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Integrating Preventive Maintenance Planning and
Production Scheduling for a Single Machine

C. Richard Cassady and Erhan Kutanoglu

Summary & Conclusions—Preventive maintenance planning,
and production scheduling are two activities that are inter-depen-
dent but most often performed independently. Considering that
preventive maintenance, and repair affect both available produc-
tion time, and the probability of machine failure, we are surprised
that this inter-dependency seems to be overlooked in the litera-
ture. We propose an integrated model that coordinates preventive
maintenance planning decisions with single-machine scheduling
decisions so that the total expected weighted completion time of
jobs is minimized. Note that the machine of interest is subject to
minimal repair upon failure, and can be renewed by preventive
maintenance. We investigate the value of integrating production
scheduling with preventive maintenance planning by conducting
an extensive experimental study using small scheduling problems.
We compare the performance of the integrated solution with
the solutions obtained from solving the preventive maintenance
planning, and job scheduling problems independently. For the
problems studied, integrating the two decision-making processes
resulted in an average improvement of approximately 2% and
occasional improvements of as much as 20%. Depending on the
nature of the manufacturing system, an average savings of 2%
may be significant. Certainly, savings in this range indicate that
integrated preventive maintenance planning, and production
scheduling should be focused on critical (bottleneck) machines.
Because we use total enumeration to solve the integrated model
for small problems, we propose a heuristic approach for solving
larger problems. Our analysis is based on minimizing total
weighted completion time; thus, both the scheduling, and main-
tenance problems favor processing shorter jobs in the beginning
of the schedule. Given that due-date-based objectives, such as
minimizing total weighted job tardiness, present more apparent
trade-offs & conflicts between preventive maintenance planning,
and job scheduling, we believe that integrated preventive mainte-
nance planning & production scheduling is a worthwhile area of
study.

Index Terms—Minimal repair, optimization, preventive mainte-
nance, production scheduling, renewal, Weibull distribution.
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PM preventive maintenance
WSPT weighted shortest processing time
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Notation
number of jobs to be scheduled
processing time of job
maximum job processing time
weight of job
job sequencing decision variable
processing time of job in the sequence
weight of job in the sequence
completion time of job in the sequence (deter-
ministic case)
completion time of the job in the sequence (sto-
chastic case)
time to machine failure
Weibull shape parameter for probability distribution
of
Weibull scale parameter for probability distribution
of

hazard function of
age of the machine prior to job sequencing-PM plan-
ning
age of the machine after the job in the sequence
age of the machine immediately prior to the job
in the sequence (after PM)
time required to repair the machine
time required to perform PM on the machine
PM interval for the machine
optimal value of
number of machine failures in time units of ma-
chine operation

steady-state machine availability
PM decision variable
optimal value of

I. INTRODUCTION

PRODUCTION scheduling, and preventive maintenance
(PM) planning are two areas that have received tremen-

dous attention in both the manufacturing industry, and the
manufacturing systems & operations research literature. In
practice, these activities are typically performed independently
despite the clear relationship that exists between them. PM ac-
tivities take time that could otherwise be used for production,
but delaying PM for production may increase the probability
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of machine failure. Hence, there are trade-offs, and conflicts
between PM planning, and production scheduling. Our con-
tention is that manufacturing system productivity could be
improved by integrating these decisions. We investigate this
contention using an integrated PM planning & job scheduling
model.

Similar to the situation in practice, these areas are typ-
ically treated independently in the production systems, and
operations research literature. There is an extensive amount of
research in the production/machine scheduling literature, but
several review papers, and two recent books cover the majority
of the advancement in the area [1], [2]. Production scheduling
models tend to be deterministic optimization models designed
to maximize some measure of customer satisfaction. Solution
methodologies vary from traditional integer programming, and
associated Branch-Bound techniques to Lagrangean relaxation,
and optimization-based heuristics. These models & techniques
have been implemented in a variety of manufacturing systems.

Hundreds of papers on the use of mathematical modeling for
analysing, planning, and optimizing maintenance actions can
be found in the literature. Fortunately, several authors have re-
viewed the literature in this area [3]–[9]. Preventive mainte-
nance planning models are typically stochastic models (either
mathematical or simulation) accompanied by optimization tech-
niques designed to maximize equipment availability, or mini-
mize equipment maintenance costs.

