
Exploiting Hierarchical Domain Structure
to Compute Similarity

PRASANNA GANESAN, HECTOR GARCIA-MOLINA, and JENNIFER WIDOM
Stanford University

The notion of similarity between objects finds use in many contexts, for example, in search engines,
collaborative filtering, and clustering. Objects being compared often are modeled as sets, with
their similarity traditionally determined based on set intersection. Intersection-based measures
do not accurately capture similarity in certain domains, such as when the data is sparse or when
there are known relationships between items within sets. We propose new measures that exploit
a hierarchical domain structure in order to produce more intuitive similarity scores. We extend
our similarity measures to provide appropriate results in the presence of multisets (also handled
unsatisfactorily by traditional measures), for example, to correctly compute the similarity between
customers who buy several instances of the same product (say milk), or who buy several products
in the same category (say dairy products). We also provide an experimental comparison of our
measures against traditional similarity measures, and report on a user study that evaluated how
well our measures match human intuition.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms: Algorithms

Additional Key Words and Phrases: Similarity measures, hierarchy, collaborative filtering, data
mining

1. INTRODUCTION

The notion of similarity is used in many contexts to identify objects having
common “characteristics.” For instance, a search engine finds documents that
are similar to a query or to other documents. A clustering algorithm groups
together gene sequences that have similar features. A collaborative filtering
system looks for people sharing common interests [Goldberg et al. 1992].

In many cases, the objects being compared are treated as sets or bags of
elements drawn from a flat domain. Thus a document is a bag of words, a cus-
tomer is a bag of purchases, and so on. The similarity between two objects is
often determined by their bag intersection: the more elements two customers

This material is based upon work supported by the National Science Foundation under Grants IIS-
0085896, IIS-9817799, and IIS-9811947. Prasanna Ganesan is supported by a Stanford Graduate
Fellowship.
Authors’ address: 353 Serra Mall, #432, Stanford University, Stanford, CA 94305-9025; email:
prasannag@cs.stanford.edu.
Permission to make digital/hard copy of all or part of this material is granted without fee for per-
sonal or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2003 ACM 1046-8188/03/0100-0064 $5.00

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003, Pages 64–93.

Exploiting Hierarchical Domain Structure • 65

Fig. 1. Music CD hierarchy.

purchase in common, the more similar they are considered. In other cases, the
objects are treated as vectors in an n-dimensional space, where n is the cardi-
nality of the element domain. The cosine of the angle between two objects is
then used as a measure of their similarity [McGill 1983]. We propose enhancing
these object models by adding a hierarchy describing the relationships among
domain elements. The “semantic knowledge” in the hierarchy helps us iden-
tify objects sharing common characteristics, leading to improved measures of
similarity.

To illustrate, let us look at a small three-level hierarchy on the music CD
domain, as shown in Figure 1. Say customer A buys Beatles CDs b1 and b2, B
buys Beatles CDs b3 and b4, and C buys Stones CDs s1 and s2. If we were to use a
similarity measure based on set intersections, we would find that the similarity
between any two of A, B, and C is zero. The Vector-Space Model would represent
A, B, and C as three mutually perpendicular vectors and, therefore, the cosine
similarity between any two of them is again zero.

However, looking at the hierarchy of Figure 1, we see that A and B are rather
similar since both of them like the Beatles, whereas A and C are somewhat less
similar since, although both listen to rock music, they prefer different bands.
The similarity between two CDs is reflected in how far apart they are in the
hierarchy. In this article, we develop measures that take this hierarchy into
account, leading to similarity scores that are closer to human intuition than
previous measures.

There are several interesting challenges that arise in using a hierarchy for
similarity computations. In our CD example, for instance, customers may pur-
chase CDs from different portions of the hierarchy: for example, customer D
in Figure 1 purchases both Beatles as well as Mozart CDs. In such a case it
is not as obvious how similar D is to A or B or to other customers with mixed
purchases. As we show, there are multiple ways in which the hierarchy can
be used for similarity computations, and in this article we contrast different
approaches.

Another challenge is handling multiple occurrences (multisets) at different
levels of the hierarchy. For example, say we had another user E who buys a
lot of Beatles CDs as well as a Mozart CD m1 (see Figure 1). The question is:
Which of D or E is more similar to A? Customer D bought Beatles CD b1, just
like A. On the other hand, customer E did not buy that CD, but did buy a lot of
other Beatles CDs. The traditional cosine-similarity measure favors multiple
occurrences of an element. That is, if a query word occurs a hundred times

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

66 • P. Ganesan et al.

in a document, the document is more similar to the query than one in which
the query word appears only once. If we use this approach in our example, we
would say that E is more similar to A than D is, because E buys 14 Beatles
CDs, whereas D buys just one.

Unfortunately, it is not clear that this conclusion is the correct one. E is
probably a serious Beatles fan, whereas A and D appear more balanced and
similar to each other, so it would also be reasonable to conclude that D is more
similar to A than E is. Thus measures like cosine-similarity, although suit-
able for query-document similarity, do not provide the right semantics for in-
terobject similarity in many other situations. This problem has, in fact, been
observed earlier even in the context of inter-document similarity [Shivakumar
and Garcia-Molina 1995]. In this article, we study various semantics for mul-
tiple occurrences, and provide measures that map to these semantics.

There has been a lot of prior work related to similarity in various domains
and, naturally, we rely on some of it for our own work. In Sections 2 and 6 we
discuss prior work in detail, but here we make some brief observations.

In our example we have seen that with traditional measures customers A,
B, and C have zero similarity to each other because their purchases do not in-
tersect. When objects or collections are sparse (i.e., have few elements relative
to the domain), intersections tend to be empty and traditional measures have
difficulty identifying similar objects. There have been many attempts to over-
come this sparsity problem through techniques such as dimension reduction
[Sarwar et al. 2000], filtering agents [Sarwar et al. 1998], item-based filtering
[Sarwar et al. 2001], and the use of personal agents [Good et al. 1999]. We be-
lieve that using a richer data model (i.e., our hierarchy) addresses this problem
in a simple and effective way.

Hierarchies are often used to encode knowledge, and have been used in a
variety of ways for text classification, for mining association rules, for interac-
tive information retrieval, and various other tasks where similarity plays a role
[Feldman and Dagan 1995; Han and Fu 1995; Scott and Matwin 1998; Srikant
and Agrawal 1995]. In this article, we focus on the case where attributes are
confined to being leaves of the hierarchy. We believe that our work may be
extended to deal with polyhierarchies, where the hierarchy is not required to
be a strict tree, to permit attributes at multiple levels in the hierarchy, and
to deal with generalizations of hierarchies, where similarity relationships be-
tween attributes are used to induce similarity relationships between objects
consisting of sets of these attributes. We do not cover these extensions in this
article. Our goal here is to rigorously study how a domain hierarchy can be
used to compute similarity between sets of leaves and to explore, compare, and
evaluate the various options available. Different applications require different
notions of similarity and we expect that an analysis of the specific applica-
tion would determine which of our proposed similarity measures suits it the
best.

There are many domains in which hierarchies exist and can be exploited
as we suggest here. For example, there is an inherent hierarchical structure to
the URLs of pages within a single site. This structure can be exploited in clus-
tering user sessions identified from a Web log [Joshi and Krishnapuram 2000;

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 67

Fig. 2. Evolution of similarity measures.

Nasraoui et al. 1999]. Although Nasraoui et al. [1999] do attempt to exploit this
hierarchical structure in computing similarity, the proposed similarity mea-
sure turns out to be highly unintuitive and can provide arbitrarily low values
of similarity even between identical sessions. We would expect the use of our
similarity measures to provide a dramatic improvement in the quality of the
results.

To name a few other examples, the Open Directory [OPD] is a hierarchy
on a subset of pages on the Web. Thus, we can compute the similarity of Web
users, for instance, based on a trace of the Web pages they visit. In the music
domain, songs can be organized into a hierarchy by genre, band, album, and so
on. This hierarchy can then be used, say, to find users with similar tastes, and
recommend new songs to them. In the document domain, we can use existing
hierarchies such as WordNet [Miller et al. 1990] to compute document similar-
ity. In all of these cases, our general-purpose extended similarity measures can
be used to improve functionality.

In summary, the main contributions of this article are the following.

—We introduce similarity measures that can exploit hierarchical domain struc-
ture, leading to similarity scores that are more intuitive than the ones gen-
erated by traditional similarity measures.

—We extend these measures to deal with multiple occurrences of elements (and
of ancestors in the hierarchy), such as those exhibited in A and E in Figure 1,
in a semantically meaningful fashion.

—We analyze the differences between our various measures, compare them
empirically, and show that all of them are very different from measures that
don’t exploit the domain hierarchy.

—We report the findings of a user study to evaluate the quality of the various
measures.

