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Abstract

Cross country comparisons avoid the unsteady equilibrium in which regulators have to
balance between economies of scale and a sufficient number of remaining comparable utilities.
By the use of Data Envelopment Analysis, we compare the efficiency of the drinking water
sector in the Netherlands, England and Wales, Australia, Portugal and Belgium. After intro-
ducing a procedure to measure the homogeneity of an industry, order-m partial frontiers are
used to detect outlying observations. By applying bootstrapping algorithms, bias-corrected
first and second stage results are estimated. Our results suggest that the regulatory and
benchmark incentive schemes have a significant positive effect to efficiency. By incorporat-
ing the environmental variables directly into the efficiency estimates, we first equalize the
social, physical and institutional environment and secondly deduce the effect of incentive
schemes on utilities as they would work under similar conditions. The analysis demonstrates
that in absence of clear and structural incentives the average efficiency of the utilities falls
in comparison with utilities which are encouraged by incentives.
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1 Introduction

The merits of competition are abundantly demonstrated in economic theory. However, a mo-
nopolistic configuration may still be desirable in certain activities. Particularly operations with
large sunk costs or increasing returns to scale could lead to a natural monopoly. Irrespective of
ownership, whether private or public owned utilities, every natural monopoly involves welfare
cost to society by creating the quiet life of Hicks (1935), the X-inefficiency of Leibenstein (1966)
or making excess profits. The problem is similar to a principal-agent problem under asymmetric
information. The monopolistic utilities (the agents) have private information about their ability
to transform inputs into outputs. As society (the principal) wants a guaranteed service at the
lowest price possible, the utilities can extract information rents.

The objective of society is to minimize the extraction of information rents while assuring a
satisfactory service. Policy makers can apply a range of incentive schemes in order to reach
this goal. The different institutional frameworks (divestiture, concession, yardstick competi-
tion, etc.) reflect different regulatory and ideological views. Especially within the local public
utilities, ideological views prevail, mainly if the water services are deemed services of general
interest and not services of general economic interest and, therefore, should not be subject to
the competition law.

In this article, we want to examine the role of incentive schemes in the drinking water sector.
We investigate whether regulatory and benchmark incentive schemes ameliorate the efficiency
of utilities which are encouraged by incentives. We try to make abstraction of ideological con-
flicts by only considering efficiency. Whatever the ideological background, no one can accept
inefficiencies. Inefficiencies are merely resources which are left over on the table. We compare
the incentive schemes of five different countries: benchmarking the drinking water sector as in
the Netherlands, privatization as in England and Wales, a strong regulatory framework as in
Australia, municipal provision with private sector participation as in Portugal or different levels
of public management as in Belgium.

In methodological terms, this paper follows the literature on Data Envelopment Analysis (DEA).
This non-parametric technique is particularly useful in the efficiency measurement of public util-
ities where knowledge of the production function is relatively scarce. However, the first DEA
models, developed by Charnes et al. (1978) and Banker et al. (1984), did not allow for statisti-
cal inference. Only recently, by the work of Simar and Wilson (1998), was statistical inference
introduced. We apply their methodology, which is based on bootstrapping, to determine the
bias-corrected first and second stage results. These outcomes are compared to the ones arising
from the more traditional Tobit regressions with censored and truncated samples. Order-m
efficiencies are applied to detect the outlying observations in the sample. The bandwidth of the
Kernel estimates is employed to stipulate the homogeneity of a country’s drinking water sec-
tor. We conclude by incorporating environmental variables directly into the efficiency estimates.
Besides applying a one-stage model, we therefore introduce a procedure which is based on the
residuals of the Tobit regression.

The paper is organized as follows. In section 2 we describe the institutional frameworks in the
Dutch, English and Welsh, Australian, Portuguese and Belgian drinking water sector. Section
3 briefly reviews the methodology and literature on the use of DEA in water services. In sec-
tion 4 we specify the DEA model and determine the homogeneity in efficiency in the national
drinking water sectors. Section 5 starts with an introduction on the bootstrap methodology as
outlined by Simar and Wilson (2000) and continues with describing the first stage results. Sec-
tion 6 determines by the use of censored and truncated Tobit regressions and by a bootstrapping
algorithm the influential environmental variables. Section 7 provides the concluding remarks.



2 The institutional framework in the water sector

There exist several approaches to solve the principle-agent problem (see e.g. Laffont and Tirole,
1993). Every government wants a secure drinking water provision at a price as low as possible.
However, countries have different ideological views on the extent of state intervention in the
economy. This creates various incentive schemes. In this section, we compare the implemented
incentive schemes in the Netherlands, England and Wales, Australia, Portugal and Belgium.
For the ease of understanding, we first define the concepts of benchmarking, yardstick competi-
tion and sunshine regulation. Benchmarking is the process of comparing the current performance
of a utility with a reference performance. It is a tool to improve performance, but not a regula-
tory method per se. The regulatory methods include the consequences and the effects of the use
of benchmarking. Yardstick competition or competition by comparison is a regulatory method.
The two existing types of yardstick competition in the water sector are the ’price yardstick
competition’ and ’sunshine regulation’ (Marques, 2006). Price yardstick competition intends to
define the tariffs and mainly consists of price cap or revenue cap regulation where the factor
X in their formulas are determined by benchmarking techniques. Sunshine regulation intends
to ’embarrass’ the utilities that reveal a worse performance by the public discussion of their
scores. Even when sunshine regulation is not triggered in a compulsory way (by a sector-specific
regulator) the public display of the efficiency levels by the government or by the self-regulators
generates a competitive pressure. Besides providing transparency, sunshine regulation leads to
a global efficiency growth in the water sector, preventing the quiet life and the X-inefficiency. In
the remaining of this paper, we identify sunshine regulation with benchmarking and a regulatory
process with yardstick competition.

2.1 The Netherlands

In the late 1990s, the Netherlands were engaged in a debate about the privatization of water ser-
vices. The issue was driven by the Ministry of Economic Affairs, which published in 1997 a study
on prospects for utilizing market forces in the drinking water sector (Dijkgraaf et al., 1997). It
concluded that privatization might reduce the price of water services by, at least, 10 percent.
The water sector (i.e. the drinking water companies and the waterboards which are responsible
for wastewater treatment) was strongly opposed to the privatization idea. Nevertheless, as the
government was looking for more cost transparency of the operational activities in the sector,
already in 1997 the drinking water companies started with a voluntary benchmark, organized
by the the Dutch umbrella organization for drinking water companies, VEWIN (Vereniging van
Waterbedrijven in Nederland). The Dutch water companies tried to escape government regula-
tion by using self-regulation and, in particular, benchmark studies.

There are several approaches to compare the performance of a utility with a reference perfor-
mance. One could, for example, establish a frontier production function for a utility and then
calculate efficiency scores relatively to the frontier (see infra). Dijkgraaf et al. (2005) used this
approach for the Netherlands. The VEWIN study detects the best-practices by a Balanced
Scorecard, in which performance indicators are defined for the operating, financial, environmen-
tal and innovative perspective. VEWIN reorganized the benchmark in 2000 and 2003. The
results were remarkable. During the 1997-2002 period, the efficiency increased by 9%. The re-
measurement, three years later, pointed out that the efficiency gains over the 1997-2005 period
increased to 21% (Waterspiegel, 2006).

Thanks to the increased transparency and efficiency by the voluntary benchmark, the Dutch
government decided, in 2003, to protect the drinking water sector as a public domain. Water
services are provided by government owned public limited companies (PLCs). However, through
a series of mergers, stimulated by the provincial governments, many PLCs have grown to a size
where they supply a substantial part of a province or more. The scale increase was initially
instigated and enforced by the provinces, as they consider 100.000 connections as the minimal



size for the companies to guarantee the best services and quality at the lowest price. In the
1960s, the Netherlands counted about 200 water supply companies while in 1980 the number
was reduced to about 100. There was a further reduction to 60 in 1990. In 2000 there were
only 20 PLCs left for about 16 million inhabitants (Kuks, 2001). The number further declined
to 13 drinking water companies at the end of 2006. Indeed, the increase in efficiency in the
Netherlands, as mentioned above, can be related to the scale efficiency earnings.

The effectiveness of self-regulation by the use of benchmark studies depends on the quality of
the benchmark. As the number of participating companies decreases, it becomes easier for the
remaining utilities to invoke exogenous influences when they perform less efficiently according
to the benchmark study. Moreover, after several years of benchmarking the same utilities, the
novelty is gone. Therefore, in 2005, VEWIN started an international benchmark co-operation
together with some Scandinavian companies. The objectives were twofold. Firstly, an inter-
national benchmark study could increase the learning effects, as new companies with different
cultural, juridical and even technical backgrounds were included in the comparison. Secondly,
the increased number of companies in the sample could compensate for the decreased number
of national companies (Waterspiegel, 2005).

2.2 England and Wales

As early as in 1984, the Thatcher Government advanced plans to privatize the drinking water
sector in England and Wales. After a public outcry, the plans were suspended until the reelection
in 1987. By the Water Act of 1989, the ten regional water authorities which were responsible
for water quality, supply and sanitation, since the nationalization of the water industry in 1974,
were privatized and floated on the London stock exchange. The Water Act gave the newly
established PLCs a 25 year concession for sanitation and water supply. The existing 29 private
water companies were also licensed and continued to operate in their respective area (Lobina
and Hall, 2001).

Privatization entailed a change in ownership, financing and regulatory structure of the industry.
Three regulatory agencies were created: an environmental regulator (Environment Agency), a
drinking water quality regulator (Drinking Water Inspectorate) and an economic regulator (the
Office of Water Services, OFWAT). For our purpose only OFWAT is relevant. OFWAT uses
a price-cap regulation which limits the annual growth rate of the water price for every water
company by a factor K. The variable K is calculated as the growth rate of the Retail Prices
Index (RPI) minus a productivity factor (X). The factor X is determined by comparing the
performances of the water utilities. This yardstick regulatory method is done by employing
econometric models and detailed assessment of individual company performance. The price cap
regulation creates an incentive to increase efficiency and innovation as this will reduce expendi-
tures in addition to the revenue allowed by the price-cap.

Originally, the price-cap was to be set every ten years. The lengthiness of the period would re-
duce the regulatory interference to a minimum. But as accurate forecasting of input costs turned
out to be very difficult, OFWAT carried out Periodic Reviews at five-year intervals. Moreover,
as OFWAT had to estimate the productivity gains and monitor the capital investment programs
and the levels of service depicted, it needed to overcome the asymmetric information problem.
This created the rationale for growing information requirements. Water companies in England
and Wales are now more tightly regulated than any other in the privatized industries (Bakker,
2003).

An indirect effect of the improved quality and quantity of comparative information is the easy
identification of potential take-over targets. The 1989 Water Act did not forbid take-overs of a
water company. However, to provide the industry with a period of stability, special or ’golden’
shares were issued for each of the ten privatized companies. Since there were no ’golden’ shares
in the already existing 29 private companies, a first wave of take-over and merger activity was



undertaken by French multinationals, already in the late 1980s. By the expiry of the govern-
ment’s "golden’ shares in December 1994, a second wave of merger activity arose. Only mergers
which could prevent the ability of OFWAT to make comparisons were suppressed. After these
two waves, the number of independent water utilities operating under independent licences de-
creased from 39 in 1989 to 27 a decade later (Sawkins, 2001). A tighter 1999 price review and
a slowdown of the world economy prevented more mergers.

The effects of privatization are not univocal. There seem to be ’believers’ and 'non-believers’.
The believers argue that investments have increased significantly, compliance with environmen-
tal laws has improved and services are ameliorated. The non-believers point to non-efficient
investments, the high water losses due to a still bad condition of infrastructure, the social im-
plications of more individual meters, sharp price increases (in nominal as well as in real terms)
and excessive profits (e.g. Dijkgraaf et al., 1997; Lobina and Hall, 2001).

2.3 Australia

The regulatory framework of the Australian water sector has several appealing characteristics.
The Australian governments, both at state and federal levels, were able to take advantage of the
strengths and weaknesses of the UK and US older regulatory models (Williamson and Mumssen,
2000). This is mainly thanks to the regulatory procedures adopted which are close to the Amer-
ican ideas of transparency, enactment and accountability and to the typical UK performance
incentives through benchmarking and yardstick competition. Note that Australia has been the
pioneer of benchmarking in the water industry. Even prior to the first American and English
studies, there were already research documents and workshops about this theme in Australia.
We mention the Steering Committee meetings of the Urban Water Research Association of
Australia (UWRAA) in Perth in 1992, the IIR workshop in Sidney in 1993 or the UWRAA
publications (e.g. Manning and Molyneux, 1993; Eggleton, 1994). The Water Services Associa-
tion of Australia, replacing the UWRAA in 1995, has been carrying out several benchmarking
studies. It comprises the largest Australian water services and performs a relevant role in the
spread of the sector best practices.

In Australia, any industry or sector, public or private, irrespective of monopoly power, must be
regulated by an independent regulatory authority. Moreover, since 1994, the Australian Gov-
ernment Council, in the scope of the National Competition Policy, has decided to reform the
water industry and defined a clear policy and strategy for these sectors to fulfil in 10 years (until
2005). Among other measures, the reforms in these sectors aimed at its corporatization and
sustainability, defining, for example, the legality of the user / payer principle and the total costs
recovery.

There are some slight differences among the regulatory frameworks in the different states. We
will discuss the institutions in some of the Australian states. In New South Wales, the Indepen-
dent Pricing and Regulatory Tribunal (IPART), created in 1992 as an independent multisectorial
regulatory authority, regulates the metropolitan water and wastewater services. The remaining
water utilities (non-metropolitan) are directly regulated by the municipalities. IPART defines
the price caps these entities can implement for a period of two years (IPART, 2000). The wa-
ter industry of the State of Victoria is regulated by the Essential Services Commission (ESC),
which took the place of the Office of the Regulator General in 2002. Until 2004, unlike other
infrastructure services, ESC was not responsible for setting the water and wastewater tariffs.
The regulation of the sector was only performed with regard to the quality of service by means
of benchmarking (i.e. sunshine regulation). ESC sets the tariffs for a three-year period from
2005 on. By the mid-1990s there was a strong discussion about the possible privatization of
the Melbourne water utility, although the option was only for a restructuring process where the
original company was separated into four, one for ’bulk’ water and three for water distribution
to allow for yardstick competition between them. The Essential Services Commission of South



Australia (ESCOSA) replaced, in 2001, the South Australian Independent Industry Regulator.
This regulatory authority, multisectorial and independent as well, does not have the responsi-
bility for tariff setting, which is a direct governmental function. However, ESCOSA analyzes
and provides advice on them (SA government, 2004; ESCOSA, 2004). Remarkably, the South
Australia State, alongside the Australian Capital Territory (ACT), have the water and wastew-
ater services with more concentration (a unique company) and where the presence of the private
sector is the most significant (partnership with a private company for the system’s operation).
In ACT, the independent and multisectorial economic regulation is assigned to the Independent
Competition and Regulatory Commission which, since 1998, defines the tariff system of the
unique water and wastewater service, the ACTEW, by means of revenue cap regulation for a
regulatory period of four years.

2.4 Portugal

In Portugal, except for Lisbon, the water service responsibility belonged until the 1990s exclu-
sively to the municipalities. Only since 1993 has the private sector participation been allowed.
The reform performed in this year created the 'multimunicipal’ systems. These arrangements
provide 'bulk’ water to at least two municipalities and require a predominant investment by the
State for reasons of national interest. All the remaining structures are called 'municipal sys-
tems’, even though they could be managed by an association of municipalities. This regulatory
reform, which is a milestone for the Portuguese water sector, includes the possibility of direct
operation and management of the multimunicipal systems by the State, the municipalities or
their associations. It allows for concessions of the municipal systems management and operation
to companies, irrespective of capital shareholder, or to users associations. In 1998, the estab-
lishment of municipal companies was regulated according to three frameworks, corresponding to
only one municipality, more than one municipality (intermunicipal company) and to one or more
municipalities with a private partner with minor shareholding (mixed company). The latter is
subject to a public tender. A state public company, EPAL, is responsible for the water service
of Lisbon but it embodies an atypical situation in Portugal.

