The Linux Kernel as a Case Study in Software Evolution

Ayelet Israel Dror G. Feitelson

Department of Computer Science
The Hebrew University, 91904 Jerusalem, Israel

Abstract

We use 810 versions of the Linux kernel, released over a gp@fid4 years, to characterize the
system’s evolution, using Lehman’s laws of software evotutis a basis. We investigate different
possible interpretations of these laws, as reflected bgreifit metrics that can be used to quantify
them. For example, system growth has traditionally beemtfied using lines of code or number
of functions, but functional growth of an operating systéke Linux can also be quantified using
the number of system calls. In addition we use the avaitgloh the source code to track metrics,
such as McCabe’s cyclomatic complexity, that have not besckéd across so many versions
previously. We find that the data supports several of Lehsilaws, mainly those concerned with
growth and with the stability of the process. We also makeesaovel observations, e.g. that the
average complexity of functions is decreasing with time,this is mainly due to the addition of
many small functions.

Key words: Software evolution, Lehman’s laws, Linux kernel

1. Introduction

Software engineering textbooks typically focus on theiahitlevelopment of new software
products. However, at least for some such products, thalidigvelopment is but a progenitor of
additional development to come. The Linux kernel is a lssgale and long-lived software system
that is enjoying widespread use throughout the world. Mbent800 releases have been made
since version 1.0 was released in March 1994, and thouséud@se@opers have contributed to the
code base. The project is open source, and all the code bkaléteases is freely available on the
Internet (fromwww.kernel.org and numerous mirrors). This provides data for the study ivsoe
evolution of a nature and scale that is impossible with gtbegpecially closed source, systems.

Operating systems such as Linux are examples of what Lehasacetied E-type programs [28,
11]. They are part of the infrastructure of the world in whibby are used. At the same time, they
are modified in response to new requirements and changestsduam users, evolving in ways
that cannot be anticipated or specified in advance [15]. Tiney undergo what we cglerpetual
developmentith new releases of production versions occurring frametto time [45, 14]. While
such development may of course come to an end when use of skensys discontinued, the
mindset of the developers at any given time is that it willtooune indefinitely.

Lehman’s study of the evolution of E-type systems led to threnfilation of a set of “laws”
of software evolution. These include observations sucthasdoftware that is in constant use

Preprint submitted to Elsevier September 23, 2009

inevitably continues to grow, to be adapted to its environini28, 30]. Importantly, it was claimed
that these laws are general and do not depend on the specifiessrbeing used to develop the
studied software. The laws were validated by analyzing Yio&u&on of size metrics of large-scale
commercial systems such as the IBM OS/360. However, additi@search has been hampered
by the difficulty in obtaining high-quality data regardiraydge-scale commercial systems [23].

Today we can get data from open source products (e.g. [38])/,\While there is some debate
on whether this also reflects the behavior of closed-sowfte/are, there are indications that it
indeed does [44]. At the same time, the growth of the openceonmovement and the resulting
importance of open source software to the industry as a whekmn that studying the evolution of
open source is important in its own right, even if it does rdiect closed-source as well.

In this study we will use the Linux kernel. Our objective isstcamine whether Lehman’s laws
are reflected in the development of the Linux kernel. A rettd version of this was done in the
past by Godfrey and Tu [16], who examined the growth of thaukikernel over its first six years
(1994-2000), and found that at the system level its growth sugoerlinear. This result deviated
from previous results obtained by Lehman using closedesoproducts [34, 32]. We want to
verify this result using a much larger data set, and extetadtite other laws. Given the availability
of the source code, we also use additional metrics that haivieeen used before in this context.

Linux is undoubtedly a successful open source system, wiashbeen used for data in many
previous studies (e.g. [3, 16, 51, 44, 64, 48, 20, 56, 58]ecBigally, we will analyze the progress
made in hundreds of versions of Linux, released between IM2894 and August 2008, each
containing thousands of source files and millions of linesaife. Such an analysis can serve as
a basis for comparison with other systems. Linux is alsa@sting and important enough to be
studied for its own sake.

The organization of this paper is as follows. Section 2 ptesibackground regarding the Linux
kernel and Lehman'’s laws of software evolution. In Sectiove3resent our interpretation of these
laws in the context of the Linux system, and derive quanmigadlata in their support. Section 4
concludes and includes a discussion of threats to validitifature work.

2. Background

2.1. Structure of the Linux Kernel

The Linux operating system kernel was originally developgdLinus Torvalds, who an-
nounced it on the Internet in August 1991. There foIIO\AléZ\(years of development by a growing
community or developers, and the first production versios reteased in March 1994.

Initially a 3-digit system was used to identify releases.e Tinst digit is the generation; this
was 1 in 1994 and changed to 2 in 1996. The second digit is therrkarnel version number.
Importantly, a distinction was made between even and oddmkaynel numbers: the even digits
(2.0, 1.2, 2.0, 2.2, and 2.4) correspond to stable produstsrsions, whereas versions with odd
major numbers (1.1, 1.3, 2.1, 2.3, and 2.5) are developnersions used to test new features and
drivers leading up to the next stable version. The thirdtdggthe minor kernel version number.
New releases (with new minor numbers) of production vessgupposedly included only bug fixes
and security patches, whereas new releases of developmesnns included new (but not fully
tested) functionality.

The problem with the above scheme was the long lag time uewl functionality (and new
drivers) found their way into production kernels, becauss happened only on the next major
version release. The scheme was therefore changed with@Hesghel in December 2003. Ini-
tially, releases were managed at a relatively high ratenTwéh version 2.6.11, a fourth number
was added. The third number now indicates new releases ditedafunctionality, whereas the
fourth number indicates bug fixes and security patches. {16 therefore acts as production
and development rolled into one. However, it is actually erldee a development version, because
new functionality is released with relatively little teggi. It has therefore been decided that version
2.6.16 will continue to be updated with bug fixes even beytedélease of subsequent versions,
and act as a more stable production version

The Linux kernel sources are arranged in several major setidries [49]. The main ones are

init contains the initialization code for the kernel.

kernel contains the architecture independent main kernel code.
mm contains the architecture independent memory managerodet c
fs contains the file system code.

net contains the networking code.

ipc contains the inter-process communication code.

arch contains all the kernel code which is specific for differerghéectures (for example Intel
processors with 32 or 64 bits, PowerPC, etc.).

drivers contains all the system device drivers.
include contains most of the includen(files) needed to build the kernel code.

An interesting note is that both tleech anddrivers directories are practically external to the
core of the kernel, and each specific kernel configuratios aae/ a small portion of these direc-
tories. However, these directories constitute a majorgfatte code, which grows not only due to
improvements and addition of features, but also due to tled te@ support additional processors
and devices.

2.2. Research Data

We examined all the Linux releases from March 1994 to Aug0682 There are 810 releases
in total (we only consider full releases, and ignore intepatches that were popular mainly in 1.x
versions). This includes 144 production versions (1.0, 2.0, 2.2, and 2.4), 429 development
versions (1.1, 1.3, 2.1, 2.3, and 2.5), and 237 versions ®f@ to release 2.6.25.11). This
represents a significant extension of the work of Godfrey amd16], who's cutoff date was
January 2000 (their last versions were 2.2.14 and 2.3.39).

We aimed at examining thentire source code of the Linux Kernel. A typical C program
consists of files whose names have two different extensidresnd.c. The.c files consist of the

1This seems to have stopped with 2.6.16.62 released on 22008;

executable statements and thdiles of the declarations. Both should be looked at in ordereto g
the full picture of the Linux code. In this we follow Godfreya Tu [16] and Thomas [58], as
opposed to Schach et al. [51] who only included théles. Given that we are interested in code
evolution rather than in execution, we take the developertd view and consider the full code
base. Schach et al. [51] considered only kbnel subdirectory, that contains but a small fraction
of the most basic code. Thomas [58] spent much effort on aefiaiconsistent configuration that
spans versions 2.0 to 2.4, thus excluding much of the codmlyrdrivers), and limiting the study
of innovations. In any case, such a consistent version ¢d&i@und spanning the full range from
1.0 to 2.6. We ignore makefiles and configuration files, as wae thy others.

