
Please cite this article in press as: Fielding et al., Interleukin-6 Signaling Drives Fibrosis in Unresolved Inflammation, Immunity (2014), http://dx.doi.org/
10.1016/j.immuni.2013.10.022
Immunity

Article
Interleukin-6 Signaling Drives Fibrosis
in Unresolved Inflammation
Ceri A. Fielding,1,6 Gareth W. Jones,1,6 Rachel M. McLoughlin,1,8 Louise McLeod,2 Victoria J. Hammond,1 Javier Uceda,1

Anwen S. Williams,1 Mark Lambie,3 Thomas L. Foster,1 Chia-Te Liao,1 Christopher M. Rice,1 Claire J. Greenhill,1

Chantal S. Colmont,1 Emily Hams,1,9 Barbara Coles,1 Ann Kift-Morgan,1 Zarabeth Newton,1 Katherine J. Craig,4

John D. Williams,4 Geraint T. Williams,5 Simon J. Davies,3 Ian R. Humphreys,1 Valerie B. O’Donnell,1 Philip R. Taylor,1

Brendan J. Jenkins,2 Nicholas Topley,1,7,* and Simon A. Jones1,7,*
1Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
2Centre for Innate Immunity and Infectious Diseases, Monash Institute for Medical Research, Monash University, Clayton, VIC 3168, Australia
3Department of Nephrology, University Hospital of North Staffordshire and Institute for Science and Technology inMedicine, Keele University,
Stoke-on-Trent ST4 7QB, UK
4Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park,

Cardiff CF14 4XN, UK
5Section of Pathology, Institute of Cancer and Genetics, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
6These authors contributed equally to this work
7These authors contributed equally to this work and are co-senior authors
8Present address: School of Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland
9Present address: Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland

*Correspondence: topley@cf.ac.uk (N.T.), jonessa@cf.ac.uk (S.A.J.)

http://dx.doi.org/10.1016/j.immuni.2013.10.022
SUMMARY

Fibrosis in response to tissue damage or persistent
inflammation is a pathological hallmark of many
chronic degenerative diseases. By using a model of
acute peritoneal inflammation, we have examined
how repeated inflammatory activation promotes
fibrotic tissue injury. In this context, fibrosis was
strictly dependent on interleukin-6 (IL-6). Repeat
inflammation induced IL-6-mediated T helper 1
(Th1) cell effector commitment and the emergence
of STAT1 (signal transducer and activator of tran-
scription-1) activity within the peritoneal membrane.
Fibrosis was not observed in mice lacking interferon-
g (IFN-g), STAT1, or RAG-1. Here, IFN-g and STAT1
signaling disrupted the turnover of extracellular
matrix by metalloproteases. Whereas IL-6-deficient
mice resisted fibrosis, transfer of polarized Th1 cells
or inhibition of MMP activity reversed this outcome.
Thus, IL-6 causes compromised tissue repair by
shifting acute inflammation into a more chronic pro-
fibrotic state through induction of Th1 cell responses
as a consequence of recurrent inflammation.

INTRODUCTION

Fibrosis of connective tissues or organ structures is character-

ized by alterations in extracellular matrix deposition as a conse-

quence of tissue damage or persistent inflammation (Wynn,

2007). Acquired loss of peritoneal function as a result of fibrosis

is a major factor leading to ultrafiltration and treatment failure in

renal patients on peritoneal dialysis. Thickening of the submeso-
thelial compact zone is commonly linked with both treatment

duration and the incidence of bacterial peritonitis in this patient

group (Davies et al., 1996, 2001; Williams et al., 2002). Here,

increased peritoneal fibrosis corresponds with the severity of

infection and the number of episodes encountered (Davies

et al., 1996). The cellular mechanisms initiating this response

are currently unclear.

During acute infection, leukocyte infiltration is tightly regulated

to ensure both bacterial clearance and the successful resolution

of inflammation (Jones, 2005). In contrast, localized persistent

or recurrent infections promote tissue injury and fibrogenesis

(Casadevall and Pirofski, 2003). Here, fibrosis is associated

with retention of an activated leukocyte population within the

infected organ. Inflammatory cytokines including interleukin-4

(IL-4), IL-13, transforming growth factor-b (TGF-b), and oncosta-

tin-M have all been linked to the development of fibrosis in auto-

immune conditions such as systemic sclerosis or interstitial lung

disease (Mozaffarian et al., 2008; Roberts et al., 1986; Sempow-

ski et al., 1994; Zhu et al., 1999). However, their roles and the

roles of other cytokines in peritoneal fibrosis have not yet been

examined.

Interleukin-6, acting via the latent transcription factors signal

transducer and activator of transcription-3 (STAT3) and STAT1,

plays pivotal roles in governing leukocyte infiltration during acute

inflammation (Fielding et al., 2008; Hurst et al., 2001; Jones et al.,

2011; McLoughlin et al., 2003, 2005). These findings may relate

to the involvement of IL-6 in antimicrobial host defense and

the inability of Il6�/� mice to effectively clear bacterial or viral in-

fections (Detournay et al., 2005; Dienz et al., 2012; Doganci et al.,

2005; Dominitzki et al., 2007; Finotto et al., 2007; Kopf

et al., 1994; Lee et al., 1999; Longhi et al., 2008; McLoughlin

et al., 2005; Murphy et al., 2008; Pasare and Medzhitov, 2003;

Quinton et al., 2008; Yamamoto et al., 2000). In contrast, inflam-

matory models of chronic disease and clinical observations

identify IL-6 activity as deterimental in autoimmunity and cancer
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Figure 1. Il6–/– Mice Are Protected from the Development of Fibrosis

after Repeated Inflammation

(A) Submesothelial compact zone thickness was compared in peritoneal

biopsies from PD patients with either no previous infection history or a defined

infection history. Data are presented as box plots of the interquartile range

(IQR). Lines extend from the box to the highest and lowest values, excluding

outliers. The median value is represented by a thick line across each box.

(B) WT or Il6�/� mice were injected (i.p.) with SES at weekly intervals for

3 weeks (day 0–21) and left for a further 4 weeks until day 49 before histological

analysis of the peritoneal membrane. Peritoneal membrane sections (5 mm)

taken fromSES-treated and age-matched control mice on day 49were stained

with hematoxylin and eosin and examined for submesothelial compact zone

thickening (layer between the muscle and membrane surface). Representative

fields are shown from two individual mice per group (3400 magnification).

