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Abstract. Li & Racine (2008) consider the nonparametric estimation of conditional cumulative distri-
bution functions (CDF) in the presence of discrete and continuous covariates along with the associated
conditional quantile function. However, they did not propose an optimal data-driven method of band-
width selection and left this important problem as an ‘open question’. In this paper we propose an
automatic data-driven method for selecting these bandwidths, establish the asymptotic optimality of
our approach, and derive asymptotic normality results for the resulting nonparametric estimator. By
solving this ‘open question’ we thereby provide practitioners with an optimal nonparametric approach
for estimating conditional CDF and quantile functions.

1. Introduction

Though the nonparametric estimation of conditional probability density functions (PDF) has re-
ceived substantial attention in the literature (Fan & Yim (2004), Hall, Racine & Li (2004), Chung &
Dunson (2009)), certain problems such as the estimation of conditional quantiles require the estima-
tion of conditional cumulative distribution functions (CDF). Nonparametric estimation of the latter has
proven more formidable but has drawn the attention of a growing number of researchers (Bashtannyk
& Hyndman (2001), Hyndman & Yao (2002), Li & Racine (2008) among others).

In a recent paper Li & Racine (2008) propose a nonparametric kernel-based CDF estimation method.
They consider a very general setting allowing for both continuous and discrete covariates, while the
dependent variable(s) can also be discrete or continuous. They also provide rates of convergence and
asymptotic normality results for their proposed estimators. However, they come up short on the
possibility of using optimal automatic data-driven methods for selecting the bandwidths. They state
“Unfortunately, to the best of our knowledge, there does not exist an automatic data-driven method
for optimally selecting bandwidths when estimating a conditional CDF in the sense that a weighted
integrated MSE is minimized” (Li & Racine (2008, page 426)). As a compromise, they rely on data-
driven methods that are optimal for selecting bandwidths for a conditional PDF as proposed by Hall
et al. (2004).
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NET:www.sharcnet.ca) for their ongoing support and to gratefully acknowledge financial support from the Natural
Sciences and Engineering Research Council of Canada (NSERC:www.nserc.ca) and from the Social Sciences and Hu-
manities Research Council of Canada (SSHRC:www.sshrc.ca). We would also like to extend our thanks to Laine Ruus
of the University of Toronto Data Library Service for assistance in procuring the public use versions of the Survey of
Household Spending/Family Expenditure Surveys.
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Two problems immediately surface when deploying bandwidths that are optimal for the conditional
PDF in the conditional CDF setting: (i) the rates of convergence of the optimal bandwidths differ in the
two settings, and (ii) the optimal constants associated with the bandwidths differ in the two settings.
More specifically, let x = (xc, xd) denote the covariates, where xc = (xc1, . . . , x

c
q) and xd = (xd1, . . . , x

d
r)

are the q continuous and r discrete covariates, and let h = (h1, . . . , hq) and λ = (λ1, . . . , λr) be

the corresponding bandwidths. The optimal bandwidths have the following forms: hs = csn
−1/α

(s = 1, . . . , q) and λs = bsn
−1/β (s = 1, . . . , r) for some constants α, β > 0. α and β differ depending on

whether one estimates a conditional CDF or a conditional PDF. Letting αc and αp denote the optimal
rate constants for estimating a CDF and PDF, respectively, and letting d = 1/αp− 1/αc, then one can

multiply n−1/αp by a factor nd to obtain the desired rate of n−1/αpnd = n−1/αc . How one estimates
the optimal constant α (and β) is a more formidable task. The optimal constants appropriate for PDF
estimation can lie far from those for estimating a CDF. In fact, if the optimal rate of a bandwidth h is
h ∼ n−1/α, then the selection of h = cn−1/α will satisfy the optimal rate of convergence for any finite
positive constant c. However, the value of c directly impacts the finite sample efficiency of the resulting
estimator. Therefore, choosing c optimally is of paramount importance in applied settings.

In this paper we propose a data-driven method for selecting bandwidth parameters optimally when
estimating a conditional CDF, and thereby close the open question raised in Li & Racine (2008). The
rest of this paper proceeds as follows. In Section 2 we outline the proposed approach when all variables
are presumed to be relevant. In Section 3 we consider the empirically relevant case where some of the
covariates may in fact be irrelevant but this is not known a priori. Section 4 considers the estimation of
conditional quantile functions which constitute an extremely popular estimation methodology (Koenker
(2005)) and may be predicated directly on an estimated conditional CDF as proposed by Li & Racine
(2008). Section 5 assesses the finite sample performance of the proposed method relative to that
employed in Li & Racine (2008) and considers an empirical application. All proofs are relegated to the
appendices.

2. Conditional CDF Bandwidth Selection: Relevant Variables

We consider the case for which x is a vector containing mixed discrete and continuous variables. Let
x = (xc, xd) ∈ (Sc, Sd), where xc is a q-dimensional continuous random vector, and where xd is an r-
dimensional discrete random vector. We shall allow for both ordered and unordered discrete datatypes
(Li & Racine (2008)). Let xdis (xds) denote the sth component of xdi (xd), s = 1, . . . , r; i = 1, . . . , n,
where n is the sample size. Let λ denote the bandwidth for a discrete variable. For an ordered variable,
we use the following kernel:

(1) l(xdis, x
d
s , λs) =

{
1, if xdis = xds ,

λ
|xdis−xds |
s , if xdis 6= xds .

For an unordered variable, we use a variation on Aitchison & Aitken’s (1976) kernel function defined
by

(2) l(xdis, x
d
s , λs) =

{
1, if xdis = xds ,

λs, if xdis 6= xds .

We assume that xs takes values in {0, 1, . . . , cs− 1}, where cs ≥ 2 is a positive integer. We write the
product (discrete variable) kernel as Lλ(xdi , x

d, λ) =
∏r
s=1 l(x

d
is, x

d
s , λs). The product kernel function

used for the continuous variables is given by Wh(xci , x
c) =

∏q
s=1 h

−1
s w((xcis − xcs)/hs), where w(·) is a

univariate kernel function for a continuous variable. xcis (xcs) denotes the sth component of xci (xc) and
hs is the bandwidth associated with xcs.

The kernel function for the vector of mixed variables x = (xc, xd) is simply the product of Wh(·)
and Lλ(·) which we denote a ‘generalised product kernel’ given by Kγ(xi, x) = Wh(xci , x

c)Lλ(xdi , x
d, λ),

where γ = (h, λ).
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2.1. The scalar y case. We use F (y|x) to denote the conditional CDF of Y given X = x and let f(x)
denote the marginal density of X. In this paper we consider three estimators that may be of general
interest. We will use (a), (b) and (c) to distinguish the three estimators defined below. The first one
(e.g., Li & Racine (2008)) smooths the covariates x (but not y) and is given by:

(3) F̂a(y|x) = n−1
n∑
j=1

I(yj ≤ y)Kγ(xj , x)/f̂(x),

where I(A) denotes an indicator function that assumes the value 1 if A occurs and 0 otherwise, where

f̂(x) = n−1
∑n

j=1Kγ(xj , x) is the kernel estimator of the design density f(x).

The advantage of using F̂a(y|x) to estimate F (y|x) is that it is applicable whether yj is a continuous
or a discrete variable.

The second estimator proposed by Li and Racine smooths the dependent variable yj (assuming that
yj is a continuous variable) and is defined by

(4) F̂b(y|x) = n−1
n∑
j=1

G((y − yj)/h0)Kγ(xj , x)/f̂(x),

where G(·) is a CDF function defined by G(v) =
∫ v
−∞w(u)du (because w(·) is a kernel density function),

h0 is the bandwidth associated with y.
When y is a discrete variable, we propose a third estimator that also smooths both x and y using a

discrete support kernel for y,

(5) F̂c(y|x) = n−1
n∑
j=1

L(yj , y, λ0)Kγ(xj , x)/f̂(x),

where L(yj , y, λ0) =
∑

z≤y l(yj , z, λ0) is the cumulative discrete kernel function based on (1) or (2)
depending on whether y is an ordered or an unordered discrete variable.

In all three cases we suggest choosing bandwidths by minimizing the following cross-validation func-
tion,

(6) CV (γ) =
1

n

n∑
i=1

∫ {
I(yi ≤ y)− F̂−i(y|xi)

}2
M(xi)M(y)dy,

where M(·) and M(·) are trimming functions with bounded support. If y is a discrete variable, then
one should replace

∫
dy by

∑
y∈Dy in (6), where Dy is the support of yi (discrete), and

(7) F̂−i(y|xi) =


F̂a,−i(y|xi)

def
= n−1

∑n
j 6=i I(yj ≤ y)Kγ(xj , xi)/f̂−i(xi) for case (a),

F̂b,−i(y|xi)
def
= n−1

∑n
j 6=iG((y − yj)/h0)Kγ(xj , xi)/f̂−i(xi) for case (b),

F̂c,−i(y|xi)
def
= n−1

∑n
j 6=i L(yj , y, λ0)Kγ(xj , xi)/f̂−i(xi) for case (c),

is the leave-one-out estimator of F (y|xi), while f̂−i(xi) = (n−1)−1
∑

j 6=iKγ(xj , xi) is the leave-one-out

estimator of the design density. Again, note that for case (a), y can be either a continuous or a discrete
variable, while case (b) applies only to continuous y and case (c) only to discrete y.

For the proofs below we make the following assumptions.

Condition 1. {Xj , Yj}ni=1 are independent and identically distributed as (X,Y ), f(x) and F (y|x)
have uniformly continuous third-order partial derivative functions with respect to xc and y (if y is a
continuous variable).

Condition 2. w(·) is a non-negative, symmetric and bounded second order kernel function with∫
w(v)|v|4dv being a finite constant.

Condition 3. As n→∞, hs → 0 for s = 0, 1, . . . q, λs → 0 for s = 0, 1, . . . r, n(h1 . . . hq)→∞.
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We will first present results on the leading terms of CV (·), and for this we need to obtain leading
bias and variance terms. To describe the leading bias term associated with the discrete variables, we
need to introduce some notation. When xds is an unordered categorical variable, define an indicator
function Is(·, ·) by

Is(x
d, zd) = I(xds 6= zds )

r∏
t6=s

I(xdt = zdt ).

Is(x
d, zd) equals 1 if and only if xd and zd differ only in their sth component, and is zero otherwise.

For notational simplicity, when xds is an ordered categorical variable, we shall assume that xds assumes
(finitely many) consecutive integer values, and Is(·, ·) is defined by

Is(x
d, zd) = I(|xds − zds | = 1)

r∏
t6=s

I(xdt = zdt ).

Note that Is(x
d, zd) equals 1 if and only if xd and zd differ by one unit only in the sth component, and

is zero otherwise.
For s = 1, . . . , q, let Fs(y|x) = ∂F (y|x)/∂xs and Fss(y|x) = ∂2F (y|x)/∂x2

s. Let F0(y|x) = ∂F (y|x)/∂y,
F00(y|x) = ∂2F (y|x)/∂y2, κ2 =

∫
w(v)v2dv, and ν0 =

∫
W (v)2dv.

The next theorem gives the leading terms for CV (·)1.

Theorem 2.1. Letting CV (γ) be defined in (6) and also assuming that conditions (C1) to (C3)
hold, then the leading term of CV (·) is given by CVL(·), which is defined as follows (where

∫
dx =∑

xd∈Dx
∫
dxc, Dx is the support of xdi ):

For case (a) (no smoothing for y)

CVa,L(γ) =

∫∫ 
[

q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)

]2

+
Σy|x

nh1 · · ·hq

 f(x)M(x)M(y)dxdy,

while if y is discrete,
∫
dy above needs to be replaced by

∑
y∈Dy .

For case (b) (smoothing for continuous y)

CVb,L(γ) =

∫∫ 
[

q∑
s=0

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)

]2

+
Σy|x − h0Ω1

nh1 · · ·hq

 f(x)M(x)M(y)dxdy.

For case (c) (discrete support smoothing for discrete y)

CVc,L(γ) =
∑
y∈Dy

∫ 
[

q∑
s=1

h2
sB1s(y|x) +

r∑
s=0

λsB2s(y|x)

]2

+
Σy|x + λ0Ω2

nh1 · · ·hq

 f(x)M(x)dx,

where B10 = κ2
2 F00(y|x), B1s(y|x) = κ2

2

[
f(x)Fss(y|x)+2fs(x)Fs(y|x)

]
/f(x), for s = 1, . . . , q, B20(y|x) =

Cy − F (y|x), where Cy =
∑

z≤y 1. B2s(y|x) =
∑

zd∈Sd Is(z
d, xd)

[
F (y|xc, zd) − F (y|x)

]
f(xc, zd)/f(x),

for s = 1, . . . , r, Σy|x = ν0[F (y|x) − F (y|x)2]/f(x), Ω1 = ν0CwF0(y|x)/f(x), Ω2 = 2ν0

[
F (y|x)2 −

F (y|x)
]
/f(x), Cw = 2

∫
G(v)w(v)vdv.

Theorem 2.1 is proved in Appendix A.
For F̂a(y|x) defined in (3), Li & Racine (2008) have shown that the estimation MSE has the following

leading term,

(8) MSEL[F̂a(y|x)] =
[ q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
]2

+
Σy|x

nh1 · · ·hq
,

1When we say that CVL is the leading term of CV , it means that CV = CVL + (s.o.), where (s.o.) denotes terms having
probability order smaller than CVL and terms unrelated to the bandwidths.
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Comparing CVa,L(·) given in case (a) of Theorem 2.1 with (8), we observe that

CVa,L =

∫∫
MSEL[F̂a(y|x)]f(x)M(x)M(y)dxdy.

Hence, the CV selected bandwidth is asymptotically optimal because the leading term from the
CV function equals the leading term of the weighted integrated estimation MSE. Therefore, the CV
selected bandwidths lead to an estimator that minimizes a weighted integrated MSE. Similar results
hold true for cases (b) and (c).

Using the results of Theorem 2.1 we obtain the main result of the paper which describes the asymp-
totic behavior of CV selected bandwidths.

Theorem 2.2. Under conditions (C1) - (C3), we have

(i) n1/(4+q)ĥs
p→ a0

s, s = 1, . . . , q;

(ii) n2/(4+q)λ̂s
p→ b0s, s = 1, . . . , r;

(iii) n1/(4+q)ĥ0
p→ a0

0,

(iv) n2/(4+q)λ̂0
p→ b00,

where a0
s (s = 1, . . . , q) are positive constants, a0

0, and b0s (s = 0, 1, . . . , r) are non-negative constants.

Note that Theorem 2.2 should be understood as follows: Results (i) and (ii) are relevant for case (a)

because in case (a) we do not smooth y, hence there are no bandwidths involved for y (i.e. ĥ0 and λ̂0)
for case (a). Similarly, (i) to (iii) apply to case (b) (continuous y), while (i), (ii) and (iv) apply to case
(c) (discrete y).

The results of Theorem 2.2 can be interpreted as follows. If one defines some optimal non-stochastic
bandwidths, say h0

s = a0
sn
−1/(4+q) and λ0

s = b0sn
−2/(4+q), that minimize the leading terms of the

weighted integrated estimation MSE (with weight function given by M(x)M(y)), and we write ĥs =

âsn
−1/(4+q) and λ̂s = b̂sn

−2/(4+q), then we have âs
p→ a0

s and b̂s
p→ b0s. Thus, the CV selected bandwidths

are asymptotically equivalent to the optimal non-stochastic bandwidths.
Using the results of Theorem 2.2, we obtain the following asymptotic normality result for F̂ (y|x).

Theorem 2.3. Under conditions (C1) - (C3), we have

(9)

√
nĥ1 · · · ĥq

[
F̂ (y|x)− F (y|x)−

q∑
s=0

ĥ2
sB1s(y|x)−

r∑
s=0

λ̂sB2s(y|x)
]

d→ N(0,Σy|x),

where for case (a), ĥ2
0B10(y|x) and λ̂0B20(y|x) should be removed from equation (9) as there is no ĥ0

and λ̂0 for case (a). Similarly, λ̂0B20(y|x) and ĥ2
0B10(y|x) should be removed for cases (b) and (c),

respectively.