Figure 2 shows the evolution of the measures that we discuss, and serves as
a roadmap for the rest of the article. Section 2 describes traditional measures
of similarity. Section 3 introduces our First-Generation measures, which exploit
a hierarchical domain structure and are obtained as natural generalizations of
the traditional measures. Section 4 introduces the multiple-occurrence prob-
lem, and evolves the measures into our Second-Generation measures. Section 5

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

68 • P. Ganesan et al.

is devoted to a comparison of these measures and their evaluation. Section 6
describes related work.

2. TRADITIONAL SIMILARITY MEASURES

Given two objects, or collections of elements C1 and C2, our goal is to compute
their similarity sim(C1, C2), a real number in [0, 1]. The similarity should tend
to 1 as C1 and C2 have more and more common “characteristics.” There is no
universal notion of which “characteristics” count, and hence the notion of sim-
ilarity is necessarily subjective. Here we define several notions of similarity,
and discuss how intuitive they are.

2.1 The Set/Bag Model

In many applications, the simplest approach to modeling an object is to treat it
as a set, or a bag, of elements, which we term a collection. The similarity between
two collections is then computed on the basis of their set or bag intersection.
There are many different measures in use, which differ primarily in the way
they normalize this intersection value [van Rijsbergen 1979]. We describe two
of them here.

Let X and Y be two collections. Jaccard’s Coefficient, simJacc(X , Y), is defined
to be:

simJacc(X , Y) = |X ∩ Y |
|X ∪ Y | .

Thus, in Figure 1, simJacc(A, D) = 1/(2+ 2− 1) = 1
3 . Dice’s Coefficient, which

we denote simDice(X , Y), is defined to be:

simDice(X , Y) = 2 ∗ |X ∩ Y |
|X | + |Y | .

Once again referring to Figure 1, simDice(A, D) = (2 ∗ 1)/(2+ 2) = 1
2 . Other

such measures include the Inclusion Measure, the Overlap Coefficient, and the
Extended Jaccard Coefficient [Strehl et al. 2000; van Rijsbergen 1979].

2.2 The Vector-Space Model

The Vector-Space Model is a popular model in the information retrieval do-
main [McGill 1983]. In this model, each element in the domain is taken to be a
dimension in a vector space. A collection is represented by a vector, with com-
ponents along exactly those dimensions corresponding to the elements in the
collection. One advantage of this model is that we can now weight the compo-
nents of the vectors, by using schemes such as TF-IDF [Salton and Buckley
1988]. The Cosine-Similarity Measure (CSM) defines the similarity between
two vectors to be the cosine of the angle between them. This measure has
proven to be very popular for query-document and document-document simi-
larity in text retrieval [Salton and Buckley 1988]. Again referring to Figure 1,

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 69

and using uniform weights of 1:

simCos(A, D) =
−→
A · −→D
|−→A ||−→D |

=
−→
b1 · −→b1 +−→b1 · −→m1+−→b2 · −→b1 +−→b2 · −→m1√−→

b1 · −→b1 +−→b2 · −→b2
√−→

b1 · −→b1 +−→m1 · −→m1

= 1+ 0+ 0+ 0√
1+ 1

√
1+ 1

= 1
2
.

Collaborative-filtering systems such as GroupLens [Resnick et al. 1994] use
a similar vector model, with each dimension being a “vote” of the user for a
particular item. However, they use the Pearson Correlation Coefficient as a
similarity measure, which first subtracts the average of the elements from each
of the vectors before computing their cosine similarity. Formally, this similarity
is given by the formula:

c(X , Y) =
∑

j (x j − x)(y j − y)√∑
j (x j − x)2∑

j (y j − y)2
,

where x j is the value of vector X in dimension j , x is the average value of X
along a dimension, and the summation is over all dimensions in which both
X and Y are nonzero [Resnick et al. 1994]. Inverse User Frequency may be
used to weight the different components of the vectors. There have also been
other enhancements such as default voting and case amplification [Breese et al.
1998], which modify the values of the vectors along the various dimensions.

2.3 Measures Exploiting a Hierarchy

There are quite a few distance measures proposed in the literature that may
be adapted to compute similarity while making use of a hierarchy. One such
measure, popular in a variety of domains, is Earth-mover’s distance [Rubner
et al. 1998; Chakrabarti et al. 2000]. This distance computes the dissimilarity
between two collections of points in space by calculating the work to be done in
moving “mounds of earth,” located at points in the first collection, to fill “holes,”
located at the points in the second collection. It is possible to map bags in our
domain into collections of points in space by using the hierarchy to compute the
distance between any two elements of the domain in space. We could thus apply
Earth-mover’s distance to our problem, but this happens to be unsatisfactory
for many reasons, some of which are demonstrated by our user study, described
in Section 5.2. We also provide a detailed analysis of the reasons underlying the
inapplicability of such measures in the extended version of our article [Ganesan
et al. 2002].

As noted in the introduction, there have been attempts to exploit hierar-
chical URL structure in clustering user sessions from a Web log [Joshi and
Krishnapuram 2000; Nasraoui et al. 1999]. Unfortunately, the proposed mea-
sure turns out to be unintuitive, and can provide arbitrarily low similarity
values between identical sessions. There are also other measures such as tree
edit distance and MAC [Ioannidis and Poosala 1999] which could conceivably be
applied to our problem. We provide more details on these measures in Section 6

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

70 • P. Ganesan et al.

Fig. 3. Induced trees for collections A and B.

but, here, we simply note that neither of these measures proves to be a good fit
for the problem at hand.

3. THE FIRST GENERATION

We now describe two new measures we developed, based fairly directly on the
traditional measures, that exploit a hierarchical domain structure in computing
similarity. We first describe our model formally, define some associated concepts,
and then proceed to develop the measures.

3.1 The Model

Let U be a rooted tree, with all nodes carrying a distinct label. We do not impose
any restrictions on the shape of U . Each node can have arbitrary fanout, and
the leaves of U can be at different levels. Let LU be the set of all labels in U . Let
LLU be the set of all labels on the leaves of U . LLU is the element domain, on
which there is a superimposed hierarchy described by U . In our music example,
LLU = {b1, b2, . . . , s1, s2, . . . , m1, m2, . . . , c1, c2, . . .}. A collection C is a bag whose
elements are drawn from LLU .

Let W be a function from LLU to the set of real numbers. W is an a priori
weight function on the leaves of U , which captures the relative importance of
different elements. There are many ways of deriving this weight function. It
could be an Inverse User Frequency such as the one defined in Breese et al.
[1998]. It could also be corpus-independent, and be determined by attributes
of the elements, such as their cost (in monetary terms). Of course, the weight
function also can be uniform.

Since there is a hierarchical structure imposed on LLU , a collection C induces
a tree, a subgraph of U that consists of the ancestral paths of each leaf in C.
We refer to trees that are induced in this manner as induced trees. Notice that,
since C is a bag, the induced tree might have more than one leaf with the
same label. Figure 3 shows the induced trees for the collections A and B from
Figure 1.

As is conventional, the depth of a node in the hierarchy is the number of edges
on the path from the root of U to that node. Given any two leaves l1 and l2 in
U , define the Lowest Common Ancestor LCA(l1, l2) to be the node of greatest
depth that is an ancestor of both l1 and l2. This LCA is always well defined since
the two leaves have at least one common ancestor—the root node—and no two
common ancestors can have the same depth. In Figure 1, LCA(b1, b2) = b, and
LCA(b1, s1) = r.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 71

3.2 The Generalized Vector-Space Model

To illustrate how the Vector-Space Model can be generalized to take the hier-
archy into account, consider Figure 1 again. Let us say that the unit vector
corresponding to a leaf l is represented by

→
l . Now, according to the traditional

cosine-similarity measure, all leaf unit vectors are perpendicular to each other,
which means that the dot product of any two of them is zero. The dot product
of a unit vector with itself is equal to 1.

We have already observed that b1 is, intuitively, somewhat similar to b3 since
they are both Beatles CDs. Thus, if A buys b1 and B buys b3, we need to make
this fact contribute something to the similarity of A and B; that is, we want−→
b1 · −→b3 to be nonzero. In the vector space, we want to assert that

−→
b1 and

−→
b3 are

not really perpendicular to each other, since they are somewhat similar.
We use the hierarchy to decide exactly what value to assign to this dot

product. For example, let us decide that
−→
b1 · −→b3 = 2

3 , since they have a com-
mon ancestor that is two-thirds of the way down from the root. By a similar
reasoning process, we let

−→
b1 · −→s1 be 1

3 . We let
−→
b1 · −→m1 continue to be 0 since they

are in different sections of the hierarchy and don’t seem to have anything to do
with each other, except for the fact that they are both music CDs.

Formally, let the set of leaf labels LLU be {l1, l2, l3, . . . , ln}. Let CountA(li) be
the number of times li occurs in collection A. Then, collection A is represented
by the vector

−→
A =∑n

i=1 ai
−→
li , where ai = W (li) ∗ CountA(li) for i = 1..n. This

usage of weights is identical to the standard Vector-Space Model’s. For any two
elements l1 and l2, we define

−→
l1 · −→l2 = 2 ∗ depth(LCAU (l1, l2))

depth(l1)+ depth(l2)
.

