
Archived at the Flinders Academic Commons: 
http://dspace.flinders.edu.au/dspace/ 

This is the authors’ version of an article published in 
Lecture Notes in Computer Science. The original publication 
is available by subscription at: 
http://link.springer.com/ 

doi: 10.1007/978-3-642-38786-9_17

Please cite this article as: 

Powers, D.M. (2013). A computationally and cognitively 
plausible model of supervised and unsupervised 
learning. In D Liu et. al (Ed.), Advances in Brain Inspired 
Cognitive Systems: Vol 7888, 6th International 
Conference, BICS 2013, Beijing, China, June 9-11, 2013. 
Proceedings (pp. 145-156) Berlin: Springer Berlin 
Heidelberg.

Copyright (2013) Springer-Verlag. All rights reserved. Please 

note that any alterations made during the publishing 

process may not appear in this version. The final publication 

is available at link.springer.com”.

Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/

http://dspace.flinders.edu.au/dspace/
http://link.springer.com/


A computationally and cognitively plausible model
of supervised and unsupervised learning 

David M. W. Powers1,2

1 CSEM Centre for Knowledge & Interaction Technology, Flinders University, 
Adelaide, South Australia 

2 Beijing Municipal Lab for Multimedia & Intelligent Software, BJUT 
Beijing, China 

powers@acm.org 

Abstract. Both empirical and mathematical demonstrations of the importance 
of chance-corrected measures are discussed, and a new model of learning is 
proposed based on empirical psychological results on association learning. Two 
forms of this model are developed, the Informatron as a chance-corrected 
Perceptron, and AdaBook as a chance-corrected AdaBoost procedure. 
Computational results presented show chance correction facilitates learning. 
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1 Introduction* 

The issue of chance correction has been discussed for many decades in the context of 
statistics, psychology and machine learning, with multiple measures being shown to 
have desirable properties, including various definitions of Kappa or Correlation, and 
the psychologically validated ΔP measures. In this paper, we discuss the relationships 
between these measures, showing that they form part of a single family of measures, 
and that using an appropriate measure can positively impact learning. 

1.1  What’s in a “word”? 

In the Informatron model we present, we will be aiming to model results in human 
association and language processing.  The typical task is a word association model, 
but other tasks may focus on syllables or rimes or orthography.  The “word” is not a 
well-defined unit psychologically or linguistically, and is arguably now a backformed 
concept from modern orthology. Thus we use “word” for want of a better word, and the 
scare quotes should be imagined to be there at all times, although they are frequently 
omitted for readability! (Consider “into” vs “out of”, “bring around” vs “umbringen”.) 

* An extended abstract based on an earlier version has been submitted for presentation to the
Cognitive Science Society (in accordance with their policy of being of “limited circulation”).
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1.2 What’s in a “measure”? 

A primary focus of this paper is the inadequacy of currently used measures such as 
Accuracy, True Positive Rate, Precision, F-score, etc. Alternate chance-corrected 
measures have been advocated in multiple areas of cognitive, computational and 
physical science, and in particular in Psychology in the specific context of 
(unsupervised) association learning [1-3], where ΔP is considered “the normative 
measure of contingency”. 

In parallel, discontent with misleading measures of accuracy was building in 
Statistics [4,5], Computational Linguistics [6] and Machine Learning [7] and 
extended to the broader Cognitive Science community [8]. Reversions to older 
methods such as Kappa and Correlation (and ROC AUC, AUK, etc.) were proposed 
and in this paper we explore learning models that directly optimize such measures. 

