Despite its importance, very lit-

tle prior work has been conducted to provide declarative

APIs and kernel support for deadline partitioning, coordi-

nated scheduling, statistical guarantees, and feedback con-

trol. The goal of this paper is to make a case for greater

research into this increasingly important subject.

2. DEADLINE PARTITIONING
A typical DRE task executes a set of subtasks related to

each other via precedence constraints. For instance, Fig-

ure 1 shows the precedence graph of a video surveillance

task executing four subtasks every period. Subtask 1 cor-

responds to the periodic compression and transmission of a

video frame from a remote camera to a C2 server. At the C2

server, subtask 2 decompresses and processes the frame for

target tracking, subtask 3 triggers alarms if necessary, and

subtask 4 logs the results to a storage device in real-time.

In this example, subtasks 3 and 4 can proceed concurrently

once subtask 2 completes.

A precedence graph only describes the partial ordering but

not the timing relationships among subtasks. For instance,

the surveillance application may need to perform the E2E

processing of each video frame within 100ms. This application-

level performance requirement imposes a timing constraint

for the E2E task and its subtasks in the precedence graph.

Guaranteeing application-level QoS requires more than just

local real-time scheduling for each individual resource, be-

cause it can only guarantee the subtask level QoS. For the

DRE task shown in Figure 1, subtask 1 must be completed

early enough to leave time for subtasks 2, 3, and 4 to com-

plete before the E2E deadline.

A key problem illustrated in this example is how to parti-
tion the E2E task deadline to meet the timing and prece-
dence constraints, while improving the overall efficiency of
resource utilization and E2E success ratio. This requires

specific algorithms that assign intermediate sub-deadlines

for each subtask, while accounting for current and future

load at each resource. Assigning a sub-deadline to a sub-

49



0 10 20 30 40 50 60
E2E Delay (ms)

0

250

500

750

1000

1250

1500

1750

2000
U

ni
ca

st
  F

lo
w

s 
 A

dm
itt

ed
Equal
Load-Aware

Figure 2: Flows admitted vs. E2E delay bound
over Sprint IP Backbone. Hops=6. Flow data
rate=100kbps. Link speeds:45–200Mbps.

task also entails a specification of the load on the subtask’s

corresponding resource; in general, a tighter sub-deadline

implies a higher resource load. Therefore, partitioning the

delay budget, i.e., the E2E deadline, opens up an opportu-

nity for load balancing across multiple resources resulting

in efficient resource utilization. Rate-based schedulers, such

as Virtual Clock [65] or WFQ [43], permit explicit map-

ping between latency bound requirements and bandwidth

reservations [64]. Thus, the queuing delay experienced by a

subtask at any resource scheduler is inversely proportional

to the bandwidth reserved on its behalf. If a subtask needs

a smaller delay budget, the corresponding resource reserva-

tion has to be larger, which imposes a heavier load on the

resource. It is possible that some resources in the system

may be more heavily loaded than others. Thus, one could

partition the E2E deadline in such a manner that the more

loaded resources are assigned a larger proportion of the E2E

delay budget. This ensures that critical resources do not

deplete long before less critical resources, thus preventing

system-wide bottlenecks.

In the previous surveillance example, suppose the E2E dead-

line is 120ms. Consider that a UAV (Unmanned Aerial Ve-

hicle) or traffic sensing node can capture and compress a

fixed size video frame in 20ms using the dedicated embed-

ded processor, whereas the network transmission delay and

processing delay at the C2 server are variable as these re-

sources are shared with other surveillance nodes. Thus, the

remaining delay budget of 100ms needs to be partitioned

among the network link and the C2 server’s CPU. Assume

that the C2 server’s CPU is already 20% utilized and net-

work link is 80% utilized. Instead of equally partitioning

the delay budget between the network link and the CPU, a

more sensible partition can be to assign 20ms to the CPU

and 80ms to the network in proportion to their respective

loads, and still meet the E2E deadlines.

This approach has shown promising initial results [17, 18]

in which our delay partitioning techniques significantly re-

duce the load imbalance across multiple resources. In [17],

we proposed a load-aware delay partitioning approach for

sequential precedence graphs. We showed that one can in-

crease the number of tasks admitted into the system by as-

signing delay budget Di to each subtask i as per Equation 1

below, such that the E2E delay bound D ≥
P

i
Di.

Di = Mi +
kiMi

P

m

j=1
kjMj

S , ki =

r

Wavg
i

Wi

(1)

Here Mi is the minimum delay budget required to complete

the subtask i, Wi is the amount of work such as the number

of CPU cycles or bytes read/written, S is the slack in delay

budget given by S = D −
P

i
Mi, and Wavgi

is the aver-

age amount of work requested by a DRE task at resource i.
In [18], we proposed an iterative algorithm for delay parti-

tioning along multi-hop network paths where each network

link corresponds to one resource. Figure 2 shows that our

load-aware delay partitioning algorithm admits up to 39%

more network flows compared to equal partitioning, under

the same network setup and input workload.

There are several open research challenges in the deadline

partitioning problem.

Resource Specific Overheads: In practice, an exact al-

gorithm for deadline partitioning across different resources

needs to consider hard-to-characterize overheads such as con-

text switching, network transmission overheads, and disk

seek/rotational latency. Unfortunately, a large body of real-

time scheduling theory ignores these overheads. Thus, a set

of tasks may not be perfectly schedulable across multiple

resources even if the available capacity is theoretically suf-

ficient. Thus there is a need for a global admission control

mechanism, which first consults each local resource sched-

uler to determine the minimum delay it can support using

its current residual capacity. The delay partitioning algo-

rithm could then apportion any remaining slack in E2E de-

lay budget in a stepwise manner to decrease the demand

on each resource. In each incremental step, the algorithm

again needs to consult the local resource schedulers to deter-

mine how much the local delay will be increased due to the

increase in resource demand and whether the tasks would

still be schedulable. Such resource-aware algorithms for ap-

portioning slack depend upon accurate mapping functions

between the required delay bound and resource reservation

for multiple resources, possibly distributed across a LAN.

Revising Earlier Allocations: There also exists a scope

for algorithms that can make better deadline partitioning de-

cisions, given additional knowledge of workloads. To leave

as much resources unreserved as possible for the future use,

our previous online admission control policy only considers

a single DRE task for admission upon its arrival without

changing the current reservations. The virtue of this ap-

proach is its simplicity and low overhead. However, if the

delay partitioning algorithm has the flexibility of revising

the previously assigned delay budgets of all the DRE tasks

admitted earlier, then it can allocate all system resources to

the current set of DRE tasks without leaving any unreserved

resources. Thus one can design better resource allocation al-

gorithms that can revise earlier allocation decisions, if neces-

sary, to improve the efficiency of multi-resource utilization.

Optimizing for Power Efficiency: Another interesting

open research problem is to exploit E2E delay partitioning

to improve the power usage efficiency, instead of load bal-

ancing. Note that a shorter delay budget can translate to

higher load and hence greater power dissipation at each re-

50



E1
(CPU)

E2E
Task

CPU
Schedule

Disk
Schedule

U1 U2 E2

E2
(Disk)

E1

0

Time 
t1 t2 Dd1

E2 Release

E1 Release

Missed 
Deadline

d1 d2

Figure 3: The inter-scheduler coordination problem
at runtime for an E2E task with two subtasks, E1

and E2. The disk subtask E2 misses the E2E dead-
line D after waiting for another non-preemptible I/O
request U2.

source. However, the mapping from delay budget to energy

consumed for any given resource is likely to be a piecewise

step rather than a continuous function. There is an oppor-

tunity to investigate different forms of such resource map-

ping functions and their impact on delay partitioning strate-

gies that optimize the energy consumption at low-power

resources. A useful metric to gauge both timeliness and

power usage efficiency is the effective power consumption =

total power consumption/success ratio, lower value indi-

cating greater effectiveness of delay partitioning algorithm.

Existing work on Dynamic Slack Reclamation [34, 24] could

be a starting point in this direction.

3. COORDINATED SCHEDULING
In the previous section, we discussed how effective parti-

tioning of E2E delay budget among subtasks across multiple

resources is essential to meet deadlines as well as to main-

tain high resource usage efficiency. However deadline par-

titioning constitutes only one component of the complete

multi-resource allocation and scheduling framework. The

other essential component is coordinated runtime schedul-

ing of subtasks of an E2E task across multiple resources,

in the absence of which even most judiciously partitioned

deadlines might be missed.

To illustrate the problem, consider a simple example of an

E2E real-time task E in Figure 3 that requires two resources

– CPU and disk – to meet its E2E deadline of D. (We use

disk I/O for illustration, though this example can easily be

generalized for another I/O resource, such as network, or

even for multiple I/O resources.) Assume that E2E delay

budget D is partitioned as d1 and d2 across its CPU and

disk subtasks, E1 and E2 respectively, where d1 + d2 = D.

Both CPU and disk have their own independent real-time

schedulers that, in the absence of any runtime coordination,

maintain their own independent backlog queues of computa-

tion and I/O requests respectively. Assume that the subtask

E1 begins execution at CPU resource at time t = 0. In the

meantime, the disk scheduler continues servicing other I/O

requests U1 and U2 that are unrelated to the E2E real-time

task E. At time t1 < d1, I/O request U1 completes and U2

is scheduled by the disk scheduler. At time d1, CPU sub-

task E1 completes and submits the real-time I/O task E2

to the disk scheduler’s runtime queue. However, even if E2

is the most urgent I/O task at time d1, the disk scheduler

needs to wait till time t2, when U2 will complete service, be-

fore E2 can be dispatched to the disk. This additional wait

time could potentially cause E2 to miss its I/O deadline,

and consequently the E2E deadline, D.

Although the example above makes several simplifying as-

sumptions about operating system behaviour, it serves to

illustrate several fundamental problems when servicing a se-

quence of inter-dependent real-time subtasks across multiple

resource schedulers.

Inter-Scheduler Coordination: Meeting the E2E dead-

line D depends upon the timely execution of component sub-

tasks at multiple resource schedulers – here CPU and disk.

In the absence of runtime coordination, each resource sched-

uler makes its own independent and locally optimal schedul-

ing decisions because it is unaware of precedence constraints

that control the release times of different real-time subtasks.

For example, before time d1 in Figure 3, the disk scheduler

was independently scheduling tasks U1 and U2, unaware of

the fact that a real-time task E2 was about to arrive with a

tight deadline.

I/O Request Non-preemptibility: In general, I/O re-

quests tend to be non-preemptible, once issued. Conse-

quently, when dealing with multi-resource E2E tasks, a higher

priority (static or dynamic) real-time I/O subtask may ar-

rive at the I/O scheduling queue only to wait for the comple-

tion of a non-preemptible lower priority I/O request that’s

already in progress. Loosely speaking, this results in a short-

term“priority inversion”that can potentially cause the higher

priority real-time subtask to miss its E2E deadline.

Execution Time Prediction: While execution time of

CPU subtasks can be predicted with reasonable accuracy,

either through static code analysis or runtime profiling, the

execution times for I/O subtasks are not as predictable. For

example, disk response depends highly upon the seek and ro-

tational latency whereas network response may depend upon

switch congestion or channel access contention in broadcast

media. In a multi-resource context, unpredictability in ex-

ecution time might not only affect the timeliness the single

I/O subtask in question, but also the timeliness of other

dependent subtasks in the sequence of an E2E DRE task.

Advance Notification of Subtasks: None of the existing

real-time operating systems address the above issues within

a framework of coordinated multi-resource runtime schedul-

ing, and it is undoubtedly a challenging research problem.

To start making the problem manageable, our MURALS sys-

tem incorporates an inter-scheduler coordination mechanism

for multi-resource E2E real-time tasks that works as follows.

Whenever a real-time E2E task begins execution, informa-

tion about expected future arrival time and deadline of each

of its subtasks are sent to the corresponding local resource

51



0.001 0.01 0.1 1
Ratio of actual to worst-case delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

Figure 4: The CDF of the ratio of the actual de-
lay experienced to the worst case delay expected by
VoIP packets sharing a 10Mbps link.

schedulers. In the earlier example, at the start time 0, not

only does the subtask E1 begin execution at the CPU, but

the disk scheduler is also given the information that subtask

E2, with delay budget of d2, will be ready at time d1. This

enables the disk scheduler to insert an empty placeholder

I/O request for task E2 in its scheduling queue. At the

scheduling time instant t1, the disk scheduler now has ad-

ditional information to decide whether request U2 can start

and finish service early enough that the future real-time re-

quest E2 can meet still its deadline. Admittedly, the advance

notification to the disk scheduler may not provide a foolproof

guarantee that E2 will always meet its deadline (for instance

a long non-preemptible I/O task that began before time in-

stant 0 might yet delay E2). Nor does advance notifica-

tion address the inherent unpredictability of I/O completion

times. However this additional inter-scheduler coordination

does help the local resource schedulers make better informed

scheduling decisions from timeliness standpoint at a larger

number of scheduling instances than without the coordina-

tion. For example, one option that the disk scheduler can

exercise at time t1 is to follow a non-work-conserving policy

by not scheduling any request between t1 and d1, thus keep-

ing the disk idle until the subtask E2 becomes eligible for

service. This enables the disk scheduler to sacrifice through-

put for the sake of timeliness when necessary – an option it

cannot exercise without the advance information about E2.

4. STATISTICAL DELAY GUARANTEES
Another challenge faced in DRE systems using multiple re-

sources is that of resource under-utilization. While reserv-

ing resources for the peak load ensures that individual DRE

tasks always meet their performance targets under all condi-

tions, it ignores the reality that individual resources do not

encounter peak load situations in the common case. Addi-

tionally, a number of DRE applications, e.g., visual track-

ing and traffic monitoring, can adapt to a small probability

of violations in their QoS guarantees. Thus, the multiple

resource allocation techniques could exploit the statistical

multiplexing nature of the resource usage among DRE tasks

to improve the system’s resource utilization efficiency.

Traditional approaches tend to exploit statistical multiplex-

ing along the bandwidth dimension, where the offered load

per resource is lower than the reserved bandwidth share,

1e-07 1e-06 1e-05 1e-04 1e-03 1e-02 1e-01
Desired delay violation probability bound

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

A
ct

ua
l r

at
e 

of
 d

el
ay

 v
io

la
tio

ns

Figure 5: Effectiveness of DDM in differentiating
between network flows with different tolerance to
delay violations. Flows that have lower tolerance to
violations experience fewer deadline misses. Each
data point corresponds to one network flow. Delay
bound=20ms. Link capacity = 10Mbps.

due to which one can oversubscribe the underlying resource.

Additionally, one can also leverage statistical multiplexing

along the delay dimension. The latter effect arises from

the fact that not all real-time applications will generate their

peak request bursts at the same time. For instance, among

a set of ON-OFF Voice over IP (VoIP) flows traversing a

shared network link, it is unlikely that all VoIP flows will be

in their ON state simultaneously. The consequence of this

multiplexing is that actual delays rarely approach worst-case

delay bounds that are based on all real-time applications

generating their peak burst simultaneously. Note that sta-

tistical multiplexing in the delay dimension is orthogonal to

that along the bandwidth dimension.

Consider Figure 4 showing the cumulative distribution func-

tion (CDF) Prob(r) of the ratio of the actual to worst case

delay experienced by various network packets (subtasks) at

a network access link (resource). The distribution Prob(r)
gives the probability P that the actual delay D encountered

by a request is smaller than r times its worst-case delay Dwc

where 0 ≤ r ≤ 1. Figure 4 shows that most requests experi-

ence less than 1/4th of their worst-case delays. In general,

given a subtask that requires a latency bound of D with a

violation probability bound of P , the following relationship

holds from the definition of CDF: D = Dwc×Prob−1
(1−P ).

The nature of the worst-case delay term Dwc
depends upon

the nature of the specific local resource scheduler and the

amount of resource bandwidth ρ reserved by the subtask.

