
The Linux Kernel as a Case Study in Software Evolution

Ayelet Israeli Dror G. Feitelson

Department of Computer Science
The Hebrew University, 91904 Jerusalem, Israel

Abstract

We use 810 versions of the Linux kernel, released over a period of 14 years, to characterize the
system’s evolution, using Lehman’s laws of software evolution as a basis. We investigate different
possible interpretations of these laws, as reflected by different metrics that can be used to quantify
them. For example, system growth has traditionally been quantified using lines of code or number
of functions, but functional growth of an operating system like Linux can also be quantified using
the number of system calls. In addition we use the availability of the source code to track metrics,
such as McCabe’s cyclomatic complexity, that have not been tracked across so many versions
previously. We find that the data supports several of Lehman’s laws, mainly those concerned with
growth and with the stability of the process. We also make some novel observations, e.g. that the
average complexity of functions is decreasing with time, but this is mainly due to the addition of
many small functions.

Key words: Software evolution, Lehman’s laws, Linux kernel

1. Introduction

Software engineering textbooks typically focus on the initial development of new software
products. However, at least for some such products, the initial development is but a progenitor of
additional development to come. The Linux kernel is a large-scale and long-lived software system
that is enjoying widespread use throughout the world. More than 800 releases have been made
since version 1.0 was released in March 1994, and thousands of developers have contributed to the
code base. The project is open source, and all the code of all the releases is freely available on the
Internet (fromwww.kernel.org and numerous mirrors). This provides data for the study of software
evolution of a nature and scale that is impossible with other, especially closed source, systems.

Operating systems such as Linux are examples of what Lehman has called E-type programs [28,
11]. They are part of the infrastructure of the world in whichthey are used. At the same time, they
are modified in response to new requirements and change requests from users, evolving in ways
that cannot be anticipated or specified in advance [15]. Theythus undergo what we callperpetual
development, with new releases of production versions occurring from time to time [45, 14]. While
such development may of course come to an end when use of the system is discontinued, the
mindset of the developers at any given time is that it will continue indefinitely.

Lehman’s study of the evolution of E-type systems led to the formulation of a set of “laws”
of software evolution. These include observations such as that software that is in constant use

Preprint submitted to Elsevier September 23, 2009

inevitably continues to grow, to be adapted to its environment [28, 30]. Importantly, it was claimed
that these laws are general and do not depend on the specific process being used to develop the
studied software. The laws were validated by analyzing the evolution of size metrics of large-scale
commercial systems such as the IBM OS/360. However, additional research has been hampered
by the difficulty in obtaining high-quality data regarding large-scale commercial systems [23].

Today we can get data from open source products (e.g. [38, 7, 36]). While there is some debate
on whether this also reflects the behavior of closed-source software, there are indications that it
indeed does [44]. At the same time, the growth of the open source movement and the resulting
importance of open source software to the industry as a wholemean that studying the evolution of
open source is important in its own right, even if it does not reflect closed-source as well.

In this study we will use the Linux kernel. Our objective is toexamine whether Lehman’s laws
are reflected in the development of the Linux kernel. A restricted version of this was done in the
past by Godfrey and Tu [16], who examined the growth of the Linux kernel over its first six years
(1994–2000), and found that at the system level its growth was superlinear. This result deviated
from previous results obtained by Lehman using closed-source products [34, 32]. We want to
verify this result using a much larger data set, and extend itto the other laws. Given the availability
of the source code, we also use additional metrics that have not been used before in this context.

Linux is undoubtedly a successful open source system, whichhas been used for data in many
previous studies (e.g. [3, 16, 51, 44, 64, 48, 20, 56, 58]). Specifically, we will analyze the progress
made in hundreds of versions of Linux, released between March 1994 and August 2008, each
containing thousands of source files and millions of lines ofcode. Such an analysis can serve as
a basis for comparison with other systems. Linux is also interesting and important enough to be
studied for its own sake.

The organization of this paper is as follows. Section 2 provides background regarding the Linux
kernel and Lehman’s laws of software evolution. In Section 3we present our interpretation of these
laws in the context of the Linux system, and derive quantitative data in their support. Section 4
concludes and includes a discussion of threats to validity and future work.

2. Background

2.1. Structure of the Linux Kernel

The Linux operating system kernel was originally developedby Linus Torvalds, who an-
nounced it on the Internet in August 1991. There followed21

2
years of development by a growing

community or developers, and the first production version was released in March 1994.
Initially a 3-digit system was used to identify releases. The first digit is the generation; this

was 1 in 1994 and changed to 2 in 1996. The second digit is the major kernel version number.
Importantly, a distinction was made between even and odd major kernel numbers: the even digits
(1.0, 1.2, 2.0, 2.2, and 2.4) correspond to stable production versions, whereas versions with odd
major numbers (1.1, 1.3, 2.1, 2.3, and 2.5) are development versions used to test new features and
drivers leading up to the next stable version. The third digit is the minor kernel version number.
New releases (with new minor numbers) of production versions supposedly included only bug fixes
and security patches, whereas new releases of development versions included new (but not fully
tested) functionality.

2

The problem with the above scheme was the long lag time until new functionality (and new
drivers) found their way into production kernels, because this happened only on the next major
version release. The scheme was therefore changed with the 2.6 kernel in December 2003. Ini-
tially, releases were managed at a relatively high rate. Then, with version 2.6.11, a fourth number
was added. The third number now indicates new releases with added functionality, whereas the
fourth number indicates bug fixes and security patches. Kernel 2.6 therefore acts as production
and development rolled into one. However, it is actually more like a development version, because
new functionality is released with relatively little testing. It has therefore been decided that version
2.6.16 will continue to be updated with bug fixes even beyond the release of subsequent versions,
and act as a more stable production version1.

The Linux kernel sources are arranged in several major subdirectories [49]. The main ones are

init contains the initialization code for the kernel.

kernel contains the architecture independent main kernel code.

mm contains the architecture independent memory management code.

fs contains the file system code.

net contains the networking code.

ipc contains the inter-process communication code.

arch contains all the kernel code which is specific for different architectures (for example Intel
processors with 32 or 64 bits, PowerPC, etc.).

drivers contains all the system device drivers.

include contains most of the include (.h files) needed to build the kernel code.

An interesting note is that both thearch anddrivers directories are practically external to the
core of the kernel, and each specific kernel configuration uses only a small portion of these direc-
tories. However, these directories constitute a major partof the code, which grows not only due to
improvements and addition of features, but also due to the need to support additional processors
and devices.

2.2. Research Data

We examined all the Linux releases from March 1994 to August 2008. There are 810 releases
in total (we only consider full releases, and ignore interimpatches that were popular mainly in 1.x
versions). This includes 144 production versions (1.0, 1.2, 2.0, 2.2, and 2.4), 429 development
versions (1.1, 1.3, 2.1, 2.3, and 2.5), and 237 versions of 2.6 (up to release 2.6.25.11). This
represents a significant extension of the work of Godfrey andTu [16], who’s cutoff date was
January 2000 (their last versions were 2.2.14 and 2.3.39).

We aimed at examining theentire source code of the Linux Kernel. A typical C program
consists of files whose names have two different extensions:.h and.c. The .c files consist of the

1This seems to have stopped with 2.6.16.62 released on 21 July2008.

3

executable statements and the.h files of the declarations. Both should be looked at in order to get
the full picture of the Linux code. In this we follow Godfrey and Tu [16] and Thomas [58], as
opposed to Schach et al. [51] who only included the.c files. Given that we are interested in code
evolution rather than in execution, we take the developer point of view and consider the full code
base. Schach et al. [51] considered only thekernel subdirectory, that contains but a small fraction
of the most basic code. Thomas [58] spent much effort on defining a consistent configuration that
spans versions 2.0 to 2.4, thus excluding much of the code (mainly drivers), and limiting the study
of innovations. In any case, such a consistent version cannot be found spanning the full range from
1.0 to 2.6. We ignore makefiles and configuration files, as was done by others.

We decided to examine both the development and the production versions as most of the evolu-
tion occurs in development versions. Thomas [58] in contradistinction examined only the second
generation production series (2.0, 2.2, and 2.4). This precludes study of the development leading
up to each new version, and of migration of code between development and production versions.
Moreover, in retrospect it seems to be somewhat misguided aswe believe that version 2.4 reflects
significant development activity for at least a year (most of2001). Godfrey and Tu [16] examined
only a sample of the minor releases of each major version, andspecifically decided to examine
more production kernels, which were less frequently released. Such sampling precludes a detailed
examination of the changes from one release to the next.

The code metrics that we measured and methodological issuesare described in the appendix.
To study the evolution of the system, we plot various metricsas a function of time, as suggested
by Godfrey and Tu [16]. We then use a simple visual inspectionto comment on observed patterns.
The alternative is to use statistical tests, as was done for example by Lawrence [26]. However,
the results of such statistical tests depend on the test used, and require a precise quantifiable defi-
nitions for Lehman’s Laws — both of which are open to controversy. In addition we note that in
many cases the overall observed behavior is erratic, sometimes including large discrete jumps. We
therefore limit most of the conclusions to strong effects that are self-evident from the data.

2.3. Lehman’s Laws of Software Evolution
Textbook lifecycle models divide a system’s lifetime into two parts: development up to the ini-

tial release, and maintenance thereafter. But many real systems, and in particular E-type systems,
are actually subject to perpetual development, and continue to evolve throughout their life. We are
concerned with the study of how the system develops during its evolution.