2 Informedness, Correlation & DeltaP 

The concept of chance-corrected accuracy measures has been reinvented several times 
in several contexts, with some of the most important being Kappa variants [4,5].  
This is an ad hoc approach that subtracts from accuracy (Ac) an estimate of the 
chance-level accuracy (EAc) and renormalizes to the form of a probability 
Κ=(Ac–EAc)/(1–EAc). But different forms of chance estimate, different forms of 
normalization, and different generalizations to multiple classes or raters/predictors, 
lead to a whole family of Kappa measures of which ΔP turns out to be one, and ΔP’ 
another [9]. The geometric mean of these two unidirectional measures is correlation, 
which is thus a measure of mean association over both directions of an A↔B relation 
between events. Perruchet and Pereman [3] focus on an A, B word sequence and 
define ΔP as a chance-corrected version of TP = P(B|A), corresponding to Precision 
(proportion of events A that predict B correctly), whilst ΔP’ corrects TP’ = P(A|B) 
which is better known as TPR, Sensitivity or Recall, meaning the proportion of events 
B that are predicted by A – on the assumption that forward prediction A→B is 
normative. They argue for comparing TP with a baseline of how often event B occurs 
when not preceded by A so that ΔP = P(B|A) – P(B|¬A) and ΔP’ = P(A|B) – P(A|¬B). 

Empirically ΔP’ is stronger than ΔP in these experiments, and TP and TP’ are 
much weaker, with TP failing to achieve a significant result for either Children or 
Adults in their experiments. Why should the reverse direction be stronger? One 
reason may be that an occurrence in the past is more definite for the speaker and has 
been more deeply processed for the hearer. Furthermore, often a following segment 
may help disambiguate a preceding one. Thus in computational work at both word 
level and phoneme/grapheme level, the preceding two units and the succeeding three 
units, seem to be optimal in association-based syntax and morphology learning 
models [10,11], and two-side context has also proven important in semantic models 
[12]. However, Flach [7] and Powers [8] independently derived ΔP’-equivalent 
measures, not ΔP, as a skew/chance independent measure for A→B predictions as the 
information value relates to (and should be conditioned on) the prevalence of B not A. 
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In view of these Machine Learning proofs we turn there to introduce and motivate 
definitions in a statistical notation that conflicts with that quoted above from the 
Psychology literature.  We use systematic acronyms [7,8] in upper case for counts, 
lower case for rates or probabilities.  In dichotomous Machine Learning [7] we 
assume that we have for each instance a Real class label which is either Positive or 
Negative (counts, RP or RN, rates rp=RP/N and rn=RN/N where we have N instances 
labelled). We assume that our classifier, or in Association Learning the predictor, 
specifies one Predicted class label as being the most likely for each instance (counts, 
PP or PN, probs pp and pn). We further define True and False Positives and Negatives 
based on whether the prediction P or N was accurate or not (counts, TP, TN, FP, FN; 
probs tp, tn, fp, fn; rates tpr=tp/rp, tnr=tn/rn, fpr=fp/rn). 

 
Table 1: Prob notation for dichotomous contingency matrix. 

 
 +R −R  

+P tp fp pp 

−P  fn tn pn 

 rp rn 1  
 
Whilst the above systematic notation is convenient for derivations and proofs, 

these probabilities (probs) are known by a number of different names and we will use 
some of these terms (and shortened forms) for clarity of equations and discussions. 

The probs rp and rn are also known as Prevalence (Prev) and Inverse Prevalence 
(IPrev), whilst pp and bn are Bias and Inverse Bias (IBias) resp. Also Recall and 
Sensitivity are synonyms for true positive rate (tpr), whilst Inverse Recall and 
Specificity correspond to true negative rate (tnr). The term rate is used when we are 
talking about the rate of finding or recalling the real item or label, that is the 
proportion of the real items with the label that are recalled.  When we are talking 
about the accuracy of a prediction in the sense of how many of our predictions are 
accurate we use the term accuracy, with Precision (Prec) or true positive accuracy 
being tpa=tp/pp, and Inverse Precision or true negative accuracy being tna=tn/pn, and 
our (perverse) prediction accuracy for false positives being fpa=fp/pp. We also use 
fpa and fna correspondingly for the perverse accuracies predicting the wrong (false) 
class. Names for other probs [13] won’t be needed. 