For instance, if the resource is scheduled using the Weighted

Fair Queuing scheduler [43] then Dwc
=

σ+Lmax

ρ
+

Lmax

C
,

where σ is the maximum request burst size, Lmax is the

maximum request size and C is the total resource capacity.

Hence, given the measured CDF Prob(r), we can derive the

required resource reservation ρ that satisfies the application

latency requirements (D, P ).

Our earlier work [19, 20] has successfully demonstrated tech-

niques to exploit statistical multiplexing in the context of in-

dividual network and storage resource allocations. Figure 5

52



shows one example of the effectiveness of our approach us-

ing delay distribution measurements (DDM) in differentiat-

ing between the QoS requirements of multiple network flows

that share a link and have different tolerance levels to delay

bound violations. DDM has been shown to improve the re-

source usage efficiency of network and storage resources by

up to a factor of 3 in the presence of statistical QoS con-

straints.

While statistical multiplexing in the context of single re-

source in isolation has been studied extensively [28, 29, 47,

7, 27, 6, 26, 45, 8, 56, 59], there has been little work in

the direction of exploiting statistical multiplexing across
multiple heterogeneous resources. Consider a multi-

resource DRE task, as in Figure 1, which requires an E2E

delay bound of D with a violation probability bound of P .

How does one partition the E2E statistical QoS requirement
(D,P ) into individual subtasks requirements (Di, Pi) such
that resource loads can be balanced and the number of ad-
mitted DRE tasks can be increased as much as possible? We

outline a few possible solutions below.

Simple Partitioning Problem: A straightforward ap-

proach is to find a partition such that
P

n

i
Di ≤ D and

Q

n

i
(1 − Pi) ≥ (1 − P ) for a set of subtasks consisting an

E2E DRE task. We are currently investigating an iterative

algorithm for this version of the partitioning problem, which

is similar in structure to the basic delay partitioning algo-

rithms discussed in Section 2. In every iteration, we can

first estimate a delay partition assuming a fixed probability

partition and then find a new probability partition using the

fixed delay partition calculated in the previous step. This

process continues till the delay and probability partitions

obtained from two consecutive iterations are within a pre-

defined threshold of each other.

General Partitioning Problem: Note that, in the above

version of the partitioning problem, the condition on parti-

tioning E2E violation probability is more conservative than

necessary. In particular, it assumes that the entire DRE

task can satisfy its E2E violation probability bound only if

each subtask satisfies its local violation probability bounds.

In contrast, while a subtask i could violate its local sub-

deadline at one resource, its next subtask i + 1 in sequence

could complete well ahead of its sub-deadline, thus making

up for the lost time, and still meet the E2E deadline. Thus

an open research problem is to model this general partition-

ing problem taking into account inter-dependencies among

the current service loads at each resource, potentially yield-

ing significant gains.

5. FEEDBACK CONTROL
Resource requirements of E2E tasks may dynamically vary

in DRE applications, for example, due to varying image pro-

cessing time or propagation delay. The relative importance

of incoming data flows may change in time. For instance,

certain data flows may actually capture enemy aircraft or

traffic accidents, while the others do not deliver important

data. In this case, the DRE application can increase the

frequency of more important E2E tasks. Also, possible over-

booking due to statistical multiplexing can overload the sys-

tem. Given dynamic workloads, it is necessary to design

control theoretic techniques to manage the miss ratio of E2E

QoS

Controller
Feedback

δ

.

.

.

δr , ..., δ r r1

m

API
Kernel

n

c

Classifier

Incoming 
Packets

Input Perf.
Monitor

Manager

Scheduler

Figure 6: E2E Deadline Control Architecture

deadlines.

Figure 6 illustrates a possible architecture for feedback con-

trol at a C2 system. First, incoming packets are classified.

Packet processing is scheduled at local resource schedulers

via deadline partitioning and statistical multiplexing algo-

rithms. Note that these algorithms may not be precise as

workloads can vary dynamically, causing deadline misses un-

der overload. The performance monitor measures the E2E

miss ratio at every sampling instant, e.g., 1s, and informs

the feedback controller of the current miss ratio mc. At

the kth
sampling period, the controller computes the error

e(k) = ms−mc(k) where ms is the miss ratio set-point, e.g.,

1%. Based on e(k), it computes the control signal δr(k).

When δr(k) < 0, remote sensing nodes, e.g., UAVs or traf-

fic monitoring nodes, are required to reduce the aggregate

sensing and transmission rate by |δr(k)|. The QoS manager

aware of application semantics or the instrumented DRE

application itself divides δr(k) among the incoming traffic

flows to ensure that the most important flow, e.g., the flow

tracking the largest number of targets, receives the highest

rate. The resulting rates δr1, δr2, ..., δrn for n incoming sen-

sor data flows are forwarded to a resource allocator, which

accordingly reallocates resources between the n flows and

sends the new required sensing rates to the remote sensor

nodes, if necessary, to meet the QoS requirements. Below

we describe some open research problems in developing an

E2E timing control architecture.

Handling Input Queue Backlogs: A possible backlog in

the incoming packet queues shown in Figure 6 can adversely

affect the overall control performance. The system perfor-

mance may not change immediately for a new control signal

when there is a backlog to which the previous delay budget is

already distributed [66]. Thus, there could be dead-time in

control, which can result in a nonlinear system behavior [44].

One possible approach is redistributing the delay budget of

the jobs already in the queues for the cost of performing

resource re-allocation. In such situations, the resource al-

location algorithms need to be lightweight so that one can

sporadically re-allocate resources to improve real-time per-

formance without affecting E2E tasks. We envision linearly

approximating the system model via the relation between

the aggregate packet arrival rate and E2E miss ratio. The

miss ratio m(k) at the kth
sampling period can be modeled

by an nth
(n ≥ 1) order difference equation with unknown

53



coefficients {ai, bi|1 ≤ i ≤ n} initialized to zero:

m(k) =

n
X

i=1

aim(k − i) +

n
X

i=1

bir(k − i) (2)

where r(k− i) and m(k− i) are the aggregate packet arrival

rate and E2E deadline miss ratio at the (k − i)th
sampling

instant, respectively. Eq 2 denotes that the current miss ra-

tio is dependent on the packet arrival rates and miss ratios

measured at the previous sampling periods. System identifi-

cation (SYSID) techniques [44, 42] can be applied to identify

the model parameters in Eq 2. At the same time, there is a

need to experimentally determine the specific order of Eq 2

producing high-accuracy SYSID results verified by standard

techniques such as root mean square errors [44].

Self-Tuning Based Techniques: If the linear time invari-

ant (LTI) control based on the system model and SYSID

above is not applicable, e.g., due to a large backlog or wire-

less communication jitters in a noisy environment, it is also

feasible to consider either a self-tuning regulator (STR) [53]

or self-tuning fuzzy controller (STFC) [10]. A STR performs

online SYSID to find the model coefficients in Eq 2 and tune

the controller parameters online. In this way, the controller

can tune itself if the system dynamics change in time. Fuzzy

control is useful when the underlying system is hard to model

mathematically. A linguistic rulebase instead of a mathe-

matical system model can be designed for feedback control.

For example, if the current overshoot is high and it is diverg-

ing from the set-point, the rulebase can generate a negative

large control signal. On the other hand, if an overshoot

shows a self-decaying pattern compared to the previous one,

the rulebase generates a negative small signal for control

stability. Especially, a STFC can tune itself, via a separate

rulebase for self-tuning, to improve the performance consid-

ering the current system behavior. In real-time systems, the

performance of several LTI models are compared [3], but

other models are not compared extensively. Thus there is a

need to undertake in-depth comparisons of the performance

and complexity of the different control models, i.e., LTI and

more advanced models, in the context of multi-resource DRE

systems. As a result, control models achieving good perfor-

mance with low complexity can be developed. Other key is-

sues to be investigated along with control modeling include

sampling period selection and stability analysis.

6. MURALS TESTBED
We are developing a prototype MURALS testbed on top of

the TimeSys Linux [54] real-time operating system. The goal

of MURALS is not to develop another comprehensive RTOS,

but to demonstrate the effectiveness of core algorithms and

techniques required for coordinated multiple resource allo-

cation, with substantial rethinking of fundamental APIs and

system architecture.

Figure 7 shows the architecture of the MURALS framework.

Real-time applications access the MURALS API that inter-

acts with the kernel subsystem using a set of MURALS-

specific system calls. An admission controller makes ad-

mission decisions and performs deadline partitioning at the

time a new DRE task registers itself. A performance mon-

itor constantly tracks the timing behavior of E2E tasks to

inform the feedback controller of the E2E miss ratio at every

RT FILE GLOBAL

MURALS  SYSTEM CALL INTERFACE

SYSTEM
OPERATIONS SCHEDULER OPERATIONS

RT  NETWORK 

SCHEDULER

NETWORKCPU

SCHEDULER

DISK

SCHEDULER

DRE
APP

QOS

MANAGER

FEEDBACK

CONTROLLER

ADMISSION CONTROLLER MONITOR
PERFORMANCE

USER 

KERNEL  

 MURALS  MIDDLEWARE

STACK 

Figure 7: The architecture of the MURALS frame-
work.

sampling instant.

The core of the MURALS kernel is organized around a two-

level scheduling architecture. It consists of a global sched-
uler, which is aware of each application’s task graph and

estimated resource requirements, and a set of local sched-
ulers, each of which correspond to a particular resource. The

global scheduler ensures that a subtask’s dependencies are

all satisfied before it is executed by the the corresponding

local resource scheduler. Local real-time schedulers manage

individual resources and make scheduling decisions based

on both the subtask deadlines and resource utilization effi-

ciency. In this way, the global scheduler acts as a glue be-

tween local resource schedulers using its global knowledge of

E2E deadlines and estimated resource requirements of each

E2E task. Individual system resources employ rate-based

real-time scheduling algorithms. CPU scheduler is a variant

of Virtual Clock [65]. Disk scheduler is a rate-based variant

of the our work-conserving DSSCAN algorithm [16]. Real-

time network access is guaranteed by the wired and wireless

variants of our Real-Time Ethernet (RETHER) protocol [50,

57]. These algorithms are modular and replaceable by any

other rate-based schedulers.

The MURALS API library allows DRE application program-

mers to declaratively specify individual resource require-

ments and E2E timing constraints. The API facilitates cre-

ation and execution of a precedence graph, its component

subtasks, and their dependencies. The library in turn in-

forms the MURALS module in the kernel of the application

requirements. A DRE application creates an initially empty

precedence graph by first invoking the Create_graph func-

tion as Graph_id = Create_graph(Deadline,Tolerance) to

specify that the precedence graph for an E2E task needs to

be executed within the specified deadline and tolerance to

delay violations. The application can possibly spawn many

such precedence graphs that execute concurrently. The prece-

dence graph can be populated by application programmers

with individual subtasks such as read, write, or computa-

tion. For example, a write subtask can be added to the graph

via Register_write call as Subtask1 = Register_write(

Graph_id, File_descriptor, Buffer, Size) where the file

descriptor can represent either regular files or network sock-

54



ets. Thus, the subtask can transmit data across the network

or write data to the corresponding file. A read subtask can

be registered in a similar fashion. Also, a computation sub-

task can be registered as Subtask2 = Register_compute(

Graph_id, Compute_func). Dependencies among subtasks

can be specified in a pairwise manner. For example, De-

pend(Subtask1, Subtask2, Graph_id) specifies that Sub-

task2 can execute only after Subtask1 completes. The sub-

task dependencies are conveyed by the API to the MU-
RALS kernel module verifying that the graph remains acyclic.

The registration of a subtask does not execute the subtask

immediately. Rather, it informs the kernel how to execute

this subtask when the kernel is asked to do so. This separa-

tion of how to execute a subtask from when to execute it is

a departure from conventional operating system designs. It

can provide greater flexibility in real-time application pro-

gramming and resource scheduling. The DRE task can then

be repeatedly executed by invoking Exec_graph(Graph_id),

which transparently executes all the subtasks according to

precedence constraints within the specified E2E deadline.

7. RELATED WORK
A vast amount of research work has been conducted in real-

time resource allocation and scheduling from different per-

spectives. We discuss the most relevant research results.

Multiple Resource Coordination: The body of work

on real-time multi-resource coordination is relatively sparse,

with none of the techniques supported in state-of-the-art

RTOSs. The continuous media resource (CM-resource) model

[4] is a framework meant for continuous media, e.g., digital

audio and video, applications. Clients make resource reser-

vations for the worst-case workload. The meta-scheduler co-

ordinates with the CPU scheduler, network, and file-system

to negotiate delay guarantees and the required buffer size

on behalf of clients. Xu et. al. [63] present simulation re-

sults for a multi-resource reservation algorithm that deter-

mines the E2E QoS level for an application under resource

availability constraints. The work on Cooperative Schedul-

ing Server (CSS) [48] performs admission control for disk

I/O requests by reserving both the raw disk bandwidth and

CPU bandwidth required for processing disk requests. Tim-

ing constraints are partitioned into multiple stages and each

of them is guaranteed to complete before its deadline on

a particular resource. However, the deadline is partitioned

based on a fixed slack sharing scheme rather than consider-

ing the resource utilization efficiency, possibly causing load

imbalance across different resources. Q-RAM [31, 46, 13,

14] considers the problem of allocating multiple resources in

one or more QoS dimensions to maximize the overall sys-

tem utility. Spring Kernel [52] provides real-time support

for multiprocessor and distributed systems using dynamic

planning based scheduling. Real-time applications are writ-

ten using Spring-C and resource requirements are specified

using System Description Language. [33] models the effect

of Linux network device driver on the schedulability analy-

sis of real-time applications. Deadline partitioning has also

been studied in the context of CPU resources alone for multi-

processor systems [51], for CPU and disk resource [17], and

multi-link network paths [18].

Real-time Operating Systems: Numerous RTOSs sup-

port real-time scheduling for independent system resources,

but lack a coordinated multi-resource allocation and schedul-

ing mechanism to support E2E delay bounds. Some of

these are Real-time Mach [55], Linux/RK [35], TimeSys

Linux [54], RT-Linux [12], KURT Linux [30], QLinux [21],

Eclipse/BSD [5], Rialto [25], and Nemesis [32].

Statistical Multiplexing: While statistical multiplexing

has been extensively studied in relation to networks and to

some extent in cluster-based services, relatively little atten-

tion has been paid towards statistical multiplexing effects in

multi-resource real-time systems. Knightly and Shroff [28]

provide an excellent overview of admission control approaches

for link-level statistical QoS. Kurose [29] derived shared prob-

abilistic bounds on delay and buffer occupancy using the

concept of stochastic ordering for network nodes that use

FIFO scheduling. Several analytical approaches [27, 9, 22,

47] have also considered multiplexing with shared buffers in

single and multiple link settings. The notion of Effective

Bandwidth, introduced by Kelly [26], is an important mea-

sure of bandwidth resource usage by flows relative to their

peak and mean usage. A comparative study [8] of several

MBAC algorithms [45, 23, 11, 15] under FIFO service con-

cluded that none of them accurately achieve loss targets. Ur-

gaonkar et. al. [56] perform resource overbooking via offline

capacity profiling in shared hosting platforms for CPU and

network resources. Vin et.al [59] explored statistical admis-

sion control algorithms for media servers. Vernick et.al [58]

reported empirical measurements from implementations of

statistical admission control algorithms in a fully operational

disk-array video server.

Feedback Control: Most classical, open-loop real-time

scheduling algorithms assume precise a priori knowledge of

workloads. Feedback control has recently been applied to

real-time performance management, because it does not re-

quire accurate system models for performance guarantees. A

survey of feedback control for QoS management is provided

in [2]. FC-UM [39, 40] provides the specified miss ratio and

utilization in a single processor environment. DEUCON [61]

manages the E2E CPU utilization in a multiprocessor envi-

ronment via predictive model control. CAMRIT [60] ap-

plies control theoretic techniques to support the timeliness

of image transmissions across one wireless link. All these

approaches only consider a single resource, i.e., the CPU or

transmission rate. HiDRA [49] manages both CPU and net-

work bandwidth utilization via feedback control for target

tracking. AQuoSA[36] proposes a control theoretic strate-

gies to dynamically adapt CPU reservations in the Linux

kernel. Control theoretic techniques have also been applied

to manage the performance of a web server [1, 62, 38] and

web cache [41]. However little research has been directed

towards applying control theoretic techniques for real-time

multi-resource applications.