One problem with the CV (·) function defined in (6) is that it involves (numerical) integration, which
can be computationally prohibitive. Below we propose an alternative cross-validation function which
replaces the integration over y by a sample average over the yjs. Therefore, one can also choose the
bandwidths by minimizing the following alternative cross-validation objective function:
(10)

CVΣ(γ) =
1

n

n∑
i=1

1

n− 1

n∑
j 6=i

[
I (yi ≤ yj)− F̂−i(yj |xi)

]2
Mi =

1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
I (yi ≤ yj)− F̂−i(yj |xi)

]2
Mi,

where Mi =M(Xi) is the same weight function used in (6).
The advantage of using (10) is that it is less computationally onerous as it does not involve (numer-

ical) integration.
It can be shown that the asymptotic behavior of the bandwidths selected by minimizing (10) is

similar to those described by Theorem 2.2, while the resulting estimator has the same asymptotic
distribution as described in Theorem 2.3.
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Theorem 2.4. If one chooses M(y) = g(y), where g(y) is the marginal density (probability function)
of y (y can be either continuous or discrete), then CV (γ) defined in (6) and CVΣ(γ) defined in (10)
are asymptotically equivalent in the sense that

CVΣ,L(γ) = CVL(γ),

where CVΣ,L is the leading term of CVΣ(γ), CVL is the leading term of CV (γ).

A sketch of the proof of Theorem 2.4 is given in Appendix A.
From Theorem 2.4 we immediately obtain the following useful results.

Theorem 2.5. If one chooses the bandwidths by minimizing CVΣ(·), then Theorem 2.2 and Theorem
2.3 remain valid with the only modification being that one replaces M(·) by g(·).

The conclusion of Theorem 2.5 follows directly from theorems 2.2, 2.3 and 2.4. Therefore, its proof
is omitted.

2.2. The Multivariate y Case. When y is multivariate we write y = (y1, . . . , yp) = (yc1, . . . , y
c
qy , y

d
1 , . . . , y

d
ry)

which is of dimension p = qy+ry, where the first qy are continuous variables and the last ry are discrete
ones. Our method outlined earlier can be generalized to cover the multivariate y case in a straightfor-
ward manner. We consider two estimators for multivariate y, one that does not smooth y which we
again call case (a) (the subscript m below is taken to mean ‘multivariate’ y),

(11) F̂m,a(y|x) = n−1
n∑
j=1

I(yj ≤ y)Kγ(xj , x)/f̂(x),

where I(yj ≤ y) =
∏p
s=1 I(yjs ≤ ys) is the product of indicator functions, while the second estimator

smooths both x and y (call it case (b)),

(12) F̂m,b(y|x) = n−1
n∑
j=1

K(yj , y, γ0)Kγ(xj , x)/f̂(x),

where K(yj , y, γ0) = G
(
yc−ycj
h0

)
L(ydj , y

d, λ0), G
(
yc−ycj
h0

)
=
∏qy
s=1G

(
ycs−ycjs
h0,s

)
and L(ydj , y

d, λ0) =
∏ry
s=1

L(ydjs, y
d
s , λ0,s). We again propose selecting bandwidths via leave-one-out cross-validation by minimizing

(where
∫
dy =

∑
yd∈Dy

∫
dyc)

CVm = n−1
n∑
i=1

∫ {
I(yi ≤ y)− F̂−i(y|xi)

}2
M(xi)M(y)dy, or

CVm,Σ =
1

n2

n∑
i=1

n∑
j=1

{
I(yi ≤ yj)− F̂−i(yj |xi)

}2
Mi,

where F̂−i(y|xi) is the leave-one-out estimator of F (y|xi) and it can be either F̂m,a,−i = (n−1)−1
∑

j 6=i I(yj ≤
y)Kγ(xj , xi)/f̂−i(xi) or F̂m,b,−i(y|xi) = (n − 1)−1

∑n
j 6=iK(yj , y, γ0)Kγ(xj , xi)/f̂−i(xi) , and F̂−i(yj |xi)

is obtained from F̂−i(y|xi) with y replaced by yj .
For case (a) (no smoothing of y), it is easy to show that theorems 2.2 and 2.3 (case (a)) remain valid

except now that F (y|x) is understood to be F (y1, . . . , yp|x).

For case (b), Theorem 2.2 is modified by replacing n−1/(4+q)ĥ0
p→ a0

0 by n−1/(4+q)ĥ0,s
p→ a0

0,s for

s = 1, . . . , qy, and replacing n−2/(4+q)λ̂0
p→ b00 by n−2/(4+q)λ̂0,s

p→ b00,s for s = 1, . . . , ry, where a0
0,s and

b00,s are non-negative constants.

Finally we present the asymptotic distribution of F̂m,a(y|x) and F̂m,b(y|x) defined in (11) and (12)
with CV selected bandwidths.
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Condition 4. As n→∞, h0,s → 0 for s = 1, . . . qy, λ0,s → 0 for s = 1, . . . ry.

Theorem 2.6. Under (C1) to (C4), we have

(a):
√
nĥ1 . . . ĥq[F̂m,a(y|x)− F (y|x)−

∑q
s=1 ĥ

2
sB1s(y|x)−

∑r
s=1 λ̂sB2s(y|x)]

d→ N(0,Σy|x);

(b):
√
nĥ1 . . . ĥq[F̂m,b(y|x)− F (y|x)−

∑q
s=1 ĥ

2
sB1s(y|x)−

∑qy
s=1 ĥ

2
0,sB0,1s(y|x)

−
∑r

s=1 λ̂sB2s(y|x)−
∑ry

s=1 λ̂0,sB0,2s(y|x)]
d→ N(0,Σy|x),

where the definition of B1s(y|x), B2s(y|x) and Σy|x are the same as defined in Theorem 2.1 except that
now y = (y1, . . . , yp), where the definitions of B0,1s(y|x) and B0,2s(y|x) are defined in Appendix A (in
the proof of Theorem 2.6).

A sketch of the proof of Theorem 2.6 is given in Appendix A.

3. Conditional CDF Bandwidth Selection in the Presence of Irrelevant Regressors

Next, we consider the case for which one or more of the regressors may be irrelevant, which can occur
surprisingly often in practice. Without loss of generality, we assume that only the first q1 (1 ≤ q1 ≤ q)
components of xc and the first r1 (0 ≤ r1 ≤ r) components of xd are “relevant” regressors in the
sense defined below. Let x̄ consist of the first q1 relevant components of xc and the first r1 relevant
components of xd, and let x̃ = x\ x̄ denote the remaining irrelevant components of x. We assume there
exists at least one relevant continuous variable (i.e. q1 ≥ 1).

Similar to the definition given in Hall, Li & Racine (2007), we shall assume that

(13) x̄, y is independent of x̃.

Assumption (13) is quite strong as it requires independence not only between x̃ and y but also
between x̃ and x̄. A weaker assumption would be to require that

(14) Conditional on x̄, the variable x̃ and y are independent.

However, using (14) will cause some technical difficulties for the proof of our main result. Therefore,
in the paper we will only consider unconditional independence given in (13) though we point out that
extensive simulations carried out by Hall et al. (2007) indicate that all results indeed follow under (14).

For ease of presentation we will focus on the CDF estimator F̂a(y|x) first. We generalize our con-

clusion to include cases F̂b(y|x) and F̂c(y|x) in the end of this section. Note that the conditional CDF
of F (y|x) is F (y|x̄). This is because under the assumption of (13), we get F (y|x) = E[I(yi ≤ y)|xi =
x] = E[I(yi ≤ y)|x̄i = x̄] = F (y|x̄). We shall consider the case for which the exact number of relevant
variables is unknown, and where one estimates the conditional CDF based upon (possibly) a larger set
of regressors x = (x̄, x̃), still using equation (3). We use f(x) to denote the joint density function of

x = (xc, xd), and we use f̄(x̄) and f̃(x̃) to denote the marginal densities of x̄i and x̃i, respectively.
We impose similar conditions on the bandwidth and kernel functions as Hall et al. (2007). Define

(15) H =

(
q1∏
s=1

hs

)
q∏

s=q1+1

min(hs, 1).

Letting 0 < ε < 1/(p+ 4) and for some constant c > 0, we further assume that

nε−1 ≤ H ≤ n−ε;n−c < hs < nc for all s = 1, . . . , q; the kernel w(·) is a symmetric,

compactly supported, Hölder-continuous probability density;

and w(0) > w(δ) for all δ > 0.(16)

The above conditions basically ask that each hs does not converge to zero, or to infinity, too fast,
and that nh1 . . . hq1 →∞ as n→∞ (h0 → 0 and λ0 → 0 as n→∞ will be always assumed throughout
this paper).
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We useH to denote the permissible set for (h1, . . . , hq) that satisfies (16). The range for (λ1, . . . , λr) is
[0, 1]r, and we use Γ = H×[0, 1]r to denote the range for the bandwidth vector γ ≡ (h1, . . . , hq, λ1, . . . , λr).
We maintain the assumption that h0 → 0 and λ0 → 0 as n→∞.

We expect that, as n→∞, the bandwidths associated with the relevant covariates will converge to
zero, while those associated with the irrelevant covariates will not. It would be convenient to further
assume that hs → 0 for s = 1, . . . , q1, and that λs → 0 for s = 1, . . . , r1. However, for practical reasons
we choose not to assume that the relevant components are known a priori, but rather assume that
assumption (19) given below holds. We write Kγ,ij = K̄γ̄,ijK̃γ̃,ij , where γ̄ = (h1, . . . , hq1 , λ1, . . . , λr1),

and γ̃ = (hq1+1, . . . , hq, λr1+1, . . . , λr) so that K̄ and K̃ are the product kernels associated with the
relevant and the irrelevant covariates, respectively. We define

(17) η(y, x̄) = f̄(x̄)−1E
[
(F (y|x̄j)− F (y|x̄i))K̄γ̄,ji|x̄i = x̄

]
.

Note that η(y, x̄) defined above only depends on the bandwidths associated with the relevant covari-

ates, that is, it is unrelated to (h̃, λ̃), the bandwidths associated with the irrelevant covariates.
Define

(18) M̄(x̄) =

∫
f̃(x̃)M(x)dx̃.

We assume that∫∫
[η(y, x̄)]2f̄(x̄)M̄(x̄)M(y)dx̄dy, as a function of h1, . . . , hq1 and λ1, . . . , λr1 ,

vanishes if and only if all of the bandwidths vanish.(19)

In Lemma B.4 in Appendix B we show that (16) and (19) imply that as n → ∞, hs → 0 for
s = 1, . . . , q1 and λs → 0 for s = 1, . . . , r1. Therefore, the bandwidths associated with the relevant
covariates all vanish asymptotically. In Appendix B, we also show that hs →∞ for all s = q1 +1, . . . , q
and λs = 1 for all s = r1 + 1, . . . , r. This means that all irrelevant variables will be smoothed out
asymptotically. Therefore, the leading term of CV is the same as the result in Theorem 2.1 except
that one has q1 and r1 replacing q and r in Theorem 2.1. This leads to the following main result of
this section.

Theorem 3.1. In additional to conditions (C1) to (C4), assume that conditions (16), (19) and (B.10)

also hold, and let ĥ1, . . . , ĥq, λ̂1, . . . , λ̂r denote the bandwidths that minimize CVa(γ). Then

n1/(q1+4)ĥs → a0
s in probability for 1 ≤ s ≤ q1,

P (ĥs > C)→ 1 for q1 + 1 ≤ s ≤ q and for all C > 0,

n2/(q1+4)λ̂s → b0s in probability for 1 ≤ s ≤ r1,

λ̂s → 1 in probability for r1 + 1 ≤ s ≤ r,

n2/(q1+4)ĥ0 → a0
0 in probability for r1 + 1 ≤ s ≤ r,

n2/(q1+4)λ̂0 → b00 in probability.(20)

Theorem 3.1 states that the bandwidths associated with the irrelevant covariates all converge to their
upper bounds, so that, asymptotically, all irrelevant covariates are smoothed out, while the bandwidths
associated with the relevant covariates all converge to zero at a rate that is optimal for minimizing
asymptotic mean square error (i.e., without the presence of the irrelevant covariates).

Similar to the result given in Section 2, one can show that the leading term of the CV function equals
a weighted IMSE (with only relevant covariates used in the estimation). Therefore, the CV method
leads to optimal smoothing in the sense of minimizing a weighted IMSE asymptotically.

From Theorem 3.1 one can easily obtain the following result.
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Theorem 3.2. Under the same conditions given in Theorem 3.1, for x ∈ interior to S = Sc×Sd, then

(21)
√
nĥ1 . . . ĥq1

[
F̂a(y|x)− F (y|x̄)−

∑q1
s=1 ĥ

2
sB̄1s(y|x̄)−

∑r1
s=0 λ̂sB̄2s(y|x̄)

]
d→ N(0, Σ̄y|x̄),

where B̄1s(y|x̄) and B̄2s(y|x̄) are defined in (B.3) and (B.4), while Σ̄y|x̄ is defined in (B.5).

Theorem 3.2 shows that the asymptotic normality of the conditional CDF estimator in the presence
of irrelevant covariates is the same as the estimator with only relevant covariates.

4. Estimating Conditional Quantile Functions

With the nonparametric conditional CDF estimator in hand, it is straightforward to obtain a con-
ditional quantile estimator. A conditional τ th quantile of y given x is defined by (τ ∈ (0, 1))

(22) qτ (x) = inf{y : F (y|x) ≥ α} = F−1(α|x).

Since F (y|x) is (weakly) monotone in y, inverting (22) leads to a unique solution for qτ (x). In this

section we will focus on using F̂ (y|x) to obtain a quantile estimator for qτ (x). Therefore, we propose
the following estimator for estimating qτ (x):

(23) q̂τ (x) = inf{y : F̂ (y|x) ≥ α},

where F̂ (y|x) can be any of the three estimators discussed in Section 2 with CV selected bandwidths.

The CV objective function can be either CV (·) defined in (6) or CVΣ defined in (10). Of course, F̂b(y|x)

and F̂c(y|x) are only applicable to continuous and discrete y, respectively.

Because F̂ (y|x) is monotone in y, (23) leads to a computationally simple estimator relative to, say,
the check function approach where one needs to minimize a nonlinear function in order to obtain an
estimator for qτ (x).

Because F̂ (y|x) lies between zero and one and is monotone in y, q̂α(x) (g̃α(x)) always exists. There-

fore, once one obtains F̂ (y|x), it is trivial to compute q̂α(x), for example, by choosing qα to minimize
the following objective function,

(24) q̂α(x) = arg min
qα
|α− F̂ (qα|x) |.

That is, the value of qα that minimizes (24) gives us q̂α(x). We make the following assumption.
Condition (C5): The conditional PDF gα(y|x) is continuous in xc, f(qα(x)|x) > 0.
We use f(y|x) ≡ F0(y|x) = ∂

∂yF (y|x) to denote the conditional PDF of y given x. Below we present

the asymptotic distribution of q̂α(x).

Theorem 4.1. Define Bn,α(x) = Bn(qα(x)|x)/f(qα(x)|x), where Bn(y|x) = [
∑q

s=1 h
2
sB1s(y|x) +∑r

s=0 λsB2s(y|x)] is the leading bias term of F̂ (y|x) (with y = qα(x)). Then, under (C1) to (C5),
we have

(nh1 . . . hq)
1/2[q̂α(x)− qα(x)−Bn,α(x)]→ N(0, Vα(x)) in distribution,

where Vα(x) = α(1− α)ν0/[f
2(qα(x)|x)f(x)] ≡ V (qα(x)|x)/f2(qα(x)|x) (since α = F (qα(x)|x)).

