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ABSTRACT. Li & Racine (2008) consider the nonparametric estimation of conditional cumulative distri-
bution functions (CDF) in the presence of discrete and continuous covariates along with the associated
conditional quantile function. However, they did not propose an optimal data-driven method of band-
width selection and left this important problem as an ‘open question’. In this paper we propose an
automatic data-driven method for selecting these bandwidths, establish the asymptotic optimality of
our approach, and derive asymptotic normality results for the resulting nonparametric estimator. By
solving this ‘open question’ we thereby provide practitioners with an optimal nonparametric approach
for estimating conditional CDF and quantile functions.

1. INTRODUCTION

Though the nonparametric estimation of conditional probability density functions (PDF) has re-
ceived substantial attention in the literature (Fan & Yim (2004), Hall, Racine & Li (2004), Chung &
Dunson (2009)), certain problems such as the estimation of conditional quantiles require the estima-
tion of conditional cumulative distribution functions (CDF). Nonparametric estimation of the latter has
proven more formidable but has drawn the attention of a growing number of researchers (Bashtannyk
& Hyndman (2001), Hyndman & Yao (2002), Li & Racine (2008) among others).

In a recent paper Li & Racine (2008) propose a nonparametric kernel-based CDF estimation method.
They consider a very general setting allowing for both continuous and discrete covariates, while the
dependent variable(s) can also be discrete or continuous. They also provide rates of convergence and
asymptotic normality results for their proposed estimators. However, they come up short on the
possibility of using optimal automatic data-driven methods for selecting the bandwidths. They state
“Unfortunately, to the best of our knowledge, there does not exist an automatic data-driven method
for optimally selecting bandwidths when estimating a conditional CDF in the sense that a weighted
integrated MSE is minimized” (Li & Racine (2008, page 426)). As a compromise, they rely on data-
driven methods that are optimal for selecting bandwidths for a conditional PDF as proposed by Hall
et al. (2004).
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Two problems immediately surface when deploying bandwidths that are optimal for the conditional
PDF in the conditional CDF setting: (i) the rates of convergence of the optimal bandwidths differ in the
two settings, and (ii) the optimal constants associated with the bandwidths differ in the two settings.
More specifically, let 2 = (z¢, 2%) denote the covariates, where x¢ = (z§,..., zg) and z? = (z¢,... 29
are the ¢ continuous and r discrete covariates, and let h = (hi,...,hg) and X = (A1,...,\,) be
the corresponding bandwidths. The optimal bandwidths have the following forms: hy = con=1/®
(s=1,...,q) and A\, = byn~'/8 (s = 1,...,r) for some constants a, § > 0. « and 3 differ depending on
whether one estimates a conditional CDF or a conditional PDF. Letting o, and «a;, denote the optimal
rate constants for estimating a CDF and PDF, respectively, and letting d = 1/a; — 1/a., then one can
multiply n=1/ by a factor n to obtain the desired rate of n=rnd = p=1/%_ How one estimates
the optimal constant a (and () is a more formidable task. The optimal constants appropriate for PDF
estimation can lie far from those for estimating a CDF. In fact, if the optimal rate of a bandwidth A is
h ~ n~1/% then the selection of h = en~ Y/ will satisfy the optimal rate of convergence for any finite
positive constant c. However, the value of ¢ directly impacts the finite sample efficiency of the resulting
estimator. Therefore, choosing ¢ optimally is of paramount importance in applied settings.

In this paper we propose a data-driven method for selecting bandwidth parameters optimally when
estimating a conditional CDF, and thereby close the open question raised in Li & Racine (2008). The
rest of this paper proceeds as follows. In Section 2 we outline the proposed approach when all variables
are presumed to be relevant. In Section 3 we consider the empirically relevant case where some of the
covariates may in fact be irrelevant but this is not known a priori. Section 4 considers the estimation of
conditional quantile functions which constitute an extremely popular estimation methodology (Koenker
(2005)) and may be predicated directly on an estimated conditional CDF as proposed by Li & Racine
(2008). Section 5 assesses the finite sample performance of the proposed method relative to that
employed in Li & Racine (2008) and considers an empirical application. All proofs are relegated to the
appendices.

2. CONDITIONAL CDF BANDWIDTH SELECTION: RELEVANT VARIABLES

We consider the case for which x is a vector containing mixed discrete and continuous variables. Let
r = (2¢,2%) € (8¢, 8%), where 2¢ is a ¢-dimensional continuous random vector, and where z¢ is an r-
dimensional discrete random vector. We shall allow for both ordered and unordered discrete datatypes
(Li & Racine (2008)). Let x% (x?) denote the sth component of z¢ (29), s = 1,...,7r; i = 1,...,n,
where n is the sample size. Let A denote the bandwidth for a discrete variable. For an ordered variable,
we use the following kernel:
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For an unordered variable, we use a variation on Aitchison & Aitken’s (1976) kernel function defined
by
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We assume that z, takes values in {0, 1,...,¢cs — 1}, where ¢; > 2 is a positive integer. We write the
product (discrete variable) kernel as Ly(zd, 2%, \) = [[i_; l(z%, 22, As). The product kernel function

used for the continuous variables is given by Wj,(z¢, 2¢) = [, hy *w((z§, — 2¢)/hs), where w(-) is a
univariate kernel function for a continuous variable. z¢, (v¢) denotes the st component of ¢ (2¢) and
hs is the bandwidth associated with .

The kernel function for the vector of mixed variables z = (2, z%) is simply the product of Wj(-)
and Ly(-) which we denote a ‘generalised product kernel’ given by K., (z;, z) = Wj,(x¢, 2°) Ly (28, 2%, ),
where v = (h, ).



2.1. The scalar y case. We use F(y|z) to denote the conditional CDF of Y given X = x and let f(x)
denote the marginal density of X. In this paper we consider three estimators that may be of general
interest. We will use (a), (b) and (c) to distinguish the three estimators defined below. The first one
(e.g., Li & Racine (2008)) smooths the covariates = (but not y) and is given by:

(3) Fo(ylz) =n 1ZI S (zj,2)/f(2),

where I(A) denotes an indicator function that assumes the value 1 if A occurs and 0 otherwise, where
flx) =n"1 > j—1 (x5, x) is the kernel estimator of the design density f(z).

The advantage of using Fj,(y|z) to estimate F'(y|x) is that it is applicable whether y; is a continuous
or a discrete variable.

The second estimator proposed by Li and Racine smooths the dependent variable y; (assuming that
y; is a continuous variable) and is defined by

(4) Fy(yle) =n™" > G((y — ;) /ho) K+ (xj,2)/ (),
j=1
where G(+) is a CDF function defined by G(v) = [*__ w(u)du (because w(-) is a kernel density function),
ho is the bandwidth associated with y.
When y is a discrete variable, we propose a third estimator that also smooths both x and y using a
discrete support kernel for y,

() Fu(yle) =n 1Z£ Yisys o) Iy () / f (),
7j=1
where L(y;,y, o) = >_,<, 1(yj,2,Ao) is the cumulative discrete kernel function based on (1) or (2)
depending on whether y is an ordered or an unordered discrete variable.
In all three cases we suggest choosing bandwidths by minimizing the following cross-validation func-
tion,

(© v =33 [ {1 <) - Peitylen | MMy
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where M(-) and M (-) are trimming functions with bounded support. If y is a discrete variable, then
one should replace [ dy by Z ep, in (6), where D, is the support of y; (discrete), and

A Foilyles) < =t 001y < 9)K (.20 f-i(a) for case (a),
(1) Fualyles) = § By ayles) < 0 S50, Gy — 93)/ho) Ky (,23) / fs(s) - for case (b),
Foilyle) = 0 S0 Ly, M) Ky (2, 00)/ fi(ws)  for case (o),

is the leave-one-out estimator of F(y|z;), while f_;(x;) = (n—1)"! > jzi K~ (x5, ) is the leave-one-out
estimator of the design density. Again, note that for case (a), y can be either a continuous or a discrete
variable, while case (b) applies only to continuous y and case (c) only to discrete y.

For the proofs below we make the following assumptions.

Condition 1. {X;,Y;} | are independent and identically distributed as (X,Y), f(x) and F(y|x)
have uniformly continuous third-order partial derivative functions with respect to x¢ and y (if y is a
continuous variable).

Condition 2. w(:) is a non-negative, symmetric and bounded second order kernel function with
[w(w)|v|*dv being a finite constant.

Condition 3. Asn — 00, hy = 0 fors=0,1,...q, \¢ = 0 for s =0,1,...r, n(hy ... hg) — cc.



We will first present results on the leading terms of CV(-), and for this we need to obtain leading
bias and variance terms. To describe the leading bias term associated with the discrete variables, we
need to introduce some notation. When z¢ is an unordered categorical variable, define an indicator

T
Lo(2%, 2%) = I(af # 20) [ [ 1af =

function I4(+,-) by
t#s

I,(z¢, 2%) equals 1 if and only if 2% and 27 differ only in their sth component, and is zero otherwise.
For notational simplicity, when z¢ is an ordered categorical variable, we shall assume that z¢ assumes

(finitely many) consecutive integer values, and I(-,-) is defined by

L2, 2 = 1(Ja — =0 = 1) [ 1(e
t#s
Note that I(z¢, 2%) equals 1 if and only if 2¢ and 2% differ by one unit only in the sth component, and
is zero otherwise.

Fors=1,...,q,let Fy(y|z) = OF (y|z)/0zs and Fss(y|z) = 0> F(y|z)/0x2. Let Fy(y|z) = OF (y|x)/0y,
Foo(ylz) = 0?°F(ylz)/0y?, k2 = [w(v)v?dv, and vy = [ W (v)?dv.

The next theorem gives the leading terms for CV ().
Theorem 2.1. Letting CV () be defined in (6) and also assuming that conditions (C1) to (C3)
hold, then the leading term of CV () is given by CVL(-), which is defined as follows (where [dx =
> wdeD, [ dz¢, D, is the support of xd):

For case (a) (no smoothing for y)

q T
cVartn = [ [Z B2 Buy(yln) + 3 AsBas(yle) 4 F M) M (y)drdy,
s=1 s=1 q
while if y is discrete, [dy above needs to be replaced by EyeDy.
For case (b) (smoothing for continuous y)
y\x — hoth
CVoL(vy // Zh Bis(y|z) +Z>\ Bas(y|z) m f(@)M(z) M (y)dzdy.
q
For case (¢) (discrete support smoothing for discrete y)
z Aol
CVe,r(v) = Z / [Zh Bis(ylz) + Z)\ Bas(y|z) yllih f(x)M(x)dz,
yEDy e

where Big = %2 Foo(y|x), Bis(ylz) = 2 [f () Fes(y|@)+2fs(x) Fs(yl2)] / f (), fors =1,...,q, Ba(ylz) =
Cy — F(y]a:), where Cy = 7. o, 1. Bas(y|z) = 3 acga L(2%,2%) [F(y|a©, 2%) — F(y|z)] f(z¢, 2%)/ f(2),
o < Lo By el - F(ylo))/£(z), 1 = wCuFo(yle)/f(z), Q2 = 2w0[Flylz)? —
y\w)]/f( ) =2 [ G(v)w(v)vdv.
Theorem 2.1 is proved in Appendix A.

For F,(y|z) defined in (3), Li & Racine (2008) have shown that the estimation MSE has the following
leading term,

8) MSEL[Ey(y|z)] [Zh Bi,(y|z) +ZA By, y\x] 7}1,
q

1When we say that C'Vy is the leading term of C'V', it means that CV = C'Vg + (s.0.), where (s.0.) denotes terms having
probability order smaller than C'Vy, and terms unrelated to the bandwidths.



Comparing C'V, 1(-) given in case (a) of Theorem 2.1 with (8), we observe that
CVor = | [ MSELFy/o) ) M(@)M (y)dody

Hence, the CV selected bandwidth is asymptotically optimal because the leading term from the
CV function equals the leading term of the weighted integrated estimation MSE. Therefore, the CV
selected bandwidths lead to an estimator that minimizes a weighted integrated MSE. Similar results
hold true for cases (b) and (c).

Using the results of Theorem 2.1 we obtain the main result of the paper which describes the asymp-
totic behavior of CV selected bandwidths.

Theorem 2.2. Under conditions (C1) - (C3), we have
(i) nl/@+a)p L g0 s=1,...,q;
(i) n2/ATDX, Bopd s =1, .. r;
(iii) n'/A+Dhy B 6l
(iv) n?/(+0 )y B p0,
where @) (s =1,...,q) are positive constants, a3, and b2 (s =0,1,...,7) are non-negative constants.

Note that Theorem 2.2 should be understood as follows: Results (i) and (ii) are relevant for case (a)
because in case (a) we do not smooth y, hence there are no bandwidths involved for y (i.e. iLO and ;\0)
for case (a). Similarly, (i) to (iii) apply to case (b) (continuous y), while (i), (ii) and (iv) apply to case
(c) (discrete y).