Lehman studied several large scale systems and identified the following laws of software evo-
lution, which describe behavioral patterns rather than technical issues [29, 30]. Empirical support
for the laws was provided by several studies, typically using analysis of how software size changes
with time [34, 31, 32]. We intend to follow a similar procedure, this time using Linux as the test
case, and several different metrics. In particular, one of our contributions is the attempt to reduce
the laws into a quantifiable form. In this we exploit the fact that we have access to all the source
code, so various code metrics may be employed.

The laws and their implications are as follows, using the phrasing in [27]. The numbering
reflects the order in which they were formulated.

1. Continuing change (1974):“An E-type system must be continually adapted, else it becomes
progressively less satisfactory in use.” Adaptation is to the circumstances of the system’s

4

use; without it, the system will not keep up with the needs. For example, if business prac-
tices change, programs that support the business must change too. Specifically with E-type
systems, using the program itself affects the environment,thereby driving the need for mod-
ifications. Thus a useful program is never finished, and resources must be allocated to its
continued development.

2. Increasing complexity(1974):“As an E-type system is changed its complexity increases and
becomes more difficult to evolve unless work is done to maintain and reduce the complexity.”
This complements the first law. When the program is changed, the first concern is the needed
functionality. Thus the changes are typically done as a patch, disregarding the integrity of
the original design. The implication is that in order to keepthe program operational, it is
not enough to invest in changing it — one also needs to invest in repeatedly reducing the
complexity again to acceptable levels, in order to facilitate, or at least simplify, subsequent
changes.

3. Self regulation (1974):“Global E-type system evolution if feedback regulated.” This reflects
a balance between forces that demand change, and constraints on what can actually be done.
The rate of change is thus determined, among other factors, by the maintenance organization,
and one must accept the limits this imposes. This law also hasthe important consequence
that models of program evolution can be used as planning tools.

4. Conservation of organizational stability (invariant work rate) (1980): “The work rate of an
organization evolving an E-type software system tends to beconstant over the operational
lifetime of that system or phases of that lifetime.” This reflects the difficulty in moving staff,
making budget changes, etc. Large organizations, that produce large software systems, have
inertia, and tend to continue working in the same way. Tryingto change this is hard and
often proves futile.

5. Conservation of familiarity (1980):“In general, the incremental growth (growth rate trend) of
E-type systems is constrained by the need to maintain familiarity.” Maintaining familiarity is
important for both developers and users. Thus large releases are typically followed by small
ones that are required in order to restore stability. Tryingto make too many changes at once
is very likely to lead to serious problems.

6. Continuing growth (1980):“The functional capability of E-type systems must be continually
enhanced to maintain user satisfaction over system lifetime.” This is an extension of the
first law: functionality is not only adjusted to changing conditions, but also augmented with
totally new capabilities that reflect new demands from users, marketing people, and possibly
others.

7. Declining quality (1996):“Unless rigorously adapted and evolved to take into accountchanges
in the operational environment, the quality of an E-type system will appear to be declining.”
This is a corollary to the first law, and states the results of violating it. Specifically, if
the software is not adapted, assumptions that were used in its construction will become
progressively less valid, even invalid, and their latent effects unpredictable.

8. Feedback system (1974/1996):“E-type evolution processes are multi-level, multi-loop,multi-
agent feedback systems.” Multiple participants are involved, including managers, develop-

5

ers, clients, and users. This is most explicitly covered by the third law, but feedback is also
involved in the processes that determine other laws. This has to be recognized if one is to
attempt to improve the process in order to achieve better efficiency.

These laws are not just a description of evolution, but rather an attempt to explain the processes
driving the evolution. Thus they are not necessarily directly observable by examining the resulting
software product. However, the software may reflect effectsof the postulated laws. Lehman sought
such effects in order to validate the laws, and we extend thisquest to Linux.

3. Evolution of the Linux Kernel

In this section we analyze Lehman’s laws of software evolution in light of data regarding the
evolution of the Linux kernel. This is contrasted with Lehman’s own work regarding empirical
support for these laws [34, 31, 32]. Note that the laws are conventionally numbered by the date of
their introduction. Here we use a different order, startingwith those that are more directly related
to the code, and grouping related laws together. Technical details regarding the measurements are
given in the appendix.

3.1. Law 6: Continuing Growth

According to this law, functional content of a program must be continually increased to main-
tain user satisfaction over its lifetime. “Growth” can obviously also be interpreted as referring
to the mere size of the software product. Moreover, the size can perhaps be used as a proxy for
functional content, based on the assumption that additional code is written in order to support new
features. Thus continuing growth may be validated by calculating software size metrics (such as
number of modules) and tabulating their trends over time. This is the approach that was used by
Lehman and others.

However, “Functional content” relates specifically to the software’s features. In Linux and
other operating systems the most direct metric for supported features is the number of system
calls. This is augmented by the number of predefined parameter values that modulate the behavior
of the system calls. For example, the well-knowopen system call has flags likeO CREAT to create
the file if it does not exist,O TRUNC to truncate the file if it does exist, or alternativelyO APPEND
to add data to the end of the existing file, among others. Obviously adding such flags adds to the
functionality of the system. We therefore also use such metrics in our study.

3.1.1. Functionality Metrics
Counting system calls in Linux is relatively easy, as they arelisted in a table in filelinux/arch/*

/kernel/entry.S (somewhat surprisingly, there are system calls that are unique to different archi-
tectures, and we count all of them). We didn’t also count flags, as manual pages have not been
archived together with the code. Instead, we counted uniqueconfiguration options as they are
listed in configuration files throughout the kernel. The results are shown in Fig. 1. In this and fol-
lowing figures, theX-axis is the release date, as suggested by Godfrey and Tu [16]. This is needed
because there is significant variability in the developmenttimes represented by minor releases, so
tabulating growth as a function of release number as suggested by Lehman might be misleading.

6

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400 Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v1.1

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v1.2

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v1.3

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v2.0

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v2.1

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v2.2

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v2.3

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v2.4

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v2.5

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

v2.6

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

11

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

12

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

13

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

14

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

15

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

16

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

17

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

18

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

19

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

20

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

21

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

22

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

23

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

24

Number of System Calls

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

150

200

250

300

350

400

25

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

v1.0

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

v1.1

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

v1.2

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

v1.3

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

v2.0

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

v2.1

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

v2.2

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

v2.3

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000 v2.4

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500

1000

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

v2.5

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

v2.6

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

11

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

12

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

13

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

14

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

15

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

16

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

17

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

18

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

19

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

20

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

21

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

22

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000

23

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000
24

Number of Configuration Options

3000

3500

4000

4500

5000

5500

6000

6500

7000 25

Figure 1:The growing number of system calls and configuration optionsin Linux.

The labels on the lines indicate the respective Linux kernelversion; starting with 2.6.11 only the
minor number is given.

According to our data, most system calls are added in development versions, with a 50% in-
crease in 1.3 and another 20% rise in 2.3. Interestingly, in 2.5 the net effect was insignificant
despite many additions, because a large group of OSF-related system calls were removed in ver-
sion 2.5.42. The general rate of growth seems to be slowing down since 2003, probably indicating
that the system is maturing. Configuration options, however,exhibit an opposite trend: they seem
to be growing at an ever increasing rate. In fact, this is the only metric in which the growth in 2.6
seems to be superlinear. There is also a tripling of configuration options in version 2.5.45, which is
probably technical in nature as it seems to be related to a change in their format and organization.

7

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v1.0

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v1.1

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v1.2

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v1.3

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v2.0

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v2.1

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v2.2

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v2.3

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v2.4

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v2.5

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

v2.6

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

11

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

12

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

13

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

14

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

15

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

16

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

17

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006
18

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006
19

LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006 20
LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006 LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006 LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006 LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006 LOC − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

4.5e+006

5e+006

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v1.0

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v1.1

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v1.2

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v1.3

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v2.0

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v2.1

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v2.2

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v2.3

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v2.4

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v2.5

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

v2.6

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

11

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

12

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

13

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

14

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

15

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

16

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

17

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

18

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

19

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

20

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

21

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

22

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

23

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000
24

Number of Functions − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

20000

40000

60000

80000

100000

120000

140000

160000

180000 25

Figure 2:The growth of Linux as measured by LOC and number of functions.

3.1.2. Size Metrics
Various metrics may be used to describe the size of a softwareproduct. Among the most

commonly used are lines of code (LOC) and number of modules. Wewill interpret lines of code
as “non-comment non-blank” lines, i.e. we only count lines that actually contain some executable
code. We interpret modules as C functions. Our results showing these size metrics for all Linux
releases studied are shown in Fig. 2.

The two metrics, LOC and functions, lead to very similar results. As was expected, most of the
growth occurs in development versions. However, there is significant growth also in the initial parts
of the 2.4 and 2.2 production series. Interestingly, the growth curves sometimes exhibit discrete
jumps, most notably in the 2.5 series. These can be traced to the inclusion of subsystems that were
developed externally, such as thesound directory that was added in version 2.5.5, and thexfs file
system that was added in 2.5.36. Such additions may be taken as examples of punctuated evolution

8

[12], as opposed to progressive evolution.
Comparing with previous work, Lehman, in his studies of closed-source systems, found that

growth was either linear [31] or sub-linear [32], and in one case there seemed to be two distinct
growth phases. His size metric was modules, and the independent variable was release number
rather than time. This was analyzed by Turski who suggested an inverse-square law, where the
increment in each release is equal to a constant effort divided by the square of the size of the
previous release [60, 34]. The interpretation was that as size grows complexity increases, and
it becomes harder to grow further: specifically, the inversequadratic term reflects the need to
consider all possible interactions. This model leads to theprediction that size would grow as the
(sub-linear) cubic root of the release number.