The proof of Theorem 4.1 follows the same arguments as the proof of Theorem 3.1 of Li & Racine
(2008) given the results of Theorem 3.2 above. Thus, the proof of Theorem 4.1 is omitted.

5. Monte Carlo Simulations and Empirical Applications

In this section we examine the finite-sample performance of proposed method of cross-validated
conditional CDF bandwidth selection.
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We numerically minimize the following objective functions:

CV (hy, hx) = n−1
n∑
i=1

∫ ∞
−∞

{
I(yi ≤ y)− F̃−i(y|xi)

}2
dy,(25)

CV (hy, hx) = n−2
n∑
i=1

n∑
j=1

{
I(yi ≤ yj)− F̃−i(yj |xi)

}2
,(26)

where 1(·) is the usual indicator function and where F̃−i(·) is the leave-one-out kernel estimator.
Having computed the bandwidths we then compute the sample MSE of the estimators of F (y|x) for

both the CCDF and CPDF-based bandwidths via

(27) MSE = n−1
n∑
i=1

(F (yi|xi)− F̃ (yi|xi))2.

5.1. Comparison of Integral Versus Summation Approach. We first assess how the integration-
based method compares with the summation-based version given in (25) above. We draw 1,000 Monte
Carlo replications from a joint normal distribution with correlation ρ for a range of sample sizes That

is, (y, x)′ ∼ N(µ,Σ) with µ = (0, 0)′ and Σ =

(
1 ρ
ρ 1

)
. For each replication we conduct cross-validation

using both (25) (‘CCDF’) and that appropriate for PDF estimation (‘CPDF’).

Table 1. Summation-based relative median efficiency of kernel estimators of CCDFs
using the proposed CCDF-based bandwidth method versus that appropriate for CPDFs.
Numbers less that 1 indicate superior MSE performance.

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
ρ = 0.95 0.83 0.87 0.89 0.90 0.89 0.91
ρ = 0.85 0.88 0.89 0.92 0.90 0.92 0.90
ρ = 0.75 0.88 0.90 0.90 0.90 0.92 0.92
ρ = 0.50 0.86 0.92 0.91 0.90 0.92 0.89
ρ = 0.25 1.01 0.95 0.92 0.89 0.86 0.89
ρ = 0.00 1.17 1.09 1.11 1.08 1.07 1.18

Table 2. Integration-based relative median efficiency of kernel estimators of CCDFs
using the proposed CCDF-based bandwidth method versus that appropriate for CPDFs.
Numbers less that 1 indicate superior MSE performance.

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
ρ = 0.95 0.77 0.81 0.83 0.84 0.88 0.88
ρ = 0.85 0.80 0.84 0.85 0.85 0.89 0.91
ρ = 0.75 0.80 0.84 0.86 0.86 0.91 0.90
ρ = 0.50 0.83 0.85 0.86 0.88 0.87 0.89
ρ = 0.25 0.89 0.93 0.89 0.85 0.87 0.88
ρ = 0.00 1.02 0.99 1.07 1.03 1.09 1.16

Tables 1 and 2 reveal that a) when there is no relationship between y and x (ρ = 0) the bandwidth
selector of Hall et al. (2004) performs better in that it has a higher probability of removing the irrelevant
variable x (in this case the appropriate hx is ∞). However, when ρ 6= 0 it is seen that the proposed
method delivers bandwidths that dominate those based on PDF bandwidth selection in finite-sample
settings.
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5.2. Empirical Rates of Convergence of the Cross-Validated Bandwidths. We can use these
simulation results to examine the rate at which the bandwidths hx and hy converge to zero empirically
when x is relevant (ρ 6= 0) by simple regression of the logarithm of the bandwidth on the log of the
sample size (the coefficient will be the parameter α in the expression cnα). In particular, we take
the median values of, say, hy for each n in the tables above and conduct a log-log regression of this
median on n. The coefficient on log(n) indicates the rate at which hy (hx) approaches zero as n→∞.

For instance, if hy ∝ n−1/3, the coefficient on log(n) would be around -0.33, while if hy ∝ n−1/5, the

coefficient on log(n) would be around -0.20. Similarly, if hx ∝ n−1/6, then the coefficient on log(n)
would be around -0.17.

For the proposed CDF method we obtain a coefficient on log(n) of −0.31 (≈ −1/3) for hy and −0.16
(≈ −1/6) for hx. For the PDF method however we obtain −0.21(≈ −1/5) for hy and −0.15 (≈ −1/6)
for hx. These results are in line with the theoretical results presented above and in Hall et al. (2004)
which confirms that the proposed method delivers bandwidths that indeed mirror the theoretical rates
of convergence.

5.3. Irrelevant Categorical Covariates. Next, we take the DGP used above but now add an addi-
tional covariate z that is uncorrelated with y but this is not presumed to be known a-priori. Results
are presented in Table 3 below. We note that the bandwidth λz for the discrete variable takes its
upper bound with high probability as it should given that z is ‘irrelevant’, while the method otherwise
continues to perform as expected.

Table 3. Irrelevant z summation-based relative median efficiency of kernel estimators
of CCDFs using the proposed CCDF-based bandwidth method versus that appropriate
for CPDFs. Numbers less that 1 indicate superior MSE performance.

n = 25 n = 50 n = 75 n = 100 n = 150 n = 200
ρ = 0.95 0.79 0.83 0.89 0.88 0.88 0.90
ρ = 0.85 0.89 0.90 0.87 0.91 0.89 0.91
ρ = 0.75 0.87 0.86 0.89 0.89 0.93 0.91
ρ = 0.50 0.91 0.89 0.89 0.92 0.90 0.87
ρ = 0.25 1.00 0.97 0.96 0.87 0.86 0.86
ρ = 0.00 1.06 0.98 0.93 0.95 0.98 0.95

5.4. Application - Out-of-Pocket Drug Expenditures. Prescription drug cost containment is
an issue that has been hotly debated in Canada as of late. Canadian provincial government drug
subsidy programs have recently begun to change the basis of subsidy from age (age 65+) to financial
need (defined as high drug costs relative to income, regardless of age), in an attempt to improve
the distributive equity of their programs. We consider using quantile methods in order to assess the
distributive features of out-of-pocket prescription drug expenditures.

Our data is taken from the public use versions of the Statistics Canada Family Expenditure Surveys
(FAMEX) and the Surveys of Household Spending (SHS), which replaced the FAMEX in 1997. These
surveys collect information on annual household level income, spending on various goods and services,
including prescription drugs, as well as information on household living arrangements. We consider
data for 2008 for British Columbia and restrict attention to households having positive out-of-pocket
expenditures for prescription drugs (i.e., who have positive levels of cost sharing) for which there were
n = 679 households. We make use of the variables prescription drug share (‘rxshare’), sex, marital
status, age category, and (log) household expenditure (‘lrex’). Our dependent variable is rxshare
when the remaining being predictors of which only expenditure is continuous while the remaining
are categorical. We apply the proposed method of bandwidth selection which is summarized in the
following table.

11



Table 4. Bandwidth summary for the prescription drug illustration.

Variable Bandwidth λmax c
male 0.753 1 NA
married 0.396 1 NA
hagecat 0.0173 1 NA
lrex 0.382 NA 2.03
rxshare 0.000525 NA 0.15

Table 4 reveals that the categorical variable ‘male’ receives the most smoothing while that for
age ‘hagecat’ receives substantially less, while the continuous predictor household expenditure ‘lrex’
receives a fair bit of smoothing, the dependent variable drug share ‘rxshare’ receiving less. Note that
an empirical CDF approach that did not smooth the dependent variable would have λrxshare = 0 hence
positive smoothing is deemed appropriate by the proposed method.

Figure 1 presents partial quantile plots for τ = {0.5, 0.6, 0.7, 0.8} which range from median out-
of-pocket expenditure (0.5) to the 80th percentile (0.8). For these figures variables not appearing on
the axes are held constant at their mode (for categorical predictors) and median (for the continuous
predictor).

20000 30000 40000 50000 60000 70000 80000

0.
00

0.
02

0.
04

0.
06

0.
08

Age 25−39

Household Expenditure

D
ru

g 
S

ha
re

 Q
ua

nt
ile

0.5
0.6
0.7
0.8

20000 30000 40000 50000 60000 70000 80000

0.
00

0.
02

0.
04

0.
06

0.
08

Age 65−74

Household Expenditure

D
ru

g 
S

ha
re

 Q
ua

nt
ile

0.5
0.6
0.7
0.8

Figure 1. The figure on the left represents drug share quantiles for persons aged 25-39,
while that on the right is that for persons aged 65-74.

Figure 1 reveals that those aged 25-39 have out-of-pocket drug shares in the neighborhood of around
1% conditional on positive expenditures in this category for all ranges of income. However, for those
aged 65-74 the picture is quite different and reveals the regressive nature of out-of-pocket prescription
drug expenditures among seniors. Those with higher incomes spend a markedly smaller fraction on
out-of-pocket prescription drug costs than those with lower incomes.

6. Conclusion

In this paper we have solved an ‘open problem’, namely, the optimal selection of bandwidths for con-
ditional CDF estimation. However, in this paper we only consider the independent data case. We note
that Cai (2002) and Cai & Xu (2008) have considered the problem of estimating conditional quantile
functions with weakly dependent data (β-mixing and α-mixing processes), though these authors only
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consider the case where all covariates are both relevant and continuous. By combining the methods
outlined in this paper with those in Cai (2002) and Cai & Xu (2008), one can readily generalize the
results in this paper to cover the weakly dependent time series data case.

We hope that the method proposed in this paper proves useful to those interested in the estimation of
conditional CDFs, and in particular to those who wish consistent nonparametric estimates of conditional
quantile functions.
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Appendix A: Proofs of Theorems 2.1, 2.2 , 2.3 and 2.6

To simplify the derivations that follow, it is necessary to introduce some shorthand notation and
preliminary manipulations.

(1) Let fi = f(xi), f̂−i = f̂−i(xi), Kγ,ji = Kγ(xj , xi). Ii = I(yi ≤ y), Fi = F (y|xi), Mi =M(xi).
(2) We define

∑
i =

∑n
i=1,

∑∑
j 6=i =

∑n
i=1

∑n
j=1,j 6=i,

∑∑
j 6=i
∑

l 6=i =
∑n

i=1

∑n
j=1,j 6=i

∑n
l=1,l 6=i,∑∑∑

l 6=j 6=i =
∑n

i=1

∑n
j=1,j 6=i

∑n
l=1,l 6=i,l 6=j ,

∑∑
j>i =

∑n−1
i=1

∑n
j>i,

∑∑∑
l>j>i =

∑n−2
i=1

∑n−1
j>i∑n

l>j .

(3) We write An = Bn + (s.o.) to denote the fact that Bn is the leading term of An, where (s.o.)
denotes terms that have orders smaller than Bn. Also, we write An ∼ Bn to mean that An and
Bn have the same order of magnitude in probability.

(4) For notational simplicity we often ignore the difference between n−1 and (n−1)−1 (or (n−k)−1

for any fixed finite integer k) simply because this will have no effect on the asymptotic analysis.
(5) Define |h|2 =

∑q
s=1 h

2
s, |λ|2 =

∑r
s=1 λ

2
s, ζ1n = |h|2 + |λ| and ζn = ζ2

1n + (nh1 . . . hq)
−1.

In the proofs that follow we make use of U-statistic H-decomposition and Rosenthal’s Inequality
repeatedly. We present the results below for the reader’s convenience.
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The H-decomposition for U-Statistics. Let

(
n

k

)
=

n!

k!(n− k)!
denote the number of combinations

obtained by choosing k items from n (distinct) items. Then a general kth order U-statistic U(k) is defined
by

U(k) =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

Hn(xi1 , . . . , xik),

where Hn(xi1 , . . . , xik) is symmetric in its arguments and E[H2
n(xi1 , . . . , xik)] < ∞. In our proofs we

will often use the following H-decomposition for a second order U-statistic,

(A.1) U(2) = θ +
2

n

∑
i

(Hni − θ) +
2

n(n− 1)

∑∑
j>i

[Hn,ij −Hni −Hnj + θ],

where Hn,ij = Hn(xi, xj), Hni = E[Hn,ij |xi] and θ = E[Hn,ij ]. We will also make use of the H-
decomposition for a third order U-statistic,

U(3) = θ +
3

n

∑
i

(Hni − θ) +
6

n(n− 1)

∑∑
j>i

[Hn,ij −Hni −Hnj + θ]

+
6

n(n− 1)(n− 2)

∑∑ ∑
l>j>i

(Hn,ijl −Hn,ij −Hn,jl −Hn,li +Hni +Hnj +Hnl − θ),(A.2)

where Hn,ijl = Hn(xi, xj , xl), Hn,ij = E[Hn,ijl|xi, xj ], Hn,i = E[Hn,ij |xi] and θ = E[Hn,ijl]. For an

H-decomposition for a general kth order U-statistic, see Lee (1990, page 26).

Rosenthal’s Inequality. Let p ≥ 2 be a positive constant and let x1, . . . , xn denote i.i.d random
variables for which E(xi) = 0 and E(|xi|p) < ∞. Then there exists a positive constant (which may
depend on p) C(p) such that

(A.3) E

(∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
p)
≤ C(p)


n∑
i=1

E(|xi|p) +

[
n∑
s=1

E(x2
i )

]p/2 .

Equation (A.3) is known as Rosenthal’s Inequality (Rosenthal (1970)).

Proof of Theorem 2.1 Case (a). Define F̂−i = F̂a,−i(y|xi). We need to show that CVa(·) = CVa,L(·) +
(s.o.), where (s.o.) contains terms unrelated to bandwidths or terms having smaller order than CVa,L(·).
Also, the smaller order terms are uniformly small for all γ ∈ Γ (as defined in Section 3). We rewrite
(6) as (by adding/subtracting terms),

CVa(·) =
1

n

∑
i

∫ (
F̂−i − Fi + Fi − Ii

)2MiM(y)dy

=
1

n

∑
i

∫ [
(F̂−i − Fi)2 − 2(F̂−i − Fi)(Ii − Fi) + (Fi − Ii)

2
]
MiM(y)dy.
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Since n−1
∑

i

∫
(Fi−Ii)2MiM(y)dy is unrelated to the bandwidths, it follows that minimizing CVa(·)

over (h1, . . . , hq, λ1, . . . , λr) is equivalent to minimizing CVa,1(·), where CVa,1(·) is defined as

CVa,1(·) =
1

n

∑
i

∫ [
(F̂−i − Fi)2 − 2(F̂−i − Fi)(Ii − Fi)

]
MiM(y)dy

=

∫ [ 1

n(n− 1)2

∑∑
j 6=i

∑
l 6=i

∫
(Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f̂

2
−i

− 2

n(n− 1)

∑∑
j 6=i

∫
(Ij − Fi)(Ii − Fi)Kγ,ji/f̂−i

]
MiM(y)dy

=

∫
(S1n − 2S2n)M(y)dy(A.4)

where S1n =
1

n(n− 1)2

∑∑
j 6=i

∑
l 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,liMi/f̂
2
−i, S2n =

1

n(n− 1)

∑∑
j 6=i

(Ij −

Fi)(Ii − Fi)Kγ,jiMi/f̂−i.
Lemma A.1 and Lemma A.2 show that (recall that ζn = |h|4 + |λ|2 + (nh1 . . . hq)

−1)

S1n =

∫ { q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
}2
f(x)M(x)dx

+

∫
Σy|x

nh1 . . . hq
f(x)M(x)dx+ op(ζn)(A.5)

S2n = Op
(
(n−1/2ζn) + (n(h1 . . . hq)

1/2)−1
)
.(A.6)

Combining (A.4), (A.5) and (A.6), we have shown that

CVa(·) = CVa,L(·) + (s.o.),

where CVa,L is defined in Theorem 2.1, (s.o.) denotes terms having probability order (uniformly) smaller
than CVa,L and a term that is unrelated to bandwidths.