We decided to examine both the development and the produatisions as most of the evolu-
tion occurs in development versions. Thomas [58] in comstaxttion examined only the second
generation production series (2.0, 2.2, and 2.4). Thislptdes study of the development leading
up to each new version, and of migration of code between dpm@nt and production versions.
Moreover, in retrospect it seems to be somewhat misguidegedsmelieve that version 2.4 reflects
significant development activity for at least a year (mo2@d1). Godfrey and Tu [16] examined
only a sample of the minor releases of each major versionspadifically decided to examine
more production kernels, which were less frequently reldaSuch sampling precludes a detailed
examination of the changes from one release to the next.

The code metrics that we measured and methodological issaetescribed in the appendix.
To study the evolution of the system, we plot various metagsa function of time, as suggested
by Godfrey and Tu [16]. We then use a simple visual inspedbaomment on observed patterns.
The alternative is to use statistical tests, as was doneximple by Lawrence [26]. However,
the results of such statistical tests depend on the test asddequire a precise quantifiable defi-
nitions for Lehman’s Laws — both of which are open to contreye In addition we note that in
many cases the overall observed behavior is erratic, soregtincluding large discrete jumps. We
therefore limit most of the conclusions to strong effectt #ire self-evident from the data.

2.3. Lehman’s Laws of Software Evolution

Textbook lifecycle models divide a system’s lifetime imbeotparts: development up to the ini-
tial release, and maintenance thereafter. But many rearsgstand in particular E-type systems,
are actually subject to perpetual development, and camtimevolve throughout their life. We are
concerned with the study of how the system develops dursngviblution.

Lehman studied several large scale systems and identigefditowing laws of software evo-
lution, which describe behavioral patterns rather thahr@al issues [29, 30]. Empirical support
for the laws was provided by several studies, typically gsinalysis of how software size changes
with time [34, 31, 32]. We intend to follow a similar proce@uthis time using Linux as the test
case, and several different metrics. In particular, oneuofcontributions is the attempt to reduce
the laws into a quantifiable form. In this we exploit the fawtiwe have access to all the source
code, so various code metrics may be employed.

The laws and their implications are as follows, using theapimg in [27]. The numbering
reflects the order in which they were formulated.

1. Continuing change (1974)An E-type system must be continually adapted, else it bexsom
progressively less satisfactory in use.” Adaptation ish® ¢ircumstances of the system’s

4

~

use; without it, the system will not keep up with the needs:. é&@mple, if business prac-
tices change, programs that support the business mustebamgSpecifically with E-type

systems, using the program itself affects the environmbateby driving the need for mod-
ifications. Thus a useful program is never finished, and megsumust be allocated to its
continued development.

. Increasing complexity(1974)As an E-type system is changed its complexity increases and
becomes more difficult to evolve unless work is done to mairgad reduce the complexity.”
This complements the first law. When the program is changedirt concern is the needed
functionality. Thus the changes are typically done as alpatisregarding the integrity of
the original design. The implication is that in order to keke program operational, it is
not enough to invest in changing it — one also needs to investpeatedly reducing the
complexity again to acceptable levels, in order to fadsitar at least simplify, subsequent
changes.

. Self regulation (1974)!Global E-type system evolution if feedback regulated.”isTteflects
a balance between forces that demand change, and corstmawhat can actually be done.
The rate of change is thus determined, among other factptBgbmaintenance organization,
and one must accept the limits this imposes. This law alsdhesnportant consequence
that models of program evolution can be used as planning.tool

. Conservation of organizational stability (invariant waeate) (1980):“The work rate of an
organization evolving an E-type software system tends todmestant over the operational
lifetime of that system or phases of that lifetime.” Thiseefk the difficulty in moving staff,
making budget changes, etc. Large organizations, thatipeoldrge software systems, have
inertia, and tend to continue working in the same way. Trymghange this is hard and
often proves futile.

. Conservation of familiarity (1980)in general, the incremental growth (growth rate trend) of
E-type systems is constrained by the need to maintain farityli’ Maintaining familiarity is
important for both developers and users. Thus large redesasetypically followed by small
ones that are required in order to restore stability. Try;ngake too many changes at once
is very likely to lead to serious problems.

. Continuing growth (1980)‘The functional capability of E-type systems must be caunity
enhanced to maintain user satisfaction over system ligetinThis is an extension of the
first law: functionality is not only adjusted to changing ddrons, but also augmented with
totally new capabilities that reflect new demands from yseesketing people, and possibly
others.

. Declining quality (1996)*Unless rigorously adapted and evolved to take into accobanges
in the operational environment, the quality of an E-typeesyswill appear to be declining.”
This is a corollary to the first law, and states the resultsiofating it. Specifically, if
the software is not adapted, assumptions that were used toitstruction will become
progressively less valid, even invalid, and their latefeéat unpredictable.

. Feedback system (1974/1996F-type evolution processes are multi-level, multi-loopylti-
agent feedback systems.” Multiple participants are iredhincluding managers, develop-

5

ers, clients, and users. This is most explicitly coveredhythird law, but feedback is also
involved in the processes that determine other laws. Trssté®e recognized if one is to
attempt to improve the process in order to achieve betteiesiity.

These laws are not just a description of evolution, but raéimeattempt to explain the processes
driving the evolution. Thus they are not necessarily diyembservable by examining the resulting

software product. However, the software may reflect effettise postulated laws. Lehman sought
such effects in order to validate the laws, and we extendjinest to Linux.

3. Evolution of the Linux Kernel

In this section we analyze Lehman’s laws of software evoiuin light of data regarding the
evolution of the Linux kernel. This is contrasted with Lehrisaown work regarding empirical
support for these laws [34, 31, 32]. Note that the laws argeationally numbered by the date of
their introduction. Here we use a different order, startintp those that are more directly related
to the code, and grouping related laws together. Technetalld regarding the measurements are
given in the appendix.

3.1. Law 6: Continuing Growth

According to this law, functional content of a program mustdontinually increased to main-
tain user satisfaction over its lifetime. “Growth” can obwusly also be interpreted as referring
to the mere size of the software product. Moreover, the sazeperhaps be used as a proxy for
functional content, based on the assumption that additcotke is written in order to support new
features. Thus continuing growth may be validated by catoul software size metrics (such as
number of modules) and tabulating their trends over timas Ehthe approach that was used by
Lehman and others.

However, “Functional content” relates specifically to tlodtware’s features. In Linux and
other operating systems the most direct metric for supddeatures is the number of system
calls. This is augmented by the number of predefined paramwealtges that modulate the behavior
of the system calls. For example, the well-knagwen system call has flags like_CREAT to create
the file if it does not exist)_TRUNC to truncate the file if it does exist, or alternativ€lyAPPEND
to add data to the end of the existing file, among others. Qis\yoadding such flags adds to the
functionality of the system. We therefore also use suchioseim our study.

3.1.1. Functionality Metrics

Counting system calls in Linux is relatively easy, as theyliated in a table in fildinux/arch/*
/kernel/entry.S (somewhat surprisingly, there are system calls that arguenio different archi-
tectures, and we count all of them). We didn’t also count flagsmanual pages have not been
archived together with the code. Instead, we counted uniguéiguration options as they are
listed in configuration files throughout the kernel. The hssare shown in Fig. 1. In this and fol-
lowing figures, theX -axis is the release date, as suggested by Godfrey and Tul[ig]is needed
because there is significant variability in the developntiemés represented by minor releases, so
tabulating growth as a function of release number as suggdst Lehman might be misleading.

400 -

350 -

300 -

250 -

200 -

150 -

Number of System Calls

100

7000 -
6500 -
6000 -
5500 -
5000
4500 -
4000 -
3500 -

3000
1000

500 +

0

05

Number of Configuration Options

94

Figure 1: The growing number of system calls and configuration optinisnux.

The labels on the lines indicate the respective Linux keveedion; starting with 2.6.11 only the
minor number is given.

According to our data, most system calls are added in dexedap versions, with a 50% in-
crease in 1.3 and another 20% rise in 2.3. Interestingly,.5ntf2e net effect was insignificant
despite many additions, because a large group of OSF-detgtdem calls were removed in ver-
sion 2.5.42. The general rate of growth seems to be slowingnadince 2003, probably indicating
that the system is maturing. Configuration options, howedribit an opposite trend: they seem
to be growing at an ever increasing rate. In fact, this is tilg metric in which the growth in 2.6
seems to be superlinear. There is also a tripling of configur@ptions in version 2.5.45, which is
probably technical in nature as it seems to be related to mgehia their format and organization.