Scale bar represents 50 mM. Submesothelial compact zone (SMC) and muscle

layers (M) are indicated on representative WT sections.

(C) Fibrosis scores for WT and Il6�/� mice are shown over the duration of the

model. Values reflect the fold-change in submesothelial zone thickness

compared to the WT control group at day 0 (n R 3–12 per group, unpaired

t test *p < 0.05 compared toWT day 0, **p < 0.001 compared toWT control day

49 and Il6�/� 43SES day 49). No significant difference inmembrane thickening

was observed in sections from WT control mice taken on day 0 and day 49.

(D) Peritoneal membrane sections from day 49 were immunostained with

antibodies against type-1 collagen. Representative fields are shown from two

individual mice per group (3400 magnification). Scale bar represents 50 mm.

See also Figure S1.
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(Jones, 2005; Jones et al., 2011; Nishimoto and Kishimoto,

2004). It is, however, unknown how IL-6 converts from providing

protective immunity to its damaging activities that drive chronic

inflammation and fibrosis.

We have previously described a peritoneal model of inflamma-

tion based on the administration of a cell-free supernatant

prepared from a clinical isolate of Staphylococcus epidermidis

(termed SES). This model closely mimicks a resolving inflamma-
2 Immunity 40, 1–11, January 16, 2014 ª2014 Elsevier Inc.
tory response typically seen in clinical bacterial peritonitis (Hurst

et al., 2001; McLoughlin et al., 2003). Through adaptation of this

model, we now show that repeated SES challenge promotes

peritoneal fibrosis in wild-type (WT) mice. This response strictly

required IL-6, which regulated a T-cell-mediated increase in

tissue damage and membrane fibrosis. These data suggest

that IL-6 blocking interventions may be useful in the treatment

of infection-associated fibrotic conditions and support the

potential prognostic value of monitoring IL-6-directed ‘‘STAT1

signatures’’ in dialysis patients.

RESULTS

Peritoneal Fibrosis after Recurrent SES Inflammation
Requires IL-6 Signaling
Prolonged peritoneal dialysis (PD) treatment leads to alterations

in peritoneal membrane function and tissue fibrosis (Williams

et al., 2002). Histological assessment of biopsies taken from

the peritoneal membrane of PD patients show that those who

have never experienced a peritonitis episode display less thick-

ening of the submesothelial compact zone than those that had

encountered at least one prior infection (Figure 1A). To evaluate

the relationship between infection incidence and peritoneal

fibrosis, a model of recurrent peritoneal inflammation was devel-

oped through administration of a cell-free supernatant prepared

from of a clinical isolate of Staphylococcus epidermidis (termed

SES) (Figure S1 available online). Mice were challenged (i.p.) at

7 day intervals with four sequential rounds of acute SES-induced

inflammation. Parietal peritoneal membrane sections were pre-

pared at various time points after resolution of the fourth inflam-

matory episode (Figures 1B, 1C, and S1). Consistent with the

histology of human parietal peritoneum, unchallenged WT mice

showed two distinct cellular regions: an underlying area of mus-

cle and a mesothelial monolayer on the surface of a thin basal

lamina (a submesothelial compact zone) (Williams et al., 2002).

Repeat SES activation inWTmice caused a distinct thickening

of the submesothelial compact zone, which emerged at day 35

after four rounds of inflammation (Figures 1B and 1C). This was

further illustrated by immunohistochemistry of collagen type-1

(Figures 1D and S1). Previous investigations with a single admin-

istration of SES showed that IL-6 controls leukocyte recruitment

and influences the course of acute resolving peritoneal inflam-

mation (Fielding et al., 2008; Hurst et al., 2001; Jones et al.,

2011; McLoughlin et al., 2003, 2005). We therefore monitored

the onset of fibrosis in SES-challenged Il6�/� mice. Peritoneal

membranes from Il6�/� mice showed no thickening of the

submesothelial compact zone after repeat SES activation. There

was also no alteration in type-1 collagen deposition and sections

closely resembled those taken from nonchallenged mice (Fig-

ures 1B–1D and S1).

To test whether the degree of pathology observed was due to

the intensity or duration of inflammation, we evaluated fibrosis in

SES-challenged Il10�/� mice. Here, IL-10 deficiency caused a

substantial increase in leukocyte infiltration, cytokine production

(including IL-6), and T cell effector function after SES activation

(Figure S2). Despite this increase in inflammatory activation,

Il10�/� mice showed a similar degree of fibrosis to that of WT

mice (Figure S2). Thus, the severity of peritoneal fibrosis is inde-

pendent of the intensity of acute inflammatory activation.
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Figure 2. Changes in the Inflammatory Response after Repeated

SES Challenge

(A) EMSA for NF-kB and STAT signaling in nuclear extracts from the perito-

neum of SES-challengedWT and Il6�/�mice. Analysis of samples from the first

(13SES) and fourth (43SES) episode of inflammation are shown. An NF1

probe was used as a loading control.

(B) Supershift analysis of the STAT DNA-binding complex in nuclear extracts

(3 hr sample) from WT mice. Analysis of STAT1, STAT3, and STAT5 is shown

from 13SES and 43SES. The antibody-induced STAT3 supershift (SS) and

loss of STAT1 binding to the probe (LB) are indicated by black and white

arrows, respectively.

(C) Immunoblot with phospho-specific antibodies for STAT1 and STAT3

in protein lysates from the peritoneal membranes of mice. Samples were

obtained from 13SES and 43SES. In all cases, results are representative of

lysates from three different mice per time point and genotype.

(D) Detection of IFN-g in lavage from challenged WT and Il6�/� mice (mean ±

SEM; n > 5 per time point).

(E) qPCR of Irf1 and Isg15 in total RNA from the peritoneal membrane of

challenged mice. Values are expressed relative to the WT baseline control and

represent the mean for each genotype from three different mice per time.