One can argue that the models used in production scheduling,
and preventive maintenance planning are designed with an im-
plicit common goal of maximizing equipment productivity. De-
spite this common objective, production scheduling models typ-
ically either ignore equipment failure, or treat it as a random
event. Therefore, existing studies in the stochastic scheduling
literature seem to take either a reactive approach, or a robust-
ness-based approach. In the former, one tries to update the pre-
planned schedule in the face of machine failures [10], [11]. The
latter tries to find a schedule that is rather insensitive to the dis-
ruptions [12], [13]. Likewise, preventive maintenance planning
models tend to ignore the potential disruptions in production re-
sulting from PM actions. Those that consider job schedules tend
to ignore the possibility of revising a previously-determined
production schedule based on machine availability considera-
tions [14], [15].

There is only limited literature on models that attempt
to combine preventive maintenance planning, and production
scheduling. Some of these studies focus on the process industry
(e.g. chemical plants), and provide case study results showing
the effects of equipment failures on the schedule robustness
[16]–[18]. There are several studies that test the effectiveness
of simple preventive maintenance policies using discrete-event
simulation, rather than optimizing them along with scheduling
decisions. These can be viewed as natural extensions of other
studies that rely on simulation for comparing scheduling rules.
While some papers in this category consider limited mainte-
nance resources in traditional job shop environments [19], [20];
others focus on the interaction of scheduling, and maintenance
policies, and assume unlimited resources [21]. There are also
studies that extend the simple machine scheduling models by
considering the maintenance decisions as given, or constraints,

rather than integrating them [22]. Weinstein & Chung [23] in-
vestigate strategic level maintenance planning rather than oper-
ational level in the context of hierarchical production planning.
Cho, Abad, & Parlar [24] consider the effects of age-related
quality problems, and take into account maintenance policies
that improve system performance.

There are only a few studies that explicitly try to integrate pre-
ventive maintenance & scheduling decisions, and to optimize
them simultaneously. Ashayeri, Teelen, & Selen [25] propose
a discrete-time multi-machine integrated model, but production
decisions are determining the production quantities (lot sizing)
rather than scheduling distinct jobs, and they consider discrete
probabilities of failure instead of defined probability distribu-
tions. Graves & Lee [26] consider a single-machine scheduling
problem with total weighted completion time as the objective
function just as we do, but they schedule only one maintenance
activity during the planning horizon. They show some com-
plexity results depending on the length of the planning horizon.
Lee & Chen [27] extend this to parallel machines, but still with
only one maintenance action. Qi, Chen, & Tu [28] consider a
similar single-machine problem with possibly multiple main-
tenance actions, but they do not explicitly model the risk of
not performing maintenance, which is explicitly captured in our
analysis.

In this paper, we develop a mathematical model which in-
corporates production scheduling, and preventive maintenance
planning for a single machine. Through a simple example, we
demonstrate a procedure for identifying optimal scheduling, and
PM decisions. We then provide insights gained from studying
the model using numeric examples. Finally, we describe the
benefits of integrating the two activities into a single decision-
making process.

II. THE PRODUCTION SCHEDULING PROBLEM

Consider a single machine in a manufacturing system that is
required to process a set of jobs, and suppose that preempting
one job for another is not permitted. The purpose of production
scheduling (for this particular problem) is to choose an optimal
sequence for the jobs. Let

if the job performed is job
otherwise

(1)

Suppose our objective is to minimize the total weighted comple-
tion time for the jobs, and we ignore the possibility of machine
failure. Then

(2)

(3)

(4)
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TABLE I
EXAMPLE SCHEDULING PROBLEM PARAMETERS

The optimal sequence is the one which minimizes the total
weighted completion time

(5)

The resulting mathematical programming formulation of this
job scheduling problem is given by

Minimize (6)

subject to (7)

(8)

binary (9)

The two sets of functional constraints, (7), and (8), ensure that
each position in the schedule receives one job, and each job is
assigned to one position in the schedule, respectively.

The global optimal solution to the mathematical program
is easy to obtain using the weighted shortest processing time
(WSPT) rule [2]. For each job, the ratio

(10)

is computed. Jobs are then sequenced in descending order based
on this ratio. For example, suppose a machine is required to
process three jobs. The processing times, weights, and ratios
for these jobs are presented in Table I. The job sequence which
minimizes the total weighted completion time for these three
jobs is 2-3-1.