This definition is consistent, since the right side of this equation always lies
between 0 and 1. Note that the dot product is equal to 1 if and only if l1 = l2.

We continue to measure similarity by the cosine-similarity measure, except
that we have now dropped the assumption that the different “components” of
the vector are perpendicular to each other. If collection A is represented by the
vector

−→
A =∑i ai

−→
li and B by the vector

−→
B =∑i bi

−→
li , then

−→
A .
−→
B =

n∑
i=1

n∑
j=1

aibj
−→
li .
−→
l j .

Again, this equation is identical to the standard Vector-Space Model, except
that

−→
li .
−→
l j is not equal to 0 whenever i 6= j . Finally, the cosine similarity

between A and B is given by the traditional formula:

sim(A, B) =
−→
A · −→B√−→

A · −→A
√−→

B · −→B
.

We call this measure the Generalized Cosine-Similarity Measure (GCSM).

3.3 The Optimistic Genealogy Measure

The Generalized Cosine-Similarity Measure from Section 3.2 is not the only,
or even the most intuitive, way to exploit a hierarchy for similarity. Next we

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

72 • P. Ganesan et al.

present a second, more natural, and intuitive measure, and contrast it with
GCSM. Intuitively, the Optimistic Genealogy Measure1 computes a “similarity
contribution” for each element in one collection, and then takes the weighted
average of these contributions to be the similarity between the two collections.
The contribution of an element is determined by how good a “match” it has in
the other collection.

Let C1 and C2 be the collections to be compared and let T1 and T2 be their
induced trees as defined in Section 3.1. For any leaf l1 in T1, define LCAT1,T2 (l1)
to be the ancestor of l1 of greatest depth that is present in T2, that is, the lowest
of the LCAs that l1 shares with the leaves of T2. This LCA provides an indication
of how good the “best match” for l1 can be. For example, for the trees in Figure 3,
LCAA,B(b1) is Beatles, since it is present in tree B, and is the lowest ancestor
of b1 that is present in B. (We abuse notation and let A and B refer both to the
two collections and to their corresponding induced trees.)

Now define:

matchT1,T2 (l1) = {l2 ∈ C2|LCA(l1, l2) = LCAT1,T2 (l1)}.
That is, matchT1,T2 (l1) is the set of all leaves in T2 that can be the “best match”
for l1. In Figure 3, matchA,B(b1) is the set {b3, b4} since both elements match b1
at its parent Beatles. Next, we define:

leafsimT1,T2
(l1) = depth(LCAT1,T2 (l1))

depth(l1)
.

The value leafsimT1,T2
(l1) measures how similar l1 is to its best match in T2. If l1

itself is present in T2, then LCAT1,T2 (l1) = l1, and therefore leafsimT1,T2
(l1) = 1.

On the other hand, if no ancestor of l1 except for the root is present in T2, we
have depth(LCAT1,T2 (l1)) = 0 and, therefore, leafsimT1,T2

(l1) = 0. In Figure 3,
leafsimA,B(b1) is 2

3 and leafsimA,B(b2) is also 2
3 .

Finally, for any two collections C1 and C2 with associated induced trees T1
and T2, respectively, we define the Optimistic Genealogy Measure (OGM) as

sim(C1, C2) =
∑

l1∈C1
leafsimT1,T2

(l1) ∗W (l1)∑
l1∈C1

W (l1)
. (1)

This is just the weighted average of the individual leafsim values of the leaves
in T1. Note that since C1 is a bag, the summation is over all members of the
bag, and is not the set average. In our example, sim(A, B) is also 2

3 , since the
contributions from b1 and b2 are identical.

Note that OGM is, in general, asymmetric; that is, sim(A, B) 6= sim(B, A).
The symmetric simlarity score between A and B is defined to be the average of
the two asymmetric scores.

3.4 Discussion

Table I shows the similarity values computed by various traditional measures
discussed in Section 2, as well as by GCSM and OGM, for the collections in

1The reason for the name becomes clear in the next section.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 73

Table I. Comparison of the Various Measures

sim JC DC CSM GCSM OGM
A, B 0 0 0 0.8 0.67
A, C 0 0 0 0.4 0.33
A, D 0.33 0.5 0.5 0.65 0.67
B, C 0 0 0 0.4 0.33
B, D 0 0 0 0.52 0.5
C, D 0 0 0 0.26 0.25

Figure 1. JC stands for Jaccard’s Coefficient and DC for Dice’s Coefficient. We
compute similarity between every pair of customers, except for customer E,
whom we use in a subsequent example. The values shown are symmetric sim-
ilarity values, with the average of the two asymmetric values being used for
OGM. As motivated in Section 1, we would expect to find that customers A
and B are more similar to each other than A and C. C and D should be even
less similar. From Table I, we see that both of our First-Generation measures
produce this result, whereas the traditional measures do not.

Intuitively, it is not clear whether sim(A, D) should be higher than sim(A, B).
There is a case for saying that sim(A, B) is higher, since both A and B are
“pure” Beatles persons. One could also contend that A and D have a CD in
common, whereas A and B have none, and, therefore, that sim(A, D) ought
to be higher. OGM gives them the same similarity values, and GCSM makes
sim(A, B) higher. The traditional measures claim that sim(A, D) is higher, since
they do not detect any similarity between A and B. GCSM and OGM can be
tuned to adjust the conclusion in cases such as these. We discuss how to achieve
this tuning in the extended version of this article [Ganesan et al. 2002].

3.4.1 Contrasting GCSM with OGM. Having seen how the First-
Generation measures fare on our simple example when compared with the
traditional measures, we now examine the basic differences between GCSM
and OGM.

—GCSM uses many-to-many matches, whereas OGM uses many-to-one
matches. In GCSM, the similarity contribution of an element in one collec-
tion is gathered from all elements in the other collection that have a nonzero
similarity to that element. On the other hand, OGM simply uses the best
similarity score it can find for each element.

—GCSM is a symmetric measure, which means that we will not get high simi-
larity scores if one collection is a subset of the other [Shivakumar and Garcia-
Molina 1995]. OGM can be used as an asymmetric measure, and conveys more
information that may help us identify different semantic notions of similar-
ity. For example, if we wanted to find an “expert” for a particular user A (i.e.,
someone who is knowledgeable about the things that A buys), we would look
for a user B such that her purchases are close to a superset of A’s purchases.
Thus sim(A, B) would be very high, but sim(B, A) might be fairly low.

—GCSM has worst-case complexity quadratic in the number of elements in the
two collections. OGM has complexity linear in the number of nodes in the
induced trees of the two collections.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

74 • P. Ganesan et al.

Fig. 4. Illustrating the problems with multiple occurrences.

4. DEALING WITH MULTIPLE OCCURRENCES—THE SECOND GENERATION

The Vector-Space Model’s approach to multiple occurrences of elements is a con-
sequence of its origins in query—document similarity. The presumption is that,
given a query word, a document that has 100 occurrences of the word is more
relevant to the query than a document that has one occurrence of it. (We note,
however, that the use of normalization schemes may control how much more
relevant the document with the 100 occurrences is.) Although this approach is
reasonable for query—document similarity, it is not completely satisfactory for
interdocument similarity, or, more generally, intercollection similarity.

To see the problem, imagine three people X , Y , and Z . Let’s say that X
buys 1 unit of some element e, Y buys 2 units of it, and Z buys 100 units of
it (and all of them buy a few other, more-or-less similar elements). Intuitively,
X and Y are more similar than X and Z , since X and Y buy about the same
number of units of e, whereas Z is quite different from the two of them. This
conclusion is the exact opposite of that obtained by GCSM. OGM offers the same
conclusion as GCSM since it, too, uses simple many-to-one matches. Although
one may not expect people to buy 100 copies of the same CD, there are many
domains where such a situation does arise.

More importantly, the use of a hierarchy exacerbates the problem, since we
no longer insist on exact matches. For example, let us look at Figure 1 and
compute the similarity between A and E. According to OGM, sim(A, E) is 0.75,
whereas according to GCSM it is 0.89. Table I shows that sim(A, D), accord-
ing to the two measures, is 0.65 and 0.67, respectively. Thus both measures
claim that sim(A, E) is higher than sim(A, D). In this example, we don’t have
multiple copies of any one element, but we have a mismatch in the number of
elements under the Beatles branch. Thus multiple occurrences at any level in
the hierarchy can prove to be a problem.

In the rest of this section we use an abstract example, shown in Figure 4, to
explain the behavior of the First-Generation measures and the new measures
that we propose. In this figure, we compare a family of collections represented
by tree T1(i), for various i, to a collection represented by tree T2. The weights
of all leaves are taken to be 1. The right branch of T1(1) is identical to the right
branch of T2. As i increases, we add more and more leaves to the same branch
of T1 at node 13. We wish to see how sim(T1(i), T2) changes as i increases.