The strategy designed by the different governments from the 1990s onwards led the Portuguese
water sector to be considered similar to the French model, despite having some particular fea-
tures. Firstly, there was unbundling both in water and wastewater. About 70% of the munic-
ipalities import (or will import) water from other companies and approximately 50% of them
export wastewater. Secondly, the State as entrepreneur emerged as the main player not only
in the ’bulk’ water supply but also in direct water distribution. The State competes with pri-
vate companies in public tenders, particularly with some multinational companies. Finally, an
industry-specific regulator for the water sector was established (The Institute for the Regulation
of Water and Waste, IRAR).

In the last decade a growing trend towards corporatization characterized the Portuguese wa-
ter sector. Private sector participation has been increased, with private water supply to about
20% of the population in 2006. In addition, municipal companies have been spreading out. In
the beginning of 2006 there were around 20 municipal companies covering roughly 20% of the
population. At the end of 2006, there were 299 water services in Portugal, from which 50 are
companies of private type still belonging to the municipalities.

Notwithstanding the significant investment carried out over the last years, a lot of work has yet
to be done. Currently, even though some occasional problems of services coverage still occur
(in particular within the sewage treatment), the main challenges faced by the water sector con-
cerns the management and operation efficiency and the systems’ effectiveness associated with a
possible sector restructuring. High water losses, excessive staff in the urban systems and lack of
staff in the rural ones, inadequate tariff systems, inefficient assets management and unsatisfac-
tory customer service represent some of the problems which require solutions in the short-term.



Table 1: Staff per customer in selected water services(2001)

Staff per Staff per Staff per
Water customer volume main length
service | (no. 1072 cons.) Ranking | (no. 107 m®) Ranking | (no. 107" km) Ranking
Leiria 3.60 2 30.48 4 1.84 2
Setubal 4.19 4 29.36 1 5.98 4
Viana 3.43 1 30.22 3 2.30 3
C. Branco 3.69 3 29.91 2 1.12 1

Source: Marques (2005)

Moreover, even if there are municipal systems in the coastal area and in the largest cities with
an adequate size, in the countryside there are others which require amalgamation in order to be
sustainable.

The role performed by TRAR has been widely restricted by its institutional design, particularly
because it is not an independent regulatory authority. The ambiguous bounds between the State
as producer and as regulator have prevented an effective regulation policy. By means of a sun-
shine regulation, IRAR is trying to increase the quality of service regulation. IRAR developed
a set of performance indicators (PIs) to be published annually such that the operators who
have a less good performance are expected to be ’embarrassed’ and, consequently, to correct
the deviations. As this regulatory model was only implemented in 2005, it is still impossible to
make a rigorous assessment of its application.

The option for sunshine regulation as the backbone of the Portuguese regulatory model is justi-
fied by reasons such as the existing high inefficiency levels, the market structure, the politicians’
interference in the regulatory process and the lack of transparency (Marques, 2006). The adop-
tion of this approach is understood if one considers the regulator’s responsibilities (only for
the concessionary services either with ’bulk’ water supply or direct water distribution), the exis-
tence of a contractual regulation (franchising) for these operators and the sector’s fragmentation.
Nevertheless, sunshine regulation will not lead to extraordinary results, especially regarding the
economic efficiency if, on the one hand, it is only based on PIs and if, on the other, it just
comprises the concessionary companies. Although the Pls are easily computed and have a
transparent meaning, they can be misleading when taken by themselves. These indicators only
assess one aspect of productivity as they rely on a single input and on a single output. Hence,
under a global viewpoint, when there is a complex combination of inputs and outputs able to
substitute one another, its usefulness can be slight or even harmful. Table 1 provides evidence
of that situation.

2.5 Belgium

Although Belgium is a federal country and the drinking water supply has been a regional policy
since 1980 (i.e. for the Flemish and the Walloon government), price regulation remains a federal
issue. Within the drinking water sector, the decisions by the pricing commission are considered
as rather ad hoc and only based on the current costs. The commission would disregard long-
term visions and harmonization of the fragmented drinking water structure (Vlaams Parlement,
2001).

By law, drinking water supply is the responsibility of the municipalities. As a first organiza-
tional structure, in the Flemish as well as in the Walloon part, municipalities have organized
themselves in a first organizational structure, the so-called ’intercommunales’. Intercommunales
are a typical Belgian structure which gives the organized municipalities corporate personality.
There are, respectively, 7 and 18 intercommunales in the Flemish and the Walloon part. If the
municipalities, whether or not united in intercommunales, refrained from supplying drinking wa-
ter to their inhabitants, the regional drinking water company (former national) provides water



to this area. This regional company is called the ’Vlaamse Maatschappij voor Watervoorziening’
(VMW) in the Flemish region and the "Société Wallonne De Eaux’ (SWDE) in the Walloon re-
gion. A third organizational structure corresponds to municipal drinking water suppliers. These
companies have technical and financial autonomy, but their corporate personality is part of the
legal personality of the municipality. They contrast with a fourth structure, municipal services,
which are part of the municipal payroll and do not have financial autonomy. These services are
still active in 57 Walloon municipalities.

SVW, the Flemish umbrella organization of drinking water companies, implemented a bench-
mark study in 2000. However, the study was never disclosed in an external report. This
prevented the important ‘'naming and shaming’ effect of public benchmarking. The question re-
mains to which extent the drinking water companies are performing efficiently and whether they
will learn from the ’best-in-class’ if the results of the benchmark are not disclosed. Except for
this occasional study, no other efficiency incentives are provided to the water sector (Keirsebilck
and Gellynck, 2006).

The Walloon government tries to reduce the number of municipal drinking water suppliers and
services by encouraging them to merge with the regional company. Yet, there remain many
small local drinking water suppliers. The inducement to increase the operational scale is the
only incentive to increase the efficiency of the Walloon drinking water companies.
Nevertheless, despite the encouragements of the Walloon government, the number of drinking
water utilities remain very high in the Walloon as well as in the Flemish region. The drinking
water companies are reluctant to increase the scale of operations which should be optimal on
the principle of subsidiarity. They prefer to exchange ideas in numerous sector organizations
(De Witte, 2006).

3 International benchmarking by DEA

In this study, we will ’benchmark’ Dutch, English and Welsh, Australian, Portuguese and Bel-
gian drinking water utilities against each other. One way to obtain a comparison of current
performance against a reference performance (and hence to benchmark) is to assume a com-
mon frontier technology, allowing utilities from different countries to support the envelope. An
alternative (as employed in the Netherlands, England and Wales and recently in Portugal) is
to establish a national frontier production function, i.e. only a country’s own firms may be
best practices (Caves et al., 1982). We use Data Envelopment Analysis (DEA) to estimate the
production frontier. We first pass some advantages of cross-country comparisons.

3.1 Cross-country comparisons

Regulators balance between economies of scale (i.e. mergers in the drinking water sector) and
a sufficient number of remaining comparable companies. In this respect, cross-country com-
parisons offer some advantages. Firstly, studies which compare the efficiency of drinking water
companies in different countries offer the possibility to escape the unsteady equilibrium between
economies of scale and the number of comparators. Secondly, one can use a larger database to
benchmark the national best practices. The possibility that a national best practice remains
the reference in an enlarged data set decreases, which provides additional incentives to the best
performing firms of a country. A third advantage arises from the potentially closer approxima-
tion to the world best-practice frontier (Estache et al., 2004). We develop a fourth advantage
of cross-country comparisons. We would like to examine the effectiveness of incentive schemes
objectively. Therefore, in an international dataset, we measure the efficiency of the water util-
ities by the use of DEA. After correcting bias in the efficiency estimates and after taking into
account environmental factors, which are out of control of the management of the water utility,
we calculate the average efficiency of the country. The incentive scheme of the country which



has the highest average efficiency will be considered to be superior.

However, international benchmarking raises some particular difficulties. The most intricate issue
is the lack of comparability of the data as national regulators define concepts slightly different.
Even in national benchmark studies, interpretation of definitions and measurement of variables
could differ. Moreover, exchange rate fluctuations are important when comparing monetary
units. A second concern is the unequal extent of outsourcing in the countries as this influences
the number of employees (and the staff cost) in a company. A third issue is country’s specific
differences beyond the control of the firms. Dissimilarities such as wage rates, taxes or rates of
return on capital could induce different policy options (Jamasb and Pollitt, 2001). During our
cross-country comparison, we take into account all these concerns.

3.2 Determining efficiency

Efficiency measurement has an indisputable importance in any sector (Fére et al., 1985). It
acquires a special significance in the water sector due to its particular characteristics (e.g.
monopoly and asymmetric information). The efficiency computation aims at different goals
according to the actors that perform it and to the different contexts of each country’s water
sector.

First of all, efficiency measurement provides relevant information to the water services manage-
ment. Therefore, it could be used as a strategic tool to identify best practices and success cases
and to monitor performance. The water services have all the interest in promoting studies of
this kind, even if they have to associate and cooperate with each other by sharing information.
This cooperation causes, most of the times, some constraints and prevents the development of
efficiency measurement. From this perspective, the number of known studies is still limited.
Moreover, on the one hand, there are few countries or regions with a significant number of water
services with homogeneous information or conditions that enable them to perform an efficiency
measurement. On the other hand, efficiency studies are rarely made public for commercial or
image reasons.

Secondly, especially in recent years, efficiency research has been associated with the water ser-
vices economic regulation. One of the main objectives of this kind of regulation is to improve the
efficiency and productivity of the regulated companies. We described some regulatory models
in section .

Thirdly, the efficiency measurement allows for the study of the water structure and organization.
The horizontality and verticality can be assessed towards their efficiency potential. Questions
such as the municipalization, regionalization or nationalization, which provide different scale
earnings, should be discussed bearing in mind the efficiency measurement. The same should
occur when deciding about the merging of water services with sewerage services.

The last and perhaps most ancient objective of efficiency studies regards the examination of the
water services ownership (and management). These studies investigate the influence in efficiency
of public and private ownership. Table [2| presents the main studies published on water services
DEA efficiency.

From 1985 until the beginning of 2006, around 40 DEA applications to the water services were
carried out around the world. The case-studies which were made public amount to 30. The
most frequently cited studies are referred in table [2| and will be briefly described next. The
objectives of these studies are diverse, although most of them focus on the water services (WS)
performance measurement with regulatory aims. The protagonists are generally academic or
regulatory authorities. The models entail 13 countries, namely the USA, Australia, UK, Den-
mark, Norway, Japan, Italy, Mexico, Portugal, Spain, Belgium, The Netherlands and Brazil.
From the case-studies, 12 comprise the water supply, the sewerage and the sewage treatment
altogether; 12 only the water supply; 3 the sewerage and 3 the sewage treatment separately. The
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Table 2: Main DEA studies of water services

Study Object Focus Results
ACT (1995) Aust.; E&W ACTEW performance Significant inefficiency level
Aida et al. (1998) 108 WS from Japan Market structure Smaller size, more efficient
Ancarani et al. (2000) 37 WS from Italy Italian WS performance Inefficiency balanced by effectiveness and high quality
Ancarani (2000) 154 WS from Sicily (It.) Market struc.-ownersh Presence of scale and scope economies
Anwandter and Ozuna (2002) 110 WS from Mexico Market structure Municipalization and regulation without positive results
Bosworth et al. (1996) 10 WS from E&W ‘WS Regulation Significant inefficiency level
Brynes (1986) 143 WS from the USA Ownership Results depend on the model
Brynes et al. (1986) 127 WS from the USA Ownership Indifference between public and private
Cubbin and Tzanidakis (1998) 29 WS from E&W ‘WS Regulation Differences according to the computation method
Dijkgraaf et al. (1997) WS from Netherlands Dutch WS perfor. ‘WS inefficiency of 15%
KS (2003) 96 WS from Denmark Danish WS perfor. Sign. potential of technical and efficiency earnings
Lambert et al. (1993) 271 WS from the USA Ownership Public more efficient
Liang (2003) 11 WS from Australia ‘WS performance Significant average inefficiency
London Economics (1995) 30 WS E&W; 6 Aust ‘WS performance Aust. with high efficiency benefit from their consumption
Marques and Monteiro (2003) 45 Portuguese WS ‘WS performance Private more productive
Marques and Monteiro (2004) 56 Portuguese WS ‘WS performance High efficiency earnings potential
Marques and Monteiro (2005) 70 Portuguese WS ‘WS performance High efficiency earnings potential
Norman and Stoker (1991) 25 WS from E&W Market structure Efficiency as the most important aspect
Thanassoulis (1997 and 2000a, b) 32 WS from E&W ‘WS Regulation Sign. cost savings and DEA advantages in regulation
Tupper and Resende (2004) 20 Brazilian state WS ‘WS Regulation Significant cost savings and YC potential
Wood et al. (1997) WS from E&W ‘WS performance Significant inefficiency level
‘Woodbury and Dollery (2003) 73 WS from NSW (A) ‘WS performance Average inefficiency of 26.5%

30 studies mentioned correspond to 38 distinct models. These are mostly input-oriented. Only
two studies concern non-oriented models. Without including the units, the studies comprise 23
inputs, 22 outputs and 20 different explanatory factors. The most frequently adopted inputs are
the staff, the OPEX, the energy and the mains length. The leading outputs are the distributed
(revenue) water volume, the customers number and the mains length, while the chief explana-
tory factors are the water source (or the associated treatment), the water volume distributed
by type of customer and the density of inhabitants (or customers). Table [3| systematizes the
inputs, outputs and explanatory factors which are used more than three times by at least more
than one author.

The various benchmarking techniques can be classified in two major subgroups. Fully parametric
methods, such as Stochastic Frontier Analysis (SFA) and (Corrected) Ordinary Least Squares
(COLS), have the advantage of allowing for statistical noise, but have the disadvantage of re-
quiring strong assumptions as to the form of the production set W (which is the set of physically
attainable points (z,y)) and the distribution of inputs and output vectors (z,y) over ¥. These
assumptions are called the probability model (Simar and Wilson, 2006). In semi-parametric
approaches, some properties of the probability model are unspecified. Fully non-parametric
methods such as DEA and Total Factor Productivity (TFP) do not require a specific analytical
form which describes the frontier. This creates flexible estimators which are easily computed by
the use of linear programming. Today, the statistical properties of non-parametric estimators
are well established. However, as we show below, the non-parametric methods usually deem all
random 'noise’ to represent inefficiency (Coelli et al., 2001).

In this article we will follow the DEA methodology. In the next subsections, we explain the
DEA model and indicate some advantages and disadvantages of the non-parametric technique.

3.3 Data Envelopment Analysis model

The DEA approach constructs the above mentioned non-parametric frontier as the piecewise
linear combination of all efficient Decision Making Units (DMUs) in a sample. The larger the
sample size, the closer the frontier will be located to the ’true’ frontier.

The generic DEA model was proposed by Charnes, Cooper and Rhodes (CCR) (1978). As their
model assumed constant returns to scale (CRS), Banker, Charnes and Cooper (1984) extended
this to variable returns to scale (VRS). The extension involves the introduction of a convexity
constraint ensuring that DMUs are only compared with ’similar’ DMUs (e.g. similar size). The
essential characteristic of the CCR-model is the reduction of a multiple-output / multiple-input
situation for each DMU, to that of a virtual-output / virtual-input. The technical efficiency
measure is calculated as this ratio of weighted outputs to weighted inputs.
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Table 3: Inputs, outputs and explanatory factors adopted in the bibliographic references

Explanatory
Variable Input Owutput factor
OPEX 18 1
CAPEX 10 1
Total cost 7
Customers number 1 17
Mains length 15 10
Water source/treatment 1 2 14
Staff 16 2
Energy 11 1
Distributed water volume 28
Volume by customer class 3 12
Reagents costs 4
Miscellaneous costs 5
Other OPEX (without staff) 6
Customers / Population density 8
Revenues 4
Peak factor 2 6
Water losses 4 2 5

Assume there are n DMUs to be evaluated. Each of the n DMUs consumes varying amounts of
m different inputs, to produce s different outputs. In particular, DMU; consumes an amount
xj; of input ¢ and produces y;, of output . We label inputs and outputs which are evaluated
with an 'o’ subscript. We will apply the input-oriented model which searches for the minimum
proportion of input usage that could feasibly produce the same amount of outputs. The CRS-
DEA model with input-orientation, can be expressed as:

0 — max 2r=1 HrYro (1)
w35 Vito

subject to
S
Zr:l HrYri <1 i=1,2,.