III. THE PREVENTIVE MAINTENANCE PLANNING PROBLEM

Suppose the machine used to process the jobs is subject to
failure, and the time to failure for the machine, is governed by a
Weibull probability distribution having shape parameter greater
than 1. When the machine fails, we assume it is minimally re-
paired, i.e. the machine is restored to an operating condition,
but machine age is not altered. This implies that, upon machine
failure, the machine operator does just enough maintenance to
resume machine function. Because , it may be practical to
perform preventive maintenance on the machine in order to re-
duce the increasing risk of machine failure. We assume that PM
restores the machine to a “good as new” condition, such that the
machine’s age becomes zero. This implies that PM is a more
comprehensive action than repair, perhaps corresponding to the
replacement of several key components in the machine.

Given the failure, repair, and PM characteristics of the ma-
chine, a reasonable question is “How often should PM be per-
formed on the machine?” We assume an age-based PM policy is
applied, i.e. PM is performed on the machine after time units
of operation. Assuming our objective is to maximize machine
availability, we can use mathematical modeling to determine an
optimal value for .

Because we assume PM restores the machine to a “good as
new” condition, we can model the operation & maintenance of
the machine as a renewal process, where the renewal points are:

(1) the initiation of machine operation, and
(2) the end of each PM activity.

Because we assume repair is minimal, we can model the oc-
currence of failures during each “cycle” of the renewal process
using a nonhomogeneous Poisson process. Then, the expected
value of is given by

(11)

where corresponds to the hazard function of the underlying
Weibull probability distribution. So, the “average” cycle con-
sists of an “uptime” period of time units of operation; and a
“downtime” period of repairs of length , and a PM action
of length . Therefore, the resulting steady-state availability of
the machine, expressed as a function of the PM interval, is given
by

(12)

Differentiation, and algebraic analysis yields an optimal PM in-
terval of

(13)

For example, suppose a machine’s failure, repair, and PM char-
acteristics are such that , , , and .
Evaluation of (13) indicates that PM should be performed on
this machine after 57.7 time units of operation.

IV. THE INTEGRATED PROBLEM

Suppose a machine possesses the production requirements
defined in Section II; and the failure, repair, and PM charac-
teristics described in Section III. Furthermore, assume jobs are
not preempted for PM, and jobs interrupted by failure can be
resumed after repair without any additional time penalty. Be-
cause both production scheduling, and PM planning are de-
signed to maximize the effective use of the machine, it may be
advantageous to solve the production scheduling, and PM plan-
ning problems for this machine simultaneously. In addition to
choosing a job sequence, one must also decide whether or not
to perform PM prior to each job. The integrated problem is fur-
ther complicated by the fact that completion times for the jobs
are stochastic, because the machine may or may not fail during
each job, and PM decisions change the stochastic process gov-
erning machine failure.
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The completion time for a job is a random variable that de-
pends on

• the age of the machine prior to processing the job;
• the completion time for previous jobs;
• the time to complete PM, and the PM decision;
• the job’s processing time; the repair time; and
• the number of machine failures during the job.

Let

if PM is performed
prior to the job

otherwise
(14)

Because we assume that PM renews the machine, and repair is
minimal

(15)

(16)

The expected value of is given by

(17)

which includes time spent on all PM actions performed before
the job, all processing times up to & including the job,
and the expected value of the time spent on repairs that occur
before or during the job. Our modified objective is to identify
the PM actions & job sequence that minimize the total weighted
expected completion time

(18)

The resulting mathematical programming formulation of the in-
tegrated problem is given by

Minimize (19)

subject to (20)

(21)

binary (22)

binary (23)

V. SOLVING THE INTEGRATED PROBLEM

We solve the integrated problem using total enumeration. To
demonstrate this enumerative procedure, we make use of the
example defined in Sections II & III. Suppose . The
first step in our solution procedure is to enumerate the set of

feasible job sequences. The six feasible sequences for this
example are enumerated in Table II.

The second step in our solution procedure is to identify the
optimal set of PM decisions for each feasible job sequence. Each

TABLE II
INTEGRATION EXAMPLE RESULTS

TABLE III
1-2-3 PM ANALYSIS

of the feasible sets of PM decisions is applied to each job se-
quence. The objective function value is computed for each set
of PM decisions, and the set with the smallest objective func-
tion value is identified as optimal for that sequence. This anal-
ysis for the 1-2-3 sequence is presented in Table III. Note that
the optimal PM decisions for this sequence are to perform PM
only before the first job. The job sequence-PM decisions with
the overall minimum objective function value are identified as
the global optimal solution. The results for this example are pre-
sented in Table II. Note that the optimal solution is to use the job
sequence 2-3-1 with PM performed prior to job 3 (the second
job in the sequence).