5e+006 - LOC - All Directories

4.5e+006
4e+006 1
3.5e+006
3e+006
2.5e+006 -
2e+006
1.5e+006 -
1e+006

500000

0 - T T T T T T T T T T T T T T
94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Number of Functions — All Directories

180000 - 25
24
23
160000 -| 2122
19 Lo
140000 - 17 16

120000 -
100000 -
80000 -
60000 -
40000 -

20000

0 | ot T2
94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Figure 2: The growth of Linux as measured by LOC and number of functions

3.1.2. Size Metrics

Various metrics may be used to describe the size of a softpar@uct. Among the most
commonly used are lines of code (LOC) and number of moduleswlWeterpret lines of code
as “non-comment non-blank” lines, i.e. we only count linesttactually contain some executable
code. We interpret modules as C functions. Our results sigtiese size metrics for all Linux
releases studied are shown in Fig. 2.

The two metrics, LOC and functions, lead to very similar tesstAs was expected, most of the
growth occurs in development versions. However, thergisistant growth also in the initial parts
of the 2.4 and 2.2 production series. Interestingly, thevtficcurves sometimes exhibit discrete
jumps, most notably in the 2.5 series. These can be tracéeé iatlusion of subsystems that were
developed externally, such as thmund directory that was added in version 2.5.5, andxfsdfile
system that was added in 2.5.36. Such additions may be taleraaples of punctuated evolution

[12], as opposed to progressive evolution.

Comparing with previous work, Lehman, in his studies of olbseurce systems, found that
growth was either linear [31] or sub-linear [32], and in orse there seemed to be two distinct
growth phases. His size metric was modules, and the indepéndriable was release number
rather than time. This was analyzed by Turski who suggesteidwerse-square law, where the
increment in each release is equal to a constant effort etividy the square of the size of the
previous release [60, 34]. The interpretation was that zes giows complexity increases, and
it becomes harder to grow further: specifically, the invagsadratic term reflects the need to
consider all possible interactions. This model leads toottegliction that size would grow as the
(sub-linear) cubic root of the release number.

Capiluppi analyzed several open-source projects, and faoladgrowth is generally linear
[6, 7]. In subsequent work using a larger dataset, Smith éahd that some projects also exhibit
periods of stability or even declining size, but still grovdtominates in general [55]. Paulson et al.
used a linear model for comparing the growth of open and disséware systems [44]. Godfrey
and Tu [16] and Robles et al. [48], in contradistinction, fddmat Linux grows at aupetinear rate,
and suggested that a quadratic curve provides a good pheotogeal model. Koch extended this
to 8621 projects on SourceForge, and found that in genersdrgtic model is better than a linear
one, especially for large projects [24]. Note, howevert thdike Lehman’s work this was based
on counting LOC, not modules, and that growth was charaet@as a function of time, not release
number. lzurieta and Bieman compared Linux with FreeBSD, amtladed that both systems’
growth rates are actually linear [20]. Scacchi reports aeise studies that found a mix of sub-
linear and super-linear growth in different open-souraggmts, including exponential growth [50].
Our results also support such a mix. When focusing on the nivsinged codebase at any given
time, as represented by the highest points in Fig. 2, the throstes can be seen to be superlinear
up to version 2.5, but in 2.6, which is beyond the data comsitiey most previous researchers,
the growth seems to be closer to linear.

Interestingly, Torvalds predicted in 1999 that the growthiLimux would slow down as the
system matures [59]. His reasoning was not related to coatpléut rather that the functionality
required from the kernel will stabilize, and further deyeitent would take place in user space.
The empirical data suggests that he was wrong.

3.2. Law 1: Continuing Change

According to this law, a program that is used must be conliyp@aapted to changes in its
usage environment else it becomes progressively lessagadi/. Usually, it is hard to distinguish
between adaptation to the environment and general growthefkected in the continuing growth
law) [32]. For example, when support for sound cards is adiddtlis a new feature or an adapta-
tion to a changing environment? Most probably, it is bothe&dire that was added in response to
a change in the environment.

A special case that is relevant to Linux is adaptation to thenging hardware environment.
Such changes are easily identifiable. All the code that perta processor architectures is con-
tained in thearch subdirectory of the kernel. Likewise, all the code that @ies to peripherals is
contained in thelrivers subdirectory. Code that is added to these two subdirecttrégsfore re-
flects adaptation to the system’s changing hardware enwvieot In fact, when looking at change

9

25000 -

—— All Dirs
""" Arch and Drivers Dirs

20000 -

15000 -

10000 -

5000 -

Figure 3: The growth of source files in thgrch anddrivers directories as a fraction of the whole Linux system.

logs, Linux forums, and explanations about the contentfdéi@int versions, one of the things that
returns in each version is new drivers and adaptation to meltactures.

A plot of how these two subdirectories grow with time is shawirig. 3. It is easily seen that
they mirror the growth of the Linux kernel as a whole, and ict faccount for about half of it in
any given version. While the results shown are based on caphlies, similar results are obtained
when counting functions or LOC. In fact, the percentage of Lé@6tained in therch anddrivers
directories is even a bit higher, and stands at about 60% erage. A possible explanation for
this strong showing is that writing new drivers often indwloning existing code [22].

We can thus assert the Linux exhibits continued change aapltaiibn to its environment, in
accordance with this law, even though the original law isophily of wider scope than this specific
example.

3.3. Law 2: Increasing Complexity

According to this law, as a program evolves its complexityréases unless work is done to
maintain it by specifically making changes to reduce the derify. This law is very hard to prove
or disprove formally, as it allows both trends: if complgxmcreases it fits the initial premise of
the law, but if it is reduced then maybe this is due to work tlias done to reduce it, thus also
satisfying the law. Moreover, work on extending the systgpically includes work to keep it
maintainable, and the two cannot realistically be sepdi2].

Lehman supports this law by rationalization (adding feadland devices necessarily increases
complexity [29]) and by showing data that growth rates declvith time, as would be expected
due to the constraints of increased complexity [34, 32]. E\mv, our data regarding the Linux
code growth rate, and the data of others as well [16, 48], doedisplay an inverse square pattern
as claimed by Lehman. On the contrary, growth may actuallguperlinear. Thus we do not see
evidence that complexity is constraining the growth of kntAnd indeed, as we show below,
there are indications that complexity is not increasingiimulx.

10

3.3.1. Direct Measurement of Code Complexity

An alternative approach is of course to measure code coityplixectly, which is perfectly
possible given that we have access to the full codebase bfweasion. In particular, we mea-
sured the McCabe cyclomatic complexity (MCC), which is equaato the number of conditional
branches in the program plus 1 [35, 40]; for C, these inclfiden-else, for, while, do, andcase
statements. We are aware of the fact that this metric has dfedlenged on both theoretical and
experimental grounds, for example, by showing that it isrggty correlated with lines of code, or
claiming that it only measures control flow complexity but data flow complexity [53, 62, 54].
There is, however, no other complexity metric that enjoydewiacceptance and is free of such
criticisms. Moreover, we do not attach much meaning to tleokite values cited, and are main-
lyinterested in how the metric changes between successiggons of the same software product
[17].

The results of calculating the MCC for the full codebase ofLalux versions are shown in
Fig. 4. As may be expected, when the size of the code growspas tthe total MCC [53]. It is
therefore more interesting to look at normalized valueshsas the average MCC per function.
The results in this case indicatelacliningtrend. Thus the total MCC is in general growing more
slowly than the number of functions, and thus the averagepteity is decreasing. A similar
result is obtained if we normalize by LOC rather than by numiddunctions, except that MCC
per LOC has been essentially stable since 2002, whereas MCiGmmtion continues to decline.
A decline is also observed in the median MCC across all thetifumgin the kernel. This was 4 in
1994, 3 from 1995 to the beginning of 2003, and 2 since then.

Focusing on the average MCC per function, one must rememégettt number of functions
also increases with time. Thus it might be that the reducedaaye value is just a result of having
more functions with relatively lower complexity. Indeedbtlating the average MCC in only new
files each year leads to values that are typically lower th@natverage over all files [19]. We
therefore looked at the distribution of the MCC per functimeicthe different versions.

The distributions of major production versions are showRim 5. Each is represented by its
first minor version; development versions are excludedisetheir initial releases tend to be very
similar to the production version from which they branch. Wihine plots are qualitatively similar,
one can observe that the order of the plots correspondsttofttize kernels: the innermost line is
kernel 1.0, the next is 1.2, etc., and the topmost one is2.G.Rus each line is more concave then
the previous one. This means that over time we indeed hawger lxaction of functions with a
lower MCC value.

