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I. GENERAL INTRODUCTION

The dynamic properties of adsorbed molecules play a central role in reactions and separations

that take place within the cavities of zeolites and other shape-selective, microporous catalysts.

Selectivity may be strongly influenced, e.g., by the diffusivities of reactant and product

molecules. However, with this selectivity comes a price: significant transport resistance.

Zeolite scientists are thus interested in better understanding diffusion in zeolites to optimize

the balance between high flux and high selectivity. These interests have resulted in a

burgeoning field of both experimental and theoretical research, which we review in this chapter.

Although diffusion coefficients for molecular liquids typically fall in the range of 10�9–

10�8 m2s�1, diffusivities for molecules in zeolites cover a much larger range, from 10�19 m2 s�1

for benzene in Ca-Y (1) to 10�8 m2 s�1 for methane in silicalite-1 (2). Such a wide range offers
the possibility that diffusion in zeolites, probed by both experiment and simulation, can provide

an important characterization tool complementary to diffraction, nuclear magnetic resonance

(NMR), infrared (IR), etc., because diffusive trajectories of molecules in zeolites sample all

relevant regions of the zeolite–guest potential energy surface. We believe that studying diffusion
in zeolites can also provide information about structural defects and disorder in zeolite–guest

systems, which are very difficult to detect by ‘‘conventional’’ characterization methods (see, e.g.,

Chaps. 3, 6, 7, and 8 in this volume).

In addition to the application-oriented reasons for studying diffusion in zeolites, significant
effort has been devoted to revealing the fascinating physical effects that accompany such

diffusion systems, including molecular nanoconfinement, connected and disconnected channel

systems, ordered and disordered charge distributions, cluster formation, and single-file diffusion.
The experimental and theoretical concepts presented and illustrated in this chapter refer mainly

to diffusion in zeolites as the most important example of microporous materials. In most cases,

however, these concepts can easily be transferred to less ordered or totally amorphous micro-

porous materials as well (3,4).

We hope that this chapter provides a launching point for scientists new to the field of

diffusion in zeolites. Toward that end, two excellent monographs (5,6), one collection (7), and

several penetrating reviews have been written that address both the experimental (8,9) and

theoretical (10–14) issues that arise when studying diffusion in zeolites. To distinguish this
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chapter from others on the subject, we critically review the most basic ideas in the field and

explore their most recent applications. For example, we present a critical (and hopefully

balanced) comparison between the Fickian and Maxwell-Stefan formulations of diffusion. The
particular subjects we have chosen to discuss in this chapter necessarily reflect our own interests

and experiences in the field; we regret that no review can be complete.

The remainder of this chapter is organized as follows: in Sec. II we discuss the

macroscopic phenomenologies used to describe diffusion in zeolites, and in Sec. III we review

the microscopic dynamics that underlie these phenomenologies. In Sec. IV we describe the

development and application of various experimental methods for probing diffusion in zeolites,

and in Sec. V we outline recent efforts to model the dynamics of molecules sorbed in zeolites.

Finally, in Sec. VI we summarize the basic insights gained so far and give concluding remarks

about important areas of future research.

II. MACROSCOPIC PHENOMENOLOGY OF DIFFUSION IN ZEOLITES

A. Basics of Mass Transfer in Applications of Zeolites

Diffusion is a mass transfer process in multicomponent systems that can be understood from both

microscopic and macroscopic viewpoints. From the microscopic view, diffusion results from

random thermal motion of molecules, which is also known as Brownian motion or stochastic

motion. We treat this microscopic approach in much more detail later in the chapter; we now

focus on the macroscopic phenomenology of diffusion. From the macroscopic view, diffusion
arises from the tendency for each component in a multicomponent system to disperse homoge-

neously in space—a direct result of the second law of thermodynamics (15–17). Diffusion is

typically monitored by measuring material flux densities (hereafter denoted fluxes), defined as

the number of molecules passing through a given surface area per unit time. The fact that such

fluxes typically vanish in the absence of concentration gradients motivates Fick’s first law, which
postulates that material fluxes are proportional to concentration gradients when such gradients

are relatively small (17). Below, we elaborate on this and other macroscopic formulations of

diffusion; before doing so, we comment on the multicomponent nature of diffusion.
Diffusion is inherently a multicomponent phenomenon (18). To see why, we imagine an

extreme case of equilibration of a macroscopic concentration gradient in a single-component

system, namely, the expansion of gas into vacuum. At a microscopic level, the particles

composing the expanding gas do not move stochastically; rather, they move ballistically, i.e., in

straight-line trajectories, until collisions with container walls ensue. At a macroscopic level,

expansion into vacuum would better be modeled as flow via the Navier-Stokes equation (18).

The presence of other components in a homogeneous system, or an adsorbent in a heteroge-

neous system, gives rise to collisions that randomize velocities, thus producing stochastic rather

than ballistic motion. Even self-diffusion (vide infra) in a single-component system is best

conceptualized macroscopically as the equimolar mixing of tagged and untagged components,

hence a multicomponent system.

Zeolite–guest systems are by construction multicomponent. In most practical applica-

tions of zeolite-guest systems, the zeolite crystallites are bound to a fixed macroporous support

(19), usually silica or alumina, thus rendering the zeolite as a nondiffusing component. As

such, it becomes meaningful to consider single-component diffusion in zeolites when we keep

in mind that we are really talking about a multicomponent diffusion system with one fixed
component (zeolite) and another diffusing component (guest). Of course, practical applications

of zeolites involve multicomponent sorbed guest phases, as arise in both separations

(components to be separated, e.g., N2 and O2) and reactions (reactants and products, e.g.,

xylene isomers).
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The fact that applications of zeolites do not typically involve large zeolite single

crystals, but rather employ supported zeolite crystallites, means that transport through beds of

such supported zeolite particles involves many distinct types of diffusion, including diffusion
on support surfaces and in support macropores, as well as diffusion on zeolite crystallite

surfaces and in zeolite nanopores (see Fig. 1 in Chapter 23 of this volume). When using

zeolites for separations and catalysis, one hopes for both high selectivity for and high flux of

the most valuable product(s). Unfortunately, high selectivity is usually obtained at the expense

of high flux, and vice versa. Because disposal and/or recycle of unwanted byproducts can be

rather costly, one often settles for relatively low fluxes if selectivities can be made high

enough. Because selectivities are usually conferred by processes taking place in the intra-

crystalline spaces of zeolites, one expects that the (sometimes relatively low) molecular fluxes
emanating from zeolite membranes or beds are also controlled by intracrystalline transport

processes. For this reason, we focus in the present chapter on intracrystalline diffusion of

neutral molecules in dry zeolites. (In Chapter 21, Sherry discusses diffusion of ions in zeolites

as it pertains to ion-exchange applications in hydrated zeolites. And in Chapter 23, Krishna

discusses ‘‘external’’ transport resistances that generally arise in applications of zeolites.)

The phenomenon of stochastic molecular motion is not limited to nonequilibrium

systems. However, under typical equilibrium conditions, such stochastic motion does not lead

to macroscopically observable fluxes. Therefore, diffusion phenomena under equilibrium

conditions only become visible if particles of the same type can be distinguished from each

other. Conventionally, such experiments are carried out with isotopically labeled particles

(15,20,21). As such, this type of particle movement is generally referred to as tracer diffusion or
self-diffusion. In the next section, we explore the basic phenomenologies of these diffusion
processes in zeolites.

B. Transport and Self-Diffusion via Fick’s Laws

As discussed above, Fick’s first law postulates that material fluxes are proportional to

concentration gradients when such gradients are small, in the spirit of linear response theory

(22,23). Such an ansatz can be pursued for single-component as well as multicomponent

diffusion in zeolites. For the latter case, Fick’s first law is given by:

!
Ji ¼ �

XNc

j¼1

Dij
!
jcj ð1Þ

where Nc is the number of components, {Dij} are the generalized Fickian diffusion coefficients,

and
!
Ji and

!
jci are the flux and local concentration gradient, respectively, of component i

perpendicular to a given surface. Implicit in Eq. (1) is the assumption that the microporous host–

guest system is quasi-homogeneous because the diffusivities are only labeled by components,

and not by particular directions. As a consequence, the volume and plane elements used for the

calculations of ci and
!
Ji, respectively, must be large in comparison with the pore separation and

small in comparison with the zeolite crystallite size. In addition to the linear response ansatz, Eq.

(1) indicates that the flux of component i is influenced by all the concentration gradients in the

system, not just by the concentration gradient of component i. Despite the plausibility of Eq. (1),

Krishna has argued persuasively that the diffusion coefficients {Dij} are not physically

illustrative transport coefficients, i.e., that Dij does not represent any particular interaction

between particles of components i and j (24). Indeed, we exploit Eq. (1) below only for the

purpose of elucidating single-component self- and transport diffusion in zeolites. Diffusion of a

multicomponent mixture of guests in zeolites is better characterized by the chemical potential–

based approaches discussed in Sec. II.D.
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Depending on the experimental situation, the diffusivities in Eq. (1) are given various

names. In the simplest case of only one component, Eq. (1) becomes:
!
J1 ¼ �D11

!
jc1 ð2Þ

Being associated with matter transport, the coefficient D11 is generally referred to as the

transport diffusivity. In this chapter, we adopt the notation DT u D11, yielding:!
J ¼ �DT

!
jc ð3Þ

which is the more usual expression of Fick’s first law. As discussed above in Sec. IIA, the

concept of single-component diffusion should be considered with great care. Indeed, if the

system were composed of only a single component under the influence of a macroscopic

concentration gradient, then there would also exist an overall pressure gradient as well. Mass

transport in this situation would be characterized better by the macroscopic phenomenology

of flow than it would by diffusion (18). As such, implicit in the single-component expression

of Fick’s first law is the presence of another, nondiffusing component such as a zeolite or

some other heterogeneous material. On the other hand, the Maxwell-Stefan formulation of

diffusion in zeolites, which is discussed in Sec. II.D, explicitly includes the zeolite in its

expressions.

In practice, extracting transport diffusivities from flux measurements through zeolite

membranes is complicated by the fact that experimentalists usually do not measure concen-

trations gradients, but rather observe macroscopic reservoir properties such as partial pressures.

As a result, experimentalists often report zeolite membrane permeances, P, or permeability

coefficients, P, given respectively by:
!
J ¼ �PDpẑ ð4Þ

¼ �P
Dp

L
ẑ ð5Þ

where ẑ is the transmembrane direction, Dp is the pressure drop across the membrane, and L is

the measured membrane thickness. The permeance is useful when absolute fluxes are required
for a given membrane and pressure drop, while the permeability coefficient is preferred when

comparing properties of different membranes, especially those with different thicknesses.

However, the permeability coefficient is useful in this regard only when fluxes scale as L�1,

which as we see below in Secs. II. C, III. B, and V.B.2, is by no means guaranteed.

With two components involved, the diffusivities may pertain to rather different physical
phenomena depending on the particular experimental setup. For example, in the typical tracer

(or self-) diffusion experiment, the properties of components 1 and 2 are essentially identical*

(25), with the total concentration c1 + c2 kept uniform throughout the system. As a result,!
jðc1 þ c2Þ ¼ 0 and hence

!
jc1 ¼ �!

jc2, yielding:
!
J1 ¼ �D11

!
jc1 � D12

!
jc2

¼ �ðD11 � D12Þ!jc1uDS
!
jc1 ð6Þ

where DS = D11 � D12 is defined as the tracer or self-diffusion coefficient. Both the transport

and self-diffusion coefficients are functions of temperature and concentration, which in the case

of self diffusion is the total concentration of both components.

* Because the mass changes accompanying isotopic substitution change the statistical mechanics of

molecular translation and rotation, such labelling does introduce very slight chemical potential

gradients. These effects are expected to be rather small and therefore are ignored by most researchers.
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The relationship between transport and self-diffusion can be clarified further using Fick’s

first law by analyzing the diffusion modes for a two-component system of identical but labeled

particles (25). In this case, the diffusion matrix ({Dij}i,j = 1,2) is asymmetrical, and has two

eigenvectors that correspond to the two eigenmodes of diffusion for differently labeled, identical
particles. The first diffusion eigenmode involves components 1 and 2 diffusing together, with

driving forces proportional to their occupancies, so that the labeling of particles does not affect
their transport. This is the so-called codiffusion eigenmode and corresponds precisely to

transport diffusion. The second eigenmode corresponds to equimolar counterdiffusion, where!
J1 is equal and opposite to

!
J2 at constant total loading. The resulting diffusivity for the

counterdiffusion eigenmode is exactly the self-diffusion coefficient. As such, the transport and

self-diffusion coefficients arise simply from Fick’s first law, as two eigenvalues of the diffusion
matrix for a two-component system of differently labeled, identical particles.

By combining Eqs. (3) and (6) with the law of matter conservation given by:

dc

dt
¼ �!

j � !J ð7Þ
the time dependencies of the intracrystalline concentrations due to transport and self diffusion
are given by:

dc

dt
¼ !

j � DT
!
jc

� �
ð8Þ

and

dc�

dt
¼ DSj

2c� ð9Þ
respectively, where c* indicates the concentration of labeled molecules. The general form of

Eqs. (8) and (9) is referred to as the diffusion equation, and also as Fick’s second law. (In Sec.

IV.A.1, we discuss the interpretation of experimental reaction–diffusion data by augmenting the

diffusion equation with terms that model reactivity.) The slightly more complex structure of Eq.

(8) in comparison with Eq. (9) is caused by the fact that transport diffusion experiments are

carried out under nonuniform concentration conditions, so that DT—being generally a function

of concentration—must remain within the parentheses in Eq. (8). By contrast, in self-diffusion
experiments the total concentration remains constant. Since it is this total concentration (and

not the concentration c* of only the labeled molecules) on which the self diffusivity depends,

DS in Eq. (9) may be placed in front of the differential operator
!
j.

An important example where Eq. (8) reduces to the form of Eq. (9) involves diffusion in

Langmuirian host–guest systems. Such systems involve regular lattices of identical sorption

sites where particle–particle interactions are ignored, except for exclusion of multiple site

occupancy. These model systems exhibit Langmuir adsorption isotherms and give single-

component transport diffusivities that are independent of loading (26). As a result, the

Langmuirian transport diffusivity can be pulled to the left of the differential operator in

Eq. (8), hence reducing to the form of Eq. (9).

Solving Eq. (9) gives the time dependence of the concentration of labeled molecules; the

initial condition is dictated either by convenience or by experimental circumstances. Solving

for c�ð!r; tÞ with the initial condition c�ð!r; t ¼ 0Þ ¼ d½!r �!
rð0Þ� gives a quantity that is propor-

tional to the probability density of the displacements of labeled molecules, i.e., to the

conditional probability that a molecule is at
!
r at time t given that it was at

!
rð0Þ at time zero.

This probability density is given by:

Pð!r; tÞ ¼ 1

ð4pDStÞ3=2
e�j!r�!

r ð0Þj2=4DSt ð10Þ
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Armed with this probability distribution, also known as the propagator (5), the mean square

displacement after time t becomes:

j!rðtÞ � !
rð0Þj2� � ¼ 6DSt ð11Þ

Equation (11) is known as the Einstein equation; as with Eq. (9), the Einstein equation can be

considered as the defining equation of the self-diffusion coefficient. As with Eq. (1), the

Einstein equation above assumes a quasi-homogenous host–guest system. Because many

zeolites involve spatially inhomogeneous frameworks, e.g., MFI-type zeolites, it is often more

illustrative to resolve displacements along x, y, and z directions according to:

j raðtÞ � rað0Þ j2
� � ¼ 2Da

St ð12Þ
where a = x, y, or z, and DS = (DS

x + DS
y + DS

z)/3. The self-diffusion coefficient for

homogeneous systems satisfies DS = DS
x = DS

y = DS
z. It remains interesting to explore the

extent to which different zeolite–guest systems produce self-diffusion coefficients that deviate

from homogeneity.

Below in Secs. IV and V we describe various experimental and theoretical methods for

studying the time dependencies of local concentrations and mean square displacements of

molecules in zeolites, for the purpose of describing intracrystalline diffusion coefficients.

Despite this focus on diffusion coefficients, application-oriented zeolite scientists are generally

more interested in quantifying material fluxes through zeolite beds or membranes. While such

fluxes can be influenced by intracrystalline diffusion coefficients, other factors may also play

important roles. In particular, when zeolite particles are relatively small, and when zeolite

membranes are relatively thin, fluxes can be controlled by rates of desorption from zeolites. In

the next section, we analyze the limiting cases of diffusion-limited and desorption-limited

transport to reveal which fundamental processes ultimately control permeation through zeolites.

C. Desorption-Limited vs. Diffusion-Limited Fluxes

For the following analysis we assume the simplest possible model (27), namely, a Langmurian

host–guest system, which involves a regular lattice of identical sorption sites where particle–

particle interactions are ignored, except for exclusion of multiple site occupancy. Although

corrections to this model change the precise magnitudes of fluxes, the qualitative conclusions we
draw remain unchanged (28). In order to explore how desorption rates influence permeation

fluxes, we consider transport through a perfect zeolite membrane that has a thickness of L + 1

sites from the top edge to the bottom edge. The model membrane is shown in Fig. 1a–c.

Adsorption sites are represented by squares in Fig. 1a–c, while particles are shown as circles. For

this diffusion system, it is more convenient to quantify concentrations using the concept of

fractional occupancy (also known as loading), defined by h u N/Nsites V 1, where N is the

number of sorbed molecules and Nsites is the total number of sorption sites. A Langmuirian host–

guest system at equilibrium with external fluid reservoirs will have an equilibrium sorption

isotherm of the form:

heq ¼ 1

1þ kd=m
ð13Þ

where the equilibrium fractional occupancy, heq, is uniform throughout the membrane. kd is the

rate coefficient for desorption, via thermally activated hops of a molecule located in an edge site

to the fluid phase; m is the rate of insertion attempts of molecules from the fluid phase into each

exposed sorption site at the edges of the zeolite; and khop is the rate coefficient for site-to-site

jumps within the membrane. The fundamental diffusion coefficient for this problem (vide infra)

is given by D0 = khopa
2, where a is the site-to-site jump distance. D0 is the single-component
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Fig. 1 Two-dimensional Langmuirian zeolite membranes with various boundary conditions: (a) single-

component permeation into vacuum, (b) single-component permeation from high to low (but nonzero)

pressure, and (c) tracer counterpermeation.
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transport diffusivity, as well as the low-loading limit of the self-diffusivity. In what follows we

set a u 1, which is tantamount to giving membrane thicknesses in units of a.

Case 1. Below we consider three different situations, each depicted in Fig. 1a–c. The

first and simplest case, shown in Fig. 1a, involves transport diffusion through the membrane

into vacuum, i.e., the rate of insertion attempts on the vacuum side vanishes. Our goal is to

determine a formula for the steady-state flux as a function of kd, m, D0, and L. For the

following discussion, we express flux as number of particles passing per time per edge site.

To obtain this flux, we write down formulas for the fluxes at the high pressure side, J0, in the

interior of the membrane, Ji, and at the low-pressure side, JL, all as functions of (kd, m, D0, L)

as well as the average edge concentrations (h0, hL). By applying the steady-state constraints,

J0 = Ji and Ji = JL, we solve the resulting 2 � 2 linear system for (h0, hL) to cast the steady-

state flux in terms of the desired quantities.

Figure 1a suggests that J0, Ji, and JL satisfy:

J0 ¼ mð1� h0Þ � kdh0

Ji ¼ �D0

hL � h0
L

� �
JL ¼ kdhL ð14Þ

Equating the fluxes in Eq. (14) gives the following steady-state flux:

J ¼ mkdD0

kdLðmþ kdÞ þ D0ðmþ 2kdÞ ¼
kdheqD0

kdLþ D0ð2� heqÞ ð15Þ

where the second equality comes from substituting heq = m/(m+ kd), which is the loading of the

corresponding equilibrium system with both reservoirs presenting insertion attempt frequencies

of m.
We consider the different limiting forms of Eq. (15) by first noting that, because 2 � heq

is always of order unity, the denominator is controlled by the relative magnitudes of kdL and

D0. In the limit where kdL � D0, Eq. (15) reduces to:

J ¼ D0heq
L

¼ �D0

h̄L � h̄0
L

 !
ð16Þ

where h̄0 and h̄L are the edge concentrations assuming local thermodynamic equilibrium. In the

present case, h̄0 = heq and h̄L = 0. In this limit, diffusion through the membrane is much slower

than desorption from the edges, so that transport through the membrane is diffusion limited.

Since the flux scales with L�1, the permeability coefficient P in this limit is independent of

membrane thickness, as is desired. We also note that in diffusion-limited transport, the flux is

directly proportional to the intracrystalline diffusion coefficient, justifying the intense effort to
quantify this property.

Inherent in this analysis is the assumption of a fixed, finite jump length between adjacent

sites. In the limit where this jump length vanishes while the membrane thickness remains

constant, we have that L !l and hence kdL� D0, which again produces the diffusion-limited

case (29). This situation is best described by the (differential) diffusion equation, Eq. (8).

In the opposite limit, where kdL � D0, Eq. (15) now reduces to:

J ¼ kd
heq

2� heq

� �
ð17Þ

which is the desorption-limited extreme because the flux is proportional to the desorption rate,

kd, and is totally independent of the intracrystalline diffusion coefficient. Equation (17) reduces

simply to kd when heq = 1. In desorption-limited transport, which applies to thin membranes
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(and by extension to small zeolite particles as well), the concentration is essentially uniform

throughout the membrane, and the flux is independent of membrane thickness. As such, the

desorption-limited permeability coefficient is proportional to the membrane thickness, L, rather

than being independent of L.

The most important message from this analysis is that zeolite scientists should

endeavor to determine whether their systems fall into the diffusion-limited or desorption-

limited regime to ensure that the more important property is being studied (i.e. D0 vs. kd),

and that proper comparisons are being made (i.e., L dependence of P). In practice, real

systems often fall between these two extremes, giving transport that depends on both

diffusion and desorption.

Case 2. In the second case, depicted in Fig. 1b, we consider transport diffusion from

high pressure to low (but nonvanishing) pressure. This problem is very similar to that in

Case 1 except that in Case 2 the two reservoirs in contact with the membrane present

different insertion attempt frequencies, namely m0 and mL, with m0 > mL. The flux expressions

for J0 and Ji are unchanged except that for J0, m is replaced by m0. The flux JL now becomes

kdhL � mL(1 � hL). The resulting steady-state flux, expressed in terms of local thermodynamic

equilibrium concentrations h̄0 and h̄L, is given by:

J ¼ kdD0ðh̄0 � h̄
L
Þ

kdLþ D0ð2� h̄0 � h̄
L
Þ ð18Þ

This expression reduces to that found in Case 1 by setting h̄L to zero. Although we argued in

Case 1 that (2 � h̄0) is always of order unity, and hence need not be considered in comparing

kdL with D0, now in Case 2 we find that (2 � h̄0 � h̄L) is not always of order unity, especially
when both insertion attempt frequencies are relatively high. As a result, this concentration-

dependent factor must be included when discriminating between different limits.

The diffusion-limited form of Eq. (18), which arises when kdL � D0(2 � h̄0 � h̄L), is
given by:

J ¼ �D0

h̄L � h̄0
L

 !
ð19Þ

which again is Fick’s first law under conditions of local thermodynamic equilibrium of the edge

concentrations. In the opposite limit of desorption-limited transport, Eq. (18) reduces to:

J ¼ kd
h̄0 � h̄L

2� h̄0 � h̄L

 !
ð20Þ

Again, the desorption-limited flux scales with kd, and is independent of D0 and L. As with Case

1, Eq. (20) reduces to kd when h̄0 = 1. Equation (20) appears to have a pathological limit,

however, when both h̄0 and h̄L ! 1. In this case the driving force for diffusion vanishes; as a

result so should the flux. Indeed, Eq. (20) vanishes when h̄0 = h̄L ! 1, but that is not the only

way to evaluate the limit. Alternatively, we might consider the case where h̄0 = 1 while h̄L ! 1.

In this case the flux does not vanish but instead becomes kd, a seemingly incongruous result.

The conundrum is solved when we recall that in this limit, the system again becomes diffusion
limited because kdL � D0(2 � h̄0 � h̄L), even if the membrane is very thin.

We summarize the main conclusions regarding diffusion vs. desorption control of

transport diffusion. Membrane transport is diffusion limited when kdL � D0(2 � h̄0 � h̄L),
which reduces to kdL � D0 under typical circumstances when driving forces are high.

Membrane transport becomes desorption limited when kdL � D0(2 � h̄0 � h̄L), which is

especially important for thin membranes and for small zeolite particles. In this case perme-

ability coefficients from membranes with different thicknesses are no longer comparable.
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Case 3. In the third case, depicted in Fig. 1c, we consider equimolar counterdiffusion
of identical but labeled particles, i.e., tracer counterpermeation (TCP). As discussed above,

such counterdiffusion of tagged particles (A particles) and untagged particles (B particles) is

isomorphic to self diffusion. Here we derive the steady-state counterflux of one of the two

components; the other component produces equal and opposite flux. The fundamental flux
expressions for J0, Ji, and JL are essentially identical to those in Case 2, except that insertion

rates are sensitive to the presence of both components at the edges. As such, m0(1 � h0) !
m0(1 � hT) and mL(1 � hL) ! mL(1 � hT), where hT is the total concentration of both

components, which is uniform throughout the membrane. By the symmetry of TCP, hT u
hA(z) + hB(z) = hA(z) + hA(L � z) = [1 + kd/(m0 + mL)]

�1, where z labels the location along the

transmembrane direction.

The only other change from Case 2 to the present one is that D0 is replaced by the self-

diffusion coefficient, Ds, which depends upon hT in a nontrivial way. For the present

Langmuirian system, Ds generally decreases with hT because blocking sites decreases the

likelihood of counterdiffusion. Many other dependencies can arise for more complicated

systems. Kärger and Pfeifer have reported the five most common ways that Ds is found

experimentally to depend on hT for diffusion in zeolites (31), which have also been seen in

simulations (vide infra) (31,32).