See also Figure S4.
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Peritoneal Fibrosis Was Not Attributable to Increases in
Profibrotic Cytokines or IL-6
To determine whether fibrosis in WT mice was attributable to an

increase in IL-6 bioavailability as a response to repeat inflamma-

tory activation, IL-6 and its soluble receptor (sIL-6R) were quan-

tified in peritoneal lavage from the first and fourth episode of

SES-induced inflammation (Figure S3). No difference in IL-6 or

sIL-6R expression was observed as a consequence of repeated

inflammation. Next, we quantified changes in several profibrotic

cytokines. IL-4 remained below the limit of detection, and only
small SES-induced changes in IL-13 were observed (data not

shown). A similar pattern of IL-4 and IL-13 production was also

observed in vitro (Figure S3). Here, quantification of IL-4 and

IL-13 in conditioned supernatants from SES-challenged perito-

neal monocytic cells showed no IL-4, but some expression of

IL-13, that was not enhanced by the addition of IL-6. Finally,

we considered the potential role of TGF-b, which is a major pro-

fibrotic cytokine that signals via the transcription factor SMAD3

(Wynn, 2008). Although small differences in TGF-b expression

was observed between SES-challenged WT and Il6�/� mice,

TGF-b amounts remained largely unaltered by repeated SES

challenge (Figure S3). Importantly, Smad3�/� mice were not

protected from SES-induced peritoneal fibrosis (Figure S3), sug-

gesting that TGF-b signaling is not required for the observed

fibrotic changes. Thus, cytokines traditionally viewed as profi-

brotic are not integral to the development of SES-induced

peritoneal fibrosis.

Recurrent Inflammation Drives Increased STAT1
Signaling in the Peritoneal Membrane
SES is a potent activator of TLR2, which signals through NF-kB

(Colmont et al., 2011). We therefore compared SES activation of

NF-kB in WT and Il6�/� mice via electrophoretic mobility shift

assays (EMSA) (Figure 2A). Analysis of nuclear extracts from

the peritoneal membrane revealed that a single dose of SES

triggered a temporal activation of NF-kB, which was sustained

over a 12–24 hr period. Minimal NF-kB activity was observed

at baseline (time zero for either episode 1 or 4), suggesting that

the inflammatory signal was resolved after each round of SES

activation (Figure 2A). Although NF-kB activity was enhanced

in mice encountering their fourth inflammatory episode, there

was no appreciable difference between WT and Il6�/� mice (Fig-

ures 2A and S4). Supershift analysis of the DNA-protein complex

confirmed that NF-kB was unaffected by IL-6 deficiency and

uniformly consisted of both p65 (Rel-A) and p50 subunits (Fig-

ure S4). Thus, WT and Il6�/� mice display similar SES respon-

siveness, which suggests that the signals driving fibrosis are

downstream of TLR2-mediated NF-kB activation.

We next considered IL-6 activation of STAT1 and STAT3

by EMSA. Whereas nuclear extracts from SES-challenged WT

mice showed a robust STAT response, this activity wasmarkedly

impaired in Il6�/� mice (Figures 2A, 2B, and S4). In WT mice,

STAT activity was transient and began to resolve at 6 hr after

SES administration. STAT activation coincided with the detec-

tion of Il6 in total mRNA from peritoneal extracts of SES-

challenged WT mice (Figure S3). The intensity and duration

of STAT signaling was, however, substantially increased in the

fourth SES-driven episode (Figure 2A). Supershift analysis, via

a STAT1 antibody (which causes a loss of DNA binding [LB])

and a STAT3 antibody (which induces a classical supershift

[SS] in electrophoretic mobility), showed that the composition

of the DNA-STAT protein complex was altered as a conse-

quence of recurrent SES challenge (Figures 2B and S4). In

the first acute SES challenge, the DNA-protein complex was

predominantly composed of STAT3, with little evidence of

STAT1. In contrast, there was a notable shift toward STAT1

over STAT3 activation in nuclear extracts taken during the fourth

SES episode (Figure 2B). This increase in STAT1 activity was

confirmed by immunoblot of peritoneal extracts via antibodies
Immunity 40, 1–11, January 16, 2014 ª2014 Elsevier Inc. 3
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Figure 3. Detection of Peritoneal IFN-g-Expressing CD4+ T Cells

Correspond with STAT1 Activation

(A)WT, Ifng�/�, andRag1�/�micewere repeatedly challengedwithSESand the

peritoneal membrane harvested at day 49. Serial sections were immunostained

for type-1 collagen and counterstained with hematoxylin. Representative

fields are shown from two individual mice per group (3400 magnification).

(B) Fibrosis was scored by assessment of the fold-change in the sub-

mesothelial compact zone thickness compared to the control group at day 49

(n R 4 per group unpaired t test; *p < 0.05).

(C) STAT activation at 3 hr post-SES injection was measured by EMSA of

nuclear extracts prepared from the peritoneal membrane of WT, Ifng�/�, and
Rag1�/� mice taken during 13SES and 43SES. Supershift analysis of nuclear

extracts from 13SES and 43SES by specific anti-STAT antibodies. Data

are representative of results from three mice. The antibody-induced STAT3

supershift (SS) and loss of STAT1 binding to the probe (LB) are indicated by

black and white arrows, respectively.

(D) Intracellular flow cytometry for IFN-g-secreting CD4+ T cells in peritoneal

lavage from SES-challenged WT and Il6�/� mice. Lavage samples were iso-

lated at 3 hr during 13SES and 43SES (n R 4 per group, unpaired t test; *p <

0.05 compared with the 13SES WT group).

(E) Peritoneal leukocytes obtained from WT mice (6 hr after SES) were stim-

ulated ex vivo for a further 4 hr with SES in the presence of monensin. Intra-

cellular flow cytometry for IFN-g production in CD4+ and CD19+ lymphocytes

is shown.

See also Figure S5.
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against tyrosine-phosphorylated STAT1 and STAT3 (Figure 2C).

Thus, prior inflammatory activation causes an alteration in STAT

signaling capacity and leads to an increase in STAT1 activity.

Increased IFN-g Promotes STAT1 Activation and
Associated Target Gene Expression
The absence of STAT activity in peritoneal extracts from SES-

challenged Il6�/� mice (Figure 2) infers that the increase in
4 Immunity 40, 1–11, January 16, 2014 ª2014 Elsevier Inc.
STAT1 signaling seen inWT tissue could arise from either altered

IL-6 and gp130-mediated signaling or through IL-6 regulation of

a downstream STAT1 activating factor. Because prior experi-

ments with SES administration supported an inflammatory inter-

play between IL-6 and IFN-g (McLoughlin et al., 2003), IFN-gwas

quantified in the first and fourth round of SES challenge (Fig-

ure 2D). No IFN-g was detected in the peritoneal cavity of WT

or Il6�/� mice after a single SES dose (Figure 2D). In contrast,

IFN-g was markedly elevated in WT mice during the fourth SES

challenge. These changes coincided with increases in STAT1

activity and the induction of STAT1 target genes (Irf1, interferon

regulatory factor-1; Isg15, ubiquitin-like modifier interferon stim-

ulated gene-15) (Figures 2B, 2C, and 2E). No change in IFN-g

expression and STAT1 signaling was observed in Il6�/� mice

(Figures 2D and 2E). Thus, IL-6 signaling may promote an in-

crease in IFN-g activity after repeated inflammatory challenge.