VI. SOLUTION ANALYSIS

Investigating the implications & benefits of integrating the
job scheduling & PM planning decisions can be summarized
with the following questions.

• How does the optimal integrated job sequence compare
to the WSPT sequence?

• How does the optimal integrated job-PM sequence
compare to the WSPT sequence combined with the
independently-obtained optimal PM interval?

• How does the minimum integrated objective function
value compare to the objective function value for the
WSPT sequence combined with the independently-ob-
tained optimal PM interval?

First, we address these questions for the example considered in
Section V. Then, we summarize the answers to these questions
with more numeric examples.

For the Section V example, the optimal job sequence is the
same as the WSPT sequence (2-3-1). However, the optimal job
sequence-PM decisions (2-3-1 with PM prior to job 3) are dif-
ferent from the WSPT sequence combined with the indepen-
dently-obtained optimal PM interval. Recall that the optimal PM
interval for this machine is 57.7 time units. Using this interval
would mandate performing PM prior to the first job (job 2) be-
cause . After job 2, the age of the machine would be 7



308 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 2, JUNE 2005

TABLE IV
EXPERIMENTAL DESIGN

. Thus, no PM would be performed prior to the second
job (job 3). After job 3, the age of the machine would be 49

. Thus, no PM would be performed prior to job 1.
For the Section V example, if the WSPT job sequence is com-

bined with the independently-obtained optimal PM interval, the
objective function value is 864.6. Thus, the minimum objective
function value of 852.5 represents a 1.4% savings over WSPT
with the optimal PM interval. We refer to this as Savings.

In an attempt to gain insight into the answers to the three ques-
tions posed above, a numeric experiment was designed. In all
experimental trials, the machine was required to process three
jobs, and . For each experimental trial, 1000 individual
problems were randomly generated using Monte Carlo simu-
lation of the initial age of the equipment, the weights of the
jobs, and the processing times for the jobs. The initial age of
the equipment was modeled as a discrete uniform random vari-
able over the integers 1 through 100. The weight of a job was
modeled as a discrete uniform random variable over the integers
1 through 10. The processing time of a job was modeled as a dis-
crete uniform random variable over the integers ,
where is a controlled factor for the experiment. In addi-
tion to , the other controlled factors were , , and .
A factorial design was used to generate the 16 experimental
trials. The factor values, and the optimal PM interval for each
trial are given in Table IV.

More than half (60.2%) of the problems analyzed indicate
some positive Savings, and the average Savings is 2.2%. So, the
results indicate that integrating job scheduling, and PM plan-
ning is superior to solving the two problems independently. Al-
most all (97.7%) of the integrated solutions utilize the WSPT se-
quence. This similarity, and the relatively small average Savings
result from the fact that the total weighted completion time, and
machine availability performance measures both encourage pro-
cessing shorter jobs first. It is worthwhile to note that changes to
the WSPT sequence typically occur when two or more jobs have
weight to processing time ratios that are very close. In fact, some
of the 2.3% that differ from WSPT occur when two or more job
ratios tie, and the job sequencing problem has multiple optimal
solutions. In these cases, the integrated problem breaks the tie
based on PM considerations. Note that less than half (39.8%)

of the problems studied have an integrated solution equivalent
to the WSPT sequence with the independently-obtained optimal
PM interval. Therefore, the benefit of this integrated problem is
more effective PM planning.

VII. LARGER PROBLEMS

The results described in Section VI demonstrate that there is
potential benefit to be realized from integrating job sequencing,
and PM planning decisions. However, the examples consid-
ered in the experiment consider only 3 jobs. In practice, job
sequencing problems consider a larger number of jobs, and
the jobs to be scheduled evolve in a dynamic fashion. We
investigated solving larger problems conducting additional
experiments.

The results of the 3-job experiment indicate that the WSPT
rule is valid for almost all of the integrated problems. Therefore,
we propose the following heuristic:

Step 1. Identify the WSPT job sequence.
Step 2. Identify the PM decisions which minimize total ex-

pected weighted completion time for the WSPT job
sequence.