Table II shows the (asymmetric) similarity values computed by the various
measures as a function of i. For example, the first column shows the behavior of

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 75

Table II. Asymmetric Similarity Between T1(i) and T2

i OGM GCSM PGM BGM(0.8) RGM
1 0.7 0.7 0.7 0.7 0.7
2 0.717 0.717 0.47 0.667 0.638
3 0.725 0.703 0.35 0.620 0.617
4 0.730 0.690 0.28 0.573 0.606
∞ 0.75 0.612 0.0 0.0 0.575

Fig. 5. The Balanced Genealogy Measure.

OGM. We see that the similarity value progressively increases and converges to
0.75, which is what each additional leaf under node 12 contributes. According
to our intuition, the similarity should decline as i increases, especially for large
values of i.

The second column shows the behavior of GCSM. We see that the similarity
value goes up for a short while, and then eventually declines to 0.612. This
pattern seems more promising but it, too, is inappropriate. The crucial fact to
note is that this value of 0.612 is still dictated solely by the contribution of each
additional leaf, which is 0.75. But now, instead of the similarity simply being
equal to this value (0.75), it is proportional to the square root of this value.

Intuitively, the reason for this behavior is that the magnitude of the collection
corresponding to T1(i) also increases as i increases since T1(i) now has more
“overlap” among its own elements. This increase has the effect of trying to
lower the cosine similarity, but it is not strong enough to overcome the linear
increase in the numerator of the formula for GCSM. We provide a more detailed
comparison of the semantic implications of the various measures at the end of
this section. The rest of the columns in the table show the behavior of the
measures we describe in the remainder of this section.

4.1 The Balanced Genealogy Measure

OGM admits of a simple generalization that solves the multiple occurrences
problem. The general idea is to be less “optimistic” during similarity computa-
tion, and penalize many-to-one matches: if more than one leaf in the first tree
gets its best match from the same leaf in the second tree, we lower the similar-
ity values that the duplicate matches contribute. Since we don’t want to be too
pessimistic in our similarity computation either, as the traditional measures
are, we call this measure the Balanced Genealogy Measure (BGM).

BGM has a parameter β, a real number in [0, 1], that controls the rate at
which similarity decays with multiplicity of matches. To illustrate, consider
the two trees T1(3) and T2 in Figure 5. Each leaf of T1(3) is annotated with the

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

76 • P. Ganesan et al.

leafsim value (recall Section 3.3) that BGM provides it. To see how these values
are obtained, let us start with leaf 13 in T1(3). This leaf scores a value of 1 since
13 also exists in tree T2. Next, we move on and try to find a match for leaf 14.
The only possible match for 14 is, once again, leaf 13. In OGM, we would have
given this match a score of 0.75. But now we want to penalize leaf 14, since it
matches with a leaf that has been matched once already. So we give it a score
0.75β. For leaf 15, again, the best match available for it in T2 is 13. Since 13 has
been matched twice already, we give 15 a score 0.75β2. We then match leaf 6
with leaf 9 in T2, giving it a score of 0.4. Finally, as usual we take the weighted
average of these scores to arrive at an overall similarity score, which is 0.620
for β = 0.8.

The procedure we have outlined above is dependent on the order in which we
examine the leaves of T1. For example, if we had matched leaf 14 before leaf 13,
leaf 14 would have received a score of 0.75 and 13 would have received a score
1 times β, thus lowering the overall similarity score. We define the similarity
score produced by BGM to be the score generated by “optimal” matching, that
is, by the matching that maximizes the overall similarity score. We explain how
to compute this score in the formal definition, next.

4.1.1 Formal Definition. Say we want to compute sim(C1, C2), with C1 and
C2 inducing trees T1 and T2, respectively. BGM proceeds as follows.

For each leaf l1 in T1, visited in optimal order (defined later):

1. Find a match l2 in T2. Recall that l2 is a leaf in T2 that provides the best
LCA for l1. If there is more than one possible match, pick that l2 which has
been matched the fewest times so far;

2. Increment l2’s match count (initially, all match counts are zero);
3. Define

optleafsimT1,T2
(l1) = depth(LCAT1,T2 (l1))

depth(l1)

and

leafsimT1,T2
(l1) = optleafsimT1,T2

(l1)× βmatch count(l2)−1.

The value sim(C1, C2) is computed as the weighted average of the individual
leafsim values, just as in OGM.

The optimal order is that order of visits of the leaves which leads to the
highest possible similarity score computed according to this algorithm. If C1 has
n elements, the number of possible orderings of leaves is n!. So we cannot afford
to investigate every possible order and then pick the best one. Fortunately, it
is possible to compute the similarity score according to the optimal order, with
very little computational overhead, as explained in the following.

We illustrate the strategy for a simple case where all leaves are at the same
depth and all leaf weights are equal. The general case is covered in Appendix
A. The strategy we adopt is to look for matches in multiple phases. In the first
phase, we look only for exact matches between leaves. In the second phase, we
look for pairs of leaves with a common parent; in the third phase, pairs of leaves
with a common grandparent, and so on. This strategy is guaranteed to produce

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 77

the optimal score. Intuitively, the reason why this strategy works is that we
look for matches in decreasing order of their optleafsim value contribution.

THEOREM 4.1. If the algorithm looks for matches in decreasing order of their
optleafsim contribution, then it computes the BGM score according to the optimal
order.

PROOF. See Appendix A.

THEOREM 4.2. If l is the total number of leaves in T1 and T2, h is the maxi-
mum depth of the hierarchy, and b is the maximum branching factor in T2, the
worst-case computational complexity of the algorithm is O(lh(h+ log b)).

PROOF. See Appendix A.

In practice, log b would be much smaller than h which, itself, tends to be small
in most domains. Also note that the bound provided in Theorem 2 is the worst
case, and is realized only when computing the similarity between extremely
dissimilar collections. In most applications, we would not be interested in the
exact similarity value between such dissimilar collections, and we would be
able to prune the computation, thus achieving a much better computational
complexity.

4.1.2 Discussion. First, notice that setting β = 1 instantiates BGM to
OGM. At the other extreme, setting β = 0 is a pessimistic evaluation of simi-
larity where we insist that no leaf in T2 is matched more than once. We call this
extreme the Pessimistic Genealogy Measure (PGM). PGM and OGM provide
the lower and upper bounds, respectively, on the similarity values computed by
BGM.

We now look at the similarity scores computed by BGM for the example in
Figure 4 for two different β values, 0 (PGM) and 0.8. Recall that these values
were included in Table II. We see that similarity declines to 0 in both cases,
but it declines much faster with β = 0. This behavior is no surprise, since β
controls the degree of optimism of the measure. The important observation is
that the similarity score actually does decline as i increases, which is what we
set out to achieve.

4.2 The Recursive Genealogy Measure

Let us revisit the multiple occurrences problem. The problem with multiple
occcurrences, as we have seen, is that we tend to be too “optimistic” in our sim-
ilarity estimates, which is unwarranted when we have many leaves in one tree
matching just one leaf in the other tree. If we revisit the computation performed
by OGM, shown in Equation (1), we see that there are two ways of solving this
problem. The first is the approach adopted by BGM, namely, lowering similarity
for duplicate matches. Alternatively, we could leave the similarity values alone
and, instead, lower the weight that we assign to these duplicate matches. This
is the approach that we study now, called the Recursive Genealogy Measure
(RGM). In Section 4.3, we compare the semantic underpinnings of these two
approaches.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

78 • P. Ganesan et al.

Fig. 6. The Recursive Genealogy Measure.

We once again use trees T1(3) and T2, now shown in Figure 6, to explain
RGM. The similarity computation consists of the following phases. In the first
phase, we compute leafsim values just as in OGM. In Figure 6, they are the first
element of the ordered pairs on the leaves of T1(3). Then, to compute the overall
similarity value for the two trees, we use a bottom-up computation on T1(3) to
make the leafsim values flow to the top of the tree. The value that is obtained at
the root node is the similarity between the two trees. The value at an internal
node stands for the similarity between that subtree and the appropriate portion
of T2.

To perform this computation, we first need to define weights for the nodes
in the two trees. We take the weights of all the leaves to be 1 in this example.
We first look at T2. Here the weight of an internal node is simply the sum of
the weights of its children. Thus the root has a weight of 2, and all others have
a weight of 1 (shown in square brackets). The crux of the measure is in the
assignment of weights to the nodes in T1(3). Weights are defined in T1(3) just
as in T2, with one exception. If a node in T1 also appears in T2, and its weight
is lower in T2, we use this lower value as its weight in T1.

In the figure, the weights of the nodes are shown as the second elements
of the bracketed ordered pairs. In the left subtree of T1(3), the weights are all
simply 1. But in the right subtree, the weight of node 12 is not 3, because node
12 has a lower weight of 1 in T2. The fact that all leaves under 12 can match
just a single leaf in T2 is captured by assigning a weight of 1 to node 12.