The steady-state TCP flux of labeled particles is given by:

J ¼ Dsð1� hTÞðm0 � mLÞ
kdLþ 2DS

ð21Þ

In diffusion-limited TCP, where kdL � DS, Eq. (21) reduces to:

J ¼ Dsð1� hTÞðm0 � mLÞ
kdL

¼ �DS

h̄L � h̄0
L

 !
ð22Þ

where once again h̄0 and h̄L are the edge concentrations consistent with local thermo-

dynamic equilibrium. Desorption-limited TCP arises when kdL � DS; in this case Eq. (21)

reduces to:

J ¼ ð1� hTÞðm0 � mLÞ=2 ¼ kdðh̄0 � h̄LÞ=2 ð23Þ
As in both previous desorption-limited cases, the desorption-limited TCP flux is propor-

tional to kd, and is independent of both the membrane thickness and the relevant diffusion
coefficient (in this case DS).

The results in this section have been obtained with very few assumptions, most notably

Fick’s first law, which provides a useful approach for studying single-component transport

through Langmuirian adsorbents. Despite the obvious power of Fick’s formulation, it can also

break down in surprisingly simple circumstances, such as a closed system consisting of a liquid

in contact with its equilibrium vapor. In this case, Fick’s law predicts a nonzero macroscopic

flux because of the concentration gradient at the vapor–liquid interface. The fact that no

macroscopic flux is observed suggests that the real driving force for diffusion is not the

concentration gradient but rather the chemical potential gradient, which vanishes for this

equilibrium two-phase system. Other curiosities can result from the Fickian treatment of

multicomponent systems, such as negative Fickian diffusivities (24). Various transport

phenomenologies have been developed based on chemical potential gradients; below we

review the theories of Maxwell, Stefan, and Onsager.
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D. Phenomenologies Based on Chemical Potential Gradients

1. Maxwell-Stefan Formulation

What we presently call the Maxwell-Stefan formulation of diffusion was developed independ-

ently by Maxwell in 1866 and by Stefan in 1871 (24,33,34). In Chapter 23, Krishna discusses

this phenomenology and its application to diffusion in zeolites. Because understanding this

formulation is important for many of the ideas below, we briefly review the Maxwell-Stefan

picture of diffusion (see also Ref. 24 for the complete story). For pedagogical reasons, we first
develop the Maxwell-Stefan formulation for bulk systems; then we consider its application for

surface diffusion as occurs in zeolites. Because the Fickian formulation discussed above in

Secs. II.B and II.C tacitly assumes the presence of the zeolite, we compare below Fickian

diffusivities with Maxwell-Stefan surface diffusivities.
The Maxwell-Stefan formulation is especially useful when considering transport in

multicomponent, multiphase systems, which is to say most industrially important circum-

stances. Indeed, the simplest system amenable to the Maxwell-Stefan formulation is a two-

component bulk fluid, which again points to the fundamentally multicomponent nature of

diffusion. In the standard Maxwell-Stefan picture, it is assumed that the n-component fluid
under study has no net gradient in the total concentration. The presence of a net macroscopic

(molar averaged) velocity is not ruled out; diffusive fluxes are defined relative to this net

velocity so that the total diffusive flux vanishes. Clearly the Fickian ansatz lacks this constraint,

which makes the Fickian approach appear to be the more natural treatment of zeolite membrane

permeation. In these experiments, the observables of interest are the permselectivities and the

(hopefully nonvanishing) total diffusive flux, all measured relative to the zeolite bed or

membrane. However, we show below the ingenious way that the Maxwell-Stefan approach

manages to treat single-component diffusion in zeolites while still providing the definitive
treatment of multicomponent diffusion in zeolites.

We begin by writing down the Maxwell-Stefan ansatz for a two-component bulk fluid
with a vanishing total diffusive flux. By equating the driving force for diffusion of component 1

(i.e., �!
jl1 ) with the frictional drag exerted by component 2, the macroscopic velocity of

component 1 relative to that for component 2 satisfies (24):

�!
jl1 ¼ RTx2

!v1 �!v2
DMS

12

� �
ð24Þ

where R is the gas constant, T the temperature, x2 the mole fraction of component 2, !v1 the

macroscropic velocity of component i, and DMS
12 is defined as the Maxwell-Stefan diffusion

coefficient. Equation (24) suggests that the relative velocity of a particular component is

linearly proportional to its chemical potential gradient; as such the Maxwell-Stefan ansatz

involves linear response theory in much the same way as the Fick ansatz in Eq. (1). However,

whereas the Fick formulation focuses on calculating fluxes, the Maxwell-Stefan picture focuses

on balancing forces. In the Maxwell-Stefan approach, the frictional drag exerted by component

2 is assumed to be proportional to the mole fraction of component 2, with a proportionality

coefficient given by the friction coefficient RT/D12
MS. Although the Maxwell-Stefan approach is

still phenomenological, it seems to reveal the essential physics of multicomponent diffusion in

ways that the Fickian approach cannot.

To treat surface diffusion, while still constraining the total diffusive flux to vanish, the

Maxwell-Stefan equations are augmented by one additional component representing the

adsorbent. However, since diffusive fluxes are measured relative to the adsorbent, the latter

cannot contribute diffusive flux to balance the permeant fluxes. This problem is solved by
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realizing that whenever a molecule jumps, a vacancy makes a counterbalancing jump. Thus, the

additional component in the Maxwell-Stefan treatment of surface diffusion is vacant sorption

sites. As discussed in Sec. II.C, it is more convenient in surface diffusion problems to express

concentrations through fractional occupancies. In terms of these, the Maxwell-Stefan ansatz for

a two-component sorbed phase takes the form:

�!
jl1 ¼ RTh2

!v1 �!v2
DMSs

12

� �
þ RThvac

!v1 �!vvac
DMSs

1;vac

 !
ð25Þ

where hvac = 1 � h1 � h2 is the vacancy loading, and !vvac is the macroscopic vacancy velocity.

In Eq. (25), D12
MSs is the Maxwell-Stefan surface counterdiffusivity (note the augmented

superscript) and D1,vac
MSs is the single-component Maxwell-Stefan surface diffusivity for compo-

nent 1. This picture is attractive in its ability to disentangle the zeolite–guest1 and guest1–

guest1 interactions that determine D1,vac
MSs from the cross-component, guest1–guest2 forces that

determine D12
MSs. In the simple case of single-component diffusion in zeolites, Eq. (25)

reduces to:

�!
jl1 ¼ RThvac

!v1 �!vvac
DMSs

1;vac

 !
ð26Þ

Despite the beauty of the vacancy-based Maxwell-Stefan picture of surface diffusion,
zeolite scientists need a formulation that allows the calculation of nonvanishing total diffusive
fluxes for comparison with permeation measurements. To arrive at such a Maxwell-Stefan

picture, the additional component must be the zeolite itself, whose macroscopic velocity !vzeo is
taken to be zero. While this seems to make good conceptual sense, it also implies that hvac in
Eqs. (25) and (26) should be replaced by hzeo, which itself does not make much physical sense.

This issue is swept under the rug by defining a new single-component Maxwell-Stefan surface

diffusivity according to:

DMSs
1;vac u

DMSs
1;zeo

hzeo
ð27Þ

Considering that the fractional occupancies {hi} were originally derived from mole fractions

{xi} in the Maxwell-Stefan formulation for bulk fluids, and that the mole fraction of zeolite is

likely to be nearly constant and relatively close to unity, the arbitrariness of the definition in Eq.
(27) is not too disturbing.

Now we compare the single-component Fickian transport diffusivity defined in Eq. (3)

with the single-component Maxwell-Stefan surface diffusivity defined in Eq. (27). We begin by

expressing the chemical potential gradient of component 1 in terms of its loading gradient and

fugacity on the left-hand side of Eq. (26). Furthermore, we multiply both sides by h1/RT, and
after simple algebra we identify the right-hand side as

!
J1=csD

MSs
1;vac, where

!
J1 is the diffusive

flux of component 1 and cs is the number of moles of sorption sites per unit volume. Putting

these results together yields:

!
J1 ¼ �csD

MSs
1;vacG

!
jh1 ¼ �DMSs

1;vacG
!
jc1 ð28Þ

where c1 = csh1 is the local concentration of component 1. In Eq. (28), G is a ‘‘thermodynamic

correction factor’’ given by G = (@lnf1/@lnh1)T, where f1 is the local fugacity of component 1.

Comparing Eq. (28) with Eqs. (2) and (3) shows the relation between the Fickian transport and

Maxwell-Stefan surface diffusivities, namely, that:

DT ¼ DMSs
1;vacG ð29Þ
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This result shows that the transport and Maxwell-Stefan surface diffusivities agree for thermo-

dynamically ideal systems, i.e., those for which f1 ~ h1 and hence G = 1.

Equation (29) has been interpreted as suggesting that the Fickian diffusivity actually

represents a composite of both legitimate transport effects and thermodynamic effects. This
perspective is buoyed by the diffusive properties of bulk fluids, which tend to produce

Maxwell-Stefan diffusivities with extremely mild concentration dependencies (24). Because

the thermodynamic correction factors can have rather strong concentration dependencies,

which are conferred to the Fickian diffusivities, the Maxwell-Stefan bulk diffusivities are

rightly trumpeted as the proper bulk transport coefficients because they are not corrupted by

thermodynamically induced concentration dependencies. This viewpoint has even been carried

over to diffusion in zeolites because for zeolite–guest systems with relatively weak confinement

[e.g., methane in silicalite (35)], the single-component Maxwell-Stefan surface diffusivity can

also exhibit a rather weak loading dependence. For this reason, the single-component Maxwell-

Stefan surface diffusivity is often reported as the ‘‘corrected diffusivity’’ (5,36) because it has

been corrected by removing the thermodynamic effects. In this context, Eq. (29) is sometimes

called the Darken equation (5).

However, we do not need to remind the reader that most interesting applications of

zeolites involve rather strong confinement, where the fundamental mechanism of transport

involves infrequent jumps between well-defined sorption sites. As discussed above, the

simplest model to describe such strong confinement is the Langmuirian model, for which it

is the Fickian transport diffusivity that contains no loading dependence (DT = D0) (26), while G
takes the form 1/(1 � h1). As such, the Langmuirian Maxwell-Stefan surface diffusivity is

given by D1,vac
MSs = D0(1 � h1). In this case, one might regard the Fickian diffusivity as the

‘‘corrected diffusivity’’ because the loading dependence of D1,vac
MSs can be removed by multi-

plying by G. Hence, the designation ‘‘corrected diffusivity’’ depends on the physics of the

zeolite–guest system.

Below in Sec. III. A, we will argue that the (1 � h1) loading dependence of D1,vac
MSs is

identical to the loading dependence predicted for the Langmuirian self-diffusion coefficient by

mean field theory. This similarity between DS and D1,vac
MSs has prompted some researchers to use

an approximate form of the Darken equation, also called the Darken equation for maximum

confusion, where the Maxwell-Stefan surface diffusivity is replaced by the self diffusivity.
When applied to Langmuirian systems, this approximation actually puts in correlations (see

Sec. III.B.) that do not belong. A much better context in which to apply this approximation is

for weakly confined diffusion in zeolites, for which D1,vac
MSs is nearly independent of loading,

so that one can replace D1,vac
MSs by the infinite-dilution limit of DS. This perspective is

supported by molecular dynamics simulations performed by Maginn et al. (35), and by

Skoulidas and Sholl (37).

The Maxwell-Stefan diffusion equations for a general n-component sorbed phase can be

recast through matrix algebra into the (n�n) Fickian form of Eq. (1). Although these

manipulations do not shed much more light on the problem, they show in practice that negative

Fickian diffusivities can arise from a positive-definite set of Maxwell-Stefan surface diffusiv-
ities (24), which casts doubt on the meaningfulness of the multicomponent Fickian formulation.

What is perhaps more interesting is the fact that, through the Maxwell-Stefan formulation,

measured multicomponent sorption kinetics have been predicted from data on single-compo-

nent sorption kinetics and multicomponent sorption isotherms (24,38,39). Using this approach,

one predicts that the faster diffusing component is generally slowed down to the mobility of the

slower diffusing component. Measured deviations from this prediction usually indicate

diffusion at grain boundaries, which facilitate unexpectedly rapid motion (40,41) (see also

Chapter 17 by Nair and Tsapatsis in this volume).

Copyright © 2003 Marcel Dekker, Inc.



These predictions of multicomponent sorption kinetics have been facilitated by Krishna’s

suggestion to estimate cross-component Maxwell-Stefan surface diffusivities according to the

following empirical relation (42):

DMSs
ij i½DMSs

i;vacðhi ¼ 0Þ�hi=ðhiþhjÞ½DMSs
j;vacðhj ¼ 0Þ�hj=ðhiþhjÞ ð30Þ

Equation (30) generalizes the empirical relation, first proposed by Vignes (43) to describe

multicomponent diffusion in bulk liquid mixtures, for the case of surface diffusion. Paschek and
Krishna tested Eq. (30) by comparing transport coefficients obtained from kinetic Monte Carlo

(see Sec. V.B.2) to those obtained from Maxwell-Stefan theory assuming Eq. (30) (44).

Although excellent agreement was found, the sensitivity of this agreement to the assumed form

of Dij
MSs was not tested. As such, it remains to be seen whether this empirical formula

embodies the extent to which actual cross-component interactions perturb the dynamics (e.g.,

barrier crossings) of multicomponent surface diffusion.
In summary, then, the analyses in Secs. II.C and II.D suggest that the Fickian formulation

provides a powerful description of single-component diffusion in zeolites, especially for

Langmuirian zeolite–guest systems; while the Maxwell-Stefan formulation is preferred for

multicomponent diffusion in zeolites, by virtue of the empirical relation Eq. (30). Because both

formulations involve linear constitutive relations between driving forces and fluxes, all this
analysis begs the question of whether diffusion in zeolites proceeds outside of the linear

response regime. The fact that zeolite membranes and crystallites used in experiments and

applications tend to be relatively large on a molecular scale may convert relatively large

pressure drops into relatively small concentration and chemical potential gradients, thus

keeping diffusion in zeolites in the linear response regime. As zeolite scientists explore the

use of thinner zeolite membranes and smaller zeolite crystallites for the purpose of reducing or

eliminating transport bottlenecks that arise in catalytic applications (45,46), the question of

whether diffusion in zeolites still proceeds in the linear response regime will have to be

explored with more rigor.

2. Onsager Formulation

Yet another formulation of multicomponent surface diffusion exists, due to Onsager (47), which
blends many of the virtues of the Fickian and Maxwell-Stefan approaches (5). In particular, as

with the Maxwell-Stefan approach, the Onsager formulation postulates that diffusive fluxes in a
multicomponent system are linearly proportional to chemical potential gradients. And, as with

the Fickian approach, Onsager’s picture focuses on calculating fluxes and not on balancing

forces. The Onsager ansatz takes the form:

!
Ji ¼ �

XNc

j¼1

Lsij
!
jlj ð31Þ

where {Lij
s} are the Onsager coefficients for surface diffusion, which are postulated by

microscopic reversibility (48) to obey the ‘‘reciprocity relations’’ Lij
s = Lji

s. By again

expressing the chemical potential gradients in terms of concentration gradients, the Onsager

coefficients can be related to both Fickian and Maxwell-Stefan surface diffusivities. For the
case of single-component diffusion in zeolites, one finds that DT = RTLs11G/c1, which implies

that D1,vac
MSs = RTL11

s /c1. For the multicomponent case, one finds that the Onsager and Maxwell-

Stefan surface diffusivities are related through a simple matrix relation (33). Through

this relation one can deduce that the Maxwell-Stefan cross-component surface diffusivities,
{Dij

MSs}, also obey reciprocity: Dij
MSs = Dji

MSs. The real virtue of the Onsager coefficients is
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that they are related to microscopic dynamic quantities through Green-Kubo correlation

function expressions, as discussed below in Sec. III.C.

III. MICROSCOPIC UNDERPINNINGS OF DIFFUSION IN ZEOLITES

Themacroscopic treatments of diffusion discussed above serve the following purposes: (a) Given
that diffusivities are provided from other sources, macroscopic diffusion theories can predict the
transport properties of zeolite–guest systems; (b) given that the transport properties of a particular

zeolite–guest system are known, the relevant diffusivities can be extracted by interpreting the

transport behavior in light of a macroscopic diffusion theory. Such theories, however, cannot

predict diffusivities a priori. Zeolite scientists are generally interested in predicting the temper-

ature, loading, and composition dependencies of diffusivities, as well as their overall magnitudes,

for various zeolite–guest systems. Microscopic approaches that contain information about

stochastic molecular motion in zeolites are required for making such predictions. Below we

review the basic microscopic underpinnings—the statistics and dynamics—that control diffu-
sion in zeolites.

A. Stochastic Motion and Jump Diffusion

Diffusive motion in zeolites arises from collisions with the environment (zeolite and other

guests) that cause the direction of motion to become randomized. Although such stochastic

motion is fundamentally smooth and continuous on the relatively short time scales considered

by molecular dynamics (11), on the longer time scales associated with diffusion, stochastic
motion can be modeled as jumps chosen randomly in accord with prescribed probabilities.

Such approaches are called jump diffusion models (10,12,14), which provide simple pictures

of diffusion that turn out to be remarkably relevant to diffusion in zeolites. As will be

discussed in detail in Sec. V.B.1, jump diffusion models assume that molecules spend

relatively long periods of time vibrating in well-defined sorption sites (e.g., zeolite cages),

with jumps between sites themselves taking negligible time. Below we explore simple jump

diffusion models to reveal the basic temperature and loading dependencies expected for

diffusion in zeolites.

We begin by considering the simplest class of lattices in d-dimensional space, namely,

cartesian Langmuirian lattices (see also Sec. II.B), which form linear, square, or cubic sets of

identical sorption sites. Such systems ignore particle–particle interactions, except for exclusion

of multiple site occupancy. These lattices give Langmuir sorption isotherms and single-

component transport diffusivities that are independent of loading (26). The two-dimensional

case is pictured in Fig. 1a–c, each with nearest–neighbor sites separated by the length a. The

probability to make a particular site-to-site jump is 1/2d because the coordination number for

each site in d-dimensional space is 2d, and each of the 2d possible jumps occurs with the same

fundamental rate coefficient, khop.

As discussed above in Sec. II.B, the mean square displacement (MSD) provides a

measure of the spatial extent of self diffusion as a function of time. After n jumps of a single

random walker, the MSD for the d-dimensional lattice can be written as:

hR2ðnÞXu
Xn
i¼1

!
li

�����
�����
2* +

¼
Xn
i¼1

!
li

��� ���2
* +

þ
X
ip j

!
li � !lj

* +
¼

Xn
i¼1

a2

* +
¼ na2 ð32Þ

Here
!
li is the displacement vector for the random jump at the ith step, which is averaged in

h: : :i according to the Bernoulli distribution (16,49). In Eq. (32) we have used the fact that the

term with i p j vanishes when jumps are completely uncorrelated from one another.

Copyright © 2003 Marcel Dekker, Inc.



The result in Eq. (32) is independent of dimensionality and, indeed, holds for any regular

lattice in any dimension consisting of only one site type and one jump length scale, e.g., the

tetrahedral lattice. However, when expressed as an explicit function of time, the MSD depends

on dimensionality as well as lattice topology. To see why, we assume that the average jump

time is H , i.e., that n = t/H . Equation (32) then becomes hR2(t)i = a2t/H , which shows that in

normal diffusion the MSD is proportional to time. This should be contrasted to ballistic motion

where the MSD is proportional to t2. The inverse of the mean site residence time, H �1, is the

total rate of leaving a site, which for cartesian Langmuirian lattices is given by 2dkhop because

there are 2d identical ways to leave each site. Recalling the Einstein equation, which defines the
self-diffusion coefficient in one and three dimensions, namely, Eqs. (11) and (12), we have that

hR2(t)i = 2dDSt = 2d(khopa
2)t, which shows that DS = khopa

2 for cartesian Langmuirian lattices.

This is a truly remarkable result, demonstrating how the self-diffusion coefficient can be

reduced to fundamental length and time scales. We will show in Sec. III.B that when local

correlations arise, the MSD retains its proportionality with time, but when global correlations

become important, e.g., in single-file diffusion, the MSD becomes proportional to t1/2 (9,50).

We will show below in Sec. III.C that the Maxwell-Stefan and self-diffusion coefficients

are identical at infinite dilution for single-component diffusion on surfaces (35). We have

already shown in Sec. II.D that the Maxwell-Stefan and Fickian diffusion coefficients agree at

infinite dilution. As such, all three diffusion coefficients take the form khopa
2 at infinite dilution

for cartesian Langmuirian lattices. We now explore the temperature dependence of this

expression. Because the length scale a has little temperature dependence until the zeolite

melts, we focus on khop. According to transition state theory (10,12,14), we have:

kTSThop ¼ xðTÞ
2p

� eDSðTÞ=kB
� 	

� e�bDEðTÞ ð33Þ

where T is temperature, kB is Boltzmann’s constant, b = 1/kBT, N(T) is the temperature-

dependent site vibrational frequency, DS(T) is the temperature-dependent activation entropy,

and DE(T) is the temperature-dependent activation energy. When considering a broad temper-

ature range including temperatures for which bDE(T) � 1, the Boltzmann factor in Eq. (33)

dominates the temperature dependence of khop, rendering the factor in brackets an apparent pre-

exponential constant usually denoted by the apparent frequency, m. In this case, the three

diffusivities exhibit an Arrhenius temperature dependence taking the form D0e
�bEa, where D0 =

ma2 and Ea is an apparent activation energy.

On the other hand, when bDE(T) ] 1, the temperature dependence of the pre-exponential

factor can become important. In this case, the resulting temperature dependence of the

diffusivities is not obvious and can depend strongly on the details of the zeolite–guest system.

Other temperature dependencies can also arise for diffusion in zeolites when the site lattice

contains different types of sites, e.g., cation sites and window sites (51). In this case the

competition among different mechanisms of cage-to-cage motion can produce non-Arrhenius

behavior, even when the fundamental site-to-site rate coefficients obey the Arrhenius temper-

ature dependence (52–54).

The analysis above assumes diffusion at infinite dilution, with only a single molecule in

the zeolite. In Sec. II.D, we discussed the loading dependence of the transport and Maxwell-

Stefan diffusivities for Langmuirian lattices. Now we estimate the loading dependence of the

self-diffusion coefficient. In general this is not easy, even for Langmuirian systems, because of

correlations and their dependence on site topology. A simple esimate can be provided by mean

field theory (23), which considers the average environment surrounding each random walker.

Using mean field theory we obtain DS(h) i DS(0)(1 � h) = khopa
2(1 � h). The factor (1 � h) is

the fraction of jump attempts that are successful because they are directed to vacancies.
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Although this mean field theory estimate can be semiquantitative when each site is connected to

several nearest neighbors (e.g., z6) (55), it can exhibit significant error for lattices with low

connectivity, e.g., those used to model diffusion in MFI-type zeolites (56).

In summary, we have used a simple lattice model to reveal the fundamental consequences

of stochastic motion in an effort to explore the basic temperature and loading dependencies that

can be expected for self diffusion in zeolites. These results hold for diffusion in most

microporous materials, as well as diffusion on two-dimensional surfaces such as metals (57).

However, the results in this section were obtained by completely ignoring the complications

due to correlations. In the next section, we discuss three different kinds of correlations and their
impact on diffusion in zeolites.

B. Correlations and Single-File Diffusion

1. Kinetic Correlations

Diffusion in zeolites can be influenced by correlations that arise from kinetic effects, geo-
metrical effects, and vacancy effects (5,54). Kinetic correlations arise from the inertial tendency

toward ballistic molecular motion, i.e., Newton’s first law applied to zeolite science: a guest

molecule moving in a zeolite will tend to move freely until it is forced to do otherwise.

Including kinetic correlations generally increases the MSD; indeed, when kinetic correlations

dominate motion, the MSD becomes proportional to t2. In this situation the macroscopic

phenomenology changes from diffusion to flow. When diffusion is perturbed only slightly by

kinetic correlations, such effects serve to increase the diffusion coefficient. In the context of the

cartesian Langmuirian models discussed above in Sec. III.A, kinetic correlations are manifested

through ‘‘multisite’’ jumps, i.e., jumps that begin and end at sites other than nearest neighbors.

One can show that the self-diffusion coefficient for a cartesian Langmuirian model with

multisite jumps becomes (57):

DS ¼ a2

2d

X
!
mp

!
m0

khopð!m0 ! !
m Þ j !m�!

m0 j2 ð34Þ

where the sum is over all lattice sites indexed by the integers
!
m, excluding the reference site!

m0, and fkhopð!m0 ! !
m Þg are the multisite jump rate coefficients. Ignoring multisite jumps

reduces Eq. (34) back to DS= khopa
2, where khop is the nearest-neighbor jump rate coefficient.

Including multisite jumps clearly increases the self-diffusion coefficient. The convergence

properties of this sum are revealed by defining m u j !m�!
m0 j. By the isotropy of space present

in cartesian Langmuirian models, the summand in Eq. (34) depends only on m. For large m, the

degeneracy in m scales with md�1, where d is the dimension of space. As such, to retain the

phenomenology of diffusion, the multisite rate coefficients must decay faster than 1/md+2. In

practice, we expect multisite jumps in zeolites to gain importance at high temperatures and low

loadings, where molecular energy dissipation is relatively inefficient. Moreover, multisite jumps

should be more prevalent in channel-type zeolites (53,54) than in cage-type zeolites (58)

because channels are more conducive to ballistic trajectories.