Impaired IFN-g andSTAT1Signaling PreventsPeritoneal
Fibrosis
To define a link between changes in IFN-g and peritoneal

fibrosis, Ifng�/� mice were repeatedly challenged with SES

(Figure 3A). Peritoneal histology from Ifng�/� mice showed

limited collagen type-1 staining and were protected from fibrotic

thickening (Figures 3A and S5).

Because lymphoid cells are a major source of IFN-g, we next

evaluated SES-induced fibrosis in Rag1�/� mice. No peritoneal

fibrosis was seen in RAG-1 deficiency (Figures 3A and 3B). To

examine the potential relationship between IFN-g-secreting

lymphoid cells and the transition toward a STAT1-mediated

response, STAT signaling was examined in both Ifng�/� and

Rag1�/� mice after SES administration. No increase in stromal

STAT1 signaling was observed in the peritoneum of SES-chal-

lenged Ifng�/� and Rag1�/� mice (Figures 3C and S5). Impor-

tantly, although SES-induced changes in peritoneal IL-6 were

comparable in WT, Ifng�/�, and Rag1�/� mice, IFN-g remained

below detection in Ifng�/� and Rag1�/� mice (Table 1). Conse-

quently, IL-6 does not directly promote peritoneal fibrosis.

Instead, IL-6 control of IFN-g may account for the changes in

tissue damage.

Increases in IFN-g-Secreting T Cells Control STAT1
Signaling in the Peritoneal Membrane
Our data show that IL-6 promotes an increase in IFN-g and

STAT1 signaling as a consequence of repeat SES challenge.

This response is associated with increased numbers of lympho-

cytes and monocytes in peritoneal lavage (Table 2). Because

IFN-g expression is restricted to lymphoid cells, we quantified

IFN-g-secreting CD4+ T cells (Th1 cells) in WT and Il6�/� mice.

In WT mice after the fourth SES administration (3 hr after SES

challenge), there was a notable increase in overall Th1 cell

numbers. No increase in Th1 cells was seen in Il6�/� mice (Fig-

ure 3D). Peritoneal IL-17-secreting CD4+ T cells (Th17 cells)

were always 10-fold lower than Th1 cells in WT mice, and very

few IL-17, IFN-g double-positive T cells were detected (Jones

et al., 2010). Examination of effector CD4+ T cells during the

period associated with the development of peritoneal fibrosis

(days 28–49) showed that this Th1 cell phenotype was main-

tained and represented the most prominent CD4+ T cell popula-

tion within the peritoneal cavity (Figure S5).



Table 1. IL-6 and IFN-g Production in WT, Ifng–/–, and Rag1–/– Mice

Episode 1 Episode 4

0 hr 3 hr 0 hr 3 hr

IL-6 IFN-g IL-6 IFN-g IL-6 IFN-g IL-6 IFN-g

WT 5 ± 3 <LD 590 ± 199* <LD 2 ± 2 <LD 284 ± 32** 24 ± 4

Ifng–/– 16 ± 11 <LD 451 ± 205 <LD <LD <LD 152 ± 39* <LD

Rag1–/– 29 ± 7 <LD 1,057 ± 514* <LD <LD <LD 938 ± 352 <LD

IL-6 and IFN-g protein production (pg/ml) was measured in WT, Ifng�/�, and Rag1�/� mice by specific ELISA within peritoneal lavage fluid. ELISA re-

sults shown are the mean ± SEM (nR 4 per time point). <LD indicates below the limit of detection. *p < 0.05 IL-6 levels WT episode 1, 0 hr versus 3 hr;

Rag1�/� episode 1, 0 hr versus 3 hr; WT versus Ifng�/� and Ifng�/� versus Rag1�/� episode 4, 3 hr; and **p < 0.0001 WT episode 4, 0 hr versus 3 hr.
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Recent studies suggest that innate B cell activation causes the

release of certain inflammatory cytokines (Barr et al., 2007,

2010). CD19+ B cells from SES-challengedmice did not produce

IFN-g after restimulation in vitro with SES (Figure 3E). These

studies preclude a role for innate IFN-g production by B cells.

However, they do not eliminate the involvement of IL-6-driven

B cell antibody generation (Hirano et al., 1986), which in turn

may drive antibody-mediated tissue injury. Consequently, an

ELISA was developed to evaluate the generation of anti-SES

IgG (Figure S4). Repeated SES-induced inflammation caused

significant increases in anti-SES IgG titers. The antibodies

were highly polyclonal and immunoblot analysis showed them

to bind multiple components within the SES lysate (Figure S6i).

Similar increases in anti-SES IgG were detected in both Il6�/�

and Ifng�/�mice (Figure S6i). Thus, fibrosis is not driven by alter-

ations in B cell antibody generation.

SESTriggers the IL-6-Dependent Expansion of Th1Cells
In Vitro
To evaluate the mechanism of Th1 cell expansion, peritoneal

monocytic cells were isolated from WT mice and stimulated

in vitro with SES. Conditioned medium from these cultures

(SES-CM) was then added to naive CD4+ T cells activated by

anti-CD3 and anti-CD28 costimulation. Addition of SES-CM

caused a proliferative expansion of IFN-g-secreting CD4+

T cells (Figure 4A). Whereas large quantities of IL-6 were de-

tected in SES-CM, sIL-6Rwas barely detectable (<20 pg/ml after

SES activation) and IFN-g remained below the limit of detection

(Figure 4B). To test whether IL-6 was responsible for driving the

Th1 cell response, naive CD4+ T cells from WT and Cd126�/�

mice (deficient in IL-6Ra) were cultured with costimulatory anti-

bodies and SES-CM. WT CD4+ T cells displayed a robust Th1

cell signature (Figures 4C and 4D) and did not produce IL-4,

IL-9, IL-13, or IL-17 (Figures 4C and 4E). In contrast, SES-CM

caused no increase in IFN-g production in Cd126�/� T cells.

Instead, the absence of IL-6Ra enhanced development of IL-4-

and IL-13-producing T cells, with no change in IL-9 or IL-17 (Fig-

ures 4C and 4E). These data suggest that IL-6 acting directly via

IL-6Ra controls the differentiation and expansion of Th1 cells.