The results of Theorem 2.2 can be interpreted as follows. If one defines some optimal non-stochastic
bandwidths, say h? = a0 /(449 and A0 = 0 =2/(4+9) that minimize the leading terms of the
weighted integrated estimation MSE (with weight function given by M(z)M(y)), and we write hy =
asn~ /D) and Ay = byn~2/ (419 then we have a5 — a? and by B 2. Thus, the CV selected bandwidths
are asymptotically equivalent to the optimal non-stochastic bandwidths.

Using the results of Theorem 2.2, we obtain the following asymptotic normality result for F'(y|z).

Theorem 2.3. Under conditions (C1) - (C3), we have
5 i d
(9) nhi -+ hy [F(ylr) = Fyla) Zh&ww AsBau(ylr)| 5 N(0,Z,),

where for case (a), h3Bio(y|x) and MoBao(y|z) should be removed from equation (9) as there is no hg
and \o for case (a). Similarly, \oBao(y|z) and h2Bio(ylz) should be removed for cases (b) and (c),
respectively.

One problem with the C'V (-) function defined in (6) is that it involves (numerical) integration, which
can be computationally prohibitive. Below we propose an alternative cross-validation function which
replaces the integration over y by a sample average over the y;s. Therefore, one can also choose the
bandwidths by minimizing the following alternative cross-validation objective function:

(10)
1< I o - 2

CVs(y = ; nln —1) ;; [ I(yi <y;)— F—z‘(yjm)} Mi,
where M; = M(X;) is the same weight function used in (6).

The advantage of using (10) is that it is less computationally onerous as it does not involve (numer-
ical) integration.

It can be shown that the asymptotic behavior of the bandwidths selected by minimizing (10) is
similar to those described by Theorem 2.2, while the resulting estimator has the same asymptotic
distribution as described in Theorem 2.3.

zn: [ (vi < ;) ff’—z(yj|sﬂz)r./\/lZ =
i#



Theorem 2.4. If one chooses M(y) = g(y), where g(y) is the marginal density (probability function)
of y (y can be either continuous or discrete), then CV () defined in (6) and CVx(y) defined in (10)

are asymptotically equivalent in the sense that
CVs r(v) = CVi(y),
where CVx, 1, is the leading term of CVx (), CVy, is the leading term of CV ().

A sketch of the proof of Theorem 2.4 is given in Appendix A.
From Theorem 2.4 we immediately obtain the following useful results.

Theorem 2.5. If one chooses the bandwidths by minimizing CVx(+), then Theorem 2.2 and Theorem
2.8 remain valid with the only modification being that one replaces M(-) by g(-).

The conclusion of Theorem 2.5 follows directly from theorems 2.2, 2.3 and 2.4. Therefore, its proof
is omitted.

2.2. The Multivariate y Case. When y is multivariate we write y = (y1,...,yp) = (¥5, ... +Ygy [T yffy)
which is of dimension p = g, +1,, where the first g, are continuous variables and the last r, are discrete
ones. Our method outlined earlier can be generalized to cover the multivariate y case in a straightfor-
ward manner. We consider two estimators for multivariate y, one that does not smooth y which we
again call case (a) (the subscript m below is taken to mean ‘multivariate’ y),

(11) Frnalyle) = n 121 J(@j,2)/f(@),

where I(y; < y) = [, (y;s < ys) is the product of indicator functions, while the second estimator
smooths both = and y (call it case (b)),

n

(12) Fm,b(y|$) :n_IZIC(yj,y,fyo) (xja )/f( )

j=1
where K(y;,5,90) = G (Y ) £y 20), G (Y ) = T, G (Y2 ) and L0y y 20) = T2,
E(ygs, v, Xo,s)- We again propose selecting bandwidths via leave-one-out cross-validation by minimizing
(where [dy = > yieD, [ dy©)

=n! zn:/{l(y <y) - F—i(y\wi)}QM(wi)M(y)dy, or

CVnz = 3 ZZ{ (vi <yj) F—i(?/j\ﬂ?i)}QMu

=1 j=1

where F_;(y|x;) is the leave-one-out estimator of F(y|z;) and it can be either F, o _; = (n—1)"" >z 1y <

Y) Koy (), 2) ) f-i(ai) or Frp—i(yle:) = (n —1)7" 350, K(yj, v, 70) Ky (25, 20) / f-iw)  and F_j(y;|a;)
is obtained from F_l(y]a:,) with y replaced by y;.

For case (a) (no smoothing of y), it is easy to show that theorems 2.2 and 2.3 (case (a)) remain valid
except now that F(y|x) is understood to be F(yi,...,yp|z).

For case (b), Theorem 2.2 is modified by replacing n —1@t+ap, Ly g0 o by n~ 1 (4+‘Y)ﬁo7s TN a815 for
s=1,...,qy, and replacing n —2/(4ta) ) B b8 by n 2/(4+‘1)>\075 = bO,s for s=1,...,ry, where a87s and

68 . are non-negative constants.

Finally we present the asymptotic distribution of Fy, .(y|z) and E, 5(y|x) defined in (11) and (12)
with CV selected bandwidths.



Condition 4. Asn — o0, hgs =0 for s =1,...qy, Aos = 0 fors=1,...7,.

Theorem 2.6. Under (C1) to (C4), we have

(@) \/nha - [P a(ylz) = Flyle) = X0 B2Buy(yle) = 0oy ABay (yl2)] 5 N(0, 5y);

(b) \/ niLl cee ﬁq[pm,b(y‘x) - F(y‘l’) - Cs]:1 BgBls(yu:) - zyzl iL(2)7sBO,ls(y|:L‘)

- ZZ:I AsBQS(y’x) - Zgyzl AO,sBOQS(y‘w)] i) N(O, Ey|:v)7
where the definition of Bis(y|z), Bas(y|z) and Xy, are the same as defined in Theorem 2.1 except that
now y = (yi,...,Yp), where the definitions of By 1s(y|x) and Boas(y|x) are defined in Appendiz A (in
the proof of Theorem 2.6).

A sketch of the proof of Theorem 2.6 is given in Appendix A.

3. CONDITIONAL CDF BANDWIDTH SELECTION IN THE PRESENCE OF IRRELEVANT REGRESSORS

Next, we consider the case for which one or more of the regressors may be irrelevant, which can occur
surprisingly often in practice. Without loss of generality, we assume that only the first ¢; (1 < q1 < q)
components of z¢ and the first 1 (0 < r; < r) components of z¢ are “relevant” regressors in the
sense defined below. Let Z consist of the first ¢; relevant components of x¢ and the first r; relevant
components of 2¢, and let & = 2\ Z denote the remaining irrelevant components of 2. We assume there
exists at least one relevant continuous variable (i.e. g1 > 1).

Similar to the definition given in Hall, Li & Racine (2007), we shall assume that

(13) Z,y is independent of 7.

Assumption (13) is quite strong as it requires independence not only between Z and y but also
between Z and Z. A weaker assumption would be to require that

(14) Conditional on Z, the variable Z and y are independent.

However, using (14) will cause some technical difficulties for the proof of our main result. Therefore,
in the paper we will only consider unconditional independence given in (13) though we point out that
extensive simulations carried out by Hall et al. (2007) indicate that all results indeed follow under (14).

For ease of presentation we will focus on the CDF estimator F,(y|z) first. We generalize our con-
clusion to include cases Fy(y|z) and F.(y|z) in the end of this section. Note that the conditional CDF
of F(y|z) is F(y|z). This is because under the assumption of (13), we get F(y|z) = E[I(y; < y)|z; =
z] = Ell(y; < y)|zi = z] = F(y|z). We shall consider the case for which the exact number of relevant
variables is unknown, and where one estimates the conditional CDF based upon (possibly) a larger set
of regressors © = (7, %), still using equation (3). We use f(z) to denote the joint density function of
z = (2¢,2%), and we use f(Z) and f(Z) to denote the marginal densities of Z; and #;, respectively.

We impose similar conditions on the bandwidth and kernel functions as Hall et al. (2007). Define

(15) H= (ﬁ hs> ﬁ min(hg, 1).
s=1

s=q1+1
Letting 0 < € < 1/(p + 4) and for some constant ¢ > 0, we further assume that
nl<H<n ¢n¢<hs<nforalls=1,...,q the kernel w(-) is a symmetric,
compactly supported, Holder-continuous probability density;
(16) and w(0) > w(J) for all § > 0.

The above conditions basically ask that each hs; does not converge to zero, or to infinity, too fast,
and that nhy ... hg — 0o asn — oo (hg — 0 and A\g — 0 as n — oo will be always assumed throughout
this paper).



We use H to denote the permissible set for (hi, ..., hy) that satisfies (16). The range for (Ay,...,\,) is
[0,1]", and we use I' = H x [0, 1]" to denote the range for the bandwidth vector v = (h1, ..., hg, A1, ..., Ar).
We maintain the assumption that hg — 0 and A\g — 0 as n — oo.

We expect that, as n — oo, the bandwidths associated with the relevant covariates will converge to
zero, while those associated with the irrelevant covariates will not. It would be convenient to further
assume that hy — 0 for s =1,...,¢q1, and that Ay — 0 for s =1,...,r;. However, for practical reasons
we choose not to assume that the relevant components are known a priori, but rather assume that
assumption (19) given below holds. We write K ;; = K’:,’ijkwj, where 7 = (h1,..., hg;, A1, -5 M),
and 7 = (hgy+1s- -+ hg, Ary41, - -5 Ar) s0 that K and K are the product kernels associated with the
relevant and the irrelevant covariates, respectively. We define

(17) n(y, ) = f(@) B[(Fylz;) — Fylz:) K5l = ).
Note that n(y, ) defined above only depends on the bandwidths associated with the relevant covari-

ates, that is, it is unrelated to (h, A), the bandwidths associated with the irrelevant covariates.
Define

(18) M(z) = / F(@) M(x)di.

We assume that

[[In(y, )2 f()M(Z)M (y)dzdy, as a function of hy,..., kg and A1, ..., A,
(19) vanishes if and only if all of the bandwidths vanish.

In Lemma B.4 in Appendix B we show that (16) and (19) imply that as n — oo, hy — 0 for
s=1,...,q1 and Ay — 0 for s = 1,...,71. Therefore, the bandwidths associated with the relevant
covariates all vanish asymptotically. In Appendix B, we also show that hy — oo foralls=¢;+1,...,q
and A\; = 1 for all s = r1 + 1,...,r. This means that all irrelevant variables will be smoothed out
asymptotically. Therefore, the leading term of C'V is the same as the result in Theorem 2.1 except
that one has ¢; and r; replacing ¢ and r in Theorem 2.1. This leads to the following main result of
this section.

Theorem 3.1. In additional to conditions (C1) to (C4), assume that conditions (16), (19) and (B.10)
also hold, and let hy,..., hg,A1,..., A denote the bandwidths that minimize C'V,(vy). Then

nt @+ 5 a9 in probability for 1 < s < qu,

P(iLs>C)%1f0rq1+1§s§q and for all C' > 0,

n2/(@+9 ), — b0 in probability for 1 < s < rq,

s = 1in probability forr +1 < s <r,

n2/ @+ p, — al in probability for ri +1 < s <r,
(20) n? @+, — b in probability.

Theorem 3.1 states that the bandwidths associated with the irrelevant covariates all converge to their
upper bounds, so that, asymptotically, all irrelevant covariates are smoothed out, while the bandwidths
associated with the relevant covariates all converge to zero at a rate that is optimal for minimizing
asymptotic mean square error (i.e., without the presence of the irrelevant covariates).

Similar to the result given in Section 2, one can show that the leading term of the CV function equals
a weighted IMSE (with only relevant covariates used in the estimation). Therefore, the CV method

leads to optimal smoothing in the sense of minimizing a weighted IMSE asymptotically.
From Theorem 3.1 one can easily obtain the following result.



Theorem 3.2. Under the same conditions given in Theorem 3.1, for x € interior to S = S¢x S%, then
~ ~ A _ ~ — _ r ~ — _ d —

(21) nhy ... he [Fa(y|x) — F(ylz) — Y1, h2Bis(y|z) — Yook, >\sB2s(y‘$)] — N(0,%yz),

where Bis(y|T) and Bay(y|Z) are defined in (B.3) and (B.4), while 5,5 is defined in (B.5).

Theorem 3.2 shows that the asymptotic normality of the conditional CDF estimator in the presence
of irrelevant covariates is the same as the estimator with only relevant covariates.

4. ESTIMATING CONDITIONAL QUANTILE FUNCTIONS

With the nonparametric conditional CDF estimator in hand, it is straightforward to obtain a con-
ditional quantile estimator. A conditional 7! quantile of y given x is defined by (7 € (0, 1))

(22) ¢r(z) = inf{y : F(ylz) > a} = F~}(alz).