Capiluppi analyzed several open-source projects, and foundthat growth is generally linear
[6, 7]. In subsequent work using a larger dataset, Smith et al. found that some projects also exhibit
periods of stability or even declining size, but still growth dominates in general [55]. Paulson et al.
used a linear model for comparing the growth of open and closed software systems [44]. Godfrey
and Tu [16] and Robles et al. [48], in contradistinction, found that Linux grows at asuperlinear rate,
and suggested that a quadratic curve provides a good phenomenological model. Koch extended this
to 8621 projects on SourceForge, and found that in general a quadratic model is better than a linear
one, especially for large projects [24]. Note, however, that unlike Lehman’s work this was based
on counting LOC, not modules, and that growth was characterized as a function of time, not release
number. Izurieta and Bieman compared Linux with FreeBSD, and concluded that both systems’
growth rates are actually linear [20]. Scacchi reports on several studies that found a mix of sub-
linear and super-linear growth in different open-source projects, including exponential growth [50].
Our results also support such a mix. When focusing on the most advanced codebase at any given
time, as represented by the highest points in Fig. 2, the growth rates can be seen to be superlinear
up to version 2.5, but in 2.6, which is beyond the data considered by most previous researchers,
the growth seems to be closer to linear.

Interestingly, Torvalds predicted in 1999 that the growth of Linux would slow down as the
system matures [59]. His reasoning was not related to complexity, but rather that the functionality
required from the kernel will stabilize, and further development would take place in user space.
The empirical data suggests that he was wrong.

3.2. Law 1: Continuing Change

According to this law, a program that is used must be continually adapted to changes in its
usage environment else it becomes progressively less satisfactory. Usually, it is hard to distinguish
between adaptation to the environment and general growth (as reflected in the continuing growth
law) [32]. For example, when support for sound cards is added, is this a new feature or an adapta-
tion to a changing environment? Most probably, it is both: a feature that was added in response to
a change in the environment.

A special case that is relevant to Linux is adaptation to the changing hardware environment.
Such changes are easily identifiable. All the code that pertains to processor architectures is con-
tained in thearch subdirectory of the kernel. Likewise, all the code that pertains to peripherals is
contained in thedrivers subdirectory. Code that is added to these two subdirectoriestherefore re-
flects adaptation to the system’s changing hardware environment. In fact, when looking at change

9

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v1.0

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v1.1

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v1.2

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v1.3

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.0

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.1

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.2

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.3

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.4

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.5

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.6

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

11

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

12

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

13

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

14

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

15

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

16

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

17

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

18

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

19

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

20

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

21

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

22

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

23

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

24

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

25

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v1.0

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v1.1

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v1.2

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v1.3

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.0

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.1

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.2

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.3

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.4

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.5

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

v2.6

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

11

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

12

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

13

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

14

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

15

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

16

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

17

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

18

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

19

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

20

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

21

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

22

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

23

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

24

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

5000

10000

15000

20000

25000

25

All Dirs
Arch and Drivers Dirs

Figure 3:The growth of source files in thearch anddrivers directories as a fraction of the whole Linux system.

logs, Linux forums, and explanations about the content of different versions, one of the things that
returns in each version is new drivers and adaptation to new architectures.

A plot of how these two subdirectories grow with time is shownin Fig. 3. It is easily seen that
they mirror the growth of the Linux kernel as a whole, and in fact account for about half of it in
any given version. While the results shown are based on counting files, similar results are obtained
when counting functions or LOC. In fact, the percentage of LOCcontained in thearch anddrivers
directories is even a bit higher, and stands at about 60% on average. A possible explanation for
this strong showing is that writing new drivers often involves cloning existing code [22].

We can thus assert the Linux exhibits continued change and adaptation to its environment, in
accordance with this law, even though the original law is probably of wider scope than this specific
example.

3.3. Law 2: Increasing Complexity

According to this law, as a program evolves its complexity increases unless work is done to
maintain it by specifically making changes to reduce the complexity. This law is very hard to prove
or disprove formally, as it allows both trends: if complexity increases it fits the initial premise of
the law, but if it is reduced then maybe this is due to work thatwas done to reduce it, thus also
satisfying the law. Moreover, work on extending the system typically includes work to keep it
maintainable, and the two cannot realistically be separated [26].

Lehman supports this law by rationalization (adding features and devices necessarily increases
complexity [29]) and by showing data that growth rates decline with time, as would be expected
due to the constraints of increased complexity [34, 32]. However, our data regarding the Linux
code growth rate, and the data of others as well [16, 48], doesnot display an inverse square pattern
as claimed by Lehman. On the contrary, growth may actually besuperlinear. Thus we do not see
evidence that complexity is constraining the growth of Linux. And indeed, as we show below,
there are indications that complexity is not increasing in Linux.

10

3.3.1. Direct Measurement of Code Complexity
An alternative approach is of course to measure code complexity directly, which is perfectly

possible given that we have access to the full codebase of each version. In particular, we mea-
sured the McCabe cyclomatic complexity (MCC), which is equivalent to the number of conditional
branches in the program plus 1 [35, 40]; for C, these includeif-then-else, for, while, do, andcase
statements. We are aware of the fact that this metric has beenchallenged on both theoretical and
experimental grounds, for example, by showing that it is strongly correlated with lines of code, or
claiming that it only measures control flow complexity but not data flow complexity [53, 62, 54].
There is, however, no other complexity metric that enjoys wider acceptance and is free of such
criticisms. Moreover, we do not attach much meaning to the absolute values cited, and are main-
lyinterested in how the metric changes between successive versions of the same software product
[17].

The results of calculating the MCC for the full codebase of allLinux versions are shown in
Fig. 4. As may be expected, when the size of the code grows, so does the total MCC [53]. It is
therefore more interesting to look at normalized values, such as the average MCC per function.
The results in this case indicate adecliningtrend. Thus the total MCC is in general growing more
slowly than the number of functions, and thus the average complexity is decreasing. A similar
result is obtained if we normalize by LOC rather than by number of functions, except that MCC
per LOC has been essentially stable since 2002, whereas MCC per function continues to decline.
A decline is also observed in the median MCC across all the functions in the kernel. This was 4 in
1994, 3 from 1995 to the beginning of 2003, and 2 since then.

Focusing on the average MCC per function, one must remember that the number of functions
also increases with time. Thus it might be that the reduced average value is just a result of having
more functions with relatively lower complexity. Indeed, tabulating the average MCC in only new
files each year leads to values that are typically lower than the average over all files [19]. We
therefore looked at the distribution of the MCC per function over the different versions.

The distributions of major production versions are shown inFig. 5. Each is represented by its
first minor version; development versions are excluded because their initial releases tend to be very
similar to the production version from which they branch. While the plots are qualitatively similar,
one can observe that the order of the plots corresponds to that of the kernels: the innermost line is
kernel 1.0, the next is 1.2, etc., and the topmost one is 2.6.25. Thus each line is more concave then
the previous one. This means that over time we indeed have a larger fraction of functions with a
lower MCC value.

Looking at the graphs more closely, one can observe that version 1.0 has significantly fewer
functions with low MCC (in the range 1–6). This could imply that work was done specifically to
reduce the complexity of the initial version code. Over the years, there was a significant improve-
ment in general. For example, initially only about 38% of thefunctions had an MCC less than
or equal to 2, but now it is about 52%. Using a threshold of 10, which was originally suggested
by McCabe as indicating modules one should be worried about [35], and was used by the SEI to
indicate “moderate risk” [57], we find that in 1.0 a full 15% ofthe functions had a higher MCC,
but in recent versions this dropped to half — about 8%. This indicates that the vast majority of
functions in Linux should be easy to maintain.

11

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v1.0

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v1.1

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v1.2

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v1.3

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v2.0

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v2.1

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v2.2

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v2.3

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v2.4

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v2.5

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

v2.6

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

11

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

12

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

13

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

14

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

15

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

16

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

17

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

18

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

19

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

20

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000

21

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000
22

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000
23

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000 24

McCabe Cyclomatic Complexity − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
19000

69000

119000

169000

219000

269000

319000

369000

419000

469000

519000

569000

619000

669000

719000
25

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v1.0

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v1.1

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v1.2

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v1.3

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.0

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.1

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.2

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.3

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.4

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.5

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.6

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

11

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

12

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

13

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

14

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

15

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

16

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

17

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

18

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

19

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

20

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

21

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

22

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

23

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

24

Avg. McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

25

Figure 4:Total McCabe’s cyclomatic complexity and the average valueper function.

Another way to look at the distributions is to plot the evolution of their percentiles. This is
shown in Fig. 6, this time using development versions (and 2.4 during its first year, when no
contemporary development version existed). The results exhibit a dramatic decrease in the top
percentiles, indicating that the fraction of functions with a high MCC is decreasing. This can mean
that more low complexity functions are inserted, and/or that high complexity functions are being
rewritten.