The chance-corrected measure ΔP’ turns out to be the dichotomous case of 
Informedness, the probability that a prediction is informed with respect to the real 
variable (rather than chance). This was proven based on considerations of odds-
setting in horse-racing, and is well known as a mechanism for debiasing multiple 
choice exams [8,13].  It has also been derived as skew-insensitive Weighted Relative 
Accuracy (siWRAcc) based on consideration of ROC curves [7]. As previously 
shown in another notation, it is given by: 

ΔP’ = tpr–fpr = tpr+tnr–1 = Sensitivity + Specificity – 1 (1) 

Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ 



The inverse concept is Markedness, the probability that the predicting variable is 
actually marked by the real variable (rather than occuring independently or randomly).  
This reduces to ΔP in the dichotomous case: 

ΔP = tpa–fpa = tpa+tna–1 = Prec + IPrec – 1 (2) 

As noted earlier, the geometric mean of ΔP and ΔP’ is Matthews Correlation  
(Perruchet & Pereman, 2004), and kappas and correlations all correspond to different 
normalizations of the determinant of the contingency matrix [13]. It is noted that ΔP’ is 
recall-like, based on the rate we recall or predict each class, whilst ΔP is precision-like, 
based on the accuracy of our predictions of each label. 

The Kappa interpretation of ΔP and ΔP’ in terms of correction for Prevalence and 
Bias [9,13] is apparent from the following equations (noting that Prev<1 is assumed, 
and Bias<1 is thus a requirement of informed prediction, and E(Acc)<1 for any 
standard Kappa model): 

Kappa = (Accuracy–E(Acc)) / (1–E(Acc)) (3) 
ΔP’  =   (Recall – Bias) / (1 – Prevalence) (3) 
ΔP   =  (Precision–Prevalence)/(1 – Bias) (4) 

If we think only in terms of the positive class, and have an example with high natural 
prevalence, such as water being a noun say 90% of the time, then it is possible to do 
better by guessing noun all the time than by using a part of speech determining 
algorithm that is only say 75% accurate [6]. Then if we are guessing our Precision 
will follow Prevalence (90% of our noun predictions will be nouns) and Recall will 
follow Bias (100% of our noun occurences will be recalled correctly, 0% of the others).  

We can see that these chance levels are subtracted off in (3) and (4), but unlike the 
usual kappas, a different chance level estimate is used in the denominator for 
normalization to a probability – and unlike the other kappas, we actually have a well 
defined probability as the probability of an informed prediction or of a marked 
predictor resp.  The insight into the alternate denominator comes from consideration 
of the amount of room for improvement.  The gain due to Bias in (3) is relative to 
the chance level set by Prevalence, as ΔP’ can increase only so much by dealing with 
only one class – how much is missed by this blind ‘positive’ focus of tpr or Recall on 
the positive class is captured by the Inverse Prevalence, (1 – Prevalence). 

Informedness and Markedness in the general multiclass case, with K classes and the 
corresponding one-vs-rest dichotomus statistics indexed by k, are simply 

Informedness = Σk Biask ΔPk’ (5) 
Markedness = Σk Prevk ΔPk (6) 

Informedness can also be characterized as an average cost over the contingency table 
cells cpr where the cost of a particular prediction p versus the real class r is given by 
the Bookmaker odds: what you win or lose is inversely determined by the prevalence 
of the horse you predict (bet on) winning (p=r) or losing (p≠r) – using a programming 
convention for Boolean expressions here, (true,false)=(1,0), define Gain Gpr to have 

Gpr = 1/(Prevp–Dpr)                 where Dpr = (p≠r) (7) 
Informedness =  Σp Biasp [Σr cpr Gpr] (8) 
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Here the nested sum is equivalent to ΔPp’ and represents how well you do on a 
particular horse p (a probability or pay off factor between 0 and 1). The outer sum is 
(5) and shows what proportion of the time you are betting on each horse. 

The formulae can also be recognized in the equiprevalence case as the method of 
scoring multiple choice questions.  With 4-horse races or 4-choice questions, all 
equally likely, and us just guessing, Bias = Prev = ¼, and we have three chances of 
losing ¼ and one of gaining ¾.  We likely select the correct answer one time in four, 
and our expected gain is 0: ¼ / ¼ – ¾ / ¾. The odds are ¾ : ¼ but we normally 
multiply that out to integers so we have 3 : 1. 

If we were four poker players all putting in a quarter before looking at our cards, 
we would have a dollar in the pool and whatever I gain someone else has lost, but my 
expected loss or gain is 0: 3 * ¼ + 1 * ¾. There is $1 or an Informedness of 1, at stake 
for every bet we make here. 