S viasi
j=1YjTji

pr > 0,05 >0, for all r, j

cm

In order to obtain the technical efficiency score 6 for each of the n DMUs, the optimization
problem needs to be repeated n times (Seiford and Thrall, 1990). The set of normalizing
constraints (one for each DMU) reflects the condition that the virtual output to the virtual
input ratio of every DMU is less than or equal to unity. DMU, is efficient if and only if its
efficiency score 6, = 1. An inefficient DMU is denoted by # < 1. The input efficiency measure
is the reciprocal of Shephard (1970) input distance function.

Remark that if the number of DMUs in the sample increases from n to n+ p, the only change in
the model is the addition of p normalization constraints. Due to the implying reduction of the
feasible solution set, the new optimal solution for any existing DMU must be less or equal to the
previous optimal solution. Therefore, if we join separate datasets, the efficiency scores of the
individual DMUs cannot increase in comparison with the separate analysis (Zhang and Bartels,
1998). This is an important aspect in international benchmark studies as the combination of
national databases increases the number of observations.

3.4 Strengths and weaknesses of DEA

It is important to consider the strengths and the weaknesses of the DEA-methodology since
other estimation techniques could yield different results. First of all, the non-parametric back-
ground of DEA does not impose an underlying functional form to the best practice frontier.
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Secondly, by construction DEA can easily handle multiple inputs and outputs (even with differ-
ent measurement units). Thirdly, the weights of the input and output variables are endogenously
determined. Hence, we do not have to assume a priori a weighting scheme. A fourth advantage
is the identification of ’benchmarks’ as comparison elements for inefficient DMUs. Fifthly, it is
possible to decompose the efficiency score in scale, congestion and pure technical efficiencies. A
final advantage is the fact that the DEA technique is ’conservative’. It can be shown that the
DEA estimates are upward biased and allow for specialization in an input or output variable (see
below). This is a remarkable feature for regulatory use, since the regulated companies cannot
complain so much.

However, the strengths of DEA lay the foundation of its weaknesses as well. As DEA is an em-
pirically based estimation technique, it is sensible to outliers, error measurements and random
influences in the data. DEA deems any deviation from the efficiency frontier to be the result of
inefficiency. From the endogenous weighting system follows a second shortcoming. Unless the
number of inputs and outputs is small relative to the number of DMUs, a typical large number of
observations will be rated as efficient. Specialized units could be considered as efficient due to a
single input or output, even though that input or output may be seen as relatively unimportant
(Andersen and Petersen, 1993). Although some recent progress, a final disadvantage is the weak
statistical accountability (Kittelsen, 1993; Simar and Wilson, 2000). We will tackle each of these
drawbacks in the next sections.

4 Data and indicators

Choosing the input and output variables is the most important stage in any DEA assessment.
The results are highly influenced by this choice. Kittelsen (1993) proposed a statistical procedure
to analyze the selection of the variables. We apply his proposal to the choice of the orientation
(input or output) and the option of returns to scale. As mentioned before, the main problem
in international comparisons is the comparability of the data. We partly tackle this problem
by considering only non-monetary variables which are less affected by purchasing power and
exchange rates. However, as definitions could still slightly differ between countries, we should
examine our results very carefully. In international comparisons, it is appealing to estimate the
technical efficiency of companies. The goal of maximizing the technical efficiency will not be in
conflict with any other goals. Indeed, inefficiencies are as resources which remain on the table.
No one benefits from inefficiencies (Mobley and Magnussen, 1998).

4.1 The data

The data are obtained from various sector’s organizations. One has to be very careful by the
slight differences in definitions. As we are not competent to make these specifications uniform,
we just copy the data from the national databases. The Dutch data are deduced from the
‘Benchmark’ studies and the annual "Water Supply Statistics’ organized by VEWIN. The latest
year available is 2005.

The English and Welsh data are obtained from the ’June Return’ by OFWAT. The ’June Return’
collects information from each of the water companies. Most data tables contain information
from the 1997-2005 period. As volumetric data are expressed in Mega liters per day (Ml/d), the
conversion to m? per year could create possible rounding off errors.

The Australian data were obtained by means of WSAA facts. These documents are published
annually (since 1996) by the Water Services Australian Association that compiles and audits
the data. Some remaining elements needed to the research were picked from the companies
websites, namely by means of their account and performance reports.

The data of the Portuguese water services were collected directly by the annual account and
activity reports produced by the utilities. As some technical data were sometimes missing in
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Table 4: Summary statistics, average country values 2005

number average average average average  connections

of number of length of volume of number of per

DMUs employees mains (km)  water (m3) connections employee

the Netherlands 13 379 8,867 87,538,462 565,462 1490
England - Wales 23 1,306 14,540 242,703,893 913,975 699
Australia 17 464 5,450 118,735,000 340,330 862
Portugal - public 29 193 778 9,719,033 70,551 366
Portugal - private 15 91 590 4,948,958 35,793 391
Belgium* 25 226 3,550 23,924,449 136,592 604

* 2004 data

Table 5: Kittelsen test - orientation
Variable H Mean Median Std. Dev. Mean

Input-oriented - E° 0.6324 0.5786 0.2389
output-oriented - E* 0.6162 0.5733 0.2551
Method || df  Value Probability

t-test 208 0.4764 0.6343

Anova F-statistic || (1, 208)  0.2270 0.6343
Wilcoxon signed-rank 0.6280 0.5300

the reports, the companies were contacted in order to provide them. Finally the quality of the
data was checked with the information of the Portuguese Association of Water and Sewerage
Services and the information on the utilities’ websites.

Data on the Belgian water industry are compiled by Belgaqua, the Belgian umbrella organization,
since 1993. In contrast to the other countries, the most recent year available is 2004.

Summary statistics for the various countries are presented in table The difference in utility
size is large, as revealed by the averages in the different columns. An average English and
Welsh water company counts 14 times more employees than a private Portuguese firm. Also
the productivity, measured by the number of connections per employee, differs significantly. A
Dutch employee handles 4 times more connections than his Portuguese colleague.

4.2 Model specification

DEA models should, as much as possible, reflect the consumed resources and the produced out-
puts. The inputs of our DEA model consist of labor and capital. We proxy labor input by the
number of employees (in full time equivalents). Measuring labor in a single aggregate variable
implicitly assumes a uniform skill distribution across firms. Ideally, we should make a distinction
between three categories: unskilled labor, skilled labor and management (Estache et al., 2004).
However, this disaggregation seems not to be available. By including per capita Gross Regional
Product in the second stage (see below), we try to control the differences in skill distributions.
The length of mains (in kilometers) is used as a proxy for capital inputs. We prefer the length
of mains to the ’'capital expenditures’ as it is easier to measure and less prone to inaccuracies

Table 6: Kittelsen test - returns to scale
Variable H Mean Median Std. Dev. Mean

CRS - E° 0.5464  0.4989 0.2351

VRS - B! 0.6324  0.5786 0.2389

Method || df  Value Probability

t-test 208  2.6293 0.0092

Anova F-statistic || (1, 208)  6.9134 0.0092
Wilcoxon signed rank 2.6789 0.0074
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Table 7: Homogeneity in efficiency

Bandwidth  Average efficiency

the Netherlands 0.1813 0.8330
England and Wales 0.1455 0.7973
Australia 0.2244 0.7854

Portugal 0.2550 0.7467

Belgium 0.1267 0.8411

Portugal - public 0.2993 0.7232
Portugal - private 0.0040 0.9864

from variations in estimating current construction and exchange rates.

The outputs in the model reflect the main activities from the drinking water companies. The
companies have to deliver water to their customers. We use this volume of delivered water as a
first output indicator (in m?). The second output variable is the number of connections.

The relative nature of DEA makes it, as in every empirically oriented methodology, vulnera-
ble to problems with the degrees of freedom. The number of degrees of freedom will increase
with the number of DMUs in the dataset, and decrease with the number of input and output
variables. Banker et al. (1989) suggest a rough rule of thumb. Let m be the number of inputs
and s be the number of outputs used in the analysis, then the sample size n should satisfy
n > max{m X s,3(m + s)}. This rule of thumb is satisfied in our analysis.

We use the procedure as described by Kittelsen (1993) to decide on the orientation of the DEA
model. Since the sample size is wide enough, the results are not biased. Kittelsen tests whether
a change in model specification significantly changes the results. If we denote the efficiency of
company ¢ measured by an input and output-oriented DEA model by, respectively, EZO and El-l,
the hypotheses can be formulated as:

Hy:EY=E! H,:E<E} (2)

Several statistics are proposed to test these hypotheses. We compare the mean efficiencies by
Fisher’s F-distributed statistic and the ordinary t-test. The median efficiencies are compared
by the Wilcoxon signed-rank test. The efficiency scores are computed by the use the statistical
program R and its package 'FEAR’ developed by Paul Wilson (2005). The results are presented
in table [5| From the statistics, we conclude that the input-oriented model does not significantly
differs from the output-oriented model. As the water utilities have to provide all the customers
and they cannot encourage the consumption (demand side management policy), the input-
oriented approach is preferred. In the remaining of this paper, we will only compute the input-
oriented DEA-scores.

A second application of the Kittelsen procedure is to determine the returns to scale. Let E,?
and EZ1 denote, respectively, the efficiency of company 4 in an input-oriented DEA-model with
constant and variable returns to scale. We conclude from the test results in table [6] that the
CRS-model significantly differs from the VRS-model. We have to make a choice with respect to
the returns to scale. We prefer to apply VRS as this assumption is less stringent and ensures
that DMUs are only compared with ’similar’ DMUs. Besides, the water utilities cannot change
their size in short-term.

4.3 Homogeneity in efficiency

By restricting the dataset to companies of the same country, we obtain a 'national efficiency
comparison’. In this case, every DMU is compared with companies of its own nationality.
Hence, as in De Witte (2006), we can interpret the average 'national’ efficiency as a measure
for the homogeneity in efficiency of a country’s drinking water sector. Indeed, by construction
DEA detects the relatively most efficient firms which determine the efficiency of the relatively
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less efficient companies. If all companies in the dataset are rather similar (homogeneous), the
individual DEA efficiency scores will be higher. This results in a higher average efficiency of the
country.

Zhang and Bartels (1998) point out that one cannot simply compare the average efficiencies.
The technical efficiency score of a DMU will on average decrease as the sampling size increases.
In order to equalize the size of the datasets, we will resample the efficiency scores. For every
country, we first compute the input-oriented DEA-VRS efficiency scores as described in section
. Secondly, by the use of the statistical package R and its code 'FEAR’ (Wilson, 2005), we
determine the bandwidth suitable for use in Kernel estimates of densities of efficiency estimates
that are bounded above at one. One approach to compute the bandwidth is the unbiased cross-
validation which minimizes the estimate of the mean-integrated square error (see Simar and
Wilson, 2006). The bandwidth of every country is presented in table m In a last step, we
resample the original DEA-VRS efficiency scores. We obtain n values drawn from a Kernel
estimate of the bounded density of the efficiency estimates. We set n equal to 44, the size of
the largest dataset. The average resampled efficiency is presented in the third column of table
[l The sample size bias could have been avoided by the use of order-m efficiency scores as well
(see below). We apply the order-m efficiencies to determine the outliers below.

It turns out that the efficiency in the Belgian drinking water sector is the most homogeneous
one. Belgium is closely followed by the Netherlands. In those two countries, it should be
relatively easy for policy makers to adopt new laws which are generally approved by all water
companies. Portugal ends as the most heterogeneous country in efficiency. Nevertheless, the
high heterogeneity can especially be attributed to the public sector. The efficiency of private
Portuguese drinking water companies seems to be very similar to each other.

In determining the efficiency of an industry as a whole, the average efficiency of all DMUs
can have a reduced meaning. Farrell (1957) points out that the industry average should be
computed as a weighted average based on the outputs (or on the inputs). However, when
several outputs (inputs) exist Farrell does not refer how they are weighted and if we should use
the observed outputs (inputs) or the target outputs (inputs). Another measure to estimate the
average efficiency of an industry (called structural efficiency) is to consider the average DMU
as suggested by Fgrsund and Hjalmarsson (1979) in the set of observations. As we created
pseudo-samples in this homogeneity exercise, we are not able to weight the efficiency scores. We
introduce a weighting system if we discuss the first stage results.

4.4 Outlier detection
Theoretical background

A major drawback of DEA can be found in its deterministic nature in which the frontier model
assumes that
Prob((z,y) e ¥) =1 (3)

where U denotes the attainable set (¥ = {(z,y) € R4|z can produce y}). DMUs located in the
interior of ¥ operate technically inefficient, while firms on the boundary of ¥ are technically
efficient. Equation states that deterministic models do not allow for outliers. Sexton et al.
(1986) conclude that "DEA results are likely to be unstable because its evaluations are based on
outlier observations”. This could be the case if the outlying points are determined as efficient
observations and hence make part of the frontier. The bigger the number of efficient DMUs,
the weaker the relationship between the number of DMUs and the dimensionality of the model
(inputs + outputs). Likewise, with a tighter conditioning of the technology that characterizes
the model (VRS instead of CRS, or weak disposability instead of strong disposability), the num-
ber of technically efficient DMUs will be larger. However, it is easily observed that not all the
efficient observations have the same ’importance’ in the sample.
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Indeed, some efficient DMUs are outliers. Outlying observations could be attributed to mea-
surement errors, noise and influential observations (i.e. atypical data). As our data are obtained
from national regulators and sector organizations, we consider the data as more or less free from
measurement errors. In order to eliminate noise from the dataset and draw statistical inference,
we apply bootstrapping procedures in the next section. Influential data affect the efficiency
results of a significant number of other DMUs (Charnes et al., 1985). In other words, part of the
efficient DMUs are the peers of other DMUs, while the remaining efficient DMUs are just peers
of themselves or of a reduced number of DMUs. Actually, the identification of influential efficient
DMUs becomes fundamental in DEA analysis, specially if they can be considered outliers, and
for that reason can be taken out of the sample, or if they are regarded as 'true’ benchmarks, and
are therefore essential to the benchmarking analysis. The opposite case of outliers presence, but
with inefficient DMUs, has little effect in the analysis, except with regard to that DMU itself.
We will neglect this case here. As the best way to identify outliers (to be sure of them) is to
consider several techniques, we explain and apply five outlier detection procedures.

One of the easiest formulas of determining outliers or the influential DMUs is the computation
of the 'peer count index’. As suggested by Charnes et al. (1985) the computation of the number
of times a given efficient DMU is peer of an inefficient DMU can be taken as an indicator that
proves that a DMU is atypical either as outlier or as best practice.

Andersen and Petersen (1993) developed a second methodology to sort the efficient DMUs,
by means of which the super-efficiencies of the efficient DMUs are computed. Super-efficiency
calculates to what extent the efficient DMUs can increase their inputs by keeping themselves
technically efficient (input-oriented), or vice-versa, reduce their outputs and at the same time
continue to be efficient (output-oriented). In numerical terms, the procedure consists in taking
out the efficient DMUs themselves at the moment of their evaluation. With a reference set which
does not include DMU;, its efficiency can be greater than 1. Observations with high values are
suspected to be outliers.