2. Geometrical Correlations

Kinetic and vacancy correlations can influence diffusion in zeolites, as well as diffusion in a

wide variety of other homogeneous and heterogeneous systems. Geometrical correlations, on

the other hand, pertain especially to zeolites as well as any other anisotropic microporous host.

In the language of jump diffusion models, geometrical correlations arise when the sum of jump

vectors from a given site does not vanish. As such, the lattices we have considered thus far in
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this chapter typically do not exhibit such correlations. Chabazite provides an interesting

exception to this rule; diffusion in this zeolite can exhibit geometrical correlations even when

jump vectors cancel (59). Geometrical correlations can arise for other reasons as well, as

diffusion in MFI-type zeolites provides the prototypical example of geometrical correlations. A

schematic of the MFI framework topology is shown in Fig. 2. In this figure, we see that the jumps

from each straight channel site (C) cancel, as do the jumps from each zig-zag channel site (Z);

thus, these sites present no geometrical correlation. The jumps from each intersection site (I), on

the other hand, do not cancel and thus do present geometrical correlations. Because of this

diffusion anisotropy, Kärger has suggested the benefit of studying the individual cartesian

components of the self-diffusivity—DS
x, DS

y, and DS
z—whose average is the overall self-diffusion

coefficient. Indeed, assuming that subsequent jumps from channel intersections are uncorrelated

in time, Kärger derived the following geometrical correlation rule:

a2

DS
x þ

b2

DS
y ¼

c2

DS
z ð35Þ

where a, b, and c are the lattice constants along the x, y, and z directions, respectively (60,61).

While this simple correlation rule was found to be in reasonable agreement with numerous

molecular dynamic simulations (62–65), from experimental studies the only conclusion that

could be drawn is that the measurements are not inconsistent with the correlation rule (66,67).

Geometrical correlations can also be important for diffusion in zeolites with cubic unit

cells, especially in cation-containing zeolites (54). In these cases, molecules can jump away

from but not into cations, thus producing geometrical correlations. Jousse et al. have shown that

ignoring geometrical correlations can result in overestimating self diffusivities by an order of

magnitude for benzene in Na-Y and can change the qualitative loading dependence as well (54).

3. Vacancy Correlations

Vacancy correlations are analogous to kinetic correlations, but opposite in sign, since an atom

in a metal has a larger probability to move backward to the site it just vacated than it does
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Fig. 2 Channel and site structure of silicalite-1 showing intersection sites (I ), straight-channel sites (C ),

and zig-zag channel sites (Z ).
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to move onward. A completely analogous effect gains importance for diffusion in zeolites at

high loadings. Figure 3 schematically depicts a site-to-site jump in a zeolite cage at high

loading, which leaves behind a vacancy, i.e., produces particle–vacancy exchange. Subsequent

jumps are more likely to fill this vacancy, thus producing correlations that reduce self diffu-
sivities. Since mean field theory ignores correlations, these vacancy effects give self diffu-
sivities lower than mean field theory estimates. The loading dependence of self diffusivities is
thus written as:

DSðhÞ ¼ DSð0Þð1� hÞf ðhÞ; ð36Þ
where f(h) V 1 is the so-called correlation factor. Since Bardeen and Herring’s seminal work,

a large body of research has been devoted to calculating correlation factors for a variety of

lattice geometries using theory and Monte Carlo simulations (68). Although no generally

applicable, closed-form expression exists, results have been obtained for a number of different
Langmuirian lattices (69,70). Here we give the flavor of how correlation factors can be

estimated.

The simplest approach for estimating correlation factors comes from the Maxwell-Stefan

formulation of tracer diffusion on surfaces (24,71), involving equimolar counterdiffusion of two
identical but labeled species (see also Fig. 1c for an illustration of tracer counterpermeation).

The self-diffusion coefficient from the Maxwell-Stefan approach takes the form:

DSðhÞ ¼ 1

1=DMSs
1;vac þ h=DMSs

12

; ð37Þ

where h = h1 + h2 is the total loading, and D12
MSs is the Maxwell-Stefan surface diffusivity that

controls the facility of exchange between labeled and unlabeled particles. Such exchange is

related to vacancy correlations, as we shall illustrate by considering the Langmuirian transport

model, where D1,vac
MSs = D0(1 � h). Multiplying the top and bottom of Eq. (37) by D1,vac

MSs

shows that the Maxwell-Stefan correlation factor can be written as:

f ðhÞ ¼ 1

1þ ðDMSs
1;vac=D

MSs
12 Þh : ð38Þ

In the limit where D12
MSs/D1,vac

MSs ! l, the correlation factor approaches unity, indicating that

facile exchange washes out vacancy correlations. Along these lines, Nelson and Auerbach have

Fig. 3 Schematic depiction of a molecular site-to-site jump; subsequent jumps of molecules (dark) are

likely to fill the newly formed vacancy (light).
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reported simulations of tracer counterpermeation in anisotropic zeolite membranes, which show

that vacancy correlations vanish when transport in the plane of the membrane is fast compared

with transmembrane diffusion (27). Such in-plane transport provides a conceptual picture for

the mechanism of identical particle exchange.

For finite values of D12
MSs, the correlation factor in Eq. (38) is less than 1 as desired.

Unfortunately, no theory exists for estimating the loading dependence of D12
MSs for tracer

diffusion. Indeed, application of Eq. (30) gives D12
MSs = D0 which yields f(h) = 1/[1 + h(1 � h)],

predicting erroneously that vacancy correlations vanish as h ! 1. In the absence of theoretical

foundation, Paschek and Krishna suggest a practical approach (71), namely, that D12
MSs = D1,vac

MSs ,

which in essence equates the rate of particle–vacancy exchange with that of particle–particle

exchange. Although the physical validity of this assumption is questionable, the resulting

correlation factor, f(h) = 1/(1+ h), gives remarkably good agreement with the results of kinetic

Monte Carlo simulations (71).

One can also estimate the role of vacancy correlations using statistical mechanics. We

begin by recalling the general formula for the MSD given in Eq. (32); the second term, with i p
j, contains the correlations we seek to understand. To obtain the self diffusivity in the form of

Eq. (36), we factor out the first term in Eq. (32), which gives uncorrelated MSDs proportional

to DS(0)(1 � h). As such, the correlation factor becomes:

f ðhÞ ¼ 1þ 2
Xn
i¼1

X
j>1

!
li � !lj

D E.Xn
i¼1

!
li � !li

D E
ð39Þ

¼ 1þ 2
Xn
k¼2

ðn� k þ 1Þ !
l1 � !lk

D E.
n

!
l1 � !l1

D E
ð40Þ

¼ 1þ 2
Xn
k¼2

!
l1 � !lk

D E. !
l1 � !l1

D E
þ 2

n

Xn
k¼2

ð1� kÞ !
l1 � !lk

D E. !
l1 � !l1

D E
; ð41Þ

where in Eq. (39) we have exploited the fact that the off-diagonal sum contains two

identical copies of every i p j combination. Equation (40) arises by viewing the quantity

h!li � !lji as an equilibrium correlation function (5,23,56), which depends only on i�j. As

such, the off-diagonal sum in the numerator gives (n�k+1) terms equal to h!l1 � !lki for each
value of k, while the denominator gives n identical terms equal to h!l1 � !l1i. In the long-time

limit required by diffusion, where n!l, the third term in Eq. (41) is of order 1/n

compared with the second term, and as such is ignored. The second term in Eq. (41)

(without the factor of 2) was identified by Coppens et al. as a correlation function–type

expression, denoted Cn, which describes the persistence of correlations as a function of time

(56). The sequence Cn converges to a finite value for large n, denoted Cl, which is

negative when vacancy correlations dominate. The correlation factor is thus given as f(h) =
1+ 2Cl.

Coppens et al. studied the convergence of Cn to Cl for various lattice topologies and

loadings by performing kinetic Monte Carlo simulations (vide infra) (56), observing three

interesting results. First, correlation factors are smaller for lattices with lower connectivities,

especially for the MFI lattice which has an average connectivity of Z = 8/3 despite its three-

dimensional structure (Z = 6 for simple cubic). Second, the more poorly connected lattices

exhibit slower convergence of Cn to Cl, suggesting longer correlation lengths and times for

such systems. Third, for a given lattice topology, the normalized correlation function, Cn/Cl,

could be fitted to the stretched-exponential 1�e�[(n�1)/nc]g, where nc and g depend on the lattice

topology but were found to be independent of loading, thus providing a universal characteristic

of each lattice type.
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Although evaluating Eq. (41) analytically remains challenging in general, progress can be

made by assuming the Langmuirian model described above. In this case, Cn reduces to:

Cn ¼
Xn
k¼2

!
l1 � !lk

D E. !
l1 � !l1

D E
¼
Xn�1

k¼1

!
l1 � !lkþ1

D E. !
l1 � !l1

D E

u
Xn�1

k¼1

hcoshki ¼
Xn�1

k¼1

hcosh1ik ¼ hcosh1i � hcosh1in
1� hcosh1i ð42Þ

where hk is defined as the angle between the jump vector
!
li and

!
liþk, which implies that h1 is

the angle between successive jump vectors for a given molecule. For lattices with sufficient

symmetry, one can show that hcoshki = hcosh1ik (5), as has been assumed in Eq. (42). To obtain

the correlation factor, f(h) = 1 + 2Cl, we note that because hcosh1ijj < 1, hcosh1in vanishes in
the limit n ! l. Thus we obtain the classical expression for the correlation factor:

f ðhÞ ¼ 1þ hcosh1i
1� hcosh1i : ð43Þ

Equation (43) deserves several remarks: First, this result shows that vacancy correlations in

simple lattices result from correlations between successive hops only. Second, the loading

dependence of the correlation factor arises from the loading dependence contained in hcosh1i.
Third, if kinetic correlations dominate (at low loadings), then hcosh1i is positive, which

increases the self diffusivity from the mean field estimate. Next, when hcosh1i is negative,

which is expected at higher loadings when vacancy correlations are important, the correlation

factor is indeed less than 1. In practice, the quantity hcosh1i can be evaluated from Monte Carlo

simulations or with simple probabilistic arguments (72).

4. Single-File Diffusion

The correlation function approach of Coppens et al. shows that vacancy effects can be

associated with finite correlation lengths, which grow when considering lattices with smaller

connectivities. Vacancy correlations take on a whole new demeanor in single-file self-diffusion,
where molecules can only diffuse in one dimension and cannot move past one another (9). In

this case the correlation length becomes macroscopic, which changes the phenomenology of

diffusion. In particular, one can show that the MSD becomes proportional to t1/2 for single-file
diffusion in infinitely long files (51,73–75). It is interesting to note that the propagator

characterizing molecular displacements during single-file diffusion remains Gaussian (76),

even though the time dependence of the second moment of this propagator (i.e., the MSD)

deviates from that found in normal diffusion.
The prediction of single-file diffusion has spurred great interest in observing experimen-

tally the signature and consequences of single-file diffusion in zeolites, culminating in two

reports of ethane single-file diffusion in AlPO4-5 by pulsed-field gradient (PFG) NMR (77,78).

Despite these reports, some controversy remains because of quasi-elastic neutron scattering

data consistent with normal diffusion for this same system (79). (These experimental methods

are discussed in Sec. IV.) The neutron scattering data for cyclopropane in AlPO4-5 did show

the single-file diffusion signature, but only for sufficiently high cyclopropane loadings so that

guest–guest collisions were likely on the experimental time scale.

Complicating the unambiguous identification of single-file diffusion are (at least) two

phenomena occurring on widely different time scales. First, although particle exchange may be

unlikely, experimental observation on the time scales of such exchange may obfuscate or even

eliminate the t1/2 signature of single-file diffusion (80,81). Second, real zeolite single files are
finite in length, which introduces the possibility of a new, ‘‘compound’’ diffusion mode that
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becomes important on the time scale for vacancies to permeate through the single file (80,82,83).
For times shorter than the vacancy diffusion time, i.e., t < tc = L2/kD0 where L is the file length,
particle transport proceeds via the non-Fickian, single-file diffusion mode, with MSDs increas-

ing with the square root of time. For times longer than tc, however, Nelson and Auerbach have

shown that self diffusion in single-file systems is completely described by Fick’s laws, except

that the ‘‘Fickian’’ self-diffusion coefficient depends on file length according to (83):

DSF ¼ D0hTk2dL
ð1� hTÞmLðmLþ 2D0Þ � 2D0hTkd

; ð44Þ

where the parameters (kd, m, hT) pertain to TCP as shown in Fig. 1c. Equation (44) was obtained

by analyzing steady-state TCP fluxes under single-file conditions and was verified by open-

system kinetic Monte Carlo simulations (see Sec. V.B.2). When single-file transport is diffusion
limited, i.e., for large L, Eq. (44) reduces to (80,83):

lim
L!l

DSF ¼ D0ð1� hTÞ
LhT

; ð45Þ
which was originally derived by Hahn and Kärger (80). Equation (45) shows that the correlation

factor for finite single files is given by f(h) = 1/Lh, thus unifying vacancy correlations with

single-file diffusion. The L dependence of this correlation factor also shows the seeds of the t1/2

signature of single-file diffusion, namely, that dividing the diffusivity by L in a diffusion problem
is essentially the same as dividing the linear time dependence of the MSD by t1/2.

Nelson and Auerbach found that the fraction of time in the single-file diffusion mode

scales inversely with file length for long files, suggesting that Fickian self-diffusion dominates

transport in longer single-file zeolites. They predicted that the crossover time between

(medium-time) single-file diffusion and (long-time) Fickian diffusion is just above the

experimental window for PFG NMR experiments, suggesting that longer-time PFG NMR

would observe this transition.

We close this section by discussing another type of correlation that has been predicted to

arise in single-file systems, involving correlated cluster dynamics where instead of imagining

molecules jumping one at a time, they are predicted to jump together (84). Several character-

istics of the zeolite–guest system must conspire for this mechanism to gain importance. In

particular, the guests must feel sufficient guest–guest attractions, the lattice of sites for an

individual guest must be such that many guests cannot simultaneously fill different sites without
crowding, and, finally, the guests must be constrained to diffuse in one dimension. Assuming

these all hold, Sholl and Fichthorn found that activation energies for these cluster jumps are

strongly size dependent and are lower than the barriers for monomer diffusion.
Having now discussed the various types of correlations that can arise for diffusion in

zeolites, we now discuss the most powerful way to quantify such effects, and indeed the diffusion
coefficients themselves, through the use of statistical mechanical correlation functions.

C. Correlation Functions

The relationships between transport coefficients and correlation functions are made explicit by

using linear response theory and the fluctuation–dissipation theorem (23), which in turn are

motivated by Onsager’s regression hypothesis (47). This hypothesis, first articulated in 1931,

asserts that correlations between spontaneous equilibrium fluctuations decay according to the same

phenomenology (e.g., the diffusion equation or facsimile) as do externally induced nonequilibrium

disturbances. This relationship between equilibrium fluctuations and nonequilibrium relaxation

only holds strictly when the nonequilibrium disturbances are relatively small, since spontaneous

equilibriumfluctuations are themselves very small inmacroscopic systems. The interested reader is
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referred to the authoritative sources on correlation functions (85,86), and also to the lucid review on

correlation functions as they pertain to diffusion in zeolites by Theodorou et al. (10). To feign

completeness, we review below the ideas most relevant for understanding how correlation

functions can shed light on diffusion in zeolites.

1. Self Diffusion

We begin by rewriting the Einstein equation, which serves to define the self-diffusion
coefficient, in an effort to express DS in terms of a correlation function. Following Chandler’s

approach (23), we write the classical MSD as:

hR2ðtÞi ¼ hj !rðtÞ �!
rð0Þ j2i ¼

Z t

0

dt V
!
vðt VÞ �

Z t

0

dtW
!
vðtWÞ


 �
; ð46Þ

where in the last equality we have exploited the fact that ½!rðtÞ �!
rð0Þ� ¼ R t

0
dt V

!
vðt VÞ, where!

vðtÞ is the velocity of the tagged particle at time t. Next we differentiate the Einstein equation

with respect to time and divide by 6 to obtain:

DS ¼ 1

6
lim
t!l

d

dt

Z t

0

dt V
!
vðt VÞ �

Z t

0

dtW
!
vðtWÞ


 �
¼ 2

6
lim
t!l

h!vðtÞ � ½!rðtÞ �!
rð0Þ�i ð47Þ

¼ 1

3
lim
t!l

h!vð0Þ � ½!rð0Þ �!
rð�tÞ�i ¼ 1

3

Z 0

�l
dth!vð0Þ � !vðtÞi

¼ 1

3

Z l

0

dth!vð0Þ � !vðtÞi: ð48Þ

The last equality in Eq. (47) comes from differentiating the square using the fundamental

theorem of calculus; the first equality in Eq. (48) arises from the stationarity property of

equilibrium correlation functions (23); the final equality in Eq. (48) is valid because by

stationarity, equilibrium autocorrelation functions are even functions of time. We have thus

arrived at a so-called Green-Kubo formula, which relates a transport coefficient to an integrated

(velocity) autocorrelation function (VACF).

In practice, using the final result in Eq. (48) is only really useful when studying stochastic

molecular motion in the absence of large energy barriers, e.g., in bulk fluids or very weakly

confining zeolite–guest systems. For strongly confined zeolite–guest systems, with large energy

barriers separating sorption sites, Eq. (48) is much less useful because velocity correlations

typically decay well before rare jump events occur. When relatively large barriers are present,

the VACF reveals vibrational information, which can be understood by comparing the Green-

Kubo relation in Eq. (48) to the so-called vibrational power spectrum, G(x), given as:

GðxÞ ¼ 1

pc

Z l

0

dt
h!vð0Þ � !vðtÞi
h!vð0Þ � !vð0Þi

eixt ð49Þ

where x is the vibrational frequency. Comparison of Eqs. (48) and (49) shows that using the

integrated VACF to calculate the self diffusivity for a trapped particle will reveal instead the

low-frequency vibrations of the trapped guest molecule.

We gain some insight into the physical origins of the Maxwell-Stefan formulation by

supposing that the VACF decays exponentially according to the functional form (see Fig. 4):

!
vð0Þ � !vðtÞ

D E
¼ 3kBT

m
e�gt=m; ð50Þ

where m is the particle mass and g is a friction coefficient describing the drag felt by

the particle from its environment. Indeed, the exponential relaxation posited in Eq. (50)
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arises from the phenomenology of friction. The pre-exponential factor results from the

second moment of the Maxwell-Boltzmann distribution. Plugging this VACF into the

Green-Kubo formula gives DS = kBT/g or, alternatively for the friction coefficient, g =

kBT/DS, which is the basic physical assumption in the Maxwell-Stefan picture of diffusion.
This may explain why the Maxwell-Stefan formulation is so natural for describing diffusion
in bulk fluids and in weakly confined zeolite–guest systems, where the phenomenology of

friction works best.

The assumption of simple exponential relaxation considered above breaks down at both

short and long times. At long times, the VACF is found to decay as t�d/2 in d-dimensional

space, which implies by further analysis that diffusion as a phenomenology is invalid in two

dimensions (86). At short times, simple exponential decay ignores the molecularity of dense

fluids, where back-scattering on picosecond time scales produces negative lobes and subse-

quent oscillations in the VACF, as shown in Fig. 4. A simple VACF expression to account for

this short-time effect is given by:

!
vð0Þ � !vðtÞ

D E
¼ 3kBT

m
e�gt=mcosðxtÞ; ð51Þ

where m and g are the same as before, and x is an effective vibrational frequency in the fluid.
The resulting self-diffusion coefficient takes the form:

DS ¼ kBT

m

� �
g=m

ðg=mÞ2 þ x2
: ð52Þ

In the limit where several vibrations are required to produce velocity relaxation, i.e., x � g/m,
the self-diffusion coefficient reduces to DS = kBTg/(mx)

2, which is now quite different from the

Maxwell-Stefan type of expression. As is typical with constitutive relations, the phenomenol-

ogy associated with the Maxwell-Stefan formulation [cf. Eq. (24)] is consistent with long-time

dynamics but breaks down for shorter-time phenomena.

0.0 2.0 4.0 6.0
Time (units of m/η)
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3k
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/m
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ω=3η/m

Fig. 4 Normalized velocity autocorrelation functions: (circles) continuous fluid giving exponential

decay; (line) molecular fluid showing back-scattering oscillations.
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When considering self diffusion at finite loadings, one might tag a particular guest

molecule and evaluate Eq. (48) from its center-of-mass VACF. Instead, one might utilize all of

the statistics available from this many-body system according to:

DS ¼ 1

3N

XN
i¼1

Z l

0

dth!við0Þ � !viðtÞi ð53Þ

where N is the number of molecules and
!
viðtÞ is the velocity of the ith molecule at time t. This

form will be useful for comparison with other diffusivities below.

2. Transport Diffusion

The above analysis demonstrates the power of correlation functions to elucidate the dynamics

underlying self diffusion. What is really impressive is the ability of correlation functions to

shed light on transport diffusion of both single-component (35,37,87–90) and multicomponent

systems in zeolites (91,92). In particular, one can use linear response theory (93) to show that

the single-component Onsager coefficient takes the form (85):

Ls11 ¼
1

3VRT

Z l

0

dt
!
Jð0Þ � !JðtÞ

D E
; ð54Þ

where V is the system volume and
!
JðtÞ is the spatially averaged, collective flux of the sorbed

phase at time t, given by:

!
JðtÞ ¼

XN
i¼1

!
viðtÞ: ð55Þ

Substituting Eq. (55) into Eq. (54) gives:

Ls11 ¼
1

3VRT

XN
i¼1

XN
j¼1

Z l

0

dth!við0Þ � !vjðtÞi ð56Þ

which shows that transport diffusion arises from velocity correlations between different
molecules. Recalling the relation between Ls11 and the single-component Maxwell-Stefan

surface diffusivity, D1, vac
MSs = RTL11

s /c1, we obtain for D1, vac
MSs:

DMSs
1;vac ¼

1

3N

XN
i¼1

XN
j¼1

Z l

0

dth!við0Þ � !vjðtÞi ð57Þ

¼ 1

3N

XN
i¼1

Z l

0

dth!við0Þ � !viðtÞi þ 1

3N

X
i p j

Z l

0

dth!við0Þ � !vjðtÞi ð58Þ

¼ Ds þ 1

3N

X
i p j

Z l

0

dth!við0Þ � !vjðtÞi ð59Þ

This last result deserves several remarks. First, as with self diffusion, using the velocity

correlation function in Eq. (57) to evaluate diffusivities is practical only for systems confined
by relatively small barriers. Second, in the limit of low loading where correlations between

different particles are unlikely, the second term in Eqs. (58) and (59) can be ignored, confirming

our assertion made in Sec. III.A that the self diffusivity and Maxwell-Stefan surface diffusivity
agree at infinite dilution (35). Third, the fact that D1,vac

MSs can be expressed through such a

correlation function, arising purely from dynamics, gives further credence to the idea that

D1,vac
MSs is a ‘‘proper’’ transport coefficient, while the Fickian diffusivity involves a composite of

transport and thermodynamics.
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The same steps that relate DS to the VACF can be reversed for D1,vac
MSs to give the

following mean collective displacement:

DMSs
1;vac ¼

1

6N
lim
t!l

d

dt

XN
i¼1

XN
j¼1

h½!riðtÞ �!
rið0Þ�½!rjðtÞ �!

rjð0Þ�i ð60Þ

This expression is useful in numerical simulations for both fluid motion and jump diffusion,
which can be modeled with molecular dynamics and kinetic Monte Carlo, respectively (we

discuss these simulation methods in Sec. V). However, despite the versatility of Eq. (60), its

evaluatation is complicated relative to that for self-diffusion for two reasons. First, as opposed

to the MSD, which averages a quantity that is either positive or zero, the collective displace-

ments that are averaged in Eq. (60) can be negative, which can complicate statistical

convergence. Second, further complicating the statistics is the fact that, whereas for self

diffusion all molecules contribute separate statistics, here for collective motion the entire

system contributes one batch of statistics. In general, these challenges arise from the common

origin that Eq. (60) attempts to describe nonequilibrium relaxation by averaging spontaneous

equilibrium fluctuations, which is a formidable statistical task. Despite these challenges,

Sanborn and Snurr successfully used Eq. (60) to simulate transport diffusion in siliceous

FAU under a variety of conditions (91,92), by performing many independent simulations and

averaging the results.

For multi-component systems, Onsager’s approach leads to the following correlation

function for the coefficient Lsab, which couples components a and b (86):

Lsab ¼ 1

3VRT

Z l

0

dt
!
Jað0Þ � !JbðtÞ

D E
; ð61Þ

where
!
JaðtÞ is the collective flux for component a at time t. Assuming there are Na and Nb

molecules in components a and b, respectively, Lsab becomes

Lsa;b ¼
1

3VRT

XNa

i¼1

XNb

j¼1

Z l

0

dth!viað0Þ � !vjbðtÞi; ð62Þ

which shows that multicomponent transport diffusion is controlled by velocity correlations

between different molecules in different components. In practice, Sanborn and Snurr found it

most convenient to calculate the {Lsab} coefficients using Eq. (62) averaged by molecular

simulations, and then to transform these to Fickian transport diffusivities, {Dab}, for phenom-

enlogical interpretation (91,92).

Having now explored the macroscopic phenomenologies and microscopic underpinnings

of diffusion in zeolites, we now focus on perhaps the most important task at hand: measuring

diffusion in zeolites.