This completes the proof of case (a) of Theorem 2.1. �

A technical difficulty in handling (A.4) arises from the presence of the random denominator f̂−i =

f̂−i(Xi). We will use the following identity to handle the random denominator:

(A.7)
1

f̂−i
=

1

fi
+
fi − f̂−i
f2
i

+
(fi − f̂−i)2

f3
i

+
(fi − f̂−i)3

f3
i f̂−i

.

Define fi,0 = (n − 1)−1
∑

j 6=iWh(xcj , x
c
i )I(x

d
j = xdi ), fi,1s = (n − 1)−1

∑
j 6=iWh(xcj , x

c
i )Is(x

d
j , x

d
i ). We

have uniformly in 1 ≤ i ≤ n,

fi − f̂−i = fi −
1

n− 1

∑
j 6=i

Wh(xcj , x
c
i )Lλ(xdj , x

d
i , λ)

= fi −
1

n− 1

∑
j 6=i

Wh(xcj , x
c
i )
[
I(xdj = xdi ) +

r∑
s=1

λs Is(x
d
j , x

d
i ) +O(|λ|2)

]
= (fi − fi,0)−

r∑
s=1

λsfi,1s +Op(|λ|2).(A.8)
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Let S denote the intersection of the support of Xi and the support of the trimming set M(Xi).
Then equation (A.8) implies that, uniformly in 1 ≤ i ≤ n and in x ∈ S,

(A.9) fi − f̂−i = Op

(
(ln(n))1/2

(nh1 . . . hq)1/2
+ |h|2 + |λ|

)
,

because sup1≤i≤n |fi−f̂−i| ≤ supx∈S |f(x)−n−1
∑

iWh(xcj , x
c
i )I(x

d
j = xdi )|+O(n−1) = Op

(
(ln(n))1/2

(nh1...hq)1/2
+

|h|2
)

(because S is bounded) and sup1≤i≤n |fi,1s| = Op(1).

Therefore, we have

(A.10) |fi − f̂−i|3 = Op

((
ln(n)

nh1 . . . hq

)3/2

+ |h|6 + |λ|3
)

= o
(
(nh1 . . . hq)

−1 + |h|4 + |λ|2
)
.

Substituting (A.8) and (A.10) into (A.7), we obtain uniformly in 1 ≤ i ≤ n and x ∈ S

(A.11)
1

f̂−i
=

1

fi
+

(fi − f̂−i)
f2
i

+
(fi − f̂−i)2

f3
i

+ o
(
(nh1 . . . hq)

−1 + |h|4 + |λ|2
)
.

From (A.11), we also obtain uniformly in 1 ≤ i ≤ n and x ∈ S

(A.12)
1

f̂2
−i

=
1

f2
i

+
2(fi − f̂−i)

f3
i

+
(fi − f̂−i)2

f4
i

+ o
(
(nh1 . . . hq)

−1 + |h|4 + |λ|2
)
.

Both (A.11) and (A.12) will be used to handle the random denominator in the proofs that follow.

Lemma A.1. Equation (A.5) holds true.

Proof. We omit the weighted functionMi for notational simplicity. Define S0
1n by replacing f̂−1

−i in S1n

with f−1
i . We will show that (A.5) holds true with S1n being replaced by S0

1n and that S1n − S0
1n =

op(ζn).

S0
1n =

1

n(n− 1)2

∑∑
j 6=i

∑
l 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f
2
i

=
1

n(n− 1)2

∑∑
j 6=i

(Ij − Fi)2K2
γ,ji/f

2
i

+
1

n(n− 1)2

∑∑ ∑
l 6=j 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f
2
i

= S1n,1 + S1n,2,(A.13)

where the definitions of S1n,1 and S1n,2 should be apparent.
First, we consider S1n,2, which can be written as a third-order U-statistic. S1n,2 = 1/(n(n −

1)2)
∑∑∑

l 6=j 6=iQijl, where Qijl is a symmetrized version of (Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f
2
i . Define

Qij = E(Qijl|xi, xj) and Qi = E(Qijl|xi). Then by U-statistic H-decomposition, we have

S1n,2 = EQi +
3

n

∑
i

(Qi − EQi) +
6

n(n− 1)

∑∑
j>i

(Qij −Qi −Qj + EQi)

+
6

n(n− 1)(n− 2)

∑∑ ∑
l>j>i

(Qijl −Qij −Qjl −Qli +Qi +Qj +Ql − EQi)

= J0 + J1 + J2 + J3
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where the definition of J0, J1, J2 and J3 should be clear.

J0 = E(Qi) = E(Qijl) = E
[
(Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f

2
i

]
= E

{
E
[
(Ij − Fi)Kγ,ji|xi

]
/fi

}2

= E
{
E
[
(Fj − Fi)Kγ,ji|xi

]
/fi

}2
.(A.14)

We first compute E
[
(Fj − Fi)Kγ,ji|xi

]
.

E
[
(Fj − Fi)Kγ,ji|xi

]
=
∑
zd∈Sd

L(zd, xdi , λ)

∫
[F (y|xci + hv, zd)− F (y|xi)]f(xci + hv, zd)W (v)dv

=
∑
zd∈Sd

[
I(zd = xdi ) +

r∑
s=1

λsIs(z
d, xdi ) +O(|λ|2)

]
×
∫ {[

F (y|xci , zd)− F (y|xi)

+

q∑
s=1

Fs(y|xci , zd)hsvs + (1/2)

q∑
s=1

q∑
t=1

Fst(y|xci , zd)hshtvsvt + o(|h|2)
]

[
f(xci , z

d) +

q∑
s=1

fs(x
c
i , z

d)hsvs +O(|h|2)
]}
W (v)dv

=
κ2

2

q∑
s=1

h2
s

[
f(xi)Fss(y|xi) + 2fs(xi)Fs(y|xi)

]
+

r∑
s=1

λs
∑
zd∈Sd

Is(z
d, xdi )

[
F (y|xci , zd)− F (y|xi)

]
f(xci , z

d) + o(ζ2
1n).(A.15)

Plugging (A.15) into (A.14), we have

J0 = E
{κ2

2

q∑
s=1

h2
s

[
f(xi)Fss(y|xi) + 2fs(xi)Fs(y|xi)

]
f−1
i

+
r∑
s=1

λs
∑
zd∈Sd

Is(z
d, xdi )

[
F (y|xci , zd)− F (y|xi)

]
f(xci , z

d)f−1
i

}2
+ o(ζ2

1n)

= E
{ q∑
s=1

h2
sB1s(y|xi) +

r∑
s=1

λsB2s(y|xi)
}2

+ o(ζ2
1n)

=

∫ { q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
}2
f(x)dx+ o(ζ2

1n),

where B1s(y|x) and B2s(y|x) are defined in Theorem 2.1.
It is obvious that E(J1) = 0 and it is easy to show that E(J2

1 ) = O(n−1ζ2
1n). Hence, J1 =

Op(n
−1/2ζ1n). Similarly, J2 = Op(n

−1ζ1n), J3 = Op(n
−3/2ζ1n). Therefore, the leading term of S1,2

is J0. Thus, we have shown that

S1n,2 =

∫ { q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
}2
f(x)dx+ op(ζ

2
1n)
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Next, we consider S1n,1, which can be written as a second-order U-statistic. Define Qij = (1/2)[(Ij−
Fi)

2f−2
i + (Ii − Fj)2f−2

j ]K2
γ,ji, Qi = E[Qij |xi]. Then

S1n,1 =
1

n

(
EQi +

2

n

∑
i

(Qi − EQi) +
2

n(n− 1)

∑∑
j>i

[Qij −Qi −Qj + EQi]
)

= J0 + J1 + J2,

where the definitions of J0, J1 and J2 should be apparent.

J0 = n−1E(Qi) = n−1E(Qij) = n−1E
{

(Ij − Fi)2K2
γ,jif

−2
i

}
= n−1E

{
(Ij − 2FiIj + F 2

i )K2
γ,jif

−2
i

}
= n−1E

{
E
[
(Fj − 2FiFj + F 2

i )K2
γ,ji|xi

]
f−2
i

}
= E

[
ν0(nh1 . . . hq)

−1(Fi − F 2
i )f−1

i

]
+O((nh1 . . . hq)

−1ζn)

= E

(
Σy|xi

nh1 . . . hq

)
+O((nh1 . . . hq)

−1ζn)

=

∫
Σy|x

nh1 . . . hq
f(x)dx+O((nh1 . . . hq)

−1ζn)(A.16)

where Σy|x is defined in Theorem 2.1.

Similarly, one can easily show that J1 = Op(n
−1/2(nh1 . . . hq)

−1) and J2 = Op(n
−1(nh1 . . . hq)

−1).
Hence, the leading term of S1n,1 is J0. Thus, we have shown that

S1n,1 =

∫
Σy|x

nh1 . . . hq
f(x)dx+ op((nh1 . . . hq)

−1).

Summarizing the above we have shown that

S0
1n =

∫ { q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
}2
f(x)M(x)dx

+

∫
Σy|x

nh1 . . . hq
f(x)M(x)dx+ op(ζn).

Next we show that S1n − S0
1n = op(ζn). By Equation (A.12),

S1n − S0
1n =

1

n(n− 1)2

∑∑
j 6=i

∑
l 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,li

( 1

f̂2
i

− 1

f2
i

)
=

1

n(n− 1)2

∑∑
j 6=i

∑
l 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,li

[2(fi − f̂−i)
f3
i

+
(fi − f̂−i)2

f4
i

+ o
(
(nh1 . . . hq)

−1 + |h|4 + |λ|2
)]

= op (ζn) .(A.17)

This is because the two terms 2/(n(n− 1)2)
∑∑

j 6=i
∑

l 6=i(Ij − Fi)(Il − Fi)Kγ,jiKγ,li(fi − f̂−i)/f3
i and

1/(n(n−1)2)
∑∑

j 6=i
∑

l 6=i(Ij −Fi)(Il−Fi)Kγ,jiKγ,li(fi− f̂−i)2/f4
i can be written as fourth-order and

fifth-order U-statistics, respectively. Tedious but straightforward calculations can show that both these
two terms are op (ζn). Intuitively these results are quite easy to understand, as these two terms have

an extra factor (fi − f̂−i) and (fi − f̂−i)2 compared to the leading term. Therefore, both terms have
probability orders smaller than ζn. �
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Lemma A.2. Equation (A.19) holds true.

Proof. Define S0
2n by replacing f̂−1

−i in S2n with f−1
i . We will show that (A.19) holds true with S2n

being replaced by S0
2n. Because E

[
F (y|xi)− I(yi ≤ y)|xi

]
= 0 and E

[
F (y|xj)− I(yj ≤ y)|xj

]
= 0, S0

2n

can be written as a second order degenerate U-statistic.

E[(S0
2n)2] =

1

n2(n− 1)2

∑∑
j 6=i

∑
l 6=i

E
[
(Ij − Fi)(Ii − Fi)2(Il − Fi)Kγ,jiKγ,li/f

2
i

]
=

1

n2(n− 1)2

∑∑ ∑
l 6=j 6=i

E
[
(Ij − Fi)(Ii − Fi)2(Il − Fi)Kγ,jiKγ,li/f

2
i

]
+

1

n2(n− 1)2

∑∑
j 6=i

E
[
(Ij − Fi)2(Ii − Fi)2K2

γ,ji/f
2
i

]
= O(n−1(ζn) +O((n2h1 . . . hq)

−1).

Hence,

S0
2n = Op

(
(n−1/2ζ1n + (n(h1 . . . hq)

1/2)−1
)
.

Next, using (A.11) we have

S2n − S0
2n =

1

n(n− 1)

∑∑
j 6=i

(Ij − Fi)(Ii − Fi)Kγ,ji

( 1

fi
− 1

f̂−i

)
=

1

n(n− 1)

∑∑
j 6=i

(Ij − Fi)(Ii − Fi)Kγ,ji

[(fi − f̂−i)
f2
i

+
(fi − f̂−i)2

f3
i

+ o
(
(nh1 . . . hq)

−1 + |h|4 + |λ|2
)

= op
(
ζn
)
.

The last equality follows from U-statistic H-decomposition, because 1/(n(n− 1))
∑∑

j 6=i(Ij −Fi)(Ii−
Fi)Kγ,ji(fi − f̂−i)/f2

i and 1/(n(n− 1))
∑∑

j 6=i(Ij − Fi)(Ii − Fi)Kγ,ji(fi − f̂−i)2/f3
i can be written as

third and fourth order U-statistics, the leading terms are the mean values of the U-statistics. Given
that they have either an extra factor (fi − f̂−i), or (fi − f̂−i)2, it can be shown that they both have
probability orders smaller than the leading order of ζn. �

Proof of Theorem 2.1 Case (b). Define Gi = G((y − yi)/h), F̂−i = F̂b,−i(y|xi), fs,i = ∂f(xi)/∂x
c
s,

fss,i = ∂2f(xi)/∂(xcs)
2, Fs,i = Fs(y|xi) , Fss,i = Fss(y|xi), s = 0, 1, . . . , q.

Similar to the proof for case (a), minimizing CVb(·) over (h0, h1, . . . , hq, λ1, . . . , λr) is equivalent to
minimizing CVb,1(·), where CVb,1(·) is defined as

CVb,1(·) =
1

n

∑
i

∫ [
(F̂−i − Fi)2 − 2(F̂−i − Fi)(Ii − Fi)

]
MiM(y)dy

=

∫ (
S1n,b − 2S2n,b

)
M(y)dy

where S1n,b = n−1
∑

i(F̂−i − Fi)2Mi and S2n,b = n−1
∑

i(F̂−i − Fi)(Ii − Fi)Mi.
Lemma A.1 and Lemma A.2 below show that (recall that ζ1n = |h|2 + |λ|)

S1n,b =

∫ {[ q∑
s=0

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
]2

+
V (y|x)− h0Ω

nh1 . . . hq

}
f(x)M(x)dx+ op(h

4
0 + ζn)(A.18)

S2n,b = Op
(
n−1/2(h4

0 + ζn) + (n(h1 . . . hq)
1/2)−1

)
.(A.19)

This completes the proof of Theorem 2.1 Case (b). �
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In the proof that follows, we will use two results from Li & Racine (2008), that is,

E
[
G
(y − Yi

h0

)
|Xi

]
= F (y|Xi) + (1/2)κ2h

2
0F00(y|Xi) + o(h2

0)(A.20)

E
[
G2
(y − Yi

h0

)
|Xi

]
= F (y|Xi)− h0CwF0(y|Xi) +O(h2

0)(A.21)

where F0(y|x) = ∂F (y|x)/∂y, F00(y|x) = ∂2F (y|x)/∂y2. The above results are proved in Lemma A.5
of Li & Racine (2008).

Lemma A.3. Equation (A.18) holds true.

Proof. We omit the weight function Mi for notational simplicity. Define S0
1n,b by replacing 1/f̂−i in

S1n,b with 1/fi.

S0
1n,b =

1

n(n− 1)2

∑∑
j 6=i

∑
l 6=i

(Gj − Fi)(Gl − Fi)Kγ,jiKγ,li/f
2
i

=
1

n(n− 1)2

∑∑
j 6=i

(Gj − Fi)2K2
γ,ji/f

2
i

+
1

n(n− 1)2

∑∑ ∑
l 6=j 6=i

(Gj − Fi)(Gl − Fi)Kγ,jiKγ,li/f
2
i

= S1,1,b + S1,2,b,

where the definitions of S1,1,b and S1,2,b should be apparent.
First, we consider S1,2,b, which can be written as a third-order U-statistic. The leading term of S1,2,b

is E[(Gj − Fi)(Gl − Fi)Kγ,jiKγ,li/f
2
i ].

E
[
(Gj − Fi)(Gl − Fi)Kγ,jiKγ,li/f

2
i

]
= E

{
E
[
(Gj − Fi)Kγ,ji|xi

]
/fi

}2
.(A.22)

We first compute E
[
(Gj − Fi)Kγ,ji|xi

]
.