Looking at the graphs more closely, one can observe thaiovetsO has significantly fewer
functions with low MCC (in the range 1-6). This could imply theork was done specifically to
reduce the complexity of the initial version code. Over tkarng, there was a significant improve-
ment in general. For example, initially only about 38% of thactions had an MCC less than
or equal to 2, but now it is about 52%. Using a threshold of 10ictvwas originally suggested
by McCabe as indicating modules one should be worried ab&]it §d was used by the SEI to
indicate “moderate risk” [57], we find that in 1.0 a full 15% tble functions had a higher MCC,
but in recent versions this dropped to half — about 8%. Thascates that the vast majority of
functions in Linux should be easy to maintain.

11

McCabe Cyclomatic Complexity — All Directories

719000 - 24
669000 22
619000 - 13
569000 4 15
519000
469000 |
419000 |
369000
319000
269000
219000
169000
119000

69000 -

19000

07 08

7. Avg. McCabe Cyclomatic Complexity per func — All Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Figure 4: Total McCabe’s cyclomatic complexity and the average vakrefunction.

Another way to look at the distributions is to plot the evauatof their percentiles. This is
shown in Fig. 6, this time using development versions (adddwring its first year, when no
contemporary development version existed). The resutligh#xa dramatic decrease in the top
percentiles, indicating that the fraction of functionstwathigh MCC is decreasing. This can mean
that more low complexity functions are inserted, and/ot thgh complexity functions are being
rewritten.

3.3.2. High-MCC Functions

While the results for the low-MCC functions are encouragingg should also consider the
high-MCC functions in the tail of the distribution. Accordjto our results, 3—-5% of the functions
have an MCC above 20, which was classified by the SEI as “complgh risk program” [57];
Microsoft’s Visual Studio 2008 also reports a violation f@lues exceeding 25 [39]. The top

12

probability

5 10 15 20
MCC

Figure 5: Cumulative distribution function of McCabe’s cyclomatioraplexity per function for initial production

versions.

McCabe Cyclomatic Complexity

N
o
I

=
ol
I

[y
o
I

(&)]
I

Percentiles of McCabe Cyclomatic Complexity per func — All Directories

95th percentile

90th percentile

75th percentile

median

25th percentile
v1.3 v2.1 v2.3 v2.4 v2.5 V2.6

95 96 97 98 99 00 01 02 03 04 05 06 07 08

Figure 6: Percentiles of McCabe'’s cyclomatic complexity per funetior development versions.

values observed are extremely high: for example, in ver2iéri6 we have a single function with
MCC of 255; in version 2.2 there is a function with 470. Suchuealare totally out of the scale
defined by the SEI, which classifies functions with an MCC alifyas “untestable”.

To study the evolution of the tail of the distribution, we &l the survival function of the
MCC values (i.e. for each MCC value, what is the number of fumgithat have higher value
than that) in a log-log scale. Note that this is a variationtlo® conventional definition of the
survival function, which uses tHeaction of the functions that have higher values. Fig. 7 displays
the results. The plots are close to being straight lineserid-log axes, indicating a power-law

13

3000 . Survival Function of McCabe’s Cyclomatic Complexity per Function

20004 SIs v1.0
Sl e v1.2
1000~ NS v2.0
b S~ \\\\\ -
T R S v2.2
300 —\‘\ \\\\\\ v2.4
200 "=l . 26
@ oq00 e Thel T T s, v2.6.16
S 2’18: S el T SN v2.6.25
=1 - .~ - - Ny
3]] -~ S SN
£ ¥ . S
2 20 e S R
* e R
10 el e
g . Soa,
T T e
21 i
2 -
1 4
05 T T T T T T T T T T T T T T T T rrT
20 30 40 50 60 70 80 90100
MCC

Figure 7:Log-log survival functions of McCabe’s cyclomatic comptgper function for selected kernels.

relationship and that the distribution has a heavy tail.sTduuld indicate that complexity is not
added randomly, but rather that complex code tends to get nownplex [10].

While the fraction of functions with high MCC is small and evamuhishing (less than 5%
have an MCC over 20, and less than 0.6% have an MCC over 50), soduéd number of such
functions nevertheless grows considerably with time. Bangle, in 1.0 there were only 15
functions with an MCC of 50 or more. This grew to 25 functiond.i, 70 functions in 2.0, 100
functions in 2.2, 250 functions in 2.4, and 400 functions.i®/2.6.16.

The extremely high MCC values observed raises the questibat are these functions, and
what happens to them over time? It turns out that the extrer@€ Nunctions are usually from
thearch anddrivers directories. Typically, these functions are interruptdiiars orioctl functions,
which receive a request encoded as an integer, interpagtdtbehave accordingly. The implemen-
tation is usually based on lorgyitch statements with dozens of cases, or multipEatements,
leading to the extreme MCC values observed. We also foundntlaaty of the extreme MCC
functions are the same for different kernels.

The highest MCC function in the whole datasetyis32 ioctl from file arch/sparc64/kernel/ioctl32.c.
As shown in Fig. 8, the file and function were introduced toltimeix kernel only in version 2.1.42
(in mid 1997). It grew both in LOC and MCC throughout versions @nd 2.2, reaching an MCC
value of almost 600 at the beginning of 2001. However, iniear2.3.47 (in the beginning of
2000) the LOC and MCC of this function dropped drasticallyitte MCC value of 6. It remained
at that level throughout 2.4 and in most of 2.5, until it wasnptetely removed (together with
many other functions) in version 2.5.69 (mid 2003). The fself was removed in 2.6.16.

The drop from an MCC value of around 600 to the value of 6 in werdl.3.47 was due to
a major design change: instead of using $hdétch statement, a new compound data structure
(a struct) with a handler was introduced. The request code was used aglax into a table
of suchstructs, avoiding the need for multiplease statements. This is a real-life example of

14

1000 - LOC - sys32_ioctl Function Only 6000 - LOC - File Level

5000 -
4000 -
3000 -
2000 -
1000

800 -
600 -
400 -
200 -

o 0 Vv2.611134 .
97 9 9 00 0L 02 03 04 05 06 97 9 9 00 0L 02 03 04 05 06
M 2_ioctl Function Onl M File Level
600 | cCc- syss ,,,,, octl Function Only | 1000 Cc_:, AL - w22
B 800 1
400 - e0{ T | T v2.4
400 1
200 -
200 1
0 . pannn . B2 0 v B ENR 496 0 ' 26— V26LLBA 4q
97 98 01 02 03 04 05 06 97 03 04 05 06
100 - Number of Functlons in File . . V2.4

80
60
40
20 -
0

v2.611134
T T T T T T V20— —196
97 28 99 00 01 02 03 04 05 06

Figure 8:Evolution of thesys32_ioctl high-MCC function.

one of the critiqgues against the MCC metric: that the sametimality may be achieved either
usingcase statements (which are counted) or using a table (which i both of which share
similar complexity and testing difficulty [53]. However,ntay be claimed that use of a table is
indeed easier to comprehend and maintain, and therefarestimdeed an example of a significant
reduction in code complexity.

In conclusion, we see evidence for an investment of work tluece code complexity, both
in version 1.1 and in specific high-MCC functions in later v@ns. Thus the general trend of
reduced average MCC seems to result from a combination ofiogqaevements and the addition
of many low-MCC functions. Nevertheless, the number of W@BE functions has also grown
significantly.

3.4. Law 7: Declining Quality

According to this law, programs will be perceived as of daoly quality unless rigorously
maintained and adapted to a changing operational envinonnidnus this law is somewhat of a
corollary to Law 1, which demands continued change. It is a¢dated to Law 2, which asserts
increased complexity.

Another similarity to Law 2 is that this law is also actualigpossible to prove or disprove, as
it allows both trends (if quality declines, the law is supedr and if it is not, it might be due to
the maintenance and adaptation efforts). Moreover, itid tkmmeasure “quality”. There are two
main options: user perception and code metrics.

15

Oman'’s Maintainabilty Index — All Directories

115 A

110 4

1.0

105 T T T T T T T T T T T T T T
94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Figure 9: Evolution of Oman’s maintainability index.