Since F(y|z) is (weakly) monotone in y, inverting (22) leads to a unique solution for ¢-(x). In this
section we will focus on using F'(y|z) to obtain a quantile estimator for ¢,(x). Therefore, we propose
the following estimator for estimating ¢, (z):

(23) G-(x) = inf{y : F(ylz) > a},

where F(y|x) can be any of the three estimators discussed in Section 2 with CV selected bandwidths.
The CV objective function can be either CV(-) defined in (6) or C'Vs; defined in (10). Of course, F}(y|x)
and Fc(y|$) are only applicable to continuous and discrete y, respectively.

Because F(y\x) is monotone in y, (23) leads to a computationally simple estimator relative to, say,
the check function approach where one needs to minimize a nonlinear function in order to obtain an
estimator for ¢, (x).

Because F(y|z) lies between zero and one and is monotone in ¥, Go(z) (§a(z)) always exists. There-

fore, once one obtains F(y[x), it is trivial to compute g, (), for example, by choosing ¢, to minimize
the following objective function,

(24) jo(z) = arg nl}in | — F(qa]a:) |.

That is, the value of g, that minimizes (24) gives us 4, (x). We make the following assumption.
Condition (C5): The conditional PDF g, (y|x) is continuous in z¢, f(qs(z)|z) > 0.
We use f(y|z) = Fo(y|z) = 8%F(y]ac) to denote the conditional PDF of y given x. Below we present
the asymptotic distribution of G, ().

Theorem 4.1. Define By o(z) = Bp(qa(z)|2)/f(qa(x)|z), where By(ylz) = [>1_; hZB1s(ylz) +
> oi_o AsBas(y|x)] is the leading bias term of F(ylz) (with y = qa(z)). Then, under (C1) to (C5),

we have
(nhy ... hq)1/2[(ja(ac) — ga(x) — Bpo(x)] = N(0,Vy(x)) in distribution,

where Va(x) = a(1 — a)vo/[2(qa(@)[2)(2)] = V(ga(@)e)/ 2 (qa(@)|e) (since a = F(ga(a)r)).

The proof of Theorem 4.1 follows the same arguments as the proof of Theorem 3.1 of Li & Racine
(2008) given the results of Theorem 3.2 above. Thus, the proof of Theorem 4.1 is omitted.

5. MONTE CARLO SIMULATIONS AND EMPIRICAL APPLICATIONS

In this section we examine the finite-sample performance of proposed method of cross-validated
conditional CDF bandwidth selection.



We numerically minimize the following objective functions:

(25) CV (g, ha) —n*Z / I <)~ Palwle) ) dy,

~ 2

(26) v (h, —n—QZz{ (s < 5) — Foalyslz)}
=1 j=1

where 1(-) is the usual indicator function and where F_;(-) is the leave-one-out kernel estimator.
Having computed the bandwidths we then compute the sample MSE of the estimators of F'(y|z) for
both the CCDF and CPDF-based bandwidths via

(27) MSE =n""Y (F(yilz:) — F(yilz:))*.
i=1

5.1. Comparison of Integral Versus Summation Approach. We first assess how the integration-
based method compares with the summation-based version given in (25) above. We draw 1,000 Monte
Carlo replications from a joint normal distribution with correlation p for a range of sample sizes That

1
using both (25) (‘CCDEF’) and that appropriate for PDF estimation (‘CPDF”).

is, (y,z) ~ N(u,X) with g = (0,0)" and ¥ = C’) P > . For each replication we conduct cross-validation

TABLE 1. Summation-based relative median efficiency of kernel estimators of CCDF's
using the proposed CCDF-based bandwidth method versus that appropriate for CPDF's.
Numbers less that 1 indicate superior MSE performance.

n=20 n=50 n=7 n=100 n=150 n =200
p=095| 0.83 0.87 0.89 0.90 0.89 0.91
p=085| 0.88 0.89 0.92 0.90 0.92 0.90
p=0.75| 0.88 0.90 0.90 0.90 0.92 0.92
p=20.50| 0.86 0.92 0.91 0.90 0.92 0.89
p=025| 1.01 0.95 0.92 0.89 0.86 0.89
p=0.00| 1.17 1.09 1.11 1.08 1.07 1.18

TABLE 2. Integration-based relative median efficiency of kernel estimators of CCDF's
using the proposed CCDF-based bandwidth method versus that appropriate for CPDF's.
Numbers less that 1 indicate superior MSE performance.

n=20 n=50 n=7 n=100 n=150 n =200
p=095| 0.77 0.81 0.83 0.84 0.88 0.88
p=2085| 0.80 0.84 0.85 0.85 0.89 0.91
p=0.75| 0.80 0.84 0.86 0.86 0.91 0.90
p=2050| 0.83 0.85 0.86 0.88 0.87 0.89
p=2025| 0.89 0.93 0.89 0.85 0.87 0.88
p=20.00| 1.02 0.99 1.07 1.03 1.09 1.16

Tables 1 and 2 reveal that a) when there is no relationship between y and = (p = 0) the bandwidth
selector of Hall et al. (2004) performs better in that it has a higher probability of removing the irrelevant
variable z (in this case the appropriate h, is co). However, when p # 0 it is seen that the proposed
method delivers bandwidths that dominate those based on PDF bandwidth selection in finite-sample
settings.
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5.2. Empirical Rates of Convergence of the Cross-Validated Bandwidths. We can use these
simulation results to examine the rate at which the bandwidths h; and h, converge to zero empirically
when z is relevant (p # 0) by simple regression of the logarithm of the bandwidth on the log of the
sample size (the coefficient will be the parameter « in the expression cn®). In particular, we take
the median values of, say, h, for each n in the tables above and conduct a log-log regression of this
median on n. The coefficient on log(n) indicates the rate at which hy, (h;) approaches zero as n — oc.
For instance, if h, o n~1/3, the coefficient on log(n) would be around -0.33, while if h, n=1/5, the
coefficient on log(n) would be around -0.20. Similarly, if h, oc 7'/, then the coefficient on log(n)
would be around -0.17.

For the proposed CDF method we obtain a coefficient on log(n) of —0.31 (= —1/3) for h, and —0.16
(= —1/6) for h,. For the PDF method however we obtain —0.21(~ —1/5) for h, and —0.15 (~ —1/6)
for hy. These results are in line with the theoretical results presented above and in Hall et al. (2004)
which confirms that the proposed method delivers bandwidths that indeed mirror the theoretical rates
of convergence.

5.3. Irrelevant Categorical Covariates. Next, we take the DGP used above but now add an addi-
tional covariate z that is uncorrelated with y but this is not presumed to be known a-priori. Results
are presented in Table 3 below. We note that the bandwidth A, for the discrete variable takes its
upper bound with high probability as it should given that z is ‘irrelevant’, while the method otherwise
continues to perform as expected.

TABLE 3. Irrelevant z summation-based relative median efficiency of kernel estimators
of CCDFs using the proposed CCDF-based bandwidth method versus that appropriate
for CPDFs. Numbers less that 1 indicate superior MSE performance.

n=25 n=50 n=7 n=100 n=150 n =200
p=095| 0.79 0.83 0.89 0.88 0.88 0.90
p=085| 0.89 0.90 0.87 0.91 0.89 0.91
p=0.75| 087 0.86 0.89 0.89 0.93 0.91
p=0.50] 091 0.89 0.89 0.92 0.90 0.87
p=025| 1.00 0.97 0.96 0.87 0.86 0.86
p=0.00| 1.06 0.98 0.93 0.95 0.98 0.95

5.4. Application - Out-of-Pocket Drug Expenditures. Prescription drug cost containment is
an issue that has been hotly debated in Canada as of late. Canadian provincial government drug
subsidy programs have recently begun to change the basis of subsidy from age (age 65+) to financial
need (defined as high drug costs relative to income, regardless of age), in an attempt to improve
the distributive equity of their programs. We consider using quantile methods in order to assess the
distributive features of out-of-pocket prescription drug expenditures.

Our data is taken from the public use versions of the Statistics Canada Family Expenditure Surveys
(FAMEX) and the Surveys of Household Spending (SHS), which replaced the FAMEX in 1997. These
surveys collect information on annual household level income, spending on various goods and services,
including prescription drugs, as well as information on household living arrangements. We consider
data for 2008 for British Columbia and restrict attention to households having positive out-of-pocket
expenditures for prescription drugs (i.e., who have positive levels of cost sharing) for which there were
n = 679 households. We make use of the variables prescription drug share (‘rxshare’), sex, marital
status, age category, and (log) household expenditure (‘Irex’). Our dependent variable is rxshare
when the remaining being predictors of which only expenditure is continuous while the remaining
are categorical. We apply the proposed method of bandwidth selection which is summarized in the
following table.
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TABLE 4. Bandwidth summary for the prescription drug illustration.

Variable Bandwidth Apax c

male 0.753 1 NA
married 0.396 1 NA
hagecat 0.0173 1 NA
Irex 0.382 NA 2.03

rxshare 0.000525 NA 0.15

Table 4 reveals that the categorical variable ‘male’ receives the most smoothing while that for
age ‘hagecat’ receives substantially less, while the continuous predictor household expenditure ‘lrex’
receives a fair bit of smoothing, the dependent variable drug share ‘rxshare’ receiving less. Note that
an empirical CDF approach that did not smooth the dependent variable would have Ajxshare = 0 hence
positive smoothing is deemed appropriate by the proposed method.

Figure 1 presents partial quantile plots for 7 = {0.5,0.6,0.7,0.8} which range from median out-
of-pocket expenditure (0.5) to the 80th percentile (0.8). For these figures variables not appearing on
the axes are held constant at their mode (for categorical predictors) and median (for the continuous
predictor).

Age 25-39 Age 65-74

0.08
1

0.08
1

0.04 0.06
| |
Drug Share Quantile
0.04 0.06
| |
’

Drug Share Quantile

0.02
1

0.02
1

0.00
1

0.00
1

T T T T T T T T T T T T T T
20000 30000 40000 50000 60000 70000 80000 20000 30000 40000 50000 60000 70000 80000

Household Expenditure Household Expenditure

Fi1GURE 1. The figure on the left represents drug share quantiles for persons aged 25-39,
while that on the right is that for persons aged 65-74.

Figure 1 reveals that those aged 25-39 have out-of-pocket drug shares in the neighborhood of around
1% conditional on positive expenditures in this category for all ranges of income. However, for those
aged 65-74 the picture is quite different and reveals the regressive nature of out-of-pocket prescription
drug expenditures among seniors. Those with higher incomes spend a markedly smaller fraction on
out-of-pocket prescription drug costs than those with lower incomes.

6. CONCLUSION

In this paper we have solved an ‘open problem’, namely, the optimal selection of bandwidths for con-
ditional CDF estimation. However, in this paper we only consider the independent data case. We note
that Cai (2002) and Cai & Xu (2008) have considered the problem of estimating conditional quantile
functions with weakly dependent data (S-mixing and a-mixing processes), though these authors only
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consider the case where all covariates are both relevant and continuous. By combining the methods
outlined in this paper with those in Cai (2002) and Cai & Xu (2008), one can readily generalize the
results in this paper to cover the weakly dependent time series data case.

We hope that the method proposed in this paper proves useful to those interested in the estimation of
conditional CDFs, and in particular to those who wish consistent nonparametric estimates of conditional
quantile functions.

REFERENCES

Aitchison, J. & Aitken, C. G. G. (1976), ‘Multivariate binary discrimination by the kernel method’, Biometrika 63(3), 413—
420.

Bashtannyk, D. M. & Hyndman, R. J. (2001), ‘Bandwidth selection for kernel conditional density estimation’, Computa-
tional Statistics and Data Analysis 36, 279-298.

Cai, Z. (2002), ‘Regression quantiles for time series’, Econometric Theory 18, 169-192.

Cai, Z. & Xu, X. (2008), ‘Nonparametric quantile estimations for dynamic smooth coefficient models’, Journal of the
American Statistical Association 103(484), 1595-1608.

Chung, Y. & Dunson, D. B. (2009), ‘Nonparametric bayes conditional distribution modeling with variable selection’,
Journal of the American Statistical Association 104(488), 1646—1660.

Fan, J. & Yim, T. H. (2004), ‘A crossvalidation method for estimating conditional densities’, Biometrika 91(4), 819-834.

Hall, P., Li, Q. & Racine, J. S. (2007), ‘Nonparametric estimation of regression functions in the presence of irrelevant
regressors’, The Review of Economics and Statistics 89, 784—789.

Hall, P., Racine, J. S. & Li, Q. (2004), ‘Cross-validation and the estimation of conditional probability densities’, Journal
of the American Statistical Association 99(468), 1015-1026.