3.3.2. High-MCC Functions
While the results for the low-MCC functions are encouraging, one should also consider the

high-MCC functions in the tail of the distribution. According to our results, 3–5% of the functions
have an MCC above 20, which was classified by the SEI as “complex, high risk program” [57];
Microsoft’s Visual Studio 2008 also reports a violation forvalues exceeding 25 [39]. The top

12

CDF of McCabe’s Cyclomatic Complexity per Function

MCC
0 5 10 15 20

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 CDF of McCabe’s Cyclomatic Complexity per Function

MCC
0 5 10 15 20

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 CDF of McCabe’s Cyclomatic Complexity per Function

MCC
0 5 10 15 20

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 CDF of McCabe’s Cyclomatic Complexity per Function

MCC
0 5 10 15 20

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 CDF of McCabe’s Cyclomatic Complexity per Function

MCC
0 5 10 15 20

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 CDF of McCabe’s Cyclomatic Complexity per Function

MCC
0 5 10 15 20

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 CDF of McCabe’s Cyclomatic Complexity per Function

MCC
0 5 10 15 20

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 CDF of McCabe’s Cyclomatic Complexity per Function

MCC
0 5 10 15 20

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v1.0
v1.2
v2.0
v2.2
v2.4
v2.6
v2.6.16
v2.6.25

Figure 5: Cumulative distribution function of McCabe’s cyclomatic complexity per function for initial production
versions.

Percentiles of McCabe Cyclomatic Complexity per func − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

M
cC

ab
e

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

0

5

10

15

20

95th percentile

90th percentile

75th percentile

median

25th percentile
v1.1 v1.3 v2.1 v2.3 v2.4 v2.5 v2.6

Figure 6:Percentiles of McCabe’s cyclomatic complexity per function for development versions.

values observed are extremely high: for example, in version2.6.16 we have a single function with
MCC of 255; in version 2.2 there is a function with 470. Such values are totally out of the scale
defined by the SEI, which classifies functions with an MCC above50 as “untestable”.

To study the evolution of the tail of the distribution, we plotted the survival function of the
MCC values (i.e. for each MCC value, what is the number of functions that have higher value
than that) in a log-log scale. Note that this is a variation onthe conventional definition of the
survival function, which uses thefraction of the functions that have higher values. Fig. 7 displays
the results. The plots are close to being straight lines in the log-log axes, indicating a power-law

13

Survival Function of McCabe’s Cyclomatic Complexity per Function

MCC
20 30 40 50 60 70 80 90100 200 300 400

fu

nc
tio

ns

0.5

1

2
3
4
5

10

20
30
40
50

100

200
300
400
500

1000

2000
3000

Survival Function of McCabe’s Cyclomatic Complexity per Function

MCC
20 30 40 50 60 70 80 90100 200 300 400

fu

nc
tio

ns

0.5

1

2
3
4
5

10

20
30
40
50

100

200
300
400
500

1000

2000
3000

Survival Function of McCabe’s Cyclomatic Complexity per Function

MCC
20 30 40 50 60 70 80 90100 200 300 400

fu

nc
tio

ns

0.5

1

2
3
4
5

10

20
30
40
50

100

200
300
400
500

1000

2000
3000

Survival Function of McCabe’s Cyclomatic Complexity per Function

MCC
20 30 40 50 60 70 80 90100 200 300 400

fu

nc
tio

ns

0.5

1

2
3
4
5

10

20
30
40
50

100

200
300
400
500

1000

2000
3000

Survival Function of McCabe’s Cyclomatic Complexity per Function

MCC
20 30 40 50 60 70 80 90100 200 300 400

fu

nc
tio

ns

0.5

1

2
3
4
5

10

20
30
40
50

100

200
300
400
500

1000

2000
3000

Survival Function of McCabe’s Cyclomatic Complexity per Function

MCC
20 30 40 50 60 70 80 90100 200 300 400

fu

nc
tio

ns

0.5

1

2
3
4
5

10

20
30
40
50

100

200
300
400
500

1000

2000
3000

Survival Function of McCabe’s Cyclomatic Complexity per Function

MCC
20 30 40 50 60 70 80 90100 200 300 400

fu

nc
tio

ns

0.5

1

2
3
4
5

10

20
30
40
50

100

200
300
400
500

1000

2000
3000

Survival Function of McCabe’s Cyclomatic Complexity per Function

MCC
20 30 40 50 60 70 80 90100 200 300 400

fu

nc
tio

ns

0.5

1

2
3
4
5

10

20
30
40
50

100

200
300
400
500

1000

2000
3000

v1.0
v1.2
v2.0
v2.2
v2.4
v2.6
v2.6.16
v2.6.25

Figure 7:Log-log survival functions of McCabe’s cyclomatic complexity per function for selected kernels.

relationship and that the distribution has a heavy tail. This could indicate that complexity is not
added randomly, but rather that complex code tends to get more complex [10].

While the fraction of functions with high MCC is small and even diminishing (less than 5%
have an MCC over 20, and less than 0.6% have an MCC over 50), the absolute number of such
functions nevertheless grows considerably with time. For example, in 1.0 there were only 15
functions with an MCC of 50 or more. This grew to 25 functions in1.2, 70 functions in 2.0, 100
functions in 2.2, 250 functions in 2.4, and 400 functions in 2.6/2.6.16.

The extremely high MCC values observed raises the question: what are these functions, and
what happens to them over time? It turns out that the extreme MCC functions are usually from
thearch anddrivers directories. Typically, these functions are interrupt handlers orioctl functions,
which receive a request encoded as an integer, interpret it,and behave accordingly. The implemen-
tation is usually based on longswitch statements with dozens of cases, or multipleif statements,
leading to the extreme MCC values observed. We also found thatmany of the extreme MCC
functions are the same for different kernels.

The highest MCC function in the whole dataset issys32 ioctl from file arch/sparc64/kernel/ioctl32.c.
As shown in Fig. 8, the file and function were introduced to theLinux kernel only in version 2.1.42
(in mid 1997). It grew both in LOC and MCC throughout versions 2.1 and 2.2, reaching an MCC
value of almost 600 at the beginning of 2001. However, in version 2.3.47 (in the beginning of
2000) the LOC and MCC of this function dropped drastically to the MCC value of 6. It remained
at that level throughout 2.4 and in most of 2.5, until it was completely removed (together with
many other functions) in version 2.5.69 (mid 2003). The file itself was removed in 2.6.16.

The drop from an MCC value of around 600 to the value of 6 in version 2.3.47 was due to
a major design change: instead of using theswitch statement, a new compound data structure
(a struct) with a handler was introduced. The request code was used as an index into a table
of suchstructs, avoiding the need for multiplecase statements. This is a real-life example of

14

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.0

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.1

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000
v2.2

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.3

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.4

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.5

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.6

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

11

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

12

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

13

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

14

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

15

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

16

LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 LOC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600
MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600
MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600
MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600
MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

v2.0

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

v2.1

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600 v2.2
MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

v2.3

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

v2.4

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

v2.5

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

v2.6

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

11

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

12

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

13

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

14

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

15

MCC − sys32_ioctl Function Only

97 98 99 00 01 02 03 04 05 06
0

200

400

600

16

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.0

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.1

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000 v2.2
MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.3

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.4

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.5

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

v2.6

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

11

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

12

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

13

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

14

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

15

MCC − File Level

97 98 99 00 01 02 03 04 05 06
0

200

400

600

800

1000

16

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100 Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100 Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100 Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100 Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

v2.0

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

v2.1

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

v2.2

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

v2.3

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100 v2.4Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

v2.5

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

v2.6

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

11

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

12

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

13

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

14

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

15

Number of Functions in File

97 98 99 00 01 02 03 04 05 06
0

20

40

60

80

100

16

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

v2.0

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

v2.1

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

v2.2

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

v2.3

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000
v2.4

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

v2.5

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

v2.6

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

11

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

12

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

13

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

14

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

15

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

16

LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000 LOC − File Level

97 98 99 00 01 02 03 04 05 06
0

1000

2000

3000

4000

5000

6000

Figure 8:Evolution of thesys32 ioctl high-MCC function.

one of the critiques against the MCC metric: that the same functionality may be achieved either
usingcase statements (which are counted) or using a table (which is not), both of which share
similar complexity and testing difficulty [53]. However, itmay be claimed that use of a table is
indeed easier to comprehend and maintain, and therefore this is indeed an example of a significant
reduction in code complexity.

In conclusion, we see evidence for an investment of work to reduce code complexity, both
in version 1.1 and in specific high-MCC functions in later versions. Thus the general trend of
reduced average MCC seems to result from a combination of codeimprovements and the addition
of many low-MCC functions. Nevertheless, the number of high-MCC functions has also grown
significantly.

3.4. Law 7: Declining Quality

According to this law, programs will be perceived as of declining quality unless rigorously
maintained and adapted to a changing operational environment. Thus this law is somewhat of a
corollary to Law 1, which demands continued change. It is also related to Law 2, which asserts
increased complexity.

Another similarity to Law 2 is that this law is also actually impossible to prove or disprove, as
it allows both trends (if quality declines, the law is supported, and if it is not, it might be due to
the maintenance and adaptation efforts). Moreover, it is hard to measure “quality”. There are two
main options: user perception and code metrics.

15

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v1.0

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v1.1

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v1.2

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v1.3

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.0

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.1

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.2

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.3

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.4

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.5

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.6

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

11

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

12

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

13

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

14

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

15

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

16

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115
17

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115
18

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115
19

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115
20

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115
21

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115
22

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115 23

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

24

Oman’s Maintainabilty Index − All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115 25

Figure 9:Evolution of Oman’s maintainability index.

3.4.1. Perceived Quality
Lehman rationalizes this law by claiming that assumptions embedded in the system will tend

to become inappropriate or even invalid with time [32], but does not offer measurable evidence.
Similar rationalization is given by Parnas [43]. An expectable consequence of such a situation
is that the system will fall out of use, because it will no longer fulfill its intended use or at least
introduce inaccuracies or even errors.