8. CONCLUSION
Modern real-time systems increasingly consist of applica-

tions that need to use multiple heterogeneous resources to

complete critical tasks within bounded end-to-end (E2E) de-

lay. This argues for coordinated allocation and scheduling of

multiple resources, such as the CPU, network, and disk, in

real-time operating systems (RTOS). Unfortunately, state-

55



of-the-art RTOS do not support multi-resource coordina-

tion as a fundamental construct in the system design. This

is presumably because the complex inter-resource interac-

tions are poorly understood when it comes to resource al-

location and runtime scheduling decisions at each resource

in highly dynamic and distributed real-time systems. We

examined some of the fundamental problems in this area

and made the case for greater research effort into the de-

velopment of theory and a runtime systems for coordinated

allocation and scheduling of multiple resources in real-time

operating systems. We discussed four open research prob-

lems and possible solution strategies in the areas of E2E

deadline partitioning, explicit coordination across resource

schedulers, statistical performance guarantees, and feedback

control across multiple resources. We also described our cur-

rent research efforts in the design and implementation of a

MURALS testbed that addresses the above research prob-

lems. Even though we may not have covered all the major

research issues in multi-resource allocation and scheduling,

our paper has sought to identify and motivate investigation

into some of the fundamental problems in this increasingly

important area.

9. REFERENCES
[1] T. F. Abdelzaher and N. Bhatti. Adaptive Content

Delivery for Web Server QoS. In IWQoS, 1999.

[2] T.F. Abdelzaher, J.A. Stankovic, C. Lu, R. Zhang,

and Y. Lu. Feedback Performance Control in Software

Services. IEEE Control Systems, 23(3), 2003.

[3] M. Amirijoo, J. Hansson, S. Gunnarsson, and S. H.

Son. Experimental Evaluation of Linear

Time-Invariant Models for Feedback Performance

Control in Real-Time System. Real-Time Systems.

[4] D.P. Anderson. Metascheduling for continuous media.

ACM Trans. on Computer Systems, 11(3):226–252,

Aug. 1993.

[5] J. Blanquer, J. Bruno, E. Gabber, M. Mcshea,

B. Ozden, and A. Silberschatz. Resource management

for QoS in Eclipse/BSD. In Proc. of FreeBSD’99
Conf., Berkeley, CA, USA, Oct. 1999.

[6] R. Boorstyn, A. Burchard, J. Leibeherr, and

C. Oottamakorn. Statistical service assurances for

traffic scheduling algorithms. IEEE JSAC,

18(13):2651–2664, Dec. 2000.

[7] J.-Y Le Boudec and M. Vojnovic. Stochastic analysis

of some expedited forwarding networks. In IEEE
Infocom’02, June 2002.

[8] L. Breslau, S. Jamin, and S. Shenker. Comments on

performance of measurement-based admission control

algorithms. In Proc. of IEEE INFOCOM, 2000.

[9] R.L. Cruz. A calculus for network delay, Part I:

Network elements in isolation. IEEE Trans. on
Information Theory, 37(1):114–131, 1991.

[10] D. Driankov, H. Hellendoorn, and M. Reinfrank. An
Introduction to Fuzzy Control. Springer, 1996.

[11] S. Floyd. Comments on measurement-based admission
control for controlled load services. Tech. Rep.,

Lawrence Berkeley Labs, 1996.

[12] FSMLabs. Rtlinux free. http://www.rtlinuxfree.com/.

[13] Sourav Ghosh, Ragunathan Rajkumar, Jeff Hansen,

and John Lehoczky. Scalable Resource Allocation for

Multi-Processor QoS Optimization. In ICDCS, 2003.

[14] Sourav Ghosh, Ragunathan Rajkumar, Jeffery

Hansen, and John Lehoczky. Integrated Resource

Management and Scheduling with Multi-Resource

Constraints. In RTSS, 2004.

[15] R. Gibbens and F. Kelly. Measurement-based

connection admission control. In Proc. of 15th Intl.
Teletraffic Conference, June 1997.

[16] K. Gopalan and T. Chiueh. Real-time Disk Scheduling
Using Deadline Sensitive Scan. Technical Report

ECSL-TR-92, Experimental Computer Systems Lab,

Stony Brook University, January 2001.

[17] K. Gopalan and T. Chiueh. Multi-resource allocation

and scheduling for periodic soft real-time applications.

In Multimedia Computing and Networking, Jan. 2002.

[18] K. Gopalan, T. Chiueh, and Y.J. Lin. Delay budget

partitioning to maximize network resource usage

efficiency. In Proc. IEEE INFOCOM’04, Hong Kong,
China, March 2004.

[19] K. Gopalan, T. Chiueh, and Y.J. Lin. Probabilistic

delay guarantees using delay distribution

measurements. In Proc. of ACM Multimedia 2004,
New York, NY, October 2004.

[20] K. Gopalan, L. Huang, G. Peng, T. Chiueh, and Y.J.

Lin. Statistical admission control using delay

distribution measurements. ACM Trans. on
Multimedia Computing, Commn, and Apps, 2(4), Nov.

2006.

[21] P. Goyal, X. Guo, and H. Vin. A hierarchical CPU

scheduler for multimedia operating systems. In SOSP,

Oct. 1996.

[22] F. M. Guillemin, N. Likhanov, R. R. Mazumdar, and

C. Rosenberg. Extremal traffic and bounds for the

mean delay of multiplexed regulated traffic streams. In

IEEE INFOCOM’02, June 2002.

[23] S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A

measurement-based admission control algorithm for

integrated services packet networks. IEEE/ACM
Transactions on Networking, 5(1):56–70, Feb. 1997.

[24] R. Jejurikar and R. Gupta. Dynamic slack reclamation

with procrastination scheduling in real-time embedded

systems. In Design Automation Conf., June 2005.

[25] M. B. Jones, D. Rosu, and M. Rosu. CPU reservations

and time constraints: Efficient, predictable scheduling

of independent activities. In Proc. of SOSP, pages

198–211, Oct. 1997.

[26] F. Kelly. Notes on effective bandwidths. In Stochastic
Networks: Theory and Applications, 4:141–168, 1996.

[27] G. Kesidis and T. Konstantopoulos. Worst-case

performance of a buffer with independent shaped

arrival processes. IEEE Communication Letters,
4(1):26–28, Jan. 2000.

[28] E.W. Knightly and N. B. Shroff. Admission control for

statistical QoS. IEEE Network, 13(2):20–29, Mar 1999.

[29] J. Kurose. On computing per-session performance

bounds in high-speed multi-hop computer networks. In

Proc. of ACM Sigmetrics’92.

[30] KURT-Linux. http://www.ittc.ku.edu/kurt/.

[31] C. Lee, J.P. Lehoczky, D.P. Siewiorek, R. Rajkumar,

and J.P. Hansen. A scalable solution to the

multi-resource QoS problem. In IEEE RTSS’99.

[32] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,

56



D. Evers, R. Fairbairns, and E. Hyden. The design

and implementation of an operating system to support

distributed multimedia applications. IEEE JSAC,

14(7):1280–1297, Sept. 1996.

[33] M. Lewandowski, M. Stanovich, T. Baker,

K. Gopalan, and A. Wang. Modeling device driver

effects in real-time schedulability analysis: Study of a

network driver. In RTAS, Bellevue, WA, April 2007.

[34] C. Lin and S.A. Brandt. Improving soft real-time

performance through better slack reclaiming. In Proc.
of Real-Time Systems Symposium (RTSS), 2005.

[35] LinuxRK. www.cs.cmu.edu/∼rajkumar/linux-rk.html.

[36] G. Lipari, L. Abeni, T. Cucinotta, L. Marzario, and

L. Palopoli. Qos management through adaptive

reservations. Real-Time Systems, 29, 2005.

[37] J. Loyall, R. Schantz, D. Corman, J. Paunicka, and

S. Fernandez. A Distributed Real-Time Embedded

Application for Surveillance, Detection, and Tracking

of Time Critical Targets. In IEEE RTAS, 2005.

[38] C. Lu, Y. Lu, T.F. Abdelzaher, J.A. Stankovic, and

S.H. Son. Feedback Control Architecture and Design

Methodology for Service Delay Guarantees in Web

Servers. IEEE Transactions on Parallel and
Distributed Systems, 17(9), Sept. 2006.

[39] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son.

Feedback Control Real-Time Scheduling: Framework,

Modeling and Algorithms. Real-Time Systems,
23(1/2), May 2002.

[40] C. Lu, X. Wang, and C. Gill. Feedback Control

Real-Time Scheduling in ORB Middleware. In the 9th
IEEE Real-Time and Embedded Technology and
Applications Symposium, 2003.

[41] Ying Lu, Tarek F. Abdelzaher, and Avneesh Saxena.

Design, Implementation, and Evaluation of

Differentiated Caching Services. IEEE Transactions
on Parallel and Distributed Systems, 15(4), May 2004.

[42] J. Oh and K. D. Kang. An Approach for Real-Time

Database Modeling and Performance Management. In

IEEE Real-Time and Embedded Technology and
Applications Symposium, 2007.

[43] A.K. Parekh and R.G. Gallager. A generalized

processor sharing approach to flow control in

integrated services networks: The single-node case.

IEEE Trans. on Networking, 1(3):344–357, Jun 1993.

[44] C. L. Phillips and H. T. Nagle. Digital Control System
Analysis and Design (3rd edition). Prentice Hall, 1995.

[45] J. Qiu and E. Knightly. Measurement-based admission

control with aggregate traffic envelopes. IEEE/ACM
Transactions on Networking, 9(2):199–210, April 2001.

[46] R. Rajkumar, C. Lee, J.P. Lehoczky, and D. P.

Siewiorek. Practical solutions for QoS-based resource

allocation. In IEEE RTSS, Dec. 1998.

[47] M. Reisslein, K.W. Ross, and S. Rajagopal. A

framework for guaranteeing statistical QoS.

IEEE/ACM Transactions on Networking, 10(1):27–42,

February 2002.

[48] S. Saewong and R. Rajkumar. Cooperative scheduling

of multiple resources. In IEEE RTSS’99, pages

90–101, Dec. 1999.

[49] N. Shankaran, X. Koutsoukos, D. Schmidt, Y. Xue,

and C. Lu. Hierarchical Control of Multiple Resources

in Distributed Real-time and Embedded Systems. In

Euromicro Conference on Real-Time Systems, 2006.

[50] S. Sharma, K. Gopalan, N. Zhu, G. Peng, P. De, and

T. Chiueh. Implementation Experiences of Bandwidth

Guarantee on a Wireless LAN. In Multimedia
Computing and Networking, Jan 2002.

[51] J. W. S.Liu. Real-Time Systems. Prentice Hall, 2000.

[52] J. Stankovic and K. Ramamritham. The Spring

Kernel: A new paradigm for real-time systems. IEEE
Software, 8(3), May 1991.

[53] K. J. Åström and B. Wittenmark. Adaptive Control.
Prentice Hall, 1995.

[54] Timesys Inc. http://www.timesys.com/.

[55] H. Tokuda, T. Nakajima, and P. Rao. Real-time mach:

Toward a predictable real-time system. In USENIX
Mach Workshop, 1990.

[56] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource

overbooking and application profiling in shared

hosting platforms. In OSDI, Dec. 2002.

[57] C. Venkatramani and T. Chiueh. Design,

implementation, and evaluation of a software-driven

real-time ethernet protocol. In SIGCOMM’95.

[58] M. Vernick, C. Venkatramani, and T. Chiueh.

Adventures in building the stony brook video server.

In ACM Multimedia, Nov 1996.

[59] H. M. Vin, P. Goyal, , and A. Goyal. A statistical

admission control algorithm for multimedia servers. In

ACM Multimedia’94.

[60] X. Wang, H.-M. Huang, V. Subramonian, C. Lu, and

C. Gill. CAMRIT: Control-based Adaptive

Middleware for Real-time Image Transmission. In

RTAS, 2004.

[61] X. Wang, D. Jia, C. Lu, and X. Koutsoukos.

DEUCON: Decentralized End-to-End Utilization

Control for Distributed Real-Time Systems. IEEE
Trans. on Parallel and Distributed Systems,
18(7):996–1009, July 2007.

[62] J. Wei and C.Z. Xu. eQoS: Provisioning of

Client-Perceived End-to-End QoS Guarantees in Web

Servers. IEEE Trans. on Comp., 55(12), Dec. 2006.

[63] D. Xu, K. Nahrstedt, A. Viswanathan, and

D. Wichadakul. QoS and contention-aware

multi-resource reservation. In HPDC, Aug. 2000.

[64] H. Zhang. Service disciplines for guaranteed

performance service in packet-switching networks. In

Proc. of IEEE, volume 83(10), pages 1374–1396
”

1995.

[65] L. Zhang. Virtual Clock: A new traffic control

algorithm for packet switching networks. In Proc. of
ACM SIGCOMM’90, Philadelphia, PA, USA, pages

19–29, Sept. 1990.

[66] R. Zhang, S. Parekh, Y. Diao, M. Surendra,

T. Abdelzaher, and J. Stankovic. Control of Weighted

Fair Queueing: Modeling, Implementation, and

Experiences. In Integrated Network Mgmt, 2005.

57



Accurate Run-Time Prediction of Performance Degradation
under Frequency Scaling

David C. Snowdon
NICTA∗

University of New South Wales
Sydney, Australia

Godfrey Van Der Linden
NICTA

University of New South Wales
Sydney, Australia

Stefan M. Petters
NICTA

University of New South Wales
Sydney, Australia

Gernot Heiser
NICTA

University of New South Wales
Open Kernel Labs
Sydney, Australia

ABSTRACT
Dynamic voltage and frequency scaling is employed to minimise
energy consumption in mobile devices. The energy required to
execute a piece of software is highly depedent on its execution
time, and devices are typically subject to timeliness or quality-of-
service constraints. For both these reasons, the performance at a
proposed frequency setpoint must be accurately estimated. The
frequently-made assumption that performance scales linearly with
core frequency has shown to be incorrect, and better performance
models are required which take into account the effects, and fre-
quency setting, of the memory architecture. This paper presents a
methodology, based on off-line hardware characterisation and run-
time workload characterisation, for the generation of an execution
time model. Its evaluation shows that it provides a highly accu-
rate (to within 2% on average) prediction of performance at arbi-
trary frequency settings and that the models can be used to imple-
ment operating-system level dynamic voltage and frequency scal-
ing schemes for embedded systems.

1. INTRODUCTION
Energy consumption is an increasingly important factor in the de-
sign of computing systems. This is particularly true in embedded
systems, where a lower energy consumption improves battery life
and reduces size and cost, and has a significant impact on the com-
mercial viability of a product.

Dynamic voltage and frequency scaling (DVFS) is a technique for
reducing a circuit’s energy consumption by modifying clock fre-
quencies. Reducing frequency results in a lower power consump-
tion and increased software execution time. It generally allows a
circuit’s supply voltage to be reduced, leading to quadratic savings.

While reducing the frequency to a particular circuit can improve its
energy efficiency, other circuits may use more energy as a result of
the longer execution time. Therefore the slowest frequency is not
necessarily energy-optimal [13], and the energy-optimal frequency
can only be chosen via knowledge of the expected execution time.

∗NICTA is funded by the Australian Government’s Department of
Communications, Information Technology, and the Arts and the
Australian Research Council through Backing Australia’s Ability
and the ICT Research Centre of Excellence programs.