Yet, in spite of sorting the efficient DMUs with regard to the efficiency surpluses, super-efficiency
does not say anything about their sorting according to the importance of the efficient DMUs
as reference or benchmarking element for the inefficient DMUs of the sample. A hypothesis of
measuring the suitability of the efficient DMU to be best practice consists of computing the
indicator p, called the peer indez, of the efficient DMU; for the input k, represented by the
following expression (Torgersen et al., 1996):

p'] N .:UP — X
k k

where \;; regards the weight of the efficient DMU); for the inefficient DMU;, xy; the input k
of DMU; and kaZ» represents the target (score at the frontier) for the input k& of DMU;. The
measure pﬁ expresses the percentage of the potential reduction of an input k that is represented
by the inefficient DMUs which depend on the efficient DMU;. The higher the pZ, the larger
the possibilities of employing that DMU for benchmarking or in other perspective the larger the
possibility that it is an outlier.

To find influential and deviant observations, Wilson (1993) uses in his descriptive model the
relative change due to the deletion of 7 observations from the sample. As a multi-output extension
of the geometric influence function R(LZ) (XY) of Andrews and Pregibon (1978), the graphical

analysis of log ratios (log(R(Li) (XY)/ Rfv?m)) examines the separation between the smallest ratios.
This ratio is computed for each of the possible subsets L of size ¢. The choice of 7, the stopping
point of the analysis, is arbitrary but involves a dramatically increasing computational burden
(as there are (’Z) combinations). Nevertheless, to avoid a 'masking effect’ by which one outlier
could be hidden behind another with similar values, ¢ should be large enough.

A fifth and more recent methodology for detecting outlying observations is based on the ’expected

frontier of order-m’. The concept is developed by Cazals et al. (2002) and extended to outlier
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Table 8: Outlier detection: traditional methods and Wilson (1993)

Peer count index Super-efficiency Peer index  Employees Mains [ Wilson
Brisbane 1 Brisbane 1,033 Brisbane 0,011 0,009 Anglian
Calamine 46 Calamine 1,025 Calamine 0,090 0,070 Dwr Cymru

Chimay 9 Chimay 1,210 Chimay 0,020 0,014 | Severn Trent
City West 44 City West 1,243 City West 0,068 0,070 South West
Dwr Cymry 24 | Dwr Cymry 8,296 | Dwr Cymry 0,040 0,075 SWDE
DZH 20 DZH 1,114 DZH 0,103 0,132 Thames
Evides 16 Evides 1,057 Evides 0,143 0,184 V.M.W.
Hulpe 10 Hulpe 1,200 Hulpe 0,005 0,009 Vitens
IWVA 29 IWVA 1,749 IWVA 0,077 0,026
Lisboa 35 Lisboa 3,720 Lisboa 0,074 0,042
Thames 14 Thames infeasible Thames 0,128 0,161
TWM 52 TWM 1,094 TWM 0,063 0,080
Waimes 4 Waimes 1,250 Waimes 0,000 0,001
WLB 53 WLB 1,203 WLB 0,114 0,071
Yarra 12 Yarra 1,052 Yarra 0,065 0,056

Table 9: Outlier detection: Simar (2003)

m=10 St.E. m=40 St.E. m=60 St.E. m=80 St.E.

Dwr Cymry 19.57 12.27 | Dwr Cymry 7.722 7.63 | Dwr Cymry 4.660 5.90 | Dwr Cymry 3.681 5.24
Lisboa 10.06 6.35 Lisboa 4.560 3.12 Lisboa 3.415 2.92 Lisboa 2.748 2.63
Thames 6.505 6.06 Thames 2.767 1.64 City West 2.270 1.70 City West 1.979 1.59
City West 5.710 3.45 City West 2.623 1.85 WLB 1.984 1.07 Thames 1.693 0.78
Coliban 5.461 3.33 WLB 2.256 1.18 Thames 1.875 1.04 AW.W. 1.686 0.84
South East 4.455 3.71 AW.W. 2.123 1.00 A W.W. 1.812 0.90 WLB 1.648 0.95
Yarra 4.391 3.54 Brisbane 2.079 0.91 Gold Coast 1.725 0.87 Gold Coast 1.566 0.81
Brisbane 4.332 3.06 Gippsland 2.066 1.34 Brisbane 1.715 0.75 Brisbane 1.528 0.69
Gippsland 4.175 2.52 Gold Coast 1.986 1.00 Gippsland 1.697 1.05 Sidney 1.509 0.59
Sidney 4.102 4.23 | Portsmouth 1.973 1.05 | Portsmouth 1.666 0.87 Three Val. 1.432 0.44
WLB 4.097 1.88 Coliban 1.947 2.03 Sidney 1.588 0.65 | Portsmouth 1.409 0.72
Yorkshire 4.045 5.12 South East 1.875 0.98 South East 1.573 0.68 South East 1.408 0.58
United Util. 3.993 4.04 Porto 1.742 1.09 Three Val. 1.498 0.49 | United Util. 1.368 0.48
Portsmouth 3.886 1.71 | United Util. 1.737 0.76 | United Util. 1.483 0.64 Yorkshire 1.342 0.44
Severn Trent 3.730 3.89 Sidney 1.719 0.68 Oeiras 1.461 0.68 | South Staffs 1.327 0.39

detection by Simar (2003). Instead of using all the observations to determine the efficient frontier
(i.e. a full frontier), the order-m partial frontier uses a sample of size m which is drawn from
the total sample with size n. Whereas a full frontier indicates for all firms which produce at
least level y of outputs the minimum achievable lower boundary of inputs, the expected frontier
function of order-m is the expected minimal input achieved by any m firms drawn from the
population of firms which produce at least y outputs (Simar, 2003). In this partial frontier, the
value of m can be considered as a trimming parameter, since the estimator does not envelop
all data points. This makes the order-m frontier more robust to outlying observations. With
an order-m input oriented frontier, an observation which lies far above the frontier (i.e. a value
considerably larger than 1) will be determined as an outlier. Observations near, on or below
the frontier are considered as efficient. The relative (in)efficiency of a DMU is influenced by
the value of m (see below). The order-m method is little sensitive to the 'masking effect’. This
could be attributed to its construction: the efficiency is computed as a conditional mean of a
minimum among a random sample of m DMUs with the same characteristics (variables) as the
DMU analyzed (Beguin and Simar, 2004):

Sm(y) = Blmin(X',..., XY > y] ()

Detecting outliers

The results of the peer index, super-efficiency and peer count index are presented in table
These methods can be considered as the most traditional outlier detection procedures. There
seems to be a high consensus among the three methods, although, concerning the super-efficiency
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we can only label Dwr Cymry, Lisboa and Thames for sure as suspected outliers (the other
observations have a lower super-efficiency value). The three methods identify the same 5 Belgian,
4 Dutch, 3 Australian, 1 English, 1 Welsh and 1 Portuguese firms as possible outliers. These
outlying observations differ from the Wilson (1993) analysis in which we equalized i to 12. As
the separation is relatively large for i=1,5 and 8, we regard the corresponding observations as
outliers (details are available upon request). The suspected outliers are presented in the last
column of table [§] As the order-m results, presented in table [9] are influenced by the value of
m we compute the order-m efficiency score for different values of m. Following the example by
Simar (2003) we use 200 Monte-Carlo replications in computing the estimates. As it is difficult to
decide on an appropriate value from which on an observation should be determined as an outlier
(i.e. what is considerably larger than one?), we consider the 15 most outlying observations as
outliers. On average, there are 6 DMUs which are stipulated as outliers by all 4 methods.

As the results of the peer index, sensitivity analysis and peer count index are closely related, we
consider these procedures as more robust. In the remaining of this article, we eliminate from
the sample of 122 observations the 15 outlying DMUs as determined by the more traditional
procedures. Hence, we obtain a dataset of 107 observations.

5 First stage analysis

5.1 Bootstrap method

The deterministic nature of DEA creates several problems. Above, we dealt with the aspect
of influential observations. In this section, we will tackle the problem of noise in the data.
Although the applied researcher can only estimate the observed production frontier by the use
of DEA, the literature interprets the estimates as the true frontier. Simar and Wilson (1998,
2000) make a clear distinction between the true (e.g. 6(x,y)) and the estimated concepts (e.g.
é(m, y)). The DEA efficiency estimates are prone to uncertainty due to sampling variation. By
the use of a bootstrap methodology, Simar and Wilson allow to carry out traditional statistical
inference in DEA.

The bootstrap procedure, as invented by Efron (1979), is useful if the sampling properties
of estimators are difficult to obtain analytically. The bootstrap approximates the sampling
distribution by reproducing the data generating process (DGP). This is the statistical model
which describes the process that yields the observed data in the sample. The DGP follows the
principle that, restricted to the relations between inputs and outputs, the stochastic elements
in the productive process are totally encompassed by the random inputs efficiency measures
(hence, we do not assume measurement errors). This makes the DEA estimators biased by
construction as the estimate of the production set U is part of the real attainable set W: U CU.
Therefore, the efficiency score, é(m, y), is an upward-biased estimator of the true efficiency score
O(z,y) (see Simar and Wilson (2006) for an extensive discussion). The difference is visualized
in figure [l The bootstrap mimics this estimation and creates a pseudo frontier from which it
provides estimates of the sampling distributions of the bias term 8(z,y) — 0(z, y) (see figure .
For practical reasons we invert the efficiency scores:

Sy = = (6
0(x,y)

Indeed, as & (z,y) > 1 for all (x,y)eV, we only have to deal with one boundary condition for 5,
not two as in the case of 6.
The literature contains several approaches to simulate a bootstrap sample x;;. Kneip et al.
(2003) describe the properties of the naive bootstrap, the subsampling of DEA scores and a
smoothing technique. We will briefly introduce the homogeneous smoothed bootstrap. In this
approach, we assume the distribution of the efficiency scores to be homogeneous over the input-
output space (compare with a homoskedasticity assumption in linear regression models). This
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allows us to base the bootstrap on the sample estimates 5Z(xz,yz) The bootstrap algorithm,
in accordance with Simar and Wilson (2006), follows eight steps. In the first step, we com-
pute from the original dataset x, for every DMU the DEA efficiencies 5;. In later steps, we
will apply a standard Kernel density estimator. This estimator belongs to the class of non-
parametric density estimators which do not have a fixed structure and use all the observations
to reach an estimate. As the quality of the Kernel estimate depends on the appropriateness
of the bandwidth h, in a second step we select the optimal value of h. We will only take into
account the non-efficient observations (51 # 1) in order to adjust the discrete distribution to
mimic a continuous underlying distribution of efficiencies. Several approaches could be used to
estimate the bandwidth. As in the estimation of the homogeneity in efficiency of a country’s
drinking water sector, we use the unbiased cross-validation method to estimate h (see Simar
and Wilson, 2006). In a third phase, we generate naive bootstrap pseudo-data 57, ..., 3} from
a set Doy, = {51, O, (2 — 51), (2= Sn)} The naive bootstrap draws independently, uni-
formly and with replacement pseudo-data from the dataset Ds,. In step four, the sample of
pseudo-efficiencies as drawn in step three are perturbed by the use of draws € from a Kernel
function such that 8;* = 37 + he;. After correcting some bias in 57* (which is typical in Kernel
techniques), in phase five we compute the bootstrap efficiencies 8} as 07 =2 — 37 if /* < 1 or
07 = 37" otherwise. In the next stage, we create a bootstrap sample x;, of input-output levels for
each DMU where the new input-level is defined by =} = 67 S,L_ 12, Hence, the bootstrap outputs
remain the same, but the input levels are obtained by first projecting the original input level to
the efficient level and next to an inefficient level. In step seven, the bootstrap efficiency 5 (z,9)
is computed by DEA using the set of n bootstrap input-output levels in x};. Finally, the steps 3
to 7 are repeated B times, so that a set of B values of efficiency estimates can be computed for
each DMU: {5;‘(1", y)|b=1,...,B}. Hall (1986) recommends a B minimal value equal to 1000.
We show the different frontiers in figures 2] and

Having defined the bootstrap efficiencies, we can construct a bias-corrected estimator of d(x,y).
Therefore, in a first phase, we estimate the bootstrap bias of §(z,y):

B

BIASp(3(z,y) = B~ 8" (2,y) - §(=,) (7)
b=1

The first term on the right hand side corresponds to the average of the bootstrap efficiency
result and the second term to the original DEA estimate. In a second phase, the bias-corrected
estimator is computed as

5(x,y) = §(x,y) — BIAS 5(3(z, y)) (8)

This bias correction introduces an additional source of noise as the bias is again an estimate.
Therefore, we have to check whether the mean-square error (MSE) of é(z,y) will not be too

large. This is the case if the MSE of 5(3}, y) is larger than the MSE of 5(:1:, y). As arule of thumb,
the sample variance o2 of the bootstrap values 6*(z, y) should respect (Simar and Wilson, 2000):

B B 2
o2 =p"1! Z 0*(z,y) — B~ ZS*(%Z/)] < % [B/IA\SB@(‘T’y)) i 9)
b=1 b=1

Efron (1982) suggests that a relationship between the bias estimate and the standard error
higher than 0.25 is meaningful and consequently the bootstrap results should not be rejected.

Acknowledging the bootstrap efficiencies empirical distribution function 5;}) (withb=1,...,B)
and after the bias correction, confidence intervals can be obtained, for example, by means of
the percentile method. We follow the procedure as outlined by Simar and Wilson (2000). After
sorting the B estimates of the bias term 6*(x,y) — d(z,) in increasing order and deleting the
(§ x 100)-percent of the observations at both ends of the list, we relabel the endpoints of the
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Figure 2: Bootstrap idea

new row as the estimated borders of the confidence interval (¢, and é;_, /). We can indicate
the estimated (1 — a) x 100-procent confidence interval for 6(z,y) by:
1 1
5(!17, y) — Ca/2 6($7 y) —Cl—a/2

We repeat this algorithm n times to produce for every observation of the sample a confidence
interval of the form .

5.2 First stage results

Having cleared the dataset from outlying observations, we can proceed to the first stage analysis.
In this step, we will use an input-oriented DEA-VRS-model with input and output variables as
defined in section . The results, presented in table are computed by the DEA software
of Zhu (2003). The average efficiency amounts to 69.8%. This indicates that an average DMU

Ot T
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ylorrected frontier
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Figure 3: Bootstrap idea (2)
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Table 10: First stage results

DMU DMU Name Efficiency Benchmarks

1 Actew 0.619 0.086 DMU 03 0.209 DMU 28 0.510 DMU 29 0.196 DMU 58
2 Barwon 0.488 0.104 DMU 03 0.061 DMU 28 0.625 DMU 29 0.210 DMU 58
3 Gippsland 1.000 1.000 DMU 03
4 Highlands 0.372 0.049 DMU 03 0.026 DMU 12 0.861 DMU 29 0.064 DMU 58
5 Coliban 1.000 1.000 DMU 05
6 Gold Coast 0.910 0.154 DMU 03 0.179 DMU 28 0.330 DMU 29 0.337 DMU 58
7 Gosford 0.699 0.790 DMU 29 0.078 DMU 58 0.098 DMU 66 0.034 DMU 69
8 Goulburn 0.598 0.309 DMU 03 0.001 DMU 28 0.629 DMU 29 0.060 DMU 58
9 Hunter 0.667 0.399 DMU 03 0.009 DMU 28 0.220 DMU 29 0.372 DMU 58

10 Power Water 0.713 0.056 DMU 03 0.287 DMU 28 0.657 DMU 29

11 SA Water 0.716 0.016 DMU 13 0.515 DMU 28 0.236 DMU 58 0.234 DMU 62

12 South East 1.000 1.000 DMU 12

13 Sidney 1.000 1.000 DMU 13

14 ‘Water Corporation 0.673 0.289 DMU 13 0.470 DMU 28 0.165 DMU 58 0.077 DMU 69
15 Wggr 0.753 0.290 DMU 12 0.174 DMU 21 0.536 DMU 29