To determine how IL-6Ra signaling may influence Th1 cell

development, we next evaluated the impact of IL-6 on IL-12, a

recognized activator of Th1 cell commitment. Although IL-12

induction by SES was comparable in peritoneal monocytic and

dendritic cells from WT and Il6�/� mice, the presence of IL-6

may influence the commitment of Th1 cells by IL-12 (Figures

S3 and S7). Consistent with previous studies (Diehl et al.,
2000; Rincón et al., 1997), IL-6 suppressed IL-12 regulation of

Th1 cell differentation (Figure S6ii). However, IL-6 was essential

for T cell survival and this led to an overall increase in Th1 cell

numbers in IL-12-treated cultures (Figure S6ii). To test whether

IL-6 could influence the control of T cell effector function in vivo,

IL-6 signaling was reconstituted in SES-challenged Il6�/� mice

through administration (i.p.) of an IL-6/sIL-6R fusion protein

(HDS). Here, HDS treatment led to a significant increase in the

frequency of Th1 cells at 72 hr after SES administration (Fig-

ure 5A). Thus, IL-6 promotes T cell survival to maintain their

effector characteristics within the peritoneal cavity.

In Vitro Committed Th1 Cells Promote Stromal STAT1
Activation and Peritoneal Fibrosis In Vivo
To identify a link between T cell-derived IFN-g and peritoneal

fibrosis, WT T cells expanded in vitro with SES-CM were trans-

ferred into Cd126�/� mice. With Cd126�/� mice as recipients,

the only cell type capable of responding to IL-6 is the transferred

T cell population. Although in vitro expanded CD4+ T cells

secreted IFN-g, IL-6 was not detected in these cultures

(Figure 5B). When these Th1 cells were transferred (i.p.) into

Cd126�/� mice, increases in both peritoneal IFN-g and stromal

STAT1 activity were detected. Transfer of control naive (Th0)

CD4+ T cells had no affect (Figures 5C and 5D).

Studies next tested the importance of STAT1 activation as

a prerequisite to the development of peritoneal fibrosis. When

compared toWTmice,Stat1�/�mice showed no signs of fibrosis

after repeat SES activation (Figures 6A and S7i). To demonstrate

a role for Th1 cells in the control of peritoneal fibrosis, Th1 cells

expanded with SES-CM were adoptively transferred into the

peritoneal cavity of Il6�/� mice. Freshly expanded Th1 cells

(0.5–1.0 3 106 cells, corrected for the proportion secreting

IFN-g) or an equivalent number of naive (Th0) CD4+ T cells

were administered together with each dose of SES (Figure S7i).

Transfer of Th1 cells, but not naive CD4+ T cells, induced

peritoneal fibrosis in Il6�/� mice (Figure 6B).

IFN-g and STAT1 Regulate Matrix Metalloproteinase
Expression In Vitro and In Vivo
Fibrosis is typically associated with altered patterns of matrix

degradation, where increased stromal cell proliferation leads to

deposition of extracellular matrix proteins and scarring (Wynn,

2007). The regulation of matrix metalloproteases (MMP) or tissue

inhibitors of MMP (TIMP) by IFN-g might therefore provide

a mechanism for the observed peritoneal fibrosis. To test

this, peritoneal changes in MMP-3 was examined in WT versus
Immunity 40, 1–11, January 16, 2014 ª2014 Elsevier Inc. 5



Table 2. Resident Peritoneal Leukocyte Counts after Repeated Inflammation

Leukocytes (3106/ml)

WT Il6�/�

Episode 1 Episode 4 Episode 1 Episode 4

Macrophages 2.42 ± 0.18 4.10 ± 0.54* 2.35 ± 0.22 4.07 ± 0.48*

PMNs 0 ± 0 0.27 ± 0.25 0 ± 0 0.07 ± 0.04

Lymphocytes 0.20 ± 0.06 1.59 ± 0.32** 0.59 ± 0.06 1.37 ± 0.07**

Resident populations of peritoneal leukocyteswere analyzed by differential cell counting during the first and fourth episodes of SES-induced peritoneal

inflammation in WT and Il6�/� mice (mean ± SEM; n R 5 per group, unpaired t test, *p < 0.05 or **p < 0.01).
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Ifng�/� and Stat1�/� mice (Figures 7A and 7B). Here, IFN-g or

STAT1 deficiency led to an increase in MMP-3 expression in

mice repeatedly challenged with SES. No alteration in peritoneal

TIMP-1 was observed. Thus, enhanced IFN-g and STAT1

signaling might limit MMP activity to promote the deposition of

extracellular matrix. To demonstrate a link betweenMMPactivity

and the protection from fibrosis observed in Il6�/� mice, a colla-

genase-specific MMP inhibitor (Ro32-355) was administered

(between days 43 and 49) orally to Il6�/� mice after the fourth

round of SES-induced inflammation (Figure 7C). Under these

conditions, Il6�/� mice developed comparable fibrosis to that

seen in WT mice.

To see whether a similar mechanism may account for fibrosis

in PD patients, a series of in vitro studies were performed. First,

primary human peritoneal mesothelial cells (HPMCs) were stim-

ulated with IL-1b (a major regulator of MMP production) and

secretion of MMP-3 and TIMP-1 was assessed in the presence

of IFN-g. As shown in Figure 7D, IFN-g suppressed the IL-1b

regulation of MMP-3 but did not alter TIMP-1 expression. Similar

data were also observed for MMP-1 and MMP-9, and gelatin

zymography showed IFN-g to inhibit the enzymatic activity of

MMP-2 and MMP-9 (Figure S7ii). Second, transfection studies

with a plasmid encoding a constitutively active form of STAT1

(STAT1-C) downregulated both basal and IL-1b-induced MMP-

3 production by HPMCs (Figure 7E). To underscore a relation-

ship between recurrent infections, MMP activity, and tissue

injury, renal patients on stable PDwere divided according to their

prior history of bacterial peritonitis. Analysis of MMP3 and TIMP-

1 levels in these cohorts showed an alteration in the balance

between MMP and TIMP expression. Although there was no

substantial difference in absolute MMP-3 and TIMP-1 levels in

this patient group, a comparison of median values showed a

marked decrease in MMP-3 in patients with prior infection his-

tory (Figure S7ii). When standardized against TIMP-1 levels,

this reflected a significant decrease in the MMP-3/TIMP-1 ratio,

which would predict increased matrix deposition and peritoneal

fibrosis. Thus, IFN-g regulates peritoneal MMP activities, which

may reflect clinical changes in the homeostatic turnover of excel-

lular matrix seen in peritoneal dialysis.