Once these weights are assigned, we compute similarity by a simple bottom-
up calculation. The similarity at any internal node is the weighted average of
the similarity at all its children. Thus in Figure 6 the similarity at node 12 is
(1+ 0.75+ 0.75)/3 = 0.833 (shown as the first element of the ordered pair).
The similarity at the root is the actual similarity value between the two trees,
which is 0.617 in this case. If node 12 in tree T2 had more children, say 16 and
17, the weight of node 12 in T1 would remain 3, consequently pushing up the
overall similarity to 0.725.

We provide more details on the RGM measure and its formal definition in
Appendix B.

4.2.1 Comparison. First notice that the computational complexity of RGM
is linear in the total number of nodes in the induced trees of the collections
under comparison. This complexity is the same as that of OGM and better than
BGM’s.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 79

The last column in Table II shows the similarity values computed by RGM
for the trees in Figure 4. We see that the similarity value declines as i increases,
which is the effect that was desired. Notice that the similarity value declines
slowly and does not eventually converge to zero; instead, it converges to a value
0.575. At first sight, this behavior seems to resemble GCSM, which also declines
and converges to a nonzero value, but there is a significant difference between
the values that they converge to, which we explain in Section 4.3. RGM is very
different from GCSM as shown in our experimental results in Section 5.1.

4.3 Summary and Discussion

The fact that we have proposed more than one measure, each of which handles
multiple occurrences in its own way, is a natural consequence of the different
possible interpretations of the idea of similarity. Reconsider our original exam-
ple in Figure 1, particularly the similarity between A and E. Recall that A has
two Beatles CDs, and E has 14 Beatles CDs and one classical music CD.

One way to look at the similarity of A and E would be to observe that a high
percentage of E ’s purchases are Beatles CDs. Therefore, we could treat E as a
“Beatles person.” Since A is also a “Beatles person,” we give them a very high
similarity score. This interpretation is the one offered by OGM. GCSM uses an
interpretation that is almost identical, but with one important difference. It
observes that each of A’s purchases is very similar to almost every one of E ’s
purchases. The high similarity score resulting from this observation is tempered
by the fact that E ’s purchases are, themselves, very similar to each other.

The BGM interpretation is influenced by the difference in size between A
and E: The fact that E has 14 Beatles CDs and A has just 2 makes them
somewhat dissimilar according to BGM. The fourth, and final, interpretation
differs markedly from the first three. None of the first three interpretations
were influenced much by the fact that E bought a Mozart CD. All of them were
swayed primarily by the fact that the majority of the CDs bought by E were
Beatles CDs. The RGM interpretation localizes the effects of the Beatles CD
purchases, and is influenced by the other purchases of A and E as well.

It is not clear that one of these interpretations is always the “correct” in-
terpretation. Quite often, it depends on the nature of the domain, the nature
of the collections, and the exact semantic need. For example, if we knew that
we wanted similarity of queries to documents, and we didn’t care too much
about overlap between query terms, we would settle for the first interpretation
(OGM). The second interpretation (GCSM) might be useful for longer queries,
where we might take into account the fact that two of the query words are
describing related concepts. For example, if we had both the words “car” and
“bicycle” in a query, which also consisted of many other words, we might want
to take into account the relationship between these words.

Choosing between the third (BGM) and fourth (RGM) interpretations is dic-
tated by the relative importance of the coverage and distribution of elements.
For example, in Figure 1 we could choose to ignore the fact that E bought a
Mozart CD, as BGM does, as long as we care only about the distribution of the
elements. If coverage is important, we do want to factor in E ’s Mozart CD, and

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

80 • P. Ganesan et al.

the RGM interpretation permits us to do so. By suitably choosing the correct
function to use in computing weights in RGM (as explained in Appendix B), we
can pick the desired balance between coverage and distribution.

4.4 Other Extensions

There are other extensions to the model and the measures, such as the intro-
duction of edge weights, handling of DAGs, and handling weight skew, which
we have omitted for clarity and due to space constraints. They are described in
the extended version of this article [Ganesan et al. 2002].

5. EVALUATION

We now proceed to evaluate our measures empirically. There are several types
of questions one may pose.

1. How different are the measures from each other and from the traditional
measures in practice? If all measures give roughly the same rankings, we might
as well use the traditional measures. But if there are differences, can we char-
acterize when the differences occur?

2. How well does each of them match human intuition? Would a human agree
with the similarity rankings produced by our measures?

In Section 5.1, we provide detailed comparisons of the various measures, ana-
lyze where and how much the measures differ, and, in the process, show that
using a hierarchy produces results very different from those produced by tra-
ditional measures. In our evaluation, we choose Jaccard’s Coefficient as repre-
sentative of the traditional nonhierarchy-aware measures, and refer to it as the
Naive measure. All of the traditional measures are extremely similar when com-
pared against our hierarchy-aware First- and Second-Generation measures, so
Jaccard’s Coefficient is a good representative.

In order to show that using a hierarchy yields more intuitive similarity re-
sults, we rely on a user study, as detailed in Section 5.2. In this section, we also
compare our measures to the Earth-mover’s distance in order to establish our
claim that the Earth-mover’s distance is not a satisfactory similarity measure
for many applications.

5.1 Experimental Comparison of the Different Measures

For the experiments reported in this section, we used transcripts of undergrad-
uate CS majors at Stanford as our data set. Each transcript is a collection of
(course, grade) elements. The objective is to compute how similar two students
are, on the basis of the courses they have taken and the grades they have ob-
tained in those courses. There were a total of 403 transcripts, with an average
of about 41 (course, grade) pairs per transcript.

The hierarchy consists of six levels: department, course level, course subject,
course number, and a two-level grade classification, in that order. Changing
this order leads to different hierarchies and, consequently, different semantics
for similarity. For example, placing the grade levels at the top of the hierarchy
would mean that we want to pay more attention to the grades that students

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 81

Fig. 7. The Distance Measure.

get, rather than the courses they take, in determining the similarity between
two students. Thus the choice of the hierarchy reflects the semantic need of the
application.

5.1.1 The Distance Measure. Given a similarity measure M and any col-
lection X , we can generate a ranked list of collections LM (X), in decreasing
order of similarity to X . In most cases, it is this ranked list that is important,
rather than the actual similarity values that we compute. Moreover, most ap-
plications only care about the top portion of this list, say the Top K , whether
it is in order to find the nearest neighbors of a given collection, or whether it
is to return the top K matches to the collection. We therefore define a distance
measure2 to compare similarity results on the basis of these ranked lists of
collections. Our distance measure is a simple normalized variant of the well-
known Spearman’s Footrule Distance measure, with adjustments for double
counting and cases where the two lists aren’t permutations of each other, and
is illustrated below. We note that the footrule distance is also closely related to
Kendall’s τ which measures the number of inversions between two ranked lists.
(The footrule distance always lies between τ and 2τ .) We compare the ranked
lists generated by two different measures by imagining one of the measures
as generating an “ideal” ranking. We then measure how much each collection
is displaced from its ideal ranking by the second measure. To illustrate, let us
look at Figure 7. We wish to compare two measures, 1 and 2, that produce two
different ranked lists of collections A through E, given some other collection X
to compare against. First, we notice that A has rank 1 in the first list, whereas
it has rank 2 in the second. Thus A contributes a displacement of 1 to the total
distance between the lists. Next, we see that B has rank 2 in the first list, and it
has rank 1 in the second. This is an upward displacement and we do not count
it, because it is already captured by the fact that A, B, C, and D are all pushed
down a step by B’s moving up. Similarly, C contributes a displacement of 1,
and D and E contribute nothing. Thus the total distance between the ranked
lists is 2, and the average displacement is 2

5 = 0.4. In the example above, we
computed the distance over the whole list. Computing it over the top K is done
in the same manner, except that we only consider the top K collections of the
first measure.

To define this measure formally, let S be the set of all collections. Let
rankM,X (A) be the rank of collection A in list LM (X). Furthermore, let LM (X)[i]
refer to the collection that has rank i. We define the Top-K Distance between
measures M1 and M2, when used to compute similarity against collection X ,

2Not to be confused with our similarity measures.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

82 • P. Ganesan et al.

Fig. 8. Average top K distance with respect to RGM.

as follows. (The −̇ operator yields 0 if the difference is negative.)

TopKDistM1,M2,K (X) =
∑K

i=1 rankM2,X (LM1 (X)[i]) −̇ i
K

.

In order to understand how well the metrics agree on different segments of
the ranked lists that they produce, we also define a distance measure over a
“window” of the ranked lists. This definition is identical to the previous one,
except that instead of looking at the top K according to the first measure, we
look at collections in a specific window. In this case, we cannot omit downward
displacements, since omitting them would make windows in the lower segments
of the list appear closer. For the example in Figure 7, the average distance for a
window of size 3, starting at position 2 (i.e., covering collections B, C, and D),
is given by (1+ 1+ 1)/3 = 1. Formally,

WindowDistM1,M2, I,K (X) =
∑I+K−1

i=I |rankM2,X (LM1 (X)[i])− i|
K

.