E
[
(Gj − Fi)Kγ,ji|xi

]
= E

[
Kγ,jiE(Gj |xj)|xi

]
− E[Kγ,jiFi|xi]

= E
[
Kγ,ji(Fj +

κ2

2
h2

0F00,j)|xi
]
− E[Kγ,jiFi|xi] + o(h4

0),(A.23)

where (A.20) is used in the last equality. It’s easy to see that

E[FjKγ,ji|xi] = fiFi +
κ2

2

q∑
s=1

h2
s[fiFss,i + 2fs,iFs,i + Fifss,i]

+
r∑
s=1

λs
∑
zdi ∈D

Is(z
d
i , x

d
i )f(xci , z

d
i )F (y|xci , zdi ) + o(ζ1n)(A.24)

E[FiKγ,ji|xi] = fiFi +
κ2

2

q∑
s=1

h2
sfss,iFi +

r∑
s=1

λs
∑
zdi ∈D

Is(z
d
i , x

d
i )f(xci , z

d
i )Fi + o(ζ1n)(A.25)

E
[κ2

2
h2

0F00,jKγ,ji|xi
]

=
κ2

2
h2

0F00,ifi + o(h2
0)(A.26)
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Substituting (A.24), (A.25) and (A.26) into (A.23), we have,

E
[
(Gj − Fi)Kγ,ji|xi

]
=
κ2

2
h2

0fiF00,i +
κ2

2

q∑
s=1

h2
s[fiFss,i + 2fs,iFs,i]

+
r∑
s=1

λs
∑
zdi ∈D

Is(z
d
i , x

d
i )f(xci , z

d
i )[F (y|xci , zdi )− Fi] + o(h2

0 + ζ1n).(A.27)

Substituting (A.27) into (A.22), we have

E
[
(Gj − Fi)(Gl − Fi)Kγ,jiKγ,li/f

2
i

]
=

∫ [ q∑
s=0

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)

]2

f(x)dx+ o(h4
0 + ζ2

1n)(A.28)

where B1s(y|x) for s = 0, . . . , q, B2s(y|x) for s = 1, . . . , r are defined in Theorem 2.1.
By U-statistic H-decomposition,

(A.29) S1,2,b =

∫ [ q∑
s=0

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)

]2

f(x)dx+ o(h4
0 + ζ2

1n).

Next, we consider S1,1,b, which can be written as a second-order U-statistic. The leading term of
S1,1,b is E[(Gj − Fi)2K2

γ,ji/f
2
i ].

E[(Gj − Fi)2K2
γ,ji/f

2
i ] = E[(G2

j + F 2
i − 2GjFi)K

2
γ,ji/f

2
i ] = E

{
E[(G2

j + F 2
i − 2GjFi)K

2
γ,ji|xi]/f2

i

}
.

(A.30)

We first compute E[(G2
j + F 2

i − 2GjFi)K
2
γ,ji|xi].

E[(G2
j + F 2

i − 2GjFi)K
2
γ,ji|xi] = E

{
[E(G2

j + F 2
i − 2GjFi)K

2
γ,ji|xi, xj ]|xi

}
= E

{[
E(G2

j |xj) + F 2
i − 2FiE(Gj |xj)

]
K2
γ,ji|xi

}
=
[
Fi − F 2

i − h0CwF0,i +O(h2
0)
]
E[K2

γ,ji|xi]

= (h1 . . . hq)
−1ν0(Fi − F 2

i − h0CwF0,i)fi +O((h1 . . . hq)
−1(h2

0 + |h|2 + |λ|2)).(A.31)

Substituting (A.31) into (A.30), we have

E[(Gj − Fi)2K2
γ,ji/f

2
i ] =

∫
V (y|x)− h0Ω1

h1 . . . hq
f(x)dx+O((h1 . . . hq)

−1(h2
0 + |h|2 + |λ|2))

where V (y|x) and Ω1 are defined in Theorem 2.1.
By U-statistic H-decomposition,

(A.32) S1,1,b =

∫
V (y|x)− h0Ω1

nh1 . . . hq
f(x)dx+O((nh1 . . . hq)

−1(h2
0 + |h|2 + |λ|2))+O((nh1 . . . hq)

−1n−1/2).

Summarizing (A.29) and (A.32), we have shown that

S0
1n,b =

∫ {[ q∑
s=0

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
]2

+
V (y|x)− h0Ω1

nh1 . . . hq

}
f(x)M(x)dx+ op(h

4
0 + ζ2

1n).

�

Lemma A.4. Equation (A.19) holds true.

Proof. Define S0
2n,b by replacing f̂−1

−i in S2n,b with f−1
i .

S0
2n,b = n−1

∑
i

(F̂−i − Fi)(Ii − Fi) =
1

n(n− 1)

∑∑
j 6=i

(Gj − Fi)(Ii − Fi)Kγ,jiMi/fi.
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Because E
[
I(yi ≤ y)−F (y|xi)|xi

]
= 0, S0

2n,b can be written as a second order degenerate U-statistic.

E[(S0
2n,b)

2] =
1

n2(n− 1)2

∑∑
j 6=i

∑
l 6=i

E
[
(Gj − Fi)(Gl − Fi)(Ii − Fi)2Kγ,jiKγ,li/f

2
i

]
=

1

n2(n− 1)2

∑∑ ∑
l 6=j 6=i

E
[
(Gj − Fi)(Gl − Fi)(Ii − Fi)2Kγ,jiKγ,li/f

2
i

]
+

1

n2(n− 1)2

∑∑
j 6=i

E
[
(Gj − Fi)2(Ii − Fi)2K2

γ,ji/f
2
i

]
= O(n−1(h4

0 + ζ2
1n)) +O((n2h1 . . . hq)

−1).

Hence,

S0
2n,b = Op

(
(n−1/2(h2

0 + ζ1n) + (n(h1 . . . hq)
1/2)−1

)
.

�

Proof of Theorem 2.1 Case (c). Define Lj = L(y, yj , λ0), F̂−i = F̂c,−i(y|xi).
By the same arguments used earlier we know that minimizing CVc(·) is equivalent to minimizing

CVc,1(·), where CVc,1(·) is defined as

CVc,1(·) =
1

n

∑
i

∑
y∈Dy

[
(F̂−i − Fi)2 − 2(F̂−i − Fi)(Ii − Fi)

]
Mi

=
∑
y∈Dy

(
S1n,c − 2S2n,c

)

where S1n,c = n−1
∑

i(F̂−i − Fi)2Mi and S2n,c = n−1
∑

i(F̂−i − Fi)(Ii − Fi)Mi.
Lemma A.5 and Lemma A.4 below show that

S1n,c =

∫ {[ q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x) + λ0B2,0(y|x)
]2

+
V (y|x) + 2λ0F (y|x)2

nh1 . . . hq

}
f(x)M(x)dx+ op(h

2
0 + ζ2

1n),(A.33)

S2n,c = Op
(
(n−1/2(λ0 + ζ1n) + (n(h1 . . . hq)

1/2)−1
)

= op(S1n),(A.34)

where ζ1n = |h|2 + |λ|.
Before we prove Lemma A.5 and Lemma A.4, we first calculate E[L(y, yj , λ0)|xj ] and E[L(y, yj , λ0)2|xj ].

Define Cy =
∑

z≤y 1.

E[L(y, yj , λ0)|xj ] =
∑
z≤y

E[l(z, yj , λ0)|xj ] =
∑
z≤y

[
f(z|xj) + λ0

∑
yj 6=z

f(yj |xj)
]

= F (y|xj) + λ0

∑
z≤y

[1− f(z|xj)]

= F (y|xj) + λ0[Cy − F (y|xj)] +O(λ2
0),(A.35)
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E[L(y, yj , λ0)2|xj ] = E
{[∑

z≤y
l(z, yj , λ0)

]2|xj}
= E

[∑
z≤y

l(z, yj , λ0)2|xj
]

+ E
[∑
z≤y

∑
z′≤y,z′ 6=z

l(z, yj , λ0)l(z′, yj , λ0)|xj
]

= F (y|xj) + 2λ0

∑
z≤y

∑
z′≤y

f(z|xj)I(z 6= z′) +O(λ2
0)

= F (y|xj) + 2λ0

[∑
z≤y

∑
z′≤y

f(z|xj)
(
1− I(z = z′)

)]
+O(λ2

0)

= F (y|xj) + 2λ0

(
Cy − 1

)
F (y|xj) +O(λ2

0).(A.36)

Lemma A.5. Equation (A.33) holds true.

Proof. We omit the weighted function Mi for notational simplicity. Define S0
1n,c by replacing f̂−1

−i in

S1n,c with f−1
i .

S0
1n,c =

1

n

∑
i

(F̂−i − Fi)2

=
1

n(n− 1)2

∑∑
j 6=i

∑
k 6=i

(Lj − Fi)(Lk − Fi)Kγ,jiKγ,ki/f
2
i

=
1

n(n− 1)2

∑∑
j 6=i

(Lj − Fi)2K2
γ,ji/f

2
i

+
1

n(n− 1)2

∑∑ ∑
k 6=j 6=i

(Lj − Fi)(Lk − Fi)Kγ,jiKγ,ki/f
2
i

= S1,1,c + S1,2,c,

where the definitions of S1,1,c and S1,2,c should be apparent.
First, we consider S1,2,c, which can be written as a third-order U-statistic. The leading term of S1,2,c

is E[(Lj − Fi)(Lk − Fi)Kγ,jiKγ,ki/f
2
i ].

(A.37) E
[
(Lj − Fi)(Lk − Fi)Kγ,jiKγ,ki/f

2
i

]
= E

{
E
[
(Lj − Fi)Kγ,ji|xi

]
/fi

}2
.

We first compute E
[
(Lj − Fi)Kγ,ji|xi

]
.

E
[
(Lj − Fi)Kγ,ji|xi

]
= E

[
E(Lj |xj)Kγ,ji|xi

]
− FiE[Kγ,ji|xi]

= E
[
F (y|xj)Kγ,ji|xi

]
+ λ0E

[
(Cy − F (y|xj))Kγ,ji|xi

]
− FiE[Kγ,ji|xi]

=
κ2

2

q∑
s=1

h2
s[fiFss,i + 2fs,iFs,i] +

r∑
s=1

λs
∑
zdi ∈D

Is(z
d
i , x

d
i )f(xci , z

d
i )[F (y|xci , zdi )− Fi]

+ λ0(Cy − F (y|xj))fi + o(ζ2
1n),(A.38)

where (A.35) is used in the second equality.
Substituting (A.38) into (A.37), we have,

E
[
(Lj − Fi)(Lk − Fi)Kγ,jiKγ,li/f

2
i

]
=

∫ [ q∑
s=1

h2
sB1s(y|x) +

r∑
s=0

λsB2s(y|x)
]2
f(x)dx+ o(ζ2

1n),(A.39)

where B1s(y|x) for s = 1, . . . , q and B2s(y|x) for s = 0, 1, . . . , r are defined in Theorem 2.1.
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By U-statistic H-decomposition,

(A.40) S1,2,c =

∫ [ q∑
s=1

h2
sB1s(y|x) +

r∑
s=0

λsB2s(y|x)
]2
f(x)dx+ o(ζ2

1n).

Next, we consider S1,1,c, which can be written as a second-order U-statistic. The leading term of
S1,1,c is E[(Lj − Fi)2K2

γ,ji/f
2
i ].

E[(Lj − Fi)2K2
γ,ji/f

2
i ] = E[(L2

j + F 2
i − 2LjFi)K2

γ,ji/f
2
i ]

= E
{
E[(L2

j + F 2
i − 2LjFi)K2

γ,ji|xi]/f2
i

}
.(A.41)

We first compute E[(L2
j + F 2

i − 2LjFi)K2
γ,ji | xi].

E[(L2
j + F 2

i − 2LjFi)K2
γ,ji|xi]

= E
{

[E(L2
j + F 2

i − 2LjFi|xi, xj)]K2
γ,ji|xi

}
= E[E(L2

j |xj)K2
γ,ji|xi] + F 2

i E[K2
γ,ji|xi]− 2FiE[E(Lj |xj)K2

γ,ji|xi]
= (h1 . . . hq)

−1ν0

[
Fi − F 2

i + 2λ0(F 2
i − Fi)

]
fi +O((h1 . . . hq)

−1(λ2
0 + |h|2 + |λ|2),(A.42)

where (A.35) and (A.36) are used in the last equality.
Substituting (A.42) into (A.41), we have

E[(Lj − Fi)2K2
γ,ji/f

2
i ] =

∫
V (y|x) + λ0Ω2(y|x)

h1 . . . hq
f(x)dx+O((h1 . . . hq)

−1(λ2
0 + |h|2 + |λ|2)),

where V (y|x) and Ω2(y|x) are defined in Theorem 2.1.
By U-statistic H-decomposition,

(A.43)

S1,1,c =

∫
V (y|x) + λ0Ω2(y|x)

nh1 . . . hq
f(x)dx+O((nh1 . . . hq)

−1(λ2
0 + |h|2 + |λ|2)) +O((nh1 . . . hq)

−1n−1/2).

Summarizing (A.40) and (A.43), we have shown that

S0
1n,c =

∫ {[ q∑
s=1

h2
sB1s(y|x) +

r∑
s=0

λsB2s(y|x)
]2

+
V (y|x) + λ0Ω2(y|x)

nh1 . . . hq

}
f(x)M(x)dx+ op(λ

2
0 + ζ2

1n).

�

Lemma A.6. Equation (A.34) holds true.

Proof. Define S0
2n,c by replacing f̂−1

−i in S2n,c with f−1
i .

S0
2n,c = n−1

∑
i

(F̂−i − Fi)(Ii − Fi)

=
1

n(n− 1)

∑∑
j 6=i

(Lj − Fi)(Ii − Fi)Kγ,jiMi/fi.
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Because E
[
I(yi ≤ y)−F (y|xi)|xi

]
= 0, S0

2n,c can be written as a second order degenerate U-statistic.

E[(S0
2n,c)

2] =
1

n2(n− 1)2

∑∑
j 6=i

∑
l 6=i

E
[
(Lj − Fi)(Ll − Fi)(Ii − Fi)2Kγ,jiKγ,li/f

2
i

]
=

1

n2(n− 1)2

∑∑ ∑
l 6=j 6=i

E
[
(Lj − Fi)(Ll − Fi)(Ii − Fi)2Kγ,jiKγ,li/f

2
i

]
+

1

n2(n− 1)2

∑∑
j 6=i

E
[
(Lj − Fi)2(Ii − Fi)2K2

γ,ji/f
2
i

]
= O(n−1(λ2

0 + ζ2
1n)) +O((n2h1 . . . hq)

−1).

Hence,

S0
2n,c = Op

(
(n−1/2(λ0 + ζ1n) + (n(h1 . . . hq)

1/2)−1
)
.

�

�

Proof of Theorem 2.2. Theorem 2.2 is a special case of Theorem 3.1 with q1 = q and r1 = r (when
there are no irrelevant covariates). �

Proof of Theorem 2.3. Theorem 2.3 is a special case of Theorem 3.2 with q1 = q and r1 = r (when
there are no irrelevant covariates). �

Proof of Theorem 2.4. We will only prove case (a) as other cases can be proved similarly. Hence,

we consider CVΣ = n−2
∑n

i=1

∑n
j 6=i

[
F̂−i(yj |xi)− I(yi ≤ yj)

]2
Mi, where F̂−i(yj |xi) = F̂a,−i(yj |xi).