3.4.1. Perceived Quality

Lehman rationalizes this law by claiming that assumptionbedded in the system will tend
to become inappropriate or even invalid with time [32], baed not offer measurable evidence.
Similar rationalization is given by Parnas [43]. An expéitaconsequence of such a situation
is that the system will fall out of use, because it will no lendulfill its intended use or at least
introduce inaccuracies or even errors.

Linux, on the other hand, has been in growing use for 14 yaarsthere are no indications that
its adoption rate is abating. It is widely used on large-ssalrvers, clusters, and supercomputers.
This may be taken as anecdotal indication that its qualityotsdeclining, but rather that its use-
fulness is increasing. This increased usefulness may bilpaexplained by the effect of other
pertinent laws, such as the continuing growth and the atlapti the operational environment.

3.4.2. Measured Quality

As with software complexity, there is also no widely accepteetric for code quality. We
decided to use the Oman maintainability index (Ml) [42, 6&]aametric for quality, because it
combines several other metrics that are generally agrebd tmmponents of code quality: low
complexity (as measured by MCC), small size (as measured Isg¢dal's volume (HV) and LOC),
and good documentation (as measured by the fraction of L@Cctintain comments). While the
precise formulaused to calculate Ml is debatable, being based on fittingfdataa small number
of not-too-large projects, this metric has neverthelesseghsome following. Moreover, as with
MCC, we are not interested in the actual values but only with tih@y change with time.

As Ml is measured per module (or in our case, function), tha daed is average LOC, MCC,
and HV per function. In Linux, all these metrics decreasénwine, thus contributing to a higher

2See the appendix for definition.

16

MI. The percentage of comment lines, on the other hand, higha downwards tendency. How-
ever the change is small, so we do not expect it to have a signifnegative effect. As a result the
general trend of Ml is expected to be increasing with timesasdeed seen in Fig. 9.

It is interesting to also dissect these results by direesofilata not shown). It turns out that the
sharp initial improvement in 1.1 is due to the core diree®riThe subsequent slower improvement
has more to do with tharch anddrivers directories. The lower values attributed to production
versions are also due to these two directories. Anotherastieg point is that since the quality
values for the core kernel directories are typically betit@n those otrch anddrivers (i.e. less
LOC, lower values for HV and MCC, and slightly more comments),alg® see that the Ml for
these directories is somewhat higher — meaning that thenawslightly “better quality” thaarch
anddrivers. This correlates with studies that point to drivers as a@®of problems in operating
systems [9, 1].

3.5. Law 4: Conservation of Organizational Stability (Inizart Work Rate)

According to this law, the average effective global rate civity on an evolving system is
invariant over the product life time. This measurement chiécally problematic, since we are
trying to look at “work” on the project. Reliable data aboutmtaours or number of developers
is hard to get in closed-source systems, and much hardemgagte even ill-defined) in open-
source projects. Moreover, man-hours are a notorioushcumate measure of work to begin with
[5]. Lehman suggests using the number of elements handiatli§, added, deleted, or modified)
as a proxy, but goes on to note that this too has methodolddjftiaulties [32].

Taken at face value, this law is patently false for Linux. Thenmber of people contributing
to Linux’s development has grown significantly over the geand several companies now have
employees assigned to working on it. This is reflected in tieebase growth rate noted above,
which was superlinear at least through version 2.5. Thusitldvseem that the rate of work on
Linux has accelerated for at least the first 10 years. It is ébsar whether the rate continues to
grow now, when the growth rate seems to be linear rather tinaerbnear.

However, other interpretations also deserve to be coreidedne is the number of elements
handled, as suggested by Lehman. We will focus on developveesions of Linux, where version
releases are more frequent and reflect continuous actiyithdo developers (but in this case we
also include the initial year of version 2.4, when there wasoncurrent independent development
activity). Fig. 10 shows the number of files that were addetkted, or modified (divided into those
that grew and those that shrunk) between successive releAsemay be expected, the absolute
numbers tend to grow with time. But tliexction of files that are handled seems to be relatively
stable, except perhaps for some decline in the first coupleafs. Thus if we interpret “rate”
to mean the fraction of the codebase that is modified in edelage then the data supports the
claim that the work rate is approximately constant. Howgewae should notice that the variance
is high; such a high variance in a related metric — averagelkdmmodules per day — prompted
Lawrence to claim that the rate is not constant at all [26].

Invariant work rate can also be interpreted with regard &rtiease rate itself, i.e. how often
releases happen. In Fig. 11 we can see the number of relears@®pth, again using the develop-
ment versions and for the initial period of 2.4. The resulesthat from mid 1996 to mid 2003 the
rate seems stable at around 3-6 releases per month. We calss#eat although version 2.4 has

17

Vi3

96

96

1200 - Files Added 15 -
100079 1y11 1viz w21 2.3 iv2.41v25 @ |ivia
800 4 i i i | i Q10!
% | £
D 600 ‘ : ! @
=] : : : { o
400 | | | b T
AR dd_ =
0 R TN PR TITY M‘mLuh“ | ‘H\\WHJ
94 95 96 97 98 99 00 9% 95
450 - Files De!eted 3.
400 4 ‘ : : 25!
3504 ;vil 'vi3 v21 1v2.3 Lo vel
300] : : g 29
250 ;
& 200 5151
150 | g 14
100 4 : : ‘ 805
58] . i ISTRRTNTY A, Ly b M A “ : 04
94 95 96 97 98 99 00 03 9 95
3000 1 | Files G:rew 35
25001 vl ivi3 v2l v2.3 %gg: 1
20001 | £ %]
215001 | | | | @ 15
= : : : : o
1000 1 | | | | 510
500 1 ! : : : 5
[y IR AT, MWIMWH Jmhwm¥ mm“wmm 0
94 95 96 97 98 99 00 94 95 96
Files Shrunk 18 -
20001 ‘ : ; 16
'vil 1vl3 w2l 1v2.3 14
15001 | : : 12
3 | £ 10
&=1000 1 | . | 3 84
: : : : S 64
500 1 | | | : g 44
0 et bl \J\ML.‘MM é]
94 95 96 97 98 99 00 9% 95
Figure 10:Files added, deleted, grown, or shrunk among developmesiovs.
Releases per Month
159 v V13 v2.1 v2.3

96

Files Added, out of total files

V2.1 2.3 iv2.41v25

97 98 99 00 01 02 03

Files Deleted, out of total files

v2.1 V2.3 V2.4 1v2.5

97 98 99 00 01 02 03
Files Grew, out of total files
v2.1 v2.3 iv2.41v2.5

97 98 99 00 01

Fjles Shrunk, out of total files

97 98 99 00 01 02 03

v2.4 v2.5

02 03

Figure 11:Number of releases per month for development versions only.

18

150 - Kernels Release Dates

Minor Release Sequence

2&23

17
25
18 21 24

v2.611
134//15

00 01 02 03 04 05 06 07 08

Intervals Between Releases (in Days)

356.04 221.91 168.72

L L 1 1

100
90 4
80
70 4
60

50 4

40

30 1

TN AT INLLEL &

N=35 N=13N=113N=40N=141N=26 N=60 N=60 N=75 N=11 N=12 N=6 N=5 N=7 N=7 N=62 N=14 N=8 N=7 N=21 N=7 N=19 N=17 N=7 N=11

vll v12 vl3 v2.0 v21 v22 v23 v24 v25 v26 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 12:Intervals between releases within major versions. Top:omimumber as a function of time. Bottom: box
plots show th&s*", 25", median,75t", and95" percentiles, in daysN indicates the number of releases minus one,
as the first release serves as “time 0”.

many features of development versions, it was releasedréxpsently than the “real” development
versions. Starting with version 2.6 in 2003, thié digit versions are timed to be released once
every 2.5-3 months. This steady rate of releases also Ssgp law.

It is important to remember that Linux releases are orgahiat major and minor versions.
Therefore one should consider the intervals between mejeases separately from those leading
to minor releases. The above data is shown again in Fig. i2tithe in the context of all other
kernel versions. The top graph shows the times at which migleases are made: the steeper
the line, the higher the release rate [58]. Developmenimessexhibit a steady high rate, which
reflects an invariant work rate. Production versions, h@reend to start with a somewhat high

19

rate and then taper off when the next development versiotaited. The box plots characterize

the distribution of all the intervals for each major versiolle see that development versions are
consistently released at a high rate, as expected by theiglarof “release early, release often”

[47], and specifically all medians and 75th percentiles anest than 10 days. Production version

are released much less frequently, with median values gpabach a month and 75th percentiles
of two months and more.