For example, in a totally memory-bound system, a reduction in
CPU frequency will not result in an increase in execution time as
the CPU is constantly stalled waiting on the memory bus (which
is unaffected by CPU frequency). The reverse is also true: CPU
bound applications’ execution time will not be reduced by an in-
creased bus or memory frequency, but the overall energy consump-
tion will increase due to the higher bus or memory idle power. Fur-
thermore, the dependence of the total execution time on the fre-
quency is specific to the workload. Figure 1 shows the normalised
execution cycles for two applications running at various CPU, bus
and memory frequency combinations on an Xscale based processor
(see Section 4 for further details). The difference between CPU-
bound and memory-bound tasks is striking. Knowledge of the per-
formance effects of frequency scaling is essential for choosing an
energy-optimal setpoint.

The policy which selects when to switch frequency, and which fre-
quency to switch to, is generally selected by the operating system.

Estimating and predicting the runtime of a piece of software is
an important component in an effective power management sys-
tem. The energy required for a task is heavily dependent on time
(E = Pt). While the CPU’s power consumption will be reduced
by frequency scaling, core frequency is unlikely to have an effect
on the power for the rest of the system. The energy required by
components other than the CPU will be proportional to the overall
execution time, leading to a complex relationship between core fre-
quency and overall energy use. This is further complicated by the
adjustment of memory, bus and IO interface clock frequencies.

In addition, accurate estimation of the execution time of a task is es-
sential for meeting real-time (RT) deadlines and quality-of-service

(QoS) requirements while employing DVFS.

A further factor complicating execution-time estimation is the in-
creasingly dynamic nature of embedded systems. The applications
themselves, the nature of their input data and stimuli, and the en-
vironment in which they are run are dynamic. It is therefore not
practical to characterise the applications’ behaviour a-priori, and
any estimation must be performed at run-time.

This paper presents a methodology and mechanism for the accurate

58



run-time estimation of the performance of a given piece of soft-
ware at an arbitrary frequency setpoint. Our specific contributions
are: (i) a model providing accurate estimates of the runtime of a
workload at an arbitrary frequency; (ii) a sound methodology for
generating an execution-time model from performance monitoring

counter (PMC) measurements; (iii) a sound methodology for se-
lecting the optimum PMCs; (iv) an efficient algorithm for the cal-
culation of the performance at any frequency setpoint; and (v) an
evaluation of our approach using an extensive and representative
benchmark suite.

We first summarise related work in Section 2. Section 3 describes
our model for the execution time of an application, before detailing
the parameter selection methodology, model generation and finally
discussing runtime performance prediction. We describe our eva-
lutation environment in Section 4 and present the results we have
obtained in Section 5 before concluding with a summary and an
outlook into our future work.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50  100  150  200  250  300  350  400  450  500

N
o
rm

a
lis

e
d
 c

y
c
le

s

CPU Frequency (MHz)

bitcnt

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50  100  150  200  250  300  350  400  450  500

N
o
rm

a
lis

e
d
 C

y
c
le

s

CPU Frequency (MHz)

gzip

Figure 1: Execution cycles vs. CPU frequency, normalised to

the slowest frequency cycles, for  !"#$" and %&!', grouped by

constant bus/memory frequency

2. RELATED WORK
The performance benefits of DVFS has been an active area of re-
search ever since the pioneering work of Weiser et al. [15]. The
work related to operating-system level scheduling can be divided
into two broad categories based on the OS’s assumed a-priori
knowledge.

Real-time systems, which are required to deliver results by a dead-

line, require knowledge of the system timing, frequently in the form
of worst case execution times (WCET). Previous work explored
the potential for CPU frequency scaling without missing real-time
deadlines [1,12]. This was extended to use the CPU’s memory stall
rate in a feedback loop with the scheduler [9, 11].

Off-line techniques [5, 17] use a detailed static analysis of a work-
load by the compiler. Other approaches include an a priori charac-
terisation of a workload by running it at two different frequencies,
in order to derive a slowdown relation [14]. These off-line results
are then used by a DVFS-aware scheduler to scale the processor
frequency.

Systems where no a-priori characterisation is performed generally
aim to get the best energy efficiency for a given performance im-
pact [7, 8]. Such early work was typically based on the incorrect
assumption that performance was proportional to CPU frequency.
The non-linear dependency has since been the subject of consider-
able investigation.

Most of this research uses PMCs as a guide to predicting the likely
performance impact of a frequency change. Process cruise control
[16] used instructions, memory accesses and cycles to index a pre-
computed table of frequency settings which led to a constant per-
formance impact. Other research groups have investigated a more
flexible technique, using on-line regression to calculate the ratio
of off-chip (CPU frequency independent) to on-chip cycles [2, 4],
however the computational overheads and response time are only
cursorily discussed and there is reason to believe that they are sub-
stantial (i.e. the evaluation of a regression requires significant CPU
time).

A theoretical model of a classification system between memory-
bound and CPU-bound applications [18] assumes the availability
of a large number of concurrently-usable performance counters.
Limitations of this work include a lack of a detailed justification
of performance-counter selection, insufficient evaluation with only
a small number of benchmarks, and lack of statistical rigour (the
evaluation is performed with the same data that is used to obtain
the parameters of the model).

The models and methodology in this paper represent a significant
advance over the above-outlined work. Software is characterised
at run-time and our technique can therefore be used for arbitrary
workloads with dynamic input data (in contrast with off-line tech-
niques [5,14,17]). Compared with the previous state of the art [2,4],
our model and methodology can be applied on arbitrary platforms,
we do not require a run-time regression (resulting in a low over-
head), we present our method of selecting the performance counters
best suited to the task of performance estimation, and an evaluation
has been performed with a much more extensive range of bench-
marks.

3. APPROACH
The objective of this work is to predict the runtime of a workload
at one frequency, given measurements at another frequency. This
execution time model can then be used for making true energy vs.
performance frequency scaling decisions as discussed in Section 1.

3.1 Execution Time Model
While the CPU core is a major contributor to a system’s power con-
sumption, other subsystems, such as memory and I/O, are also sig-
nificant and can in some cases even dominate the CPU. Moreover,

59



such contributions generally are independent of the core frequency.

For example, the time the CPU stalls while waiting on main mem-
ory depends on the bus and memory clocks, not the core clock. On
a processor with a single issue, in-order pipeline and a simple cache
architecture (the typical scenario in embedded systems) the CPU is
always stalled during memory activity. In this paper, we focus on
this class of system. The effects of a superscalar architecture are
expected to be small, but will be subject to future research.

For this class of system, we have an overall execution time T which
is a function of the various clock rates fx, used in the system:

T =
Ccpu

fcpu

+
Cbus

fbus

+
Cmem

fmem

+
Cio

fio

+ . . . (1)

The coefficients Ccpu , Cbus , Cmem , Cio . . . depend on the instruc-
tion stream of the actual workload. The task of execution-time es-
timation comes down to obtaining good estimates for those param-
eters at run-time, without a priori analysis of the particular work-
load. I/O effects are beyond the scope of the paper, so we will, from
here on, focus solely on the CPU and memory subsystem.

3.2 Application characterisation
While the coefficients Cx depend on the workload, they represent
the total number of cycles used for particular actions (eg. CPU-only
instructions or memory reads); each is the product of the number of
such actions and the cycle cost of such an action. The former is a
characteristic of the workload, the latter of the system architecture.

The fundamental idea behind our approach is to perform an off-line
characterisation of the architectural parameters, and use run-time
measurements, using performance monitoring counters (PMCs),
for workload characterisation. Specifically, we postulate that each
coefficient can be represented by some linear combination of PMC
readings:

Cbus = α1PMC1 + α2PMC2 + . . . (2)

Cmem = β1PMC1 + β2PMC2 + . . . (3)

The accuracy of the model will depend on the architecture and the
suitability of the PMCs. The architecture-specific coefficients αx,
βx, . . . are properties of the hardware platform and can be deter-
mined once, by evaluating a suitable set of benchmarks represent-
ing the range of different workloads. Linear regression on Equa-
tion 2 and Equation 3 will establish the values of the coefficients
and allow selecting the most suitable PMCs. This is important, as
the hardware typically supports the concurrent use of only a small
number of PMCs, and the correct choice is not obvious as will be
shown.

The total number of CPU cycles, Ctot , can be directly obtained
from the CPU’s cycle counter. It is the product of total execution
time, T , and core frequency, fcpu , allowing us to rewrite Equation 1
as

Ccpu = Ctot −
fcpu

fbus

Cbus −
fcpu

fmem

Cmem (4)

Hence, we only need to determine Cbus and Cmem from PMCs.

3.3 Performance prediction
Being able to estimate a workload’s Cx values from PMC readings
at a particular setpoint (characterised by a particular combination
of clock frequencies, fx) it is possible to predict the performance
of the same workload at a different setpoint with frequencies f ′x:

C′tot = Ctot (5)

−
fcpu

fbus

Cbus −
fcpu

fmem

Cmem

+
f ′cpu
f ′bus

Cbus +
f ′cpu
f ′mem

Cmem

We define the performance, s, as the execution time at a particu-
lar setpoint normalised to execution time at maximum frequency
setpoint, fmax

x :

s =
tmax

t′
=

f ′cpu
fmax
cpu

∗
Cmax

tot

C′tot
(6)

For the present setpoint, f ′cpu = fcpu and C′tot = Ctot , the latter
being the performance counter reading. Hence, the performance at
the current frequency settings is a linear equation of performance
counter and frequency cross terms. This allows a single regression
to be applied across all workloads to calculate αx and βx, given a
pre-calculated s avoiding the intermediate step of Cx.

scur =
fcpu

fmax
cpu

∗
Cmax

tot

Ctot

(7)

Similarly, we can calculate performance relative to the current set-
point using Ctot in place of Cmax

tot .

4. EVALUATION
Our model and methodology were evaluated on a typical embed-
ded systems platform (Section 4.1) using a number of benchmarks
(Section 4.2). The model was used to implement an on-line estima-
tion system (Section 4.3).

4.1 Platform
The hardware platform used in all experiments was PLEB 2, a sin-
gle board computer based on an Intel PXA255 processor [6]. The
PXA255 is based on an Xscale core, with split L1 caches and TLBs,
write and fill buffers. The data cache supports a write-back policy.
PLEB2 integrates 64MB SDRAM and 8MB Flash memory. The
core voltage remained constant at 1.5V.

Only specific combinations of fcpu , fbus and fmem can be gener-
ated by the processor. For our experiments, we use 22 setpoints
which are detailed in Table 1. Note that most of these setpoints are
outside the manufacturer’s recommended limits, but were found to
work reliably and used in order to obtain more data.

The PXA255 provides three performance counters – a cycle
counter and two configurable performance counters. The config-
urable counters can each count any one of 14 events [6] (outlined
in Table 2).

We conducted all experiments on Linux 2.4.19, having written ker-
nel modules and modifications to support per-process performance

60



fcpu (MHz) fbus (MHz) fmem (MHz)
1 99.531 49.766 99.531
2 117.964 58.981 117.964
3 132.71 66.354 132.71
4 149.299 49.766 99.531
5 176.946 58.981 117.964
6 199.064 49.766 99.531
7 199.064 66.354 132.71
8 199.064 99.531 99.531
9 235.929 58.981 117.964
10 235.929 117.964 117.964
11 265.420 66.354 132.710
12 265.420 132.710 132.710
13 298.598 49.766 99.531
14 298.598 99.531 99.531
15 353.894 58.981 117.964
16 353.894 117.964 117.964
17 398.131 66.354 132.71
18 398.131 99.531 99.531
19 398.131 132.71 132.71
20 398.131 199.064 99.531
21 471.858 117.964 117.964
22 471.858 235.929 117.964

Table 1: PXA255 frequency setpoints

counter reading. The PMCs were read and accumulated after each
scheduler invocation.

When executing benchmarks, the only other runnable thread was
kupdated, which flushes the file system buffers. The network de-
vice was disabled during benchmark execution. The timer tick was
not disabled, which will be a small source of error in the measure-
ments since the number of timer ticks which occur during a bench-
mark run is dependent on its real-world execution time.

4.2 Benchmarks
Sound experimental methodology requires that the workloads used
for evaluation must be different from those used for calibration. A
further requirement on the benchmarks is that the total amount of
work is the same in each run, independent of the frequency settings.

PMC Description
0x0 ICache miss
0x1 ICache stall cycles
0x2 Data dependency stalls
0x3 ITLB miss
0x4 DTLB miss
0x5 Branch instruction executed
0x6 Branch mispredicted
0x7 Instruction executed
0x8 DCache buffer stall cycles
0x9 DCache buffer stall
0xa DCache access
0xb DCache miss
0xc DCache write-back
0xd Software changed the PC

Table 2: PXA255 performance counter events

For calibration we used a total of 37 benchmarks. Most are from
the MiBench suite [3], a set of real-world applications which
are representative of the tasks found in different types of em-
bedded systems. Several benchmarks ( !"#$, %&%'()*+,(#,%,
%&%'()# $#%, -.//012) were removed as their total execution
time was too short to be useful (less than 0.25s at maximum fre-
quencies). Two short-running ones (' "*3 and %-,.($%#',*4)
were modified to iterate a number of times in order to extend the
overall run time. Two others (%"4.(5, "$") were removed as
their amount of work differs between runs under identical circum-
stances.

We added further benchmarks to the calibration set. Four ($6.",
3"$708, 9.%.+( and celp32c) have been previously described [13].
We also added three synthetic benchmarks to cover extreme be-
haviour: *"&1+&( executes an unrolled loop of NOP instructions
entirely in cache. 3#31+&( and ,#' 1+&( execute an unrolled
loop of out-of-cache writes and reads respectively.

For validation we used SPEC CINT95 benchmarks. 9+,-#5 was
excluded because of memory constraints, $+ and 3::;%.3 due to
runtime errors. The “test” dataset was used and the input data size
for *+3",#%% was reduced to 420000 bytes to reduce overall exe-
cution time. This leaves 5 benchmarks used for validation.

All benchmarks were compiled or assembled using gcc 3.4.4 with
softfloat. The linux kernel and ramdisk was compiled using gcc
3.3.2.

4.3 Implementation
We used the approach presented in Section 3 to estimate, while
executing at a particular frequency setpoint, the performance that
would be achieved at the maximum-frequency setpoint. This can
then be compared to direct measurements of an execution at fmax

x .

For evaluation purposes, we also used the techniques to aim for
a particular pre-determined performance, which can then also be
compared to the actual performance, obtained by measuring the
overall execution time and comparing to the execution time at
fmax

x . While this technique is unlikely to choose an energy-optimal
setpoint, it does demonstrate the ability of the system to predict the
performance of a benchmark at run-time, which we have discussed
as being crucial to energy-optimality.

The approach is based on the well-established model of temporal
locality which underlies many operating-system policies. In our
case this means that we assume that the behaviour of a particular
task does in most cases not change significantly between subse-
quent time slices. At the end of each time slice, the OS collects the
PMC readings and estimates the slowdown at the present setpoint
using our model. When the task is next scheduled, the slowdown
estimate is compared to the target slowdown, and the frequency
setting adjusted if necessary.

Note that, without a system-level energy model, it is impossible
to select an energy-optimal frequency. Furthermore, the benefit of
slowdown will be different for each application, as well as for dif-
ferent phases of a given application. We leave the selection of an
energy-optimal frequency to future work and simply aim to accu-
rately predict performance.

A key advantage of our approach is the lightweight nature of the
estimation calculations. The XScale is typical for embedded pro-

61



b
ic

(I
n

te
rc

e
p

t)

X
P

M
C

0

X
P

M
C

1

X
P

M
C

2

X
P

M
C

3

X
P

M
C

4

X
P

M
C

5

X
P

M
C

6

X
P

M
C

7

X
P

M
C

8

X
P

M
C

9

X
P

M
C

1
0

X
P

M
C

1
1

X
P

M
C

1
2

X
P

M
C

1
3

−1100

−1700

−1800

−2800

−3100

−3200

−3300

−3300

b
ic

(I
n

te
rc

e
p

t)

X
P

M
C

0

X
P

M
C

1

X
P

M
C

2

X
P

M
C

3

X
P

M
C

4

X
P

M
C

5

X
P

M
C

6

X
P

M
C

7

X
P

M
C

8

X
P

M
C

9

X
P

M
C

1
0

X
P

M
C

1
1

X
P

M
C

1
2

X
P

M
C

1
3

−860

−1700

−1900

−2300

−2400

−2500

−2500

−2600

Figure 2: Parameter selection for Cbus and Cmem models

cessors in that it lacks an FPU and a hardware divide instruction.
We therefore use only fixed-point arithmetic and avoid divisions.