Denote Iji = I(yi ≤ yj), F̂−i,ji = F̂a,−i(yj |xi), Fji = F (yj |xi). Then similar to the proof of Theorem

2.1, by adding/subtracting Fji between Iji and F̂−i,ji in CVΣ, we obtain CVΣ = CVΣ,1 + (s.o.), where

CVΣ,1 =
1

n2

∑
i

∑
j 6=i

(F̂−i,ji − Fji)2Mi +
2

n2

∑
i

∑
j 6=i

(F̂−i,ji − Fji)(Fji − Iji)Mi

= SΣ,1n − SΣ,2n,(A.44)

where the definitions of SΣ,1n and SΣ,2n should be apparent. Using F̂−i,ji = n−1
∑

l 6=i IjlKγ,il/f̂−i and

1/f̂−i = 1/fi + (s.o.), we obtain SΣ,1n = S0
Σ,1n + (s.o.), where

S0
Σ,1n =

1

n4

∑
i

∑
j 6=i

∑
l 6=i

∑
l′ 6=i

(Ijl − Fji)Kγ,il(Ijl′ − Fji)Kγ,il′Mi/f
2
i .(A.45)

We discuss several cases for S0
Σ,1n: (i) all four indices i, j, l, l′ differ from each other; (ii) l = l′ and

i 6= j 6= l; (iii) l = j and i 6= j 6= l′; (iv) l′ = j and i 6= j 6= l; (v) l = l′ = j and j 6= i.
For case (i) we have

S0
Σ,1n,(i) =

1

n4

∑∑∑ ∑
i 6=j 6=l 6=l′

(Ijl − Fji)Kγ,il(Ijl′ − Fji)Kγ,il′Mi/f
2
i .(A.46)

S0
Σ,1n,(i) can be written as a fourth order U-statistic. By the H-decomposition we know that S0

Σ,1n,(i) =

E[S0
Σ,1n,(i)] + (s.o.). Denoting Ily = I(yl ≤ y), Fiy = F (y|xi) and noting that yj is independent of
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(yl, yl′ , xi, xl, xl′), we have (recall that g(·) is the marginal density of yj)

E[S0
Σ,1n,(i)] =

∫
g(y)E[(Ily − Fiy)Kγ,il(Il′y − Fiy)Kγ,il′Mi/f

2
i ]dy

=

∫
g(y)S0

1n,1(y)dy,(A.47)

where S0
1n,1(y) = E[(Ily − Fiy)Kγ,il(Il′y − Fiy)Kγ,il′Mi/f

2
i ]. From (A.13) we know that S0

1n,1(y) =

E[S1n,2] if one replaces M(y) by g(y) in the definition of S1n,2, where S1n,2 is defined in (A.13) and is
one of the leading terms of S0

1n (and of CVa(·)); see the proof of Theorem 2.1 case (a).
For case (ii), by H-decomposition we know S0

Σ,1n,(ii) = E[S0
Σ,1n,(ii)] + (s.o.) and

E[S0
Σ,1n,(ii)] = n−1

∫
g(y)E[(Ily − Fiy)2K2

γ,ilMi/f
2
i ]dy

=

∫
g(y)S0

1n,2(y)dy,(A.48)

where S0
1n,2(y) = n−1E[(Ily − Fiy)2K2

γ,ilMi/f
2
i ]. By (A.13) we know that S0

1n,2(y) = E[S1n,1] if one

replaces M(y) by g(y) in the definition of S1n,1, where S1n,1 is defined in (A.13) and is the second
leading term of S0

1n (and of CVa(·)).
For case (iii) l′ = j, by H-decomposition we know that S0

Σ,1n,(iii) = E[S0
Σ,1n,(iii)] + (s.o.) and

E[S0
Σ,1n,(iii)] = n−1E[(Ijl − Fji)Kγ,il(1− Fji)Kγ,ijMi/f

2
i ] + (s.o.)

= n−1E[(Flj − Fji)Kγ,il(1− Fji)Kγ,ijMi/f
2
i ] + (s.o.)

= n−1O(|h|2 + |λ|) = O(n−1ζ1n).(A.49)

By symmetry, we know that case (iv) is the same as case (iii) so that we have S0
Σ,1n,(iv) = O(n−1ζ1n).

Finally, it is easy to see that SΣ,1n,(v) = Op(n
−2(h1 . . . hq)

−1).
Summarizing the above we have shown that the leading term of CVΣ (for case (a)) is given by

CVΣ,L =

∫
g(y)[S0

1n,1(y) + S0
1n,2(y)]dy,(A.50)

which equals CVa,L provided that one replaces M(y) by g(y) in CVa,L(·). Hence, Theorem 2.4 follows
from Theorem 2.1.

So far we have assumed that y is a continuous random variable. For the discrete y case, we just
need to replace the integral with the summation operator, that is, (A.50) will be written as CVΣ,L =∑

j [S
0
1n,1(yj) + S0

1n,2(yj)]g(yj).

Cases (b) and (c) can be similarly proved. Thus, we have proved Theorem 2.4. �

Proof of Theorem 2.6. We will only provide a sketch of the proof for case (b) as the proof for case
(a) follows exactly the same derivations as in the scalar y case of Theorem 2.3 (and using derivations
similar to those used in the proof of Theorem 2.1).

Let f(yc, yd) and F (yc, yd) be the joint PDF and CDF of y = (yc, yd). Definem(yc, zd) =
∫ yc
−∞ f(yc, zd)dyc,

then
∑

zd∈ydm(yc, zd) = F (yc, yd). Define m0,s(y
c, yd|xj) = ∂m(yc, yd|xj)/∂ycs, m00,s(y

c, yd|xj) =

∂2m(yc, yd|xj)/∂(ycs)
2, Iydjs=zs

= I(ydjs = zs), F0,s(y
c, yd|xj) = ∂F (yc, yd|xj)/∂ycs, F00,s(y

c, yd|xj) =

∂2F (yc, yd|xj)/∂(ycs)
2

We use F̂ (y|x) to denote F̂m,b(y|x) defined in (12). We write F̂ (y|x) − F (y|x) = [F̂ (y|x) −
F (y|x)]f̂(x)/f̂(x) ≡ p̂(y|x)/f̂(x), where p̂(y|x) = [F̂ (y|x)− F (y|x)]f̂(x).

Define Kyj ,y,γ0 = K(yj , y, γ0), Lyj ,y,γ0 = L(yj , y, γ0), Fy|x = F (y|x), Kγ,xj ,x = Kγ(xj , x), fs,x =

∂f(x)/∂xcs, Fs,x = ∂F (y|x)/∂xcs, Fss,x = ∂2F (y|x)/(∂xcs)
2, F0,s = ∂F (y|x)/∂ycs, F00,s = ∂2F (y|x)/(∂ycs)

2.
By Lemma A.7 (i), we know that
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(i) E[p̂(y|x)] = E
{
E[(Kyj ,y,γ0 |xj)Kγ,xj ,x]

}
−E[Fy|xKγ,xj ,x] = (κ2/2)

∑q
s=1 h

2
s[f(x)Fss,x+2fs,xFs,x]+

(κ
qy
2 /2)f(x)

∑qy
s=1 h

2
0,sF00,s+

∑r
s=1 λs

∑
zdi ∈SD

Is(z
d, xd)[F (y|xc, zd)−F (y|x)]f(xc, zd)+

∑ry
s=1 λ0,sC1s,y,x

f(x) + o(ζ1n + |h0|2 + |λ0|),
where C1s,y,x is defined in Lemma A.7 below, |h0|2 =

∑qy
s=1 h

2
s,0 and |λ0| =

∑ry
s=1 λs,0.

Using Lemma A.7 (i) and (ii), we have

(ii) V ar[p̂(y|x)] = n−1
{
E[(Kyj ,y,γ0 −Fy|x)2K2

γ,xjx]− [E(Kyj ,y,γ0 −Fy|x)Kγ,xjx]2
}

= ν0
nh1...hq

[
F (y|x)−

F (y|x)2 −
∑qy

s=1 h0,sCwF0,s +
∑ry

s=1 λ0,s

(
C2s,y,x − 2F (y|x)C1s,y,x

)]
f(x) + o((nh1 . . . hq)

−1(|λ0|+ |h0|2))

where C2s,y,x is defined in (A.54) below and Cw = 2
∫
G(v)w(v)vdv.

From (i) and (ii) above and noting that F̂ (y|x) − F (y|x) = p̂(y|x)/f̂(x) = p̂(y|x)/f(x) + (s.o.),
applying the Liapunov central limit theorem (CLT), we have√

nh1 . . . hq

[
F̂m,a(y|x)− F (y|x)−

q∑
s=1

h2
sB1s(y|x)−

qy∑
s=1

h2
0,sB0,1s(y|x)

−
r∑
s=1

λsB2s(y|x)−
ry∑
s=1

λ0,sB0,2s(y|x)

]
d→ N(0,Σy|x),

where the definitions of B1s(y|x), B2s(y|x) and Σy|x are the same as those given in Theorem 2.1 except

that now y = (y1, . . . , yp), B0,1s(y|x) = (κ
qy
2 /2)F00,s and B0,2s(y|x) = C1s,y,x. This completes the proof

of Theorem 2.6. �

Lemma A.7. Under the same conditions as given in Theorem 2.6, we have

(i) E[(Kyj ,y,γ0 − Fy|x)Kγ,xj ,x] = κ2
2

∑q
s=1 h

2
s[f(x)Fss,x + 2fs,xFs,x] + (1/2)κ

qy
2

∑qy
s=1 h

2
0,sF00,sf(x)

+
∑r

s=1 λs
∑

zdi ∈SD
Is(z

d, xd)[F (y|xc, zd)−F (y|x)]f(xc, zd)+
∑ry

s=1 λ0,sC1s,y,xf(x)+o(ζ1n+|λ0|+

|h0|2), where C1s,y,x =
∑

ydj∈Ddy

[∑
zs≤yds Iydjs 6=zs

∏ry
l=1,l 6=s

∑
zl≤ydl

Iydjl=zl

]
m(yc, ydj |x).

(ii) E[(Kyj ,y,γ0−Fy|x)2K2
γ,xjx] = (h1 . . . hq)

−1ν0

[
F (y|x)−F (y|x)2−

∑qy
s=1 h0,sCwF0,s+

∑ry
s=1 λ0,s

(
C2s,y,x−

2F (y|x)C1s,y,x

)]
f(x),

where C2s,y,x = 2
∑

ydj∈Ddy

{∑
zs≤yds

∑
z′s≤yds Iyjs=zsIyjs 6=z

′
s

}∏ry
l=1,l 6=s

∑
zl≤yl Iyjl=zlm(yc, ydj |x).

Proof. We first obtain some leading term expansions for the discrete kernel functions.

L(ydj , y
d, λ0) =

ry∏
s=1

L(ydjs, y
d
s , λ0,s) =

ry∏
s=1

{ ∑
zs≤yds

Iydjs=zs + λ0,s

∑
zs≤yds

Iydjs 6=zs

}

=

ry∏
s=1

∑
zs≤yds

Iydjs=zs +

ry∑
s=1

λ0,s

∑
zs≤yds

Iydjs 6=zs

ry∏
l=1,l 6=s

∑
zl≤ydl

Iydjl=zl +O(|λ0|2),(A.51)

L2
ydj ,y

d,λ0
=

ry∏
s=1

{ ∑
zs≤yds

Iydjs=zs + λ0,s

∑
zs≤yds

Iydjs 6=zs

}2

=

ry∏
s=1

[ ∑
zs≤yds

Iydjs=zs + 2λ0,s

∑
zs≤yds

∑
z′s≤yds

Iydjs=zsIydjs 6=z′s

]
+O(|λ0|2)

=

ry∏
s=1

∑
zs≤yds

Iydjs=zs + 2

ry∑
s=1

λ0,s

∑
zs≤yds

∑
z′s≤yds

Iydjs=zsIydjs 6=z′s

ry∏
l=1,l 6=s

∑
zl≤ydl

Iydjl=zl +O(|λ0|2).(A.52)

Now we compute two intermediate results, E[K(yj , y, γ0)|xj ] and E[K(yj , y, γ0)2|xj ]. We will first use
change-of-variable and Taylor expansion (which delivers h2

0,s terms) to handle the continuous variable
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yc, and then use (A.51) to get an expansion of λ0,s for the discrete variable yd so as to obtain the
leading estimation bias term.

E[Kyj ,y,γ0 |xj ] = E

[
G

(
yc − ycj
h0

)
L(ydj , y

d, λ0)|xj
]

=
∑
ydj∈Dd

y

Lydj ,yd,λ0

∫
f(ycj , y

d
j |xj)G

(
yc − ycj
h0

)
dycj

= −
∑
ydj∈Dd

y

Lydj ,yd,λ0

∫
G(v)dm(yc − h0v, y

d
j |xj) =

∑
ydj∈Dd

y

Lydj ,yd,λ0

∫
w(v)m(yc − h0v, y

d
j |xj)dv

=
∑
ydj∈Dd

y

L(ydj , y
d, λ0)

[
m(yc, ydj |xj) + (1/2)κ

qy
2

qy∑
s=1

h2
0,sm00,s(y

c, ydj |xj) + o(|h0|2)
]

=
∑
ydj∈Dd

y

[ ry∏
s=1

∑
zs≤yds

Iydjs=zs +

ry∑
s=1

λ0,s

∑
zs≤yds

Iydjs 6=zs

ry∏
l=1,l 6=s

∑
zdl ≤y

d
l

Iydjl=zl

]
[
m(yc, ydj |xj) + (1/2)κ

qy
2

qy∑
s=1

h2
0,sm00,s(y

c, ydj |xj)
]

+ o(ζ1n + |h0|2 + |λ0|)

= F (yc, yd|xj) + (1/2)κ
qy
2

qy∑
s=1

h2
0,sF00,s(y

c, yd|xj)

+
∑
ydj∈Dd

y

[ ry∑
s=1

λ0,s

∑
zs≤yds

Iydjs 6=zs

ry∏
l=1,l 6=s

∑
zl≤ydl

Iydjl=zl

]
m(yc, ydj |xj) + o(ζ1n + |h0|2 + |λ0|)

= F (yc, yd|xj) + (1/2)κ
qy
2

qy∑
s=1

h2
0,sF00,s(y

c, yd|xj) +

ry∑
s=1

λ0,sC1s,y,x + o(ζ1n + |h0|2 + |λ0|).(A.53)

where C1s,y,x =
∑

ydj∈Ddy

[∑
zs≤yds Iydjs 6=zs

∏ry
l=1,l 6=s

∑
zl≤ydl

Iydjl=zl

]
m(yc, ydj |x).

Similarly, using Taylor expansion arguments and using (A.52) we obtain

E[K2
yj ,y,γ0 |xj ] = E

[
G

(
yc − ycj
h0

)2

L2
ydj ,y

d,λ0
|xj

]
=
∑
ydj∈Dd

y

L2
ydj ,y

d,λ0

∫
f(ycj , y

d
j |xj)G

(
yc − ycj
h0

)2

dycj

= −
∑
ydj∈Dd

y

L2
ydj ,y

d,λ0

∫
G(v)2dm(yc − h0v, y

d
j |xj) = 2

∑
ydj∈Dd

y

L2
ydj ,y

d,λ0

∫
G(v)w(v)m(yc − h0v, y

d
j |xj)dv

=
∑
ydj∈Dd

y

L2
ydj ,y

d,λ0

[
m(yc, ydj |xj)−

qy∑
s=1

h0,sCwm0,s(y
c, ydj |xj) +O(h2

0)
]

=
∑
ydj∈Dd

y

[ ry∏
s=1

∑
zs≤yds

Iyjs=zs + 2

ry∑
s=1

λ0,s

∑
zs≤yds

∑
z′s≤yds

Iyjs=zsIyjs 6=z′s

ry∏
l=1,l 6=s

∑
zl≤yl

Iyjl=zl +O(|λ0|2)
]

×
[
m(yc, ydj |xj)−

qy∑
s=1

h0,sCwm0,s(y
c, ydj |xj) +O(|h0|2)

]
= F (yc, yd|xj)−

qy∑
s=1

h0,sCwF0,s(y
c, yd|xj) + 2

∑
ydj∈Dd

y

[ ry∑
s=1

λ0,s

∑
zs≤yds

∑
z′s≤yds

Iyjs=zsIyjs 6=z′s

ry∏
l=1,l 6=s

∑
zl≤yl

Iyjl=zlm(yc, ydj |xj)
]

+O(|h0|2 + |λ0|2)

= F (yc, yd|xj)−
qy∑
s=1

h0,sCwF0,s(y
c, yd|xj) +

ry∑
s=1

λ0,sC2s,y,x,(A.54)
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where C2s,y,x = 2
∑

ydj∈Ddy

{∑
zs≤yds

∑
z′s≤yds Iyjs=zsIyjs 6=z

′
s

}∏ry
l=1,l 6=s

∑
zl≤yl Iyjl=zlm(yc, ydj |xj).