Hyndman, R. J. & Yao, Q. (2002), ‘Nonparametric estimation and symmetry tests for conditional density functions’,
Journal of Nonparametric Statistics 18(3), 439-454.

Koenker, R. (2005), Quantile Regression, Cambridge University Press, New York.

Lee, J. (1990), U-statistics: Theory and practice, Marcel Dekker, New York.

Li, Q. & Racine, J. S. (2008), ‘Nonparametric estimation of conditional CDF and quantile functions with mixed categorical
and continuous data’, Journal of Business and Economic Statistics 26(4), 423-434.

Li, Q. & Zhou, J. (2005), ‘The uniqueness of cross-validation selected smoothing parameters in kernel estimation of
nonparametric models’, Econometric Theory 21(5), 1017-1025.

Masry, E. (1996), ‘Multivariate local polynomial regression for time series: uniform strong consistency and rates’, Journal
of Time Series Analysis 17, 571-599.

Rosenthal, H. P. (1970), ‘On the subspace of I’ (p > 1) spanned by sequences of independent random variables’; Israel
Journal of Mathematics 8, 273-303.

APPENDIX A: PROOFS OF THEOREMS 2.1, 2.2 , 2.3 AND 2.6

To simplify the derivations that follow, it is necessary to introduce some shorthand notation and
preliminary manipulations.

(1) Let f; = f(:), foi = foil@i), Ky ji = Ky(zj,20). T =1(y; <), F = F(yla;), My = M(x,).
n n n n n n
(2) We define }°;, = 37", ZZj;éi =2 ic1 Zj:l,j;éia ZZj;éi Zl;éi =2 ic1 Zj:l,j;éi Zl:Llyﬁi’
-1 —2 —~n—1
>0 Zl;éj;ﬁi = Z?:l Z?:l,j;éi Z?:l,l;éi,l;éjv > Zj>i = 2?21 Z;‘;i? > Zl>j>i = 2?;1 ?>i
n
>3-
(3) We write A,, = By, + (s.0.) to denote the fact that B,, is the leading term of A,,, where (s.0.)
denotes terms that have orders smaller than B,,. Also, we write A,, ~ B, to mean that A,, and
B,, have the same order of magnitude in probability.
(4) For notational simplicity we often ignore the difference between n=! and (n—1)~! (or (n—k)~*

for any fixed finite integer k) simply because this will have no effect on the asymptotic analysis.
(5) Define |h|? =37 h2, |IN? =20_ A2, Cin = |R* + |\ and ¢, = (3, + (nhy ... hy) ™t

In the proofs that follow we make use of U-statistic H-decomposition and Rosenthal’s Inequality
repeatedly. We present the results below for the reader’s convenience.
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|
The H-decomposition for U-Statistics. Let (Z) = ﬁ denote the number of combinations
I(n — k)!

obtained by choosing k items from n (distinct) items. Then a general kth order U-statistic U, is defined
by

-1
n
U(k:): (k) Z Hn(.ﬁil,...,xik),

1<y < <ip<n

where H,(x;,,...,x; ) is symmetric in its arguments and E[H2(z;,,...,2; )] < co. In our proofs we
will often use the following H-decomposition for a second order U-statistic,

i ]>z

where Hy,;; = Hy(xi,x;), Hy = E[Hpj|le;] and 0 = E[H, ;). We will also make use of the H-
decomposition for a third order U-statistic,

) j>Z

(AQ) + Z Z Z n,ijl — n K% Hn,jl - Hn,li + Hm' + Hnj + Hnl - 9);

n(n — 1
I>5>1

where Hn,ijl = Hn(IZ’,LL“j,.%l), Hn,ij = E[Hnﬂ‘j“l‘i,l’j], Hn,i = E[Hnﬂj‘ﬂfl] and 0 = E[Hn,ijl]- For an
H-decomposition for a general k' order U-statistic, see Lee (1990, page 26).

Rosenthal’s Inequality. Let p > 2 be a positive constant and let xq,...,x, denote i.i.d random
variables for which E(x;) = 0 and E(|z;|P) < co. Then there exists a positive constant (which may
depend on p) C(p) such that

(A.3) E ( .
=1

p/2

>

) <) { S Blail) +
=1

Z E(z?)
s=1

Equation (A.3) is known as Rosenthal’s Inequality (Rosenthal (1970)).

Proof of Theorem 2.1 Case (a). Define F_; = F, _;(y|x;). We need to show that CV,(-) = CV, 1 (-) +
(s.0.), where (s.0.) contains terms unrelated to bandwidths or terms having smaller order than CVj, r.(-).
Also, the smaller order terms are uniformly small for all v € T' (as defined in Section 3). We rewrite
(6) as (by adding/subtracting terms),

CVu(:) = iZ/ (F_, - F+F - L’)2MiM(y)dy

:*Z / — F)? —2(F — F)(Li — F}) + (F; — L)’ ] M; M (y)dy
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Since n=1 Y, [(F;—1;)>M; M (y)dy is unrelated to the bandwidths, it follows that minimizing C'V,(-)
over (hi,...,hg, A1,...,Ar) is equivalent to minimizing C'V, 1(-), where CV, 1(-) is defined as

Z / — F)? = 2(Fi — Fy) (L — F3)] M: M (y)dy
:/[nn 2222/1— F) 'y]z lz/f—
J#i 10
2= 1) ZZ/ (I = F3)(I; — i)Kw,ji/f—i}MiM(y)dy
J#i
(AA) _ / (Sin — 2550) M (y)dy
where Sln = ’I’L— 1 — 9 ZZZ E)K'y,jiK'y,liMi/fzia S2n = n(nl_l)ZZ(I] -
VEC e JFi

E)(X; — F)K, jiM;/f.
Lemma A.1 and Lemma A.2 show that (recall that ¢, = |h[* + [A* + (nh1 ... hy) ™)

Sin = / {3 2Bule) + 3 ABaole) ) F2)M(a)d
s=1 s=1

b
(A5) [ e @ M@ +o,()
(A.6) Son = Op((n"Y2¢,) + (n(hi ... hg)V*)71).

Combining (A.4), (A.5) and (A.6), we have shown that
CV,(-) = CVur(-) + (s.0.),

where C'V, 1, is defined in Theorem 2.1, (s.0.) denotes terms having probability order (uniformly) smaller
than C'V, 1, and a term that is unrelated to bandwidths.
This completes the proof of case (a) of Theorem 2.1. O

A technical difficulty in handling (A.4) arises from the presence of the random denominator foi=
f-i(X;). We will use the following identity to handle the random denominator:

~ A~

11 fi—fa (= f)? (i f)?
A7 — = — < )
(8.1 f= i " f? " f} i fPfi

Define fio= (n—1)71 D it Wh(xg,azf)l(x =29, fizs=n—-1)7" > Wa(a§, z§)L (:E?,mf) We
have uniformly in 1 <1¢ < n,

fl_ffl:fz 7ZWh ]7 z LE],CL'Z,)\)
JFi

w5, 25) [1(z] = af +ZA L (22, 2) + O(|A])]
J#Z

(A.8) = (fi = fi0) = >_ Asfirs + Op(IA]%).

s=1
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Let S denote the intersection of the support of X; and the support of the trimming set M(Xj;).
Then equation (A.8) implies that, uniformly in 1 <i <n and in z € S,

; (In(n))'/2 2
A9 = fi=0, | —— WP+ N,
; -1 — (In(n))!/2
because SUP1<i<n |fl_f—l’ < SUPges ’f(ZL') Z Wh( 37 z)I(:U - )H‘O( ) OP((nhl...hq)1/2 +

\h|2> (because S is bounded) and sup;<;<,, |fi,1s| = Op(1).
Therefore, we have

A ; 3/2
(010)  1fi— Falt = 0p [ (L) g 6B ) = o (0 ) (B AR).
nh1 e hq
Substituting (A.8) and (A.10) into (A.7), we obtain uniformly in 1 <¢<nandzx €S
1 (fz foi) | (fi— fo0)? -1 4 2
A1l - + +o((nhi...h + R+ A7) .

From (A.11), we also obtain uniformly in 1 <i<nand x € S

1 U 2(fi—foi) . (fi— fi)?
(A.12) E N + ? + A

Both (A.11) and (A.12) will be used to handle the random denominator in the proofs that follow.

+o((nhy...hg) A"+ [AP).

Lemma A.1. Equation (A.5) holds true.

Proof. We omit the weighted function M; for notational simplicity. Define S?n by replacing f:il in S1,
with f;!. We will show that (A.5) holds true with Sy, being replaced by S, and that Sy, — S, =
op(Cn)-

St = n_lzzzz — Fy) K ik i/ ff
JF#L I#i
= HEZI ~ R/ f7
J#i
T 2= 2 2 W = B = F) K, Ko £
l#j#i
(A.13) = S1n,1 + S1n2,

where the definitions of S1,,1 and S1, 2 should be apparent.

First, we consider Sij2, which can be written as a third-order U-statistic. Sip2 = 1/(n(n —
DAY > 1zj2i Qiji, where Qi is a symmetrized version of (Ij — F;)(I; — F;) K ;i K 1/ f?. Define
Qij = E(Qiji|zi, x;) and Q; = E(Q4j1|z;). Then by U-statistic H-decomposition, we have

Sins = BQi+ > (@i~ BQ:) + T @~ @ - Qs+ EQ)
A 7>t
n(n—16n_2 >0 Z (Qiji — Qij — Qj — Qu + Qi + Q; + Q1 — EQ;)

I>5>i
=Jo+ L +J+J3

16



where the definition of Jy, Ji, Jo and J3 should be clear.
= E(Q:) = E(Qij1) = E[(I; = F)(; — Fy) Ky ;i 15/ f7]
= B{ B[~ F)K. sl /)

(A14) = B{B[(F; ~ F)K i) 5}

We first compute E [(Fj — F;) K ji|z;].

E[(F Fy) WZ‘%]

= 3 LGt [Pt + ho,t) = Flyle)f(af + ho, W (0)ds

zdeSd
= > I +Z>\I H+ oA ] /{[F(y\wf,zd)—F(y\xi)

zdeSd

g q

—|—ZF (y|2¢, 2 hsvs + (1/2) ZZFSt Y25, 2 hshyvsvy + o(|h|?)]
s=1 s=1 t=1
) + Zfs Nhsvs + O(|h]?)] }W(v)dv

q

2 th i) Fos(yl@s) + 2f5(2:) Fi(ylas)]

(A.15) + Z A Y L) [Fylag, 27) = Fylan)] f(af, 2%) + o(GF)-

= zdesd

Plugging (A.15) into (A.14), we have
q
Jo= E{ S Funlyles) + 26w Blyla] £

+ZA S L) [Fylaf =) — Fle)] fg Y o)

2degd

= E{ Z thls(y|xz) + Z AsBZS(y‘xi)}Q + 0(C12n)
s=1 s=1

= / { Z hiBls(y|x) + Z )\sBQS(y|$)}2f(CC)d-T + 0(41271)7
s=1 s=1

where Bis(y|x) and Bas(y|z) are defined in Theorem 2.1.

It is obvious that E(J;) = 0 and it is easy to show that E(J?) = O(n~'¢3,). Hence, J; =
Op(n=Y2¢y,). Similarly, Jo = Op(n~'C1n), J3 = Op(n=3/2(1,,). Therefore, the leading term of S o
is Jo. Thus, we have shown that

q T
Stnz = [ {2 WBulle) + o ABarlylo)} F(e)d + 0,6
s=1 s=1
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Next, we consider Siy, 1, Which can be written as a second-order U-statistic. Define Q;; = (1/2)[(I; —
Fi)2fi72 + (Il - ‘Fj)in ] ’y]z’ Ql - [Qlj‘xl] Then

7 j>Z
=Jo+J1+ Jo,
where the definitions of Jy, J1 and Js should be apparent.

Jo=n""E(Q) =n""E(Qi) =n'E{(I; - F})’K2 ;,f;*}
=n'B{(l; - 2F1; + F)K2 ;; 7%}
::n4E{EKF-—2FF-+F%KfﬂWJﬁ4}

= Ew(nhy...hg) ' (Fi — FA) 7] + O((nhy ... hg) ')

:E<%“>+Omm ) Gn)
nhy ... hg bt o

p))
Al = [ M f(a)d h .. hg) "G
(A.16) [ e @+ O((nby b))
where X, is defined in Theorem 2.1.

ylz
Similarly, one can easily show that Ji = O,(n~"2(nhy...hy)™") and Jo = Op(n~ (nhy...hy) ™).
Hence, the leading term of Sy, 1 is Jy. Thus, we have shown that

Stns = / 2 )da 4 opl(nh .. hy) ).
’ ’I’th e hq

Summarizing the above we have shown that

= / { Z h2By,(y|z) + Z /\SBgs(y]a:)}Qf(x)M(x)dx
s=1 s=1

«f nhlzfy%f(xw(x)dw +0y(G).