3 Association Learning & Neural Networks 

We have seen that chance-corrected ΔP measures are better models both from a 
statistical point of view (giving rise to probabilities of an informed prediction or 
marked predictor) and also from an empirical psychology perspective (reflecting 
human association strength more accurately). They also have the advantage over 
correlation of being usable separately to provide directionality or together to provide 
the same information as correlation. This raises the question of whether our statistical 
and neural learning models reflect appropriate statistics. The statistical models 
traditionally directly maximize accuracy or minimize error, without chance correction, 
and many neural network and convext boosting models can shown to be equivalent to 
such statistical models, as we show in this section and the next. Our question is whether 
these can be generalized with a bioplausble chance-correcting model.  

3.1 The generalized Perceptron 

Perceptrons (or Φ-machines) as the heart of the leading supervised neural networks, 
and (Linear or Kernel) Support Vector Machines as the common classifier of choice 
in Machine Learning, are actually equivalent models, seeking a (linear) separating 
boundary (hyperplane) between the positive and negative examples. If the examples 
are indeed linearly separable (or we can find an appropriate non-linear kernel to 
separate them), then SVM focuses on just one more example than there are 
dimensions in the separating hyperplane (the support vectors) in order to maximize 
the no-man’s land between.  In this case, both Perceptron and SVM will be perfect 
on the training data, and the early stopping margin Perceptron [14] or the SVM will 
actually do better on unseen data for not having tried to minimize the sum of squared 
error (SSE) as is effectively done when non-separable. 

Multilayer Perceptrons or MLP (usually trained with some form of 
backpropagation) and Simple Recurrent Networks or SRN [15] are both networks of 
Perceptrons and inherit the SSE statistics as well as the backpropagation training 
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method, which is acknowledged not to be particularly bioplausible [16] although 
attempts have been made to bridge the gap [17]. Other ways of training supervised 
and unsupervised networks are possible, and have been used in language learning 
experiments, including more complex recurrent networks [16,18]. But all these 
networks tend to use some variant of the Hebbian learning rule (10) – the main 
difference being whether update always takes place (unsupervised or association 
models) or takes place only under specific conditions (supervised models based on 
updates as correction only). 

We now consider how these neural network and learning models fail to match 
the desired chance-corrected probability estimates and empirical association 
experiments, and develop an alternate model that does. We follow the same 
conventions that Boolean yes/no events are represented by (1,0) for (true,false), but 
note that many neural models use (1,-1) including MLP/BP with the tanh transfer 
function as f() which is argued to better balance the effort expended on positive and 
negative examples. However, biologically plausible networks conventionally separate 
out excitatory (+ve) and inhibitory (-ve) roles. On the other hand, there are issues 
modeling inhibition with subtraction given we assume neural activity (unlike kappas) 
can’t go negative. We will discuss a multiplicative variant of the Perceptron shortly 
(Winnow), and we propose a model of synapse that is not strictly excitatory or 
inhibitory, but rather divisive (or facilitative) – noting that, due to the possibilities of 
scaling activity on both sides, the +ve/-ve distinction is moot.  

3.2 A family of neural update rules 

The Hebb [19] update rule can be characterized as “the neurons that fire together wire 
together” [17], with the basic neuron accumulation and update equations being shown 
in (9) & (10), where X is a collection of instances represented as a sequence of 
attribute vectors (and corresponds to a set of input neurons per attribute), and Y is a 
corresponding sequence of real class labels (desired output for each output neuron), 
while Z is the sequence of predicted class labels (actual output for each output 
neuron), which we show in summation form as well as in matrix form (with its 
omitted subscripts and implied sum over the inner subscripts): 

Z = θ(XW) ;  Zik = f(Σj g(Xij) Wjk) (9) 
W = XY;       Wjk = Σij Xij Yjk;        ΔWjk = λXij Yjk (10) 

In (9) we see two alternative formulations involving a threshold function as in the 
original Perceptron and a transfer function as in the Multilayer Perceptron, which can 
be the identity function, but is usually a smoothed ‘sigmoid’ variant of the threshold 
function to allow for a finite amplification factor for backpropagation rather than an 
infinitely fast change as we move infinitesimally through a threshold. We also show a 
function g(X) which may reflect recursively deeper layers of a MLP, or a radial basis 
or other transformation as used by SVMs. Voting, bagging, boosting and stacking 
ensembles may also be construed to obey (9) for appropriate choices of f() and g().  