Notice that the ranked lists we have seen so far have been generated by picking
an arbitrary collection X , and arranging all other collections by their similar-
ity to it. Thus, in order to be able to compare two measures, we average the
distances we compute over all possible choices for X . We note that the variance
in the results across the different choices for X is fairly small.

Figure 8 shows the average rank displacement in the top K list for various
measures with respect to RGM, as a function of K . Notice that the average

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 83

displacement for the Naive measure, even for the top 10, is as much as 40, which
is about 10% of the size of the entire corpus. This result means, informally, that
the collections that RGM considers the top 10 would be, on average, around the
40th or 50th position under the Naive measure, a very significant difference!
On the other hand, all the Genealogy measures are bunched around the bottom
of the graph, with even their peak displacement being well under 20. In fact,
for the top 10 list, the average displacement between RGM and OGM is just
1.42. This result means that RGM and OGM agree very well on what the most
similar collections to a target collection X are. For the BGM family, as the
value of β decreases, the displacement starts getting larger and larger, but it
is still much smaller than the displacement of GCSM and that of the Naive
measure.

It is important to realize that this graph only compares measures against
RGM. For example, the displacement between the GCSM and the Naive mea-
sure is not given by the difference between the curves corresponding to them on
this graph. Also notice that all the curves have roughly the same shape, rising
for a while and then dropping off as K increases. This behavior is illustrated
better by Figure 9(a), which shows the average rank displacement, in a sliding
window of size 10, of all measures with respect to RGM.

The general shape of the curves tells us that, for all the measures, there is
greater agreement at the beginning and the end of the list than in the middle:
there are a few collections that are clearly the most similar and a few that are
clearly the most dissimilar. These collections are more easily identified by all
the measures and, therefore, the measures agree more in the beginning and
the end.

Figure 9(b) plots a similar graph, this time comparing the various measures
to OGM using a sliding window. Once again, we notice that the Naive mea-
sure produces results that are extremely different from the results produced by
OGM. For BGM, the distance from OGM gets larger as β decreases, which is to
be expected since OGM has β = 1. But the rankings appear much less sensitive
to β at the beginning and the end of the ranked lists. We also see that the curve
for RGM lies between the curves for β = 0.6 and β = 0.8. Again note that this
result does not mean that RGM behaves as BGM with β = 0.7. All it means is
that RGM is as different from OGM as BGM with β = 0.7.

These graphs establish conclusively that using a hierarchy makes a signifi-
cant difference to the similarity rankings that are generated. We also conclude
that GCSM is rather different from the Genealogy measures, a fact that we
attribute to GCSM’s use of many-to-many matches. BGM is sensitive to the
specific choice of β, but the sensitivity is much lower at the top and the bottom
of the lists. Thus the choice of β is not too critical if one is trying to identify
clearly similar or dissimilar collections. RGM and OGM are extremely sim-
ilar at the top of the list, which is to be expected in this domain. Our data
set does not have any multiplicity at the leaf level since it was rarely the
case that a student repeated a course and ended up with the same grade.
Nevertheless, the presence of a lot of multiplicity at the higher levels illus-
trates the important role that its interpretation plays in producing similarity
values.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

84 • P. Ganesan et al.

Fig. 9. WindowDist10 with respect to (a) RGM and (b) OGM.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 85

Fig. 10. A sample question.

5.2 Matching Human Intuition

In order to understand how well the various measures match human intuition,
we performed user studies on two different sets of people. Some of the important
issues in the design of the study were the following.

—The users needed to be familiar with the domain from which the collections
were drawn. With this in mind, we chose two different domains: the super-
market domain (with each collection being a bag of grocery items) and the
course transcript domain introduced in Section 5.1.

—It was not reasonable to expect users to come up with absolute similarity
scores between collections. Instead we asked users to rank two collections
according to their similarity to a given third collection.

—The collections needed to be reasonably small in order to keep the questions
tractable. Fortunately, even collections with a small number of distinct ele-
ments proved sufficient to test the validity of the premises underlying the
different measures.

The questions in the user study were chosen to highlight the differences be-
tween the various metrics. We cannot claim that our distribution of questions
across various collection characteristics exactly resembles the distribution in
a real-world application; however, we attempted to maintain a uniform spread
across all collection characteristics while continuing to keep the questions rel-
atively easy to understand.

Figure 10 shows a sample question from our user study. It shows the pur-
chases of a “query” customer Q and two other customers A and B, along with
the product hierarchy associated with their purchases. The objective was to
identify which of A and B was more similar to Q. The users were also offered
two other choices: that both A and B are equally similar to Q, or that they
cannot answer the question intuitively. The latter choice was important in or-
der to not force people to pick one of A and B when neither appeared to be a
conclusive winner over the other. In the question shown in Figure 10, a large

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

86 • P. Ganesan et al.

Table III. Percentage User Agreement with Similarity Metrics

Qn# Jaccard’s EMD GCSM OGM PGM BGM(β = 0.8) RGM
1 100 100 100 100 100 100 100
2 0 100 100 100 100 100 100
3 3 91 91 91 91 91 91
4 16 16 76 76 16 76 76
5 0 16 82 82 16 82 82
6 0 62 0 0 38 62 38
7 94 3 3 94 94 94 94
8 94 94 94 94 94 94 94
9 42 54 4 4 54 42 54
Overall 38 59 61 71 67 82 81

majority of the users believed that A was more similar, a conclusion that cannot
be arrived at using traditional similarity measures, or using metrics such as
Earth-mover’s distance (EMD). We provide a detailed analysis of the reasons
underlying the inapplicability of EMD in the extended version of our article
[Ganesan et al. 2002].

The test was designed to be immune to the sequence in which questions
were posed to the user, so that answering earlier questions did not bias the users
towards a specific answer for the later questions. We performed our study on two
different sets of users in order to establish statistical validity. One set consisted
of 37 people, all of whom had a knowledge of computer science. The second set
consisted of a smaller group of 15 people from nontechnical professions. The
results of the two studies exhibited extremely high correlation, establishing
that the technical background of the test audience had no impact on the results.
We describe only the larger-scale study here. Table III shows the percentage
of users who agreed with the conclusion that would be reached by each of the
listed metrics, for each of nine questions, and the overall agreement with the
various metrics.

For example, line 5 of Table III shows the results of the studies on the question
shown in Figure 10. Of the users polled, 82% chose answer (a), and 16% chose (c).
As we can see from the table, GCSM, OGM, BGM, and RGM agree with the
majority of the users, whereas EMD and PGM agree with the minority opinion.
Jaccard’s picks option (b) which was not chosen by any of the users.

From this table, we see that Jaccard’s coefficient, EMD, GCSM, and PGM all
predict conclusions that are contrary to the opinion of a majority of the users
in at least three of the nine test cases. OGM contradicts the users in two cases,
whereas BGM and RGM are the only two metrics that find sizable support for
their conclusions in all the cases. This is also reflected in the bottom line, where
we see that the overall support for BGM and RGM is significantly higher than
that for the other metrics. We also observe that the “bottom line” only gets
better if we remove the noise introduced by a few users arriving at conclusions
different from the vast majority of the users.

Space constraints prevent reporting all our results, but briefly, the following
conclusions were drawn from the study.

—Using the hierarchy is definitely an improvement over a naive approach, and
more intuitive similarity results are obtained.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 87

—GCSM does not perform as well as the Genealogy measures in these domains.
—There is significant agreement with both BGM and RGM and, in cases where

BGM and RGM offer different conclusions, the users are divided on what the
right conclusion is.

—For BGM, the study established that β values of 0 and 1 (OGM and PGM,
respectively) are both unsatisfactory. Again, application semantics would
determine the exact value of β although the reasonably low sensitivity to
β in our experiments in Section 5.1 suggests that a β value around 0.5 is
reasonable.

—Using different hierarchies on the same domain leads to different notions of
similarity. Comparing the same bags, while superimposing different hierar-
chies on them, leads to different conclusions. The hierarchy that an applica-
tion imposes thus enables it to “define” what is meant by the term “similar.”

6. RELATED WORK

The use of a hierarchy on attributes is a special case of exploiting general rela-
tionships between attributes in order to compute similarity. The SMART system
[Salton 1968] was one of the earliest to suggest and use such relationships, and
the same idea is also explored in Lustig [1967]. Both works exploit statistical
correlations between keywords in computing relevance of documents to queries.
Soergel [1967] provides a theoretical framework in which to describe different
similarity measures, and proposes and analyzes a number of similarity mea-
sures that may be adapted to using a hierarchy by employing our techniques.

There have been attempts to improve traditional cosine similarity, as well
as address data sparsity, using dimensionality-reduction techniques such as
Latent Semantic Indexing (LSI) [Deerwester et al. 1990]. This technique actu-
ally shows some improvement in the quality of the similarity scores, since it
tries to infer latent relationships between dimensions. Such techniques have
also been tried in collaborative filtering [Sarwar et al. 2000] but it appears
somewhat unclear as to whether it actually improves recommendation quality.
Notice that using a domain hierarchy is actually an implicit form of dimension
reduction, because the hierarchy implies that all elements are not orthogonal to
each other. On the other hand, our techniques explicitly define the relationship
between the different dimensions, whereas LSI infers the relationships from
the corpus.