All this changed with the new release scheme of 2.6. In thelfirseleases, the distribution was
similar to that of previous production versions, but thédalong release intervals was effectively
eliminated. And with thel’” digit releases of 2.6.11 and on, the whole distributionsgareerally
much lower than in most production versions, albeit stdjiar than in the development versions.
This should not be considered a problem44sdigit releases are not development but rather bug
fixes and security patches.

3.6. Law 5: Conservation of Familiarity

According to this law the change between successive redaéadienited, both to allow devel-
opers to maintain their familiarity with the code, and toallusers to maintain their familiarity
with using the system. Lehman et al. [34] suggest lookingnatimcremental growth — and if it
is constant or declining on average, it indicates consenvatf familiarity. Moreover, they sug-
gest a threshold for which if two or more consecutive poixtseeds it, the next points should be
close to zero or negative. Lawrence claims that the seriee@mental changes in the systems he
checked was random, and interprets this as lack of congamj&6]. However, a better test may
be the maximal change that occurred between successivengrs

In Linux conservation of familiarity with the code is refledtby the pattern of releasing de-
velopment versions. As shown in Fig. 12, these releases aona@id succession, typically only
days apart. As shown in Figs. 2, 4, and 9, the developmeniover§orm a continuous line plot-
ting the progress according to each metric, and productrsians branch out directly from the
last available development version. Taken together, thiiedmgs indicate that developers familiar
with one version may expect little change in the subsequeed.oTl his stays the case even in cases
where the system grew significantly due to the addition ofesoew module (e.g. the addition of
the sound directory in version 2.5.5), because such additions arergdly well encapsulated and
do not have a strong effect on the rest of the system.

The effect of this law may also be apparent in the releaseswfomoduction versions. The most
prominent example is the gap between the last 2.3 versiorhenishitial 2.4 version. According
to 2.4 logs and different Linux forums, this was a result o¢f tlersion “not being ready” for
release (according to Linus Torvalds’s policy to releasky evhen versions are stable), due to
complications with development and testing many new fegtim that version. Thus it appears
to be an instance of trying to put too many new features intlease, violating the conservation
of familiarity law. Conversely, the new release scheme azbbjpdr 2.6, where new production
versions are released regularly every 2—3 months, may besdias an explicit attempt to limit the
extent of new content in each release, in order to consemiidaity.

Conservation of familiarity for users is specifically relevashen looking at successive stable
production versions, which are the ones intended for encsu€rir results indicate that in succes-
sive releases of the same major production version (or nvewion in 2.6) the changes are very

20

700 - Incremental Change in Number of Files

. NAwA/\wAv/

Average Increment

200 -

100 -

04 05 06 07 08

Figure 13:Incremental growth of 2.6 versions.

small (most of the time zero, but sometimes slightly incireg@®r decreasing). One can thus say
that within production versions Linux indeed conserves temiliarity.

However, the changes between successive major versiorssgarécant. In fact, they are so
significant that users may opt to continue using an out-té-geevious release. This is withnessed
by continued support for production versions long aftentbet one is released: in particular, note
how 2.4 seems to track 2.6.16 in Fig. 12 (and of course usersnce to use the system much
after the last release). Thus we have both support for thgdawvitnessed by the longevity of
production versions) and contradiction of the law (becaisessive production versions with
significant changes are nevertheless released).

3.7. Law 3: Self Regulation

According to this law, the program evolution process is seffulating, leading to a steady
trend. Lehman finds evidence for this law in the fact that eicgli growth curves show a ripple
superimposed on a steady growth trend, and claims that ppéerdemonstrates the interaction
between the conflicting forces of desired growth and boumdsdurces [34, 32]. However, this
interpretation may be challenged. An alternative one, Wwiseems especially suitable for the
Logica FW dataset, is that a larger growth occurs with theduction of each new major release,
followed by smaller growth during subsequent minor release

The existence of self regulation may be established by wlvgegrowth trends, where they
imply that deviations from a consistently smooth growthl Wi corrected. The Linux dataset
we use has many more releases than the datasets used by Lefimenplotting growth leads
to a continuous line, where individual releases are not $een Fig. 2). The exhibited growth
patterns are typically indeed quite steady, but do exhiigihsvariations that may be considered as
a ripple. But they also occasionally exhibit larger jumps assalt of integrating a new subsystem
that was developed externally. The relatively smooth ghaway be interpreted as resulting from
self regulation, but it may also be the result of an invanaotk rate.

21

We also performed an incremental growth analysis as was dgrieehman. We used data
regarding 3rd digit release of version 2.6, where the releate is relatively high and constant.
Fig. 13 shows the change in the number of files (representioduias) per such release. The
result is qualitatively similar to the observations of Ledimnamely that the growth rate seems to
fluctuate around a mean, and that relatively large growtle@slg always followed by sub-average
growth, indicating an alternation between growth and $tation. Thus it is possible to interpret
our data as providing indirect support for the existenceestifregulation.

3.8. Law 8: Feedback System

The issue of feedback was mentioned already as an elemdrd sélf regulation law. A hypo-
thetical example given by Lehman is pressure from the usanuanity leading to more features
and strong growth, followed by budgetary pressure limitmgtesting and debugging capacity and
thus reducing the growth rate again [34].

The claim that this self regulation stems from multi-leveedback is harder to establish.
Lehman invested significant effort in supporting this lawthe FEAST project, with the goal of
improving software development processes [34, 33]. As wadmn characterizing the evolution
of an existing system, this is beyond our scope.

Lehman supports this law by noting the stability of growthdals, and in particular, that a
handful of initial releases are enough to extract growth ehgarameters and predict subsequent
sizes pretty accurately. However, he does note that thisatsaybe largely due to organizational
inertia [32].

In our specific case, Linux is the archetypal open-sourctesyf which continued develop-
ment is guided by feedback from the user community [47]. Eplasirange from defect reports,
through bug fixes, and up to contribution of complete sulesyst Specific evidence for feedback
affecting the software process itself is the switch to ther2lease scheme, in response to user
discomfort with the long delays in releasing enhanced prbdao versions. However, it is hard to
bridge the gap from such observations to a quantitative law.

3.9. The Perpetual Development Lifecycle Model

Based on the above observations, it seems that E-type systegeseral, and Linux in par-
ticular, conform to a lifecycle model that may be called ‘fpetual development”. This lifecycle
model comprises the following elements.

e Continuous and steady development of the system, adding eewrés all the time [14].
Linux and other open source projects make this activity ipuidhereas in proprietary closed
projects it is done behind the scenes. The development is Dased on anticipated user
needs and explicit user feedback, rather than preconcepefications of how the system
should be used.

¢ When significant new functionality accumulates, the cortusidevelopment is interrupted
to prepare a major release of a new production version. lax,ithe interval between such
releases used to be more than a year, but was then reduce8i too2ths in the 2.6 series.

e More common minor releases of an existing production versieflecting bug fixes and
security patches. Several production versions may be tipsosted in parallel.

22

This is quite different from textbook lifecycle models, ey “one-shot” models like the waterfall
model or iterative models like the spiral model.

As we have seen, articulating this model enables us bettditfidegarding some of Lehman’s
laws. For example, conservation of familiarity within mamroduction versions is replaced by
discontinuities between such major versions. It also hgdigations for software development in
general, and in fact lies at the basis of many agile methods.

4. Conclusions

The Linux kernel is one of the most successful open-sourttevae projects in the world.
Over the last 14 years it has continued to evolve in ordertiefgdhe needs of its users. We have
presented a detailed characterization of this procestsidimg) over 800 versions which represent
new developments, major production releases, and minaxtapd Many interesting phenomena
are only seen at this fine resolution, and would be lost ifgiive traditional approach of studying
only major production releases.

The study presented here was based on Lehman’s Laws of seféexalution. We found obvi-
ous support for continuing growth and change, and probalgpat for invariant work rate. Con-
servation of familiarity seems to be combined with largenges when new production versions
are released. The practice of preventative maintenancess®eesupport the increasing complexity
and declining quality laws, which note the possibility of lwdbeing done to prevent them. The
hardest laws to justify are the self regulation and feedlsyskem laws, for which we find only
some anecdotal evidence (but there is a good case and atstifidor further investigation). The
laws and our results are summarized in Table 1.