We applied this heuristic to the 16 000 problems studied in Sec-
tion VI. The heuristic yields the optimal solution for 97.9% of
these problems; and for those problems that are not optimized
by the heuristic, the average deviation from the optimal objec-
tive function value is less than 0.005%.

Next, we applied our experimental design to 4-job, and 5-job
problems. For each experiment, we randomly generated 500
4-job problems having , and 200 5-job problems having

. We solved these problems using both total enumer-
ation, and the heuristic. For the 4-job problems, the heuristic
yields the optimal solution for 97.3% of the problems, and for
those problems that are not optimized by the heuristic, the av-
erage deviation from the optimal objective function value is less
than 0.003%. For the 5-job problems, the heuristic yields the op-
timal solution for 96.0% of the problems; and for those problems
that are not optimized by the heuristic, the average deviation
from the optimal objective function value is less than 0.002%.

Therefore, our recommendation is as follows. The enumera-
tive solution procedure works well for a small number of jobs (8
or less). However, because for jobs the procedure requires the
evaluation of job sequences, and sets of PM decisions for
each sequence; this procedure is not effective for larger prob-
lems. Given that the heuristic can handle much larger problems
(up to 20 jobs), it should be used for preliminary planning pur-
poses. Then, as job requirements evolve over time, the job-PM
schedule can be updated over shorter periods using the enumer-
ative approach.

VIII. CONCLUDING REMARKS AND FUTURE RESEARCH

The model presented lends itself to a number of meaningful
extensions. Objective functions that lead to greater conflict
between job sequencing, and PM planning, could be used. For
example, a due-date-based function, such as total weighted
expected tardiness, does not necessarily emphasize processing
shorter jobs earlier in the sequence. Our contention is that in-
tegrating PM & job scheduling will undercover true trade-offs
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between conflicting goals of individual decisions. Assumptions
regarding the failure, repair, and PM characteristics of the ma-
chine could be modified or eliminated. For example, repair may
restore the equipment to a “good as new” condition; or it may
be possible to interrupt a job for PM. Multiple machines and/or
job shops could be considered. We intend to explore these
extensions as well as improved exact, and heuristic solution
procedures in future work.

In some production environments, the equipment used is
highly reliable. As a result, PM schedules for such equipment
may be weekly, monthly, or even semi-annual. In these environ-
ments, the use of a job-to-job PM planning tool is unnecessary.
However, the models we propose to develop can be applied in
these scenarios. Rather than integrating job sequencing & PM
decisions, the models could be used as an aggregate planning
tool for integrating lot scheduling & PM planning decisions.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers, and the
associate editor for their comments and insights which greatly
improved the content of the paper.

REFERENCES

[1] J. F. Shapiro, “Mathematical programming models and methods for pro-
duction planning and scheduling,” in Handbooks in Operations Research
and Management Science, Volume 4, Logistics of Production and In-
ventory, S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, Eds:
North-Holland, 1993.

[2] M. Pinedo, Scheduling: Theory, Algorithms, and Systems: Prentice-Hall,
1995.

[3] J. J. McCall, “Maintenance policies for stochastically failing equipment:
a survey,” Manage. Sci., vol. 11, no. 5, pp. 493–524, 1965.

[4] W. P. Pierskalla and J. A. Voelker, “A survey of maintenance models:
the control and surveillance of deteriorating systems,” Nav. Res. Logist.
Quarter., vol. 23, no. 3, pp. 353–388, 1976.

[5] S. Osaki and T. Nakagawa, “Bibliography for reliability and availability
of stochastic systems,” IEEE Trans. Reliab., vol. 25, no. 4, pp. 284–287,
1976.

[6] Y. S. Sherif and M. L. Smith, “Optimal maintenance models for systems
subject to failure—a review,” Nav. Res. Logist. Quarter., vol. 28, no. 1,
pp. 47–74, 1981.

[7] C. Valdez-Flores, “Survey of preventive maintenance models for
stochastically deteriorating single-unit systems,” Nav. Res. Logist., vol.
36, no. 4, pp. 419–446, 1989.

[8] D. I. Cho and M. Parlar, “A survey of maintenance model for multi-unit
systems,” Eur. J. Oper. Res., vol. 51, no. 1, pp. 1–23, 1991.

[9] R. Dekker, “Application of maintenance optimization models: a review
and analysis,” Reliab. Eng. Syst. Saf., vol. 51, no. 3, pp. 229–240, 1996.