Linux, on the other hand, has been in growing use for 14 years,and there are no indications that
its adoption rate is abating. It is widely used on large-scale servers, clusters, and supercomputers.
This may be taken as anecdotal indication that its quality isnot declining, but rather that its use-
fulness is increasing. This increased usefulness may be partially explained by the effect of other
pertinent laws, such as the continuing growth and the adaptation to the operational environment.

3.4.2. Measured Quality
As with software complexity, there is also no widely accepted metric for code quality. We

decided to use the Oman maintainability index (MI) [42, 61] as a metric for quality, because it
combines several other metrics that are generally agreed tobe components of code quality: low
complexity (as measured by MCC), small size (as measured by Halstead’s volume (HV) and LOC),
and good documentation (as measured by the fraction of LOC that contain comments). While the
precise formula2 used to calculate MI is debatable, being based on fitting datafrom a small number
of not-too-large projects, this metric has nevertheless gained some following. Moreover, as with
MCC, we are not interested in the actual values but only with howthey change with time.

As MI is measured per module (or in our case, function), the data used is average LOC, MCC,
and HV per function. In Linux, all these metrics decrease with time, thus contributing to a higher

2See the appendix for definition.

16

MI. The percentage of comment lines, on the other hand, has a slight downwards tendency. How-
ever the change is small, so we do not expect it to have a significant negative effect. As a result the
general trend of MI is expected to be increasing with time, asis indeed seen in Fig. 9.

It is interesting to also dissect these results by directories (data not shown). It turns out that the
sharp initial improvement in 1.1 is due to the core directories. The subsequent slower improvement
has more to do with thearch anddrivers directories. The lower values attributed to production
versions are also due to these two directories. Another interesting point is that since the quality
values for the core kernel directories are typically betterthan those ofarch anddrivers (i.e. less
LOC, lower values for HV and MCC, and slightly more comments), wealso see that the MI for
these directories is somewhat higher — meaning that the corehas slightly “better quality” thanarch
anddrivers. This correlates with studies that point to drivers as a source of problems in operating
systems [9, 1].

3.5. Law 4: Conservation of Organizational Stability (Invariant Work Rate)

According to this law, the average effective global rate of activity on an evolving system is
invariant over the product life time. This measurement is technically problematic, since we are
trying to look at “work” on the project. Reliable data about man hours or number of developers
is hard to get in closed-source systems, and much harder (andmaybe even ill-defined) in open-
source projects. Moreover, man-hours are a notoriously inaccurate measure of work to begin with
[5]. Lehman suggests using the number of elements handled (that is, added, deleted, or modified)
as a proxy, but goes on to note that this too has methodological difficulties [32].

Taken at face value, this law is patently false for Linux. Thenumber of people contributing
to Linux’s development has grown significantly over the years, and several companies now have
employees assigned to working on it. This is reflected in the codebase growth rate noted above,
which was superlinear at least through version 2.5. Thus it would seem that the rate of work on
Linux has accelerated for at least the first 10 years. It is less clear whether the rate continues to
grow now, when the growth rate seems to be linear rather than superlinear.

However, other interpretations also deserve to be considered. One is the number of elements
handled, as suggested by Lehman. We will focus on development versions of Linux, where version
releases are more frequent and reflect continuous activity by the developers (but in this case we
also include the initial year of version 2.4, when there was no concurrent independent development
activity). Fig. 10 shows the number of files that were added, deleted, or modified (divided into those
that grew and those that shrunk) between successive releases. As may be expected, the absolute
numbers tend to grow with time. But thefraction of files that are handled seems to be relatively
stable, except perhaps for some decline in the first couple ofyears. Thus if we interpret “rate”
to mean the fraction of the codebase that is modified in each release then the data supports the
claim that the work rate is approximately constant. However, one should notice that the variance
is high; such a high variance in a related metric — average handled modules per day — prompted
Lawrence to claim that the rate is not constant at all [26].

Invariant work rate can also be interpreted with regard to the release rate itself, i.e. how often
releases happen. In Fig. 11 we can see the number of releases per month, again using the develop-
ment versions and for the initial period of 2.4. The results are that from mid 1996 to mid 2003 the
rate seems stable at around 3–6 releases per month. We can seealso that although version 2.4 has

17

Files Deleted

94 95 96 97 98 99 00 01 02 03

fil
es

0
50

100
150
200
250
300
350
400
450

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Shrunk

94 95 96 97 98 99 00 01 02 03

fil
es

0

500

1000

1500

2000
v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Grew

94 95 96 97 98 99 00 01 02 03

fil
es

0

500

1000

1500

2000

2500

3000

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Added

94 95 96 97 98 99 00 01 02 03

fil
es

0

200

400

600

800

1000

1200

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Deleted, out of total files

94 95 96 97 98 99 00 01 02 03

pe
rc

en
ta

ge

0

0.5

1

1.5

2

2.5

3

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Shrunk, out of total files

94 95 96 97 98 99 00 01 02 03

pe
rc

en
ta

ge

0
2
4
6
8

10
12
14
16
18

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Grew, out of total files

94 95 96 97 98 99 00 01 02 03

pe
rc

en
ta

ge

0
5

10
15
20
25
30
35

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Added, out of total files

94 95 96 97 98 99 00 01 02 03

pe
rc

en
ta

ge

0

5

10

15

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Figure 10:Files added, deleted, grown, or shrunk among development versions.

Releases per Month

94 95 96 97 98 99 00 01 02 03
0

5

10

15 v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Figure 11:Number of releases per month for development versions only.

18

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

M
in

or
 R

el
ea

se
 S

eq
ue

nc
e

N
um

be
r

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v1.0

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v1.1

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v1.2

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v1.3

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.0

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150
v2.1

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.2

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.3

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.4

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.5

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.6

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

11

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

12

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

13

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

14

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

15

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

16

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

17

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

18

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

19

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

20

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

21

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

22

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

23

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

24

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

25

v1.1 v1.2 v1.3 v2.0 v2.1 v2.2 v2.3 v2.4 v2.5 v2.6 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0

10

20

30

40

50

60

70

80

90

100

N=35 N=13N=113N=40N=141N=26 N=60 N=60 N=75 N=11 N=12 N=6 N=5 N=7 N=7 N=62 N=14 N=8 N=7 N=21 N=7 N=19 N=17 N=7 N=11

Intervals Between Releases (in Days)

356.04 221.91 168.72

Figure 12:Intervals between releases within major versions. Top: minor number as a function of time. Bottom: box
plots show the5th, 25

th, median,75
th, and95

th percentiles, in days.N indicates the number of releases minus one,
as the first release serves as “time 0”.

many features of development versions, it was released lessfrequently than the “real” development
versions. Starting with version 2.6 in 2003, the3rd digit versions are timed to be released once
every 2.5–3 months. This steady rate of releases also supports this law.

It is important to remember that Linux releases are organized into major and minor versions.
Therefore one should consider the intervals between major releases separately from those leading
to minor releases. The above data is shown again in Fig. 12, this time in the context of all other
kernel versions. The top graph shows the times at which minorreleases are made: the steeper
the line, the higher the release rate [58]. Development versions exhibit a steady high rate, which
reflects an invariant work rate. Production versions, however, tend to start with a somewhat high

19

rate and then taper off when the next development version is started. The box plots characterize
the distribution of all the intervals for each major version. We see that development versions are
consistently released at a high rate, as expected by the principle of “release early, release often”
[47], and specifically all medians and 75th percentiles are lower than 10 days. Production version
are released much less frequently, with median values that approach a month and 75th percentiles
of two months and more.

All this changed with the new release scheme of 2.6. In the first 10 releases, the distribution was
similar to that of previous production versions, but the tail of long release intervals was effectively
eliminated. And with the4th digit releases of 2.6.11 and on, the whole distributions aregenerally
much lower than in most production versions, albeit still higher than in the development versions.
This should not be considered a problem, as4th digit releases are not development but rather bug
fixes and security patches.

3.6. Law 5: Conservation of Familiarity

According to this law the change between successive releases is limited, both to allow devel-
opers to maintain their familiarity with the code, and to allow users to maintain their familiarity
with using the system. Lehman et al. [34] suggest looking at the incremental growth — and if it
is constant or declining on average, it indicates conservation of familiarity. Moreover, they sug-
gest a threshold for which if two or more consecutive points exceeds it, the next points should be
close to zero or negative. Lawrence claims that the series ofincremental changes in the systems he
checked was random, and interprets this as lack of conservation [26]. However, a better test may
be the maximal change that occurred between successive versions.

In Linux conservation of familiarity with the code is reflected by the pattern of releasing de-
velopment versions. As shown in Fig. 12, these releases comein rapid succession, typically only
days apart. As shown in Figs. 2, 4, and 9, the development versions form a continuous line plot-
ting the progress according to each metric, and production versions branch out directly from the
last available development version. Taken together, thesefindings indicate that developers familiar
with one version may expect little change in the subsequent ones. This stays the case even in cases
where the system grew significantly due to the addition of some new module (e.g. the addition of
thesound directory in version 2.5.5), because such additions are generally well encapsulated and
do not have a strong effect on the rest of the system.

The effect of this law may also be apparent in the releases of new production versions. The most
prominent example is the gap between the last 2.3 version andthe initial 2.4 version. According
to 2.4 logs and different Linux forums, this was a result of the version “not being ready” for
release (according to Linus Torvalds’s policy to release only when versions are stable), due to
complications with development and testing many new features in that version. Thus it appears
to be an instance of trying to put too many new features into a release, violating the conservation
of familiarity law. Conversely, the new release scheme adopted for 2.6, where new production
versions are released regularly every 2–3 months, may be viewed as an explicit attempt to limit the
extent of new content in each release, in order to conserve familiarity.