Taking a more global view of Linux’s evolution, we find it to bgprime example gberpetual
development— a system that is developed continuously in collaboratiah ws users, without
elaborate specifications and planning. This is seen in thémmus trends observed along the
backbone of development versions, and in the relativelgtabf production versions that branch
out from this backbone.

The above observations are based on our interpretatiohg oésults of an automatic analysis
of the code. In particular, in many cases we suggest novattigations of Lehman’s laws.
Other quantifications are possible, representing a paileinternal threat to the validity of our
results. In some cases it is hard to arrive at a conclusiardatg what were the forces motivating
the observed behavior. A further investigation of suppletaly data, such as change logs and
developer forums, is required in order to resolve thoseessund give sufficient explanations to
the phenomena. Also, the study of the code itself can be wegravith the help of tools to
comprehend and analyze the code structure [2, 46].

Our results are of course specific to Linux, thus represgrdim external threat to validity.
But some observations may generalize to other softwareragsas well. The applicability and
generality of our results can be assessed by replicatingftigy for other operating system kernels
and for other large software (as in [56]), and by comparirgttends and the qualitative results of
each. It might also be relevant to perform this comparisefen and closed source software in
order to understand the differences in the development(p®4). The problem, of course, is to
obtain suitable data for such a study.

23

No. | Lehman’s Law Manifestation in Linux

1 | Continuing change Thearch anddrivers directories, which account for 50-60%6
of the codebase, grow with the rest of the kernel, reflecting
continued adaptation to the hardware environment
2 | Increasing complexity | While overall complexity grows with the code, the average

(unless prevented) per function is declining; in specific instances work to re-
duce complexity is evident
3 | Self regulation Possibly supported by steady overall growth rates and fluc-

tuation of incremental growth, but there is no direct suppor
for a regulation mechanism
4 | Conservation of Rate of releases has been relatively stable from 1997 to
organizational stability| 2003. The 2.6 method of timed releases also creates an in-
(invariant work rate) | variant amount of releases per time unit

5 | Conservation of Long-lived production versions reflect this law — succes-
familiarity sive minor releases have little functionality changes. But
there are big changes between successive production ver-
sions
6 | Continuing growth Growth in functionality is obvious. Growth of LOC and

functions occurred at a super-linear rate up to version |2.5,
and then closer to linear
7 | Declining quality Declining quality is contradicted by increasing usefukes
(unless prevented) to users, and by consistent improvement in a composite
maintainability metric. Thus continued work on Linux has

prevented decline
8 | Feedback system Anecdotal support based on the structure of open source de-
velopment

Table 1:Support for Lehman’s Laws in Linux.

This study can also be extended by following additional rogtrsuch as the various types of
common coupling [41, 64], the indirect metrics developedrhy[63], the shape of the code tree
[7], and more process-related metrics such the time sgenhumber of people involved, and how
many developers participate in each type of activity (somedirpinary data is available in [25]).
As the Linux kernel is very big, it would also be beneficial &rform a more detailed study of
specific subsystems independently. This might allow us tiebeharacterize and quantify the dif-
ferent laws of evolution, and arrive at more precise forroifes. For example, the laws regarding
increasing complexity and reduced quality beg for deepetystand in particular the widespread
identification and characterization of maintenance agtivitended to reduce complexity and im-
prove quality.

On a different trajectory, it would be interesting to commént the empirical characterization
with more theoretical reasoning, in an attempt to uncowefdhces at work. This is in fact the basis
for some of Lehman’s laws, e.g. self regulation, feedbackesy, and conservation of familiarity.

24

An example requiring additional study is the idea that irauatrwork rate implies that at each step
in the evolution, the system will either grow or undergo sosmganization, but not both at once
[12].

Acknowledgments

This work was supported by the Dr. Edgar Levin Endowment Fulidny thanks to prof.
Manny Lehman for commenting on a draft of this paper.

A. Methodology

Our analysis is based on measuring the different propeatidanetrics of the Linux kernel as
described in [19]. For completeness, we repeat this here.

A.1l. Software Metrics

Many different quantitative software metrics have beemppsed over the years [21, 37]. These
can be classified as product metrics which measure the gefraduct itself (such as size as
reflected by LOC and percentage of documented lines) ancegsametrics which measure the
development process (such as development time and experaérihe programming staff). We
focus mainly on product metrics as these can be extractedbiedirectly from the code.

There are two reasons why it is important to perform codetaseasurements. The first is
accuracy, as the alternatives of using surveys and logs e€dmghly inaccurate. For example, a
survey of maintenance managers yielded the result thatgefeent of maintenance is corrective
in nature, while a separate study based on analyzing chaogesirce code led to a result three
times larger [52]. Similarly, a comparison between chawogs for three software products and the
corresponding changed source code itself showed that up%od changes made to the source
code were omitted from change logs [8].

The second reason why code-based metrics are importarati€ehtain phenomena can be
measured only by examining the code itself. For example,nsomcoupling has been validated
as a measure of maintainability [4], and the only way to mesagiie common coupling within a
software product is to examine the code itself.

The metrics we measure are the following:

1. Number of modules, as expressed by the number of direstdiies, and functions.

2. Lines of code (LOC), including its related variants: comirienes and total lines.

3. McCabe’s cyclomatic complexity (MCC), which is equivalemtthe number of conditional
branches in the program plus 1 [35, 40]. These inciifitleen-else, for, while, do, andcase
statements. We also measure the extended version (EMCC) whereounts the actual
conditions and not only the conditional statements, basethe conception that Boolean
connectives add complexity to the code.

4. Metrics defined as part of Halstead’s software sciencg¢ [IT®e building blocks of these
metrics are the total number of operatdfs and the number of unique operatars as well
as the total number of operandg and the number of unique operands Using them,
Halstead defined the following:

25

The volumeHV = (N; + N,) lg, (ny + n2). This actually measures the total number of bits
needed to write the program.

- N. _ . .
The difficulty HD = % .22 Thisis proportional to the available tools (operators) tre
Ny
average usage of operands.

The effort HE = V - D. This is simply the product of how much code there is and the
difficulty of producing it.

In cases when the metrics are undefined (e.g. for an emptyidanc, = n, = 0) they were
taken as 0. This happened in around 1% of the functions.

5. Oman’s maintainability index (Ml) [42, 61], which is a cposite metric that attempts to fit
data from several software projects. Its definition is

MI =171 = 52In(HV) — 0.23MCC — 16.2In(LOC) + 50sin(y/2.46pC M)

where X denotes the average &f over all modules, and pCM denotes the percentage of
lines that are comments. However, following Thomas [58]wileinterpret pCM as a frac-
tion (between 0 and 1) rather than as a percentage (betweed 008) because with this
interpretation,/2.46pC'M has the range of 0 to approximatejy

6. Files and directories handled (added, deleted, or mdjlifie

7. The rate of releasing new versions.

A notable omission from the above listis common couplingichlinas been used to assess the
Linux code in several previous studies [51, 64, 58]. Howeakithose studies neglected to fully
follow inter-procedural pointer dereferences, and thusimizally miss many instances of coupling.
As this is an extremely difficult issue, we leave its resalatio future work.

A.2. Analysis Tool

In order to analyze our full dataset, a static analysis tad vequired. We initially considered
using a commercial CASE tool, but in the end developed a toouofown that was simpler and
did precisely what we wanted.

Linux is written in C, which includes pre-processor direetiftdefine, #ifdef, etc.) that are
processed before the compilation proper. One of the bidestgs we faced was to handle such
directives. Generally there are two approaches to perfdaticscode analysis: either to pre-
process the code or not to. Applying pre-processing is lgéfan the goal is to understand how
the code actually runs. However, our objective is to studinsoe engineering, and in particular
the evolution and maintenance of the code. Thus we beli@tdtia correct way to go is to analyze
the code as thdevelopewiews it, i.e. before applying the pre-processor.

For example, macros may be used as an aid to abstractionath&iwer cost than subroutines
because the code is inlined by the pre-processor. Due taliheng, if a developer uses the macro
#define MAX(X,Y) (X>Y)?X:Y, the “real” complexity of the code increases because a br&nc
added in each use. But from the developer’s point of view tded complexity is hidden, and
therefore should not be counted. Thus macros should belatdduvith all their properties upon
their definition, but as a function call in their uses. The sampplies fotinclude, which can induce
considerable bloat.

26

A major problem comes from use of conditional compilatiorediives such asifdef. Such
code sections are used mainly to handle different configuraitwith essentially the same code,
by singling out only the differences and selectively comgilthe correct version for each con-
figuration. This implies that if we use pre-processing wd adtually only analyze a certain
configuration and not the whole code base.