[10] J. C. Bean, J. R. Birge, J. Mittenthal, and C. E. Noon, “Match-up sched-
uling with multiple resources, release dates and disruptions,” Oper. Res.,
vol. 39, no. 3, pp. 470–483, 1991.

[11] E. Kutanoglu and I. Sabuncuoglu, “An investigation of reactive sched-
uling policies under machine breakdowns,” in Proc. 4th Industrial En-
gineering Research Conf., 1995, pp. 904–913.

[12] R. L. Daniels and P. Kouvelis, “Robust scheduling to hedge against pro-
cessing time uncertainty in single-stage production,” Manage. Sci., vol.
41, no. 2, pp. 363–376, 1995.

[13] E. Kutanoglu and S. D. Wu, “Improving schedule robustness via pre-
processing and dynamic adaptation,” IIE Trans., vol. 36, no. 11, pp.
1107–1124, 2004.

[14] J. S. Burton, A. Banerjee, and C. Sylla, “A simulation study of se-
quencing and maintenance decisions in a dynamic job shop,” Comput.
Industrial Eng., vol. 17, no. 1–4, pp. 447–452, 1989.

[15] S. Sridhar, “Determination of aggregate preventive maintenance pro-
grams using production schedules,” Comput. Industrial Eng., vol. 14,
no. 2, pp. 193–200, 1988.

[16] E. Sanmarti, A. Espuna, and L. Puigjaner, “Effects of equipment failure
uncertainty in batch production scheduling,” Comput. Chem. Eng., vol.
19, pp. S565–S570, 1995.

[17] , “Batch production and preventive maintenance scheduling under
equipment failure uncertainty,” Comput. Chem. Eng., vol. 21, no. 10, pp.
1157–1168, 1997.

[18] I. T. Dedopoulos and N. Shah, “Optimal short-term scheduling of main-
tenance and production for multipurpose plants,” Industrial Eng. Chem.
Res., vol. 34, pp. 192–201, 1995.

[19] A. Banerjee and J. S. Burton, “Equipment utilization based maintenance
task scheduling in a job shop,” Eur. J. Oper. Res., vol. 45, no. 2–3, pp.
191–202, 1990.

[20] S. A. Mosley, T. Teyner, and R. M. Uzsoy, “Maintenance scheduling
and staffing policies in a wafer fabrication facility,” IEEE Trans. Semi-
conductor Manufacturing, vol. 11, no. 2, pp. 316–323, 1998.

[21] C. M. Kelly, C. T. Mosier, and F. Mahmoodi, “Impact of maintenance
policies on the performance of manufacturing cells,” Int. J. Production
Res., vol. 35, no. 3, pp. 767–787, 1997.

[22] N. Mannur and J. B. Addagatla, “Heuristic algorithms for solving ear-
liness-tardiness scheduling problem with machine vacations,” Comput.
Industrial Eng., vol. 25, no. 1–4, pp. 255–258, 1993.

[23] L. Weinstein and C.-H. Chung, “Integrating maintenance and production
decisions in a hierarchical production planning environment,” Comput.
Oper. Res., vol. 26, no. 10, pp. 1059–1074, 1999.

[24] D. I. Cho, P. L. Abad, and M. Parlar, “Optimal production and main-
tenance decisions when a system experiences age-dependent deteriora-
tion,” Optimal Control Applications and Methods, vol. 14, no. 3, pp.
153–167, 1993.

[25] J. Ashayeri, A. Teelen, and W. Selen, “A production and maintenance
planning model for the process industry,” Int. J. Production Res., vol.
34, no. 12, pp. 3311–3326, 1996.

[26] G. H. Graves and C. Y. Lee, “Scheduling maintenance and semiresum-
able jobs on a single machine,” Nav. Res. Logist., vol. 46, no. 7, pp.
845–863, 1999.

[27] C. Y. Lee and Z. L. Chen, “Scheduling jobs and maintenance activities
on parallel machines,” Nav. Res. Logist., vol. 47, no. 2, pp. 145–165,
2000.

[28] X. Qi, T. Chen, and F. Tu, “Scheduling the maintenance on a single ma-
chine,” J. Oper. Res. Soc., vol. 50, no. 10, pp. 1071–1078, 1999.