16 ‘Wmd 0.612 0.232 DMU 12 0.089 DMU 21 0.679 DMU 29

17 Vitens 1.000 1.000 DMU 17

18 Pwn 0.933 0.603 DMU 12 0.170 DMU 21 0.227 DMU 62

19 Oasen 0.910 0.536 DMU 21 0.418 DMU 35 0.016 DMU 58 0.030 DMU 66

20 Hydron-F1 0.764 0.151 DMU 12 0.058 DMU 21 0.792 DMU 29

21 Hydron-MN 1.000 1.000 DMU 21

22 Brabant Water 0.917 0.533 DMU 12 0.183 DMU 17 0.284 DMU 62

23 WML 0.709 0.047 DMU 12 0.877 DMU 21 0.076 DMU 29

24 A.LE. 0.783 0.247 DMU 29 0.732 DMU 35 0.001 DMU 58 0.020 DMU 66

25 Aquasambre 0.598 0.078 DMU 21 0.669 DMU 35 0.253 DMU 66

26 A.LE.C. 0.443 0.013 DMU 12 0.987 DMU 41

27 A.ILE.M. 0.458 0.008 DMU 21 0.949 DMU 29 0.043 DMU 35

28 A W.W. 1.000 1.000 DMU 28

29 Bastogne 1.000 1.000 DMU 29

30 Bullingen 1.000 1.000 DMU 30

31 C.ILE.V. 0.880 0.579 DMU 29 0.335 DMU 30 0.086 DMU 41

32 Cile 0.673 0.283 DMU 21 0.356 DMU 35 0.361 DMU 66

33 I.LE.C.B.W. 0.527 0.063 DMU 12 0.022 DMU 21 0.915 DMU 29

34 Idemls 0.582 0.087 DMU 21 0.789 DMU 35 0.124 DMU 66

35 LLE.G.M. 1.000 1.000 DMU 35

36 Inasep 0.414 0.007 DMU 12 0.031 DMU 21 0.961 DMU 29

37 Pidpa 0.455 0.182 DMU 12 0.622 DMU 21 0.196 DMU 29

38 Wavre 0.986 0.002 DMU 12 0.010 DMU 21 0.988 DMU 29

39 St.-Vith 0.712 1.000 DMU 29

40 Swde 0.359 0.689 DMU 21 0.279 DMU 62 0.033 DMU 66

41 Theux 1.000 1.000 DMU 41

42 Tmvw 0.611 0.679 DMU 21 0.133 DMU 35 0.030 DMU 58 0.158 DMU 66

43 V.M.W. 0.525 0.301 DMU 12 0.125 DMU 17 0.573 DMU 62

44 Anglian 0.675 0.171 DMU 13 0.356 DMU 54 0.473 DMU 62

45 Bristol 0.775 0.027 DMU 21 0.099 DMU 35 0.832 DMU 58 0.042 DMU 66

46 Bournemouth 0.774 0.746 DMU 03 0.080 DMU 12 0.175 DMU 29

47 Cambridge 0.617 0.040 DMU 12 0.006 DMU 21 0.794 DMU 29 0.159 DMU 58

48 Dee Valley 0.581 0.722 DMU 29 0.167 DMU 58 0.050 DMU 66 0.062 DMU 69

49 Essex Suffolk 0.931 0.132 DMU 13 0.326 DMU 62 0.542 DMU 66

50 Folkestone 0.748 0.009 DMU 28 0.858 DMU 29 0.116 DMU 58 0.017 DMU 69

51 Mid Kent 0.625 0.070 DMU 28 0.513 DMU 29 0.412 DMU 58 0.005 DMU 69

52 South East water 0.743 0.103 DMU 03 0.499 DMU 12 0.337 DMU 58 0.061 DMU 62

53 Northumbrian 0.740 0.233 DMU 13 0.521 DMU 62 0.246 DMU 66

54 United Utilities 1.000 1.000 DMU 54

55 Portsmouth 0.975 0.011 DMU 21 0.415 DMU 35 0.500 DMU 58 0.074 DMU 66

56 Sutton Surrey 0.826 0.003 DMU 21 0.404 DMU 35 0.435 DMU 58 0.158 DMU 66

57 Southern 0.830 0.519 DMU 13 0.481 DMU 66

58 South Staffs 1.000 1.000 DMU 58

59 Severn Trent 1.000 1.000 DMU 59

60 South West 0.410 0.737 DMU 03 0.151 DMU 13 0.112 DMU 62

61 Tendring Hundred 0.814 0.048 DMU 21 0.894 DMU 35 0.030 DMU 58 0.028 DMU 66

62 Three Valleys 1.000 1.000 DMU 62

63 ‘Wessex 0.438 0.202 DMU 13 0.006 DMU 62 0.792 DMU 66

64 Yorkshire 0.981 0.476 DMU 13 0.321 DMU 17 0.202 DMU 54

65 Sintra 0.613 0.006 DMU 13 0.994 DMU 66

66 SMAS Oeiras 1.000 1.000 DMU 66

67 SMAS Loures 0.662 0.099 DMU 29 0.009 DMU 58 0.775 DMU 66 0.117 DMU 69

68 Aguas Gaia 0.696 0.086 DMU 21 0.572 DMU 35 0.342 DMU 66

69 SMAS Porto 1.000 1.000 DMU 69

70 Vimagua 0.576 0.206 DMU 29 0.661 DMU 35 0.026 DMU 58 0.107 DMU 66

71 Almada 0.724 0.362 DMU 29 0.076 DMU 66 0.561 DMU 69

72 Coimbra, 0.530 0.675 DMU 29 0.065 DMU 58 0.078 DMU 66 0.182 DMU 69

73 Xira 0.836 0.637 DMU 29 0.237 DMU 66 0.126 DMU 69

74 Maia 0.722 0.101 DMU 29 0.684 DMU 35 0.215 DMU 66

75 Leiria 0.502 0.020 DMU 21 0.870 DMU 35 0.021 DMU 58 0.090 DMU 66

76 Viseu 0.401 0.735 DMU 29 0.163 DMU 35 0.027 DMU 58 0.075 DMU 66

7 Castelo 0.491 0.006 DMU 21 0.917 DMU 35 0.076 DMU 66

78 Aveiro 0.422 0.829 DMU 29 0.118 DMU 66 0.052 DMU 69

79 Torres Vedras 0.345 0.005 DMU 21 0.909 DMU 35 0.086 DMU 66

could decrease its inputs by 30.2% while keeping its outputs constant, if it would perform as
efficient as its benchmark(s). A benchmark or best practice is a company which performs techni-
cally efficient and hence makes part of the DEA frontier. Out of the 107 observations, there are
17 efficient DMUs (15.8%). These companies originate from Belgium (5), England and Wales
(4), Australia (4), the Netherlands (2) and Portugal (2). A histogram showing the estimates is
presented in figure [l A DMU with an efficiency score less than 1 is relatively inefficient with
respect to its benchmarks. We represent the benchmark(s) of every DMU in table [L0| where the
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Table 10: First stage results - continued

DMU DMU Name Efficiency Benchmarks
80 Santarem 0.371 0.864 DMU 29 0.019 DMU 58 0.052 DMU 66 0.064 DMU 69
81 Castelo Branco 0.685 0.001 DMU 21 0.918 DMU 35 0.006 DMU 58 0.076 DMU 66
82 Faro 0.514 0.728 DMU 29 0.195 DMU 35 0.028 DMU 58 0.049 DMU 66
83 Alcobaca 0.611 0.439 DMU 29 0.508 DMU 35 0.015 DMU 58 0.038 DMU 66
84 Caldas Rainha 0.827 0.000 DMU 21 0.946 DMU 35 0.054 DMU 66
85 Covilha 0.463 0.629 DMU 29 0.269 DMU 35 0.102 DMU 66
86 Portimao 0.873 0.792 DMU 29 0.145 DMU 66 0.063 DMU 69
87 Guarda 0.826 0.893 DMU 29 0.073 DMU 66 0.034 DMU 69
88 Abrantes 0.544 0.890 DMU 29 0.049 DMU 66 0.060 DMU 69
89 Vila Real 0.434 0.002 DMU 21 0.973 DMU 35 0.001 DMU 58 0.025 DMU 66
90 Cantanhede 0.581 0.000 DMU 28 0.951 DMU 29 0.010 DMU 58 0.040 DMU 69
91 Beja 0.655 0.907 DMU 29 0.093 DMU 69
92 Esposende 0.401 0.921 DMU 29 0.024 DMU 35 0.055 DMU 66
93 Cascais 0.648 0.536 DMU 29 0.070 DMU 58 0.256 DMU 66 0.138 DMU 69
94 Gondomar 0.627 0.006 DMU 21 0.653 DMU 35 0.341 DMU 66
95 Braga 0.513 0.386 DMU 29 0.233 DMU 35 0.381 DMU 66
96 Maria Feira 0.495 0.398 DMU 29 0.581 DMU 35 0.011 DMU 58 0.010 DMU 66
97 Sado 0.669 0.710 DMU 29 0.019 DMU 58 0.211 DMU 66 0.059 DMU 69
98 Indaqua Santo 0.663 0.949 DMU 29 0.021 DMU 66 0.030 DMU 69
99 Valongo 0.618 0.312 DMU 29 0.563 DMU 35 0.124 DMU 66
100 Paredes 0.715 0.009 DMU 28 0.959 DMU 29 0.032 DMU 69
101 Figueira 0.560 0.013 DMU 21 0.917 DMU 35 0.071 DMU 66
102 Mafra 0.457 0.016 DMU 21 0.974 DMU 35 0.005 DMU 58 0.006 DMU 66
103 Fafe 0.622 0.756 DMU 29 0.213 DMU 35 0.001 DMU 58 0.030 DMU 66
104 Ourem 0.390 0.028 DMU 12 0.689 DMU 29 0.283 DMU 41
105 Batalha 0.612 0.994 DMU 29 0.001 DMU 58 0.001 DMU 66 0.003 DMU 69
106 Alcanena 0.649 0.990 DMU 29 0.001 DMU 58 0.006 DMU 66 0.002 DMU 69
107 Carrazeda 0.598 1.000 DMU 29

Table 11: First stage best practices

Observation nr. benchmarks

Bastogne 29 55
South East 66 53
South Staffs 58 39
LE.GM. 35 32
Hydron-MN 21 31
AWW. 28 27
SMAS Porto 69 22
South East 12 17
Three Valleys 62 11
Gippsland 3 10
Sidney 13 10
Vitens 17 3
Theux 41 3
United Utilities 54 2
Bullingen 30 1

weight in front of each best practice denotes its relative importance (the A in the dual DEA
model, see Cooper et al. (2004)). As some best practices are more influential than others, we
present the frequency that an efficient DMU is benchmark for another company in table
Above, we discussed the problem to find an appropriate weighting scheme. In this and the
remaining sections, we opt to weight the efficiency scores by the number of connections. This is
a measure for the number of people who are affected by the relative (in)efficiency of a company.
The average weighted and non-weighted efficiency scores are presented in table[I2] All countries
except for Belgium gain from the weighting scheme, which indicates that the larger utilities are
relatively more efficient in the Netherlands, England, Wales, Australia and Portugal, while the
smaller utilities are relatively more efficient in Belgium.

Table 12: First stage averages

non-weighted  weighted

the Netherlands 0.844 0.910
England 0.785 0.861
Australia 0.747 0.855
Portugal 0.608 0.668
Belgium 0.700 0.532
Portugal - public 0.618 0.693

Portugal - private 0.589 0.590
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Figure 4: Histogram estimate

If we recognize that our data are subject to random noise, we can correct the DEA efficien-
cies for bias and estimate confidence intervals for them. The noise provides the missing data,
the imperfect quality of the data (even if it is audited by regulators) and the atypical results. By
the use of the package FEAR in R, we generate bootstrap samples by a homogeneous bootstrap
as described above (Wilson, 2005). The estimation of the bandwidth yields h = 0.2469. The
reciprocals of the original estimates as well as their bias-corrected counterpart are displayed
in table Except for five utilities (Hydron-FL, Almada, Batalha, Alcanena and Carrazeda),
according to the rule in equation [J] the bias is sufficiently large relative to the variance. This
means that the bias-corrected efficiency estimates should be preferred to the original DEA es-
timates. We clearly notice the upward-bias in the original estimates. The last two columns of
table [13] show the bootstrap estimates of 95-percent confidence intervals. The average width of
the confidence intervals amounts 0.337. The widest intervals correspond to South West (0.649)
and Aiec (0.636). Caldas Rainha (0.097) and Iegm (0.116) have the smallest 95-% confidence
intervals. There is little difference in the confidence interval bandwidth of the five countries.
Due to the upward-bias in the original estimates and due to the bootstrap correction in the
confidence intervals, the original estimates lie for every observation outside, but close to, the
lower-bound of the confidence interval. However, the bias-corrected estimates lie for every ob-
servation inside the confidence intervals. Due to the overlap among the confidence intervals,
making relative comparisons among the firms is an intricate issue. Moreover, as the original
DEA-estimates are biased, they cannot be interpreted as a ranking device. Notice that we do
not observe confidence intervals with a lower bound of 100% or below. As the true efficiency
of a DMU cannot exceed 100%, and we measure the 95% confidence intervals, this is a correct
observation.

Obviously, the average weighted and unweighted efficiency scores, as presented in table are
lower than their upward-biased counterparts. The Dutch water utilities are performing most
efficiently, in a weighted as well as in an unweighted scheme. They are closely followed by the
privatized English and Welsh firms. The Portuguese and especially the Belgian firms lag behind.
The next section develops a second stage analysis which tries to explain the efficiency scores by
the use of environmental variables.