DISCUSSION

Studies examined the cellular events that dictate transition of an

acute resolving inflammatory response into a more damaging in-

flammatory setting. Peritonitis provides an excellent opportunity

to evaluate this process, because recurrent infections in renal

failure patients on peritoneal dialysis is a major reason for treat-

ment failure. Here, the frequency or severity of peritonitis corre-
6 Immunity 40, 1–11, January 16, 2014 ª2014 Elsevier Inc.
lates with increased tissue fibrosis, vascular damage, and the

retention of activated leukocytes in the peritoneal cavity (Davies

et al., 1996; Williams et al., 2002). To understand how recurrent

peritonitis drives tissue injury, we developed a murine model of

peritoneal inflammation, which promotes peritoneal fibrosis after

repeated challenge with a microbial-derived stimulus (SES). This

approach allowed us to track temporal changes in the inflamma-

tory response that affect peritoneal cytokine production, leuko-

cyte recruitment and activation, and the response of the resident

stromal compartment.

Acute inflammation is a rapidly resolving process, which is

self-limiting to restrict the development of tissue damage. We

now show that recurrent acute episodes distort this process to

cause fibrosis. This response was totally IL-6 dependent, and

repeatedly challenged Il6�/� mice displayed no histological evi-

dence of peritoneal fibrosis. Fibrosis onset was not, however,

linked to traditional profibrotic cytokines, and Smad3�/� mice

showed comparable pathology to WT mice. Instead, IL-6 pro-

moted a robust Th1 cell-mediated response that disrupted

the normal turnover of extracellular matrix through enhanced

STAT1 signaling within the stromal compartment. Increased

STAT1 activity was observed only in tissue that had encountered

multiple rounds of acute inflammation and Ifng�/�, Stat1�/�, and
Rag1�/� mice were all protected from pathology. These results

support the role of IL-6 in memory recall and emphasize the

importance of IFN-g-producing Th1 cells in protective immunity

against bacterial infection (Longhi et al., 2008; Mills et al., 1993).

Thus, a memory response to SES would be anticipated to sup-

port antimicrobial immunity but inadvertently drives tissue injury

through STAT1 inhibition of homeostatic extracellular matrix

turnover.

Competent antimicrobial host defense relies on IL-6 activity,

and Il6�/� mice show a reduced capacity to clear both viral

and bacterial infections (Kopf et al., 1994; Lee et al., 1999; Longhi

et al., 2008; Murphy et al., 2008). IL-6 activation of STAT3 con-

trols neutrophil clearance and promotes T cell recruitment during

acute peritoneal inflammation (Fielding et al., 2008; McLoughlin

et al., 2005). Here, IL-6 and STAT3 signaling contributes to the

control of antimicrobial immunity by regulating various innate

immune activities to acute resolving or lethal infection (Greenhill

et al., 2011; Kano et al., 2003; Matsukawa et al., 2003). For

example, patients with hyper-IgE syndrome resulting frommuta-

tions in STAT3 have impaired IL-6 signaling and suffer recurrent

infections (Holland et al., 2007; Minegishi et al., 2007). A similar

susceptibility to infection is also seen in individuals with clinically

relevant IL-6 autoantibodies (Puel et al., 2008). Whereas STAT3

is heavily linked with chronic disease progression and cancer,

this is often influenced by a signaling crosstalk with some other
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Figure 4. SES Promotes the IL-6-Dependent Expansion of Th1 Cells In Vitro

(A) Peritoneal monocytic cells were recovered by lavage from WT mice and stimulated with SES in culture overnight. Cell-free conditioned media from these

cultures (SES-CM) were used to stimulated CFSE-labeled naive T cells under anti-CD3 and anti-CD28 costimulation. After 4 days culture, IFN-g production was

monitored in proliferating CD4+ T cells. Representative data are shown for cells treated with media alone (-), costimulatory antibodies alone (-SES), or in

combination with SES-CM (+SES).

(B) ELISA quantification of IL-6, sIL-6R, and IFN-g in SES-CM (mean ± SEM; n = 3 for IL-6 and IFN-g, n = 6 for sIL-6R; values below the limit of detection [<L.O.D.]

are indicated).

(C) Intracellular flow cytometry for cytokine production by naive CD4+ T cells cultured for 4 days under anti-CD3 and anti-CD28 costimulation in the presence or

absence of SES-CM. Data are shown for T cells derived from WT and Cd126�/� mice.

(D) Relative quantification of IFN-g-secreting CD4+ T cells in all experimental repeats (n = 5 WT and n = 3 Cd126�/� mice per group).

(E) Comparable analysis of IFN-g, IL-4, and IL-9 in T cell cultures from WT and Cd126�/� mice.

See also Figure S6i.
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transcriptional regulators (Bollrath et al., 2009; Grivennikov et al.,

2009; Jenkins et al., 2005, 2007; Judd et al., 2006; Nowell et al.,

2009). Thus, the protective activities of IL-6 must be balanced

against its ability to drive deleterious tissue injury. Our studies

show no substantial increase in STAT3 activity between perito-

neal tissue extracts taken from the first and fourth episode of

acute inflammation. Instead, STAT3 activity in the fourth SES

episode was accompanied by increased STAT1 signaling, which

promoted fibrosis.

The relationship between IL-6 and IFN-g is striking given the

often distinct roles of STAT1 and STAT3 in inflammation and

cancer. Increased local IFN-g expression after repeat inflamma-

tory activation would provide one potential mechanism by which
the STAT1 versus STAT3 balance is altered to dictate disease

outcome. This is akin to the control of STAT signaling in liver

injury where tissue damage is associated with hyperactivation

of STAT1 and reduced STAT3 activity (Hong et al., 2002; Ogata

et al., 2006). The involvement of IFN-g in tissue remodeling and

disease progression is further emphasized by observations

in double Tcra�/�Socs1�/� mice where colitis is characterized

by excessive IFN-g-mediated STAT1 signaling (Chinen et al.,

2006). Studies show that IFN-g and STAT1 affects the turnover

of extracellular matrix and can block fibrinolytic processes (Ho

et al., 2008; Hu et al., 2005). However, other models highlight

conflicting roles for IFN-g in fibrosis. For example, IFN-g has

been described as an antifibrotic regulator that controls collagen
Immunity 40, 1–11, January 16, 2014 ª2014 Elsevier Inc. 7
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Figure 5. IL-6 Modulation of Th1 Cell Activity In Vivo

(A) SES-induced peritoneal inflammation was initiated in Il6�/�mice. Local IL-6

(trans) signaling was reconstituted via administration (i.p.) of 1 mg/mouse HDS

or control PBS at 0 hr (same time as SES challenge), 24 hr, and 48 hr. After

72 hr, the peritoneal infiltrate was recovered by lavage and CD4+ T cells

examined by flow cytometry. The proportion of CD4+ T cells displaying a

Th1 and Th17 effector cell phenotype was determined by intracellular flow

cytometry for IFN-g and IL-17A (n = 8 mice per treatment, p < 0.05).