In (10) we see the original Hebb update rule in three forms.  The first two forms 
are the ‘batch update’ versions in matrix and summation notations, whilst the third is 
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the ‘incremental’ version, and also includes a learning rate λ≤1. This is repeated for 
each example, often more than one each and sometimes in random order, adding ΔW 
to W each time. For sparse (word to word) association learning, Wjk simply 
corresponds to unnormalized cjk contingency table entries of (8), being normalized 
counts cjk = Cjk/N = Wjk/N. 

The standard Perceptron rule, by contrast, only updates if the wrong answer is 
given – in matrix or summation form the Boolean is again interpreted numerically and 
defines a matrix of binary values, whilst in incremental form either the binary or “if 
Boolean” interpretation can be used (no change if false): 

Wjk = Σij Xij Yjk (Yjk≠Zjk);   ΔWjk = λXij Yjk (Yjk≠Zjk)  (11) 

The Margin Perceptron is a venerable variant of the Perceptron that has more 
recently been shown to have desirable margin optimization properties similar to an 
SVM [14]. The update rule becomes 

Wjk = Σij Xij Yjk (γ>|YjkZjk|); ΔWjk = λXij Yjk (γ>|YjkZjk|) (12) 

Here the parameter γ represents the margin width, but can be set to 1 [14] if X and W 
are not explicitly normalized (as here). A soft modification of this variant, that takes 
less account of possibly noisy margin violations is 

Wjk = Σij Xij Yjk (1–|YjkZjk|); ΔWjk = λXij Yjk (1–|YjkZjk|) (13) 

Winnow [20] is a variant on the Perceptron that uses multiplication rather than 
addition to update the weights, in order to eliminate the contribution of irrelevant 
attributes, characterized by quotient rather than difference: 

Wjk = Πj (Yjk≥Zjk) * α;   QWjk = (Yjk≥Zjk) * α (14) 

Note that where an error occurs for negative (Y=0) class member the corresponding 
weight is zeroed. Winnow2 is less severe and uses the reversible 

QWjk = (Yjk≥Zjk) * α + (Yjk<Zjk) / α = (Yjk≥Zjk) ? α : α-1  (15) 

Note too that Winnow’s weight is exponential in the number of up corrected examples 
(14), and Winnow2 is exponential in differential counts of up vs down corrections 
(15). Taking the logarithm gives us a Perceptron-like algorithm that reflects 
Information rather than Prevalence, but Information is inverse to log(Prob) giving 
weight to surprise value or novelty rather than weight of numbers or ubiquity.  

Often authors of neuroplausible models have the rider that cells may correspond to 
a cluster of neurons rather than one. We actually show cells that are explicitly clusters 
of neurons in Fig. 1(a), revealing exemplar shadow and mirror cells in inset (b). 

3.3 The Informatron 

To model chance-correction, we require a matrix that reflects Informedness gains (in 
“dollars”) rather than counts (10) or errors (11-13). Considering each predictor 
separately, this profit matrix corresponds to the inner sum of (8) and thus 

Wjk = Σj Xij Yjk  Gjk (16) 
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It will be noted that no update (delta) rule is shown, although one could be if the 
prevalences, and hence the Gain matrix, were assumed known.  We however assume 
that Prevr is not known but accumulated within the model, as shown in Fig. 1 as P.  

Figure 1 shows representative synapses of a feature association or learning network 
to the left, corresponding to g() in (9). This is assumed to be recursively definable 
using the same model, which is also able to be self-organizing since it models 
associations between natural inputs or features, and corresponds to the perceptual and 
linguistic processing necessary to recognize a word from its phonological or 
orthological input representation. The model is thus agnostic as to whether it is 
unsupervised, or implicitly or explicitly supervised by feedback with or without 
recurrence [10,15], or may follow a similar model to the ones presented here, which is 
a single association stage. We make a connection to boosting and ensemble 
techniques here, and thus can also call it a weak learner or an individual classifier. 
These concepts will be picked up in the next section. 