Now we are ready to prove the lemma. Using (A.53) we immediately have

E[(Kyj ,y,γ0 − Fy|x)Kγ,xj ,x] = E{E[(Kyj ,y,γ0 |xj ]Kγ,xj ,x} − E[Fy|xKγ,xj ,x]

=
κ2

2

q∑
s=1

h2
s[f(x)Fss,x + 2fs,xFs,x] + (1/2)κ

qy
2

qy∑
s=1

h2
0,sF00,sf(x)

+
r∑
s=1

λs
∑
zdi ∈SD

Is(z
d, xd)[F (y|xc, zd)− F (y|x)]f(xc, zd) +

ry∑
s=1

λ0,sC1s,y,xf(x) + o(ζ1n + |λ0|+ |h0|2).

(A.55)

This proves Lemma A.7 (i). Next, using (A.53) and (A.54) we obtain

E[(Kyj ,y,γ0 − Fy|x)2K2
γ,xjx] = E[(K2

yj ,y,γ0 + F 2
y|x − 2Kyj ,y,γ0Fy|x)K2

γ,xjx]

= E[E(K2
yj ,y,γ0 + F 2

y|x − 2Kyj ,y,γ0Fy|x|xj)K2
γ,xjx]

= E[E(K2
yj ,y,γ0 |xj)K

2
γ,xjx] + F 2

y|xE[K2
γ,xjx]− 2Fy|xE[E(Kyj ,y,γ0 |xj)K2

γ,xjx]

= (h1 . . . hq)
−1ν0

[
F (y|x)− F (y|x)2 −

qy∑
s=1

h0,sCwF0,s +

ry∑
s=1

λ0,s

(
C2s,y,x − 2F (y|x)C1s,y,x

)]
f(x).

(A.56)

Note that (h1 . . . hq)
−1ν0[F (y|x) − F (y|x)2]/f(x) is the leading variance term. We also obtain the

terms related to h0,s and λs,0 in the above variance expansion so that one can see that the multivariate
y case has a variance expression similar to that in the scalar y case. Indeed if qy = 1 and ry = 0; or
qy = 0 and ry = 1, we obtain results for scalar y as special cases. �

Appendix B: Proof of Theorem 3.1 and Theorem 3.2

Proof of Theorem 3.1. In Appendix B, we use Fi to denote the true conditional CDF F (y|x̄i). We will
focus on proving case (a), and we will only provide sketches for the proofs of cases (b) and (c). We will
use the notation that ζ̄1n = |h̄|2 + |λ|, |h̄|2 =

∑q1
s=1 h

2
s, |λ̄| =

∑r1
s=1 λs, and ζ̄n = ζ̄2

1n + (nh1 . . . hq1)−1.

Proof of Theorem 3.1: Case (a). Following the same derivations that lead to (A.4), one can show that
CVa(·) = CVa,1(·)+ a term unrelated to (h, λ), where

CVa,1(γ) =

∫ [ 1

n(n− 1)2

∑∑
j 6=i

∑
l 6=i

(
Ij − Fi

)(
Il − Fi

)
Kγ,jiKγ,li/f̂

2
−i

− 2

n(n− 1)

∑∑
j 6=i

(
Ij − Fi

)(
Ii − Fi

)
Kγ,ji/f̂−i

]
MiM(y)dy

=

∫
(Aa,1n − 2Aa,2n)M(y)dy,

where the definitions of Aa,1n and Aa,2n should be obvious.
In Lemma B.1 and Lemma B.2 below we show, uniformly in (h, λ) ∈ Γ, that

Aa,1n =

∫ ( q1∑
s=1

h2
sB̄1s(y|x̄) +

r1∑
s=1

λsB̄2s(y|x̄)
)2
f̂(x̄)M̄(x̄)dx̄

+

∫
Σ̄y|x̄

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)dx+ (s.o.)(B.1)

Aa,2n = Op(n
−1/2ζ1n + (n2h1 . . . hq1)−1/2) = op(A1n),(B.2)
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where M̄(x̄) is defined in (18).

B̄1s(y|x̄) =
κ2

2

[
f̄(x̄)Fss(y|x̄) + 2f̄s(x̄)Fs(y|x̄)

]
/f̄(x̄)(B.3)

B̄2s(y|x̄) =
∑
z̄d∈Sd

Is(z̄
d, x̄d)

[
F (y|x̄c, z̄d)− F (y|x̄c, x̄d)

]
f̄(x̄c, z̄d)/f̄(x̄)(B.4)

Σ̄y|x̄ = κq1 [F (y|x̄)− F (y|x̄)2]/f̄(x̄)(B.5)

Fs(y|x̄) = ∂F (y|x̄)/∂x̄cs, Fss(y|x̄) = ∂2F (y|x̄)/∂(x̄cs)
2, f̄s(x̄) = ∂f̄(x̄)/∂x̄cs. Let

∫
dx̄ =

∑
x̄d
∫
dx̄c,∫

dx =
∑

xd
∫
dxc. R̃(x̃) = R̃(x̃, hq1+1, . . . , hq, λr1+1, . . . , λr) is defined by

(B.6) R̃(x̃) =
ν2(x̃)

[ν1(x̃)]2

where for i = 1, 2, νi(x̃) = E
([∏q

s=q1+1 h
−1
s w(

xcis−xcs
hs

)
∏r
s=r1+1 l(x

d
is, x

d
s , λs)

]i)
.

Hence, the leading term of CVa,1(γ) is∫∫ ( q1∑
s=1

h2
sB̄1s(y|x̄) +

r1∑
s=1

λsB̄2s(y|x̄)
)2
f̄(x̄)M̄(x̄)M(y)dx̄dy

+

∫∫
Σ̄y|x̄

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)M(y)dxdy.(B.7)

By Hölder’s inequality, R̃(x̃) ≥ 1 for all choices of x̃, hq1+1, . . . , hq, λr1+1, . . . , λr. Also, R̃(x̃) → 1
as hs → ∞(q1 + 1 ≤ s ≤ q) and λs → 1(r1 + 1 ≤ s ≤ r). Therefore, in order to minimize (B.7),

one needs to select hs(s = q1 + 1, . . . , q) and λs(s = r1 + 1, . . . , r) to minimize R̃(x̃). In fact, we

show that the only bandwidth values for which R̃(x̃, hq1+1, . . . , hq, λr1+1, . . . , λr) = 1 are hs → ∞ for
q1 + 1 ≤ s ≤ q, and λs = 1 for r1 + 1 ≤ s ≤ r. To see this, let us define Vn =

∏q
s=q1+1 h

−1
s w((xcis −

xcs)/hs)
∏r
s=r1+1 l(x

d
is, x

d
s , λs). If at least one hs is finite (for q1 + 1 ≤ s ≤ q), or one λs < 1 (for

r1 +1 ≤ s ≤ r), then by (16) (w(0) > w(δ) for all δ > 0) we know that V ar(Vn) = E[V2
n]− [E(Vn)]2 > 0

so that R̃(x̃) = E(V2
n)/[E(Vn)]2 > 1. Only when, in the definition of Vn, all hs =∞ and all λs = 1, do

we have Vn ≡ w(0)q−q1 (a constant) and V ar(Vn) = 0 so that R̃(x̃) = 1 only in this case.
Therefore, in order to minimize (B.7), the bandwidths corresponding to the irrelevant covariates

must all converge to their upper bounds so that R̃(x̃)→ 1 as n→∞ for all x̃ ∈ S̃ (S̃ is the support of
x̃ ). Thus irrelevant components are asymptotically smoothed out.

To analyze the behavior of bandwidths associated with the relevant covariates, we replace R̃(x̃) by
1 in (B.7), thus the second term on the right-hand-side of (B.7) becomes

(B.8)

∫∫
Σ̄y|x̄

nh1 . . . hq1
f̄(x̄)f̃(x̃)M(x)M(y)dxdy.

Define as = hsn
1/(q1+4) and bs = λsn

2/(q1+4), then (B.7) (with (B.8) as its first term since R̃(x̃)→ 1)

becomes n−4/(q1+4)X̄ (a1, . . . , aq1 , b1, . . . , br1), where

X̄ (a1, . . . , br1) = (a1 . . . aq1)−1

∫∫
Σ̄y|x̄f̄(x̄)f̃(x̃)M(x)M(y)dxdy

+

∫∫ ( q1∑
s=1

a2
sB̄1s(y|x̄) +

r1∑
s=1

bsB̄2s(y|x̄)
)2
f̄(x̄)M̄(x̄)M(y)dx̄dy.(B.9)

Let (a0
1, . . . , a

0
q1 , b

0
1, . . . , b

0
r1) denote values of (a1, . . . , aq1 , b1, . . . , br1) that minimize X̄ subject to each

of them being non-negative. We require that

(B.10) Each a0
s is positive and each b0s non-negative, all are finite and uniquely defined.
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The approach of Li & Zhou (2005) can be used to obtain primitive necessary and sufficient conditions
that ensure that (B.10) holds true. The result of Theorem 3.1 case (a) immediately follows. �

Proof of Theorem 3.1: Case (b). Similar to the derivation of (B.7), one can show that for case (b) the
leading term of CVb,1 has the following expression (by similar derivations as those lead to case (b) of
Theorem 2.1)

CVb,L =

∫∫ ( q1∑
s=0

h2
sB̄1s(y|x̄) +

r1∑
s=1

λsB̄2s(y|x̄)
)2
f̄(x̄)M̄(x̄)M(y)dx̄dy

+

∫∫
Σ̄y|x̄ − h0Ω̄1(y|x̄)

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)M(y)dxdy,(B.11)

where B̄10(y|x̄) = κ2
2 F00(y|x̄) and Ω̄1(y|x̄) = ν0CwF0(y|x̄)/f(x̄). They are the same as the quantities

defined in Theorem 2.1 except that one replaces x by x̄. Other quantities are the same as defined in
the proof of case (a).

From (B.11) and using exactly the same arguments as we did in the proof of case (a), one can

easily show that hs ∼ n−1/(4+q1) (s = 1, . . . , q1) and λs ∼ n−2/(4+q1) (s = 1, . . . , r1), hs → ∞ for
s = q1 + 1, . . . , q and λs → 1 for s = r1 + 1, . . . , r. With these results it is easy to show that h0 ∼
n−2/(4+q1) because we need to select h0 to minimize the squared bias terms and the variance term that
are associated with h0, i.e., terms like {h4

0, h
2
0h

2
s, h

2
0λj , h0/(nh1 . . . hq1)} (s = 1, . . . , q1, j = 1, . . . , r1).

For example, if the h4
0 term needs to balance h0h

2
s (assuming their coefficients have opposite signs), then

we get h0 ∼ hs ∼ n−1/(4+q). It is easy to see that h0 cannot have an order larger than O(h−1/(4+q1))

as this would lead the estimation MSE to have an order larger than O(n−4/(4+q1)). Hence, we obtain

h0 ∼ n−1/(4+q1). The remaining steps of proving case (b) follow the same arguments as in the proof of
case (a) and thus are omitted. �

Proof of Theorem 3.1: Case (c). Similar to the derivation of (B.7), one can show that for case (c) the
leading term of CVc,1 has the following expression

CVc,L =
∑
y∈Dy

∫ ( q1∑
s=1

h2
sB̄1s(y|x̄) +

r1∑
s=0

λsB̄2s(y|x̄)
)2
f̄(x̄)M̄(x̄)M(y)dx̄

+
∑
y∈Dy

∫
Σ̄y|x̄ + λ0Ω̄2(y|x̄)

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)M(y)dx,(B.12)

where B̄20 = Cy − F (y|x̄), Ω̄2 = 2κq1 [F (y|x̄)2 − F (y|x̄)]/f(x̄), all other quantities are the same as
defined in the proof of case (a).

From (B.12) and using exactly the same arguments as we did in the proof of case (a), one can

easily show that hs ∼ n−1/(4+q1) (s = 1, . . . , q1) and λs ∼ n−2/(4+q1) (s = 1, . . . , r1), hs → ∞ for
s = q1 + 1, . . . , q and λs → 1 for s = r1 + 1, . . . , r. With these results it is easy to show that h0 ∼
n−2/(4+q1) because we need to select h0 to minimize the squared bias terms and the variance term that
are associated with h0, i.e., terms like {λ2

0, λ
2
0h

2
s, λ0λj , λ0/(nh1 . . . hq1)} (s = 1, . . . , q1, j = 1, . . . , r1).

For example, if the λ2
0 term needs to balance λ0h

2
s, then we get λ0 ∼ h2

s ∼ n−2/(4+q). From this we

obtain λ0 ∼ n−2/(4+q1). The remaining steps of proving case (c) follow the same arguments as in the
proof of case (a) and thus are omitted. �

Lemma B.1. Equation (B.1) holds true.

Proof. By Lemma B.3 we know that f̂−i(x) is the kernel estimator of µ(x) = f̄(x̄)ν1(x̃), where ν1(x̃) =

E[K̃γ̃,ij |x̃i = x̃]. Therefore, we know that (see Lemma B.3) the leading term of f̂−i(xi)
−1 is µ(xi)

−1.

Define A0
1 by replacing f̂−i(xi)

−1 in A1 by its leading term µ(xi)
−1. Then using the result of Lemma
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B.3, it is easy to show that Aa,1n = A0
a,1n + (s.o.). Hence, we only need to consider A0

a,1n which is
defined by

A0
a,1n =

1

n(n− 1)2

∑∑ ∑
l 6=j 6=i

(
Ij − Fi

)(
Il − Fi

)
Kγ,jiKγ,liµ(xi)

−2Mi

+
1

n(n− 1)2

∑∑
j 6=i

(
Ij − Fi

)2
K2
γ,jiµ(xi)

−2Mi

= G1n +G2n,

where the definitions for G1n and G2n should be apparent.
We first consider G1n, which can be written as a third order U-statistic. By the U-statistic H-

decomposition, one can show that G1n = E(G1n) + (s.o.).

E(G1n) = E
[
(Ij − Fi)(Il − Fi)Kγ,jiKγ,liµ(xi)

−2Mi

]
= E

{(
E[(Ij − Fi)Kγ,ji/µ(xi)|xi]

)2Mi

}
.(B.13)

We first compute E[(Ij−Fi)Kγ,jiµ(xi)
−1|xi]. Recalling that µ(x) = f̄(x̄)ν1(x̃), we have (noting that

E[K̃γ̃,ij/ν1(x̃i)|x̃i] = 1)

E[(Ij − Fi)Kγ,jiµ(xi)
−1|xi]

= E[(Fj − Fi)Kγ,jiµ(xi)
−1|xi]

= E[(Fj − Fi)K̄γ̄,ij f̄(x̄i)
−1|x̄i]E[K̃γ̃,ij/ν1(x̃i)|x̃i]

= f̄(x̄i)
−1

∑
z̄d∈S̄d

L(z̄d, x̄di , λ)

∫
[F (y|x̄ci + hv, z̄d)− F (y|x̄ci , x̄di )]f̄(x̄ci + hv, z̄d)W (v)dv

=
κ2

2

q1∑
s=1

h2
s

[
f̄(x̄i)Fss(y|x̄i) + 2f̄s(x̄i)Fs(y|x̄i)

]
/f̄(x̄i)

+

r1∑
s=1

λs
∑
z̄d∈S̄d

Is(z̄
d, x̄di )

[
F (y|x̄ci , z̄d)− F (y|x̄ci , x̄di )

]
f̄(x̄ci , z̄

d)/f̄(x̄i) + o(ζn)

=

q1∑
s=1

h2
sB̄1s(y|x̄i) +

r1∑
s=1

λsB̄2s(y|x̄i) + o(ζ̄n),(B.14)

uniformly in (h, λ) ∈ Γ, where B̄1s(y|x̄) and B̄2s(y|x̄) are defined in (B.3) and (B.4).
Substituting (B.14) into (B.13), we immediately obtain (recall M̄(x̄) is defined in (18))

(B.15) E(G1) =

∫ ( q1∑
s=1

h2
sB̄1s(y|x̄) +

r1∑
s=1

λsB̄2s(y|x̄)
)2
f̄(x̄)M̄(x̄)dx̄+ o(ζ̄n).