IV. METHODS OF MEASURING DIFFUSION IN ZEOLITES

Conceptually understanding zeolitic diffusion is not only complicated by the various physical

situations under which diffusion phenomena may occur. It is also complicated by the fact that

the ranges over which diffusion phenomena may be perceived can be dramatically different for
different experimental techniques. It has become common to distinguish between macroscopic,

mesoscopic, and microscopic techniques (4,6,94). In macroscopic techniques, intracrystalline

transport phenomena are recorded by analyzing the response of an assembly of crystals to well-

defined changes in the surrounding atmosphere. Mesoscopic techniques focus on an individual

crystal without being able to resolve intracrystalline molecular transport. Only in the micro-

scopic techniques, the primary experimental data directly result from transport phenomena with
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molecular displacements smaller than the zeolite crystallites. It should be noted that this latter

definition of a microscopic technique must not be confused with a convention generally used in

statistical thermodynamics where concentrations and fluxes—being mean values over many

particles—are considered to be macroscopic quantities, while microscopic quantities are

characteristics of the individual particles. However, in zeolite science and technology it has

also become common for concentration- or flux-based techniques to be called microscopic, as

soon as a resolution within the crystallites, i.e., over microscopic dimensions, becomes

possible. This section presents a short description of the fundamentals of the various

experimental techniques of diffusion measurement, together with typical examples of the

results obtained.

A. Macroscopic Methods

1. Steady-State Methods

a. Membrane Permeation

With zeolite material being synthetically available nowadays as membranes (see Chapter 17 by

Nair and Tsapatsis in this volume), diffusion measurements may immediately be based on

Fick’s first law, by determining the flux through the membrane for a given difference in the

sorbate concentrations in the membrane faces. Diffusion measurements of this type assume that

transport through the membrane is diffusion limited (see Sec. II.C), which implies that

observed fluxes are proportional to diffusivities, and that intracrystalline concentrations in

the membrane faces can be calculated from sorption isotherms given the gas phase pressures

(or concentrations) of the diffusants. By rearranging Fick’s first law, the diffusivity results

simply from

DT ¼ j !J j L
Dc

ð63Þ
where L is the membrane thickness and Dc is the concentration drop across the membrane,

estimated from the pressure drop and the sorption isotherm. Permeation studies can be carried

out to determine both transport and self diffusivities. In the latter case, the flux and

concentration difference refer to the labeled component in, e.g., tracer counterpermeation

experiments. When studying transport diffusion, one has to take into account that Eq. (63) only

applies strictly for a sufficiently small concentration difference over the membrane, so that for

concentration-dependent transport diffusivities, the diffusivity within the membrane can be

taken as a constant equal to its effective mean value.

Permeation studies with zeolites have been carried out with both compact polycrystalline

membranes (95–97) and single crystals suitably involved in impermeable foils (98–100). The

data on intracrystalline diffusion provided from permeation studies with polycrystalline

membranes are still heavily corrupted by membrane defects (28,97). However, as a conse-

quence of their substantial potential for advanced technologies in separation and catalysis

(101), there is no doubt that the quality of zeolite membranes will improve rapidly in the next

few years. At least from the view of fundamental research, permeation studies with embedded

single crystals appear to provide more reliable data on intracrystalline zeolitic diffusion.
Measurements of this type, which may be referred to as mesoscopic, shall be presented in

Sec. IV.B.

b. Reaction under Diffusion Control

Another class of steady-state experiments for diffusion measurement is based on the involve-

ment of chemical reactions (102,103). In the simplest case of a unimolecular, irreversible
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reaction A!B of first order (5,6,104), the evolution of concentration of species A obeys

the relation:

dcA

dt
¼ !

j � DT
!
jcA

� �
� krxncA ð64Þ

which results from Eq. (8) by adding the first-order reaction term. Under steady-state

conditions, i.e., for dcA/dt = 0, the distribution cA (and hence the total number) of the reactant

molecules over the individual crystallites becomes a function of the intrinsic diffusivity. Thus,
from the effective reactivity (the ‘‘effectiveness factor’’) being proportional to the total number

of A-type molecules, one is able to determine their intracrystalline diffusivity. More correctly,

one determines the mutual diffusivity of the A and B molecules, which—by assuming their

microdynamic equivalency—has to coincide with their self diffusivities. As an example, Fig. 5

demonstrates the excellent agreement between the experimentally determined effectiveness
factor for the conversion of 2,2-dimethylbutane over ZSM-5 with the theoretical dependence

determined on the basis of gravimetric diffusion measurements (103). Conversely, the

effectiveness factor of catalytic conversion may thus be used to determine intracrystalline

diffusivities.

2. Transient Methods

a. Uptake Methods

The conventionally most common technique of diffusion measurement is following the

response of the zeolitic host–guest system to a change in the pressure and/or composition in

the surrounding atmosphere. For recording the response, a large variety of techniques are in

use. The most direct one is following the molecular uptake by, for example, a gravimetric

Fig. 5 Measured effectiveness factors (g) for the conversion of 2,2-dimethylbutane over H-ZSM-5

catalysts, as a function of the Thiele modulus (A). Data are calculated from diffusivities, obtained by

conventional sorption studies, and compared with the theoretical curve that relates the two. (From Ref. 103.)
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device. For a spherical particle of radius R, subject to a step change in sorbate concentration at

the external surface, molecular uptake M(t) under isothermal conditions and diffusion control is

given by (105):

MðtÞ
MðlÞ ¼ 1� 6

p2
Xl
n¼1

1

n2
e�n2p2DTt=R

2

; ð65Þ

which exhibits the short-time limit of:

lim
t!0

MðtÞ
MðlÞ ¼

6

R

ffiffiffiffiffiffiffiffi
DTt

p

r
; ð66Þ

and the long-time limit of:

lim
t!l

MðtÞ
MðlÞ ¼ 1� 6

p2
e�p2DTt=R

2

: ð67Þ

The corresponding expressions for other particle shapes may be found, e.g., in (5,105,106).

There is in fact little numerical difference between the response from a spherical particle and

that from a different geometry, but with the same (external) surface-to-volume ratio. As

discussed in Sec. II.C, transient uptake adsorption/desorption measurements yield the most

reliable diffusivity data for large crystals and small diffusivities, where transport is diffusion
limited. Regardless of whether transport is limited by diffusion or desorption, such measure-

ments provide important time scales for zeolite scientists to gauge rates of molecular sorption.

Detailed information on the influence of other processes on molecular uptake can be found in

the literature (5,36,106,107); in what follows, we give a short introduction to these processes.

Any adsorption process gives rise to a temperature enhancement of the sample as a

consequence of the release of the heat of adsorption. In parallel to the particle flux into each

individual crystallite, establishment of equilibrium therefore as well requires heat dissipation

toward the surroundings. For sufficiently fast intracrystalline diffusion, this latter process may

become rate limiting for the overall phenomenon. Its analysis on the basis of Eqs. (65–67)

would lead to completely erroneous diffusivities. During desorption experiments, temperature

reduction as a consequence of the consumed heat of desorption leads to completely analogous

effects. Note that this effect cannot be remedied by reducing the pressure step, since the reduced

temperature changes would be paralleled by corresponding reductions in the internal concen-

tration gradients (108–110). Heat effects do not occur in tracer exchange experiments, since

here adsorption (or desorption) of the labeled component is exactly counterbalanced by

desorption (or adsorption) of the unlabeled one (cf. Sec. IV.A.3).

The real structures of zeolites are likely to differ substantially from the ideal textbook

structures. This is particularly true for the external surfaces of the zeolite crystallites. As a zone

of pronounced structural heterogeneity, the external crystal surface is predestined to collapse,

e.g., under hydrothermal treatment (111,112). Simultaneously, the external crystal surface is a

favorite location of coke deposition (113,114). In both cases, the uptake rates can be limited by

the permeation through the outer surface rather than by intracrystalline diffusion. Molecular

uptake then should follow the simple exponential expression (5):

MðtÞ
MðlÞ ¼ 1� e�3kdt=R; ð68Þ

where kd is the surface permeativity as shown in Fig. 1a–c.

When deducing intracrystalline diffusivities from macroscopic uptake measurements, it is

generally assumed that immediately after the change in the surrounding atmosphere, the

concentration in the surface layers of an individual crystallite attains its new equilibrium value.

Such an assumption is clearly only valid for sufficiently fast mass transfer through the bed of
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crystallites (115). To quantify this effect one has to relate the dimension of individual

crystallites (radius R) and that of the bed (‘‘radius’’ Rb) with the respective diffusivities. The
effective bed diffusivity is given by (4,94):

Db ¼ Dpep
ep þ ð1� epÞK ð69Þ

where ep and Dp are the volume fraction of and diffusivity in the macropores, respectively. The

equilibrium constant K is the ratio of the concentrations in the sorbed and gaseous phases.

Uptake is limited by intracrystalline diffusion under the condition Rb
2/Db � R2/DT. In the

opposite limit, uptake is limited by bed diffusion. Equations (65–67) still apply to bed-limited

diffusion, except with DT and R replaced by Db and Rb, respectively. In this case, interpreting the

uptake results in terms of intracrystalline diffusion would lead to completely erroneous results.

As a final pitfall, uptake measurements under ‘‘piezometric’’ conditions, i.e., constant

volume–variable pressure conditions, can be corrupted significantly by the finite rate at which

the atmosphere around the sample follows the pressure step in the gas reservoir. Consideration

of this ‘‘valve’’ effect in the calculation of the intracrystalline diffusivity from the observed

pressure data (116–118) can impede the rigor of the experimental procedures (119).

According to Eq. (65), the time constant of molecular adsorption/desorption (when

limited by intracrystalline diffusion) should be proportional to R2/DT. This time constant can be

expressed as:

sintra ¼
Z l

0

dt½1�MðtÞ=MðlÞ� ð70Þ

which is denoted as the first moment of the uptake curve (106,120,121), and also as the mean

intracrystalline molecular residence time. Evaluating Eq. (70) using Eq. (65) gives:

sintra ¼ R2

15DT

ð71Þ
Assuming that uptake is limited by intracrystalline diffusion and that the distribution of zeolite

particle sizes is reasonably monodisperse, Eq. (71) predicts that the uptake time constant

should vary with the square of the crystal radius. As an example, Fig. 6 shows this

proportionality as found in uptake measurements with 2,2-dimethylbenzene in ZSM-5. The

constancy of DT with varying crystal size can thus be used as a criterion for the validity of the

determined diffusivities.

b. Zero Length Column

A number of disadvantages of the conventional uptake method are overcome by the zero length

column (ZLC) technique. In this technique, one follows the desorption of sorbate from a

previously equilibrated sample of adsorbent into an inert carrier stream (122,123). The

concentration of sorbate in the gas stream is usually recorded by chromatographic detection.

The time dependence of this concentration is a direct image of the residence time distribution of

the molecules within the sorbate particles, which directly provides the intracrystalline

diffusivity. The sensitivity of ZLC is high enough that the amount of adsorbent can be reduced

to a few milligrams. Mass transfer resistances by bed effects can thus be excluded. Moreover,

the carrier gas excludes any heat effects. As a consequence of the very principle of ZLC, during

measurements the intracrystalline sorbate concentration drops to zero from the initial value as

determined by the partial pressure of the sorbate in the carrier gas. In order to circumvent

ambiguities due to concentration-dependent diffusivities, the measurements are therefore

generally performed at concentrations close to zero. Variants of the ZLC technique have been

applied to the measurement of zeolitic diffusion under liquid phase conditions (124). In some
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cases, e.g., branched alkanes in silicalite-1, these diffusivities were found to be dramatically

larger than in gas phase measurements (125). This behavior seems to indicate that under fully

saturated conditions, the silicalite-1 framework swells slightly so that these species are no

longer as severely hindered by interactions with the pore wall. Another variant, tracer ZLC,

shall be presented in Sec. IV.A.3.

c. Frequency Response

Both features of a steady-state and a transient method may be recognized in the frequency

response (FR) technique (126–128). In this technique one follows the response of the sample to

a regular periodic perturbation, such as a sinusoidal variation of the system volume with

frequency x. As a consequence, both the induced pressure variation and the amount adsorbed

are also sinusoidally varying functions. They are interrelated by a complex factor of

proportionality, which is a function of the frequency of the volume variation. Its real and

imaginary parts are commonly referred to as the in-phase and out-of-phase characteristic

functions, respectively. They may be calculated from experimentally directly accessible

quantities, i.e., the amplitude of pressure variation and the phase shift between volume and

pressure variation. The diffusivities are determined by matching the experimental curves to the

theoretical expressions for a given model. As a rule of thumb, the out-of-phase characteristic

function passes through a maximum at x = DT/L
2, where L is the characteristic length of the

particles under study. The out-of-phase characteristic function is also expected to approach zero

Fig. 6 Variation of the (gravimetric) diffusional time constant, R2/DT, with the square of the crystal

radius, showing conformity with the diffusion model. (From Ref. 103.)
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for frequencies both much larger and much smaller than this ‘‘resonance frequency’’ (4). There

is essentially no instrumental limitation to apply the frequency response technique at very large

frequencies, corresponding to time constants in the millisecond regime. As a nonequilibrium

technique, however, the frequency response method is subject to thermal effects, which may

become rate determining (128,129).

d. Infrared Detection Methods

By combining the frequency response (FR) method with temperature measurement by an

infrared (IR) sensor, heat effects can actually be used for an even more complete recording of the

parameters varying during the adsorption/desorption measurement cycles (129–131). Using this

thermal FR (TFR) method, experimental observables should more reliably be attributed to the

corresponding models of mass transfer. Figures 7 and 8 present typical results of the application

of the frequency response and the TFR methods to diffusion studies with zeolites. The

extrapolation of the pulsed-field gradient (PFG) NMR results in Fig. 7 to smaller concentrations

yields satisfactory agreement with the results obtained by the FR techniques. In all these studies,

the diffusivity is found to decrease with increasing concentration. This type of concentration

dependence (consistent with patterns 1 and 2 of the concentration dependencies presented in

Figure 7.2 of Ref. 5) is common for zeolite–guest systems with no specific adsorption sites. The

decrease of the diffusivity with increasing concentration can be explained qualitatively by the (1
� h) volume exclusion factor discussed in Sec. III.A. The same general tendency of decreasing

diffusivity with increasing loading is reflected by the data in Fig. 8. In addition, the presence of

water molecules is found to lead to a much more pronounced decay in the propane diffusivities.
This behavior can be explained by the formation of ion–water complexes in the windows

between adjacent supercages, which can significantly reduce propane propagation rates. We note

that the PFG NMR and TFR data are in reasonable agreement in both their qualitative trends and

their absolute values. When carrying out diffusion measurements by PFG NMR and the TFR

method in the same concentration range, satisfactory agreement between the data obtained by

these two techniques can also be seen in Fig. 8.

Fig. 7 Corrected diffusivities [cf. Eq. (2.29)] of propane in silicalite-1 obtained by the frequency

response technique (o: 323 K, �: 363 K, *: 348 K) by uptake measurement (i.e., ‘‘single-step frequency

response’’) (D: 333 K) and by PFG NMR (E: 333 K). (From Ref. 128.)
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Following molecular uptake by recording the time-dependent mass of the zeolite–guest

system (gravimetric methods), or the pressure and/or temperature responses (piezometric and

frequency response measurements, respectively) only provides information about overall

adsorption/desorption kinetics. In many cases of practical application, however, one is

interested in the mobility of individual components. Therefore, the application of IR spectro-

scopy to the study of sorption phenomena has afforded a significant breakthrough for diffusion
studies in multicomponent zeolite–guest systems (132–134). Figure 9 shows the evolution of

the primary data (IR bands) in a counterdiffusion experiment with H-ZSM5 where, under the

influence of a concentration step of ethylbenzene in the surrounding atmosphere (bands at 1496

cm�1 and 1453 cm�1 for the adsorbed ethylbenzene), a substantial fraction of the previously

adsorbed benzene molecules (band at 1478 cm�1) is forced out of the crystallites.

Figure 10 shows the kinetics of the replacement of benzene by ethylbenzene in H-ZSM-5,

together with the diffusivities calculated by matching the kinetic curves to the appropriate

solutions of Fick’s second law. Diffusivities deduced under such conditions are referred to as

coefficients of counterdiffusion. The quantity b is a fitting parameter, which accounts for the

fact that the sorbate partial pressures are not instantaneously established at the location of the

sample. The diffusivities shown in Fig. 10 indicate that adding the ethyl substituent onto

benzene does not greatly alter its transport properties, presumably because the ‘‘kinetic

diameter’’ of the molecule is not greatly altered. A bigger change is expected when comparing

benzene to ortho- or meta-xylene, which do have significantly greater effective diameters.

In addition to the conventional chromatographic methods (135), other more sophisticated

experimental techniques have recently been applied to the study of molecular diffusion in

assemblages of zeolite crystallites, including positron emission profiling (PEP) (136,137),

temporal analysis of products (TAP) (138,139), and (nuclear) magnetic resonance tomography

(MRT) (140,141). Since reliable information about intracrystalline diffusion can be obtained

only if the observed processes are strongly influenced by intracrystalline mass transfer, these

Fig. 8 Corrected diffusivities [cf. Eq. (2.29)] of propane in NaX at 303 K in an anhydrous (*) and a

hydrated (o) sample, compared with PFG NMR diffusivities (E). (From Ref. 131.)
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Fig. 9 Set of IR spectra for successive replacement of preadsorbed benzene by ethylbenzene.

(+) Strongest benzene band; (*) bands of ethylbenzene. (From Ref. 134.)

Fig. 10 Uptake curves of counterdiffusion as derived from the evolution of IR spectra (cf Fig. 9) for

ethylbenzene vs. benzene in H-ZSM-5. (From Ref. 134.)
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techniques measure intracrystalline diffusion in zeolites only under rather special conditions

(138,142,143).

3. TracerMethods

By involving isotopically labeled and unlabeled molecules, most of the procedures described in

Secs. IV.A.1 and IV.A.2 can be adapted to diffusion measurements under equilibrium, i.e., to

the measurement of tracer of self-diffusion. Tracer permeation measurements necessitate

different partial pressures of the labeled component on the two sides of the membrane

(preferably zero on one side), while the total pressure of the sorbate, i.e., the sum of the

partial pressures of the labeled and unlabeled components, must be the same on both sides of

the membrane. In Sec. II.C, we refer to this experimental setup as tracer counterpermeation

(TCP), as shown in Fig. 1c. In tracer uptake measurements, the process of measurement is

initiated by replacing a certain fraction of the sorbate molecules in the surrounding atmosphere

by labeled ones (144). Flux or uptake analyses are generally performed by mass spectrometry,

which readily allows discrimination between labeled and unlabeled molecules.

a. Tracer Zero Length Column

By performing ZLC with labeled and unlabeled particles, i.e., tracer ZLC or TZLC, the range of

applicability of the ZLC technique can be greatly enhanced. In TZLC, the sorbate in the carrier

gas is switched from a labeled (e.g., deuterated) to an unlabeled species (145,146). Under these

conditions, the purging rate of the labeled component directly yields the intracrystalline self-

diffusivity. In contrast to ZLC, which is essentially confined to very low sorbate concentrations,

TZLC can probe the whole concentration range from zero to saturation. As an example, Fig. 11

shows the results of self-diffusion measurements of methanol in Na-X by TZLC in comparison

Fig. 11 Self diffusivities of methanol in NaX at 373 K measured by TZLC and PFG NMR, compared to

the transport diffusivity at infinite dilution determined by (normal) ZLC. (From Ref. 146.)
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with ZLC and PFG NMR data. The self-diffusivities in Fig. 11 have magnitudes of order 10�11

m2 s�1. These data represent an example where satisfactory agreement between various

techniques, in particular between macroscopic and microscopic measurements, has been

observed. We have presented herein additional examples of satisfactory agreement between

the results of different techniques, e.g., in Figs. 7 and 8. The loading dependence of the

diffusivities in Fig. 11 exhibits an initial increase at low to medium loadings, followed by a

subsequent decrease at high loadings. This behavior indicates the presence of special adsorption

sites for methanol in Na-X, presumably over supercage Na cations, because filling these sites

increases the rate of self diffusion. However, when the system approaches saturation, the

blocking of sites takes over and the self diffusivity begins to decrease with loading.

However, there are also systems that reveal systematic discrepancies between the results

obtained by different techniques. As an example, Fig. 12 shows the results of diffusion studieswith
benzene in zeolite Na-X by TZLC, FR, and PFGNMR (147). The decreasing loading dependence

observed by both FRandPFGNMR is consistentwith the absence of particularly stable adsorption

sites, whereas the increasing loading dependence observed by TZLC signals the presence of such

stable sites (31,32). Until now, no fully satisfactory explanation of this discrepancy has been

reported. As discussed below in Secs. IV.D and V.C, this discrepancy is most likely caused by

structural heterogeneities in the Na-X zeolites considered. Defects in the framework topology

and/or disorder in theAl/Na distributions can produce different self diffusivities, depending on the
length scales probed by different experimental methods (148,149).

Other variants of nonequilibrium measurements, which have been applied to self-

diffusion studies by the use of labeled molecules, include the measurement of molecular

uptake from a surrounding liquid (150) and in closed-loop recycling (151,152). Being sensitive

to the concentrations of, e.g., deuterated and nondeuterated substances, spectroscopic methods

such as IR (132–134) and NMR (153) allow the direct monitoring of labeled and unlabeled

molecules in the sorbed phase.

Fig. 12 Comparison of benzene diffusivities in NaX obtained by TZLC, frequency response (FR) and

PFG NMR. (From Ref. 147.)
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B. Mesoscopic Methods

The first mesoscopic measurements of diffusion in zeolites were carried out by Wernick and

Osterhuber (154) and by Hayhurst and Paravar (155), who measured molecular fluxes through
crystallites embedded in impenetrable polymer matrices. In addition to permeation measure-

ments through ordered arrangements of MFI-type zeolites in metallic membranes (156), Caro

and coworkers considered the rate of molecular uptake by restricting access to only one side of

the membrane, while the crystallite faces on the other side remained covered by a metal foil. In

these measurements the diffusivities were found to depend strongly on the crystallographic

direction (99). Recently, molecular uptake by individual crystals has been monitored by micro-

Fourier transform (FT) IR (134). The uptake curve of n-heptane by an individual H-ZSM-5

crystal in Fig. 13 presents an example of such measurements, showing that uptake in such

systems requires on the order of 10 s to reach saturation.

C. Microscopic Methods

1. Transport Diffusion

a. Interference Microscopy

Using interference microscopy, the microscopic measurement of transport diffusion in zeolites

has been achieved for the first time (157,158). In this technique, one determines the change in

sorbate concentration integrated along the observation direction through the crystallite, by

following the change of the optical density of the zeolite crystallites during transient molecular

adsorption or desorption. This information can be resolved down to pixels of about 1 � 1 Am2

over the cross-section of the crystal under study. For crystals of cubic symmetry, these integrated

data can be translated into concentration maps by deconvolution (158). As an example, Fig. 14

shows the evolution of methanol concentration in zeolite NaCa-A during adsorption, plotted as

Fig. 13 Uptake kinetics of n-heptane on a single crystal of H-ZSM-5 as measured by micro-FTIR

spectroscopy. (From Ref. 134.)
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concentration maps over three different cross-sections through the crystallites, parallel to and at

different distances from one of the external faces. These data permit the direct determination of

intracrystalline transport diffusivities by interpreting the spatial-temporal dependence of meas-

ured concentrations using Fick’s second law, Eq. (8). The data in Fig. 14 probe adsorption on

time scales of 40-s multiples and give a transport diffusivity for methanol in NaCa-A of (8 F 2)
� 10�14 m2 s�1, which is in reasonable agreement with PFG NMR data. This diffusivity is less

than that for methanol in Na-X by more than three orders of magnitude, presumably because of

the much smaller windows in A zeolite, but also because of the stronger charge-dipole attraction

between methanol and Ca ions in NaCa-A.

Moreover, interference microscopy provides a sensitive tool for probing structural

properties of zeolite crystallites, which are important in determining their transport behavior

and which are difficult to detect by other techniques. MFI-type zeolite crystals are well known

to have an internal hour-glass-like structure, indicating that they are of twinned rather than of

monocrystalline structure (159,160). In order to evaluate the importance for molecular transport

of the internal intersections separating different intergrowth components of the crystals, the

results obtained by interference microscopy have been compared with corresponding integral

concentrations resulting from Monte Carlo simulations (161). In the case of isobutane, such

comparisons provide clear evidence that molecular uptake proceeds mostly via the external

crystal surface. In this case, the internal interfaces serve as mild transport resistances for

diffusion of isobutane from one intergrowth component to another rather than as additional

diffusion paths enhancing the penetration rate into the zeolite particles. Such a situation is

different from that found in solid-state diffusion with grain boundary effects (162). The findings
reported in Ref. 161 are in contrast to observations with iodine, where the iodine molecules

have been found to permeate slowly from the gas phase along the internal interfaces of the

crystals filled with large aromatic molecules (163).

2. Self-Diffusion

As a consequence of the microscopic size of typical zeolite crystallites, the conventional

techniques of isotopic labeling have thus far failed to be applied to the direct observation of

intracrystalline self diffusion. The only techniques that have been applied to this purpose are

Fig. 14 Concentration profiles c(x, y, z; t) of methanol in an NaCaA-type single crystal of edge length L

at 293 K at different times t = 0, 40, 80, and 160 s (from bottom to top) after the sorption has started. Data

are represented for different planes parallel to one outer face at z values indicated on top of the figures.