(B) Intracellular flow cytometry of IFN-g and IL-6 production by naive CD4+

T cells from WT mice that had been activated for 4 days in the presence or

absence of SES-CM from peritoneal monocytic cells. The relative quantifica-

tion of cells releasing IL-6 or IFN-g is presented from all experiments (n = 3,

p < 0.05).

(C) WT Th1 cells expanded ex vivo under costimulation with SES-CM. These

Th1 cells (0.5–1.0 3 106) were adoptively transferred (i.p.) into Cd126�/� mice

together with SES. Peritoneal lavage were recovered (3 hr) and IFN-g quan-

tified by ELISA (mean ± SEM from four separate mice). Values are compared

against mice receiving freshly sorted naive CD4+ T cells (Th0).

(D) Immunoblot of STAT1 activation in peritoneal membranes from SES-

challenged Cd126�/� mice receiving ex vivo expanded Th1 cells or Th0 cells.

Data are shown for each individual adoptive transfer (n = 4).

See also Figure S6ii.
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Figure 6. Peritoneal Fibrosis Is Linked to Stromal STAT1 Activity and

Th1 Cells

(A) WT and Stat1�/� mice were repeatedly challenged with SES. Peritoneal

membranes were harvested at day 49 and sections scored for fibrosis. Sec-

tions are compared against age-matched control mice as before (unpaired

t test, *p < 0.05).

(B) Naive CD4+ T cells were committed in vitro to Th1 cells with SES-CM. The

proportion of IFN-g+CD4+ cells was determined by flow cytometry and used to

calculate the number of T cells for transfer into Il6�/� mice. 0.5–1.0 3 106 Th1

cells or naive CD4+ T cells (Th0) were coadministered to mice with SES (i.p.) on

day 0, 7, 14, and 21. Peritoneal fibrosis was assessed on day 49 as before

(unpaired t test, *p < 0.05).

See also Figure S7i.
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synthesis and deposition (Gurujeyalakshmi and Giri, 1995; Old-

royd et al., 1999; Wynn et al., 1995). Importantly, cytokines

including IL-4, IL-5, and IL-13 in association with TGF-b drive

collagen production and promote fibrotic extracellular matrix

remodeling (Wynn, 2004). This model of tissue damage is likely

to apply to inflammatory situations where robust Th2 cytokine

responses are implicated. Our data showed that an absence of

T cell IL-6Ra signaling resulted in the SES-mediated expansion

of IL-4- and IL-13-secreting T cells. Whereas these findings sup-

port a role for IL-6 in Th1 cell differentiation over that of Th2 cells,

they also emphasize that T cell-derived IL-4 and IL-13 are not

responsible for the lack of pathology seen in Il6�/� mice. Our

T cell studies show that SES control of IL-6 was essential for

the survival and maintenance of T cell effector functions. This

is consistent with the role of IL-6 in T cell recruitment, activation,

and survival. Interleukin-6 governs the effector characteristics of
8 Immunity 40, 1–11, January 16, 2014 ª2014 Elsevier Inc.
various T cells subsets including Th17 cells, Th22 cells, and

certain IL-10-secreting subsets (Stumhofer et al., 2007). Here,

the nature of the T cell response may be influenced by innate

sensing mechanisms. Thus, the pattern of cytokine expression

displayed in response to an allergen may be distinct from that

activated by a Gram-positive bacteria and is designed to steer

a unique set of effector functions selected to combat the type

of pathogen encountered. In this context, SES activates Th1

cell expansion in a IL-6Ra-dependent manner, which promotes

enhanced stromal STAT1 signaling as an early prerequisite to

the onset of peritoneal fibrosis.

The data presented here document a potential mechanism to

explain how repeat acute resolving inflammation or infection

drives tissue damage. Here, recurrent innate inflammatory acti-

vation inadvertently promotes adaptive immune responses that

alter the pattern of cytokine signaling in stromal tissue, which

ultimately gives rise to fibrosis and chronicity.

EXPERIMENTAL PROCEDURES

Mouse Strains

All procedures were performed under Home Office project licenses 30/2269

and 30/2938 or Monash Medical Centre ‘A’ Animal Ethics approval. Inbred

wild-type (WT) C57BL/6 mice were purchased from Charles River UK. IL-6-

deficient (Il6�/�) (Kopf et al., 1994), IL-6R-deficient (Cd126�/�) (Jones et al.,

2010), Smad3�/� (Zhu et al., 1998), and IFN-g-deficient (Ifng�/�) mice, recom-

binase-activated gene-1 (Rag1�/�) on a C57BL/6 background were bred in

house from breeding pairs originally purchased from The Jackson Laboratory

or obtained from GlaxoSmithKline (Cd126�/�). Stat1�/� and WT littermates on

a 129/C57BL/6 background were bred in house (from I. Campbell, University
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Figure 7. IFN-g-STAT1 Activity Regulates Matrix Metalloproteinase

Expression

(A and B) ELISA quantification of MMP-3 and TIMP-1 in peritoneal lavage fluid

from WT and Ifng�/� (A) or Stat1�/� (B) mice.

(C) WT and Il6�/� were injected with SES at four weekly intervals. At day 43,

day 45, and day 47, Il6�/� mice received drinking water containing the

collagenase-specific MMP inhibitor Ro32-355 (12.5 mg/50 ml). Groups of WT

and Il6�/� mice received the ethanol vehicle alone. At day 49, the peritoneal

membrane was harvested and fibrosis scored as before.