Conservation of familiarity for users is specifically relevant when looking at successive stable
production versions, which are the ones intended for end users. Our results indicate that in succes-
sive releases of the same major production version (or minorversion in 2.6) the changes are very

20

Incremental Change in Number of Files

04 05 06 07 08
0

100

200

300

400

500

600

700 Incremental Change in Number of Files

04 05 06 07 08
0

100

200

300

400

500

600

700

Average Increment

Figure 13:Incremental growth of 2.6 versions.

small (most of the time zero, but sometimes slightly increasing or decreasing). One can thus say
that within production versions Linux indeed conserves user familiarity.

However, the changes between successive major versions aresignificant. In fact, they are so
significant that users may opt to continue using an out-of-date previous release. This is witnessed
by continued support for production versions long after thenext one is released: in particular, note
how 2.4 seems to track 2.6.16 in Fig. 12 (and of course users continue to use the system much
after the last release). Thus we have both support for the law(as witnessed by the longevity of
production versions) and contradiction of the law (becausesuccessive production versions with
significant changes are nevertheless released).

3.7. Law 3: Self Regulation

According to this law, the program evolution process is selfregulating, leading to a steady
trend. Lehman finds evidence for this law in the fact that empirical growth curves show a ripple
superimposed on a steady growth trend, and claims that the ripple demonstrates the interaction
between the conflicting forces of desired growth and boundedresources [34, 32]. However, this
interpretation may be challenged. An alternative one, which seems especially suitable for the
Logica FW dataset, is that a larger growth occurs with the introduction of each new major release,
followed by smaller growth during subsequent minor releases.

The existence of self regulation may be established by observing growth trends, where they
imply that deviations from a consistently smooth growth will be corrected. The Linux dataset
we use has many more releases than the datasets used by Lehman. Thus plotting growth leads
to a continuous line, where individual releases are not seen(e.g. Fig. 2). The exhibited growth
patterns are typically indeed quite steady, but do exhibit slight variations that may be considered as
a ripple. But they also occasionally exhibit larger jumps as aresult of integrating a new subsystem
that was developed externally. The relatively smooth growth may be interpreted as resulting from
self regulation, but it may also be the result of an invariantwork rate.

21

We also performed an incremental growth analysis as was doneby Lehman. We used data
regarding 3rd digit release of version 2.6, where the release rate is relatively high and constant.
Fig. 13 shows the change in the number of files (representing modules) per such release. The
result is qualitatively similar to the observations of Lehman, namely that the growth rate seems to
fluctuate around a mean, and that relatively large growth is nearly always followed by sub-average
growth, indicating an alternation between growth and stabilization. Thus it is possible to interpret
our data as providing indirect support for the existence of self regulation.

3.8. Law 8: Feedback System
The issue of feedback was mentioned already as an element of the self regulation law. A hypo-

thetical example given by Lehman is pressure from the user community leading to more features
and strong growth, followed by budgetary pressure limitingthe testing and debugging capacity and
thus reducing the growth rate again [34].

The claim that this self regulation stems from multi-level feedback is harder to establish.
Lehman invested significant effort in supporting this law inthe FEAST project, with the goal of
improving software development processes [34, 33]. As we focus on characterizing the evolution
of an existing system, this is beyond our scope.

Lehman supports this law by noting the stability of growth models, and in particular, that a
handful of initial releases are enough to extract growth model parameters and predict subsequent
sizes pretty accurately. However, he does note that this mayalso be largely due to organizational
inertia [32].

In our specific case, Linux is the archetypal open-source system in which continued develop-
ment is guided by feedback from the user community [47]. Examples range from defect reports,
through bug fixes, and up to contribution of complete subsystems. Specific evidence for feedback
affecting the software process itself is the switch to the 2.6 release scheme, in response to user
discomfort with the long delays in releasing enhanced production versions. However, it is hard to
bridge the gap from such observations to a quantitative law.

3.9. The Perpetual Development Lifecycle Model
Based on the above observations, it seems that E-type systemsin general, and Linux in par-

ticular, conform to a lifecycle model that may be called “perpetual development”. This lifecycle
model comprises the following elements.

• Continuous and steady development of the system, adding new features all the time [14].
Linux and other open source projects make this activity public, whereas in proprietary closed
projects it is done behind the scenes. The development is done based on anticipated user
needs and explicit user feedback, rather than preconcievedspecifications of how the system
should be used.

• When significant new functionality accumulates, the continuous development is interrupted
to prepare a major release of a new production version. In Linux, the interval between such
releases used to be more than a year, but was then reduced to 2–3 months in the 2.6 series.

• More common minor releases of an existing production version, reflecting bug fixes and
security patches. Several production versions may be thus supported in parallel.

22

This is quite different from textbook lifecycle models, be they “one-shot” models like the waterfall
model or iterative models like the spiral model.

As we have seen, articulating this model enables us better fidelity regarding some of Lehman’s
laws. For example, conservation of familiarity within major production versions is replaced by
discontinuities between such major versions. It also has implications for software development in
general, and in fact lies at the basis of many agile methods.

4. Conclusions

The Linux kernel is one of the most successful open-source software projects in the world.
Over the last 14 years it has continued to evolve in order to satisfy the needs of its users. We have
presented a detailed characterization of this process, including over 800 versions which represent
new developments, major production releases, and minor updates. Many interesting phenomena
are only seen at this fine resolution, and would be lost if using the traditional approach of studying
only major production releases.

The study presented here was based on Lehman’s Laws of software evolution. We found obvi-
ous support for continuing growth and change, and probable support for invariant work rate. Con-
servation of familiarity seems to be combined with large changes when new production versions
are released. The practice of preventative maintenance seems to support the increasing complexity
and declining quality laws, which note the possibility of work being done to prevent them. The
hardest laws to justify are the self regulation and feedbacksystem laws, for which we find only
some anecdotal evidence (but there is a good case and justification for further investigation). The
laws and our results are summarized in Table 1.

Taking a more global view of Linux’s evolution, we find it to bea prime example ofperpetual
development— a system that is developed continuously in collaboration with its users, without
elaborate specifications and planning. This is seen in the continuous trends observed along the
backbone of development versions, and in the relative stability of production versions that branch
out from this backbone.

The above observations are based on our interpretations of the results of an automatic analysis
of the code. In particular, in many cases we suggest novel quantifications of Lehman’s laws.
Other quantifications are possible, representing a potential internal threat to the validity of our
results. In some cases it is hard to arrive at a conclusion regarding what were the forces motivating
the observed behavior. A further investigation of supplementary data, such as change logs and
developer forums, is required in order to resolve those issues and give sufficient explanations to
the phenomena. Also, the study of the code itself can be improved with the help of tools to
comprehend and analyze the code structure [2, 46].

Our results are of course specific to Linux, thus representing an external threat to validity.
But some observations may generalize to other software systems as well. The applicability and
generality of our results can be assessed by replicating thestudy for other operating system kernels
and for other large software (as in [56]), and by comparing the trends and the qualitative results of
each. It might also be relevant to perform this comparison for open and closed source software in
order to understand the differences in the development (as in [44]). The problem, of course, is to
obtain suitable data for such a study.

23

No. Lehman’s Law Manifestation in Linux
1 Continuing change Thearch anddrivers directories, which account for 50–60%

of the codebase, grow with the rest of the kernel, reflecting
continued adaptation to the hardware environment

2 Increasing complexity
(unless prevented)

While overall complexity grows with the code, the average
per function is declining; in specific instances work to re-
duce complexity is evident

3 Self regulation Possibly supported by steady overall growth rates and fluc-
tuation of incremental growth, but there is no direct support
for a regulation mechanism

4 Conservation of
organizational stability
(invariant work rate)

Rate of releases has been relatively stable from 1997 to
2003. The 2.6 method of timed releases also creates an in-
variant amount of releases per time unit

5 Conservation of
familiarity

Long-lived production versions reflect this law — succes-
sive minor releases have little functionality changes. But
there are big changes between successive production ver-
sions

6 Continuing growth Growth in functionality is obvious. Growth of LOC and
functions occurred at a super-linear rate up to version 2.5,
and then closer to linear

7 Declining quality
(unless prevented)

Declining quality is contradicted by increasing usefulness
to users, and by consistent improvement in a composite
maintainability metric. Thus continued work on Linux has
prevented decline

8 Feedback system Anecdotal support based on the structure of open source de-
velopment

Table 1:Support for Lehman’s Laws in Linux.

This study can also be extended by following additional metrics, such as the various types of
common coupling [41, 64], the indirect metrics developed byYu [63], the shape of the code tree
[7], and more process-related metrics such the time spent, the number of people involved, and how
many developers participate in each type of activity (some preliminary data is available in [25]).
As the Linux kernel is very big, it would also be beneficial to perform a more detailed study of
specific subsystems independently. This might allow us to better characterize and quantify the dif-
ferent laws of evolution, and arrive at more precise formulations. For example, the laws regarding
increasing complexity and reduced quality beg for deeper study, and in particular the widespread
identification and characterization of maintenance activity intended to reduce complexity and im-
prove quality.

On a different trajectory, it would be interesting to complement the empirical characterization
with more theoretical reasoning, in an attempt to uncover the forces at work. This is in fact the basis
for some of Lehman’s laws, e.g. self regulation, feedback system, and conservation of familiarity.