Next we show that Sy, — S, = 0,((n). By Equation (A.12),

0o _ _ RN

Sln_Sln_nn 22;%;1 — Fi) Ky il 1 <fz2 f22>

2(f; — fi

- n(n—1)2 ZZZ (L - Fi)K’Y’jiK%li{ J f3f !

J#i 1#i i
C_F 2
—+(ﬂ ff 2 4—o«nh1”.h0‘1+¢hﬁ+wAP)}
(A17) = Op (Cn) .

This is because the two terms 2/(n(n —1)%) Y >t Zl#( F)X — F)Ky ji Ky i (fi — f=i)/ 7 and
1/(n(n—1)%)> >izi 2Ly — F) (L — F) Ky i Ky i (fi — =) /f4 can be written as fourth—order and

fiftth-order U-statistics, respectlvely Tedious but straightforward calculations can show that both these
two terms are oy ((,). Intuitively these results are quite easy to understand, as these two terms have

an extra factor (f; — f_z) and (f; — f_i)2 compared to the leading term. Therefore, both terms have
probability orders smaller than (,. O
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Lemma A.2. Equation (A.19) holds true.

Proof. Define S9, by replacing f:il in Sy, with f;!. We will show that (A.19) holds true with Sa,
being replaced by S9,. Because E[F (y|z;) — I(y; < y)|z;] =0 and E[F(y|z;) — I(y; < y)|z;] =0, 59,
can be written as a second order degenerate U-statistic.

B3] = gy 20 20 20 B = F) (= )P0 = F)K K £
J# #
= n_12zzz i_Fi)Q(Il_F> 7]1 lz/f]
l#j#1
W2 1)z 2D B — F)* K3 i/ f7]
J#i

= O(n_l(Cn) + O((n2h1 chy)™h.
Hence,
89, = Op((n™%C1n + (n(hy ... hg)?)7H).
Next, using (A.11) we have

1 1
S8~ o - - R (- )
J#i !
(fi=f) | (fi=f)?
T A [
J#i ! ¢
+ o((nh1 ) TE A+ AP
= 0p(Cn)-
The last equality follows from U-statistic H-decomposition, because 1/(n (n - 1)) >l — F) (L —

FOEi(fi — F-)/ f2 and 1/ (n(n — 1)) XS5, (T — F)(G — F)EK,i(fi — f-i)2/f? can be written as
third and fourth order U-statistics, the leading terms are the mean values of the U-statistics. Given
that they have either an extra factor (f; — f_i), or (fi — f_z-)Q, it can be shown that they both have
probability orders smaller than the leading order of (,. O

Proof of Theorem 2.1 Case (b) Define Gl = G((y — y)/h), Fi = Fb7_i(y|azi), fsi = Of(x;)/0x¢,
fssz = 0? f(xz)/a( ) ) 81 = (y‘xz) ) ssz = Fss(y|xi)a s=0,1,...,q.

Similar to the proof for case (a), minimizing CV,(-) over (hg, h1,...,hqg, A1,...,Ar) is equivalent to
minimizing CV} 1(-), where CVb 1(+) is defined as

CVia () Z J = Ry = 2 = P - R MM )y

- / (Sln,b - 252n,b)M<y)dy

where Sln,b =n! ZZ(F_Z — Fl)zMz and S2n,b =n! ZZ(F—z — E)(Iz — Fz)MZ
Lemma A.1 and Lemma A.2 below show that (recall that (1, = |h|> + |)])

nhl...

(A18) iy = / { [ R2Biuyl) + 3" ABaulyl)] + W} F@)M(@)da + op(hh + Ca)
s=0 s=1

(A19) Sonp = Op(n Y2(h + Co) + (n(h1 ... hg)/*) 7).
This completes the proof of Theorem 2.1 Case (b). O
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In the proof that follows, we will use two results from Li & Racine (2008), that is,

(A20) B[G(%5- ) 1X] = Pl + (/20w Fao(y1X0) + o)

(A.21) B[? (L)1) = FIX) — hoCuFalylX:) + O

where Fy(y|r) = OF (y|z) /0y, Foo(y|lr) = 0*F(y|z)/0y?. The above results are proved in Lemma A.5
of Li & Racine (2008).

Lemma A.3. Equation (A.18) holds true.

Proof. We omit the weight function M; for notational simplicity. Define S(l)n » by replacing 1/ f_i in
Slmb with 1/f;.

S?n,b = n(n—1) o 1\2 ZZ Z G F Gl ) 7JiK’Yyli/fz'2

g7 i
- n_12ZZG — ) K il 7
J#i
nn 222[; G F ) ,jz ll/fz
YE

=511+ 512,

where the definitions of 511, and 512 should be apparent.
First, we consider S 2, Which can be written as a third-order U-statistic. The leading term of 519,

is E[(G; — F) (G — F)K, iK1/ f2].

(A.22) E[(Gj_Fi)(Gl—F) i B lz/f] { [(G - F) vm‘m%}/fz} :
We first compute E[(G; — F) Ky ji|zi].

E[(Gj — F)K,jilvi] = B[K, ;i B(Gjla))|zi] — E[K, jiFilz]
(A.23) = B[K,;(Fj + gthooa)lm] — B[K. jiFy|a] + o(hg),

where (A.20) is used in the last equality. It’s easy to see that

q
K
ElF Ky jilwi] = fili + ?2 Z hZfiFusi + 2fsiFsi+ Fifss,]

s=1
(A'24) +Z/\ Z I 27 z 17 z) (y|xz’ 1)+O(C1n)
2¢eD
(A'25) E[FiK’%ji‘xZ sz_'_*Zh?fsst +Z)\ Z 17 z)f( Li, 2>F+0(C1n)
= 24 deD

K K
(A.26)  B| T hiFoo Ko jilai| = 2 hgFoofi + o(h{)
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Substituting (A.24), (A.25) and (A.26) into (A.23), we have,

q
K2 K2
E[(Gj — F)K, ji|zi]| = ?hgfiFOO,i + > th[fiFss,i + 2fsiFs ;]

(A.27) +Z>\ Y L ad) faf, 2 [F(ylas, =) = F)] + o(h§ + (in)-

= z¢eD
Substituting (A.27) into (A.22), we have

E[(GJ - Fz)(Gl - ) ,jz lz/fz ]
q 2
(A.28) = / [Z hyBis(ylz) + Z ASBQS@!x)] f(@)dz + o(hg + (T,)
s=0 s=1

where Bis(y|x) for s =0,...,q, Bas(y|x) for s =1,...,r are defined in Theorem 2.1.
By U-statistic H-decomposition,

q r 2
(A.29) Siop = / [Z h?Bus(yla) +> )\SBgs(y|x)] f(x)dz + o(hg + ¢2,).

s=0 s=1
Next, we consider Si 13, which can be written as a second-order U-statistic. The leading term of
Sllb is E[(G F)ZK'%]z/fzz]
(A.30)
E[(Gj - Fy)’K3 ;;/ f7] = E((G} + F} = 2GF)K? ;) f7] = E{E|(G} + F} = 2G;F) K2 j;|vi]/ f7}.

7,31 R
We first compute E[(GQ- + F? — 2G; F;) Wz’mZ]

E[(G5+ F} = 2G;Fy) K2 ji|v;] = E{|E(G3 + F} — 2G; Fy) K2 ji|vi, @] |2 }

= B{[B(G3Ja;) + F? = 2RE(Gylay)| K2 ilai | = [Fy = FE = hoCuFo + O] EIKZ j ]

(A31) = (h1...hy) "wo(F; — F? — hoCuwFo i) fi + O((h1 ... hg)"H(h + [h)? + |A[?)).

Substituting (A.31) into (A.30), we have

V(y|lz) — hoQ2 B
BI(G, — RV R /521 = [ LU0 0yt Oy 0+ 17+ )
.. hy

where V (y|z) and € are defined in Theorem 2.1.

By U-statistic H-decomposition,
V y\x thl

... hg

Summarizing (A.29) and (A.32) we have shown that

(A.32) S f@)dz4+O0((nhy ... hg) H(hE+ R+ X)) +O((nhy ... hy) " In~1/2).

Lemma A.4. Equation (A.19) holds true.

Proof. Define 52n » by replacing f:il in Sy, with f._ !

ngb =n! Z(F_, - F)(I; — F) (n— 1 Z Z Gj - F) Fi)K%jiMi/fi.
i Ve
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Because E[I(y; < y)— F(y|z;)|z;] =0, 59, , can be written as a second order degenerate U-statistic.

E[(S34)"] = — n_lgzZZE [(Gj = Fi)(G1 — F) (i = F)2 K ik i) f7]

JFL 1
— n_12zzz Gl )( E) 'y]z lz/fz]
I#£j#i
n2n—12ZZE (G — F)* (L — F)*K2,/ 17
J#1

=0 (hg+E)) +O((n%hy ... hy)™h).
Hence,

Sonp = Op((n ™2 (B + (i) + (n(ha .. hg) /%) 7Y).

Proof of Theorem 2.1 Case (c). Define £; = L(y,y;,\o), Fi = Fu_i(ylz;).
By the same arguments used earlier we know that minimizing CV,(-) is equivalent to minimizing

CV¢1(+), where CV,1(-) is defined as

CVer () Z Y [(F—F)? —2(F — F)(Li — F)|M;
i ye€Dy
= Z (Sln,c_szn,c)
yeDy

where Sln,c = n_l Zz(ﬁ—l — FZ)QMZ and SQn,c = n_l Zz(ﬁ’—l — Fl)(IZ — Fl)./\/ll
Lemma A.5 and Lemma A.4 below show that

q
Sln,c:/{[z 2Bis(ylz) +Z)\ Bos @/|~”U)4-)\015’20(y|9€)}2
s—1

s=1

(A.3) Pl) E20PWI ) Mo + 0,85 + ).
nny...ng
(A.34) Sone = op((n*1/2(A0 + Cin) + (1 h) Y)Y = 0,(S1a),

where (1, = |R|2 + ).
Before we prove Lemma A.5 and Lemma A.4, we first calculate E[L(y, y;, Xo)|x;] and E[L(y,y;, Ao)?|z;].
Define Cy =3, ., 1.

EIL(y, yj, Mo)lzs] =D Ell(z,y5, do)lw] =Y [£(zlaz) + Xo D flysls)]

2<y zZ<y Y #z
= F(ylz;) + Xo Y _[1— f(zlz))]
(4.35) — Flylay) + MlCy — Flyla;)] + 00,
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E[L(y, v, Mo)?|z;] = { le Yis Ao)] \x]}

z<y
Zl Z,Yj, Ao) |l‘] —|—E Z Z (2,95, Ao)l z,yj,)\o)|xj]
z<y 2Ly 2/ <y,z' £z
= F(ylz;) + 2% > > flz)I(z # 2') + O(X)
2<y 2'<y
(wley) + 220 [ 30 D Flelay) (1 - 1z = )] + 003)
2<y 2'<y

(A.36) = F(ylz;) + 2)\0(Cy — 1)F(y]a:]) +O0(\3).

Lemma A.5. Equation (A.33) holds true.

Proof. We omit the weighted function M; for notational simplicity. Define Sln . by replacing f:il in
Sln,c with fz L

= n_12ZZZ£ - )K,]ZK'ykz/fz

J#i k#i
= n_12zz wz/fQ
J#i
n_12zzz - F)K il k-z/f
k#j#i

=511+ 512,

where the definitions of 51 1. and 512 . should be apparent.
First, we consider S 2., which can be written as a third-order U-statistic. The leading term of Sy 2

is B[(L; — F))(Ly — F)K, ;K kil FE]-
(A.37) B[(L; ~ F)(Lh — F)Ky iy i/ £2) = B{B[(L; ~ F) K, jilai] /1)
We first compute E[(L; — F;) K, ji\xi].
E[(L; — Fi)Kyjilvi] = B[E(Ljla;) Ky jilzi] — FiB[K,jila;]
= E[F(ylzj) Ky jilzi] + ME[(Cy — F(ylz))) Ky jilws] — FiE[K, jilai]

q
‘?Zhiﬁ Fuos 4 2B + Y0 0 L) 0t 0P (olat, =) — Py

s=1 2deD

(A.38) + Xo(Cy — F(ylzy)) fi + o(Chn),

where (A.35) is used in the second equality.
Substituting (A.38) into (A.37), we have,

E[(Lj — F) (L — F) Ky jiKo i/ 7]
(A.39) — [ [ B Butlo) + 3 AuBaylo)] f@)dz + ofcE,),
s=1 s=0

where Big(y|z) for s =1,...,q and Bas(y|z) for s =0,1,...,r are defined in Theorem 2.1.
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By U-statistic H-decomposition,
q r 9
(A.40) Sae= [ [ 12Bule) + 3o ABaulule)] fa)do +o(cE)
s=1 s=0

Next, we consider Si 1., which can be written as a second-order U-statistic. The leading term of

Sl,LC is E[(EJ )QK?{ ]z/f2]

B((L; — F)* K5 ji/ £ = BI(C} + F? = 2L, F) K 5/ f7]

7.3t V.3t

(A.41) = E{E[(L; + F} — 2L, F;) K2 j|i]/ f7 }-

V574

We first compute E[(£2 + F? —2L,F)K, wz | z].