(From Ref. 157.)
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spectroscopic methods, which provide information about the propagation probabilities of guest

molecules within the zeolite sample.

a. Quasi-Elastic Neutron Scattering

Diffusion measurement by quasi-elastic neutron scattering (QENS) is based on analysis of the

(quasi-elastic) broadening in the energy distribution of an outgoing neutron beam. The broad-

ening is a consequence of the Doppler shift caused by the interaction of the neutrons with the

diffusants. In this way, the different rates of motion of the diffusants are recorded in the spectra

of neutron energy transfer. The relevant experimental observable is the so-called double-

differential cross-section (@2j/@V@E), which represents the fraction of neutrons scattered into a

solid angle in the interval [V, V + dV], and with energies in the interval [E, E + dE]. This cross-

section can be split into incoherent and coherent contributions according to (164,165):

@2r
@V@E

¼ rincSincðk;xÞ þ rcohScohðk;xÞ; ð72Þ
where rinc (rcoh) denotes the incoherent (coherent) cross-section, which is a characteristic

quantity for each type of nucleus. The functions Sinc (k, x) and Scoh (k, x) denote the incoherent
and coherent scattering functions, respectively, given by (166):

Sincðk;xÞ ¼ 1

2p

Z
d

!
r

Z
dt eið

!
k �!r�xtÞGsð!r; tÞ ð73Þ

Scohðk;xÞ ¼ 1

2p

Z
d

!
r

Z
dt eið

!
k �!r�xtÞGð!r; tÞ ð74Þ

These are the double Fourier transforms of the correlation functions of particle propagation,

with the momentum transfer t
!
k and energy transfer tx as the Fourier variables conjugate to

!
r

and t, respectively. In Eq. (73), Gsð!r; tÞ denotes the self-portion of the density–density

autocorrelation function in space and time, i.e., Gsð!r; tÞ~hdqið
!
0; 0Þdqið

!
r; tÞi . For r ¼j!r j

large compared to zeolite unit cells, Gsð!r; tÞ corresponds to the propagator in Eq. (10), which

solves the diffusion equation with a y-function initial condition. Inserting Eq. (10) into Eq. (73)

leads to a neutron energy distribution whose width is given by (164,165):

DEu tDxð!kÞ ¼ tk2DS ð75Þ
Equation (75) shows that plotting the energy distribution DE of the scattered neutrons as a

function of k2 ¼j !k j2 yields a straightforward means for determining the self diffusivity Ds. For

jump diffusion one obtains (167):

DE ¼ t
s

1� e�k2hl2i=6
h i

; ð76Þ
where s is an apparent mean residence time, and hl2i is an apparent mean square jump length.

These quantities may correspond to fundamental jump lengths and times, but they may also

represent composites of fundamental jump processes, depending on the underlying dynamics.

Interpreting QENS data via Eq. (76) allows the determination of both the mean residence time

(for large values of k) and the self diffusivity (for small values of k), where Eqs. (75) and (76)

coincide. Combining both types of information thus allows the determination of the mean square

jump length.

The function Gð!r; tÞ is proportional to the full density autocorrelation function,

i.e., Gð!r; tÞ~hdqð!0; 0Þdqð!r; tÞi, which is related to the probability density that after time t,

a particle is found at a displacement
!
r from the position where this or any other particle was

located at time t = 0. In this way, the coherent scattering function probes collective motions,

giving rise to the measurement of transport diffusivities.
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According to Eq. (72), the relative values of coherent and incoherent cross-sections

indicate which scattering process prevails for a given nucleus. Neutron scattering with hydro-

gen-containing molecules is essentially incoherent because of the relatively large incoherent

cross-section (rinc(
1H) = 79.9 � 10�28 m2, rcoh(

1H) = 1.76 � 10�28 m2). In comparison with all

other nuclei, neutron-hydrogen scattering provides the best prospects for self-diffusion measure-

ments. Interestingly enough, proton-containing molecules are also the best suited for diffusion
measurements by PFG NMR, but for a completely different reason, namely, the large

gyromagnetic ratio of protons. Table 1 provides an order-of-magnitude comparison between

the key quantities characterizing the range of diffusion measurements by QENS and PFG NMR.

With deuterium (rinc(
2H) = 2.04 � 10�28 m2, rcoh(

2H) = 5.97 � 10�28 m2), the coherent

contribution to neutron scattering prevails. The first measurement of transport diffusion in

zeolites via coherent QENS was carried out for molecular deuterium (D2) in Na-X zeolite (168).

As such, QENS turns out to be the only technique so far that allows the simultaneous

measurement of transport and self diffusion with one and the same system. In this study, it

was found that the self and transport diffusivities do indeed have similar values at low D2

concentrations. For higher loadings, the transport diffusivity increases rapidly and exceeds the

self-diffusivity, in complete agreement with the predictions of Eq. (29) for fluid-like motion.

A survey of the range of self diffusivities accessible by incoherent QENS is provided in

Fig. 15, showing diffusivities of n alkanes in ZSM-5 as a function of the chain length. The

Table 1 Diffusivities and Root Mean Square Displacements Accessible

by QENS and PFG NMR

Observable PFG NMR QENS

DS (m2 s�1) >10�15 >10�14ffiffiffiffiffiffiffiffiffiffiffiffiffiffihR2ðtÞip ðmÞ >10�7 <10�8

Fig. 15 Intracrystalline self diffusivities of n-alkanes at low loadings in MFI zeolites at 300 K, as a

function of alkane chain length, obtained by MD simulations (n); Brownian dynamics (.); QENS (+);

single-crystal membrane permeation (q); ZLC (D); and PFG NMR (*) (Data from Refs. 164 and 178.)
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results of other experimental techniques and of molecular simulations are also included in Fig.

15 (164,169). These data provide another example of the large differences among diffusivities
obtained with different experimental techniques—discrepancies that arise for some but not all

systems. It is remarkable that even the results of the two microscopic techniques, namely QENS

and PFG NMR, do not agree quantitatively for pentane and hexane diffusion in ZSM-5. Figure

15 exhibits three different types of trends regarding how the diffusivity varies with alkane chain

length: (a) roughly independent of chain length [molecular dynamics simulation (170)]; (b)

monotonically decreasing with chain length [Brownian dynamics simulation (171), QENS

(164), PFG NMR (169), and ZLC (172)]; and (c) nonmonotonically decreasing with chain

length [single-crystal membrane permeation (100)]. The question is: which trend is correct?

The membrane permeation data in Fig. 15, if they are correct, indicate that octane (C8)

diffuses much faster than does heptane (C7) and nonane (C9). As such, these data suggest the

possibility of ‘‘resonant diffusion,’’where the diffusivity is maximal when the hydrocarbon chain

length is an integer multiple of the lattice repeat unit (and minimal for half integer multiples)

(173). Although only one experiment in Fig. 15 observed resonant diffusion, this phenomenon has

received considerable attention from theorists (170,173–175). Indeed, the simulation results

reported by Runnebaum and Maginn suggest that while alkane diffusivities in silicalite decrease
monotonically with chain length when considering motion in the x and z-directions, they exhibit

resonant diffusion along the y direction with octane exhibiting the maximum diffusivity (170). In
order to determine whether resonant diffusion actually takes place in zeolites, the many

discrepancies among experimental data shown in Fig. 15 will have to be resolved.

b. Pulsed-Field Gradient NMR

Molecular self-diffusion measurements by the pulsed-field gradient (PFG) NMR technique can

be understood on the basis of the classical model of NMR, in which the spins—i.e., the

magnetic moments of individual nuclei, each with their associated angular momentum—

are assumed to rotate about the direction of a magnetic field
!
B with the Larmor frequency

given by:

x ¼ cB; ð77Þ
where B ¼j !B j is the magnetic field strength. The direction of

!
B is usually defined by

convention as the laboratory-fixed z axis. The gyromagnetic ratio, c, is a characteristic quantity
of the nucleus under study, attaining the highest value for hydrogen (cH = 2.675 � 108 T�1 s�1).

In field gradient NMR, the magnetic field
!
B is the sum of a spatially constant field with strength

B0, and a strongly inhomogeneous field with magnitude Badd = gz. As such, according to Eq.

(77), the Larmor frequency becomes a function of location along the z axis, i.e., x = x(z).
In PFG NMR, the additional inhomogeneous field Badd is applied over two short time

intervals d as the so-called field gradient pulses. By applying a suitable sequence of radio

frequency (rf) pulses (see also Refs. 5,16,176, and 177) one generates a transient NMR signal,

the ‘‘spin echo.’’ One can show that, for each individual molecule, when the difference in

Larmor frequencies between two field gradient pulses increases, the spin-echo intensity

decreases. The quantitative relation is given by Refs. 5,16,176–178:

wðgd; tÞ ¼
Z

d
!
r Pð!r; tÞ cosðcdgzÞ; ð78Þ

where Pð!r; tÞ is the Fickian propagator given in Eq. (10). The observation time t is given by the

separation between the two gradient pulses. After substituting Eq. (10) into Eq. (78), the PFG

NMR spin-echo attenuation due to diffusion in homogeneous media is given by:

wðgd; tÞ ¼ e�c2d2g2DSt; ð79Þ
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hence providing a direct measurement of the self diffusivity. In heterogeneous systems, in

particular under the influence of restricting barriers, it is convenient to introduce an effective
diffusivity given by Deff = hR2(t)i/6t. Deviations from homogeneity can often be accounted for

by simply replacing DS in Eq. (79) by Deff. For diffusion in homogeneous systems, Deff clearly

coincides with the genuine self diffusivity. However, for inhomogeneous systems, Deff can

exhibit time dependence (148), reflecting the various transport resistances probed during the

PFG NMR measurement.

While the range of diffusivities accessible by PFG NMR and QENS are similar, with

about 10�14 m2s�1 as a typical lower limit, the observed displacements (and hence the

corresponding observation times) are distinctly different, as shown in Table 1. Typical

displacements covered in PFG NMR are between a few hundred nanometers up to hundreds

of micrometers, with observation times of milliseconds to seconds. By contrast, the displace-

ments observable by QENS are limited to a few nanometers. This has been exploited by Jobic

et al. who used QENS to measure benzene self diffusivities in Na-Y (179), where crystallites

are typically too small (about 1 Am) for reliable PFG NMR measurements of intracrystalline

self-diffusion. The benzene self-diffusivities measured by Jobic et al. decrease with benzene

loading, in contrast to the increasing loading dependence predicted by Saravanan and Auerbach

on the basis of kinetic Monte Carlo simulations (31). If the loading dependence observed by

QENS is correct, then the Monte Carlo simulations overestimate the extent to which Na–

benzene interactions provide specific adsorption sites in Na-Y.

Owing to the quite general relation between the observed spin-echo attenuation and the

patterns of propagation in Eq. (78), PFG NMR is particularly suitable for diffusion studies with

heterogeneous systems such as beds of zeolites. Varying the observation time and hence the

covered displacements, PFG NMR is able to probe both intracrystalline diffusion ðfor ffiffiffiffiffiffiffiffiffiffiffiffiffiffihR2ðtÞip
� RÞ as well as long-range diffusion ðfor ffiffiffiffiffiffiffiffiffiffiffiffiffiffihR2ðtÞip � RÞ , where R is the mean crystallite

radius. The long-range diffusivity is the counterpart in self-diffusion of the effective bed

diffusivity discussed in Eq. (69). Further transport-related phenomena observable in such

studies include diffusion anisotropy (59,66), the formation of transport resistances (111–114),

deviations from ordinary diffusion such as single-file diffusion (77,78,180) and diffusion on

fractals (181), multicomponent diffusion (182–185), and diffusion accompanied by catalytic

reactions (186–188).

Before we close this section on PFG NMR, we note that several other NMR methods

have been developed for and applied to measuring orientational dynamics of molecules in

zeolites. In general, NMR measurements probe an orientational correlation function of some

molecular axis (189). NMR relaxation and linewidth measurements (190–196) typically assume

that this correlation function decays exponentially. With this assumption, the exponential decay

time constant, i.e., the correlation time sc, can be deduced from spin-spin and spin-lattice

relaxation times. Alternatively, the exchange-induced sidebands NMR method can measure the

correlation function itself (197). Favre et al. applied this approach to benzene dynamics in Ca-

Y zeolite (1), finding a biexponential correlation function whose short- and long-time dynamics

were interpreted in terms of intracage and intercage motion, respectively (198). Having

measured the cage-to-cage rate constant, Favre et al. reported the self-diffusivity of benzene

in Ca-Y as DS = 10�19–10�18 m2 s�1 in the temperature range 338–368 K, perhaps the smallest

self diffusivities ever measured for a zeolite–guest system. An even more sophisticated

approach is the two-dimensional exchange NMR method (199–201), which measures the

orientational correlation function, and also the most important jump angles in the dynamics,

which facilitates the interpretation of the measured time scales. In general, diffusion coefficients

can be extracted from these orientational data only if the orientational correlation function

decay is controlled by cage-to-cage or otherwise long-length scale dynamics. Because such
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length scales are typically not measured in these NMR approaches, one should regard a

diffusional interpretation of such data with great care.

D. Correlating Results from Different Measurements

Applying PFG NMR to the investigation of diffusion in zeolites (5,114,190,202) has revealed

intracrystalline diffusivities that are up to five orders of magnitude larger than those previously

assumed on the basis of macroscopic measurements. Subsequent critical reconsiderations of

classical uptake measurements (36,107–121) and their interpretations led in many cases to much

better agreement among the results of different measuring techniques. These comparisons are

complicated by the fact that different techniques often probe fundamentally different physical
situations (e.g., equilibrium vs. nonequilibrium conditions) as well as completely different
ranges of observation (e.g., nanoscopic vs. macroscopic dimensions). Comparing results

obtained under such different conditions necessitates a theoretical framework for correlating

equilibrium and nonequilibrium processes, as well as providing independent evidence about the

structural homogeneity of crystallites. Both problems are topics of intense current work

(8,10,12–14,203,204). The data in Fig. 15 emphasize that even in the most recent studies,

where the pitfalls of the various techniques and of their interpretations should have been

ameliorated by now, there remain substantial discrepancies. Indeed, a particularly alarming

result is shown in Fig. 16, where the self diffusivities of alkanes in MFI-type zeolites are shown

to depend significantly on the mean diffusion path probed by PFG NMR (149). While the

measurements at higher temperatures and over larger distances yield constant diffusivities as
observed in numerous previous PFG NMR studies (205,206), recent progress in PFG NMR

Fig. 16 Dependencies of self-diffusion coefficients on the measured root mean square displacements for

n-butane in two different samples of silicalite-1 (a and b). (From Ref. 149.)
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instrumentation (207) allows diffusion measurements over much smaller distances, where the

diffusivities are found to decrease with increasing displacements. This experimental finding
appears to support one of the old explanations of the discrepancies between different techniques,
namely, that there exists a hierarchy of diffusion barriers (36). Clarifying the origin of these

discrepant diffusion measurements is undoubtedly one of the great challenges of future zeolite

research. The eventual solution is intimately associated with progress in our understanding of

real crystal structures and with our ability to synthesize sufficiently ideal zeolite crystallites.

V. METHODS OF SIMULATING DIFFUSION IN ZEOLITES

The wide range of diffusional length and time scales encountered by molecules in zeolites

presents unique challenges to the modeler, requiring that various simulation tools, each with its

own range of applicability, be brought to bear on modeling dynamics in zeolites. In particular,

when transport is relatively rapid, the molecular dynamics technique can be used to simulate

both the temperature and loading dependencies of self diffusion (7,11). On the other hand, when

molecular motion is relatively slow because free-energy barriers separating sorption sites are

large compared with thermal energies, transition-state theory and related methods must be used

to simulate the temperature dependence of site-to-site jump rate constants. In this regime, kinetic

Monte Carlo and mean field theory can then be used to model the loading dependence of

activated diffusion in zeolites (12,14,208). When diffusional length scales become large because

of disorder in zeolite structure, field theories such as the renormalization group approach can be

applied. In this section, we describe the techniques and applications of these methods, focusing

on how the interplay between guest–zeolite adhesion and guest–guest cohesion controls

diffusion in zeolites.

A. Atomistic Methods

The goals of simulating molecular dynamics in zeolites with atomistic detail are twofold: to

predict the transport coefficients of adsorbed molecules and to elucidate the mechanisms of

intracrystalline diffusion. Below we discuss the basic assumptions and force fields underlying
such simulations, as well as the dynamics methods used to model both rapid and activated

motion through zeolites.

1. Basic Assumptions and Force Fields

a. Ordered Zeolite Models

Modeling the dynamics of sorbates in zeolites requires an adequate representation of the zeolite

sorbent. Zeolites are crystalline materials, which simplifies tremendously the modeler’s task as

compared with the task of modeling amorphous or disordered microporous materials such as

silica gels or activated carbons. Zeolite framework structures are well known from many

crystallographic studies and easily accessible from reference material such as Meier and

Olson’s Atlas of Zeolite Structure Types (209), commercial (210) or internet databases (211).

Moreover, the typical size of a zeolite crystallite is 1–100 Am, i.e., much larger than the length

scale probed by atomistic molecular dynamics (MD) simulations. Size effects therefore can

often be neglected except for single-file systems (83), and an adequate modeling of the sorbent

is obtained with only a few unit cells included in the simulation cell, with periodic boundary

conditions to represent the crystallite’s extent.

However, a zeolite structure presents some heterogeneities at the atomistic scale: the

arrangement of Si and Al atoms in the structure (or Al and P for AlPO4’s) usually does not

present any long-range ordering; and in the general case, extraframework cations also occupy
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crystallographic positions without full occupancy or long-range ordering. The simplest way to

tackle this problem is to ignore it completely; indeed, a good 80% of all MD studies of guest

dynamics in zeolites published since 1997 concern aluminum-free, cation-free, defect-free, all-

silica zeolite analogs rather than zeolites. These structures sometimes exist, such as silicalite-1,

silicalite-2, and ZDDAY, the respective analogs of ZSM-5 (structure MFI), ZSM-11 (structure

MEL), and Na-Y (structure FAU). However, the siliceous analogs sometimes do not exist but in

the modeler’s view, such as LTL, the analog of the cation-containing zeolite L. Nevertheless,

these models can be very useful for studying the influence of zeolite structure or topology on an

adsorbate’s dynamics, irrespective of the cations (212), or to determine exactly, by comparison,

the cations’ influence (196,213). Furthermore, some zeolites of industrial interest such as ZSM-

5 present high Si:Al ratios, so that their protonated forms have very few protons per unit cell.

Heink et al. have shown, for example, that the Si:Al ratio of ZSM-5 has very little influence
on hydrocarbon diffusivity (169). In these cases, it is safe to assume that studying diffusion
in a completely siliceous zeolite analog will display most characteristics of diffusion in the

protonated form. This assumption simplifies several factors of the simulation and of the sub-

sequent analysis: fewer parameters for the guest–zeolite interaction potential are needed, the

system does not present any heterogeneity, and electrostatic interactions can be neglected when

using adequate van der Waals interaction parameters, thus decreasing the computational cost

of a force evaluation.

b. Charge Distributions

There are many cases in which such a simplified representation is inadequate: in particular,

exchangeable cations create an intense local electric field (amounting to 3 V/Å next to a Ca2+

cation in Na-A, according to induced IR measurements) (214) so that, unless the cation is

inaccessible to the sorbate, one cannot neglect its Coulombic interaction with an adsorbed

molecule. The number of cations in the frame depends on the Si:Al ratio: each Al atom brings

one negative charge to be compensated by the adequate number of mono- or multivalent

cations. Thus, the Si:Al ratio strongly influences the adsorptive properties of zeolites, so much

that a change in the amount of Al brings a change in nomenclature: for example, FAU-type

zeolites are denoted zeolite X for Si:Al < 1.5 and zeolite Y for Si:Al > 1.5. Many groups have

investigated the distribution of Al and Si atoms in zeolites to determine whether there is any

local arrangement of these atoms (215–220). Since X-ray crystallography does not distinguish

Si from Al, this is necessarily determined from indirect techniques such as Si or Al NMR.

Löwenstein’s rule forbids any Al-O-Al bonds, which brings perfect ordering for Si:Al = 1, such

as in Na-A. In most other cases, no local ordering has been found in the studies mentioned

above. An exception is zeolite EMT, where rich Si and Al phases have been found from

crystallographic measurements, when synthesized using crown ethers as templates (221). In

zeolite L, aluminum atoms preferentially occupy T1 rather than T2 sites, as demonstrated by

neutron crystallography (222).

In the absence of local ordering, a common modeling procedure involves neglecting the

local inhomogeneity of the Si:Al distribution, and replacing all Al or Si by an average tetrahedral

atom T, which is exactly what is observed crystallographically. The Si:Al ratio then is reflected
by the average charge of this T atom, the charges on framework oxygen atoms, and the number

of charge compensating cations. This T-site model has been used in many recent modeling

studies and performs very well for reproducing adsorptive properties of zeolites (223,224).

Indeed, few studies of guest adsorption in zeolites consider explicit Al and Si atoms (225–227).

The most important inhomogeneity inside cation-containing zeolites comes from the

cation distribution. Indeed, except for very special values of the Si:Al ratio, the possible cation

sites are not completely or symmetrically filled, and crystallographic measurements only give
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average occupancies. A common procedure is to use a simplified model, with just the right Si:Al

ratio that allows complete occupancy of the most probable cation sites and no cations in other

sites. This has been used, e.g., by Santikary and Yashonath in their modeling of diffusion in

zeolite Na-A: instead of Si:Al = 1, they used a model Na-A with Si:Al = 2, thus allowing

complete occupancy of cation site I, which gives cubic symmetry of the framework (228).

Similarly, Auerbach and coworkers used a model zeolite Na-Y with Si:Al = 2 in a series of

studies on benzene diffusion, so that the model would contain just the right number of Na cat-

ions to fill sites IV and II, thereby giving tetrahedral symmetry (58,196,229). In studying Na-X,

which typically involves Si:Al = 1.2, they used Si:Al = 1 so that Na(III) would also be filled
(196). This type of procedure is generally used to level off inhomogeneities that complicate

the analysis.

It is instructive to observe the effect of the Si:Al ratio of FAU-type zeolites on the behavior
of benzene diffusion, as determined from modeling (196,229,230). For very high Si:Al ratios no

cations are accessible to sorbed benzene, which only experiences a weak interaction with the

framework, and hence diffuses over shallow energetic barriers. These reach only 10 kJ mol�1

between the supercage sites and window sites, where benzene adsorbs in the plane of the 12 T-

atom ring (12R) window separating two adjacent supercages (230). As the Si:Al ratio decreases

toward Na-Y, cation sites II begin to fill in as indicated in Fig. 17. These Na(II) cations at

tetrahedral supercage positions create strong local adsorption sites for benzene (the SII site),

while the window site remains unchanged. As a consequence, the energetic barrier to diffusion
increases to about 40 kJ mol�1 (229). The spread in measured activation energies for benzene in

Na-Y shown in Fig. 17 reflects both intracage and cage-to-cage dynamics (198) because both

NMR relaxation data (intracage) and diffusion data (cage-to-cage) are shown. When the Si:Al

ratio further decreases toward Na-X, the windows are occupied by strongly adsorbing site III

cations. As a consequence, the window site is replaced by a strong SIII site where benzene is

facially coordinated to the site III cation, so that transport is controlled by smaller energy barriers

reaching only about 15 kJ mol�1 (196). Figure 17 (top and middle) schematically presents this

behavior, while on the bottom part we compare the expected behavior of the activation energy

(full line) as a function of the Si:Al ratio to the available experimental observations (points). The

correlation between simulation and experiments is qualitatively reasonable considering the

spread of experimental data. Figure 17 shows the success of using a particular Si:Al ratio to

simplify the computation, and furthermore shows that adding cations to the structure does not

necessarily result in increased diffusion activation energy.

Despite the success of treating disordered charge distributions as being ordered, Chen et al.

have suggested that electrostatic traps created by disordered Al and cation distributions can

significantly diminish self diffusivities from their values for corresponding ordered systems

(148). In addition, when modeling the dynamics of exchangeable cations (231) or molecules in

acidic zeolites (227), it may be important to develop more sophisticated zeolite models that

completely sample Al and Si heterogeneity, as well as the possible cation distributions. For

example, Newsam and coworkers proposed an iterative strategy allowing the placement of

exchangeable cations inside a negatively charged framework (232), implemented within MSI’s

Cerius2 modeling environment. In addition, Jousse et al. constructed a model zeolite H-Y (Si:Al

= 2.43) by randomly placing aluminum atoms in the frame, and distributing protons using the

following three rules: (a) protons are linked to an oxygen close to an Al atom; (b) no two

hydroxyl groups can be linked to the same silicon atom; (c) no proton can be closer than 4.0 Å

from another (227). Although these rules do not completely determine the proton positions, they

found that several different proton distributions were broadly equivalent as far as sorption of

benzene is concerned. It is clear from the above examples that the real issue in modeling the

dynamics of sorbed molecules in zeolites comes from the interaction potentials, also known as

force fields when computed from empirical functional forms. Before discussing these force
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fields in the context of dynamics, however, we examine a hot topic among scientists in the field:
whether framework vibrations influence the dynamics of guest molecules in zeolites.

c. Framework Flexibility

This question has long remained an open one, but many recent studies have made systematic

comparisons between fixed and flexible lattice simulations, based on several examples:

methane and light hydrocarbons in silicate-1 (64,233–236), methane in cation-free LTA
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Fig. 17 Activation energies of benzene diffusion in FAU-type zeolites. The top part shows Si:Al ratios of
FAU-type zeolites, with the corresponding occupied cation sites. The middle part represents schematic

benzene adsorption sites and the energy barriers between them arising from different cation distributions. C

is a benzene supercage site far from a cation, W is a benzene window site far from a cation, S2 is a cage site

close to an SII cation, S3 is a window site close to an SIII cation. The bottom part gives diffusion activation
energies for various Si:Al ratios. The solid line shows the overall trend from simulations; symbols are

particular experiment or simulation results: 1. Forni et al. (Ref. 400), 2. Bülow et al. (Ref. 378), 3. Lorenz

et al. (Ref. 401), 4. Sousa-Gonc�alves et al. (Ref. 195), 5. Isfort et al. (Ref. 201), 6. Jobic et al. (Ref. 179), 7.
Burmeister et al. (Ref. 402), 8. Auerbach et al. (Ref. 229), 9. Bull et al. (Ref. 194) and 10. Auerbach et al.