24

An example requiring additional study is the idea that invariant work rate implies that at each step
in the evolution, the system will either grow or undergo somereorganization, but not both at once
[12].

Acknowledgments

This work was supported by the Dr. Edgar Levin Endowment Fund. Many thanks to prof.
Manny Lehman for commenting on a draft of this paper.

A. Methodology

Our analysis is based on measuring the different propertiesand metrics of the Linux kernel as
described in [19]. For completeness, we repeat this here.

A.1. Software Metrics

Many different quantitative software metrics have been proposed over the years [21, 37]. These
can be classified as product metrics which measure the software product itself (such as size as
reflected by LOC and percentage of documented lines) and process metrics which measure the
development process (such as development time and experience of the programming staff). We
focus mainly on product metrics as these can be extracted reliably directly from the code.

There are two reasons why it is important to perform code-based measurements. The first is
accuracy, as the alternatives of using surveys and logs can be highly inaccurate. For example, a
survey of maintenance managers yielded the result that 17.4percent of maintenance is corrective
in nature, while a separate study based on analyzing changesto source code led to a result three
times larger [52]. Similarly, a comparison between change logs for three software products and the
corresponding changed source code itself showed that up to 80% of changes made to the source
code were omitted from change logs [8].

The second reason why code-based metrics are important is that certain phenomena can be
measured only by examining the code itself. For example, common coupling has been validated
as a measure of maintainability [4], and the only way to measure the common coupling within a
software product is to examine the code itself.

The metrics we measure are the following:

1. Number of modules, as expressed by the number of directories, files, and functions.
2. Lines of code (LOC), including its related variants: comment lines and total lines.
3. McCabe’s cyclomatic complexity (MCC), which is equivalent to the number of conditional

branches in the program plus 1 [35, 40]. These includeif-then-else, for, while, do, andcase
statements. We also measure the extended version (EMCC) whereone counts the actual
conditions and not only the conditional statements, based on the conception that Boolean
connectives add complexity to the code.

4. Metrics defined as part of Halstead’s software science [18]. The building blocks of these
metrics are the total number of operatorsN1 and the number of unique operatorsn1, as well
as the total number of operandsN2 and the number of unique operandsn2. Using them,
Halstead defined the following:

25

The volumeHV = (N1 +N2) lg
2
(n1 + n2). This actually measures the total number of bits

needed to write the program.

The difficultyHD =
n1

2
·
N2

n2

. This is proportional to the available tools (operators) and the

average usage of operands.
The effortHE = V · D. This is simply the product of how much code there is and the

difficulty of producing it.

In cases when the metrics are undefined (e.g. for an empty function n1 = n2 = 0) they were
taken as 0. This happened in around 1% of the functions.

5. Oman’s maintainability index (MI) [42, 61], which is a composite metric that attempts to fit
data from several software projects. Its definition is

MI = 171 − 5.2 ln(HV) − 0.23MCC − 16.2 ln(LOC) + 50 sin(
√

2.46pCM)

whereX denotes the average ofX over all modules, and pCM denotes the percentage of
lines that are comments. However, following Thomas [58], wewill interpret pCM as a frac-
tion (between 0 and 1) rather than as a percentage (between 0 and 100) because with this
interpretation

√
2.46pCM has the range of 0 to approximatelyπ

2
.

6. Files and directories handled (added, deleted, or modified).
7. The rate of releasing new versions.

A notable omission from the above list is common coupling, which has been used to assess the
Linux code in several previous studies [51, 64, 58]. However, all those studies neglected to fully
follow inter-procedural pointer dereferences, and thus potentially miss many instances of coupling.
As this is an extremely difficult issue, we leave its resolution to future work.

A.2. Analysis Tool
In order to analyze our full dataset, a static analysis tool was required. We initially considered

using a commercial CASE tool, but in the end developed a tool ofour own that was simpler and
did precisely what we wanted.

Linux is written in C, which includes pre-processor directives (#define, #ifdef, etc.) that are
processed before the compilation proper. One of the big challenges we faced was to handle such
directives. Generally there are two approaches to perform static code analysis: either to pre-
process the code or not to. Applying pre-processing is useful when the goal is to understand how
the code actually runs. However, our objective is to study software engineering, and in particular
the evolution and maintenance of the code. Thus we believe that the correct way to go is to analyze
the code as thedeveloperviews it, i.e. before applying the pre-processor.

For example, macros may be used as an aid to abstraction that has lower cost than subroutines
because the code is inlined by the pre-processor. Due to the inlining, if a developer uses the macro
#define MAX(X,Y) (X>Y)?X:Y, the “real” complexity of the code increases because a branch is
added in each use. But from the developer’s point of view this added complexity is hidden, and
therefore should not be counted. Thus macros should be calculated with all their properties upon
their definition, but as a function call in their uses. The same applies for#include, which can induce
considerable bloat.

26

A major problem comes from use of conditional compilation directives such as#ifdef. Such
code sections are used mainly to handle different configurations with essentially the same code,
by singling out only the differences and selectively compiling the correct version for each con-
figuration. This implies that if we use pre-processing we will actually only analyze a certain
configuration and not the whole code base.

Assuming the developer’s perspective again, we want to analyzeall the code — all the versions
of the#if directives, and their#else parts too — because a developer maintaining such a file must
be aware of all different possibilities of the flow of the code. This again implies that pre-processing
is inappropriate for our needs. In this we differ from Thomas[58], who used a CASE tool which
requires pre-processing, and thus only files and code sections in the pre-processed configuration
were examined.

The major problem with not performing any pre-processing isthat the resulting code is not al-
ways syntactically legal. For example, a function may have slightly different signatures in different
configuration, and this can be expressed using#ifdef and#else. With pre-processing, the compiler
will only see the correct definition each time. But if we just delete the pre-processing directives,
we will get two contradicting definitions of the same function one after the other, and moreover,
sharing the same function body.

As it turns out, in most cases we were able to analyze files which had#ifdef sections. In other
cases, we saw that when analyzing both paths of the#if a malformed code is created and thus we
were not able to analyze it with our automated tool. Trying todo this manually is also a challenge
— how does one decide which path to analyze? Therefore, when we encountered such files we
removed them from the analysis. Other malformed files (very few) were removed as well and are
not included in our calculations.

Overall, less than 1.5% of the source files were not analyzed at all. Among thearch anddrivers
subdirectories between 0.3%–3% of the files were not analyzed, whereas in the other parts of the
kernel the worst case of un-analyzed files was less than 0.7%.Thus the vast majority of the files
were analyzed and their data is aggregated in the different metrics.

Our analysis tool, while not free of problems and limitations, is tailored to perform the analysis
based on the above considerations. We coded a perl script that, given a C file, parses it into
its different tokens, and generates an output file with the metrics. Pre-processor directives were
stripped out, and all the remaining code was analyzed. In those cases where this practice led to
inconsistent code the file was removed from consideration asexplained above. Empty functions
and files were not considered problematic and are included inthe metrics, as they are part of the
design.

We ran this program on all the.c and.h files of all the versions, creating an output file with the
calculated metrics for each one. Then, for each version we aggregated all the data from these output
files. This was done for three groupings: the whole kernel, only the arch anddrivers directories,
and only the other (core) directories. This allows us to study whether these subsystems behave
differently from each other and from the whole system [13, 16].

In order to aggregate the metrics at the kernel level, we usedthe same approach used in other
studies (such as Thomas [58]) and as explained in the original metrics definitions. For example,
LOC, MCC, and EMCC are simply summed across all files (note that files with no functions, such

27

as some header files, will have an MCC of 0, because MCC is a function level metric). In order to
compare the different versions, despite the addition of newfiles or functions, we sometimes look
at the average metric values of the files and functions of the kernel rather than at the aggregate
values. The same is true about the function-level Halstead metrics. Oman’s MI is defined at the
file level. Since it has a 100-point scale we cannot aggregatethe values. Instead, we will use only
the average the MI values of all files in the kernel.

References

[1] A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of the impact of faulty drivers on the
robustness of the Linux kernel”. In Intl. Conf. Dependable Syst. & Networks, pp. 867–876,
Jun 2004.

[2] T. Ball and S. G. Eick, “Software visualization in the large”. Computer29(4), pp. 33–43, Apr
1996.

[3] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study: Its extracted software
architecture”. In 21st Intl. Conf. Softw. Eng., pp. 555–563, May 1999.

[4] L. C. Briand, J. Wust, and H. Lounis, “Using coupling measurement for impact analysis in
object-oriented systems”. In Intl. Conf. Softw. Maintenance, pp. 475–482, Aug 1999.

[5] F. P. Brooks, Jr.,The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, 1975.

[6] A. Capiluppi, “Models for the evolution of OS projects”. In Intl. Conf. Softw. Maintenance,
pp. 65–74, Sep 2003.

[7] A. Capiluppi, M. Morisio, and J. F. Ramil, “Structural evolution of an open source system: A
case study”. In 12th IEEE Intl. Workshop Program Comprehension, pp. 172–182, Jun 2004.

[8] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z. Heller, “Open-source change logs”. Em-
pirical Softw. Eng.9, pp. 197–210, 2004.

[9] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study of operating
system errors”. In 18th Symp. Operating Systems Principles, pp. 73–88, Oct 2001.

[10] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a large object-oriented
software system”. IEEE Trans. Softw. Eng.33(10), pp. 687–708, Oct 2007.