E[(L3 + F} = 2L;F) K2 i |i]
= E{[E(L] + F} — 2L Fj|w;, x;)| K2 i@ }
= E[E(‘CJ2|1:]) 'yjz|xl] + FQE[ 'y]z|$l] 2FlE[E(‘CJ|‘T]) 7]1’1‘1]
(A.42) = (h1...hg) "o [Fi — F2 4+ 20(EFF — F)] fi + O((h ... he) " (NG + [R[* + |AP),

where (A.35) and (A.36) are used in the last equality.
Substituting (A.42) into (A.41), we have

BU(Ly = P35/ 12 = [ FE 2 )+ O((hy )™ 08+ I+ NP

where V(y|z) and Qy(y|x) are defined in Theorem 2.1.
By U-statistic H-decomposition,
(A.43)

Site= / V(ylz) + Ao (y|z) F(z)da + O((nhy ... hq)—lo\% + |h’2 + ’)\’2)) +O((nhy . .. hq)_ln_l/2).
nh1 . hq

Summarizing (A.40) and (A.43), we have shown that

q
e = / { [Z 2Bus(yl) +ZA Bas( y\x)r
s=1 s=0

V(ylz) + Xo2(y|z)
nhi .. hy

}f(w)M(af)dx o, (03t ).

Lemma A.6. Equation (A.34) holds true.

Proof. Define S2n . by replacing f__il in Sy, with fi_1

Sgn,c: _IZ A,'— F; -_F.)
- n—l ZZ Fi)K%jiMz'/fz’-

JFi
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Because E[I(y; <y)— F(y|xl)\azz] =0, ngc can be written as a second order degenerate U-statistic.

E[(Sgn,c)2] = (n—1) T2 1\2 Z ZZE Lj— - F) (I — Fi)zK’Y»ﬂK%li/fiQ]
J# 1#

= n_lQZZE ﬁl— )( Fz) 'yjz lz/f]

l#j#1
n2n—12ZZE (I )Qszl/f}

J#i

=0~ (G +(T) +O((nPhy . hg) ™).

Hence,

9 e = Op (W2 (X0 + Cin) + (n(hy ... h)/2) 7).
O

0

Proof of Theorem 2.2. Theorem 2.2 is a special case of Theorem 3.1 with ¢ = ¢ and r; = r (when
there are no irrelevant covariates). n

Proof of Theorem 2.3. Theorem 2.3 is a special case of Theorem 3.2 with ¢ = ¢ and r; = r (when
there are no irrelevant covariates). g

Proof of Theorem 2.4. We will only prove case (a) as other cases can be proved similarly. Hence,
. 2 A .
we consider CVs; = n™2 351 iy [F_Z(y]\xl) —I(y; < yj)} M, where F_;(y;|z;) = Fy—i(yj|z;).

Denote Ij; = I(y; < ), F_mz = F, —i(yjlzs), F ji = = F(yj|z;). Then similar to the proof of Theorem
2.1, by adding/subtracting F)j; between I;; and F, 4i in CVx, we obtain CVy, = C'Vy 1 + (s.0.), where

1 .
CVe1= 5 SN (Fliji— Fji)’ M + o ZZ F_iji = Fy)(Fji — L) M,
i A i i
(A.44) = Sv.1n — Sx.2n,
where the definitions of Sy, 1, and Sy 2, should be apparent. Using F,Mi =n! Zl# Ile%il/f,i and
1/f_i =1/f; + (s.0.), we obtain Sy, 1, = S%’ln + (s.0.), where

(A45) S%,ln = 4 Z Z Z Z ]l 'y zl(Ijl’ - Fji)Kw,il’Mi/fE'
i jFL 1F£ U #

We discuss several cases for S% 1n: (1) all four indices 4, 7, 1,1’ differ from each other; (ii) I =’ and

i£j#L (i) l=jandi#j#; (iv)I!=jandi#j#1; (v)I=1=jand j #i.
For case (i) we have

(A.46) 5% 1m(i) =~ Z Y > a VKL — Fji) Ky M/ f7
i LA

Sg 1n, (i) GBI be written as a fourth order U-statistic. By the H-decomposition we know that Sg 1n,() =
[Sg n (Z)] + (s.0.). Denoting I}, = I(y; < y), Fiy = F(y|z;) and noting that y; is independent of
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(1, yir, i, ¢, xp ), we have (recall that g(-) is the marginal density of y;)
BIS, o) = [ 9By = Fiy) KTy = Fig) KMo/ 1dy

(AAT) - / 9(5)S% 1 (1) dy,

where SV, 1 (y) = E[(Tyy — Fiy) Ky a(Try — Fiy) Ky M;/f?]. From (A.13) we know that S7, (y) =
E[S1p,2] if one replaces M (y) by ¢(y) in the definition of Sy, 2, where Si, 2 is defined in (A. 13) and is
one of the leading terms of S, (and of CVa(-))' see the proof of Theorem 2.1 case (a).
For case (ii), by H-decomposition we know SE i) = E[S% n (u)] + (s.0.) and

BISY o) =17 [ @By — By M/ £y

(A.48) - / ()50, (1) dy,

where S?n’2(y) = n'E[(I, — Fiy)QK2 M ./ f?]. By (A.13) we know that Sln2( ) = E[Sip1] if one
replaces M (y) by g(y) in the deﬁmtlon of Sin,1, where Sy, ;1 is defined in (A.13) and is the second
leading term of S¥, (and of CV,(-)).

For case (iii) I’ = j, by H-decomposition we know that SE T (i) = [Sg n (m)] + (s.0.) and

E[Sg],ln,(iii)] = ”_1E[( ) Vs a(l— jz‘) %ijMi/fi |+ (s.0.)
”_lE[(Flg Fyi) Ky a(1 = Fj) Ky M/ f7]+ (s.0.)
nTO(h + X)) = O(n ™ Cin).
By symmetry, we know that case (iv) is the same as case (iii) so that we have S2 Any(iv) = = O0(n 1)

Finally, it is easy to see that Sy 1y, () = Op(n~ 2(hy...hg)™h).
Summarizing the above we have shown that the leading term of C'Vy, (for case (a)) is given by

(A.50) CVap = / G()[S%1 (1) + 52, 5 ()],

which equals CV, j, provided that one replaces M (y) by g(y) in CV, r(-). Hence, Theorem 2.4 follows
from Theorem 2.1.

So far we have assumed that y is a continuous random variable. For the discrete y case, we just
need to replace the integral with the summation operator, that is, (A.50) will be written as C'Vx 1, =

23801 () + St 2 (wi)lg (us)-
Cases (b) and (c) can be similarly proved. Thus, we have proved Theorem 2.4. O

(A.49)

Proof of Theorem 2.6. We will only provide a sketch of the proof for case (b) as the proof for case
(a) follows exactly the same derivations as in the scalar y case of Theorem 2.3 (and using derivations
similar to those used in the proof of Theorem 2.1).

Let f(y¢,y?) and F(y¢, y?) be the joint PDF and CDF of y = (y¢,y%). Define m(y°, 2% fy fye, 2)dye,
then Y ac,am(y,2%) = F(y,y?). Define mos(y°,y%z;) = dm(y©, y?|x;)/dys, moo,s(y yllzy) =
Pm(y®,y?2y) /0% Lo — = Tyfs = 25), Fos(vy’lws) = OF(y°,y%w;)/0u5, Foos(v® %) =
O*F (y°,ya;) /0(ys)? ) A )

We use F(y\x) to denote Fp,,(y|z) defined in (12). We write F(ylz) — F(ylz) = [F(ylz) —

F(y|2)]f(x)/ f(z) = plylx)/ f(x), where p(y|z) = [F(y|z) — F(yl|z)]f(x).

Define Icy Yo — K(y],y Y0), ﬁyg,y’m = E(ijy Y0), Fy|1’ = F(y|z), K. VTT = K (xja ), fsz =

Of ()/0x5, Fyw = OF (y|z) /025, Fuse = 0 F (yl2)/(025)%, Fo,s = OF (y|2)/0yg, Foo,s = 0°F (ylx)/(9y5)*.
By Lemma A.7 (i), we know that
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(i) Elp(y|a)] = E{E[(Ky, y0|7) Ky 2,2l } — ELF, yla: Ky ;] = (k2/2) 301 hEf(2) Fas o +2fsaFoa] +
(13" /2)f (x) 125y b s Foo.s+3 51 As Dsaegn Lo(2?, 2 [F (ylxc,zd)—F(ylfﬂ)] F@ 2N+ 20,5C1s e

F(@) + o(Cin + [hol* + [ X)),
where C'5y , is defined in Lemma A.7 below, |hol? = % | K2 o and [Ao| = S Aso-
Using Lemma A.7 (i) and (ii), we have

(”) Var[ﬁ(y|$)] = n_l{E[(Kygvy,’Yo - Fny) K,% T LB] - [E(Kygyy,’m - Fny)K’%IjI]Q} = nhfo [ (y|ﬂ§)
F(ylz)? = 3251 hosCuFos + 3201 Mo (Cosye — 2F(y|$)01s,y7x)] f(@)+ o((nha ... hg) " (|Aol + [ho[*))
where Cag - is defined in (A.54) below and Cy, = 2 [ G(v)w(v)vdv.

From (i) and (ii) above and noting that F(y|z) — F(y|z) = p(y|z)/f(z) = py|z)/f(z) + (s.0.),
applying the Liapunov central limit theorem (CLT), we have

dy
nhi...hy Fma(y|x F(y|lx) — Zh Bis(ylx) — Zhg,sBO,ls(mI)

s=1

- Z As Bas (ylz) — Z /\o,sBo,2s(y|$)1 4 N, Syla)s
s=1

s=1

where the definitions of Bis(y|z), Bas(y|r) and ¥, are the same as those given in Theorem 2.1 except

that now y = (y1,...,yp), Bo,1s(ylz) = (Iigy/Q)F()()’s and By os(y|z) = Cis,y,,. This completes the proof
of Theorem 2.6. O

Lemma A.7. Under the same conditions as given in Theorem 2.6, we have
(l) E[(Kygyy,’m - Fylﬂ:)K’Y,x]’,x] = R22 q hQ[f( ) ss,z T 2fs zd's x] (1/2)“? Zy:1 hg,sFOO,sf(x)
+Z§:1 As ZzgesD Is(zd,x ) (y |ZE z ) F(ylz)]f (=, 2 )+Z 21 20,5C1sy, 2 f(x)4+0(Cint|No|+

|h0|2), where Clsym = y?EDg |:ZZS<yd I d #Zq Hl 1,l#s Zzl<y I d—zl (y y] |.'L')
(i) E[(Icyj’y:’Yo_Fy|J3)2K'3,x o= (h1... hq) Yo [F(l/|$)— (y]x) - 5:1 hO,stFO,s+Zsy:1 Ao,s (CZS,y,r_
2F () Cioe) | £ (2),

where CZs,y,x == 2Zy?6Dg { Zzé<y’1 Z /<yd Yjs=2s yjs;éz }Hl 1,l#s Zzlgyl ijz =z M (y y] ’:E)

Proof. We first obtain some leading term expansions for the discrete kernel functions.

Ty

'C(y;lvydvAO H'Cy]svysv)‘()s _H{ ZId,Z +>\05 ZId z}
s=1  z,<yd zs <yd
(A.51) _HZId_ZJrZAOSZIyd#S H Zld_ZZ+O|/\0|)
s=1 2, <y Zs <y = 1l;£9zl<yl
L2 iy = H{ DD FENEDY S P
’ s=1 2 <yd ” zs<y? ”
= H |: Z ij”s:Zs —|—2/\Q,s Z Z Iy;iS:Zst}iS#ZJ +O(|/\0|2)
s=1 z,<yd zs<y? 2/ <yd
Ty
(A.52) = H Z I vl =z —I-QZ)\OS Z Z nyS:ZstfS#Z; H Z Iy;’iL:Zl —|—O(‘)\0|2).
s=1 2, <yd zo<yd 2, <y =115 2 <yf!