(Ref. 196).
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(237), Lennard-Jones adsorbates in Na-A (228) and in Na-Y (238), benzene and propylene in

MCM-22 (239), benzene in Na-Y (240–242), and methane in AlPO4�5 (243). In cation-free

zeolites, these recent studies have found that diffusivities are virtually unchanged when

including lattice vibrations. Fritzsche et al. (237) explained earlier discrepancies on methane

in cation-free LTA zeolite by pointing out that inappropriate comparisons were made between

rigid and flexible framework studies. In particular, the rigid studies used crystallographic

coordinates for the framework atoms, while the force field used to represent the framework

vibrations gave a larger mean window size than that in the rigid case, thereby resulting in larger

diffusivities in the flexible framework. By comparing with a model rigid LTA minimized using

the same force field, they found almost no influence on the diffusion coefficient. Similarly,

Demontis et al. have studied the diffusion of methane in silicalite-1, with rigid and flexible
frameworks (234). They conclude that the framework vibrations do not influence the diffusion
coefficient, although they affect local dynamic properties such as the damping of the velocity

autocorrelation function. Following these findings, numerous recent diffusion studies of guest

hydrocarbons or Lennard-Jones adsorbates in cation-free zeolites keep the framework rigid

(81,166,175,185,212,244–248).

However, there are some counterexamples in cation-free zeolites. In a recent MD study of

benzene and propylene in MCM-22 zeolite, Sastre et al. found differences between the diffusion
coefficients calculated in the rigid and flexible framework cases (239). Bouyermaouen and

Bellemans also observe notable differences for i-butane diffusion in silicalite-1 (236). Snurr et al.
used transition state theory (TST) to calculate benzene jump rates in a rigid model of silicalite-1

(249), finding diffusivities that are one to two orders of magnitude smaller than experimental

values. Forester and Smith subsequently applied TST to benzene in flexible silicalite-1 (250),

finding essentially quantitative agreement with experiment, thus demonstrating the importance

of including framework flexibility when modeling tight-fitting guest–zeolite systems.

Strong framework flexibility effects might also be expected for molecules in cation-

containing zeolites, where cation vibrations strongly couple to the adsorbate’s motions, and

where diffusion is mostly an activated process. However, where a comparison between flexible-
and fixed-framework calculations has been performed, surprisingly little influence has been

found. This has been shown by Santikary and Yashonath for the diffusion of Lennard-Jones

adsorbates of varying size in Na-A. They found a notable difference on the adsorbate density

distribution and external frequencies, but not on diffusion coefficients (228). Mosell et al. found

that the potential of mean force for the diffusion of benzene in Na-Y remains essentially

unchangedwhen framework vibrations are included (240). Jousse et al. also found that the site-to-

site jump probabilities for benzene in Na-Y do not change when including framework flexibility,
in spite of very strong coupling between benzene’s external vibrations and the Na(II) cation

(242). The reasons behind this behavior remain unclear, and it is also doubtful whether these

findings can be extended to other systems. Nevertheless, direct examination of the influence of
zeolite vibrations on guest dynamics suggests the following: a strong influence on local static and
dynamic properties of the guest, such as low-frequency spectra, correlation functions, and density

distributions; a strong influence on the activated diffusion of tight-fitting guest–zeolite systems;

but a small influence on diffusion of smaller molecules such as unbranched alkanes.

The preceding discussion on framework flexibility, and its impact on molecular

dynamics, has the merit of pointing out the two important aspects for modeling zeolites:

structural and dynamical. On the structural side, the zeolite cation distribution, channel

diameters, and window sizes must be well represented. On the dynamic side, for tight-fitting
host–guest systems, the framework vibrations must allow for an accurate treatment of the

activation energy for molecular jumps through flexing channels and/or windows. Existing

zeolite framework force fields are numerous and take many different forms, but they are
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generally designed for only one of these purposes. It is beyond the scope of this chapter to

review all zeolite framework force fields (11); we simply wish to emphasize that one should be

very cautious in choosing the appropriate force field designed for the properties to be studied.

d. Guest–Zeolite Force Fields

The guest–framework force field is the most important ingredient for atomistic dynamic models

of sorbed molecules in zeolites. Force fields for guest–zeolite interactions are at least as diverse
as those for the zeolite framework—even more so, in fact, as most studies of guest molecules

involve a reparameterization of potential energy functions to reproduce some typical thermo-

dynamic property of the system, such as adsorption energies or adsorption isotherms. Since

force fields are but an analytical approximation of the real potential energy surface, it is

essential that the underlying physics is correctly captured by the analytical form. Every

researcher working in the field has a different opinion on what the correct form should be;

therefore the following discussion must necessarily remain subjective, and we refer the reader

to the original articles to sample different opinions.
Physical contributions to the interaction energy between host and guest are numerous.

Most important are the short-range dispersive and repulsive interactions, and the electrostatic

multipolar and inductive interactions. Nicholson and coworkers developed precise potentials

for the adsorption of rare gases in silicalite-1, including high-order dispersive terms (251), and

have shown that all terms contribute significantly to the potential energy surface (252), with the

largest contributions coming from the two- and three-body dispersion terms. Cohen de Lara and

coworkers developed and applied a potential function including inductive terms for the

adsorption of diatomic homonuclear molecules in A-type zeolites (253,254). Here also the

induction term makes a large contribution to the total interaction energy. A general force field
would have to account for all of these different contributions, but most force fields completely

neglect these terms for the sake of simplicity. Simplified expressions include only a dispersive-

repulsive short-ranged potential, often represented by a Lennard Jones 6–12 or a Buckingham

6-exponential potential, possibly combined with electrostatic interactions between partial

charges on the zeolite and guest atoms, according to:

UZG ¼
X
I

X
j

qIqj

rIj
� AIj

r6Ij
þ BIj

r12Ij

( )
: ð80Þ

In general, parameters A and B are determined by some type of combination rule from

‘‘atomic’’ parameters and adjusted to reproduce equilibrium properties such as adsorption

energies or adsorption isotherms. It is unlikely, however, that such a potential is transferable

between different guest molecules or zeolite structures. As such, the first step of any study

utilizing such a simple force field on a new type of host or guest should be the computation of

some reference experimental data, such as the heat of adsorption, and eventually the

reparametrization of force field terms. Indeed, general-purpose force fields such as CVFF do

not give generally adequate results for adsorption in zeolites (255,256).

The simplification of the force field terms can proceed further: in all-silica zeolite analogs

with small channels, the electric field does not vary much across the channel and as a

consequence the Coulombic term in Eq. (80) can often be neglected. This is of course not true

for cation-containing zeolites, where the cations create an intense and local electric field that

generally gives rise to strong adsorption sites. Since evaluating electrostatic energies is so

computationally demanding, neglecting such terms allows for much longer dynamics simu-

lations. Another common simplification is to represent CH2 and CH3 groups in saturated

hydrocarbons as united atoms with their own effective potentials. These are very frequently

used to model hydrocarbons in all-silica zeolites (175,237,244,245,257). There is, however,
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active debate in the literature about whether such a simplified model can account for enough

properties of adsorbed hydrocarbons (258–260).

The standard method for evaluating Coulombic energies in guest–zeolite systems is the

Ewald method (261,262), which scales as nlnn with increasing number of atoms n. In 1987

Greengard and Rokhlin (263) presented the alternative ‘‘fast multipole method’’ (FMM) which

only scales as n, and therefore offers the possibility of simulating larger systems. In general, FMM

only competes with the Ewald method for systems with many thousand atoms (264) and therefore

is of little use in zeolitic systems where the simulation cell can usually be reduced to a few

hundreds or a few thousand atoms. However, in the special case where the zeolite lattice is kept

rigid, most of the terms in FMMcan be precomputed and stored; in this case, Jousse andAuerbach

have shown that FMM becomes faster than Ewald summation for benzene in Na-Y (58).

This section would not be complete without mentioning the possibility of performing

atomistic simulations in zeolites without force fields (265), using ab initio molecular dynamics

(AIMD) (266,267). Following the original work of Car and Parrinello, most such studies use

density functional theory and plane wave basis sets (268). This technique has been applied

recently to adsorbate dynamics in zeolites (269–277). Beside the obvious interest of being free

of systematic errors due to the force field, this technique also allows the direct study of zeolite

catalytic activity (269–271). However, AIMD remains so time consuming that a dynamic

simulation of a zeolite unit cell with an adsorbed guest only reaches a few picoseconds at most.

This time scale is too short to follow diffusion in zeolites, so that current simulations are mostly

limited to studying vibrational behavior (269–274). Similarly, catalytic activity is limited to

reactions with activation energies on the order of thermal energies (269,271,275). However, the

potential of AIMD to simulate transport coefficients has been demonstrated for simpler systems

(278,279) and will likely extend to guest–zeolite systems in the near future as computers and

algorithms improve.

2. Equilibriumand NonequilibriumMolecular Dynamics

Since the first application of equilibrium MD to guest molecules adsorbed in zeolites in 1986

(280), the subject has attracted growing interest (10–14,281,282). Indeed, MD simulations

provide an invaluable tool for studying the dynamic behavior of adsorbed molecules over times

ranging from picoseconds to nanoseconds, thus correlating atomistic interactions to experi-

ments that probe molecular dynamics, including solid-state NMR, PFG, NMR, inelastic neutron

spectroscopy (INS), quasi-elastic neutron scattering (QENS), IR and Raman spectroscopy.

The molecular dynamics of guest molecules in zeolites is conceptually no different from
MD simulations of any other nano-sized system. Classical MD involves numerically integrating

classical equations of motion for a many-body system. For example, when using cartesian

coordinates, one can integrate Newton’s second law: Fi = miai where mi is the mass of the ith

particle, ai = d2ri/dt
2 is its acceleration, and Fi = � Dri

V is the force on particle i. The crucial

inputs to MD are the initial positions and velocities of all particles as well as the system

potential energy function V(r1, r2,. . .,rn). The output of MD is the dynamic trajectory [ri(t),

vi(t)] for each particle. All modern techniques arising in the field can be applied to the

simulation of zeolites, including multiple time scale techniques, thermostats, and constraints.

The interested reader is referred to textbooks on the method (262,283,284), and to modern

reviews (285,286). In this section we shall describe only those aspects of MD that are especially

pertinent to molecules in zeolites. A comprehensive review on MD of guest molecules in

zeolites was published in 1997 by Demontis and Suffritti (11). Because the review by Demontis

and Suffritti discusses virtually all applications of the method up to 1996, we will limit our

examples to the most recent MD studies.
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a. Parameters

We estimate that the current limiting diffusivity below which adsorbate motion is too slow for

equilibrium MD, is around Dmin c 5 � 10�10 m2 s�1, obtained by supposing that a molecule

travels over 10 unit cells of 10 Å during a 20-ns MD run. This value of Dmin is higher than most

measured diffusivities in cation-containing zeolites (5), explaining why so many MD studies

focus on hydrocarbons in all-silica zeolite analogs. Even then, the simplifications discussed

above are required to perform MD runs of several nanoseconds in a manageable time: simple

Lennard-Jones force fields on united atom interaction centers without Coulombic interactions,

bond constraints on C-C bonds allowing for longer time steps, and the use of fixed frameworks.

b. Ensembles

A flexible zeolite framework typically provides an excellent thermostat for the sorbate

molecules. The framework temperature exhibits minimal variations around its average value,

whereas the sorbate energy fluctuates in a way consistent with the canonical ensemble. This is

valid either for a microcanonical (NVE) ensemble run, or a canonical (NVT) ensemble run

involving mild coupling to an external thermostat. We caution that coupling the system too

strongly to an external bath will almost surely contaminate the actual sorbate dynamics.

The problem is clearly more complex when the zeolite framework is kept rigid. Ideally,

one should run the dynamics in the canonical ensemble, with just the right coupling constant to

reproduce the fluctuations arising from a flexible framework. However, when these fluctuations
are unknown, it is not obvious whether a canonical or microcanonical run is better. In the NVE

ensemble, the sorbate does not exchange energy with a bath, which may lead to incorrect energy

statistics. This is particularly true at low loading but may remain true for higher loadings as well.

Indeed, in a direct study of the kinetic energy relaxation of Lennard-Jones particles in Na-Y,

Schrimpf et al. found that thermalization due to interactions with the framework is considerably

faster than thermalization due to mutual interactions between the adsorbates (238). Therefore, it

is probably better to run the dynamics in the NVT ensemble, with sufficiently weak coupling to

an external thermostat to leave the dynamics uncontaminated. On the other hand, Jousse et al.

have shown that for nonrigid benzene in Na-Y, there is very rapid energy redistribution from

translational kinetic energy into benzene’s internal vibrational degrees of freedom (242), which

proceeds on a time scale comparable to the thermalization due to interactions with the flexible
frame. This suggests that for sufficiently large, flexible guest molecules, the transport behavior

can be adequately modeled in the NVE ensemble even at infinite dilution.

Although most simulations of diffusion in zeolites have focused on self diffusion for

computational simplicity, we note growing interest in performing nonequilibrium MD (NEMD)

simulations on guest–zeolite systems to model transport diffusion. As an aside, we note that

MD experts would classify thermostatted MD, and any non-Newtonian MD for that matter, as

NEMD (287,288). We shall be much more restrictive and limit the nonequilibrium behavior to

studies involving an explicit gradient along the system, resulting in a net flow of particles. This

is especially interesting in zeolite science because most applications of zeolites are run under

nonequilibrium conditions, and also because of recent progress in the synthesis of continuous

zeolite membranes (289,290) (see also Chapter 17 by Nair and Tsapatsis in this volume). In this

case we seek the Fickian or transport diffusivity, discussed thoroughly in Sec. II.B; here we

only wish to discuss ensembles relevant to this NEMD.

A seminal study was reported in 1993 by Maginn et al., reporting NEMD calculations of

methane transport diffusion through silicalite-1 (35). They applied gradient relaxation MD as

well as external field MD (EFMD), simulating the equilibration of a macroscopic concentration

gradient and the steady-state flow driven by an external field, respectively. They found that

EFMD provides a more reliable method for simulating the linear response regime. Fritzsche et al.
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applied NEMD methods to calculate the transport diffusivity of methane in cation-free LTA

(zeolite A) (291), obtaining results in excellent agreement with the Darken equation [Eq. (29)].

Since then, NEMD methods in the grand canonical ensemble have been reported. Of

particular interest is the dual-control volume–grand canonical molecular dynamics (DCV-

GCMD) method, presented by Heffelfinger and van Swol (292). In this approach the system is

divided into three parts: a central and two boundary regions. In the central region, regular

molecular dynamics is performed, whereas in the boundary regions creation and annihilation of

molecules are allowed to equilibrate the system with a given chemical potential, following the

grand canonical Monte Carlo procedure. This or similar methods have been applied to the

simulation of fluid-like behavior in slit pores of very small dimensions (down to a few molecular

diameters) (293–298).Martin et al. appliedDCV-GCMD to the simulation ofmethane permeation

through thin silicalite membranes (299). They found that for very thin membranes the external

surface resistance is significant, requiring large spatial separations between external surfaces and
grand canonical control volumes to avoid interferences with the grand canonical statistics.

Arya et al. (90) compared the computational efficiencies and accuracies of DCV-GCMD

and EFMD, both applied to transport diffusion in AlPO4-5. The accuracies of both methods

were benchmarked against equilibrium MD (EMD) calculations of the Onsager coefficient

according to Eq. (56). Arya et al. found that EMD and EFMD yield identical transport

coefficients for all systems studied. However, the transport coefficients calculated using DCV-

GCMD were lower than those obtained from EMD and EFMD unless (a) a large ratio of

stochastic to dynamic moves is used for each control volume, and (b) a streaming velocity is

added to all inserted molecules. In general, these authors found that DCV-GCMD is much less

efficient than either the EMD or EFMD techniques (90).

c. Data Analyses

Although MD becomes inefficient for modeling activated diffusion, MD can provide useful

information about such transport when barriers are comparable to kBT. In this case, MD can be

used to define a coarse-grained model of diffusion (300,301). This coarse graining requires two

inputs: the lattice of sites on which diffusion takes place, and the kinetic law governing the

motions between those sites. The analysis of MD trajectories as a jump diffusion process allows
one to determine the adsorption sites by monitoring the positions of maximal probability of the

adsorbate during the dynamics (301), as well as the details of the kinetic law. It has generally

been found that residence time distributions follow a simple exponential dependence, character-

istic of random site-to-site jumps. In Fig. 18, we present such a residence time distribution for the

example of benzene diffusing in zeolite LTL that clearly shows this signature. These

observations support the usual assumption of Poisson dynamics, central to many lattice models

of guest diffusion in zeolites (see Sec. V.B.1). However, one often finds correlations between
jumps that complicate the coarse-grained representation of diffusion (53,54,301).

d. Dynamics of Hydrocarbons in Silicalite-1 and 10R Zeolites

Zeolite ZSM-5 is used in petroleum cracking, which explains the early interest in modeling the

diffusion of alkanes in silicalite-1, the all-silica analog of ZSM-5 (62,64,65,233,234,300,302).

This early work has been reviewed by Demontis and Suffritti in 1997 (11); therefore, we only

wish to outline recent studies.

As pointed out earlier, the relatively rapid diffusivity of alkanes in the channels of all-

silica zeolites, at room temperature or above, makes these systems perfect candidates for MD

simulations. In general, very good agreement is found between MD self diffusivities and those

of microscopic types of experiments, such as PFG NMR or QENS. Figure 19 gives an example

of this agreement for methane and butane in silicalite-1 at 300 K (MD data slightly spread for
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Fig. 18 Cage residence time distribution of benzene in zeolite LTL showing agreement with Poisson

statistics, computed from a 1-ns molecular dynamics simulation at 800 K with a single benzene molecule

in the simulation cell.
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Fig. 19 Self-diffusion concentration dependence of methane and butane in silicalite-1 at 300K, from PFG

NMR, QENS, and MD simulations, showing good agreement with the (1�u) loading dependence predicted
by mean field theory. Crosses are NMR data from Caro et al. (Ref. 2) for methane and Heink et al. (Ref.

169) for butane, while the star shows QENS butane data from Jobic et al. (Ref. 404). In all cases, error bars

represent an estimated 50% uncertainty. Letters are MD results (slightly spread for clarity): a-1 for methane

and m-s for butane, from the following references: (a) June et al. (Ref. 62), (b) Demontis et al. (Ref. 64), (c)

Catlow et al. (Ref. 233), (e) Goodbody et al. (Ref. 65), (f) Demontis et al. (Ref. 234), (g) Nicholas et al.

(Ref. 405), (h) Smirnov (Ref. 235), (i) Jost et al. (Ref. 185), (j) Ermoshin and Engel (Ref. 406), (k) Schuring

et al. (Ref. 175), (l) Gergidis and Theodorou (Ref. 248), (m) June et al. (Ref. 300), (n) Hernández and

Catlow (Ref. 407), (o) Maginn et al. (Ref. 171), (p) Bouyermaouen and Bellemans (Ref. 236), (q)

Goodbody et al. (Ref. 65), (r) Gergidis and Theodorou (Ref. 248), and (s) Schuring et al. (Ref. 175).
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clarity). This good agreement, in spite of the crudeness of the potentials used, shows that the

diffusivity of light alkanes in silicalite-1 depends on the force field properly representing the

host–guest steric interactions, i.e., on the size and topology of the pores. Recognizing this,

many recent studies focus on comparing diffusion coefficients for different alkanes in many

different zeolite topologies, in an effort to rationalize different observed catalytic behaviors.

Jousse et al. studied the diffusion of butene isomers at infinite dilution in 10R zeolites with

various topologies: TON, MTT, MEL, MFI, FER, and HEU. They observed in all cases, except

for the structure TON, that trans-2-butene diffuses more rapidly than all other isomers (303).

Webb and Grest studied the diffusion of linear decanes and n-methylnonanes in seven 10R

zeolites: AEL, EUO, FER, MEL, MFI, MTT, and TON (212). For MEL, MTT, and MFI, they

observe that the self-diffusion coefficient decreases monotonically as the branch position is

moved toward the center (and the isomer becomes bulkier), whereas for the four other

structures, Ds presents a minimum for another branch position, suggesting that product shape

selectivity might play some role in determining the zeolite selectivity. More recently, Webb et

al. studied linear and branched alkanes in the range n = 7–30 in TON, EUO, and MFI (247).

Again they observe lattice effects for branched molecules, where Ds presents a minimum as a

function of branch position dependent on the structure. They note also some ‘‘resonant diffusion
effect’’ as a function of carbon number, noted earlier by Runnebaum and Maginn (170): the

diffusivity becomes a periodic function of carbon number, due to the preferential localization of

molecules along one channel and their increased diffusion in this channel. Schuring et al.

studied the diffusion of C1 to C12 in MFI, MOR, FER, and TON for different loadings (175).
They also find some indication of a resonant diffusion mechanism as a function of chain length.

Their study also indicates that the diffusion of branched alkanes is significantly slower than that

of their linear counterparts, but only for structures with small pores where there is a tight fit
between the adsorbates and the pores.

Another current direction of research concerns the diffusion of mixtures of adsorbates.

Although the currently preferred atomistic simulation method applied to the adsorption of

mixtures is grand canonical Monte Carlo (304–308), MD simulations are also used to determine

how the dynamics of one component affects the diffusion of the other (185,248,257,309). Sholl

and Fichthorn investigated how a binary mixture of adsorbates diffuses in unidirectional pores

(309), finding a dual mode of diffusion for certain mixtures, wherein one component undergoes

normal unidirectional diffusion while the other performs single-file diffusion. Jost et al. studied
the diffusion of mixtures of methane and xenon in silicalite-1 (185). They find that the diffusivity
of methane decreases strongly as the loading of Xe increases whereas the diffusivity of Xe is

nearly independent of the loading of methane, which they attribute to the larger mass and heat of

adsorption of Xe. On the other hand, Gergidis and Theodorou in their study of mixtures of

methane and n-butane in silicalite-1 (248) found that the diffusivity of both molecules decreases

monotonically with increasing loading of the other. Both groups report good agreement with

PFG NMR (185) and QENS experiments (257).

e. Single-File Diffusion

Single-file diffusion designates the particular collective motion of particles diffusing along a

one-dimensional channel and unable to pass each other. As already mentioned, in that case the

long-time motions of the particles are completely correlated, so that the limit of the MSD

depends on the boundaries of the system. Exact treatments using lattice models show that the

MSD has three limiting dependencies with time (310,311): plateau for fixed boundaries, linear

with t for periodic boundaries or open boundaries (83), and
ffiffi
t

p
for infinite pore length.

Experimental evidence for the existence of single-file behavior in unidimensional zeolites

(76,78,180,312) has prompted renewed interest in the subject during the last few years

Copyright © 2003 Marcel Dekker, Inc.



(83,84,245,246,313–316). In particular, several MD simulations of more or less realistic single-

file systems have been performed in order to determine whether the single-file
ffiffi
t

p
regime is not

an artifact of the simple lattice model on which it is based (81,245,246,315,316). Since the

long-time motions of the particles in the MD simulations are necessarily correlated, great care

must be taken to adequately consider the system boundaries. In particular, when using periodic

boundary conditions, the system size along the channel axis must be sufficiently large to avoid

the linear behavior due to the diffusion of the complete set of molecules.

Hahn and Kärger studied the diffusion of Lennard-Jones particles along a straight tube in

three cases: (a) without external forces acting on the particles from the tube, (b) with random

forces, and (c) with a periodic potential from the tube (316). They find for the no-force case

that the MSD is proportional to t, whereas for random forces and a periodic potential it is

proportional to
ffiffi
t

p
, in agreement with the random walk model. Keffer et al. performed MD

simulations of Lennard-Jones methane and ethane in an atomistic model of AlPO4�5 (315).

The methane molecules, which are able to pass each other, display undirectional but otherwise

normal diffusion with the MSD linear with t whereas ethane molecules, which have a smaller

probability to pass each other, display single-file behavior with an MSD proportional to
ffiffi
t

p
. For

longer times, however, the nonzero probability to pass each other destroys the single-file
behavior for ethane. Similar behavior was found by Tepper et al. (81). Sholl and coworkers

investigated the diffusion of Lennard-Jones particles in a model AlPO4�5 (84,245,246) and

found that diffusion along the pores can occur via concerted diffusion of weakly bound

molecular clusters, composed of several adsorbates. These clusters can jump with much

smaller activation energies than that of a single molecule. However, the MSD retains its single-

file
ffiffi
t

p
signature because all of the adsorbates in a file do not collapse to form a single

supramolecular cluster.

These MD simulations of unidirectional and single-file systems confirm the lattice gas

prediction that the MSD is proportional to
ffiffi
t

p
. They also show that whenever a certain crossing

probability exists, this single-file behavior disappears at long times, to be replaced by normal

diffusion. Similar ‘‘anomalous’’ diffusion regimes, with the MSD proportional to t at long times

and to ta with a < 1 at short times, have also been found in other systems that do not satisfy the

single-file criteria, such as n-butane in silicalite-1 at high loadings (248). Therefore, one should

be very careful to define exactly the time scale of interest when working with single-file or

other highly correlated systems.

3. Transition State Theory and Dynamical Corrections

As discussed above in Sec. V.A.2, the smallest diffusivity that can be simulated by MD

methods is well above most measured values in cation-containing zeolites (5), explaining why

so many MD studies focus on hydrocarbons in all-silica zeolite analogs. This issue has been

addressed by several groups within the last 10 years (317), by applying reactive flux molecular

dynamics (23,318) (RFMD) and TST (319), to model the dynamics of rare events in zeolites.

This subject has been reviewed very recently (12,14); as a result, we give below only a brief

outline of the theory.

a. Rare Event Theory

The standard ansatz in TST is to replace the dynamically converged, net reactive flux from

reactants to products with the instantaneous flux through the transition state dividing surface.