[11] S. Cook, R. Harrison, M. M. Lehman, and P. Wernick, “Evolution in software systems: Foun-
dations of the SPE classification scheme”. J. Softw. Maintenance & Evolution: Res. & Pract.
18(1), pp. 1–35, Jan-Feb 2006.

[12] S. Cook, R. Harrison, and P. Wernick, “A simulation model of self-organising evolvability in
software systems”. In IEEE Intl. Workshop Software Evolvability, pp. 17–22, Sep 2005.

[13] H. Gall, M. Jazayeri, R. R. Klösch, and G. Trausmuth, “Software evolution observations
based on product release history”. In Intl. Conf. Softw. Maintenance, pp. 160–166, Oct 1997.

[14] L. Gasser, W. Scacchi, G. Ripoche, and B. Penne, “Understanding continuous design in
F/OSS projects”. In 16th Intl. Conf. Softw. & Syst. Eng. & Apps., Dec 2003.

[15] M. W. Godfrey and D. M. German, “The past, present, and future of software evolution”.
In 24th Intl. Conf. Softw. Maintenance, Sep 2008. (Special track on Frontiers of Software
Maintenance).

28

[16] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case study”. In 16th Intl.
Conf. Softw. Maintenance, pp. 131–142, Oct 2000.

[17] G. A. Hall and J. C. Munson, “Software evolution: Code delta and code churn”. J. Syst. &
Softw.54(2), pp. 111–118, Oct 2000.

[18] M. Halstead,Elements of Software Science. Elsevier Science Inc., 1977.
[19] A. Israeli and D. G. Feitelson, “Characterizing software maintenance categories using the

Linux kernel”, Feb 2009. Submitted for publication.
[20] C. Izurieta and J. Bieman, “The evolution of FreeBSD and Linux”. In 5th Intl. Symp. Empir-

ical Softw. Eng., pp. 204–211, Sep 2006.
[21] S. H. Kan,Metrics and Models in Software Quality Engineering. Addison Wesley, 2nd ed.,

2004.
[22] C. J. Kasper and M. W. Godfrey, ““Cloning considered harmful” considered harmful: Pat-

terns of cloning in software”. Empirical Softw. Eng.13(6), pp. 645–692, Dec 2008.
[23] C. F. Kemerer and S. Slaughter, “An empirical approach to studying software evolution”.

IEEE Trans. Softw. Eng.25(4), pp. 493–509, Jul/Aug 1999.
[24] S. Koch, “Evolution of open source software systems – a large-scale investigation”. In 1st

Intl. Conf. Open Source Systems, pp. 148–153, Jul 2005.
[25] G. Kroah-Hartman, J. Corbet, and A. McPherson,Linux Kernel Development — How Fast

is it Going, Who is Doing it, What are they Doing, and Who is Sponsoring it. Tech. rep., the
Linux Foundation, Apr 2004.

[26] M. J. Lawrence, “An examination of evolution dynamics”. In 6th Intl. Conf. Softw. Eng., pp.
188–196, Sep 1982.

[27] M. Lehman and J. C. Fernández-Ramil, “Software evolution”. In Software Evolution and
Feedback: Theory and Practice, N. H. Madhavji, J. Ferńandez-Ramil, and D. E. Perry (eds.),
chap. 1, pp. 7–40, Wiley, 2006.

[28] M. M. Lehman, “Programs, life cycles, and laws of software evolution”. Proc. IEEE68(9),
pp. 1060–1076, Sep 1980.

[29] M. M. Lehman, “On understanding laws, evolution, and conservation in the large-program
life cycle”. J. Syst. & Softw.1, pp. 213–221, 1980.

[30] M. M. Lehman, “Laws of software evolution revisited”. In 5th European Workshop on Soft-
ware Process Technology, pp. 108–124, Springer Verlag, Oct 1996. Lect. Notes Comput.Sci.
vol. 1149.

[31] M. M. Lehman, D. E. Perry, and J. F. Ramil, “Implications of evolution metrics on software
maintenance”. In 14th Intl. Conf. Softw. Maintenance, pp. 208–217, Nov 1998.

[32] M. M. Lehman, D. E. Perry, and J. F. Ramil, “On evidence supporting the FEAST hypothesis
and the laws of software evolution”. In Software Metrics Symposium, pp. 84–88, Nov 1998.

[33] M. M. Lehman and J. F. Ramil, “The impact of feedback in the global software process”. J.
Syst. & Softw.46(2-3), pp. 123–134, Apr 1999.

[34] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perrry, and W. M. Turski, “Metrics and laws
of software evolution – the nineties view”. In 4th Intl. Software Metrics Symp., pp. 20–32,
Nov 1997.

29

[35] T. McCabe, “A complexity measure”. IEEE Trans. Softw. Eng.2(4), pp. 308–320, 1976.
[36] T. Mens, J. Ferńandez-Ramil, and S. Degrandsart, “The evolution of Eclipse”. In Intl. Conf.

Softw. Maintenance, pp. 386–395, Sep 2008.
[37] E. Mills, Software Metrics. Tech. Rep. Curriculum Module SEI-CM-12-1.1, Software Engi-

neering Institute, December 1988.
[38] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open source software

development: Apache and Mozilla”. ACM Trans. Softw. Eng. & Methodology11(3), pp. 309–
346, Jul 2002.

[39] MSDN, “Visual Studio 2008: Avoid excessive complexity”. URL
http://msdn.microsoft.com/en-us/library/ms182212.aspx, 2008.

[40] G. Myers, “An extension to the cyclomatic measure of program complexity”. SIGPLAN No-
tices12(10), pp. 61–64, Oct 1977.

[41] A. J. Offutt, M. J. Harrold, and P. Kolte, “A software metric system for module coupling”. J.
Syst. & Softw.20(3), pp. 295–308, Mar 1993.

[42] P. Oman and J. Hagemeister, “Construction and testing of polynomials predicting software
maintainability”. J. Syst. & Softw.24(3), pp. 251–266, Mar 1994.

[43] D. L. Parnas, “Software aging”. In 16th Intl. Conf. Softw. Eng., pp. 279–287, May 1994.
[44] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-source and closed-

source software products”. IEEE Trans. Softw. Eng.30(4), pp. 246–256, Apr 2004.
[45] V. T. Rajlich and K. H. Bennett, “A staged model for the software life cycle”. Computer

33(7), pp. 66–71, Jul 2000.
[46] S. Ratanotayanon and S. E. Sim, “Inventive tool use to comprehend big code”. IEEE Softw.

25(5), pp. 91–92, Sep/Oct 2008.
[47] E. S. Raymond, “The cathedral and the bazaar”. URL

http://www.catb.org/˜esr/writings/cathedral-bazaar/cathedral-bazaar, 2000.
[48] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution and growth in

large libre software projects”. In 8th Intl. Workshop Principles of Software Evolution, pp.
165–174, Sep 2005.

[49] D. A. Rusling, “The Linux kernel”. URL http://tldp.org/LDP/tlk/.
[50] W. Scacchi, “Understanding open source software evolution”. In Software Evolution and

Feedback: Theory and Practice, N. H. Madhavji, J. Ferńandez-Ramil, and D. E. Perry (eds.),
chap. 9, pp. 181–205, Wiley, 2006.

[51] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt, “Maintainability of the
Linux kernel”. IEE Proc.-Softw.149(2), pp. 18–23, 2002.

[52] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt, “Determining the distribution of
maintenance categories: Survey versus measurement”. Empirical Softw. Eng.8, pp. 351–
365, 2003.

[53] M. Shepperd, “A critique of cyclomatic complexity as a software metric”. Software Engi-
neering J.3, pp. 30–36, Mar 1988.

[54] M. Shepperd and D. C. Ince, “A critique of three metrics”. J. Syst. & Softw.26, pp. 197–210,
Sep 1994.

30

[55] N. Smith, A. Capiluppi, and J. F. Ramil, “A study of open source software evolution data us-
ing qualitative simulation”. Softw. Process Improvement & Pract.10(3), pp. 287–300, Jul/Sep
2005.

[56] D. Spinellis, “A tale of four kernels”. In 30th Intl. Conf. Softw. Eng., pp. 381–390, May 2008.
[57] SRI, “Software technology roadmap: Cyclomatic complexity”. In URL

http://www.sei.cmu.edu/str/str.pdf, 1997.
[58] L. Thomas,An Analysis of Software Quality and Maintainability Metricswith an Application

to a Longitudinal Study of the Linux Kernel. Ph.D. thesis, Vanderbilt University, 2008.
[59] L. Torvalds, “The Linux edge”. Comm. ACM42(2), pp. 38–39, Apr 1999.
[60] W. M. Turski, “Reference model for smooth growth of software systems”. IEEE Trans. Softw.

Eng.22(8), pp. 599–600, Aug 1996.
[61] E. VanDoren,Maintainability Index Technique for Measuring Program Maintainability.

Tech. rep., Software Engineering Institute, Mar 2002.
[62] E. J. Weyuker, “Evaluating software complexity measures”. IEEE Trans. Softw. Eng.14(9),

pp. 1357–1365, Sep 1988.
[63] L. Yu, “ Indirectly predicting the maintenance effort of open-source software”. J. Softw. Main-

tenance & Evolution: Res. & Pract.18(5), pp. 311–332, Sep/Oct 2006.
[64] L. Yu, S. R. Schach, K. Chen, and J. Offutt, “Categorization of common coupling and its

application to the maintainability of the Linux kernel”. IEEE Trans. Softw. Eng.30(10), pp.
694–706, Oct 2004.

31