Ioannidis and Poosala [1999] study the problem of computing distance be-
tween bags of real numbers and propose a matching-based metric called MAC
that bears some resemblance to our BGM. MAC was designed to address many
of the same concerns that we outlined but does not map to a clear semantics
when we apply it to work with hierarchies, perhaps because it was designed to
work with sets of numbers. It also requires the setting of two tuning parameters
that make a significant difference to the numbers computed by the algorithm.
Furthermore, it is formulated as a graph-theoretic problem and could be ex-
pensive to compute. Nonetheless, the motivations behind its design are very
similar to ours and Ioannidis and Poosala [1999] explain the shortcomings of
alternative metrics at some length.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

88 • P. Ganesan et al.

Yet another class of distance measures is edit distance [Sankoff and Kruskal
1983], wherein the distance between two structures is measured by the cost of
the edit operations needed to transform one structure to the other. Algorithms
for finding the optimal edit script exist for various types of structures, and for
various sets of edit operations. Computing the optimal edit distance between
unordered trees, even with simple edit operations, is NP-complete [Shasha and
Zhang 1997]. In addition, edit distance does not give us the freedom to deal with
nuances of intercollection similarity, such as handling multiple occurrences.

Information-theoretic measures such as the expected mutual information
and information radius [van Rijsbergen 1979; Sibson 1972] have also been used
as measures of similarity (or dissimilarity) in classification and clustering ap-
plications. van Rijsbergen [1979] discusses how these measures may be used
in probabilistic models in order to capture correlations between different terms
occurring in the corpus. However, these measures are more useful as a means
of measuring similarity between elements rather than in dealing with sets or
bags of elements. Again, there is no easy way to support different semantics for
multiple occurrences.

There have been quite a few attempts to use word hierarchies such as
WordNet [Miller et al. 1990] in information retrieval. In Rada et al. [1989],
the semantic similarity between two words is defined as the weight of the
path between the words, which is similar to our definition of the LCA of two
leaves. Other works [Lee and Kim 1993; Kim and Kim 1990] have also used this
“conceptual distance” measure for information retrieval. There are also other
information-based measures based on the same hierarchy [Resnick 1995] that
can be used for word similarity. Richardson and Smeaton [1995] compare the
efficacy of different word-similarity measures in computing query—document
similarity. All these works are focused on query—document similarity and do
not generalize to intercollection similarity. Richardson and Smeaton [1995] also
discuss the issue of generating edge weights for the concept graphs, which could
find use in our work in generating edge weights for our hierarchy, as discussed
in the full version of our article [Ganesan et al. 2002].

Our definition of the dot product between the unit vectors is also similar to the
hypermetric generated by hierarchical classification [Sneath and Sokal 1973].
This connection to classification is more coincidental than directly relevant,
since a hypermetric is a natural consequence of any hierarchy, whether it is
given a priori or generated by hierarchical classification. The measure we use
is not the natural hypermetric on the hierarchy, which is simply the distance
to the lowest common ancestor, but a normalized version of the depth of the
lowest common ancestor.

Scott and Matwin [1998] study the use of a hypernym density representa-
tion instead of a bag-of-words representation in text classification and report
improvements for corpora with a reasonable amount of diversity. de Buenaga
Rodrı́guez et al. [1997] also report improvements in text classification when
using WordNet to enhance neural network learning algorithms. But neither of
these works uses a direct similarity measure based on the hierarchy.

Concept hierarchies have frequently been used in data mining. They
have been used to mine multilevel association rules [Han and Fu 1995; Srikant

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 89

and Agrawal 1995] and to improve knowledge discovery in textual databases
[Feldman and Dagan 1995]. Neither of these two applications is directly related
to computing similarity using hierarchies.

There has also been work on computing similarity between attributes, and
inferring attribute hierarchies in tables by using learning techniques on the
data in the tables [Das et al. 1998]. This problem may be viewed as being a dual
to ours, as it tries to infer a hierarchy from the data rather than the other way
round. There are other classes of methods used to compute similarity between
collections that exploit the structure between collections. For example, Bollacker
et al. [1998] and Jeh and Widom [2001] use the link structure of research papers
to compute similarity between them. Melnik et al. [2002] use a graph-theoretic
algorithm called Similarity Flooding to identify mappings between schemas.
Such methods are not directly related to our work, except they may perhaps be
used to solve the same overall problem.

7. CONCLUSIONS

We proposed exploiting hierarchical domain structure to compute similarity
between collections. We defined similarity measures that use the hierarchy,
showed why traditional measures, as well as some of our own measures, often
have unsatisfactory semantics, and suggested refinements that provide good
semantics for intercollection similarity. We performed empirical comparisons
of our measures with traditional similarity measures, and showed that using
the hierarchy makes a large difference, both in terms of the values that are pro-
duced, and in terms of ranked lists of collections similar to a given collection.
We have reported the findings of a user study justifying our belief that our mea-
sures generate results that are closer to human intuition than the traditional
similarity measures.

We are currently in the process of building recommender systems using the
measures introduced in this article, and using the hierarchy in other portions
of the recommender system. Preliminary results are encouraging, and seem to
provide higher-quality recommendations than the simple Pearson-correlation-
based, nearest neighbor approaches.

APPENDIX

A. BGM DETAILS AND PROOF OF THEOREMS

Recall from Section 4.1 that, for trees where all leaves are at the same level,
the BGM algorithm operates in phases. In the first phase, it looks only for exact
matches between leaves. In the second phase, it looks for pairs of leaves with a
common parent, in the third phase, pairs of leaves with a common grandparent,
and so on. This strategy is guaranteed to produce the optimal score.

The strategy for the general case, where we have leaves at different depths
and different leaf weights, is a generalization of the strategy outlined above.
The key idea is to generate leafsim values in decreasing order of optleafsim∗W ,
using a generalization of the multiphase approach. This order is computed in
a preprocessing step, and does not have to be generated for each individual

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

90 • P. Ganesan et al.

similarity computation. We now prove that this strategy does compute the BGM
score according to the optimal order. (We take all weights to be 1, for simplicity.)

THEOREM 1. If the BGM algorithm looks for matches in decreasing order of
their optleafsim contribution, then it computes the BGM score according to the
optimal order.

PROOF. We observe that BGM is exactly identical to OGM in terms of the
set of possible matches that every leaf has, except that some of the match value
contributions are reduced by multiplication by some power of β. For any leaf
l1 belonging to tree T1, there is an associated set matchT1,T2 (l1). The optleafsim
value that we attach to a match of l1 is the same irrespective of which element
of the set to which we match l1. From this fact, it follows that the number of
matches for which the match value is reduced (as compared to the optimistic
match value) is independent of the sequence in which we match leaves from
the first tree T1.

Consequently, ensuring that we consider matches in decreasing order of
optleafsim values ensures that we always reduce the smallest possible optleaf-
sim value at every stage and, therefore, provides us with the BGM score ac-
cording to the optimal order.

THEOREM 2. If l is the total number of leaves in T1 and T2, h is the maximum
depth of the hierarchy, and b is the maximum branching factor in T2, the worst-
case computational complexity of the algorithm is O(lh(h+ log b).

PROOF. We first observe that, unlike the OGM algorithm, we need to main-
tain state in each of the leaves keeping count of how many times the leaf has
been matched so far. When trying to choose from a set of possible matches
the leaf that has been matched the fewest number of times so far, it would be
much too expensive to check each of the possible matches and then choose the
minimally matched leaf. Instead, at each internal node of T2, we maintain a
priority queue of its children, prioritized by the least number of matches of
any leaf in the subtree of each of the children. As leaves are matched during
the algorithm, the priority queues need to be updated to reflect the changes.
Our observation is that we will never need to update more than one priority
queue for any additional match that we make. This is because the key values
in the priority queues always increase by one, meaning that if the minimum
key value k in a priority queue increases to k + 1 and necessitates an update
to the priority queue, the minimum value in the priority queue continues to
be k (if it is greater than k, then no update would have been necessary). Thus
the minimum value of the priority queue did not change and, therefore, none
of the priority queues above this node will require any updates.

From this observation, it is easy to see that the BGM algorithm is bounded
by a worst-case complexity of O(lh(h + log b). The cost of traversing down the
hierarchy to find a match for a leaf and updating the priority queue is captured
by h+ log b. For each leaf, we attempt to match it at most h times, once at each
level of its ancestors, due to which we get the factor lh.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 91

B. FORMAL DEFINITION OF RGM

Recall Section 4.2. For any tree T and any node n in T , let CT (n) be the set of
all children of n in T . Let WT (k) be the weight of node k in tree T . We explain
shortly how to compute WT (k), given our original weight function W which is
defined only for the leaves of trees.

Let C1 and C2 be the two collections under comparison, and let T1 and T2
be their associated trees, as usual. We first define the weights to be associated
with all the nodes in tree T2. We then define the weights for all the nodes in T1.