C. Richard Cassady is an Associate Professor in the Department of Industrial
Engineering at the University of Arkansas. Prior to joining the faculty at UofA,
he was on the faculty at Mississippi State University. He received his Ph.D.,
M.S., and B.S. degrees all in industrial and systems engineering from Virginia
Tech. His primary reliability research interests are in repairable systems mod-
eling and preventive maintenance optimization. He is a Senior Member of IIE,
and a member of ASEE, ASQ, INFORMS and SRE. He is also a member of the
RAMS Management Committee.

Erhan Kutanoglu is an Assistant Professor in the Operations Research and
Industrial Engineering Graduate Program in the Department of Mechanical En-
gineering at the University of Texas at Austin. Before his current position, he
served on the industrial engineering faculty at the University of Arkansas, and
worked as an Operations Research Analyst & Development Engineer at IBM
Global Services. He received the Ph.D. degree in Industrial Engineering from
Lehigh University in 1999, and his M.S. & B.S. degrees from Bilkent Univer-
sity, Ankara, Turkey. His current research interests include models & algorithms
for distributed decision making, integer programming and combinatorial op-
timization, and robust optimization with applications to scheduling, logistics,
and supply chain management problems. He is currently involved in funded
projects on semiconductor manufacturing scheduling, and multi-echelon inven-
tory stocking & logistics network design problems. He is a member of IIE, IN-
FORMS, and SME.


	toc
	Integrating Preventive Maintenance Planning and Production Sched
	C. Richard Cassady and Erhan Kutanoglu
	I. I NTRODUCTION
	II. T HE P RODUCTION S CHEDULING P ROBLEM

	TABLE€I E XAMPLE S CHEDULING P ROBLEM P ARAMETERS
	III. T HE P REVENTIVE M AINTENANCE P LANNING P ROBLEM
	IV. T HE I NTEGRATED P ROBLEM
	V. S OLVING THE I NTEGRATED P ROBLEM

	TABLE€II I NTEGRATION E XAMPLE R ESULTS
	TABLE€III 1-2-3 PM A NALYSIS
	VI. S OLUTION A NALYSIS

	TABLE€IV E XPERIMENTAL D ESIGN
	VII. L ARGER P ROBLEMS
	VIII. C ONCLUDING R EMARKS AND F UTURE R ESEARCH
	J. F. Shapiro, Mathematical programming models and methods for p
	M. Pinedo, Scheduling: Theory, Algorithms, and Systems: Prentice
	J. J. McCall, Maintenance policies for stochastically failing eq
	W. P. Pierskalla and J. A. Voelker, A survey of maintenance mode
	S. Osaki and T. Nakagawa, Bibliography for reliability and avail
	Y. S. Sherif and M. L. Smith, Optimal maintenance models for sys
	C. Valdez-Flores, Survey of preventive maintenance models for st
	D. I. Cho and M. Parlar, A survey of maintenance model for multi
	R. Dekker, Application of maintenance optimization models: a rev
	J. C. Bean, J. R. Birge, J. Mittenthal, and C. E. Noon, Match-up
	E. Kutanoglu and I. Sabuncuoglu, An investigation of reactive sc
	R. L. Daniels and P. Kouvelis, Robust scheduling to hedge agains
	E. Kutanoglu and S. D. Wu, Improving schedule robustness via pre
	J. S. Burton, A. Banerjee, and C. Sylla, A simulation study of s
	S. Sridhar, Determination of aggregate preventive maintenance pr
	E. Sanmarti, A. Espuna, and L. Puigjaner, Effects of equipment f
	I. T. Dedopoulos and N. Shah, Optimal short-term scheduling of m
	A. Banerjee and J. S. Burton, Equipment utilization based mainte
	S. A. Mosley, T. Teyner, and R. M. Uzsoy, Maintenance scheduling
	C. M. Kelly, C. T. Mosier, and F. Mahmoodi, Impact of maintenanc
	N. Mannur and J. B. Addagatla, Heuristic algorithms for solving 
	L. Weinstein and C.-H. Chung, Integrating maintenance and produc
	D. I. Cho, P. L. Abad, and M. Parlar, Optimal production and mai
	J. Ashayeri, A. Teelen, and W. Selen, A production and maintenan
	G. H. Graves and C. Y. Lee, Scheduling maintenance and semiresum
	C. Y. Lee and Z. L. Chen, Scheduling jobs and maintenance activi
	X. Qi, T. Chen, and F. Tu, Scheduling the maintenance on a singl