Table 13: First stage bootstrapping results

DMU Eff. score (8) bias-corrected (8) Bias Variance (62) Lower bound Upper bound
Actew 1.6156 1.7588 -0.1432 0.0049 1.6385 1.9089
Barwon 2.0473 2.2052 -0.1579 0.0065 2.0711 2.3847
Gippsland 1.0000 1.2228 -0.2228 0.0096 1.0154 1.3656
Highlands 2.6913 3.0052 -0.3139 0.0200 2.7387 3.2922
Coliban 1.0000 1.2441 -0.2441 0.0151 1.0127 1.4372
Gold Coast 1.0983 1.2002 -0.1019 0.0021 1.1160 1.3028
Gosford 1.4311 1.5197 -0.0886 0.0013 1.4542 1.5946
Goulburn 1.6716 1.9101 -0.2385 0.0140 1.6981 2.1232
Hunter 1.4994 1.6815 -0.1821 0.0070 1.5217 1.8592
Power Water 1.4018 1.6424 -0.2406 0.0166 1.4217 1.8690
SA Water 1.3970 1.5851 -0.1881 0.0096 1.4205 1.7924
South East 1.0000 1.2905 -0.2905 0.0223 1.0197 1.5305
Sidney 1.0000 1.2921 -0.2921 0.0199 1.0210 1.5297
Water Corporation 1.4857 1.7559 -0.2702 0.0196 1.5114 2.0146
Wggr 1.3277 1.5099 -0.1822 0.0082 1.3495 1.6856
Wmd 1.6341 1.8403 -0.2062 0.0125 1.6601 2.0609
Vitens 1.0000 1.3144 -0.3144 0.0281 1.0178 1.5792
Pwn 1.0720 1.2183 -0.1463 0.0042 1.0918 1.3505
Oasen 1.0994 1.1983 -0.0989 0.0028 1.1101 1.3106
Hydron-F1 1.3095 1.4571 -0.1476 0.0073 1.3241 1.6324
Hydron-MN 1.0000 1.1467 -0.1467 0.0037 1.0195 1.2673
Brabant Water 1.0904 1.2844 -0.1940 0.0085 1.1105 1.4684
Wml 1.4095 1.5906 -0.1811 0.0077 1.4250 1.7683
Aie 1.2850 1.3559 -0.0709 0.0011 1.3036 1.4313
Aquasambre 1.6753 1.7815 -0.1062 0.0026 1.6927 1.8880
Aiec 2.2574 2.6160 -0.3586 0.0271 2.3064 2.9419
Aiem 2.1819 2.4331 -0.2512 0.0158 2.2123 2.6935
Aww 1.0000 1.2786 -0.2786 0.0197 1.0188 1.4854
Bastogne 1.0000 1.2187 -0.2187 0.0096 1.0156 1.3819
Bullingen 1.0000 1.2203 -0.2203 0.0121 1.0173 1.4269
Ciev 1.1367 1.3307 -0.1940 0.0092 1.1594 1.5310
Cile 1.4852 1.6075 -0.1223 0.0030 1.5070 1.7274
Iecbw 1.8969 2.0918 -0.1949 0.0110 1.9280 2.3115
Idemls 1.7190 1.8113 -0.0923 0.0018 1.7381 1.9051
Iegm 1.0000 1.0650 -0.0650 0.0009 1.0154 1.1318
Inasep 2.4141 2.6239 -0.2098 0.0081 2.4563 2.8152
Pidpa 2.2001 2.4715 -0.2714 0.0176 2.2296 2.7410
Wavre 1.0138 1.1401 -0.1263 0.0033 1.0275 1.2515
St-Vith 1.4051 1.6220 -0.2169 0.0156 1.4163 1.8790
Swde 2.7840 3.1548 -0.3708 0.0252 2.8332 3.4554
Theux 1.0000 1.2370 -0.2370 0.0132 1.0154 1.4353
Tmvw 1.6355 1.7888 -0.1533 0.0067 1.6573 1.9651
Vmw 1.9056 2.2037 -0.2981 0.0193 1.9402 2.4810
Anglian 1.4814 1.7354 -0.2540 0.0176 1.5096 2.0279
Bristol 1.2896 1.4574 -0.1678 0.0078 1.3000 1.6360
Bournemouth 1.2925 1.5246 -0.2321 0.0137 1.3116 1.7212
Cambridge 1.6219 1.8050 -0.1831 0.0073 1.6489 1.9871
Dee Valley 1.7223 1.8386 -0.1163 0.0030 1.7499 1.9591
Essex Suffolk 1.0739 1.1913 -0.1174 0.0041 1.0906 1.3249
Folkestone 1.3364 1.4334 -0.0970 0.0021 1.3583 1.5431
Mid Kent 1.6007 1.7335 -0.1328 0.0049 1.6223 1.8915
South East water 1.3456 1.6006 -0.2550 0.0216 1.3676 1.8834
Northumbrian 1.3519 1.5354 -0.1835 0.0102 1.3701 1.7391
United Utilities 1.0000 1.3128 -0.3128 0.0321 1.0140 1.6274
Portsmouth 1.0256 1.1219 -0.0963 0.0027 1.0335 1.2255
Sutton Surrey 1.2112 1.3176 -0.1064 0.0031 1.2251 1.4299
Southern 1.2050 1.3496 -0.1446 0.0068 1.2205 1.5238
South Staffs 1.0000 1.1556 -0.1556 0.0052 1.0157 1.3074
Severn Trent 1.0000 1.3183 -0.3183 0.0312 1.0202 1.6264
South West 2.4374 2.7662 -0.3288 0.0276 2.4701 3.1190
TendringHundred 1.2280 1.2969 -0.0689 0.0009 1.2449 1.3620
Three Valleys 1.0000 1.2359 -0.2359 0.0113 1.0202 1.4249
Wessex 2.2819 2.6055 -0.3236 0.0213 2.3327 2.9041
Yorkshire 1.0188 1.2195 -0.2007 0.0114 1.0383 1.4339
Sintra 1.6310 1.9052 -0.2742 0.0247 1.6500 2.2418
Smas Oeiras 1.0000 1.2107 -0.2107 0.0097 1.0198 1.4105
Smas Loures 1.5115 1.7725 -0.2610 0.0208 1.5346 2.0729
Aguas Gaia 1.4362 1.5442 -0.1080 0.0026 1.4549 1.6531
Smas Porto 1.0000 1.2781 -0.2781 0.0194 1.0177 1.4986
Viméagua 1.7352 1.8232 -0.0880 0.0013 1.7585 1.9019
Almada 1.3817 1.5597 -0.1780 0.0111 1.4052 1.8015
Coimbra 1.8857 2.0181 -0.1324 0.0041 1.9123 2.1596
Xira 1.1963 1.3556 -0.1593 0.0054 1.2188 1.5131
Maia 1.3860 1.4850 -0.0990 0.0027 1.3999 1.5959
Leiria 1.9913 2.0834 -0.0921 0.0015 2.0167 2.1708
Viseu 2.4936 2.6401 -0.1465 0.0033 2.5295 2.7575
Castelo 2.0389 2.1318 -0.0929 0.0018 2.0577 2.2244
Aveiro 2.3676 2.5591 -0.1915 0.0096 2.3946 2.7745
Torres Vedras 2.8981 3.0284 -0.1303 0.0040 2.9239 3.1663
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Table 13: First stage bootstrapping results - continued

DMU Eff. score (§) bias-corrected (4) Bias Variance (62) Lower bound Upper bound
Santarem 2.6928 2.8922 -0.1994 0.0074 2.7363 3.0701
Castelo Branco 1.4615 1.5284 -0.0669 0.0009 1.4772 1.5969
Faro 1.9466 2.0622 -0.1156 0.0022 1.9756 2.1607
Alcobaca 1.6378 1.7202 -0.0824 0.0013 1.6590 1.8008
Caldas Rainha 1.2103 1.2660 -0.0557 0.0006 1.2249 1.3222
Covilha 2.1588 2.3080 -0.1492 0.0043 2.1861 2.4443
Portimao 1.1459 1.2575 -0.1116 0.0028 1.1614 1.3766
Guarda 1.2104 1.3082 -0.0978 0.0022 1.2282 1.4116
Abrantes 1.8384 1.9803 -0.1419 0.0054 1.8572 2.1427
Vila Real 2.3064 2.4205 -0.1141 0.0027 2.3354 2.5412
Cantanhede 1.7214 1.8793 -0.1579 0.0061 1.7493 2.0362
Beja 1.5255 1.6746 -0.1491 0.0047 1.5470 1.8214
Esposende 2.4913 2.7337 -0.2424 0.0120 2.5295 2.9675
Cascais 1.5435 1.6755 -0.1320 0.0041 1.5666 1.8130
Gondomar 1.5943 1.7362 -0.1419 0.0061 1.6099 1.9122
Braga 1.9500 2.1649 -0.2149 0.0128 1.9701 2.4046
Maria Feira 2.0214 2.1468 -0.1254 0.0035 2.0524 2.2804
Sado 1.4940 1.6192 -0.1252 0.0040 1.5183 1.7612
Indaqua Santo 1.5076 1.6488 -0.1412 0.0048 1.5328 1.8086
Valongo 1.6175 1.7191 -0.1016 0.0020 1.6393 1.8146
Paredes 1.3993 1.6030 -0.2037 0.0080 1.4244 1.7709
Figueira 1.7877 1.8657 -0.0780 0.0013 1.8071 1.9444
Mafra 2.1878 2.3146 -0.1268 0.0030 2.2201 2.4303
Fafe 1.6079 1.7458 -0.1379 0.0050 1.6349 1.8961
Ourém 2.5652 2.8977 -0.3325 0.0215 2.6019 3.1836
Batalha 1.6330 1.8870 -0.2540 0.0223 1.6540 2.1713
Alcanena 1.5407 1.7559 -0.2152 0.0185 1.5584 2.0208
Carrazeda 1.6724 1.8953 -0.2229 0.0172 1.6863 2.2074

Table 14: First stage bias-corrected averages

reciprocal (8) efficiency score ()
non-weighted  weighted | non-weighted  weighted
the Netherlands 1.396 1.331 0.732 0.761
England 1.550 1.412 0.682 0.728
Australia 1.665 1.480 0.639 0.696
Portugal 1.909 1.778 0.553 0.593
Belgium 1.803 2.269 0.614 0.470
Portugal - public 1.908 1.745 0.563 0.609
Portugal - private 1.912 1.884 0.536 0.543
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6 Second stage analysis

The efficiency of drinking water utilities is prone to environmental factors which are not under
control of the firms’ managers. Nevertheless, insight in these factors is very important for
evaluating the cost of regulation. If in an input-oriented model an environmental variable z is
unfavorable to efficiency, one can consider the variable as an additional and undesired output
variable. The production’ of this undesired output decreases the efficiency as it absorbs inputs.
A favorable environmental variable can be considered as a substitutive input which could save the
use of other inputs in the production process. A first subsection addresses the more conventional
Tobit regression and the use of bootstrapping in a second stage analysis. A second subsection
applies these theories to the drinking water utilities. In a third subsection, the efficiency scores
are corrected by taking into account the environmental variables.

6.1 Theoretical framework

To explain the efficiency of DMUs, researchers have frequently employed a regression model on
the DEA-efficiency scores:
51‘ = Zzﬂ + € (11)

where z; is a (row) vector of firm-specific variables which is expected to influence the efficiency of
DMU;. B denotes a vector of parameters to be estimated together with some statistical noise ;.
The ordinary least squares (OLS) method will lead to a biased estimate as it assumes a normal
and homoscedastic distribution of the error term and the dependent variable. However, the
efficiency estimates &; (— =) have by construction a lower limit of 1 which creates a concentration
of observations at this smgle value. This leads to a censored sample. In the literature, Tobit
models are usually considered to provide a solution whenever there is a mass of observations at
a limiting value.

Simar and Wilson (2007) consider the justification for the use of a censored Tobit regression
as 'nonsense’. As 0; > 1, they argue that this involves a truncated rather than a censored
error term. Both censoring and truncation involve a loss of information about the dependent
variable, but where censoring assumes the observation of all right-hand side variables, truncation
supposes an information loss on both sides (left and right-hand side) of the regression (see
appendix Simar and Wilson (2007) for an extensive discussion). Therefore, 5 and o should be
estimated by the use of maximum likelihood. Nevertheless, the standard inference is intricate
due to three problems. First, in small samples §; is highly influenced by the position of the
estimated frontier. As in linear regression models, this causes correlation among the estimates
(51) Likewise in small samples, as the input and output variables which determine the DEA-
efficiency are correlated with the environmental variables, the error term ¢; will be correlated
with z;. These first two issues disappear asymptotically. A third and more serious problem is,
as mentioned above, the bias of the DEA-efficiency score 8; towards 1. Simar and Wilson (2007)
recommend a double-bootstrap procedure to produce, with bias-corrected estimates of &;, valid
confidence interval estimates for the parameters in the second-stage regression. The following 7
steps, as developed by Simar and Wilson (2007), are needed:

1. Compute for every DMU the estimated DEA-efficiency score 5.

2. Calculate B and 6. by the use of maximum likelihood from the left normal truncated
regression in equation using the observations for which d; > 1.

3. Obtain L; bootstrap estimates for each 5 by looping L; times the following four steps:

(a) Fori=1,...,n draw € from N(0,42) with left-truncation at (1 — 3'z;).
(b) Compute 6F = z;3 + ;.
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(c) Modify the output variables such that y; = g—_iyi.
(d) Recompute the DEA-algorithm, where (x;,v;) is replaced by (z;,y}) to obtain 5;*

4. Compute by the use of the bootstrap estimates of the previous step the bias-corrected
estimator &; = &; — BIAS (52) where the estimated bias is computed as in equation .

5. Again, estimate the truncated regression of &; on z; by maximum likelihood. Denote the

estimates by (5, 6).

6. Obtain Ly bootstrap estimates for ﬁ and &, by looping Lo times the following three steps:
2
€

~ ~!
(a) Fori=1,...,n draw €* from N(0,c,) with left-truncation at (1 — 3 z;).

(b) Compute §7* = %+ €.
2K
(c) Compute (3 ,6'*) by a maximum likelihood estimation of the truncated regression of

0" on z;.

7. Construct the estimated confidence intervals for 4 and o by using the bootstrap values
of step 6. Test hypotheses such as the probability that an estimate 3; < 0 by considering
A%

the relative frequency of nonnegative BZ bootstrap estimates.

The first bootstrap in the algorithm is used to compute the bias-corrected efficiency scores, while
the second bootstrap estimates the effect of the environmental variables on the bias-corrected
efficiencies. However, as in the conventional Tobit regressions, the environmental variables z; in
the double-bootstrap procedure do not influence the boundary of W. This is due to a separability
condition: by assumption the variables of Z lie in a space apart from the production space for
inputs and outputs W. A second drawback of the described double-bootstrap procedure is the
reliance on some parametric assumptions such as a linear model and a truncated normal error
term. In the following subsection, we discuss and implement procedures which avoid these
assumptions.

6.2 Second stage results

Many elements in the production process of drinking water utilities are outside the control of
the firms’ managers. Especially the social, physical and institutional environment are not taken
into account in the first stage analysis. The institutional environment is determined by the
government (or its regulatory agencies). The government is able to influence the drinking water
companies directly by, for example, enforcing strict quality requirements, or more indirectly by
introducing incentive schemes, such as benchmarking or economic regulation (e.g. price cap for-
mula). The physical environment captures differences in, for example, the geographic relief, soil
structure, climate (and especially rainfall and temperature) or the relative abundance of pure
drinking water. The social environment includes the relative wealth of the customers or attitude
towards (excessive) water consumption. Although many elements in the social, physical as well
as the institutional environment highly influence the cost level of the drinking water utilities,
due to the lack of (uniform) data, we have to make considerable simplifications.

A first physical variable included in the second stage model is the percentage of leakage. This
variable captures the geographical relief (as a more hilly landscape requires more pressure on the
network of pipes which could cause more easily leakage) and the extent of maintenance (more
leakages correspond to less expenses with maintenance). If the influence of the geographical cir-
cumstances outweighs the neglect of maintenance, we expect a negative influence on efficiency.
In the opposite case, we anticipate a positive effect in efficiency. A second physical factor is the
percentage of groundwater extraction. The utilities that abstract more groundwater are sup-
posed to be more efficient, since the production cost is much lower than the counterparts that
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abstract superficial water or import water from other utilities. The proportion of water delivered
to industrial customers relative to domestic users is the third, and last, physical variable. It is
expected that efficiency will change positively with a higher percentage of industrial customers.
The first social environmental variable, gross regional product (GRP), captures the relative
wealth of the customers, the difference in skill distribution (see above) and approximates the
average productivity of a region. GRP is measured in per capita purchasing power parity. Water
consumption per capita, the second and last social environmental factor, measures demand side
management. We incorporate five institutional dummy variables in the second stage analysis.
The first captures the scope of activities: we assign a dummy variable if the utility’s only ac-
tivity is providing drinking water. Evidence from the literature suggests that drinking water
services have economies of scope and therefore they are more efficient when they are responsible
also for other activities as a result of the savings obtained with the existing synergies. Cor-
poratization, as a second institutional factor, is supposed to have a positive effect in efficiency
thanks to harder budget constraints. Corporatization is the application by public entities of
rules and mechanisms of the private sector, which enable the public entities to practise a private
management. The third institutional variable denotes the water delivery in one (or maximum
three) municipalities. This indication of scale economies is expected to have a negative effect in
efficiency. Finally, we include dummy variables for utilities which have a regulator or use a kind
of benchmarking. We did not assign Portugal with a dummy for benchmarking as it introduced
its benchmarking only in 2005. We expect that these two variables have a positive effect in
efficiency.

In this subsection, we first evaluate the importance of the environmental influences. As there is
still a lot of discussion in the literature about the appropriate way of measuring second stage
effects, we present results both from Tobit regressions of the original values obtained as well
as from the bootstrapping algorithm. Although Tobit estimates could be possibly biased, it
is not clear that bootstrap estimates are necessarily more reliable (Simar and Wilson (2007)
provide only Monte-Carlo evidence). Comparable results of both estimation techniques will add
robustness and confidence to the estimates. We estimate the Tobit regression of the original
as well as of the bias-corrected efficiency estimates in both a censored and a truncated sample.
The bias-corrected efficiency estimates are those obtained in the bootstrap analysis of section
l} Note that, in order to avoid two boundaries, the depend variable (3) is larger or equal
to one, such that a positive sign denotes a negative influence on the efficiency (i.e. a favorable
environmental factor), while a negative sign denotes a positive influence (i.e. an unfavorable
environmental factor). The results are presented in table

Although in 3 out of 11 estimates the boostrapping algorithm discovers the opposite sign of
the Tobit regressions, the Tobit estimates are not covered by the 95%-confidence intervals of
the bootstrapped variables in only 2 cases (see table . To get an idea on how strongly the
different estimates are related, we measure the correlation coefficient. The Pearson correlation
coefficient estimates the strength and direction of a linear relationship between the variables,
while the non-parametric Spearman’s rank correlation coefficient uses ranks of the data instead
of the actual observed data. The results of the correlation coefficients are reported in table
According to the Pearson measure, the different estimation techniques are closely related.
This contrasts with the Spearman’s rank correlation which reveals a close correlation between
the Tobit regressions, however, no significant correlation between the Tobit and bootstrap esti-
mates. The question, which we do not solve here, is to know whether the bootstrap estimates
are superior.