In Fig. 1(a) columns of round cells represent the before and after terms in a 
temporal association sequence [3]. We see here excitatory neurons obeying the 
standard Hebbian learning rule (10), the synapses between the columns reflecting the 
joint probability of the events (independent of time sequence or causality), but the 
simplified graphic should not be taken as precluding connections within a column – 
indeed the columns are shown separate only for didactic purposes and all units are 
activated by “words”.  

The square event sync cells (Xek) synapse on all the shadow cells (Ysk) below them 
with the same Hebbian learning (10), the vertical axon with curved dendritic synapses 
reflecting the simple (marginal) probability of the “word” events. Because they are 
always 1, the marginal probabilities are learned, rather than the contingencies between 

   X     g()    W     f()    Y ~ Z 
              Ṗ\P 

 
 
 
 
      
 
 
 
 
 
 

 
 
 
 
 

         (a)              (b) 
Figure 1. The Informatron 

Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ 



two concept neurons. (The square cells may be regarded in electronic engineering 
terms as underlying system clocks enabling a bank of cells; in cognitive neuroscience 
terms they may be reflected in Event Related Potentials such as the P300 and BP.) 

Arrow heads represent excitatory synapses with Hebbian learning. Diamond heads 
represent facilitatory synapses with divisive rather than subtractive or thresholded 
effect, and so facilitation of the foreground neuron accumulating joint probability by 
the background shadow neuron accumulating marginal probability, as shown in the 
glide out detail of Fib. 1(b). We now show an equation corresponding to (7-8) 
clarifying the role of the shadow neurons: 

Zik = f(Σj g(Xij) Wjk / Sik) with Sik = Yek – Dik (17) 

Note that the inhibitory effect of the shadow neuron represents the normalization by 
prevalence of (7) & (8), but the Hebbian synaptic modification of associating 
foreground is independent of this gain factor. The Dik (which might correspond to a 
mismatch negativity effect and might be involved in disabling Hebbian learning and 
achieving Perceptron-like learning) is not illustrated for space reasons (but is a 
standard neural circuit involving a comparator neuron and the illustrated memory or 
mirror neuron, with information assumed to shift through layers at the data rate, 
which may also be clocked by “P300” event synchronization). 

Whilst (17) is simple and reflects (8), the neural model is thus far very speculative 
and challenges biological plausibility with some new proposals and assumptions.  
Furthermore it doesn’t explicitly give multiclass Informedness but that is a 
straightforward higher level embedding, and it doesn’t model features or kernels, 
which is an obvious lower level recursion.  We now clarify how we see the shadow 
and mirror neurons implementing Sik and give an idea of the complexity of the model 
suggested in Fig. 1(b). 

We assume that signals shift through of the order of four layers of memory neurons, 
as suggested by Cohen’s Magical Number Four, providing short term memory essential 
for associations to form and comparisons to be made, although we show only one such 
neuron in Fig. 1(b) as that is all that is needed for our purposes to retain the prediction.  
Note that all logic functions including XOR and EQV can be achieved by two layers of 
Perceptron-like neurons acting as NAND or NOR gates [21]. These XOR and EQV 
circuits correspond to our (p≠r) resp. (p=r), allowing comparison of prediction and 
reality in our model. We have explained how Prevalence Pk is directly accumulated 
using standard Hebbian learning conditioned by the event clock e, as Yek – and the 
Inverse Prevalence Ṗk = 1-Pk = Σl≠k Pl can be calculated from e using the divisive 
operator as shown in Fig. 1(b) or accumulated by lateral synapsing of all other 
Prevalences similar to many famous models that actually sidestepped the question of 
complexity of their learning unit [18]. 