(D) Growth-arrested human peritoneal mesothelial cells (HPMCs) were treated

with medium alone (control), IL-1b (100 pg/ml), IFN-g (100 U/ml), or IL-1b in

combination with IFN-g for up to 72 hr. Cell-free supernatants were analyzed

for MMP-3 or TIMP-1 by ELISA.

(E) HPMCs were transfected with empty control or constitutive STAT1

(STAT1-C) containing plasmid vectors overnight and stimulated with IL-1b

(100 pg/ml) for 24 hr. Cell-free supernatants were analyzed for MMP-3 or

TIMP-1 by ELISA.

See also Figure S7ii.
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of Sydney, Australia). All mice were aged between 8 and 12 weeks and were

weight matched for each experiment.

Preparation of SES and Induction of Repeated Acute Inflammation

Staphylococcus epidermidis cell-free supernatant (SES) was prepared as pre-

viously described (Hurst et al., 2001; McLoughlin et al., 2003). Peritoneal

inflammation was induced in WT and genetically modified mice through

administration (i.p.) of SES (Hurst et al., 2001; McLoughlin et al., 2003). Mice

were repeatedly challenged with four sequential episodes (7 days apart) of

SES and mice were maintained for a maximum of 49 days before sacrifice.
At defined intervals, the composition of the leukocyte infiltrate was assessed

by a Coulter counter (Coulter Z2, Beckman Coulter), differential cell counting,

and multiparameter flow cytometry. Peritoneal tissue and lavage fluids were

harvested for biochemical analysis (see Supplemental Experimental Proce-

dures). For inhibition of MMP activity, WT and Il6�/� were repeatedly injected

with SES as described. At day 43, day 45, and day 47, Il6�/� mice received

drinking water containing a collagenase-specific MMP inhibitor (Ro32-355 at

dose of 12.5 mg/50 ml calculated to give a daily dose of 50 mg/kg). Groups

of WT and Il6�/� mice received the ethanol vehicle alone. Peritoneal mem-

branes were harvested at day 49.

Peritoneal Membrane Histopathology

Human parietal peritoneum sections were prepared as previously described

(Williams et al., 2002). Murine parietal peritoneum (1 cm2) was harvested and

sectioned in a similar manner. Biopsies were fixed with neutral buffered formal

saline for 24 hr at 4�C and embedding in paraffin. Serial sections (of 5 mm thick-

ness) were stained with hematoxylin and eosin. The thickness of the submeso-

thelial cell compact zone was measured at three points over six fields of view

along the length of the peritoneal section where an intact surface mesothelial

layer was visible with the340 objective. Sections were immunostained with a

specific rabbit anti-mouse collagen type-1 polyclonal antibody (2150-1410;

AbD Serotec, MorphoSys UK) after antigen retrieval by digestion with trypsin.

Staining was visualized with an anti-rabbit ABC detection kit and DAB (Dako)

and counterstained with hematoxylin in a Dako autostainer. Slides were

analyzed with a Leica DFC49 microscope and camera (Leica).

SES-Driven Differentiation of T Helper Cells

Cells were cultured in RPMI 1640 supplemented with 10% (v/v) heat-inacti-

vated FCS, 2 mM L-glutamine, 1 mM sodium pyruvate, 100 U/ml penicillin,

100 mg/ml streptomycin, and 55mM 2-mercaptoethanol (all from Life Technol-

ogies). SES was reconstituted in 1 ml supplemented RPMI 1640 medium.

Conditioned media from SES-stimulated peritoneal cells (SES-CM) was pre-

pared by adding SES (1:1) to 1 3 106 cells in a 1 ml final culture volume.

FACS-sorted naive CD4+CD25�CD44loCD62Lhi cells were cultured in

96-well plates at 1 3 105 cells/well and stimulated with plate-bound anti-

CD3 (1 mg/ml; 45-2C11) and soluble anti-CD28 (5 mg/ml; 37.51). Cultures

were supplemented with SES-CM (1:1) or recombinant IL-12 (20 ng/ml) and

cultured for 4 days. For the final 4 hr of culture, cells were restimulated with

50 ng/ml PMA and 500 ng/ml ionomycin in the presence of 3 mM monensin.

Th1, Th2, and Th17 cell lineage differentiation was assessed by flow cytome-

try, bymeans of antibodies to CD4 (RM4-5), IFN-g (XMG1.2), IL-4 (11B11), IL-6

(MP5-20F3), IL-9 (RM9A4), IL-13 (eBio13A), and IL-17 (TC11-18H10.1).

Adoptive Transfer of Th1 Cells

Naive CD4+ T cells were expanded into Th1 cells in vitro with SES-CM. The

proportion of IFN-g+CD4+ T cells was determined by flow cytometry and

used to calculate the number of cells for transfer into Il6�/� or Cd126�/�

mice. Cells (0.5–1.0 3 106) were coadministered to mice with SES (i.p.).

Control mice received an equivalent number of sorted naive (Th0) CD4+

T cells. For quantification of peritoneal IFN-g and immunoblot of STAT1

activity, cells were coadministered with a single dose of SES (a 3 hr stimula-

tion). For evaluation of peritoneal fibrosis, cells were coadministered to mice

with SES on day 0, 7, 14, and 21. Peritoneal fibrosis was assessed on day 49

as outlined above.

Primary Human Mesothelial Cell Cultures

Primary human mesothelial cells (HPMCs) were isolated by tryptic digest from

omental biopsies and cultured as previously described (Hurst et al., 2001;

McLoughlin et al., 2003). Growth-arrested HPMCs were stimulated with 100

pg/ml IL-1b (R&D Systems) with or without 100 U/ml IFN-g (Peprotech) for

72 hr and cell-free culture supernatants were prepared. A 60%–80% confluent

HPMCsmonolayer in 24-well plates was transfected with Xfect transfection re-

agent (Clontech) and 0.5 mg plasmid DNA (pcDNA3 vector control or pcDNA3

containing cDNA encoding a constitutively active STAT1 mutant, STAT1-C)

per well for 3 hr in complete M199 medium containing 10% (v:v) FCS. After

24 hr, the media was replaced with fresh complete M199 medium containing

10% (v:v) FCS with or without IL-1b (100 pg/ml) and culture supernatants

and protein lysates were prepared 24 hr later.
Immunity 40, 1–11, January 16, 2014 ª2014 Elsevier Inc. 9
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Statistics

Student’s t test or Mann-Whitney tests in the GraphPad Prism software as-

sessed statistical significance (GraphPad). p % 0.05 was considered signifi-

cantly different.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.immuni.2013.10.022.
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