5. RESULTS

5.1 Time vs. Frequency validation
Each benchmark in the calibration suite was run at each of the 22
setpoints. Equation 1 was fit to the data for each of the bench-
marks using least-squares linear regression. The fit was extremely
good, the value of 1 − R, which indicates effects in the data that
are not explained by the model, ranging between 5 × 10

−4 and
3× 10

−8. This is a strong indication that the model can accurately
account for the architectural features of this class of processor. Fur-
thermore, the intercepts were negligible, indicating that, for these
benchmarks, in this system, the execution time depends solely on
these frequencies.

5.2 Performance counter selection
We investigated the best choices of performance counters when
only a small number of them can be used concurrently (as on most
hardware, including ours). The models were formulated by equat-
ing Cbus and Cmem with all possible linear combinations of the
available performance counters, as well as several potentially rele-
vant cross terms.

Each model of each size was compared using a criterion function.
i.e. every possible combination of performance counters was used
to predict each of Cbus and Cmem . The best n-parameter model was
selected using the BIC criterion function (a measure of the model’s

predictive capability), although R2 would rank the models in the
same way. (e.g. the n-parameter model with the highest BIC or
R2 is selected as the best). This procedure was performed using
the  !"#$%#!&# command in ' [10]. In this way we determine
the best performance counters for performance prediction of these
calibration workloads. The results of the parameter selection for
Cbus and Cmem are shown in Figure 2. The figures show which
parameters are selected for each of the n-parameter models (each
row represents a model with one more parameter than the row be-
low). The differences in the graphs are likely due to noise in the
data, insufficient variance in the benchmarks. Our future work has
included a unified approach to the parameter selection.

We observe that, for this benchmark suite, the best single parame-
ter model uses data cache misses (PMC11), the best dual parame-
ter model also uses data TLB misses (PMC4). The best three pa-
rameter model uses PMC11, data cache buffer stalls (PMC9) and
data dependency stall cycles. The best four parameter model uses
PMC11, PMC4, PMC9 and data cache write-backs.

The results also show that the model does not improve significantly
beyond four PMCs, and two PMCs perform almost as well as three
(indicating strong correlations between cache and TLB misses).
The PXA255 only supports two simultaneous measurements (in ad-
dition to the cycle counter), so our on-line prediction system in this
platform is based on data TLB misses and data cache misses.

Importantly, unlike previous work [2, 4], since our model does not
implicitly require the number of instructions, the parameter selec-
tion is free to choose any two events.

5.3 Slowdown prediction
While the actual parameters selected by this procedure depend on
the benchmarks used for calibration, the BIC values indicate that
this should not have a dramatic effect on the overall results. This
can be verified by validation runs using independent benchmarks
(our SPECINT subset).

An offline evaluation (i.e., using end-to-end data obtained running
the validation suite over several executions) yields an average error
of 1.7% and maximum error of 7% for the two parameter model.
For comparison, the same data yields an average error of 10% and
a maximum of 38% if the estimate is based only on the CPU fre-
quency (“naive model”). Figure 3 shows the errors in the naive
model, and Figure 3 for the 2-parameter model. The improvement
over the naive model is obvious.

5.4 Frequency scaling error
We then ran each of the validation benchmarks aiming for 17 pre-
determined performance values ranging from 20 and 100%, each
time recording actual and estimated run time at fmax

x . As the fre-
quency settings are not continuous, the system cannot normally
chose a setting that is estimated to produce exactly the target per-
formance. Instead, the frequency selection policy simply chooses
the setpoint which gives the closest approximation to the desired
performance; the actual performance and desired performance will
therefore differ, even if our estimates were totally correct. To ac-
count for this fact, we present the values again as the error in the
estimated performance (estimated minus actual) against the esti-
mated performance, Figure 5. These are on-line estimation errors:
the performance is calculated for each time slice.

The maximum error observed was 7%, the average was 1.9%.

62



-40

-20

 0

 20

 40

 0  20  40  60  80  100

P
e
rf

o
rm

a
n
c
e
 P

re
d
ic

ti
o
n
 E

rr
o
r 

(%
)

Actual Performance (%)

Naive estimation

Figure 3: Naive model estimated performance error vs. actual

performance

-40

-20

 0

 20

 40

 0  20  40  60  80  100

P
e
rf

o
rm

a
n
c
e
 P

re
d
ic

ti
o
n
 E

rr
o
r 

(%
)

Actual Performance (%)

PMC based estimation

Figure 4: 2 parameter PMC-based model estimated perfor-

mance error vs. actual performance

These compare favorably with the most accurate published perfor-
mance estimations (4–6% [2]), and are consistently more accurate
than those presented in other work, despite having been tested with
a much larger variety of workloads. In addition, previous work
generally used the same benchmarks for calibration and validation.
Thus the errors observed in most previous work are not indicative
of their models’ predictive capability.

5.5 Frequency scaling overheads
The cost of the frequency selection calculations were measured
to be 5000—7750 cycles. This averages 24µs, which compares
favourably to Choi’s 100µs [2]. That work requires an on-line re-
gression calculation, yet does not consider multiple memory fre-
quencies.

6. CONCLUSIONS
This paper has first motivated, and then presented a general and
sound model of execution time under frequency scaling. It is based
on an off-line characterisation of the hardware platform, combined
with on-line evaluation of application characteristics using perfor-
mance counters. The model has been implemented and validated
on a processor typical for use in high-end mobile systems.

-40

-20

 0

 20

 40

 0  20  40  60  80  100

P
e
rf

o
rm

a
n
c
e
 p

e
rc

e
n
ta

g
e
 e

rr
o
r 

(%
)

Estimated performance (%)

On-line estimation

Figure 5: On-line estimated performance error vs. estimated

performance

The model, once developed on a set of representative benchmarks,
has demonstrated an excellent ability to predict the performance of
new applications. The on-line evaluation implies that the model can
quickly adjust to changes in application behaviour. The approach
is general in the sense that it should be readily portable to differ-
ent processor platforms providing basic performance monitoring
hardware. The model performed well with only two performance
counters, without the need for time-multiplexing.

In addition, this work has taken a rigorous approach to the model
evaluation, with two large, disjoint published sets of benchmarks
used for calibration and validation. The system was tested with an
order of magnitude more workloads than comparable work.

The model has clear applications as part of an energy-saving frame-
work, which could enable an accurate trade between performance
and energy. Our subsequent work will show the necessity of a per-
formance model when building an accurate model for the predic-
tion of energy consumption under frequency scaling.

In the future we plan to validate the model’s generality by deploy-
ing it on other platforms. Another obvious next step is an evalua-
tion in a multi-processing context. Performance loss related to IO
devices, and the effect of interupts and DMA should be examined.

7. REFERENCES
[1] H. Aydin, V. Devadas, and D. Zhu. System-level energy management

for periodic real-time tasks. Proceedings of the 27th IEEE Real-Time

Systems Symposium, 0:313–322, 2006.
[2] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage

and frequency scaling for precise energy and performance tradeoff
based on the ratio of off-chip access to on-chip computation times.
IEEE Transactions on CAD ICAS, 24(1):18–28, Jan. 2005.

[3] M. R. Guthaus, J. S. Reingenberg, D. Ernst, T. M. Austing,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In Proceedings of the 4th

IEEE Annual Workshop on Workload Characterization, Dec. 2001.
[4] C.-H. Hsu and W. chun Feng. Effective dynamic voltage scaling

through CPU-boundedness detection. In Proceedings of the 2004

Workshop on Power-Aware Computer Systems, pages 135–149, 2004.
[5] C.-H. Hsu and U. Kremer. The design, implementation, and

evaluation of a compiler algorithm for CPU energy reduction.
SIGPLAN Not., 38(5):38–48, 2003.

[6] Intel Corporation. Intel PXA250 and PXA210 applications
processors developers manual. http:

63



//www.intel.com/design/pca/products/pxa255/techdocs.htm,
2005.

[7] T. L. Martin and D. P. Siewiorek. Nonideal battery and main memory
effects on cpu speed-setting for low power. IEEE Trans. Very Large

Scale Integr. Syst., 9(1):29–34, 2001.
[8] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and

R. Rajkumar. Critical power slope: understanding the runtime effects
of frequency scaling. In Proceedings of the 16th International

Conference on Supercomputing, pages 35–44, New York, NY, USA,
2002. ACM Press.

[9] C. Poellabauer, L. Singleton, and K. Schwan. Feedback-based
dynamic voltage and frequency scaling for memory-bound real-time
applications. In Proceedings of the 11th IEEE Real-Time and

Embedded Technology and Applications Symposium, volume 00,
pages 234–243, 2005.

[10] R Development Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2006. ISBN 3-900051-07-0.

[11] D. Rajan, R. Zuck, and C. Poellabauer. Workload-aware dual-speed
dynamic voltage scaling. In Proceedings of the 12th International

Conference on Embedded and Real-Time Computing and

Applications, pages 251–256, 2006.
[12] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. FAST:

Frequency-aware static timing analysis. ACM Transactions on

Embedded Computing Systems, 5(1):200–224, 2006.
[13] D. C. Snowdon, S. Ruocco, and G. Heiser. Power Management and

Dynamic Voltage Scaling: Myths and Facts. In Proceedings of the

2005 Workshop on Power Aware Real-time Computing, New Jersey,
USA, Sept. 2005.

[14] V. Venkkatachalam, C. Probst, and M. Franz. A new way of
estimating compute boundedness and its application to dynamic
voltage scaling. International Journal on Embedded Systems,
1(1):64–74, 2006.

[15] M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Scheduling for
reduced CPU energy. In Proceedings of the 1st USENIX Symposium

on Operating Systems Design and Implementation, pages 13–23,
1994.

[16] A. Weissel and F. Bellosa. Process cruise control—event-driven
clock scaling for dynamic power management. In Proceedings of the

International Conference on Compilers, Architecture and Synthesis

for Embedded Systems, Grenoble, France, Oct. 8–11 2002.
[17] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage

scaling settings: Opportunities and limits. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and

Implementation, pages 49–62, New York, NY, USA, 2003. ACM
Press.

[18] F. Xie, M. Martonosi, and S. Malik. Efficient behavior-driven
runtime dynamic voltage scaling policies. In Proceedings of the 3rd

International Conference on Hardware/Software Codesign and

System Synthesis, pages 105–110, 2005.

64



Run-time mechanisms for
property preservation in high-integrity real-time systems∗

Juan Zamorano
Universidad Politécnica de

Madrid (UPM), Spain
jzamora@datsi.fi.upm.es

Juan A. de la Puente
Universidad Politécnica de

Madrid (UPM), Spain
jpuente@dit.upm.es

Jérôme Hugues
GET-Télécom Paris –

LTCI-UMR 5141 CNRS,
France

hugues@infres.enst.fr

Tullio Vardanega
University of Padova, Italy

tullio.vardanega@math.unipd.it

ABSTRACT
Classical real-time kernels tend to leave to the application

level the burden of policing those stipulations that the de-

signer deems crucial to warrant the correct operation of the

system. In fact, in the general case, there exist forms of

reflective computing at application level that may be happy

with that arrangement. Where “continuity of proof” and

“preservation of properties” are central to the development

paradigm instead permissive kernels are arguably inferior

to proactive execution platforms which are capable of: (i)

policing the critical stipulations; and (ii) preventing their vi-

olations at run time. In this short paper we illustrate some

constructive principles of an execution environment that fol-

lows the latter paradigm.

1. INTRODUCTION
One distinctive objective pursued by the ASSERT project

(cf. footnote 1) is to attain “preservation of properties”

throughout the entire development process, from system

modeling down to run-time execution. A crucial ingredi-

ent to attain this objective entails the design and imple-

mentation of an execution environment that exhibits two

fundamental features:

1. to ensure that the run-time entities (e.g. threads,

locks, queues, etc.) that are deployed to implement

the system model do have exactly the same semantics

as was assumed in the verification and validation of

the system model

2. to ensure that the run-time attributes which decorate

all elements of the system model are also attached,

without semantic distortion, to the run-time entities

that implement them and, when they designate stipu-
lations (e.g. a given budget, whether in time for ex-

ecution, in size for storing, or in bandwidth for com-

munication) they be actively policed during execution

so that no single violation of them may either occur or

go unnoticed.

∗
This work has been funded in part by the Sixth Framework

Programme of the European Commission under project

FP6-IST-2004 004033 (ASSERT).

Meeting requirement 1 in a guaranteed manner is consid-

erably facilitated if visibility of the kernel API is hidden

away from the designer so that calls to it can only be issued

at places strictly controlled by the development process. (In

the context of Model-Driven Engineering, for example, those

places would be determined by the model transformation

logic as opposed to by manual programming, as it is still

often the case in the development of high-integrity real-time

systems.)

To satisfy requirement 2, instead, the execution platform

that we have designed for use in ASSERT had to be rigidly

inflexible in hosting, executing and actively policing the run-

time behaviour of the allowable run-time entities. In order

to underline its distinctive character, which sets it aside from

classical real-time kernels (which tend to be permissive when

it comes for the policing of stipulated run-time behaviour),

we have chosen to name our execution platform: “Virtual

Machine” (VM), with a connotation that intends to evoke

the correct interpretation of an intended semantics and its

active enforcement at run time.

The ASSERT VM concept exhibits a number of important

characteristics:

a) it is a run-time environment that only hosts and sup-

ports “legal” entities, i.e., those that are explicitly re-

tained as the target of the automated model trans-

formation process which realizes the system specifica-

tion (the equivalent of a PIM) in terms of correct-by-

construction aggregates and interconnections of allow-

able run-time entities (the equivalent of a PSM);

b) it provides run-time services that aid those run-time

entities to actively preserve their designated proper-

ties; mechanisms and services of interest allow for in-

stance to:

• accurately measure the actual execution time that

can be attributed to individual threads of control

• attach and replenish a monitored execution time

budget to a thread, and then prompt an alarm

when the thread exceeded its time budget

• segregate threads into distinct groups, attaching

65



a monitored budget to individual groups, to be

handled in the same way as for threads

• enforce the minimum inter-arrival time stipulated

for sporadic threads

• build fault containment regions around individual

threads and groups thereof

• attain distribution and replication transparency

in inter-thread communication.

c) it is bound to a compilation system that only pro-

duces executable code for “legal” entities and rejects

the non-conforming ones; run-time checks provided by

the virtual machine shall cover the extent of enforce-

ment that cannot be exhaustively achieved at compile

and link time

d) it realizes a concurrent computational model provably

amenable to static analysis; the model must permit

threads to interact with one another (directly, by some

form of synchronization, and indirectly, by preemptive

interference) in ways that do not incur non-determinism.

It is worth noting that the concept that underpins the VM

arguably goes beyond the current state of the art (cf. e.g.

[1]) in that it incorporates more than just overrun detection,

but rather a whole range of features and mechanisms that

actively “police” the continued compliance of the system be-

haviour at run time to its specification. In the remainder

of this short paper we shall briefly discuss some of the most

noteworthy features of the ASSERT VM in this respect.

2. DISTINGUISHING FEATURES OF THE
VIRTUAL MACHINE

In order to comply with the required characteristics, the

ASSERT VM semantics is based on the Ravenscar compu-

tational model [2], a concurrency model enabling predictable

behaviour. Legal entities at the program code level are those

accepted by an Ada 2005 compiler restricted by the Ada

Ravenscar profile [9].

2.1 Activation of sporadic tasks
A foremost property to be preserved for any sporadic task

is the minimum interval time that is stipulated to occur

between any two successive activations (a.k.a. minimum in-

terarrival time). This property is essential in ensuring the

feasibility of response-time analysys, for its violation may

result in unexpectedly high interference for lower-priority

tasks [3].