TST is inspired by the fact that, although a dynamic rate calculation is rigorously independent

of the surface through which fluxes are computed (320), the duration of dynamics required to

converge the net reactive flux is usually shortest when using the transition state dividing
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surface. The TST approximation can be formulated for gas phase or condensed phase systems

(23,318,321), using classical or quantum mechanics (322). The rate coefficient for the jump

from site i to site j can be expressed classically as (23,318):

ki!j ¼ kTSTi!j � fij; ð81Þ
where ki!j

TST is the TST rate constant, and fij is the dynamic correction factor also known as the

classical transmission coefficient. The TST rate constant is given by:

kTSTi!j ¼ 1

2

2kBT

pm

� �1=2
Qz
Qi

; ð82Þ

where m is the reduced mass associated with the reaction coordinate, Qz is the configurational
partition function on the dividing surface, and Qi is the configurational partition function in the

reactant state i. The last expression can be evaluated without recourse to dynamics, either by

Monte Carlo simulation (323) or in the harmonic approximation by normal-mode analysis

(324). The dynamic correction factor is usually evaluated from short MD simulations

originating on the dividing surface. For classical systems, fij always takes a value between 0

and 1, and gives the temperature-dependent fraction of initial conditions on the dividing surface

that initially point to products and eventually give rise to reaction.

When one has an educated guess regarding the reaction coordinate but no knowledge of

the transition state or the dividing surface, a reliable but computationally expensive solution is

to calculate the free-energy surface along a prescribed path from one free-energy minimum to

another. The free-energy surface, F(x0), which is also known as the potential of mean force and

as the reversible work surface, is given by:

Fðx0Þ ¼ �kBT ln½Lhdðx� x0Þi� ¼ �kBT ln Qðx0Þ; ð83Þ
where x is the assumed reaction coordinate, x0 is the clamped value of x during the ensemble

average over all other coordinates, the length L is a formal normalization constant that cancels

when computing free energy differences, and Q(x0) is the partition function associated with the

free energy at x0. In terms of the free-energy surface, the TST rate constant is given by:

kTSTi!j ¼ 1

2

2kBT

pm

� �1=2
e�bFðxzÞR
i
dxe�bFðxÞ ð84Þ

where the integral over x is restricted to the reactant region of configuration space. Computing

TST rate constants is therefore equivalent to calculating free-energy differences. Numerous

methods have been developed over the years for computing e�bF(x), many of which fall under

the name umbrella sampling or histogram window sampling (23,284).

While Eqs. (80–83) are standard expressions of rare event theory, the exact way in

which they are implemented depends strongly on the actual system of interest. Indeed, if the

transition state dividing surface is precisely known (as for the case of an adatom), then

ki!j
TST provides a good first approximation to the rate coefficient, and the dynamic correction

factor accounts for the possibility that the particle does not thermalize in the state it has first
reached but instead goes on to a different final state. This process is called dynamic recrossing

if the final state is identical to the original state, and otherwise is called multisite jumping.

The importance of dynamic recrossing or multisite jumping depends on a number of fac-

tors, of which the height of the energy barriers and the mechanism of energy dissipation

are essential.

For example, the minimal energy path for benzene to jump from a cation site to a window

site in Na-Y is shown in Fig. 20, alongside the corresponding energy plot (229). Despite

benzene’s anisotropy, a reasonable model for the cation X window dividing surface turns out to

Copyright © 2003 Marcel Dekker, Inc.



be the plane perpendicular to the three-dimensional vector connecting the two sites. This simple

approach yields dynamic correction factors mostly above 0.5 (58).

In a complex system with many degrees of freedom it might be difficult, or even

impossible, to define rigorously the dividing surface between the states. In this case, the

transition state approximation may fail, requiring the calculation of fij. Indeed, TST assumes

that all trajectories initially crossing the dividing surface in the direction of the product state

will eventually relax in this state. This statement will be qualitatively false if the supposed

surface does not coincide with the actual dividing surface. In this case, the dynamic correction

factor corrects TST for an inaccurately defined dividing surface, even when dynamic

recrossings through the actual dividing surface are rare. The problem of locating complex

dividing surfaces has recently been addressed using topology (325), statistics (326), and

dynamics (327,328).

b. Siliceous Zeolite

June et al. reported the first application of TST dynamically corrected with RFMD for a

zeolite–guest system in 1991 (317), modeling the diffusion of Xe and ‘‘spherical SF6’’ in

silicalite-1. This system is sufficiently weakly binding that reasonably converged MD

simulations could be performed for comparison with the rare event dynamics, showing

excellent quantitative agreement in the diffusivities obtained. The dynamic correction factors

obtained by June et al. show that recrossings can diminish rate coefficients by as much as a

factor of about 3 and that multisite jumps along straight channels in silicalite-1 (53) contribute

to the well-known diffusion anisotropy in MFI-type zeolites (60). Jousse and coworkers

reported a series of MD studies on butene isomers in all-silica channel zeolites MEL and

TON (301,329). Because the site-to-site energy barriers in these systems are comparable to the

thermal energies studied in the MD simulations, rare-event dynamics need not apply. None-

theless, Jousse and coworkers showed that even for these relatively low-barrier systems, the

magnitudes and loading dependencies of the MD diffusivities could be well explained within a

jump diffusion model, with residence times extracted from the MD simulations.

As discussed in Sec. V.A.1, Snurr et al. applied harmonic TST to benzene diffusion
in silicalite-1, assuming that benzene and silicalite-1 remain rigid, by using normal-mode

analysis for the six remaining benzene degrees of freedom (249). Their results underestimate

Fig. 20 Cation X window path for benzene in Na-Y (transition state indicated in bold), with a calculated

barrier of 41 kJ mol�1. (From Ref. 229.)
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experimental diffusivities by one to two orders of magnitude, probably more from assuming a

rigid zeolite than from using harmonic TST. Forester and Smith subsequently applied TST to

benzene in silicalite-1 using constrained reaction coordinate dynamics on both rigid and

flexible lattices (250). Lattice flexibility was found to have a very strong influence on the jump

rates. Diffusivities obtained from the flexible framework simulations are in excellent agreement

with experiment, overestimating the measured room temperature diffusivity (2.2 � 10�14 m2

s�1) by only about 50%. These studies suggest that including framework flexibility is very

important for bulkier guest molecules, which may require framework distortions to move along

zeolite channels or through windows separating zeolite cages.

c. Cation-Containing Zeolites

Mosell et al. reported a series of TST and RFMD calculations on Xe in Na-Y (330,331) in

1996, and benzene and p-xylene in Na-Y (240,241) in 1997. They calculated the reversible

work of dragging a guest species along the cage-to-cage (110) axis of Na-Y and augmented this

version of TST with dynamic corrections. In addition to computing the rate coefficient for cage-

to-cage motion through Na-Y, Mosell et al. confirmed that benzene window sites are free-

energy local minima, while p-xylene window sites are free-energy maxima, i.e., cage-to-cage

transition states (240,241). Mosell et al. also found relatively small dynamic correction factors,

ranging from 0.08 to 0.39 for benzene and 0.24 to 0.47 for p-xylene.

At about the same time in 1997, Jousse and Auerbach reported TST and RFMD

calculations of specific site-to-site rate coefficients for benzene in Na-Y (58), using Eq. (81)

with jump-dependent dividing surfaces. As with Refs. 240 and 241, Jousse and Auerbach found

that benzene jumps to window sites could be defined for all temperatures studied. Jousse and

Auerbach were unable to use TST to model the window ! window jump because they could

not visualize simply the anisotropy of the window! window-dividing surface. For jumps other

than window ! window, they found dynamic correction factors mostly above 0.5, suggesting

that these jump-dependent dividing surfaces coincide closely with the actual ones. Although the

flavors of the two approaches for modeling benzene in Na-Y differed, the final results were

remarkably similar considering that different force fields were used. In particular, Mosell et al.

used MD to sample dividing surface configurations, whereas Jousse and Auerbach applied the

Voter displacement-vector Monte Carlo method (323) for sampling dividing surfaces. The

apparent activation energy for cage-to-cage motion in our study is 44 kJ mol�1, in very

reasonable agreement with 49 kJ mol�1 obtained by Mosell et al.

d. Finite Loadings

Tunca and Ford reported TST rate coefficients for Xe cage-to-cage jumps at high loadings in

ZK-4 zeolite, the siliceous analog of Na-A (structure LTA) (332). These calculations deserve

several remarks. First, because this study treats multiple Xe atoms simultaneously, defining the

reaction coordinate and dividing surface can become quite complex. Tunca and Ford addressed

this problem by considering averaged cage sites, instead of specific intracage sorption sites,

which is valid because their system involves relatively weak zeolite–guest interactions. They

further assume a one-body reaction coordinate and dividing surface regardless of loading,

which is tantamount to assuming that the window separating adjacent a cages in ZK-4 can only

hold one Xe at a time and that cooperative many-Xe cage-to-cage motions are unlikely.

Second, Tunca and Ford advocate separate calculations of Qz and Qi for use in Eq. (82), as

opposed to the conventional approach of calculating ratios of partition functions, i.e., free

energies (323). It is not yet obvious whether separation of these calculations is worth the effort.
Third, Tunca and Ford developed a recursive algorithm for building up (N + 1)-body partition

functions from N-body partition functions, using the ‘‘test particle’’ method developed for
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modeling the thermodynamics of liquids. Although the approach of Tunca and Ford has a

restricted regime of applicability, it nonetheless seems promising in its direct treatment of

many-body diffusion effects.

e. Free Energy Surfaces

Maginn et al. performed reversible work calculations with a TST flavor on long-chain alkanes in
silicalite-1 (171), finding that diffusivities monotonically decrease with chain length until about

n-C8, after which diffusivities plateau and become nearly constant with chain length. Bigot and

Peuch calculated free-energy surfaces for the penetration of n-hexane and isooctane into a model

of H-mordenite zeolite with an organometallic species, Sn(CH3)3, grafted to the pore edge (333).

Bigot and Peuch found that Sn(CH3)3 has little effect on the penetration barrier of n-hexane, but
they predict that the organometallic increases the penetration barrier of isooctane by 60 kJ

mol�1. Sholl computed the free-energy surface associated with particle exchange of Ar, Xe,

methane, and ethane in AlPO4�5, a one-dimensional channel zeolite (334), suggesting time

scales over which anomalous single-file diffusion is expected in such systems.

Jousse et al. modeled benzene site-to-site jumps in H-Y zeolite (Si:Al = 2.43) using a

force field that explicitly distinguishes Si and Al, as well as oxygens in Si-O-Si, Si-O-Al, and

Si-OH-Al environments (227). Such heterogeneity creates many distinct adsorption sites for

benzene in H-Y. Multiple paths from site to site open as the temperature increases. To simplify

the picture, Jousse et al. computed the free-energy surface for benzene motion along the (110)

axis in H-Y, which produces cage-to-cage migration. Due to the multiplicity of possible cage-

to-cage paths, the temperature dependence of the cage-to-cage rate constant as computed by

umbrella sampling exhibits strong non-Arrhenius behavior. These calculations may help to

explain intriguing NMR correlations times for benzene in H-Y, which also exhibit striking non-

Arrhenius temperature dependencies (195).

f. Quantum Dynamics

Of all the dynamics studies performed on zeolites, very few have explored the potentially

quantum mechanical nature of nuclear motion in micropores (335–338). Quantum modeling of

proton transfer in zeolites (336,338,339) seems especially important because of its relevance in

catalytic applications. Such modeling will become more prevalent in the near future, partially

because of recent improvements in quantum dynamics approaches (338), but mostly because of

novel electronic structure methods developed by Sauer and coworkers (340,341), which can

accurately compute transition state parameters for proton transfer in zeolites by embedding a

quantum cluster in a corresponding classical force field.
To facilitate calculating quantum rates for proton transfer in zeolites, Fermann and

Auerbach developed a novel semiclassical transition state theory (SC-TST) for truncated

parabolic barriers (338), based on the formulation of Hernandez and Miller (342). Our SC-TST

rate coefficient is stable to arbitrarily low temperatures as opposed to purely harmonic SC-TST,

and has the form kSC-TST = kTST � G where the quantum transmission coefficient, G, depends on
the zero-point corrected barrier and the barrier curvature. To parameterize this calculation,

Fermann et al. performed high-level cluster calculations (339) yielding an O(1) ! O(4) zero-

point corrected barrier height of 86.1 kJ mol�1, which becomes 97.1 kJ mol�1 when including

long-range effects from the work of Sauer et al. (340). Using this new approach, Fermann and

Auerbach calculated rate coefficients and crossover temperatures for the O(1) ! O(4) jump in

H-Y and D-Y zeolites, yielding crossover temperatures of 368 K and 264 K, respectively.

These results suggest that tunneling dominates proton transfer in H-Y up to and slightly above

room temperature, and that true proton transfer barriers are being underestimated as a result of

neglect of tunneling in the interpretation of experimental mobility data.
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B. Lattice Models

When modeling strongly binding or tight-fitting guest–zeolite systems, theoretical methods

specialized for rare event dynamics such as TST and kinetic Monte Carlo (KMC) are required.

These methods are applied by coarse graining the molecular motions, keeping only their

diffusive character. In zeolites, the well-defined cage and channel structure naturally orients this

coarse-graining toward lattice models, which are the focus of this section.

The simplest such model was proposed by Ising in 1925 (343). Many variants of the Ising

model have since been applied to study activated surface diffusion (57). Although in principle a

lattice can be regarded simply as a numerical grid for computing configurational integrals
required by statistical mechanics (344), the grid points can have important physical meaning for

dynamics in zeolites, as shown schematically in Fig. 21. Applying lattice models to diffusion in

zeolites rests on several (often implicit) assumptions on the diffusion mechanism; here we

recall those assumptions and analyze their validity for modeling dynamics of sorbed molecules

in zeolites.

1. Basic Assumptions

a. Temperature-Independent Lattice

Lattice models of transport in zeolites begin by assuming that diffusion proceeds by activated

jumps over free-energy barriers between well-defined adsorption sites, i.e., that site residence

times are much longer than travel times between sites. These adsorption sites are positions of

high probability, constructed either from energy minima, e.g., next to cations in cation-

containing zeolites, and/or from high volume, e.g., channel intersections in silicalite-1.

Silicalite-1 provides a particularly illustrative example (249): its usual description in terms

of adsorption sites involves two distinct channel sites, where the adsorbate is stabilized by

favorable energy contacts with the walls of the 10R channels; and an intersection site at the

Window

SII

W

Benzene in Na-YGeneric Cage-type Lattice

Cage

Fig. 21 Schematic lattice model for molecules in cage-type zeolites, showing cages, intracage sites, and

window sites (left), as well as the specific lattice geometry for benzene in Na-Y zeolite (right).
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crossing between the two-channel systems, where the large accessible volume compensates

entropically for less favorable contacts (see Fig. 2). Depending on the temperature, one or both

types of sites can be populated simultaneously.

The silicalite-1 example points to the breakdown of the first assumption inherent in lattice

models, namely, that adsorption and diffusion of guests in zeolites proceeds on a fixed lattice of

sites, independent of external thermodynamic variables such as temperature. Clearly this is not

the case. Indeed, when kBT becomes comparable with the activation energy for a jump from site

i to site f, a new lattice that subsumes site i into site f may be more appropriate (53).

Alternatively, one may retain site i with modifications to the lattice model discussed below,

taking into account so-called kinetic correlations that arise from the relatively short residence

times in site i (53,54,301).

b. Poisson Statistics

The second assumption inherent in most lattice models of diffusion, which is related to the first,
is that subsequent jumps of a given molecule are uncorrelated from each other, i.e., that a

particular site-to-site jump has the same probability to occur at any time. This assumption results

in a site residence time distribution that follows the exponential law associated with Poisson

statistics (345). In Fig. 18 we have seen that such a law can result from the analysis of MD

trajectories. Consequently, lattice models can often be mapped onto master rate equations such

as those in the chemical kinetics of first-order reactions (345,346). This fact highlights the close
connection between reaction and diffusion in zeolites, when modeled with lattice dynamics.

Deviations from Poisson statistics would also arise if a molecule were most likely to jump

in phase with a low-frequency zeolite framework vibration, such as a window breathing mode

(347), or if a molecule were more likely to jump in concert with another guest molecule. An

extreme case of this latter effect was predicted by Sholl and Fichthorn (84,245), wherein strong

adsorbate–adsorbate interactions in single-file zeolites generated transport dominated by

correlated cluster dynamics instead of single-molecule jumps. In this case, a consequence of

Poisson statistics applied to diffusion in zeolites at finite loadings ceases to hold, namely, there

no longer exists a time interval sufficiently short that only one molecule can jump at a time.

c. Loading-Independent Lattice

The final assumption, which is typically invoked by lattice models of diffusion at finite
loadings, is that the sites do not qualitatively change their nature with increasing adsorbate

loading. This assumption holds when adsorption sites are separated by barriers such as

windows between large cages (332), and also when host–guest interactions dominate guest–

guest interactions. This loading-independent lattice model breaks down when the effective
diameter of guest molecules significantly exceeds the distance between adjacent adsorption

sites, as high loadings create unfavorable excluded-volume interactions between adjacent

guests. This effect does not arise for benzene in Na-Y (52), which involves site-to-site distances

and guest diameters both around 5 Å, but is predicted for Xe in Na-A by classical density

functional theory calculations (348).

Despite these many caveats, lattice models have proven extremely useful for elucidating

qualitatively and even semiquantitatively the following physical effects regarding (a) host

structure: pore topology (56,349,350), diffusion anisotropy (27,60), pore blockage (351),

percolation (352), and open-system effects (27,83); (b) host–guest structure: site heterogeneity
(31,32) and reactive systems (353); and (c) guest–guest structure: attractive interactions

(329,349,350), phase transitions (354,355), concerted cluster dynamics (84,245), single-file
diffusion (9,83), and diffusion of mixtures (309,356,357). In what follows, we outline the theory

and simulation methods used to address these issues.
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2. Equilibriumand NonequilibriumKinetic Monte Carlo

Kinetic Monte Carlo (KMC) models diffusion on a lattice as a random walk composed of

uncorrelated, single-molecule jumps as discussed above, thereby providing a stochastic solution

to the dynamics associated with the lattice model. Although KMC models transport as

sequences of uncorrelated events in the sense that jump times are extracted from Poisson

distributions, KMC does account for spatial correlations at finite loadings. Indeed, when a

molecule executes a jump at higher loadings, it leaves behind a vacancy that is likely to be

occupied by a successive jump, thereby diminishing the diffusivity from the mean field theory

estimate, as discussed in Sec. III.B.

KMC is isomorphic to the more conventional Monte Carlo algorithms (262), except that

in a KMC simulation random numbers are compared to ratios of rate coefficients, instead of

ratios of Boltzmann factors. However, if the pre-exponential factors cancel in a ratio of rate

coefficients, then a ratio of Boltzmann factors arises, where the relevant energies are activation

energies. KMC formally obeys detailed balance, meaning that all thermodynamic properties

associated with the underlying lattice Hamiltonian can be simulated with KMC. In addition to

modeling transport in zeolites, KMC has been used to model adsorption kinetics on surfaces

(358), and even surface growth itself (359).

a. Algorithms

KMC can be implemented with either constant time-step or variable time-step algorithms.

Variable time-step methods are efficient for sampling jumps with widely varying time scales,

while fixed time-step methods are convenient for calculating ensemble averaged correlation

functions. In the constant time-step technique, jumps are accepted or rejected based on the

kinetic Metropolis prescription, in which a ratio of rate coefficients, khop/kref, is compared with

a random number (198,360). Here kref is a reference rate that controls the temporal resolution

of the calculation according to Dtbin = 1/kref. The probability to make a particular hop is

proportional to khop/kref, which is independent of time, leading naturally to a Poisson

distribution of jump times in the simulation. In the fixed time-step algorithm, all molecules

in the simulation attempt a jump during the time Dtbin. In order to accurately resolve the fastest

molecular jumps, kref should be greater than or equal to the largest rate constant in the system,

in analogy with choosing time steps for MD simulations. However, if there exists a large

separation in time scales between the most rapid jumps, e.g., intracage motion, and the

dynamics of interest, e.g., cage-to-cage migration, then one may vary kref to improve

efficiency. The cost of this modification is detailed balance; indeed, tuning kref to the dynamics

of interest is tantamount to simulating a system where all the rates larger than kref are replaced

with kref.

A useful alternative for probing long-time dynamics in systems with widely varying jump

times is variable time-step KMC. In the variable time-step technique, a hop is made every

KMC step and the system clock is updated accordingly (351,361). For a given configuration of

random walkers, a process list of possible hops from occupied to empty sites is compiled for all

molecules. A particular jump from site i to j is chosen from this list with a probability of ki!j/

ktot, where ktot is the sum of all rate coefficients in the process list. In contrast to fixed time-step

KMC, where all molecules attempt jumps during a KMC step, in variable time-step KMC a

single molecule executes a jump every KMC step and the system clock is updated by an amount

Dtn = �ln(1 � x)/ktot, where x a [0,1) is a uniform random number and n labels the KMC step.

This formula results directly from the Poisson distribution, suggesting that other formulas may

be used in variable time-step KMC to model kinetic correlations (301). In general, we suggest

that simulations be performed using the variable time-step method, with data analyses carried
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out by mapping the variable time-step KMC trajectories onto a fixed time-step grid (346), as

discussed in Sec. V.B.2.

b. Ensembles

Guest–zeolite systems at equilibrium are inherently multicomponent systems at constant

temperature and pressure. Since guest molecules are continually adsorbing and desorbing from

more or less fixed zeolite particles, a suitable ensemble would fix Nz = amount of zeolite, AG =

chemical potential of guest, p = pressure, and T = temperature, keeping in mind that AG and p

are related by the equation of state of the external fluid phase. However, constant-pressure

simulations are very challenging for lattice models, since constant pressure implies volume

fluctuations, which for lattices involve adding or deleting whole adsorption sites. As such,

constant-volume simulations are much more natural for lattice dynamics. Since both the

volume and amount of zeolite is virtually fixed during intracrystalline adsorption and diffusion
of guests, we need to specify only one of these variables. In lattice simulations it is customary

to specify the number of adsorption sites, Nsites, which plays the role of a unitless volume. We

thus arrive at the natural ensemble for lattice dynamics in zeolites: the grand canonical

ensemble, which fixes AG, Nsites, and T.

The overwhelming majority of KMC simulations applied to molecules in zeolites have

been performed using the canonical ensemble, which fixes NG = number of guest molecules,

Nsites, and T. Although the adsorption-desorption equilibrium discussed above would seem to

preclude using the canonical ensemble, fixing NG is reasonable if zeolite particles are large

enough to make the relative root-mean-square fluctuations in NG rather small. Such closed-

system simulations are usually performed with periodic boundary conditions, in analogy with

atomistic simulations (262,284). Defining the fractional loading, h, by h u NG/Nsites, typical

KMC calculations produce the self-diffusion coefficient Ds as a function of T at fixed h for

Arrhenius analysis, or as a function of h at fixed T, a so-called diffusion isotherm.

There has recently been renewed interest in grand canonical KMC simulations for three

principal reasons: to relax periodic boundary constraints to facilitate exploration of single-file
diffusion with lattice dynamics (83), to study nonequilibrium permeation through zeolites

membranes (27), and in general to explore the interplay between adsorption and diffusion in

zeolites (305,362,363). Grand canonical KMC requires that the lattice contain at least one edge

that can exchange particles with an external phase. In contrast to grand canonical MC used to

model adsorption, where particle insertions and deletions can occur anywhere in the system,

grand canonical KMC must involve insertions and deletions only at the edges in contact with

external phases, as shown in Fig. 1a–c.

The additional kinetic ingredients required by grand canonical KMC are the rates of

adsorption to and desorption from the zeolite (364). Because desorption generally proceeds

with activation energies close to the heat of adsorption, desorption rates are reasonably simple

to estimate. However, adsorption rates are less well known because they depend on details of

zeolite crystallite surface structure. Qualitative insights on rates of penetration into micro-

porous solids are beginning to emerge (365,366), as well as zeolite-specific models of such

penetration phenomena (299,333,367). Calculating precise adsorption rates may not be crucial

for parameterizing qualitatively reliable simulations because adsorption rates are typically

much larger than other rates in the problem. For sufficiently simple lattice models, adsorption

and desorption rates can be balanced to produce the desired loading according to the adsorption

isotherm (27). If one assumes that the external phase is an ideal fluid, then insertion frequencies
are proportional to pressure p. As such, equilibrium grand canonical KMC produces the self-

diffusion coefficient as a function of p and T. Alternatively, for nonequilibrium systems

involving different insertion frequencies on either site of the membrane, arising from a pressure
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(chemical potential) gradient across the membrane, grand canonical KMC produces the Fickian

or transport diffusion coefficient, D, as a function of T and the local loading in the membrane.

c. Models of Finite Loading

The great challenge in performing KMC simulations at finite loadings is that the rate

coefficients {ki!j} should depend on the local configuration of molecules because of guest–

guest interactions. That is, in compiling the process list of allowed jumps and associated rate

constants on the fly of a KMC simulation, TST or related calculations should be performed to

account for the effect of specific guest configurations on the jump rate coefficients. To date, this

‘‘ab initio many-body KMC’’ approach has not been employed because of its daunting

computational expense. Instead, researchers either ignore how guest–guest interactions modify

rate coefficients for site-to-site jumps; or they use many-body MD at elevated temperatures

when guest–guest interactions cannot be ignored (327,328).

A popular approach for modeling many-body diffusion in zeolites with KMC is thus the

‘‘site-blocking model,’’ whereby guest–guest interactions are ignored, except for exclusion of

multiple-site occupancy. This model accounts for entropic effects of finite loadings but not

energetic effects. Calculating the process list and available rate coefficients becomes partic-

ularly simple; one simply sums the available processes using rates calculated at infinite dilution
(368). This model is attractive to researchers in zeolite science (369) because blocking of cage

windows and channels by large, aromatic molecules that form in zeolites, i.e., ‘‘coking,’’ is a

problem that zeolite scientists need to understand and eventually control.