WT2 (n) = W (n) if n is a leaf of T2

=
∑

c∈CT2 (n)

WT2 (c) if n is an internal node of T2

= ∞ otherwise.

We have defined the weights of nodes not in T2 to be ∞ for notational
convenience.

WT1 (n) = W (n) if n is a leaf of T1

= min

 ∑
c∈CT2 (n)

WT1 (c), WT2 (n)

 if n is an internal node of T1

= 0 otherwise.

For any internal node in T1, its weight is determined both by the sum of the
weights of its children in T1, say p, and by the weight of the same node in T2, say
q. Although we have chosen to use min(p, q) as our weight, we could, in general,
use any function, although functions that return a value between p and q make
the most sense. The effect of this choice was discussed in Section 4.3.

Let simT1,T2 (n) denote the similarity value “at” a node n in tree T1. The sim-
ilarity between the two trees sim(T1, T2) is given by

sim(T1, T2) = simT1,T2 (root(T1)).

For all nodes n in T1, we define:

simT1,T2 (n) = optleafsimT1,T2
(n) if n is a leaf (defined in Section 4.1.1)

=
∑

c∈CT1 (n) WT1 (c) ∗ simT1,T2 (c)∑
c∈CT1 (n) WT1 (c)

if n is an internal node

REFERENCES

BOLLACKER, K., LAWRENCE, S., AND GILES, C. L. 1998. CiteSeer: An autonomous Web agent for au-
tomatic retrieval and identification of interesting publications. In Proceedings of the Second
International Conference on Autonomous Agents, 116–123.

BREESE, J. S., HECKERMAN, D., AND KADIE, C. 1998. Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the Fourteenth Annual Conference on Uncertainty in
Artificial Intelligence.

CHAKRABARTI, K., GAROFALAKIS, M. N., RASTOGI, R., AND SHIM, K. 2000. Approximate query process-
ing using wavelets. In Proceedings of VLDB 2000, 111–122.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

92 • P. Ganesan et al.

DAS, G., MANNILA, H., AND RONKAINEN, P. 1998. Similarity of attributes by external probes. In
Proceedings of Knowledge Discovery and Data Mining (KDD), 23–29.

DE BUENAGA RODRÍGUEZ, M., GÓMEZ-HIDALGO, J. M., AND DÍAZ-AGUDO, B. 1997. Using WordNet to
complement training information in text categorization. In Proceedings of the Second Interna-
tional Conference on Recent Advances in Natural Language Processing.

DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., AND HARSHMAN, R. 1990. Indexing
by latent semantic indexing. J. Amer. Soc. Inf. Sci. 41, 6, 391–407.

FELDMAN, R. AND DAGAN, I. 1995. Knowledge discovery in textual databases. In Proceedings of
KDD-95.

GANESAN, P., GARCIA-MOLINA, H., AND WIDOM, J. 2002. Exploiting hierarchical domain structure to
compute similarity. Tech. Rep., Available at http://dbpubs.stanford.edu/pub/2001-27.

GOLDBERG, D., NICHOLS, D., OKI, B. M., AND TERRY, D. 1992. Using collaborative filtering to weave
an information tapestry. Commun. ACM 35, 12, 61–70.

GOOD, N., SCHAFER, J. B., KONSTAN, J. A., BORCHERS, A., SARWAR, B. M., HERLOCKER, J. L., AND

RIEDL, J. 1999. Combining collaborative filtering with personal agents for better recommen-
dations. In Proceedings of AAAI/IAAI.

HAN, J. AND FU, Y. 1995. Discovery of multiple-level association rules from large databases. In
Proceedings of VLDB ’95, 420–431.

IOANNIDIS, Y. E. AND POOSALA, V. 1999. Histogram-based approximation of set-valued query-
answers. In Proceedings of VLDB 1999, 174–185.

JEH, G. AND WIDOM, J. 2001. Simrank: A measure of structural-context similarity. Tech. Rep.
Stanford University. Available at http://dbpubs.stanford.edu/pub/2001-41.

JOSHI, A. AND KRISHNAPURAM, R. 2000. On mining Web access logs. In ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, 63–69.

KIM, Y. AND KIM, J. 1990. A model of knowledge based information retrieval with hierarchical
concept graph. J. Doc. 46, 2, 113–116.

LEE, J. AND KIM, M. 1993. Information retrieval based on a conceptual distance in is-a heirarchy.
J. Doc. 49, 2, 188–207.

LUSTIG, G. 1967. A new class of association factors in mechanized information storage, retrieval
and dissemination. In F. I. D./I. F. I. P. Joint Conference (Rome).

MCGILL, M. J. 1983. Introduction to Modern Information Retrieval. McGraw-Hill, New York.
MELNIK, S., GARCIA-MOLINA, H., AND RAHM, E. 2002. Similarity flooding: A versatile graph match-

ing algorithm. In Proceedings of ICDE 2002.
MILLER, G. R. B. FELLBAUM, C., GROSS, D., AND MILLER, K. 1990. Introduction to WordNet: An

on-line lexical database. J. Lexicog. 3, 4, 234–244.
NASRAOUI, O., FRIGUI, H., JOSHI, A., AND KRISHNAPURAM, R. 1999. Mining Web access logs using

relational competitive fuzzy clustering. In Proceedings of the Eighth International Fuzzy Systems
Association World Congress—IFSA 99 (Taipei).

OPD. The Open Directory Project. Available at http://dmoz.org/.
RADA, R., MILI, H., BICKNELL, E., AND BLETTNER, M. 1989. Development and application of a metric

on semantic nets. IEEE Trans. Syst. Man Cybern. 19, 1, 17–30.
RESNICK, P. 1995. Using information content to evaluate semantic similarity in a taxonomy. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 448–453.
RESNICK, P., IACOVOU, N., SUSHAK, M., BERGSTROM, P., AND RIEDL, J. 1994. Grouplens: An open ar-

chitecture for collaborative filtering of netnews. In Proceedings of the Computer Supported Col-
laborative Work Conference.

RICHARDSON, R. AND SMEATON, A. F. 1995. Using WordNet in a knowledge-based approach to in-
formation retrieval. In Proceedings of the Seventeenth BCS-IRSG Colloquium on Information
Retrieval.

RUBNER, Y., TOMASI, C., AND GUIBAS, L. J. 1998. The earth mover’s distance as a metric for image
retrieval. Tech. Rep. STAN-CS-TN-98-86, Stanford University.

SALTON, G. 1968. Automatic Information Organization and Retrieval. McGraw-Hill, New York.
SALTON, G. AND BUCKLEY, C. 1988. Term-weighting approaches in automatic text retrieval. Inf.

Process. Manage. 24, 5, 513–523.
SANKOFF, D. AND KRUSKAL, J. B. 1983. Macromolecules: The Theory and Practice of Sequence Com-

parison. Addison-Wesley, Reading, MA.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

Exploiting Hierarchical Domain Structure • 93

SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. 2000. Application of dimensionality reduction
in recommender system—a case study. In Proceedings of the ACM WebKDD 2000 Workshop.

SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. 2001. Item-based collaborative filtering recom-
mendation algorithms. In Proceedings of the Tenth International WWW Conference.

SARWAR, B. M., KONSTAN, J. A., BORCHERS, A., HERLOCKER, J. L., MILLER, B. N., AND RIEDL, J. 1998.
Using filtering agents to improve prediction quality in the GroupLens Research collaborative
filtering system. In Proceedings of the ACM Conference on Computer-Supported Cooperative Work
(CSCW).

SCOTT, S. AND MATWIN, S. 1998. Text classification using WordNet hypernyms. In Proceedings of
the Use of WordNet in Natural Language Processing Systems. Association for Computational
Linguistics.

SHASHA, D. AND ZHANG, K. 1997. Approximate tree pattern matching. In Pattern Matching Algo-
rithms, Oxford University Press, New York.

SHIVAKUMAR, N. AND GARCIA-MOLINA, H. 1995. Scam: A copy detection mechanism for digital doc-
uments. In Proceedings of the Second International Conference in Theory and Practice of Digital
Libraries.

SIBSON, R. 1972. Order invariant methods for data analysis. J. Roy. Stat. Soc. 34, 3, 311–349.
SNEATH, P. AND SOKAL, R. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.
SOERGEL, D. 1967. Mathematical analysis of documentation systems. An attempt at a theory of

classification and search request formulation. Inf. Stor. Retrieval 3, 3, 129–173.
SRIKANT, R. AND AGRAWAL, R. 1995. Mining generalized association rules. In Proceedings of

VLDB ’95, 407–419.
STREHL, A., GHOSH, J., AND MOONEY, R. 2000. Impact of similarity measures on Web-page cluster-

ing. In Proceedings of the AAAI Workshop on AI for Web Search.
VAN RIJSBERGEN, C. J. 1979. Information Retrieval. 2nd ed., Butterworths, London.

Received February 2002; revised November 2002; accepted November 2002

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