Note that in the above we have only shown that for all fixed values of (h, λ) ∈ Γ, (B.15) holds
true. By utilizing Rosenthal’s and Markov’s inequalities, it’s straightforward to show (B.15) holds true
uniformly in (h, λ) ∈ Γ.

Next we consider G2n. G2n can be written as a second order U-statistic. By the U-statistic H-
decomposition it is straightforward to show that G2n = E(G2n) + (s.o.). Recalling µ(x) = f̄(x̄)ν1(x̃),
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ν2(x̃) = E[K̃2
γ̃,ji|x̃i = x̃], we have

E(G2n) = n−1E
[(
Ij − Fi

)2
K2
γ,jiµ(xi)

−2Mi

]
= n−1E

{
E
[
(Ij − 2FiIj + F 2

i )K2
γ,jiµ(xi)

−2|xi
]
Mi

}
= n−1E

{
E
[
(Ij − 2FiIj + F 2

i )K̄2
γ̄,if̄(x̄i)

−2|x̄i
]
Miν2(x̃i)ν1(x̃i)

−2
}
.(B.16)

We first compute E
[
(Ij − 2FiIj + F 2

i )K̄2
γ̄,ji/f̄(x̄i)

2|xi
]
. By Lemma B.4 we know that hs → 0 for

s = 1, . . . , q1 and λs → 0 for s = 1, . . . , r1. Thus

E
[
(Ij − 2FiIj + F 2

i )K̄2
γ̄,jif̄(x̄i)

−2|xi
]

= E
[
(Fj − 2FiFj + F 2

i )K̄2
γ̄,jif̄(x̄i)

−2|xi
]

=
1

h1 . . . hq1

∑
z̄d∈S̄d

L(z̄d, x̄di , λ)2

∫ [
F (y|x̄ci + hv, z̄d)− 2F (y|x̄ci , x̄di )F (y|x̄ci + hv, z̄d)

+ F (y|x̄ci , x̄di )2
]
f̄(x̄i)

−2f̄(x̄ci + hv, z̄d)W (v)2dv

=
Σ̄y|x̄i

h1 . . . hq1
+O(ζ̄

1/2
1n (h1 . . . hq1)−1),(B.17)

where Σ̄y|x̄ is defined in (B.5).
Substituting (B.17) into (B.16), we immediately obtain

E(G2n) =

∫
Σ̄y|x̄

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)dx+O(ζ̄

1/2
1n (nh1 . . . hq1)−1)

G2n = E(G2) + (s.o.) =

∫
Σ̄y|x̄

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)dx+ (s.o.),

where R̃(x̃) is defined in (B.6).
Moreover, by utilizing Rosenthal’s and Markov’s inequalities, one can show that the above result

holds uniformly in (h, λ) ∈ Γ. �

Lemma B.2. Equation (B.2) holds true.

Proof. Let A0
a,2n denote Aa,2n with f̂−i(xi)

−1 being replaced by its leading term µ(xi)
−1. Then it

can be shown that Aa,2n = A0
a,2n + (s.o.). Hence, we only need to consider A0

a,2n which is defined

by A0
a,2n = (n(n − 1))−1

∑∑
j 6=i
(
Ij − Fi

)
(Ii − Fi)Kγ,jiµ(xi)

−1. Notice that the part in A0
a,2n that is

related to the irrelevant covariates is K̃γ̃,ji/ν1(x̃), which is bounded. Therefore, when evaluating the
order of A0

a,2n we can ignore the irrelevant covariates part and need only consider

Ā0
a,2n =

1

n(n− 1)

∑∑
j 6=i

(Ij − Fi)(Ii − Fi)K̄γ̄,jif̄(x̄i)
−1Mi.

Note that Ā0
a,2n only depends on (h1 . . . , hq1 , λ1, . . . , λr1). By Lemma B.4 we know that these band-

widths all converge to zero as n → ∞. Hence, we can use standard change-of-variable and Taylor
expansion arguments to deal with the continuous covariates’ kernel function, and use the polynomial
expansion for the discrete kernel functions. Note that Mi does not influence the order of Ā0

a,2n, so we
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omit Mi in the following proof of this Lemma.

E[Ā0
a,2n]2 =

1

n2(n− 1)2

∑
i

∑
j 6=i

∑
l 6=i

E
[
(Ij − Fi)(Ii − Fi)2(Il − Fi)K̄γ̄,jiK̄γ̄,lif̄(x̄i)

−2
]

=
1

n2(n− 1)2

∑∑ ∑
l 6=j 6=i

E
[
(Ij − Fi)(Ii − Fi)2(Il − Fi)K̄γ̄,jiK̄γ̄,lif̄(x̄i)

−2
]

+
1

n2(n− 1)2

∑
i

∑
j 6=i

E
[
(Ij − Fi)2(Ii − Fi)2K̄2

γ̄,jif̄(x̄i)
−2
]

= O
(
n−1ζ̄2

1n + (n2h1 . . . hq1)−1
)
.

Hence

(B.18) Ā0
a,2n = Op(n

−1/2ζ̄1n + (n(h1 . . . hq1)1/2)−1).

Moreover, by utilizing Rosenthal’s and Markov’s inequalities, one can show that (B.18) holds uni-
formly in (h, λ) ∈ Γ. Therefore, (B.2) holds. �

Lemma B.3. Defining ν1(x̃) = E[K̃γ̃,ij |x̃i = x̃] and µ(x) = f̄(x̄)ν1(x̃), then f̂−i(x)−1 = µ(x)−1 +

Op

(
ζ̄1n +

(
ln(n)

)1/2
(nh1 . . . hq1)−1/2

)
uniformly in x ∈ S and (h, λ) ∈ Γ.

Proof. Defining µ̂(x) = E[f̂−i(xi)|xi = x], then by the independence of x̃i and x̄i, yi, we have

µ̂(x) = E[K̄γ̄,ij |x̄i = x̄]E[K̃γ̃,ij |x̃i = x̃]

= {f̄(x̄) +O(ζ̄1n)}E[K̃γ̃,ij |x̃i = x̃]

= µ(x) +Op(ζ̄1n).(B.19)

Note f̂−i(x) − µ̂(x) has zero mean. Following standard arguments used when deriving uniform
convergence rates for nonparametric kernel estimators (e.g., Masry (1996)), we know that

(B.20) f̂−i(x)− µ̂(x) = Op

((
ln(n)

)1/2
(nh1 . . . hq1)−1/2

)
,

uniformly in x ∈ S and (h, λ) ∈ Γ.
Combining (B.19) and (B.20) we obtain

(B.21) f̂−i(x)− µ(x) = Op

(
ζ̄1n +

(
ln(n)

)1/2
(nh1 . . . hq1)−1/2

)
,

uniformly in x ∈ S and (h, λ) ∈ Γ.
Using (B.21) and Taylor expansions, we obtain

f̂−i(x)−1 =
[
µ(x) + f̂−i(x)− µ(x)

]−1

= µ(x)−1 − µ(x)−2
[
f̂−i(x)− µ(x)

]
+Op

(
|f̂−i(x)− µ(x)|2

)
= µ(x)−1 +Op

(
ζ1/2
n +

(
ln(n)

)1/2
(nh1 . . . hq1)−1/2

)
. �

Lemma B.4. ĥs = op(1) for s = 1, . . . , q1 and λ̂s = op(1) for s = 1, . . . , r1.

Proof. Without assuming that any of the bandwidths converge to zero, then the only possible non-op(1)
term in CV (γ) is G1n. It is fairly straightforward to see that G1n = 1

n(n−1)2
∑∑∑

l 6=j 6=i
(
Ij

− Fi
)(
Il − Fi

)
Kγ,jiKγ,liµ(xi)

−2Mi + op(1) ≡ G1,0 + op(1), where µ(xi) = f̄(x̄)E[K̃γ̃,ij |x̃i] is defined in
the proof of Lemma B.3.
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Note that G1,0 can be written as a third order U-statistic, hence by the H-decomposition of a U-
statistic it is fairly straightforward to show that G1,0 = E(G1,0) + op(1). Furthermore, by the law of
iterated expectations we have

E(G1,0) = E
{[
µ(xi)

−1E
(
(Ij − Fi)Kγ,ji|xi

)]2M(xi)
}

= E

{[
f̄(x̄i)

−1E
(
(Fj − Fi)K̄γ̄,ji|x̄i

)]2
M(xi)

}
= E

{
[η(y, x̄i)]

2M(xi)
}

=

∫
[η(y, x̄)]2f̄(x̄)M̄(x̄)dx̄,(B.22)

where η(y, x̄) is defined in (17), M̄(x̄) is defined in (18). Note that the right hand side of (B.22) does

not depend on (hq1+1, . . . , hq, λr1+1, . . . , λr) since E[K̃γ̃,ij |x̃i] in the numerator cancels with the same

quantity in the denominator (from µ(xi)
−1 = f̄(x̄)−1E[K̃γ̃,ij |x̃i]−1).

If the bandwidths (h1, . . . , hq1 , λ1, . . . , λr1) that minimize CV (γ) do not all converge in probability
to zero, then by (19), E(G1,0)(or G1n) does not converge to zero, which implies that the probability
that the minimum of G1n (over the bandwidths) exceeds δ, which does not converge to zero as n→∞
(for some δ > 0).

However, choosing h1, . . . , hq1 to be of size n−1/(q1+4), and λ1, . . . , λr1 to be of size n−2/(4+q), letting
hq1+1, . . . , hq diverge to infinity, and letting λr1+1, . . . , λr converge to 1, one can easily show G1n

converges in probability to zero. This contradicts the result obtained in the previous paragraph (the
minimum of G1n exceeds δ), and thus demonstrates that, at the minimum of CV (γ), the bandwidths
(h1, . . . , hq1 , λ1, . . . , λr1), for the relevant components of x, all converge in probability to zero. �

�

Proof of Theorem 3.2. Proof. We will only prove case (a) as cases (b) and (c) can be proved similarly.

By Theorem 3.1 we know that ĥs
p→ +∞ for s = q1+1, . . . , q and λ̂s

p→ 1 for s = r1+1, . . . , r. Therefore,
we need only consider the case with all irrelevant covariates removed, i.e. we consider F̂a(y|x̄) =

[
∑

j 6=i K̄γ̂,ji]
−1[
∑

j 6=i IjK̄γ̂,ji], where K̄γ̂,ji =
[∏q1

s=1 ĥ
−1
s w((xcis − xcs)/ĥs)

][∏r1
s=1 l(x

d
is, x

d
s , λ̂s)

]
.

We first consider the benchmark case whereby we use non-stochastic bandwidths. Define h0
s =

a0
sn
−1/(4+q1) for s = 1, . . . , q1, and λ0

s = b0sn
−2/(4+q1) for s = 1, . . . , r1, where a0

s and b0s are defined in

(B.10). Also, define F̄ (y|x̄) =
[∑

j 6=i K̄γ0,ji

]−1[∑
j 6=i IjK̄γ0,ji

]
, where K̄γ0,ji =

[∏q1
s=1(h0

s)
−1w((xcis −

xcs)/h
0
s)
][∏r1

s=1 l(x
d
is, x

d
s , λ

0
s)
]
. Then,

(B.23) F̄ (y|x̄)− F (y|x̄) =
[∑
j 6=i

K̄γ0,ji

]−1[∑
j 6=i

IjK̄γ0,ji −
∑
j 6=i

K̄γ0,jiF (y|x̄)
]
,

where F (y|x̄) is the true conditional CDF. By adding and subtracting terms, we obtain

F̄ (y|x̄)− F (y|x̄) =
[∑
j 6=i

K̄γ0,ji

]−1[∑
j 6=i

K̄γ0,ji

(
Ij − F̄j + F̄j − F (y|x̄)

)]
=
[
A0(x̄)

]−1[
B0(y|x̄) + C0(y|x̄)

]
,

where A0(x̄) = n−1
∑

j 6=i K̄γ0,ji, B
0(y|x̄) = n−1

∑
j 6=i K̄γ0,ji

[
Ij − F̄j

]
and C0(y|x̄) = n−1

∑
j 6=i K̄γ0,ji[

F̄j − F (y|x̄)
]
.

By the same arguments as we used in the proof of Lemma B.3, one can show that A0(x̄) = f̄(x̄) +
op(1). Following the proof of Lemma B.1, one can show that C0(y|x̄) = f̄(x̄)

[∑q1
s=1(h0

s)
2B̄1s(y|x̄) +∑r1

s=1 λ
0
sB̄2s(y|x̄)

]
+ op(ζ

0
n), where ζ0

n =
∑q1

s=1(h0
s)

2 +
∑r1

s=1 λ
0
s. Obviously, B0(y|x̄) has zero mean and

its asymptotic variance is given by (nh0
1 . . . h

0
q1)−1Σ̄y|x̄f̄(x̄)2, where Σ̄y|x̄ is defined in (B.5). By applying
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a triangular-array CLT, we know that

(B.24)
√
nh0

1 . . . h
0
q1

[
F̄ (y|x̄)− F (y|x̄)−

q1∑
s=1

(h0
s)

2B̄1s(y|x̄)−
r1∑
s=1

λ0
sB̄2s(y|x̄)

]
d→ N(0, Σ̄y|x̄).

Next we consider F̂a(y|x) =
[∑

j 6=i K̄γ̂,ji

]−1[∑
j 6=i IjK̄γ̂,ji

]
with cross-validation selected band-

widths, where K̄γ̂,ji =
[∏q1

s=1 ĥ
−1
s w((xcis − xcs)/ĥs)

][∏r1
s=1 l(x

d
is, x

d
s , λ̂s)

]
. Therefore, the only differ-

ence between F̂a(y|x) and F̄ (y|x̄) is that the former uses the cross-validated bandwidths, while the

latter uses some benchmark non-stochastic bandwidths. By Theorem 3.1 we know that ĥs/h
0
s

p→
1 for s = 1, . . . , q1, and λ̂s/λ

0
s

p→ 1 for s = 1, . . . , r1. By using stochastic equicontinuity argu-

ments as in Hall et al. (2004), one can show that D̂(y|x) − D̄(y|x̄) = op((nh
0
1 . . . h

0
q)
−1/2), where

D̂(y|x) = F̂a(y|x̄)− F (y|x̄)−
∑q1

s=1(ĥs)
2B̄1s(y|x̄)−

∑r1
s=1 λ̂sB̄2s(y|x̄) and D̄(y|x̄) = F̄ (y|x̄)− F (y|x̄)−∑q1

s=1(h0
s)

2B̄1s(y|x̄) −
∑r1

s=1 λ
0
sB̄2s(y|x̄). Hence, F̂a(y|x) and F̄ (y|x̄) have the same asymptotic distri-

bution, i.e.,

�(B.25)

√
nĥ1 . . . ĥq1

[
F̂a(y|x)− F (y|x̄)−

q1∑
s=1

ĥ2
sB̄1s(y|x̄)−

r1∑
s=1

λ̂sB̄2s(y|x̄)

]
d→ N(0, Σ̄y|x̄).

�
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