Now we compute two intermediate results, E[K(y;,y,v0)|z;] and E[K(y;,y,v0)?|z;]. We will first use
change-of-variable and Taylor expansion (which delivers ha  terms) to handle the continuous variable
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y¢, and then use (A.51) to get an expansion of Ao for the discrete variable y? so as to obtain the

leading estimation bias term.
Z Eyd y, Ao/f y]’yj|$1 ( >dy]c

dGDd
=— Z Cyd i, AO/G )dm(y© — hov, y]|wj Z Ey],yd ,\0/ (v )m(yC_hov,yﬂmj)dv

Y© —yj
Bl ool = B [6 (L) £ dolss] -

deDd nyDfi
qy
= 3 Ly 20 [yt il + (12083 8 oo s (u°, ylas) + ol lhol?)]
yfeDg s=1
Ty
-y I X Iy_;a:zﬁZAc)s > Lo, I Y1, 4=a]
yieDd s=1z,<yd 25 <yd I=1,l#s zd<yd

{m(ycyyﬁl‘g) (1/2)k Z h smoo,s(y°, ¥ \’IJ)} + 0(Cin + |hol® + [Aol)

qy
= F(y%,y" ;) + (1/2)r5" > g Foos (v, v z5)
s=1
E Y [0 ¥ e T3 et + ofcun + ol + o)
y]GDd s=1 Zs <ys 1= 1[#Szl<y

(A53) = F(y%y|z;) + (1/2)r ZhosFOOs(y y¥z;) +ZA05015,W+ o(Cin + [hol* + [o)-
s=1 s=1

,
Whel"e Clg7y,x == y?EDZ |:Ezs<yd nyq;ézs Hlil,l;ﬁs Zzl<yd I d 7Zli| (y y.] |$)
Similarly, using Taylor expansion arguments and using (A 52) we obtain

c c\ 2
ye -y -y .
o (U Eppenta] = 5 e, [ 5t (1 0)

yleDd

BIICE, 5] = B

Y5->Y;70

=_ Z /.Z o /G 2dm(y° — hov, y]\xj ) =2 Z Ly i, )\0/G(U)w(v)m(yc_hov,yﬂxj)dv

d d d d
ijDy ED

dy
Z ﬁ?/?)yd7AD [m(yc7 yﬂx]) - Z ho,sCuwmao s (y°, yﬂ%) + O(h(%)]

deED;i s=1
=2 [H > L. -z5+2ZA0s )DIDIRTRTITE | I SECIY )]
yj’eD;j s=1z,<yd zs<y? 2/ <yd I1=1,l#s z, <y,

qy
X m(e yles) = 3 ho.sCumo sy, yiles) + O(hol?)]

s=1

Ty
— F(y°,y%a;) ZhOSc Foul'sy"le) +2 30 [D 0w D0 30 Lyumedypze

yieDg s=1 zs<yd 2, <yd

Y G, yile;)] + Ollhol2 + 12of?)

1=1,l#£s <y

qy Ty
(A54) = F(yca yd|‘rj) - Z hO,stFO,s(ycv yd|xj) + Z )\O,SCZS,y,:ca

s=1 s=1
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where Casy o = 2 Zy?EDg { Zzg<yd > 2 <y Ly =2 Xy, 22 } Hl 1,lss Zzlgyl Ly —zm(y, y}i|$3)
Now we are ready to prove the lemma. Using (A.53) we immediately have

E{(,Cygey Yo — Fylx)K’Yﬁvj,x] = E{E[(K Y55y, ’Yo|xj] %J?g,x} E[F, ylx %xg,a?]

7522h2 ssz+2fsx sz] 1/2 ZhOSFOOSf( )

(A. 55)
Ty
+ Z A S L Fylat, 2) — Fylo)lf (2% 2) + 3 M0.sCraga () + 0(Gin + 1ol + [hol?).
zdesP s=1
This proves Lemma A.7 (i). Next, using (A.53) and (A.54) we obtain
E[(’Cyj,y o = By K2, ) = B(K2,,  + F2, = 2Ky, a0 Fya) K2, ]
E[E (ICS o T F2\w - QICZ/JJ/ Y0 y\x|xj) 3:): 2]
[ (ICZQJ yvo’”“"ﬂ) V5% x] + FQ\xE[ng w] 2Fy|wE[E(ICyj,y,'yo|$J)K3,a:j:c]
(A.56)

= (hl v hq)flVo F(y‘l’) y‘x Z hO SC FO )8 + Z )\O ,8 CQs,yx - 2F(y|$)cls,y,x)]f($)

s=1 s=1

Note that (hy...hq) tvo[F(y|lz) — F(y|x)?]/f(z) is the leading variance term. We also obtain the
terms related to hg s and A, in the above variance expansion so that one can see that the multivariate
y case has a variance expression similar to that in the scalar y case. Indeed if ¢, = 1 and ry, = 0; or
¢y = 0 and ry, = 1, we obtain results for scalar y as special cases. ]

APPENDIX B: PROOF OF THEOREM 3.1 AND THEOREM 3.2

Proof of Theorem 3.1. In Appendix B, we use F; to denote the true conditional CDF F'(y|z;). We will
focus on proving case (a), and we will only provide sketches for the proofs of cases (b) and (c). We will
use the notation that (i, = |h|2 + |\, |h[2 = 2L k2, |\ =211 s, and G, = (2, + (nhy .. hg) L

Proof of Theorem 3.1: Case (a). Following the same derivations that lead to (A.4), one can show that
CV,u(-) = CV41(+)+ a term unrelated to (h, ), where

CVar2) = / i 2 2 (= F) (= K/

JF 1F

n—l 2.0 - F)(E- Fi)Kv,jz‘/f—i}Mz’M(y)dy

JFi
- /(Aa,ln - 2Aa,2n)M<y)dya

where the definitions of A, 1, and A, 2, should be obvious.
In Lemma B.1 and Lemma B.2 below we show, uniformly in (h, \) € I, that

Aa,ln:/(zh Bis(yl7) +ZA Bas(yl)) f(2) M (2)dz

Sy o
(B.1) [ e R @) @) M) + (s.0)
(B.2) Aan = Op(n™ 3¢, + (nPhy .. he ) TH?) = 0,(A1n),
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where M(Z) is defined in (18).
K2

(B.3) Bis(ylz) = [f( ) ss(y\fc)Jr?fs( VEs(ylz)]/ f(2)
(B.4) Bas(ylz) = Z F(ylz¢,z%) — F(y|z¢,2%)] f(z°, 2) / [ (2)
zdeSd
(B.5) Sype = k1 [F(ylz) — F(ylz)’]/ f(2)
L) = OF(GI0%, Flil) - PF(yl2)/0?, To(@) = 0f(2)/0w5. Let [dr = S [ da®,

[dr =34 [da®. R(Z)= R(Z, hgs1,--->gs Aryt1,-- -, \r) is defined by

SN VQ(.%)
(B.6) R(z) = ()

where for i = 1,2, 14(Z) = E([ s=q1+1 s ! (Tg) HZ:T‘1+1 l(m?S’ =4, AS)]i)'
Hence, the leading term of C'V, 1 () is

(B.7) / [ o i R F@) (M) M) dody,

By Holder’s inequality, R(Z) > 1 for all choices of Z, hgi41s- s hg, Ari41, .., Ar. Also, R(#) — 1
as hs = oco(q1 +1 < s <¢q) and Ay — 1(r1 +1 < s < r). Therefore, in order to minimize (B.7),
one needs to select hy(s = g1 + 1,...,q) and As(s = 71 + 1,...,7) to minimize R(Z). In fact, we
show that the only bandwidth values for which R(i}, hgi41, -y hgy Ari41, ..., Ap) = 1 are hy — oo for
@1 +1<s5<gq and \s =1 for r; +1 < s <r. To see this, let us define V, = [{_, 1 hy Lw( (¢,

25)/hs) [Toey 41 Uz d 19 X\s). If at least one hy is finite (for ¢ + 1 < s < q), or one Ay < 1 (for
r1+1 < s <7), then by (16) (w(0) > w(d) for all § > 0) we know that Var(V,) = E[V3]—[E(V,)]? > 0
so that R(z) = E(V2)/[E(V,)]? > 1. Only when, in the definition of V,, all h; = co and all A, = 1, do
we have V,, = w(0)9~% (a constant) and Var(V,) = 0 so that R(Z) = 1 only in this case.

Therefore, in order to minimize (B.7), the bandwidths corresponding to the irrelevant covariates
must all converge to their upper bounds so that R(:Z“) —~lasn—ooforalies (5’ is the support of
Z ). Thus irrelevant components are asymptotically smoothed out.

To analyze the behavior of bandwidths associated with the relevant covariates, we replace R(Z) by
1 in (B.7), thus the second term on the right-hand-side of (B.7) becomes

Sp
(B3) ] it H@) @) MM )dedy.
nh1 e hql

Define a; = hyn'/(@+4) and b, = A, nQ/(‘11+4) then (B.7) (with (B.8) as its first term since R(&) — 1)

becomes n~ @D X (ay, ... a4, b1, .. Where
B, b) = (a1 .oy, // 5121 (@) ()M () M (y)ddy

(B.9) / /( Za Bis(ylz) + Zb Bos(yl®)) F(2) M (@) M (y)ddy.

Let (a),..., gl,bo ... ,bgl) denote values of (a1, ...,aq,b1,..., by ) that minimize X subject to each

of them being non-negative. We require that

(B.10) Each a! is positive and each b? non-negative, all are finite and uniquely defined.
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The approach of Li & Zhou (2005) can be used to obtain primitive necessary and sufficient conditions
that ensure that (B.10) holds true. The result of Theorem 3.1 case (a) immediately follows. O

Proof of Theorem 3.1: Case (b). Similar to the derivation of (B.7), one can show that for case (b) the
leading term of C'V4 ;1 has the following expression (by similar derivations as those lead to case (b) of
Theorem 2.1)

Vi = [[ (L B Butulo) + 3 ABan(ule)) Fl@) M(@) M () dady
s=0 s=1

(B.11) v [ P P ) o oM (o

where Bio(y|z) = %2 Foo(y|z) and Q1 (y|Z) = voCwFo(y|Z)/f(Z). They are the same as the quantities
defined in Theorem 2.1 except that one replaces x by Z. Other quantities are the same as defined in
the proof of case (a).

From (B.11) and using exactly the same arguments as we did in the proof of case (a), one can
easily show that h, ~ n~V/(+a) (s = 1., ¢1) and Ay ~ n~2/4F90) (s = 1,... ), hy — oo for
s=q+1,....,qand Ay = 1 for s = ry +1,...,r. With these results it is easy to show that hy ~
n~2/(4+a1) hecause we need to select hg to minimize the squared bias terms and the variance term that
are associated with ho, i.e., terms like {hd, h3h2 h3X\;, ho/(nhy ... hg)} (s =1,...,qu, 5 = 1,...,71).
For example, if the hg term needs to balance hoh? (assuming their coefficients have opposite signs), then
we get hg ~ hs ~ n~ /(49 Tt is easy to see that hy cannot have an order larger than O(hil/(‘”‘h))
as this would lead the estimation MSE to have an order larger than O(n~%/(4+9)). Hence, we obtain
ho ~ n~1/(4+a1) " The remaining steps of proving case (b) follow the same arguments as in the proof of
case (a) and thus are omitted. O

Proof of Theorem 3.1: Case (c¢). Similar to the derivation of (B.7), one can show that for case (c) the
leading term of C'V,.; has the following expression

CVer= 3 [ (L MBulole) + 3 ABulylo)) (@) ¥4(2)M (y)da
s=1 s=0

yEDy

(B.12) w3 [ 2 U i iy f@m@ ),
veDy nny...ng

where By = Cy — F(y|z), Qo = 269 [F(y|z)? — F(y|z)]/f(Z), all other quantities are the same as

defined in the proof of case (a).

From (B.12) and using exactly the same arguments as we did in the proof of case (a), one can
easily show that hy ~ n~V+a) (s = 1., ¢) and Ay ~ n~2/+a) (s = 1,... 7)), hy — oo for
s=q+1,...,gand \y —» 1 for s = ry +1,...,r. With these results it is easy to show that hy ~
n~2/(4+a1) hecause we need to select hy to minimize the squared bias terms and the variance term that
are associated with ho, i.e., terms like {A\2, A3h2, AoAj, Ao/(Rh1 ... hg)} (s =1,...,q1, 5 = 1,...,71).
For example, if the /\% term needs to balance A\gh?, then we get A\g ~ h? ~ n~2/(4+9) From this we
obtain \g ~ n~2/(4+@1), The remaining steps of proving case (c) follow the same arguments as in the
proof of case (a) and thus are omitted. O

Lemma B.1. Fquation (B.1) holds true.