The ASSERT system generation process enforces this prop-

erty by using an Ada pattern based on a delay until state-

ment, as shown in [7]. The semantics of this statement is

supported by the VM using a delay queue, in a similar way

as was done in the ORK kernel [11].

2.2 Execution-time monitoring
Execution-time monitoring is a means to prevent execution-

time overruns from occurring. Overruns may be caused

by erroneous estimation of the worst-case execution time

(WCET) of a task, or by some misbehaviour resulting in

the task executing for longer than stipulated. In either case

Figure 1: Execution-time monitoring.

appropriate corrective actions must be taken to preventing

the offending task from jeopardizing the temporal behaviour

of other tasks in the system.

Execution-time monitoring in the ASSERT VM is based on

execution-time timers, a specific feature of the new Ada 2005

standard [9]. Each task has an execution-time clock which

only advances while the task is actually executing. Based

on it, an execution-time timer can be defined which can be

set to a time interval or to an absolute value. If the timer

expires, a protected procedure handler is executed in a way

similar to an interrupt handler.

Execution-time timers are not currently allowed in the Raven-

scar Profile [9]. However, in view of their strategic interest to

the objectives of the project, the ASSERT VM implements

a minimal extension to the Ravenscar Profile by including

at most one statically declared timer per task. The code

archetypes for execution-time monitoring (cf. listing 1 for

an example) use one such timer to detect WCET overruns.

When an overrun is detected, a high-priority monitoring task

is released to recover from the error (cf. figure 1). Various

forms of corrective measures can be contemplated within the

confines of the Ravenscar Profile: our current orientation is

to force a mode change to the offending task, which will take

effect at the next activation, assuming that the task will

end its current violating execution without needing external

intervention. (While this assumption may be over-optimistic

in the general case, we reckon it is not in the case of ASSERT

which pursues a zero-programming development paradigm

and thus should be less exposed to erroneous application

code.)

2.3 High-integrity distribution
Adding distribution features to High-Integrity (HI) systems

such as those targeted by ASSERT requires first to catego-

rize the possible causes of software failures that may stem

from distribution, and then to define the set of preventive

measures which may exclude them. We in particular selected

three typical concerns of distribution middleware and took

special care in addressing them in a HI setting by combining

run-time mechanisms and modeling artifacts: 1) no dynamic

memory allocators; 2) no dynamic skeleton dispatchers; 3)

prevention of overruns on both the client and the server side.

66



Listing 1: WCET overrun detection.

My Id en t i t y : a l i a s e d constant Task Id := Per i od i c Task ’ I d e n t i t y ;
WCET Timer : Ada . Execut ion Time . Timers . Timer ( My Iden t i t y ’ Access ) ;

task body Pe r i od i c Ta sk i s

Nex t Ac t i v a t i on : Ada . Real Time . Time := Epoch ;
begin

loop

WCET Timer . Se t Hand l e r
( In Time=>My WCET Budget ,
Hand le r=>My Monitor . Over run Hand le r ’ Access ) ;

delay u n t i l Nex t Ac t i v a t i o n ;
Do Actual Work ;
Nex t Ac t i v a t i on := Nex t Ac t i v a t i on + My Period ;

end loop ;
end Pe r i od i c Ta sk ;

2.3.1 No dynamic memory allocators
Dynamic memory allocation typically occurs when the devel-

oper does not know beforehand how much memory it takes

to perform the required actions. In a middleware setting,

this situation usually arises when buffers must be allocated

to: handle incoming requests; initialize connections; or store

internal data to manage internal state information.

In fact, all of those situations and the relevant needs can

be deduced from a careful analysis of the application model

interfaces and the intended system topology. Further assis-

tance of course comes from imposing suitable restrictions on

those elements:

1. interfaces are restricted to only use types of bounded

size so that the maximum size of buffers needed to

support each remotely invokable function can be com-

puted statically

2. prior knowledge about the application topology (i.e.,

direction and number of connections) permits to stat-

ically precompute the required tables of naming infor-

mation and to store them at elaboration time at all

places where they are needed.

By combining restrictions (1) and (2) one becomes able to

statically allocate all required resources at compile time,

thereby renouncing the need for run-time allocation.

2.3.2 No dynamic skeleton dispatchers
Skeleton dispatchers are required to map network messages

onto the call to designated local procedures. To avoid incur-

ring unpredictability in both time and space we infer from

the system model the information required to allocate static

arrays of dispatchers so that the incoming requests can be

directly marshalled into one index in the store. It is worth

noting that the latter step is performed in O(1) time, in

contrast with standard CORBA middleware, which requires

a string-to-index mapping and thus incurs the overhead of

hashing [8].

2.3.3 Preventing overruns
The prevention of overruns (which in a distributed context

may result in denial of service situations) is a major safety

problem. Situations of this kind happen when either a client

sends too much data (the “babbling client”), or a server re-

ceives more requests than it is able to process. These situ-

ations are handled by transport-level primitives of the AS-

SERT VM middleware respectively by:

1. preventing the client to send more than a given N num-

ber of requests per time unit, for a grand total of k
bytes in that time interval, using a simple timer and

an a byte budget counter;

2. stopping the server from being too responsive to in-

coming requests, by disabling the monitoring of a I/O

source, or by ignoring specific connections in case the

device permits it;

3. ensuring that only authorized clients interact with the

server. The server will silently ignore all requests com-

ing from other clients.

Measures 1 and 2 are supported by the transport stack,

which maintains a table of resource consumption and uses

monitoring techniques similar to those discussed in section

2.2 for task execution time. The exact definition of what

corrective actions should be performed in the face of a viola-

tion follows from thorough analysis of the application needs,

with the intent of permitting nominal operation to continue

undisturbed while also ensuring that violations are trapped

and not permitted (to continue) to occur.

Measure 3 simply entails a run-time check to be performed

into the name tables built for each node.

3. IMPLEMENTATION STATUS AND
LESSONS LEARNED

An implementation of the ASSERT VM for the LEON2 com-

puter architecture [5] has been almost completely achieved

67



real−time kernel

communication channel

hardware

drivers

communication

communication

services

middleware

real−time kernel

application code

hardware

communication

services

drivers

communication

middleware

application code

VM−level container

model

code generationcode generation

Figure 2: Top-level VM architecture.

to date, in full keeping with the principles discussed in this

paper. The VM architecture includes (cf. figure 2):

• A real-time kernel realized as an evolution of ORK [10]

and integrated with the GNAT for LEON compiler
1
.

• A communications stack for the SOIS Message Trans-

fer Service (MTS) [4].

• A middleware layer based on PolyORB-HI [6].

The completion of the implementation is due in early June

2007 and its use in a suite of end-of-project industrial case

studies shall start immediately after that, with culmina-

tion in an integrated public demonstration scheduled for late

November 2007.

Earlier versions of the ASSERT VM were distributed to the

industrial partners in the project and used to explore the

implementation of exploratory elements of the intended case

studies. Feedback from industrial use is very encouraging.

The implementation effort required to date and expected for

completion has proven to be ordinate and, thus perfectly ac-

ceptable. The early performance figures (with regard to tim-

ing and sizing particularly) also seem encouraging though a

more thorough assessment of them will most certainly come

from the planned case studies.

Overall the message we wish to bring to the reader is that

the strategic direction we have taken in the project seems

not only intellectually attractive but it also appears to be

relevant to industry as well as practical to engineer and use.

4. REFERENCES
[1] S. Brandt, S. Banachowski, C. Lin, and T. Bisson.

Dynamic Integrated Scheduling of Hard Real-Time,

Soft Real-Time, and Non-Real-Time Processes. In

Proceedings of the Real-Time Systems Symposium,

pages 396–409. IEEE, December 2003.

[2] A. Burns, B. Dobbing, and T. Vardanega. Guide for

the use of the ada ravenscar profile in high integrity

systems, 2003.

1www.adacore.com

[3] A. Burns and A. J. Wellings. Real-Time Systems and
Programming Languages. Addison-Wesley, 3 edition,

2001.

[4] Consultative Committee for Space Data Standards

(CCSDS). CCSDS Spacecraft On-board Interface
Services Green Book – CCSDS 830.0-G-0.4, Dec.

2004. Draft.

[5] Gaisler Research. LEON2 Processor User’s Manual,
2005.

[6] J. Hugues, B. Zalila, and L. Pautet. Middleware and

tool suite for high integrity systems. In Proceedings of
RTSS-WiP’06, pages 1–4, Rio de Janeiro, Brazil,

December 2006. IEEE.

[7] J. A. Pulido, S. Urueña, J. Zamorano, and J. A. de la

Puente. Handling temporal faults in Ada 2005. In

N. Abdennadher and F. Kordon, editors, Reliable
Software Technologies — Ada-Europe 2007, number

4498 in LNCS, pages 15–28. Springer-Verlag, 2007.

[8] I. Pyarali, C. O’Ryan, D. Schmidt, N. Wang,

W. Kachroo, and A. Gokhale. Applying optimization

principle patterns to desgin real-time ORBs. In

Proceedings of the 5th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS).
USENIX, 1999.

[9] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Plöedereder,

and P. Leroy, editors. Ada 2005 Reference Manual.
Language and Standard Libraries. International
Standard ISO/IEC 8652/1995(E) with Technical
Corrigendum 1 and Amendment 1. Number 4348 in

Lecture Notes in Computer Science. Springer-Verlag,

2006.

[10] S. Urueña, J. A. Pulido, J. Zamorano, and J. A. de la

Puente. Adding new features to the Open Ravenscar

Kernel. In 1st International Workshop on Operating
Systems Platforms for Embedded Real-Time
Applications (OSPERT 2005), Palma de Mallorca,

Spain, July 2005.

[11] J. Zamorano, J. F. Ruiz, and J. A. de la Puente.

Implementing Ada.Real Time.Clock and absolute

delays in real-time kernels. In A. Strohmeier and

D. Craeynest, editors, Reliable Software Technologies
— Ada-Europe 2001, number 2043 in LNCS, pages

317–327. Springer-Verlag, 2001.

68



Lazy Queueing and Direct Process Switch — Merit or
Myths?

Kevin Elphinstone
∗

National ICT Australia
and

University of New South Wales
Sydney, Australia

kevine@cse.unsw.edu.au

David Greenaway
National ICT Australia

and
University of New South Wales

Sydney, Australia
davidg@cse.unsw.edu.au

Sergio Ruocco
Nomadis Lab., DISCo,

Università di Milano-Bicocca
Milano, Italy

ruocco@disco.unimib.it

ABSTRACT
The L4 microkernel, like many first and second generation

microkernels, was designed to maximise best-effort perfor-

mance. One component of its functionality critical to overall

system performance is its interprocess communication prim-

itive. L4 uses two techniques to minimise communication

costs: direct process switching and lazy queue management.

These techniques improve performance at the expense of

real-time predictability of the scheduler. Now that L4 is be-

ing adopted in the embedded space, which features real-time

requirements, we must determine if there is continued merit

in using the optimisations. In this paper we quantitatively

analyse the two optimisations using different kernel imple-

mentations and measure the performance improvements of

the optimisations directly, and indirectly using the Re-aim

benchmark suite. We find that the system-level performance

improvements are marginal for this Unix-like workload.

1. INTRODUCTION
The functionality and the overall system complexity of high-

end embedded systems is rapidly approaching, and in some

cases surpassing, those of desktop systems. At the same

time, they are expected to be much more reliable and robust

than desktop systems as in most cases embedded systems

cannot be managed by their users, and often they cannot be

physically serviced.

However, traditional operating systems that are cut down

to run in the embedded space usually struggle to provide

strong real-time guarantees as their original design aimed at

best-effort system performance, and kernel components such

as interrupt handlers run outside the scheduler’s control.

While timeliness can be addressed in part by running the OS

on top of a realtime executive, this does not help with the

reliability and complexity issues. In fact, an already large

desktop operating system is expanded further by a real-time

executive, and potentially real-time tasks that run without

any isolation next to the desktop kernel.

To address these requirements embedded systems are mov-

ing, on the hardware side, towards processors featuring full

∗
National ICT Australia is funded by the Australian Gov-

ernment’s Department of Communications, Information

Technology, and the Arts and the Australian Research Coun-

cil through Backing Australia’s Ability and the ICT Re-

search Centre of Excellence programs.

memory management (i.e., translation and protection), and,

on the software side, towards microkernel-based systems,

where operating system services run as separated user-level

applications, safely isolated by hardware protection.

In principle, compared to a monolithic system, in a

microkernel-based system it should be easier to tame com-

plexity and provide timeliness for high-end embedded sys-

tems. System services are decomposed into user-level ser-

vices that contain most of the system functionality (and

hence complexity). These user-level services execute un-

der microkernel enforced protection boundaries (processes),

which should result in improved system reliability through

well defined modular structuring, and better fault isolation

and fault identification.

Timeliness benefits from the smaller kernel in two ways.

Firstly, being smaller in size, the kernel should be more

amenable to whole kernel analysis and carefully targeted

modifications to provide or improve real-time behaviour, as

there are significantly less lines of privileged code to analyse

or modify. Secondly, a real-time capable microkernel pro-

vides its real-time guarantees to higher-level services includ-

ing interrupt handlers, device drivers and other traditional

kernel services. Kernel activities that are difficult to ac-

count for (or are ignored completely) in monolithic systems,

become user-level applications under control of the scheduler

and the guarantees it provides.

In practice, like traditional monolithic systems, general-

purpose microkernels stem from performance-driven designs,

and have ingrained in their design or implementation many

optimisations that aim to improve best-effort system per-

formance at the expense of the predictability in scheduling

required for real-time systems [18].

L4 [11] is a general-purpose microkernel well-known in aca-

demic circles for its contributions to low overhead commu-

nication between processes [13]. Recently L4 is gaining an

industrial foothold as a basis for high-end embedded and

mobile systems and as a virtualisation platform.

In this paper we focus on two performance optimisations

performed in the L4 microkernel interprocess communica-

tion primitive, commonly known in the L4 community as the
IPC path. Direct process switching, that avoids running the

scheduler along the kernel’s critical paths, and lazy queue-

69



ing, that defers the updating of its ready queue. These op-

timisations decrease the cost of interprocess communication

(IPC), but, as a side-effect, the first can temporarily vio-

late the scheduling policy of the system, while the second,

in pathological cases, may increase its latency to external

events. We describe these two optimisations in detail, pro-

vide qualitative arguments both for and against their use,

and quantify their performance benefits to allow kernel en-

gineers and users to weigh their pros and cons in both best-

effort and real-time scenarios.

2. INTERPROCESS COMMUNICATION

OPTIMISATION

2.1 The Pursuit of IPC Performance
The intended structure of microkernel-based systems puts

heavy demands on the performance of IPC. In microkernel-

based systems, traditional operating system services — such

as device drivers, filesystems and network stacks — are pro-

vided by processes (servers) running at user-level. Thus,

instead of a system call to a traditional monolithic oper-

ating system, in a microkernel-based system all interactions

between applications and system services involve IPC to and

from servers implementing those services.

In the L4 microkernel the basic IPC mechanism is used not

only to transfer messages between user-level threads, but

also to deliver interrupts, asynchronous notifications, mem-

ory mappings, thread startups, thread preemptions, excep-

tions and page faults. Because of its pervasiveness, IPC is

likely to be used very frequently. It is also evident that any

kernel change that increases IPC costs will increase over-

head.

It is then clear why IPC performance in L4 (and in gen-

eral) has received so much attention (including, but not lim-

ited to [2,10,13,19]), with achieved performance being suffi-

cient to support near-monolithic system performance when

all system-call-like invocations are implemented by IPC to

a system server, which in this case was Linux [3]. Härtig et
al. also directly compared their system with MkLinux (a

directly comparable version of Linux based on a microker-

nel with slower IPC performance) and demonstrated that

the version of Linux running on the slower microkernel ex-

hibited a 25% performance penalty. IPC performance was

critical to overall system performance.