The second stage results in table [15| indicate that firms which spend less resources on mainte-
nance, and hence have a higher percentage of leakage, wrongly appear as more efficient. The
positive and significant Tobit results on groundwater use subvert the postulate that the use of
(cheaper) groundwater increases the efficiency. It is highlighted that the groundwater abstrac-
tion in some countries is often associated with the size of utilities. For example, in Portugal only
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the small companies have the abstracted water as source. Yet, more likely than providing an in-
dication for economies of scale (as we capture this effect later on), the estimation on groundwater
use could indicate that only the most efficient companies are capable to purify the most costly
surface water. The estimations are inconclusive on whether industrial customers encourage
the utilities to produce most efficiently. The truncated DEA-VRS and bootstrap second stage
method depict a negative effect on this variable. The social explanatory factor GRP reveals the
expected positive influence on efficiency. The negative influence in efficiency of consumption per
capita indicates that the policies of demand side management are filling up the wished. Hence,
the companies increase the efficiency by cost reductions rather than by increasing the water sale.
Concerning the first of the institutional variables, utilities with activities only in drinking water
provision show a positive signal. This evidence counters the literature in that water services
seem not to have economies of scope. Although the Tobit regressions yield the expected positive
effect of corporatization in efficiency, these estimates are not significantly different from 0. The
significant negative effect of corporatization by the bootstrap estimates could be linked with the
fact that corporatization makes the companies comprise all costs, leading them to seem wrongly
inefficient. The positive effect in efficiency of the variable delivery in one municipality suggests
that the water utilities in the sample studied have no scale economies. The values obtained are
always significant except for the truncated sample with DEA-VRS efficiencies. The results of the
regulator (existent or non-existent) are not much conclusive, although they are not significant
in all cases, except for the bootstrap. The latter reveals, in correspondence with the literature,
a positive effect of the regulation in efficiency. Finally, the effect of benchmarking in efficiency
is positive and always with significance. This tool to improve performance turns out to be very
appropriate.

6.3 Taking into account environmental variables

The above mentioned separability assumption assumes that the environmental variables do not
directly influence the efficiency scores. Hence, one can only ez post measure the influence of
environmental variables to efficiency. In this paragraph, we present and apply some approaches
to incorporate the environmental variables directly in the efficiency measurement.

A first model is based on the one-stage or the all-in-one approach. In this approach, we include
the environmental variables directly in the DEA-problem along with the traditional input and
output variables. Therefore, we have to decide a priori whether a variable will be classified as an
input (i.e. if the variable is favorable to efficiency), or as an output (i.e. if the variable is damag-
ing to efficiency). For a constant efficiency, an additional input enables a DMU to produce more
outputs, while an additional output variable requires the use of more inputs. A major drawback
of this estimation technique is its free disposability assumption (as does the traditional DEA
model). Hence, in an input-oriented model, one assumes that all the inputs are reducible, or
similarly, in an output-oriented model all outputs are expansible (see e.g. Fried et al., 1999). Of
course, by definition environmental variables are not freely reducible nor expansible.

In the one-stage analysis, we include the significant continuous bootstrap variables in addition
to the traditional variables. We know the influence on efficiency of the bootstrap estimates from
previous estimations. As input variables for the DEA model we use besides the number of em-
ployees (as proxy for labor expenses) and the length of mains (as a proxy for capital expenses),
the percentage of leakage and the gross regional product. The applied output variables are
beside the number of customers and the volume of delivered drinking water, the proportion of
delivery to industrial customers and the consumption per capita. The input-oriented DEA-VRS
efficiency scores as well as the input-oriented DEA-VRS bias-corrected efficiency estimates are
reported in the second and third column of table As DEA allows the possibility of spe-
cialization, an additional input or output variable cannot decrease the efficiency estimate of a
DMU. However, thanks to the specialization, some utilities increase their efficiency considerably
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(e.g. Swde, Torres Vedras or Ourém). This suggest that some utilities could wrongly appear
as efficient by one specific low input variable (e.g. a low regional product) or one specific high
output factor (e.g. a high proportion of industrial customers). Furthermore, as the efficiency of
the DMUs only increases (or in worst case scenario remains unchanged), the one-stage approach
seems impractical in correcting efficiency for environmental variables.

A second approach to reshape the boundary of the attainable set uses the residuals of the Tobit
regression. As a residual factor, the residuals capture the share of technical efficiency which
remains after controlling for exogenous influences. A positive residual, ¢;, indicates managerial
inefficiency, while a negative residual reflects managerial efficiency. As the corrected efficiency

score (0/) should possess a one-sided distribution, following De Witte en Moesen (2006), we sort
the residuals of the Tobit regression in order of magnitude (from small to large) and compute:

. 1
5;’:ei+(1—azej) (12)

Utilities which show after correcting for environmental factors a managerial efficiency (i.e. €¢; < 0)
will decrease their efficiency score 5;’ (and hence increase their efficiency) relative to the ’average
inefficiency’ (i.e. the term in brackets). The relative strictness of the correction depends on the
number of utilities w included in the ’average inefficiency’ term. As this term is computed with
ordered residuals, a larger w denotes relatively more tolerance towards inefficiencies. One can
perform a sensitivity analysis to measure the influence of w (De Witte and Moesen, 2006).

In applying this second approach, we use the residuals of the bias-corrected censored Tobit-model
as these are best correlated with the bootstrap estimates (see table . In order to interpret
in equation the term in brackets as the average inefficiency, we set w equal to 53 (half of
our dataset). The corrected efficiency scores which turn out to be lower than 1 are rounded off.
The results are presented in table

In a first analysis, we equalize the environmental influences for all companies by taking the
residuals of the bias-corrected DEA efficiencies in a censored sample regressed on the above
described social, physical and institutional environmental variables, and applying equation .
The efficiency scores which are presented in the fourth column of table can be interpreted
as if the utilities were facing exactly the same social, physical and institutional constraints and
benefits. There are 15 utilities in the sample which could previously take advantage of their
favorable environmental factors, and therefore have a reduced efficiency score when taking into
account the environment (remark that this number as well as all the values in this analysis
depend on the value of w). With the exogenous influences equalized, the variation left between
the DMUs can mainly be attributed to managerial influences (as disregarded environmental
factors are primarily captured by the intercept of the regression term). The country averages,
at the bottom of table [I8] show that the Portuguese and Belgian drinking water utilities gain
most from the correction for environmental variables. In particular, in the following analysis we
examine whether this could be attributed to the equalization of incentives.

In order to capture the effects of the regulatory and benchmark incentive schemes on the av-
erage efficiency of analyzed countries, we re-estimate the previous censored Tobit regression
without the dummy variables 'regulation’ and 'benchmarking’. The obtained scores in column
(5) of table (L8| reflect efficiencies as would the utilities work in exactly the same environment
but with different incentive schemes. The country averages at the bottom of the table reveal
the effectiveness of the Dutch benchmarking scheme (as the Dutch companies are performing
more efficient if benchmarking is taken into account) and the power of the English and Welsh,
Australian and (private) Portuguese regulatory models. As there is no clear incentive structure
for the Belgian and Portuguese public utilities, their average efficiency falls in comparison to the
equalized situation. The Belgian and Portuguese authorities could ameliorate the performances
of their drinking water sector by introducing a clear incentive scheme.
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Dependent variable | DEA-VRS eff. DEA-VRS eff.  bias-corr VRS  bias-corr VRS DEA-VRS

Sample assumption censored truncated censored truncated bootstrap

Intercept 3.1285 *** 2.0693 *** 2.7042 *** 3.1409 *** 4.2216 ***

(0.000) (0.004) (0.000) (0.000) (0.000)

Leakage (%) -0.01580 ** -0.000895 -0.007403 -0.01101 -0.02258 ***

(0.020) (0.934) (0.209) (0.245) (0.000)

Groundwater extraction (%) 0.002825 ** 0.002178 0.002231 * 0.003477 * -0.0001359
(0.030) (0.277) (0.059) (0.068) (0.150)

Industry water / household delivery -0.2313 * 0.3487 -0.1026 -0.1772 0.02396 ***
(0.079) (0.313) (0.269) (0.328) (0.000)

Gross regional product (PPP/capita) | -4.16 E-5 *** -1.52 E-5 -2.15 E-5 * -3.74 E-5*  -6.879 E-5 ***
(0.004) (0.546) (0.092) (0.085) (0.000)

Consumption per capita 4.56 E-5 ** 5.55 E-5 ** 5.08 E-5 ** 6.08 E-5 ** 5.716 E-5 ***

(0.042) (0.039) (0.015) (0.027) (0.000)

Water unique activity (=1) -0.2461 ** -0.1545 -0.2087 * -0.3362 * -0.2644 ***
(0.049) (0.448) (0.065) (0.073) (0.000)

Corporatization (=1) -0.09583 -0.6898 -0.07701 -0.2759 1.2254 ***

(0.703) (0.188) (0.735) (0.515) (0.000)

Delivery in one municipality (=1) -0.2973 * -0.3443 -0.2943 ** -0.4677 ** -1.3448 ***
(0.062) (0.183) (0.041) (0.049) (0.000)

Regulator (=1) 0.2620 0.6866 0.2056 0.4674 -0.9637 ***

(0.212) (0.162) (0.274) (0.224) (0.000)

Benchmarking (=1) -0.7091 *** -0.7529 ** -0.6198 *** -0.9314 *** -0.1198 ***

(0.002) (0.035) (0.002) (0.005) (0.000)

SE of regression 0.4424 0.4319 0.4643 0.4692 1.1498

Note: n=107; p-values in brackets; *** denotes significance at 1% level, ** at 5% and * at 10%

Table 16: Bootstrapping estimates - confidence intervals

bootstrap 95% conf. int.  95% conf. int.
estimate lower bound upper bound Tobit estimates
intercept | 4.2216 *** 1.9184 6.6944 in conf. inter.
leakage (%) | -0.02258 *** -0.06406 0.01550 in conf. inter.
groundwater extraction (%) | -0.0001359 -0.007760 0.007383 in conf. inter.
industry water / household delivery | 0.02396 *** 0.01353 0.03404 no in conf. inter.
gross regional product | -6.879 E-5 *** -1.579 E-4 7.980 E-6 in conf. inter.
consumption per capita | 5.716 E-5 *** -6.598 E-5 1.714 E-4 in conf. inter.
water unique activity (=1) | -0.2644 *** -1.0319 0.4602 in conf. inter.
corporatization (=1) | 1.2254 *** -0.3341 2.6574 in conf. inter.
delivery in one municipality (=1) | -1.3448 *** -2.4574 -0.3601 some in conf. inter.
regulator (=1) | -0.9637 *** -2.1884 0.1741 not in conf. inter.
benchmarking (=1) | -0.1198 *** -1.3720 1.1548 in conf. inter.

Together with the second stage results of section (6.2)), this analysis provides significant evidence
for the positive effects of incentives schemes on efficiency. The analysis even demonstrates that

in absence of clear and structural incentives the average efficiency of the utilities even falls in

comparison with utilities which are encouraged by incentives. The natural monopoly in the
drinking water sector leads to the quiet life of Hicks (1935) and X-inefficiency of Leibenstein
(1966). The presence of benchmarking (in the sense of sunshine regulation or yardstick compe-
tition) is a key element which replaces competition in the market or competition for the market

by competition by comparison.

7 Conclusion

This paper has explored the effect of incentive schemes in the drinking water sector. Different
ideological views on the extent of state intervention in the economy create various incentive
structures. We have compared the implemented incentive schemes in the Netherlands, England
and Wales, Australia, Portugal and Belgium. Our results show large differences in first stage
inefficiencies. On average, the benchmarked Dutch drinking water companies are performing
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Table 17: Correlation coefficients among second stage estimates
Pearson \ Spearman | DEA eff. DEA eff. bias-corr DEA  bias-corr DEA  DEA

cens. trunc. cens. trunc. bootstrap
DEA eff. Cens. | 1.000 0.818 (**)  1.000 (**) 0.991 (**) 0.391
DEA eff. trunc. | 0.912 (**)  1.000 0.818 (**) 0.882 (**) 0.327
bias-corr cens. | 0.999 (**)  0.918 (**)  1.000 0.991 (**) 0.391
bias-corr trunc. | 0.994 (**)  0.946 (**)  0.994 (**) 1.000 0.382
DEA bootstrap | 0.871 (**)  0.668 (**)  0.878 (**) 0.835 (**) 1.000

Note: n=11; ** denotes significance at 1% level (two-tailed) and * at 5% level (two-tailed)

better (average efficiency score of 0.84) than the privatized English and Welsh utilities (0.79).
However, the strict regulatory model of Australia (0.75), the municipal provision in Belgium
(0.70) and especially the Portuguese municipal provision with private sector participation (0.61)
are lagging behind.

We have interpreted the average 'national’ efficiency score of a country as a measure for the
homogeneity in efficiency of a country’s drinking water sector. Since the number of utilities in
the different national samples differ, by resampling we have equalized the sizes of the datasets.
It turns out that the efficiency of the Belgian and Dutch drinking water sectors are the most
homogeneous. In those two countries, policy makers should relatively easily find agreement
among the utilities to adopt new laws.

The second stage procedures examine to which extent the inefficiencies could be attributed
to (un)favorable social, physical and institutional environmental factors. Therefore, we have
employed censored and truncated Tobit models and a double-bootstrap procedure. The results
detect the negative effect on efficiency of the proportion of industrial customers and groundwater
extraction, the consumption per capita and the effect of a corporate structure. The portion of
leakage, the gross regional product, only supplying drinking water, the delivery in only one
municipality and the regulatory and benchmark incentive schemes yield a positive effect on
efficiency.

Finally, we have incorporated the social, physical and institutional environmental factors in the
efficiency scores. The obtained scores reflect efficiencies as would the utilities work in exactly
the same environment. With the exogenous influences equalized, the variation left between
the DMUs can mainly be attributed to managerial influences. Here again, the Dutch, English
and Welsh utilities perform more efficiently. In order to capture the effects of the regulatory
and benchmark incentive schemes on the average efficiency of the analyzed countries, we have
estimated efficiencies as the utilities would work in exactly the same environment but with
different incentive schemes. The results provide significant evidence for the positive effects
of incentives schemes to efficiency. The analysis demonstrates that in absence of clear and
structural incentives the average efficiency of the utilities even falls in comparison with utilities
which are encouraged by incentives.