Proof. By Lemma B.3 we know that f_;(z) is the kernel estimator of u(x) = f(Z)v1 (&), where v () =
E[K5;j|#; = &]. Therefore, we know that (see Lemma B.3) the leading term of f_;(z;)~! is p(ax;)~ 1.
Define A? by replacing f_;(x;)~! in A; by its leading term u(z;)~!. Then using the result of Lemma

31



B.3, it is easy to show that A1, = A}, + (s.0.). Hence, we only need to consider A9, which is
defined by

Agin = nn—1)2 ZZ > (@ = Fy) Ko i Ky i) 2 M;
l#j#1
n_12zz i 'y]zu( )2MZ
J#i
= Gln + G2na

where the definitions for GG1,, and Ga, should be apparent.
We first consider G1,, which can be written as a third order U-statistic. By the U-statistic H-
decomposition, one can show that Gi, = E(G1y) + (s.0.).

E(G1y) = E[(I; — )X, — F) K,y ji K jip(zi) 2 M)
(B.13) - E { (B[, - Fi)KW,ji/u(xi)\xi])zMi} .
We first compute E[(I; — F) K, jip(z;) 7 ;). Recalling that u(z) = f(Z)v1(%), we have (noting that
E[K5,i5/vi(T:)|2:] = 1)
E[(I; — F) Ky jip() ]
E[(F F)K'y jzu(xz) 1‘371]
= E[(Fj — Fi)Kx,i f(2:) V@] E[K3,05/v1 (2:) | %]

fa)™ Y L(Zdﬁi‘?w\)/[F(ylff+hv72d) F(ylz5, 2)1f (2 + hv, 2)W (v)dv

zdeg8d

_ R Zh2 Fys(y|@:) + 25 () Fs(y|7:)] / f(23)

+ZA 3 L% a)) [F(ylas, %) — F(ylas, 2] F(@5, 20/ F(@:) + olCa)

s=1 zdcSd

(B.14) = Z h;Bus(ylz:) + Z XsBas(y|i) + o(Ca),
s=1 s=1

uniformly in (h,\) € T', where Bi4(y|Z) and Bay(y|z) are defined in (B.3) and (B.4).
Substituting (B.14) into (B.13), we immediately obtain (recall M(Z) is defined in (18))

(B.15) /(ZhBlsy|x+ZAsty|m) F@)M@)dz + 0(C).

Note that in the above we have only shown that for all fixed values of (h,\) € T, (B.15) holds
true. By utilizing Rosenthal’s and Markov’s inequalities, it’s straightforward to show (B.15) holds true
uniformly in (h,A) € T.

Next we consider Go,. G, can be written as a second order U-statistic. By the U-statistic H-
decomposition it is straightforward to show that Ga, = E(Ga,) + (s.0.). Recalling u(x) = f(z)v1(),
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ve(Z) = E[K3ﬂ|~ = 7], we have

E(Gon) =1 'E [(Ij - E)QKiﬂu(xi)—?Mi}

- nflE{E[(Ij —2F 1, + FE)Kﬁ,jm(a:i)*ui]M,}
(B.16) = B{ B(1; ~ 2R, + FA)K2, f(2) o] Mava ) () 2.
We first compute E[(I; — 2F1; + F2)K§ﬂ /f(Z;)?|zi]. By Lemma B.4 we know that hs — 0 for
s=1,...,q1and Ay > 0for s=1,.. . Thus

E[1; - 2FI; + Fl2)K’%]7,f(jZ)_2|xlj|
= E[(F; — 2F;F; + Fz2)[_{'%ng(jz)_2|xz]

_ ~d ~d 2/ e N
— i 3 LAt [ [Pt + b2 — 2 (las, s P + ho, 2

I zdcga
+ F(y|z$, 29)?] () 2 F (&5 + ho, 29 W (v)?dv

(B.17) =my—'i;+o< 2Ry hg )Y,

where 3,5 is defined in (B.5).
Substituting (B.17) into (B.16), we immediately obtain

B(Gaa) = / mé(f)ﬂm)f@w(w)dw +O0(Giy (nha ... hg) ™)

Yylz R(j)f(j)f(i‘)_/\/l(l‘)dl’ + (s.0.),

GQn:E(G2)+(S.O.) :/nhlh
- hgy

where R(Z) is defined in (B.6).
Moreover, by utilizing Rosenthal’s and Markov’s inequalities, one can show that the above result
holds uniformly in (h,\) € I. O

Lemma B.2. Fquation (B.2) holds true.

Proof. Let Aa on, denote Ag 2, with fo i(z;)~! being replaced by its leading term p(x;)~!. Then it
can be shown that A, 2n = Aa on + (s.0.). Hence, we only need to consider Aa o, Which is defined
by Aa o, = (n(n —1))713° Zﬁéz (L — F;)(I; — F;) Ky jip(z;)~". Notice that the part in AY, that is

related to the irrelevant covariates is K5 j;/v1(Z), which is bounded. Therefore, when evaluating the
order of A2,2n we can ignore the irrelevant covariates part and need only consider

AL 5y = Y — DO (1 — E) (L — Fy) Ky jif ()7

J#i

a,2n

Note that Aa 9, Only depends on (hy ..., hq , A1,..., Ay ). By Lemma B.4 we know that these band-
widths all converge to zero as n — oo. Hence, we can use standard change-of-variable and Taylor
expansion arguments to deal with the continuous covariates’ kernel function, and use the polynomial

expansion for the discrete kernel functions. Note that M; does not influence the order of AY,, so we
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omit M; in the following proof of this Lemma.

E[AQ 5, = n—l > Y Y E[@; - — F)* (L = Fy) K5 i Ky 0 f (2:) 7]
i jFi 1#£
T 2(n—1)2 ZZ 2. F L — F)* (L — Fi) Ky i Ka 0 (7))
I#j#
T or 1 2 2 I - — F)’K3 jif (@) 7]
1 jF

= O(nilg?n + (n%hy ... hql)*l).
Hence
(B.18) A0 5 = Op(n ™G + (n(hr .. hgy )27V,

Moreover, by utilizing Rosenthal’s and Markov’s inequalities, one can show that (B.18) holds uni-
formly in (h,A) € I'. Therefore, (B.2) holds. O

Lemma B.3. Defining v1(%) = E[K5,j|# = 7] and p(x) = f(Z)vi(F), then foi(@)™ = p(z)™! +
O, (th + (ln(n))l/Q(nhl . hql)_1/2> uniformly in x € S and (h,\) € I’
Proof. Defining fi(z) = E[f_i(x;)|z; = ], then by the independence of #; and Z;, y;, we have
() = E[K54|7 = T|B[K5,45|%; = &
= {f(@) + O(Cin) } B[ K5, |%; = 7]
(B.19) = pu(2) + Op(Cin)-

Note f_i(z) — j(z) has zero mean. Following standard arguments used when deriving uniform
convergence rates for nonparametric kernel estimators (e.g., Masry (1996)), we know that

(B.20) foi(z) — ilz) = 0, ((ln(n))l/ 2(nhy . .. hql)_l/Q) ,

uniformly in z € S and (h,\) € I.
Combining (B.19) and (B.20) we obtain

(B'Ql) f—l(x) - H(x) = Op (éln + (1n(n))1/2(nh1 R hql)fl/Q) ,

uniformly in z € S and (h,\) € T
Using (B.21) and Taylor expansions, we obtain

foila)™! ww«+f<>—uwﬂ*
= p(x)"" = (@) 2 [foilx) = p@)] + Op(1f-i(z) — u(x)]?)
() + Oy (G2 + (1) (. kg, )72, O

Lemma B.4. h, = op(1) for s=1,...,q1 and Ay = 0p(1) fors=1,...,1

Proof. Without assuming that any of the bandwidths converge to zero, then the only possible non-o,(1)
term in C'V(7) is G1,. It is fairly straightforward to see that Gy, = T 1 > Zl;ﬁ#l (

— F) (L, = B) Ky i Ky jip(2) 72 M; + 0p(1) = G0 + 0p(1), where p(z;) = f( VE[K5 ;] is defined in
the proof of Lemma B.3.
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Note that G0 can be written as a third order U-statistic, hence by the H-decomposition of a U-
statistic it is fairly straightforward to show that G19 = E(G1,) + 0p(1). Furthermore, by the law of
iterated expectations we have

E(G10) = Eq [z ' E(1; - Fi)K'y,ji|xi)]2M($i)}

{
=E{[f<i-i>—1E(<F F) s M)}
(B.22) = B{in(y. 5) M)} = [y, )2 F@) M@

where 7(y, 7) is defined in (17), M(%) is defined in (18). Note that the right hand side of (B.22) does
not depend on (hg 41, -, g, Ari41,-- ., Ap) since EJ w]|xz] in the numerator cancels with the same
quantity in the denominator (from u(z;)~! = f(Z) " E[K54;|3:] 7).

If the bandwidths (h1,...,hg, A1, ..., Ar;) that minimize C'V () do not all converge in probability
to zero, then by (19), E(G1,0)(or G1p) does not converge to zero, which implies that the probability
that the minimum of G1,, (over the bandwidths) exceeds d, which does not converge to zero as n — oo
(for some 6 > 0).

However, choosing hi, ..., hy, to be of size n~ Y@+ and Aq, ... , A\r; to be of size n~2/(4+9) Jetting
hgi+1,-..,hg diverge to infinity, and letting A, 41,..., A, converge to 1, one can easily show G,
converges in probability to zero. This contradicts the result obtained in the previous paragraph (the
minimum of Gy, exceeds ¢), and thus demonstrates that, at the minimum of C'V (), the bandwidths
(hi,... hgs A1, ..., Ay ), for the relevant components of x, all converge in probability to zero. ]

0

Proof of Theorem 3.2. Proof. We will only prove case (a) as cases (b) and (c) can be proved similarly.

By Theorem 3.1 we know that hs B 400 for s = q1+1,...,qand As B 1fors= r1+1,...,7. Therefore,
we need only consider the case with all irrelevant covariates removed, i.e. we consider Fy(y|z) =

(32 i Ko il M iy il where K ji = [TT8L, b3 w((af, — 29)/hs)] [Hs a2, A0
We first consider the benchmark case Whereby we use non—stochastlc bandwidths. Define hY =
aOn=1/4+a) for s = 1,...,q1, and X0 = p9n=2/(4+a1) for s = 1,... 7y, where a2 and b? are defined in
— _ _ —1 _ _ c
(B.10). Also, define F(y|Z) = [ Y, Kyoji] [ 2252 LiKqo i), where Koo = [0, (h)) " w( (2§, —
)/hO)} [Hs 1l( 187 gv)‘o)] Then’

(B.23) F(y|lz) — F(ylz) = Z ]71 [Z Ijl_(wovji . Z I_(WOJZF

i i i
where F'(y|Z) is the true conditional CDF. By adding and subtracting terms, we obtain

F(ylz) - F(ylz) = [ > Koo i] [Z il = By + By = F(yla))|

JF#i
= [A%x)] [B°<y|:z> +COylz)],

W{lere A%z) =n"t D it Koo i, B(ylz) = n~t D it Koo j;[I; — Fj] and C°(y|z) =n~? D it Koo j;
[Fj — F(ylz)]. _

By the same arguments as we used in the proof of Lemma B.3, one can show that A%z) = f(z) +
op(1). Following the proof of Lemma B. 1 one can show that CO(y|z) = f(z)[ Y11, (k) Bis(y|Z) +
St ABos(y|T)] + 0p(¢R), where ¢ = >0 (h ) + 371, A% Obviously, BY(y|z) has zero mean and

its asymptotic variance is given by (nh{ .. ho )Ty f(z)%, where ¥,; is defined in (B.5). By applying
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a triangular-array CLT, we know that
q1

F(ylz) — F(ylz) = Y (h2)*Bus(y|z) - Z)\ Bas(ylz) | = N(0, Byj3)-
s=1

Next we congider ﬁ’a(y|x) = [Z#Z K, Jz]_l[ZJ#I K5.ji] with cross-validation selected band-
widths, where K5 j; = [[]? Lhtw (2, — 2€) /b L, Uz zd A, )]. Therefore, the only differ-
ence between F,(y|x) and F (y|a:) is that the former uses the cross-validated bandwidths, while the
latter uses some benchmark non-stochastic bandwidths. By Theorem 3.1 we know that hs/h0 %
1 for s = 1,...,q1, and 5\3/)\0 51 for s = 1,...,71. By using stochastic equicontinuity argu-
ments as in Hall et al. (2004), one can show that D(y|r) — D(y|z) = op((nh(l)...hg)_l/Q), where
Diyle) = Fulyla) — F(yla) — S0, ()2 Bra(yla) — X1ty ABas(yla) and D(yla) = Flylz) — F(ylz) -

N (W2 Bis(ylz) — >°0L A9Bos(y|Z). Hence, F,(y|z) and F(y|z) have the same asymptotic distri-
bution, i.e.,

(B.24) nhd. .. hY,

r1
7 7 ; - 29 5 - {5 | d
(B.25) nhy .. h | Fa(yle) — Fylz) = > hIBia(ylz) — > AsBas(ylZ) | 5 N(0,3y5). O
s=1
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