The requirement for high IPC performance is further mo-

tivated when device drivers are run as user-level servers to

improve robustness and reduce kernel complexity [7, 12]. In

L4, hardware interrupt delivery is via IPC to interrupt han-

dling threads. Interrupt delivery overhead can be critical for

hardware devices such as gigabit Ethernet where, to reduce

the performance impact of high interrupt rates, hardware-

based interrupt throttling is now common for even normal

interrupt delivery.

IPC performance affects not only the overall performance of

the system, but also its design space. It has been observed

early in the evolution of microkernels that given poor IPC

performance, system builders will work around it by either

co-locating services back within the kernel, or by composing

the system with much coarser granularity than they would

otherwise [4].

In addition to supporting decomposed services and applica-

tions, microkernels can also support virtual machine moni-

tors (VMMs) as an approach to supporting legacy operating

systems [3, 9, 17], while concurrently providing isolated en-

vironments for microkernel-based applications and services

that, to implement security or temporally critical services,

rely only on the guarantees provided only by the microker-

nel [14].

VMMs require efficient exception handling to emulate priv-

ileged instructions present in the hosted operating system.

Also relevant for VMMs is the vectoring of native system

calls to a paravirtualised operating system server running

on the microkernel [1].

In the case of a paravirtualised Linux running on top of

L4, both exception and syscall delivery are again via IPC

from the Linux applications to the Linux server, or from

the Linux server to the virtual machine monitor. Again IPC

performance plays a primary role in determining system per-

formance for system call-intensive (or exception-intensive)

applications.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  10  100  1000  10000  100000  1e+06

IP
C

 O
v
e

rh
e

a
d

 %

Cycles between IPC

50 cycles
100 cycles
200 cycles
400 cycles
800 cycles

1600 cycles

Figure 1: The IPC overhead for various IPC costs
against the average cycles between successive IPC.

Figure 1 illustrates the sensitivity of IPC overhead to the

raw cost of IPC, and the average cycles between successive

IPCs. The x-axis represents the average number of cycles

between each IPC, on a log scale. Each line is a plot of the

percentage overhead attributable to IPC for hypothetical

IPC costs of 50, 100, 200, 400, 800 and 1600 cycles, which are

within the range of typical IPC warm-cache costs. It shows

how the overhead is particularly sensitive to IPC costs in the

range surrounding 5000 cycles. This corresponds broadly to

an hypothetical gigabit Ethernet interrupt delivery intervals

(the time to receive a minimum sized packet on the wire)

if hardware-based interrupt throttling is not used. Fine-

grained synchronisation would also be in this range.

Summarising, there is strong motivation for minimising IPC

costs if it is invoked frequently, and this is certainly the

case for L4. In the remainder of this paper we will discuss

two generally-applicable IPC optimisations used in L4 that

70



reduce IPC cost, but affect in major and minor ways its

realtime scheduling behaviour. In the following sections, to

illustrate the two optimisations we will consider the case of a

interprocess communication where one process calls another

to request a service, resulting in the caller becoming blocked

and the called becoming runnable; the reverse happens as a

result of the response.

2.2 Direct Process Switch
In principle, every operating system, when the current pro-

cess blocks, invokes the scheduler to choose the next process

to run based on the specific scheduling policy it implements,

e.g., the highest priority runnable process will run. How-

ever, if the process blocks in the IPC path, invoking the

scheduler can be a costly operation that impacts IPC per-

formance. Therefore L4 avoids it and switches directly to

the newly runnable IPC destination, often disregarding rel-

evant scheduling criteria, such as priority of other threads

in the system.

The advantages of direct switch in the IPC path are three-

fold: (i) the overhead involved in calling the scheduler in the

performance-critical IPC path is avoided, (ii) the latency of

reaction to events delivered via IPC is reduced (also the

interrupt fastpath performs a direct switch), and (iii) the

cache working set may be reduced.

The first benefit does not warrant further explanation. The

second benefit is advantageous (e.g. during interrupt han-

dling) as it gives a process the opportunity to service the

interrupt earlier, and therefore potentially request the next

I/O operation earlier, improving I/O utilisation. The third

benefit occurs as a client and server which interact closely

can share the cache without the scheduler interfering by pol-

luting the cache with the correct scheduling of a third pro-

cess.

Direct process switch was first proposed by Liedke [10] to

improve microkernel IPC performance. However, it makes

the real-time schedulability analysis for any specific schedul-

ing policy difficult, if not impossible, as the scheduler is not

involved in the majority of scheduling decisions. In fact,

scheduling decisions due to IPCs happen a few thousands of

times per second, one or two orders of magnitude more fre-

quently than those due to the scheduler running after times-

lice preemptions, which happens a few hundreds of times per

second.

Historically, direct switch has also been applied inconsis-

tently in L4. To decide which process should run some L4

implementations consider the priorities of the communicat-

ing processes and the type of IPC performed, others do not,

but all of them bypass the scheduler on the critical path.

Ruocco [18] provides a detailed analysis of the direct switch

behaviours in two recent kernels of the L4 family, and their

implications for priority-driven real-time scheduling.

Notably, also the real-time OS QNX Neutrino seems to per-

form a direct switch in synchronous IPCs when data transfer

is involved [16]:

Synchronous message passing

This inherent blocking synchronizes the execu-

tion of the sending thread, since the act of re-

questing that the data be sent also causes the

sending thread to be blocked and the receiving

thread to be scheduled for execution. This hap-

pens without requiring explicit work by the ker-

nel to determine which thread to run next (as

would be the case with most other forms of IPC).

Execution and data move directly from one con-

text to another.

2.3 Lazy Queueing
When performing a remote procedure call (RPC) over syn-

chronous IPC, the sender thread blocks after sending the

message, and the waiting receiver thread is unblocked af-

ter receiving the message. The blocking and unblocking of

threads results in ready queue manipulation. The blocked

thread must be removed from the ready queue, and the un-

blocked thread must be inserted in the ready queue. If two

threads interact in a tight client-server loop, this happens

continuously, undoing work just performed, and then per-

forming it again.

Lazy queueing consists of the kernel deferring work in the

hope that it is eventually unneeded. L4 performs lazy queue

management with the following two techniques:

1. A blocking thread is not immediately removed from

the ready queue. Its removal is deferred until the

scheduler is called. The scheduler then removes any

blocked thread(s) it encounters in the course of search-

ing the next thread to run in the ready queue.

2. The kernel preserves the invariant that at least all

ready threads not currently running must be in the

ready queue. The currently running thread is not re-

quired to be in the ready queue.

If the currently running thread is preempted (changes

state from running to ready), it is added to the queue

if it is not already present. Thus, switching briefly to

a newly runnable thread does not require adding it to

the ready queue.

In L4, the combination of these two techniques ensures

that when IPC results in just one thread blocking and an-

other running, short-lived updates that elide each other are

avoided, and unavoidable queue maintenance is deferred as

much as possible. The ready queue is finally updated when

the messaging is preempted and the scheduler runs, typi-

cally as a result of timeslice exhaustion or a blocking IPC

to a busy thread.

The pros of lazy queueing are saving the direct cost of the

queue management, the indirect cost of an increased num-

ber of cache lines polluted by the queue manipulation, and

avoiding the potential pollution of TLB entries, depending

on the architecture and virtual memory mapping.

While lazy queueing cannot result in more overall processing

performed compared to strict queue management, it does de-

fer queue maintenance to the scheduler, where the scheduler

71



may encounter (and remove) blocked threads in the ready

queue. The number of blocked threads encountered is diffi-

cult to predict, resulting in latency of scheduling operations

also being difficult to predict.

Finally, a note on terminology. Liedtke [10] calls lazy schedul-

ing what in this paper we call lazy queueing. We use the lat-

ter term to avoid confusion with direct process switch, which

can be considered a form of lazy scheduling. That said, in

the L4 community and literature the term ‘lazy scheduling’

is sometimes used loosely to indicate a generic optimisation

in scheduling, and thus can refer to direct process switch,

lazy queueing, or even both optimisations.

2.4 Related Work
While there is a body of work on IPC performance, and on

real-time kernels, besides the analysis mentioned above [18],

there is little in the literature on the trade-off between the

two IPC optimisations described, and a kernel’s ability to

support real-time workloads. The most relevant is Stein-

berg et al., who proposed extending L4’s IPC mechanism to

donate scheduling context in order to support various classes

of real-time scheduling disciplines, including priority inheri-

tance, and reservation-based realtime systems on L4 [20].

They augment L4’s IPC to do the book keeping required to

track dependencies and time-slice donations. This work is

complementary to our work in that they also demonstrate

the need to modify their microkernel’s IPC implementa-

tion to achieve their desired scheduling behaviour. They

acknowledge that performance is an issue, and argue qual-

itatively that their system’s approach adds little overhead.

However, no quantitative results are given and their base-

line IPC overhead is up to an order of magnitude higher

than the costs we have quantified. Given a highly optimised

IPC, on a favourable architecture, it is unclear that their

changes would continue to be “little overhead”.

2.5 Summary
In this section we have argued that IPC performance is im-

portant, and described two optimisations used in the L4

microkernel to reduce the direct and indirect costs of IPC,

but with a detrimental effect on real-time workloads. Direct

switch comes at the expense of the system no longer strict-

ing adhering to its own scheduling policy — especially in

the case of priority-driven scheduling — and precluding the

schedulability analysis of a real-time system. Lazy queueing

can increase latency in pathological cases.

In the remainder of the paper we quantify the cost in terms

of performance of direct switch and lazy queueing by bench-

marking the standard kernel, then removing selectively each

optimisation, and finally both of them. We aim to clarify

the trade-off between using and not using the two optimisa-

tions, to offer microkernel designers and users an educated

choice between performance and predictability.

3. EXPERIMENTS
We performed three experiments to quantify performance

differences between various optimisation configurations. The

first was to instrument the kernel to collect statistics on

number of IPCs, context switches, queueing operations, and

scheduler invocations to determine how often queueing or

scheduling is avoided. The second experiment microbench-

marks the IPC performance directly by timing repeated ping-

pong messages. The third experiment measures throughput

for individual components of the Re-aim benchmark suite

running on a paravirtualised Linux, which, in turn, runs on

the microkernel. Each experiment is described in more de-

tail in the following sections.

For this paper we used L4-embedded N2 v1.3.0 [15], derived

from L4::Ka Pistachio 0.4 [6], as a representative microker-

nel for experimentation. Both of them feature both the di-

rect switch and lazy queueing optimisations described ear-

lier. The hardware platform we used was a Gumstix Connex

400xm, which has an XScale PXA255 clocked at 400 MHz,

and 64 MB of RAM. In addition to L4-embedded, we also

use the Iguana operating system personality running on L4,

together with Wombat (a version of Linux paravirtualised to

run on Iguana on L4), to provide a system for higher-level

benchmarking. Further details follow in Section 3.2.

3.1 Kernel Internal Scheduler Interface
To experiment with various combinations of scheduler op-

timisations, we constructed an internal scheduling interface

within the L4 kernel that allows a compile-time selection of

schedulers with different optimisations.

Scheduling in L4 is scattered through various parts of its

source code, where scheduling decisions are made implicitly

in the source each time two threads interact. For instance,

when two threads communicate using IPC, the IPC code

determines which thread should execute next at the conclu-

sion of the operation without involving the scheduler, often

— but not always — by directly comparing the priorities of

the two threads.

The creation of an internal interface involved refactoring the

code to remove the implicit scheduling decisions, which can

then be centralised and performed explicitly according to a

uniform and easily changeable policy.

One significant impact of this centralisation of scheduling

was that the highly-optimised assembly language IPC path

(known as the fastpath) was disabled. Instead, IPC is routed

to a slower C language path, which uses the new internal

interface.

Each of the new scheduler interface calls that involve a

schedule operation also takes an additional parameter we

termed a scheduling hint. Scheduling hints were introduced

to allow the same interface to support both the behaviour

of existing L4 implementations, which often dictate which

thread is to be scheduled next, while also allowing other

scheduling policies to be implemented, such as strict prior-

ity observance.

Listing 1 illustrates three different scheduling hints that were

required to mimic the existing behaviour of L4: (i) a hint

indicating that the highest priority thread in the system

should be scheduled; (ii) a hint that the most recently en-

queued thread should be scheduled (in the case of IPC, this

emulates direct process switch); and (iii) a hint indicating

that either the currently running thread or the most recently

72



enqueued thread should be scheduled, whichever has the

highest priority (used in the case of send-only IPC or in-

terrupts).

/∗ Hin t s d e s c r i b i n g t r a d i t i o n a l L4 behav i ou r ∗/
typede f enum {

/∗ Schedu l e h i g h e s t p r i o r i t y th r ead ∗/
HINT HIGHEST PRIORITY ,

/∗ Schedu l e most r e c e n t l y enqueued th r ead ∗/
HINT NEW,

/∗ Schedu l e the c u r r e n t or j u s t−enqueued th r ead ∗/
HINT CURRENT OR NEW,

} h i n t t ;

/∗ Ready queue man i pu l a t i o n s ∗/
vo id enqueue ( t c b t ∗ ) ;
vo id dequeue ( t c b t ∗ ) ;
vo id swap ( t c b t ∗ , t c b t ∗ ) ;

/∗ Request s c h e d u l e r to per fo rm a con t e x t sw i t c h ∗/
vo id sched ( h i n t t ) ;

/∗ Manipu la te r eady queues and per fo rm a sw i t ch ∗/
vo id enqueue sched ( t c b t ∗ , h i n t t ) ;
vo id dequeue sched ( t c b t ∗ , h i n t t ) ;
vo id swap sched ( t c b t ∗ , t c b t ∗ , h i n t t ) ;

Listing 1: The new L4 internal scheduling API

In addition to the hints, there are four functions which:

enqueue or dequeue a thread in the ready queue, atomi-

cally block one thread and start another (swap), and sched-
ule which chooses which thread to run next, and context

switches to it. There are also three more interface functions

which are clearly combinations of the previous four.

3.1.1 Measured Schedulers
In our experiments we investigated five variants of the L4-

embedded kernel. The first variant was an unmodified L4-

embedded kernel Unmod. As mentioned earlier, this kernel

features an optimised assembly IPC path which was not used

for the remainder of the measured variants, as we are yet to

write assembly language versions of the measured schedulers

that would be suitable for inclusion on an assembly language

IPC path. Unmod simply represents a best case for com-

parison to gauge the effect the C internal kernel scheduling

interface has on IPC performance.

The other four variants we investigated used the internal

scheduling interface, described in detail in Section 3.1. These

four variants implement combinations of either direct pro-

cess switching (DS) or full scheduling (FS), and lazy queue-

ing (LQ) or eager queueing (EQ). The combinations are as

follows:

DS/LQ L4 with the scheduler bypassed during IPC (direct

switch) with lazy queue management;

FS/EQ L4 with a full scheduler call in the IPC path to-

gether with eager queue management;

FS/LQ L4 with a full scheduler call in the IPC path to-

gether with lazy queue management;

DS/EQ L4 with the scheduler bypassed during IPC (direct

switch) with eager queue management.

Note that the DS/LQ kernel variant reproduces the schedul-

ing behaviour of the Unmod kernel using the new internal

scheduling API. Therefore, the difference between DS/LQ
and Unmod reflects the overhead of the C-based scheduler

interface, and the lack of an optimised assembly IPC path.

Obviously excluding Unmod, the remaining four variants

are similarly implemented and are directly comparable.

3.2 Benchmarks
We compared the four scheduler variants (together with the

unmodified kernel) using three approaches. Firstly, we mea-

sured the number of raw operations to determine how much

queue and scheduling avoidance occurs when the optimisa-

tions are applied. Secondly, we directly measured the cost

of raw IPC. Thirdly, we measured how the scheduler vari-

ants impact on the throughput of a para-virtualised version

of Linux. A more detailed description of the specific bench-

marks begins in Section 3.2.2, but before that we describe

in more detail Wombat, our para-virtualised Linux environ-

ment, together with the Re-aim benchmark suite.