The site-blocking model ignores guest–guest interactions that operate over medium- to

long-length scales, which modify jump activation energies for site-to-site rate coefficients

depending on specific configurations of neighboring adsorbates. By incorporating these addi-

tional interactions, diffusion models reveal the competition between guest–zeolite adhesion and

guest–guest cohesion (329,370,371). Qualitatively speaking, the diffusivity is generally

expected to increase initially with increasing loading when repulsive guest–guest interactions

decrease barriers between sites and to decrease otherwise. At very high loadings, site blocking

lowers the self-diffusivity regardless of the guest–guest interactions.

To develop a quantitative model for the effects of guest–guest attractions, Saravanan et

al. proposed a ‘‘parabolic jump model,’’ which relates binding energy shifts to transition state

energy shifts (31,55). This method was implemented for lattice gas systems whose thermody-

namics is governed by the following Hamiltonian:

Hð!nÞ ¼
XM
i¼1

nifi þ 1

2

XM
i;j¼1

niJijnj ð85Þ

where M is the number of sites in the lattice,
!
n ¼ ðn1; n2;: : :; nmÞ are site occupation numbers

listing a configuration of the system, and fi = qi � TSi is the free energy for binding in site i. In

Eq. (85), Jij is the nearest neighbor interaction between sites i and j, i.e., Jij = 0 if sites i and j are

not nearest neighbors.

Saravanan et al. assumed that the minimal energy hopping path connecting adjacent

sorption sites is characterized by intersecting parabolas, shown in Fig. 22, with the site-to-site

transition state located at the intersection point. For a jump from site i to site j, with i, j = 1,. . .,
M, the hopping activation energy including guest–guest interactions is given by:

Eaði; jÞ ¼ Eð0Þ
a ði; jÞ þ DEij
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where Ea
(0)(i, j) is the infinite dilution activation energy calculated using the methods of Sec.

V.A.3, and aij is the jump distance. DEij is the shift in the energy difference between sites i and j

Copyright © 2003 Marcel Dekker, Inc.



resulting from guest–guest interactions, and is given by DEij = (Ej � Ei) � (qj � qi), where Ek =

qk + Sl=1
M Jklnl. This method allows the rapid estimation of configuration-dependent barriers

during a KMC simulation, knowing only infinite dilution barriers and the nearest-neighbor

interactions defined above. The parabolic jump model is most accurate when the spatial paths

of jumping molecules are not drastically changed by guest–guest interactions, although the

energies can change as shown in Fig. 22. The influences of nearest-neighbor attractions have
also been considered in the analytical treatment of tracer exchange and particle conversion in

single-file systems (371).

d. Infinite Dilution Simulations

Most KMC simulations of diffusion in zeolites are performed at high guest loadings to explore

the effects on transport of guest–guest interactions. A handful of KMC studies have been

reported at infinite dilution to relate fundamental rate coefficients with observable self-

diffusivities for particular lattice topologies. June et al. augmented their TST and RFMD study

with KMC calculations of Xe and SF6 self-diffusivities in silicalite-1 (317). They obtained

excellent agreement among apparent activation energies for Xe diffusion calculated using MD,

KMC with TST jump rates, and KMC with RFCT jump rates. The resulting activation energies

fall in the range 5–6 kJ mol�1, which is much lower than the experimentally determined values

of 15 and 26 kJ mol�1 (117,372). van Tassel et al. reported a similar study in 1994 on methane

diffusion in zeolite A, finding excellent agreement between self diffusivities calculated with

KMC and MD (373).

Auerbach et al. reported KMC simulations of benzene diffusion in Na-Y showing that the

cation ! window jump (see Fig. 20) controls the temperature dependence of diffusion, with a

predicted activation energy of 41 kJ mol�1 (229). Because benzene residence times at cation

sites are so long, these KMC studies could not be compared directly with MD but nonetheless

yield reasonable agreement with the QENS barrier of 34 kJ mol�1 measured by Jobic et al. (179).

Auerbach and Metiu then reported KMC simulations of benzene orientational randomization in

various models of Na-Y with different numbers of supercage cations, corresponding to different
Si:Al ratios (198). Full cation occupancy gives randomization rates controlled by intracage

Shifted by
Lateral ∆E(i,j)

Ea(i,j) Ea(j,i)

Interactions

a

Site i Site j

Fig. 22 Site-to-site jump activation energies perturbed by guest–guest interactions, approximated with

parabolic jump model.
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motion, whereas one-half cation occupancy gives rates sensitive to both intracage and intercage

motion. This finding prompted Chmelka and coworkers to perform exchange-induced sidebands

NMR experiments on labeled benzene in the corresponding Ca-Y (Si:Al = 2.0), finding that they
were able to measure both the cation ! cation and cation ! window jump rates within a single

experiment (1). Finally, when Auerbach and Metiu modeled benzene orientational random-

ization with one-quarter cation occupancy, they found qualitative sensitivity to different spatial
patterns of cations, suggesting that measuring orientational randomization in zeolites can

provide important information regarding cation disorder and possibly Al distributions.

e. Finite Loadings

Theodorou and Wei used KMC to explore a site-blocking model of reaction and diffusion with

various amounts of coking (356). They showed that xylene isomerization catalyzed by ZSM-5

is biased toward production of the most valuable isomer, p-xylene, because the diffusivity of p-

xylene is much greater than that of m-xylene and o-xylene, thus allowing the para product to

diffuse selectively out of the zeolite particle. This seminal study exemplifies the potential

benefits of understanding and controlling transport in zeolites.

Nelson and coworkers developed similar models to explore the relationship between the

catalytic activity of a zeolite and its lattice percolation threshold (374,375). In a related study,

Keffer et al. modeled binary mixture transport in zeolites, where one component diffuses
rapidly while the other component is trapped at sites, e.g., methane and benzene in Na-Y (352).

They used KMC to calculate percolation thresholds of the rapid penetrant as a function of

blocker loading and found that these thresholds agree well with predictions from simpler

percolation theories (376).

Coppens et al. used KMC to calculate the loading dependence of self diffusion for a

variety of lattices for comparison with mean field theories (MFTs) of diffusion (56). These

theories usually predict Ds(h) i D0(1 � h), where h is the fractional occupancy of the lattice

and D0 is the self diffusivity at infinite dilution. Coppens et al. found that the error incurred by

MFT is greatest for lattices with low coordination numbers, such as silicalite-1 and other MFI-

type zeolites. Coppens et al. then reported KMC simulations showing that by varying the

concentrations of weak and strong binding sites (32), their system exhibits most of the loading

dependencies of self-diffusion reported by Kärger and Pfeifer (30). Bhide and Yashonath also

used KMC to explore the origins of the observed loading dependencies of self-diffusion, finding
that most of these dependencies can be generated by varying the nature and strength of guest–

guest interactions (349,350).

f. Benzene in Na-X

Auerbach and coworkers reported a series of studies modeling the concentration dependence of

benzene diffusion in Na-X and Na-Y zeolites (31,52,55,72,368). These studies were motivated

by persistent, qualitative discrepancies between different experimental probes of the coverage

dependence of benzene self diffusion in Na-X (5), as shown in Fig. 12. PFG NMR diffusivities
decrease monotonically with loading for benzene in Na-X (377), while tracer zero-length

column (TZLC) data increase monotonically with loading for the same system (147).

Saravanan et al. performed KMC simulations using the parabolic jump model to account

for guest–guest attractions (31,55). The KMC results for benzene in Na-X are in excellent

qualitative agreement with the PFG NMR results, and in qualitative disagreement with TZLC.

Other experimental methods yield results for benzene in Na-X that also agree broadly with

these PFG NMR diffusivities (378–380). Although the evidence appears to be mounting in

favor of the PFG NMR loading dependence for benzene in Na-X, it remains unclear just what is

being observed by the TZLC measurements. To address this issue, Brandani et al. reported
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TZLC measurements for benzene in various Na-X samples with different particle sizes. They

found tracer exchange rates that exhibit a normal dependence on particle size, suggesting that

their diffusivities are free from artifacts associated with unforeseen diffusion resistances at

zeolite crystallite surfaces (147).

Noting that molecular transport in TZLC measurements samples longer length scales than

that in PFG NMR experiments, Chen et al. have suggested that the TZLC method may be more

sensitive than is PFG NMR to electrostatic traps created by random Al and cation distributions

(148). By performing a field theory analysis of an augmented diffusion equation, Chen et al.

estimate that such charge disorder can diminish the self diffusivity by roughly two orders of

magnitude from that for the corresponding ordered system. This effect is remarkably close to

the discrepancy in absolute magnitudes between PFG NMR and TZLC diffusivities for benzene
in Na-X at low loadings (147). This intriguing prediction by Chen et al. suggests that there

should be a striking difference between benzene diffusion in Na-X (Si:Al = 1.2) and in Na-LSX

(Si:Al = 1), since the latter is essentially an ordered structure. We are not aware of self-

diffusion measurements for benzene in Na-LSX, but we can turn to NMR spin-lattice relaxation

data for deuterated benzene in these two zeolites (196,381). Unfortunately, such data typically

reveal only short length scale, intracage dynamics (198), and as a result may not provide such a

striking effect. Indeed, the activation energy associated with the NMR correlation time changes

only moderately, decreasing from 14.0 F 0.6 kJ mol�1 for Na-X (196) to 10.6 F 0.9 kJ mol�1

for Na-LSX (381), in qualitative agreement with the ideas of Chen et al. (148). It remains to be

seen whether such electrostatic traps can explain the loading dependence observed by TZLC for

benzene in Na-X.

By varying fundamental energy scales, the model of Saravanan and Auerbach for

benzene in FAU-type zeolites exhibits four of the five loading dependencies of self-diffusion
reported by Kärger and Pfeifer (30), in analogy with the studies of Coppens et al. (32) and

Bhide and Yashonath (349,350). However, in contrast to these other KMC studies, Saravanan

and Auerbach explored the role of phase transitions (354,355) in determining the loading

dependencies of self diffusion (31). In particular, they found that Kärger and Pfeifer’s type III

diffusion isotherm, which involves a nearly constant self diffusivity at high loadings, may be

characteristic of a cluster-forming, subcritical adsorbed phase where the cluster of guest

molecules can extend over macroscopic length scales. Such cluster formation suggests a

diffusion mechanism involving ‘‘evaporation’’ of particles from clusters. Although increasing

the loading in subcritical systems increases cluster sizes, Saravanan and Auerbach surmised

that evaporation dynamics remains essentially unchanged by increasing loading. As such, the

subcritical diffusivity is expected to obtain its high loading value at low loadings and to remain

roughly constant up to full loading.

In addition, Saravanan and Auerbach found that Kärger and Pfeifer’s types I, II, and IV

are characteristic of supercritical diffusion and can be distinguished based on the loading that

gives the maximum diffusivity, hmax. For example, the PFG NMR results discussed above for

benzene in Na-X are consistent with hmax ] 0.3, while the TZLC data give hmax k 0.5 (see Fig.

12). The KMC simulations of Saravanan and Auerbach predict that hmax will decrease with

increasing temperature, increasing strength of guest–guest attractions, decreasing the free-

energy difference between site types, and in general with anything that makes sites more

equally populated (31).

g. Reactive Systems

Trout et al. applied electronic structure methods to calculate thermodynamic parameters for

possible elementary reactions in the decomposition of NOx over Cu-ZSM-5 (382). Based on

these insights, they developed a KMC model of reaction and diffusion in this system, seeking
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the optimal distribution of isolated reactive Cu centers (353). This hierarchical approach to

realistic modeling of complex systems presents an attractive avenue for future research.

h. Open Systems

Gladden et al. developed a versatile open-system KMC program that allows them to study

adsorption, diffusion, and reaction in zeolites simultaneously (363). They have applied their

algorithm to model ethane and ethene binary adsorption in silicalite-1 (363), finding excellent

agreement with the experimental binary isotherm.

Nelson and Auerbach reported open-system KMC simulations of anisotropic diffusion
(27) and single-file diffusion (83) (infinitely anisotropic) through zeolite membranes. They

defined an anisotropy parameter, g, according to g = ky/kx, where kx and ky are the elementary

jump rates in the transmembrane and in-plane directions, respectively. For example, the g < 1

case models p-xylene permeation through a silicalite-1 membrane (see Fig. 2) oriented along

the the straight channels (b axis), while g > 1 corresponds to the same system except oriented

along the zig-zag (a axis) or ‘‘corkscrew’’ channels (c axis) (289). The limiting case g = 0

corresponds to single-file diffusion.
Nelson and Auerbach have studied how the self-diffusivity depends on membrane

thickness L and anisotropy g. However, the long-time limit of the MSD may not be accessible

in a membrane of finite thickness. Furthermore, the natural observable in a permeation

measurement is steady-state flux rather than the MSD. To address these issues, they simulated

two-component, equimolar counterpermeation of identical, labeled species—i.e., tracer coun-

terpermeation—which has been shown to yield transport identical to self diffusion (25). Such a

situation is closely related to the tracer zero-length column experiment developed by Ruthven

and coworkers (147). When normal diffusion holds the self diffusivity is independent of

membrane thickness, while anomalous diffusion is characterized by an L-dependent self

diffusivity. For g � 1, Nelson and Auerbach found that diffusion is normal and that MFT

becomes exact in this limit (27), i.e. Ds(h) = D0(1 � h). This is because sorbate motion in the

plane of the membrane is very rapid, thereby washing out any correlations in the trans-

membrane direction. As g is reduced, correlations between the motion of nearby molecules

decrease the diffusivity. For small values of g, a relatively large lattice is required to reach the

thick membrane limit such that particle exchange becomes probable during the intracrystalline

lifetime. The extreme case of this occurs when g = 0, for which diffusion is strictly anomalous

for all membrane thicknesses.

As discussed in Sec. III.B, Nelson and Auerbach applied open-system KMC to study the

nature of anomalous diffusion through single-file zeolites of finite extent (83). They found that

open, single-file systems have diffusivities that depend on file length, L, according to Eq. (44).

The intracrystalline lifetime during normal, one-dimensional tracer exchange obeys:

sintra ¼ L2

12DT

~L2; ð87Þ
where the proportionality follows from the fact that, in normal diffusion, the diffusivity is

independent of system size. However, to describe the intracrystalline lifetime during single-file
self-diffusion, DT in Eq. (87) must be replaced by DSF from Eq. (44), giving (80,82,83):

sintra ¼ L2

12DSF

!L!l L3h
12aD0ð1� hÞ~L3; ð88Þ

where D0 is the infinite dilution jump diffusivity, and a is the nearest-neighbor site-to-site or

cage-to-cage distance. The L3 scaling in Eq. (88) plays an important role in the discussion

below of molecular traffic control.
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Direct experimental verification of the L-dependence of the single-file self-diffusion
coefficient [Eq. (44)] will require careful tracer counterpermeation experiments on single-file
zeolites of various particle sizes. Before this daunting task is achieved, more indirect means of

verification may prove useful. Along these lines, de Gauw et al. recently interpreted reaction-

diffusion experiments on n-hexane and 2,2-dimethylbutane in Pt/H-mordenite (383). They

found that the only way they could interpret their data was by assuming an intracrystalline

lifetime scaling as L3, thus providing support for the ideas above. Rodenbeck et al. also found it

necessary to interpret activation energies for reactions catalyzed in zeolites in light of single-

file diffusion (384). The general correlation between chemical reaction and molecular prop-

agation in single-file systems is a challenging task of current experimental (314,385,386) and

theoretical (384,387,388) research.

i. Molecular Traffic Control

The possibility of enhancing reactivity by ‘‘molecular traffic control’’ (389,390) (MTC) emerges

when considering diffusion and reaction in networks of single-file systems (391–393). The

effective reactivity can be enhanced by MTC if reactant and product molecules are adsorbed

along different diffusion paths in the interior of zeolite crystallites. Recent MD simulations

have confirmed that this assumption, which underlines MTC, can be realized for two com-

ponents in an MFI-type zeolite (394).

To explore the possible consequences of MTC, Kärger and coworkers have developed

lattice models that simulate the basic MTC assumption (392,393,395). In particular, the

extreme case has been considered where channels of one type can accommodate only reactant

molecules (A), while channels of a second type, perpendicular to those of the first type, can
accommodate only product molecules (B). Within this channel network, the channel inter-

sections are assumed to give rise to an irreversible reaction, A!B. It is further assumed that the

Fig. 23 Ratio of overall reaction rates in MTC and reference (REF) systems, sMTC
B / sREFB, for five

channels as a function of the number l of sites in the channel segments between two neighboring

intersections. (From Ref. 392.)
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network is in contact with a gas phase containing A molecules at a certain constant pressure and

that there is no reentrance of B molecules. Figure 23 shows that the effective reactivity in such a
system can dramatically exceed the reactivity in a reference system, where both channels are

equally accessible to both types of molecules.

This enhanced reactivity can be understood by considering the mean lifetime in single-file
systems as provided by Eq. (88). We imagine using this relation to estimate the mean time

required for reactant and product molecules to diffuse from one-channel intersection to an

adjacent one, with L being proportional to the number of sites between intersections. However,

this estimate applies only to the reference system, where the total concentration (sum of reactant

and product concentrations) is constant throughout the system. But under the condition of

molecular traffic control, the concentration of reactant molecules is found to drop from outside to

the interior, while the concentration of product molecules (along the other set of parallel

channels) drops from inside to outside. Under the influence of such concentration gradients,

molecular transport in single-file systems proceeds under the conditions of normal diffusion
(75,396), with mean lifetimes given by Eq. (87) rather than by Eq. (88). Thus, with an increasing

number of sites between intersections, transport inhibition will become progressively more

significant because of the proportionality to L3 rather than to L2, leading to the observed reactivity
enhancement with molecular traffic control in comparison to that with the reference system.

C. Mean Field and Continuum Theories

Mean field and continuum theories provide a way to analyze the behavior of systems on length

scales that are too large for even coarse-grained models to handle (208). In the end, we come

full circle to the Fickian and Maxwell-Stefan formulations of diffusion.

1. Lattice Topology

The diffusion theory discussed above relies on the tetrahedral topology of FAU-type zeolites.

Developing such a theory for general frameworks remains challenging. Braun and Sholl

developed a Laplace-Fourier transformation method for calculating exact self-diffusion tensors

in generalized lattice gas models (397), expanding on the matrix formalism originally

introduced by Fenzhe and Kärger (398). These methods generally involve quite heavy matrix

algebra, which can sometimes hide the underlying physical meaning of the parameters. Jousse

et al. developed an alternative method for deriving analytical self-diffusion coefficients at

infinite dilution for general lattices by partitioning the trajectory of a tracer into uncorrelated

sequences of jumps (54). This approach can be used to analyze both geometrical correlations

due to the nonsymmetrical nature of adsorption sites in zeolite pores and kinetic correlations

arising from insufficient thermalization of a molecule in its final site. This method was applied

to benzene diffusion in Na-Y (geometrical correlations) and to ethane diffusion in silicalite-1

(geometrical and kinetic correlations), yielding quantitative agreement with KMC simulations

(54). The new method was also extended to finite loadings using MFT, yielding a completely

analytical approach for modeling diffusion in any guest–zeolite system.

2. Maxwell-Stefan and Fick

Krishna and van den Broeke modeled the transient permeation fluxes of methane and n-butane

through a silicalite-1 membrane using both the Fick and Maxwell-Stefan formulations (399).

Transient experiments showed that initially the permeation flux of methane is higher than that

of n-butane but that this methane flux eventually reduces to a lower steady-state value. The

Maxwell-Stefan formulation succeeded in reproducing this nonmonotonic evolution to steady

state for methane; the Fick formulation failed qualitatively in this regard. This is attributed to
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the fact that multicomponent systems pose a challenge to the Fick formulation of diffusion, as
discussed in Sec. II.D. van de Graaf et al. used the Maxwell-Stefan formulation to interpret

permselectivity data for the separations of ethane/methane and propane/methane mixtures

with a silicalite-1 membrane (38). Based only on separately determined single-component

adsorption and diffusion parameters, the Maxwell-Stefan model gave permselectivities in

excellent agreement with their experimental data.

3. Membrane Disorder

Nelson et al. computed steady-state solutions of the diffusion equation to evaluate the influence
of defects, voids, and diffusion anisotropy on permeation fluxes through model zeolite

membranes (28). Nelson et al. augmented the lattice configuration shown in Fig. 1a with

various kinds of defect structures and used a time-dependent, numerical finite difference
approach for computing steady-state fluxes in a variety of situations. They found that with a

reasonable anisotropy and with a moderate density of voids in the membrane, permeation fluxes
can be controlled by jumps perpendicular to the transmembrane direction. This suggests that

oriented zeolite membranes may not behave with the intended orientation if there is a sufficient

density of defects in the membrane.

4. Charge Disorder

As discussed in Sec. V.B.2, Chen et al. explored the extent to which static charge disorder in

zeolites influences self-diffusivities on different length and time scales. They focused on the

effects from random charge–polarization interactions for benzene in Na-Y zeolite using Debye-

Hückel correlation functions. Chen et al. augmented the standard diffusion equation [Fick’s

second law, cf. Eq. (9)] with terms representing the effects of these fluctuating interactions.

They analyzed the resulting equation in the hydrodynamic limit using time-dependent

renormalization group theory (23), finding that such disorder can diminish benzene self-

diffusivities in Na-Y by one to two orders of magnitude.

This field theory approach appears promising for explaining qualitatively the data in Fig.

16, which shows that PFG NMR self-diffusivities can depend sensitively on the length scales

probed. However, to explain quantitatively the data in Fig. 16, this approach will require much

more accurate input from correlation functions describing the static charge disorder in zeolites.

Such information can only come from careful, atomistic simulations, which in turn must be

validated by experiments capable of measuring disorder in zeolites.

VI. SUMMARY AND PROSPECTS FOR THE FUTURE

In this chapter we have reviewed the basic ideas underlying diffusion in microporous solids,

and have explored recent efforts over the last two decades to measure and model the dynamics

of molecules sorbed in zeolites. These studies have revealed many important insights regarding

diffusion in zeolites; here we summarize a subset of these ideas. The basic theories of diffusion
on two-dimensional surfaces and in dense solids have been successfully modified to produce

new insights regarding transport in microporous materials. The relationships between the many

diffusivities, including the Fickian, Maxwell-Stefan, Onsager, corrected, transport, and self-

diffusivities, have been elucidated. The temperature dependence of diffusion in zeolites most

often exhibits Arrhenius behavior. Reliable activation energies for diffusion can be measured

nowadays with increasingly sophisticated experimental techniques, such as those based on

NMR or neutron scattering. The loading dependence of diffusion in zeolites is less predictable,

although recent calculations have revealed how the interplay between host–guest and guest–
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guest interactions can give rise to different loading dependencies. Regarding multicomponent

diffusion in zeolites at high loadings, one generally expects that the faster diffusing component

is slowed down to the mobility of the more slowly diffusing component. Good to very good

agreement among various experiments and simulations has been obtained for the simplest

zeolite–guest systems, often involving all-silica zeolites (e.g., silicalite) and simple hydro-

carbons (e.g., methane or butane).

For each of the generalizations above, myriad zeolite–guest systems exist that break the

rules. This underscores the fact that, despite our increasing level of understanding, much remains

unknown regarding diffusion in zeolites. For example, it is not clear whether permeation through

zeolites occurs in the linear response regime for typical concentration drops and particle sizes. In

addition, we do not generally know whether transport is diffusion or desorption limited in present

applications of zeolites. We have much to learn about the coupling between reaction and diffusion
in zeolites, especially in single-file systems capable of producing molecular traffic control.

Particularly intriguing are the persistent discrepancies among different experimental probes of

diffusion for certain zeolite–guest systems. For example, PFG NMR and tracer zero length

column (TZLC) self diffusivities are in very good agreement for methanol in Na-X but in total

disagreement for benzene in the same zeolite. Despite the careful experiments performed to

validate the TZLC data, there appears to be mounting evidence in favor of the PFG NMR

diffusivities. This raises the question: what exactly is TZLC measuring for this particular system?

Furthermore, as simulation methods have become more reliable over the past decade, it becomes

timely to ask what causes persistent discrepancies between certain experiments and simulations,

e.g., between quasi-elastic neutron scattering and kinetic Monte Carlo self diffusivities for

benzene in Na-Y? We must answer these questions before our knowledge of diffusion in zeolites

can be used generally to develop new and improved processes in zeolite science.

Many zeolite scientists have suggested that defects and disorder in zeolites can lead to the

observed discrepancies discussed above. Given the intricate topologies that zeolites purportedly

adopt, it seems highly unlikely that they do so without error. Discovering the nature of framework

defects, and their role in influencing diffusion in zeolites, represents an important area for future

zeolite research. In addition to framework defects, most zeolites are riddled with disordered charge

distributions arising from disordered framework aluminum and accompanying charge-compen-

sating ions.Measurement of correlations in these disordered charge distributions will be crucial for

quantifying their impact on diffusion in zeolites. We can also consider external zeolite surfaces as

defects, providing different transport resistances that need to be understood. In general, such

defects and disorder patterns can produce different diffusivities depending on the length scales

probed. Elucidating these effects remains one of the great challenges for future zeolite research.

In addition to thoroughly understanding diffusion in the more commonly studied host–

guest systems, it is important to explore the properties of future diffusion systems as well. One

can imagine remarkable properties of polymers or biomolecules intercalated into large-pore

zeolites. Also of interest is the transport behavior of electronically active species in zeolites, such

as metals or charge-transfer complexes. Much can be learned from drawing analogies between

zeolite–guest systems and other nanoporous systems such as biological ion channels, which also

exhibit intricate structures and impressive selectivities. We hope that this chapter provides the

necessary launching point for the next generation to solve the mysteries we have discussed, as

well as those we have not yet imagined.
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393. P Bräuer, J Kärger, N Neugebauer. Europhys Lett 53:8, 2001.

394. LA Clark, GT Ye, RQ Snurr, Phys Rev Lett 84:2893, 2000.
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