Given the complexity is reasonable, and is indeed reduced from O(N) to O(1) by 
our divisive operator, the remaining question is how parsimonious the model is.  The 
accumulation of both contingency and prevalence information is standard Hebbian, 
the assumption of comparison of predictor and predicted is implicit in all the Hebbian 
and Perceptron rules we have considered – update depends on what happens on both 
sides of the synapse in all the rules (10-16). The divisive alternative to subtractive 
inhibition is equivalent to a single transistor and a more straightforward modulation of 
the signal (similar to Perceptron vs Winnow). 

Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ 



4 Fusion and Boosting 

We also noted earlier that both MLPs and Boosting can also be modelled by (9), and 
in particular AdaBoost [22] assumes a weak learner g() and uses that to learn a strong 
learner in a very similar way to the Perceptron algorithms we have been considering. 
If the first layer of AdaBoost is a Decision Stump or Perceptron or Linear SVM, then 
AdaBoost corresponds to a two stage training mechanism for a two layer Perceptron. 
The first layer, the weak learners are trained using a standard algorithm selected to be 
fast rather than strong, and merely has to satisfy a weak learner criterion, namely that 
it can be expected with high probability to learn a classifier that will do better than 
chance.  However, the standard algorithms define that as Error <0.5, or Accuracy 
>0.5, where Error is the sum of fp and fn, and Accuracy is the sum of tp and tn (Table 
1), and Accuracy + Error = 1, which we abbreviate as Acc = 1 – Err. 

 
Figure 2. Accuracy of AdaBoost variants with Decision Stump weak learner. 
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AdaBoost sets the weight associated with each trained classifier g() to the log of 
the odds ratio Acc / Err, iterating while there is room for improvement (Acc < 1) and 
it is doing better than ‘chance’ (Acc > 0.5 in the standard model). Note that as Kappa 
= (Acc-E(Acc)) / (1-E(Acc)) goes from -1 to +1, Acc goes from 0 to 1, and the same 
applies for any other Kappa or Correlation measure including ΔP and ΔP’ (and ROC 
AUC). A technique to fix this is simply to calculate GiniK = (K+1)/2, where Gini 
(being originally designed for ROC AUC) can be applied to any chance-corrected 
measure K where 0 marks the chance level, mapping this chance level to ½. We can 
run any boosting algorithm with chance-corrected measure K by replacing Acc by GiniK. 

To complete the discussion of AdaBoost, it suffices to note that the different trained 
classifiers result from training the same weak learner on different weightings (or 
resamplings) of the available training set, with weights given by the odds Acc / Err. 

We have now introduced a neural model that directly implements ΔP or ΔP’ 
(which is purely a matter of direction and both directions are modelled in Fig. 1). We 
have also shown how a chance-corrected measure can be used for boosting, whether 
ΔP or ΔP’ or Informedness, Markedness or Correlation, The question that follows is 
whether they are actually useful as learning criteria. For simplicity, we do not 
consider the bioplausible implementation of the neural net from this perspective, but a 
direct implementation of Informedness and Markedness in the context of AdaBoost. 

5 Results & Conclusions 

The most commonly used training algorithm today is SVM, closely followed by 
AdaBoost, which is actually usually better than SVM when SVM is boosted rather 
than the default Decision Stump (which is basically the best Perceptron possible 
based on a single input variable). To test our boosting algorithm, which we call 
AdaBook because of its Bookmaker corrected accuracy), we used standard UCI 
Machine Learning datasets relating to English letters (recognizing visually, 
acoustically or by pen motion). These were selected consistent with our language focus.  

AdaBoost in its standard form fails to achieve any boosting on any of these 
datasets! AdaBook with either Cohen’s Kappa [4] or Powers’ Informedness [8] 
doubles, triples or quadruples the accuracy (Fig. 2). Thus we have shown that the use 
of chance-corrected measures, ΔP rather than TP or TPR, etc. is not only found 
empirically in Psychological Association experiments, but leads to improved learning 
in Machine Learning experiments. This applies equally to supervised learning and 
unsupervised “association” learning or “clustering”, and can be applied 
simultaneously in both directions for “coclustering” or “biclustering” [10,11,18,23]. 

N.B. Informedness and Information are related through Prevalence P and Euler’s 
constant γ: ln P + γ ≈ ΣP

p=1 1/p. This allows an Informatron to accumulate Information. 
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