3.2.1 Wombat and Re-aim
To measure the effect on overall system performance of the

scheduler variants we use Wombat [8], a paravirtualised ver-

sion of Linux running on top of L4/Iguana [5]. A Wombat

system is structured as depicted in Figure 2. The Iguana em-

bedded OS acts as a virtual machine monitor for Wombat.

Iguana provides services such as address spaces, threads, and

some services (such as device drivers) that run as Iguana

applications. Linux is modified by providing an L4/Iguana

CPU architecture which, instead of performing direct low-

level, privileged CPU operations, it uses IPC to request

Iguana to provide threads and provide and manipulate ad-

dress spaces for Linux processes running on Wombat, and

to Wombat itself.

Figure 2: Wombat, Iguana OS and L4.

Overall system performance will depend on (i) the cost

of propagating native system-call exceptions as IPCs from

Linux applications to the Wombat instance acting as a Linux

server for the Linux applications, and (ii) the cost of IPC to

73



the Iguana virtual machine monitor when Wombat requires

changes to the low-level hardware artifacts. Thus any varia-

tion in raw IPC costs may be visible depending on the level

of interaction between Iguana, Wombat, and Linux (appli-

cations) processes.

To determine the relative performance of Wombat, we used

the Re-aim benchmark suite [21]. Re-aim provides two modes

of determining system performance. First, Re-aim has a

single-user mode which measures the throughput of a series

of operations, such as the number of TCP/IP operations

performed per second, number of processes created per sec-

ond, the number of floating point operations per second, and

so on.

Second, Re-aim has a multi-user mode which attempts to

simulate real-world workloads. We ran the full Re-aim multi-

user benchmark with five processes, each of which car-

ries out a series of tasks in a pseudo-random order exer-

cising both the CPU and kernel. In order to ensure the

results were reproducible, we modified the Re-aim bench-

mark source code to seed its random number generator on

the child-number of the benchmark processes, instead of the

normally used Linux process-id.

Note that Wombat and Re-aim use a RAM disk to back the

file system, so no real I/O occurs in the benchmarks.

3.2.2 Avoiding Work
This specific experiment uses the multi-user Re-aim bench-

mark described above. The scheduler variant is DS/LQ,

but it has been modified to keep statistics such as number

of IPCs, total actual enqueue and dequeue operations, and

also total number of operations that would have occurred

with eager queueing. This instrumentation is only included

for this particular experiment, and only counts events. The

instrumentation is not used in cases where we measure per-

formance elsewhere in the paper.

The statistics can be used to determine how many enqueue,

dequeue and scheduler operations are avoided, to illustrate

the effectiveness of the technique.

3.2.3 Ping Pong
This microbenchmark consists of ping pong, where a low-

priority client sends a message of a fixed length to a high-

priority server, which then in turn responds immediately

back with a message of the same length. The benchmark

directly measures L4 and thus is independent of Wombat

and Iguana.

We benchmark 1 000 000 iterations of ping pong using the

cycle counter in the performance monitoring unit of the

PXA255, and the average number of cycles of a single IPC

is determined. The process is repeated for messages of var-

ious lengths. The final number of cycles counted includes

both the time required for the user-level threads to call the

kernel and the time spent in the kernel performing the IPC

operation. We run this benckmark for each of the kernel

configurations we have.

3.2.4 Re-aim Throughput

Benchmark Task
brk_test Carry out the brk syscall in a

loop.

creat_clo Create and then close files in

a loop.

dgram_pipe Send and receive random-

length datagram packets.

dir_rtns_1 Carry out various directory

querying syscalls.

exec_test Create children with fork,

which in turn carry out an

exec.

fork_test Create and wait for child pro-

cesses using fork and wait.

link_test Create and destroy hard links

to individual files.

misc_rtns_1 Carry out miscellaneous Unix

query syscalls.

page_test Allocate and deallocate mem-

ory with sbrk.

pipe_cpy Send and receive random-

length packets over a Unix

pipe.

shared_memory Perform semaphore opera-

tions and read/write opera-

tions on shared memory.

shell_rtns Execute simple shell scripts in

a loop.

signal_test Send and catch Unix signals

in a loop.

stream_pipe Send and receive random

amounts of data of a Unix

stream.

udp_test Send and receive random-

length UDP packets over

loopback.

Table 1: Descriptions of the Re-aim single-user
benchmark tasks tested.

Our last experiment takes selected single-user throughput

benchmarks from the Re-aim suite. The throughput is de-

termined by counting the number of completed activities in

an interval of approximately 10 seconds (the cycle-counter

on the PXA255 is used to get an accurate measurement of

the length of the interval). The specific activity counted

was dependant on the actual benchmark component under

test. For example, the UDP test counts the number of pack-

ets sent and received. Each benchmark specific throughput

was an average of 4 runs. Each runs was closely consistent

with the others, the standard deviation was always less than

0.5 percent , and the average standard deviation was 0.08

percent.

Table 1 briefly describes the selected benchmarks. The se-

lection excludes the CPU oriented benchmarks whose per-

formance is largely independent of the underlying operating

system architecture and implementation and thus not rele-

vant for this paper.

4. RESULTS

4.1 Work Avoidance

74



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

brk_test

creat_clo

dgram
_pipe

dir_rtns_1

bench_exec_test

fork_test

link_test

m
isc_rtns_1

page_test

pipe_cpy

shared_m
em

ory

shell_rtns_1

shell_rtns_2

shell_rtns_3

signal_test

stream
_pipe

udp_test

Unmodified L4-embedded, NICTA N2, 1.3.0
Direct Switch / Lazy Queueing

Direct Switch / Eager Queueing
Full schedule / Lazy Queueing

Full schedule / Eager Queueing

Figure 4: Individual Re-aim benchmark components normalised to standard fastpath L4

Operation Result
Benchmark Length (seconds) 222.16

IPCs 1450474

Average IPC Length (32-bit words) 6.26

Eager enqueue operations 1509011

Actual enqueue operations 62482

At a deferred time 19719

Enqueue operations avoided 95.86%

Eager dequeue operations 1509056

Actual dequeue operations 62482

At a deferred time 40289

Dequeue operations avoided 95.86%

Context switches 1571609

Scheduling queue lookups 80749

Queue lookups avoided 94.86%

Table 2: Breakdown of L4 operations for the Re-aim
multi-user ‘all tests’ benchmark

Table 2 summarises the results of our experiment on work

avoidance. The table is divided into 4 sections: general

statistics of the Re-aim multi-user benchmark, enqueue op-

erations, dequeue operations, and scheduler invocations. We

see that the overall benchmark takes 222 seconds to run, av-

eraging one IPC per 150 microseconds, which is every 62000

cycles. As Figure 1 suggests, in this inter-IPC cycle range,

small variations in IPC duration should have a very small

effect on the overall run-time of Re-aim, unless IPC costs

become substantially greater than 1000 cycles.

Looking at the queueing results, we see that the application

 0

 100

 200

 300

 400

 500

 600

 700

U
nm

od

D
S
/LQ

D
S
/E

Q

FS
/LQ

FS
/E

Q

C
y
c
le

s
 (

W
a

rm
-C

a
c
h

e
)

Kernel

0 words
4 words
8 words

12 words

Figure 3: Raw IPC costs for various scheduler im-
plementations.

of lazy queue management reduces the number of queue op-

erations substantially. We see that 96% of queue operations

are avoided altogether with the technique, even when we in-

clude queueing operations that are not avoided entirely and

are only deferred to a later point in time. The scheduling

results show a similar percentage (95%) of scheduler invoca-

tions are avoided by the direct process switch technique.

Summarising, we see that direct process switching and lazy

queue management are very effective in avoiding scheduling

and queueing costs. However, given the infrequency of IPC

75



in the Re-aim multi-user benchmark, we don’t expect to

see IPC overheads greater that a percentage point or two

on average. However, we will see later that some of the

individual benchmarks do vary significantly.

4.2 Ping Pong
Figure 3 shows the results of the ping pong benchmark for

the 5 kernels. We see that Unmod kernel with its assembly

IPC path is significantly faster (174 cycles for a zero-sized

message) than DS/LQ (289 cycles) despite implementing

the same algorithm.

This difference is attributable to two factors. The first fac-

tor is the assembly only IPC path in Unmod avoids prepar-

ing the kernel stack to call C, and avoids preserving the C

compiler function calling convention on a context switch.

The second factor is that the C path used in DS/LQ is a

modified version of a slower IPC path (the IPC slowpath),

also written in C. While the fastpath can handle only a

frequently-used subset of all IPC cases, the slowpath can

handle all of them.

Examining the four directly comparable results for the ker-

nels with different combinations of direct switch and lazy

queueing, we have the following results for zero-sized mes-

sages: DS/LQ 289, DS/EQ 350, FS/LQ 359, and FS/EQ
419. We see that direct switching saves 70 cycles off the IPC

path, and lazy queue management saves 60 cycles off the IPC

path. We see that there are comparatively large savings to

be made to the raw cost of IPC by using both optimisation

techniques.

4.3 Re-aim performance
The results for the single-user Re-aim benchmarks are shown

in Figure 4. We see throughput results for the individual

benchmark tests within the suite, normalised to the through-

put of Unmod. The influence IPC performance has over

the individual benchmarks varies from virtually no influence

in the case of dir_rtns_1 and shell_rtns_2, to a signifi-

cant difference of a 17% reduction in throughput for the

shared_memory, when comparing the assembly path kernel

Unmod to the slowest C path kernel FS/EQ.

Now examining comparable results, we see the biggest

differences (between DS/LQ and FS/EQ) is in the

shared_memory benchmark, with a reduction of 5% in

throughput. The average reduction in throughput was 2.5%

for all the individual benchmarks.

5. CONCLUSIONS
We have described and motivated two general IPC optimisa-

tions that have historically been used in the L4 microkernel:

direct process switching and lazy queueing. We have argued

that the optimisations have negative consequences on real-

time predictability as they undermine the scheduling policy,

and defer a difficult-to-predict amount of work for when the

scheduler is eventually invoked.

However, we also determined via measurement that these

optimisations avoided scheduling related activity from IPC

in over 95% of IPC invocations. The consequent improve-

ment in best-effort system performance was dependent of

the relative costs of IPC and scheduling activity, and the

frequency of IPC invocation.

When we quantified their effect on the overall system per-

formance, we found that the performance gains are modest.

As expected, the overhead of IPC depends on its frequency.

Removing the optimisations reduced system throughput by

2.5% on average, 5% in the worst case. Thus the case for

including the optimisations at the expense of real-time pre-

dictability is weak for the cases we examined. For much

higher IPC rate applications, it might still be worthwhile.

We acknowledge two weak points in our comparison that

we intend to address in future work. Firstly, the work was

done in C, which for IPC incurs a substantial overhead com-

pared to the optimised assembly version. The sensitivity of

IPC overhead to scheduler implementation may change in

a faster assembler-only implementation. Secondly, we only

examine the PXA255: other processor architectures and im-

plementations have much larger or smaller relative IPC cost

to which the results may be sensitive to.

However, our results confirm that the trade-off between per-

formance and real-time predictability exists. For the cases

we investigated, which are designed to model Unix system

use, the performance gain is small, and unjustified when

considering the loss of predictable scheduler behaviour.

6. REFERENCES
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt, and Andrew Warfield. Xen and the art of

virtualization. In Proceedings of the 19th ACM
Symposium on OS Principles, pages 164–177, Bolton

Landing, NY, USA, October 2003.

[2] Charles Gray, Matthew Chapman, Peter Chubb,

David Mosberger-Tang, and Gernot Heiser. Itanium

— a system implementor’s tale. In Proceedings of the
2005 Annual USENIX Technical Conference, pages

264–278, Anaheim, CA, USA, April 2005.

[3] Hermann Härtig, Michael Hohmuth, Jochen Liedtke,

Sebastian Schönberg, and Jean Wolter. The

performance of µ-kernel-based systems. In Proceedings
of the 16th ACM Symposium on OS Principles, pages

66–77, St. Malo, France, October 1997.

[4] Wilson C. Hsieh, M. Frans Kaashoek, and William E.

Weihl. The persistent relevance of IPC performance:

New techniques for reducing the IPC penalty. In

Workshop on Workstation Operating Systems, pages

186–190, 1993.

[5] Iguana OS. URL

http://www.ertos.nicta.com.au/iguana/.

[6] L4Ka Team. L4Ka::Pistachio kernel.

http://l4ka.org/projects/pistachio/.

[7] Ben Leslie, Peter Chubb, Nicholas Fitzroy-Dale,

Stefan Götz, Charles Gray, Luke Macpherson, Daniel

Potts, Yueting (Rita) Shen, Kevin Elphinstone, and

Gernot Heiser. User-level device drivers: Achieved

performance. Journal of Computer Science and
Technology, 20(5):654–664, September 2005.

[8] Ben Leslie, Carl van Schaik, and Gernot Heiser.

Wombat: A portable user-mode Linux for embedded

76



systems. In Proceedings of the 6th Linux.Conf.Au,

Canberra, April 2005.

[9] Joshua LeVasseur and Volkmar Uhlig. A

sledgehammer approach to reuse of legacy device

drivers. In Proceedings of the 11th SIGOPS European
Workshop, 2004.

[10] Jochen Liedtke. Improving IPC by kernel design. In

Proceedings of the 14th ACM Symposium on OS
Principles, pages 175–188, Asheville, NC, USA,

December 1993.

[11] Jochen Liedtke. On µ-kernel construction. In

Proceedings of the 15th ACM Symposium on OS
Principles, pages 237–250, Copper Mountain, CO,

USA, December 1995.

[12] Jochen Liedtke. Towards real microkernels.

Communications of the ACM, 39(9):70–77, September

1996.

[13] Jochen Liedtke, Kevin Elphinstone, Sebastian

Schönberg, Herrman Härtig, Gernot Heiser, Nayeem

Islam, and Trent Jaeger. Achieved IPC performance

(still the foundation for extensibility). In Proceedings
of the 6th Workshop on Hot Topics in Operating
Systems, pages 28–31, Cape Cod, MA, USA, May

1997.

[14] Frank Mehnert, Michael Hohmuth, and Hermann

Härtig. Cost and benefit of separate address spaces in

real-time operating systems. In Proceedings of the 23rd
IEEE Real-Time Systems Symposium, Austin, TX,

USA, 2002.

[15] National ICT Australia. NICTA L4-embedded Kernel
Version N2 v. 1.3.0. http://www.ertos.nicta.com.au/
software/kenge/pistachio/latest/.

[16] QNX Neutrino IPC. URL

http://www.qnx.com/developers/docs/6.3.0SP3/
neutrino/sys arch/kernel.html#NTOIPC.

[17] Timothy Roscoe, Kevin Elphinstone, and Gernot

Heiser. Hype and virtue. In Proceedings of the 11th
Workshop on Hot Topics in Operating Systems, San

Diego, CA, USA, May 2007.

[18] Sergio Ruocco. Real-Time Programming and L4

Microkernels. In Proceedings of the 2006 Workshop on
Operating System Platforms for Embedded Real-Time
Applications, Dresden, Germany, July 2006.

[19] Jonathan S. Shapiro, David F. Faber, and

Jonathan M. Smith. The measured performance of

fast local IPC. In Proceedings of the 5th IEEE
International Workshop on Object Orientation in
Operating Systems, pages 89–94, Seattle, WA, USA,

October 1996. IEEE.

[20] U. Steinberg, J. Wolter, and H. Härtig. Fast

component interaction for real-time systems. In Proc.
17th Euromicro Conference on Real-Time Systems
(ECRTS’05), Palma de Mallorca, Spain, July 2005.

[21] Cliff White. Performance testing the Linux kernel. In

Proceedings of the Linux Symposium, Ottowa, Canada,

July 2003.

77


	paper_1.pdf
	paper_2.pdf
	paper_3.pdf
	paper_4.pdf
	paper_5.pdf
	paper_6.pdf
	paper_7.pdf
	paper_8.pdf
	paper_9.pdf