Table 18: Correction for environmental variables

Method (1) (2) (3) (4) (5)
First stage One stage One stage Residuals Residuals
Utility DEA-VRS eff. DEA eff. bias-corr. all influences Incentive
(2 in/outp.) (8) (€ (S/) equalized (8"") scheme (8'")

Actew 1.616 1.299 1.344 1.664 1.639
Barwon 2.047 1.346 1.394 1.958 1.949
Gippsland 1.000 1.000 1.083 1.207 1.202
Highlands 2.691 1.366 1.410 2.586 2.552
Coliban 1.000 1.000 1.079 1.000 1.000
Gold Coast 1.098 1.021 1.050 1.000 1.000
Gosford 1.431 1.000 1.081 1.289 1.255
Goulburn 1.672 1.068 1.112 1.736 1.722
Hunter 1.499 1.328 1.370 1.406 1.385
Power Water 1.402 1.225 1.273 1.306 1.271
SA Water 1.397 1.259 1.295 1.254 1.238
South East 1.000 1.000 1.082 1.166 1.121
Sidney 1.000 1.000 1.081 1.220 1.219
‘Water Corporation 1.486 1.187 1.230 1.491 1.481
Wggr 1.328 1.000 1.087 1.423 1.404
Wmd 1.634 1.098 1.137 1.471 1.426
Vitens 1.000 1.000 1.085 1.246 1.228
Pwn 1.072 1.000 1.080 1.209 1.191
Oasen 1.099 1.000 1.058 1.058 1.039
Hydron-F1 1.310 1.000 1.080 1.000 1.000
Hydron-MN 1.000 1.000 1.082 1.000 1.000
Brabant Water 1.090 1.000 1.082 1.055 1.028
Wml 1.410 1.023 1.057 1.266 1.227
Aie 1.285 1.201 1.237 1.000 1.061
Aquasambre 1.675 1.390 1.428 1.293 1.373
Aiec 2.257 1.000 1.069 2.123 2.221
Aiem 2.182 1.192 1.227 1.874 1.955
Aww 1.000 1.000 1.081 1.270 1.353
Bastogne 1.000 1.000 1.078 1.000 1.000
Bullingen 1.000 1.000 1.077 1.000 1.000
Ciev 1.137 1.000 1.057 1.000 1.000
Cile 1.485 1.280 1.316 1.130 1.226
Iecbw 1.897 1.080 1.111 1.615 1.712
Idemls 1.719 1.283 1.316 1.342 1.422
Tegm 1.000 1.000 1.079 1.000 1.000
Inasep 2.414 1.313 1.347 2.104 2.185
Pidpa 2.200 1.626 1.676 2.228 2.348
‘Wavre 1.014 1.003 1.038 1.000 1.000
St-Vith 1.405 1.000 1.066 1.181 1.244
Swde 2.784 1.000 1.051 2.575 2.639
Theux 1.000 1.000 1.083 1.000 1.000
Tmvw 1.636 1.370 1.415 1.439 1.520
Vmw 1.906 1.243 1.280 1.722 1.816
Anglian 1.481 1.102 1.138 1.403 1.366
Bristol 1.290 1.000 1.081 1.212 1.137
Bournemouth 1.293 1.000 1.083 1.174 1.132
Cambridge 1.622 1.264 1.306 1.456 1.387
Dee Valley 1.722 1.247 1.284 1.635 1.571
Essex Suffolk 1.074 1.016 1.045 1.000 1.000
Folkestone 1.336 1.095 1.128 1.121 1.055
Mid Kent 1.601 1.318 1.356 1.410 1.345
South East water 1.346 1.203 1.248 1.369 1.311
Northumbrian 1.352 1.000 1.039 1.108 1.063
United Utilities 1.000 1.000 1.083 1.000 1.000
Portsmouth 1.026 1.000 1.033 1.000 1.000
Sutton Surrey 1.211 1.107 1.136 1.063 1.010
Southern 1.205 1.164 1.199 1.000 1.000
South Staffs 1.000 1.000 1.052 1.071 1.016
Severn Trent 1.000 1.000 1.081 1.127 1.087
South West 2.437 1.000 1.082 1.417 1.428
TendringHundred 1.228 1.013 1.043 1.000 1.000
Three Valleys 1.000 1.000 1.079 1.000 1.000
Wessex 2.282 1.263 1.307 2.270 2.233
Yorkshire 1.019 1.000 1.050 1.000 1.000
Sintra 1.631 1.157 1.187 1.496 1.557
Smas Oeiras 1.000 1.000 1.080 1.000 1.000
Smas Loures 1.512 1.199 1.237 1.362 1.411
Aguas Gaia 1.436 1.001 1.023 1.000 1.042
Smas Porto 1.000 1.000 1.081 1.000 1.000
Vimaégua 1.735 1.014 1.032 1.244 1.312
Almada 1.382 1.199 1.238 1.009 1.084




Table 18: Correction for environmental variables - continued

Method (1) (2) (3) (4) (5)
First stage One stage One stage Residuals Residuals
Utility DEA-VRS eff. DEA eff. bias-corr. all influences Incentive
(2 in/outp.) (§) (8") (8,) equalized (8"") scheme (8'")

Coimbra 1.886 1.000 1.016 1.442 1.486
Xira 1.196 1.090 1.134 1.000 1.048
Maia, 1.386 1.000 1.048 1.000 1.000
Leiria 1.991 1.000 1.008 1.404 1.454
Viseu 2.494 1.000 1.041 2.087 2.146
Castelo 2.039 1.014 1.033 1.491 1.570
Aveiro 2.368 1.000 1.008 1.937 1.979
Torres Vedras 2.898 1.184 1.217 2.636 2.731
Santarém 2.693 1.460 1.476 2.462 2.492
Castelo Branco 1.462 1.000 1.022 1.000 1.000
Faro 1.947 1.158 1.190 1.567 1.627
Alcobaga 1.638 1.000 1.011 1.008 1.058
Caldas Rainha 1.210 1.000 1.058 1.000 1.000
Covilha 2.159 1.000 1.005 1.638 1.675
Portimao 1.146 1.000 1.081 1.000 1.000
Guarda 1.210 1.000 1.052 1.000 1.000
Abrantes 1.838 1.000 1.050 1.391 1.450
Vila Real 2.306 1.016 1.022 1.816 1.862
Cantanhede 1.721 1.000 1.080 1.193 1.252
Beja 1.526 1.024 1.049 1.078 1.113
Esposende 2.491 1.016 1.023 2.145 2.195
Cascais 1.544 1.307 1.350 1.445 1.353
Gondomar 1.594 1.012 1.028 1.301 1.172
Braga 1.950 1.011 1.025 1.756 1.646
Maria Feira 2.021 1.016 1.027 1.694 1.561
Sado 1.494 1.327 1.367 1.219 1.125
Indaqua Santo 1.508 1.010 1.041 1.354 1.220
Valongo 1.618 1.016 1.026 1.292 1.177
Paredes 1.399 1.000 1.083 1.117 1.000
Figueira 1.788 1.000 1.011 1.413 1.296
Mafra 2.188 1.000 1.035 2.198 2.111
Fafe 1.608 1.016 1.037 1.393 1.216
Ourém 2.565 1.000 1.044 2.546 2.404
Batalha 1.633 1.000 1.072 1.451 1.294
Alcanena 1.541 1.025 1.063 1.512 1.399
Carrazeda 1.672 1.000 1.072 1.505 1.400
The Netherlands 1.216 1.014 1.083 1.192 1.171
England and Wales 1.358 1.085 1.136 1.230 1.197
Australia 1.453 1.150 1.206 1.449 1.431
Portugal public 1.761 1.055 1.089 1.407 1.448
Portugal private 1.741 1.049 1.085 1.546 1.425
Belgium 1.600 1.149 1.202 1.445 1.504
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Abbreviation Company Country employees mains production connections
(fte) (km) (m?)
Actew ACTEW Corporation AU 315 3013 52275000 136000
Barwon Barwon Water AU 254 3361 39433000 123000
Brisbane Brisbane City Council AU 644 6273 255009000 420000
Gippsland Central Gippsland Water AU 145 1933 62702000 56000
Highlands Central Highlands Water AU 114 2117 16080000 55000
CityWest CityWest Water Limited AU 161 4004 108818000 307000
Coliban Coliban Water AU 42 1993 24886000 62000
Gold Coast Gold Coast Water AU 259 2995 70247000 205000
Gosford Gosford City Council AU 116 940 15154000 65000
Goulburn Goulburn Valley Water AU 118 1712 27704000 51000
Hunter Hunter Water Corporation AU 288 4480 71586000 211000
Power Water Power and Water Authority AU 233 1220 35142000 43000
SA Water S. A. Water Corporation AU 888 8773 165550000 492000
South East South East Water Limited AU 278 8336 153869000 594000
Sidney Sidney Water Corporation AU 2275 20669 526367000 1684617
‘Water Corp. ‘Water Corporation AU 1481 12045 225481000 649000
Yarra Yarra Valley Water Limited AU 279 8787 168192000 632000
Wggr Waterbedrijf Groningen NE 188 4766 46000000 272000
Wmd Waterleidingmaatschappij Drenthe NE 161 4216 30000000 191000
Vitens Vitens NE 921 38012 249000000 1644000
Pwn ‘Waterleidingbedrijf Noord-Holland NE 493 10038 87000000 717000
WIlb Waterleidingbedrijf Amsterdam NE 520 2708 88000000 477000
Dzh Duinwaterbedrijf Zuid-Holland NE 456 4430 75000000 582000
Evides Evides NE 402 12314 175000000 907000
Oasen Oasen NE 221 4014 45000000 320000
Hydron-F1 Hydron-Flevoland NE 87 2249 20000000 126000
Hydron-Mn Hydron-Midden Nederland NE 329 6389 76000000 557000
Brabant Water Brabant Water NE 668 16864 163000000 948000
Twl Tilburgse Waterleiding-Maatschappij NE 61 811 13000000 93000
‘Wml Waterleiding Maatschappij Limburg NE 426 8466 71000000 517000
Aie Association Intercommunale pour I’Energie et ’Eau BE (W) 32 313 3558513 20406
Aquasambre Aquasambre BE (W) 215 1490 15493907 99607
Aiec Association Interc. des Eaux du Condroz BE (W) 19 700 1636496 11439
Aiem Association Interc. des Eaux de la Molignee BE (W) 22 372 1420601 10324
Aww Antwerpse Water Werken BE (F) 535 2392 107154283 146485
Bastogne Bastogne BE (W) 7 116 1371151 5432
Bullingen Bullingen BE (W) 5 135 433960 2177
Ciev Intercommunale des Eaux de la Vallée de la Thyle BE (W) 7 143 104613 4222
Chimay Chimay BE (W) 5 72 1214499 2563
Cile Compagnie Intercommunale Liégeoise des Eaux BE (W) 337 3287 33382818 225680
Iecbw Interc. Gestion et Reali. d’Etudes Techn. et Econ. BE (W) 59 1463 9205055 54570
Idemls Interc. Distr. d’Eau de Mons, La Louviere et Soignies BE (W) 152 1490 11443180 85292
Tegm L’Interc. d’Etude et de Gestion de Mouscron BE (W) 21 260 3272505 20427
Inasep Intercommunale Namuroise de Services Publics BE (W) 46 900 3429016 27009
Iwva Interc. Waterleidingmaat. van Veurne-Ambacht BE (F) 46 101 5458590 28015
Calamine La Calamine BE (W) 6 66 743688 4075
Hulpe La Hulpe BE (W) 5 55 419834 2590
Pidpa Prov. En Interc. Drinkwatermaat. Provincie Antwerpen BE (F) 565 12132 67816151 455815
Wavre Régie de I’Eau de Wavre BE (W) 11 200 2455630 12291
St-Vith Stadtwerke St-Vith BE (W) 10 163 597357 3028
Swde Société wallonne des eaux BE (W) 1470 23432 118428033 713248
Theux Theux BE (W) 5 156 697246 4056
Tmvw Tussengem. Maat. Vlaanderen vr Waterbedeling BE (F) 477 7658 60752681 422343
Vmw Vlaamse Maatschappij voor Watervoorziening BE (F) 1517 29509 147381406 1052128
‘Waimes ‘Waimes BE (W) 4 74 240000 1567
Anglian Anglian Water E-W 3221 36762 420071200 1820223
Bristol Bristol Water E-W 401 6553 104890050 439905
Bournemouth Bournemouth and West Hampshire Water E-W 170 2749 59272350 17258
Cambridge Cambridge Water E-W 119 2262 27115850 111214
Dee Valley Dee Valley Water E-W 182 1976 25480650 105173
Essex Suffolk Essex and Suffolk Water E-W 891 8446 170097300 692972
Folkestone Folkstone and Dover Water E-W 7 1080 16921400 66365
Mid Kent Mid Kent Water E-W 295 4209 58469350 219626
South East South East water E-W 448 9683 143397550 541598
Northumbrian Northumbrian Water E-W 1566 16879 259387250 1039909
United Utilities United Utilities E-W 3630 40741 702975400 2757159
Portsmouth Portsmouth Water E-W 215 3236 65404350 276916
Sutton Surrey Sutton and East Surrey Water E-W 259 3385 59531500 253849
Southern Southern Water E-W 2045 13424 214386400 955029
South Staffs South Staffordshire water E-W 343 5825 121614350 499724
Severn Trent Severn Trent E-W 5083 45949 698245000 3017000
South West South West Water E-W 1383 14991 160902950 6503
TendringHun Tendring Hundred Water E-W 67 907 11128850 64705
Thames Thames Water E-W 4616 31416 1026259550 3255831
Three Valleys Three Valleys Water E-W 1041 14315 313845250 1163429
Dwr Cymru Dwr Cymru E-W 134 27112 317320050 1347600
Wessex ‘Wessex Water E-W 1696 11294 132495000 480863
Yorkshire Yorkshire Water E-W 2154 31217 472977950 1888567
Lisboa Lisboa Epal P(pub) 850 1690 255443624 336401
Sintra Sintra P(pub) 750 1600 33186571 177235
SMAS Oeiras Smas Oeiras e Amadora P(pub) 350 867 32252859 168509
SMAS Loures Smas de Loures P(pub) 490 1250 31127137 153530
Aguas Gaia Aguas de Gaia P(pub) 230 1432 19307187 117428
SMAS Porto Smas Porto P(pub) 421 769 41763910 152565
Vimagua Viméagua P(pub) 107 766 9082542 45733
Almada Smas de Almada P(pub) 367 746 17921000 100472




Table 19: Data appendix - continued

Abbreviation Company Country employees mains production connections
(fte) (km) (m®)

Coimbra Aguas de Coimbra P(pub) 247 1250 18919692 76959

Xira Smas Vila Franca de Xira P(pub) 168 450 13311234 62596

Maia Smas da Maia P(pub) 125 521 8333554 50702

Leiria Smas Leiria P(pub) 126 1100 9769147 54357

Viseu Smas Viseu P(pub) 110 870 7226000 33393

Castelo Sm Viana do Castelo P(pub) 98 705 5951068 35172

Aveiro Sma Aveiro P(pub) 164 566 2548868 32433

Torres Vedras Smas Torres Vedras P(pub) 147 996 4717976 35868

Santarém Santarém P(pub) 156 824 7873325 32821

Castelo Branco Castelo Branco P(pub) 70 500 6192758 34732

Faro Sm Faro P(pub) 70 665 6638337 30252

Alcobaga Alcobaga P(pub) 53 500 5358240 26849

Caldas Rainha Caldas da Rainha P(pub) 47 355 4484392 28482

Covilha Covilha P(pub) 99 500 4370473 26152

Portimao Portimao P(pub) 95 305 7383371 38377

Guarda Smas Guarda P(pub) 56 234 3007488 22404

Abrantes Sm Abrantes P(pub) 90 354 2891603 22377

Vila Real Vila Real P(pub) 69 670 4208502 25430

Cantanhede Cantanhede P(pub) 46 340 4150334 16071

Beja Emas Beja P(pub) 75 270 3801963 19173

Esposende Esposende P(pub) 65 400 2515000 14711

Cascais Aguas de Cascais P(pri) 271 1230 23256297 102028

Gondomar Aguas de Gondomar P(pri) 215 800 13062868 73943

Braga Agere Braga P(pri) 275 850 13202356 71098

Maria Feira Santa Maria da Feira P(pri) 45 550 4145078 21354

Sado Aguas do Sado P(pri) 165 632 12598703 58090

Indaqua Santo Indaqua Santo/Tirso P(pri) 40 228 2061671 13240

Valongo Aguas de Valongo P(pri) 93 470 6083557 34148

Paredes Aguas de Paredes P(pri) 35 220 3610228 5876

Figueira Aguas da Figueira P(pri) 86 680 6075617 37661

Mafra Cge Mafra P(pri) 64 848 5158589 32079

Fafe Fafe P(pri) 33 278 2781588 13849

Ourém Ourém P(pri) 36 918 4082997 21549

Batalha Batalha P(pri) 15 206 1688802 6730

Alcanena Alcanena P(pri) 16 200 1805231 7413

Carrazeda Aguas de Carrazeda P(pri) 20 194 568815 4839
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