Assuming the developer’s perspective again, we want toyaeall the code — all the versions
of the#if directives, and theittelse parts too — because a developer maintaining such a file must
be aware of all different possibilities of the flow of the codéis again implies that pre-processing
is inappropriate for our needs. In this we differ from Thorfz®], who used a CASE tool which
requires pre-processing, and thus only files and code saditiothe pre-processed configuration
were examined.

The major problem with not performing any pre-processintpad the resulting code is not al-
ways syntactically legal. For example, a function may hdigay different signatures in different
configuration, and this can be expressed usifugf and#else. With pre-processing, the compiler
will only see the correct definition each time. But if we justede the pre-processing directives,
we will get two contradicting definitions of the same funatione after the other, and moreover,
sharing the same function body.

As it turns out, in most cases we were able to analyze filestwincl#ifdef sections. In other
cases, we saw that when analyzing both paths oftifree malformed code is created and thus we
were not able to analyze it with our automated tool. Tryingdahis manually is also a challenge
— how does one decide which path to analyze? Therefore, wieeeneountered such files we
removed them from the analysis. Other malformed files (vew) fvere removed as well and are
not included in our calculations.

Overall, less than 1.5% of the source files were not analyzalll #mong thearch anddrivers
subdirectories between 0.3%—3% of the files were not and)yzkereas in the other parts of the
kernel the worst case of un-analyzed files was less than OTH4s the vast majority of the files
were analyzed and their data is aggregated in the differetrca.

Our analysis tool, while not free of problems and limitaspis tailored to perform the analysis
based on the above considerations. We coded a perl scriptgivan a C file, parses it into
its different tokens, and generates an output file with th&iose Pre-processor directives were
stripped out, and all the remaining code was analyzed. Isetltases where this practice led to
inconsistent code the file was removed from consideratioexpkined above. Empty functions
and files were not considered problematic and are includéideimetrics, as they are part of the
design.

We ran this program on all the and.h files of all the versions, creating an output file with the
calculated metrics for each one. Then, for each version weeggted all the data from these output
files. This was done for three groupings: the whole kerndly thre arch anddrivers directories,
and only the other (core) directories. This allows us to ptwtether these subsystems behave
differently from each other and from the whole system [13, 16

In order to aggregate the metrics at the kernel level, we tileedame approach used in other
studies (such as Thomas [58]) and as explained in the ofigiatrics definitions. For example,
LOC, MCC, and EMCC are simply summed across all files (note thatvileh no functions, such

27

as some header files, will have an MCC of 0, because MCC is a tumietvel metric). In order to
compare the different versions, despite the addition of filew or functions, we sometimes look
at the average metric values of the files and functions of #raet rather than at the aggregate
values. The same is true about the function-level Halsteattliecs. Oman’s Ml is defined at the
file level. Since it has a 100-point scale we cannot aggrdfatealues. Instead, we will use only
the average the Ml values of all files in the kernel.

References

[1] A. Albinet, J. Arlat, and J.-C. FabreCharacterization of the impact of faulty drivers on the
robustness of the Linux kerrielln Intl. Conf. Dependable Syst. & Networksp. 867-876,
Jun 2004.

[2] T.Balland S. G. Eick, Software visualization in the largeComputer29(4), pp. 33—43, Apr
1996.

[3] I. T. Bowman, R. C. Holt, and N. V. BrewsterLinux as a case study: Its extracted software
architecturé. In 21stintl. Conf. Softw. Engpp. 555-563, May 1999.

[4] L. C. Briand, J. Wust, and H. LounisUsing coupling measurement for impact analysis in
object-oriented systeridn Intl. Conf. Softw. Maintenan¢ep. 475-482, Aug 1999.

[5] F. P. Brooks, Jr.,The Mythical Man-Month: Essays on Software Engineeridgdison-
Wesley, 1975.

[6] A. Capiluppi, “Models for the evolution of OS proje¢tdn Intl. Conf. Softw. Maintenance
pp. 6574, Sep 2003.

[7] A. Capiluppi, M. Morisio, and J. F. Ramil Structural evolution of an open source system: A
case study In 12th IEEE Intl. Workshop Program Comprehensi@p. 172-182, Jun 2004.

[8] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z. Helle@pen-source change Idg€Em-
pirical Softw. Eng9, pp. 197-210, 2004.

[9] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. EngleArt empirical study of operating
system errors In 18th Symp. Operating Systems Principlpp. 73—88, Oct 2001.

[10] G. Concas, M. Marchesi, S. Pinna, and N. Sertapwer-laws in a large object-oriented
software systefn |IEEE Trans. Softw. En@3(10), pp. 687-708, Oct 2007.

[11] S. Cook, R. Harrison, M. M. Lehman, and P. Wernickyblution in software systems: Foun-
dations of the SPE classification schéme Softw. Maintenance & Evolution: Res. & Pract.
18(1), pp. 1-35, Jan-Feb 2006.

[12] S. Cook, R. Harrison, and P. Wernicld 'simulation model of self-organising evolvability in
software systenisin IEEE Intl. Workshop Software Evolvabiljtgp. 17-22, Sep 2005.

[13] H. Gall, M. Jazayeri, R. R. Kisch, and G. Trausmuth Software evolution observations
based on product release histoy Intl. Conf. Softw. Maintenan¢ep. 160-166, Oct 1997.

[14] L. Gasser, W. Scacchi, G. Ripoche, and B. Penré¢nderstanding continuous design in
F/OSS projects In 16th Intl. Conf. Softw. & Syst. Eng. & App®ec 2003.

[15] M. W. Godfrey and D. M. German,The past, present, and future of software evolltion
In 24th Intl. Conf. Softw. Maintenan¢eésep 2008. (Special track on Frontiers of Software
Maintenance).

28

[16] M. W. Godfrey and Q. Tu, Evolution in open source software: A case studyg 16th Intl.
Conf. Softw. Maintenanggp. 131-142, Oct 2000.

[17] G. A. Hall and J. C. Munson,Software evolution: Code delta and code chuih Syst. &
Softw.54(2), pp. 111-118, Oct 2000.

[18] M. HalsteadElements of Software Scien&dsevier Science Inc., 1977.

[19] A. Israeli and D. G. Feitelson,Characterizing software maintenance categories using the
Linux kernel’', Feb 2009. Submitted for publication.

[20] C. Izurieta and J. Bieman The evolution of FreeBSD and Linltixin 5th Intl. Symp. Empir-
ical Softw. Eng.pp. 204-211, Sep 2006.

[21] S. H. Kan,Metrics and Models in Software Quality Engineeridgidison Wesley, 2nd ed.,
2004.

[22] C. J. Kasper and M. W. Godfrey,"Cloning considered harmful” considered harmful: Pat-
terns of cloning in software Empirical Softw. Engl3(6), pp. 645-692, Dec 2008.

[23] C. F. Kemerer and S. Slaughtei®\i empirical approach to studying software evolution
IEEE Trans. Softw. En@5(4), pp. 493-509, Jul/Aug 1999.

[24] S. Koch, “Evolution of open source software systems — a large-scaéstigatiori. In 1st
Intl. Conf. Open Source Systemg. 148—-153, Jul 2005.

[25] G. Kroah-Hartman, J. Corbet, and A. McPhersbimux Kernel Development — How Fast
Is it Going, Who is Doing it, What are they Doing, and Who isi&aoing it Tech. rep., the
Linux Foundation, Apr 2004.

[26] M. J. Lawrence, An examination of evolution dynamitdn 6th Intl. Conf. Softw. Engpp.
188-196, Sep 1982.

[27] M. Lehman and J. C. Feamdez-Ramil, Software evolutioh In Software Evolution and
Feedback: Theory and PracticH. H. Madhaviji, J. Ferandez-Ramil, and D. E. Perry (eds.),
chap. 1, pp. 7-40, Wiley, 2006.

[28] M. M. Lehman, ‘Programs, life cycles, and laws of software evolutioProc. IEEE68(9),
pp. 1060-1076, Sep 1980.

[29] M. M. Lehman, ‘On understanding laws, evolution, and conservation in dhgelprogram
life cycle’. J. Syst. & Softwl, pp. 213-221, 1980.

[30] M. M. Lehman, ‘Laws of software evolution revisitédin 5th European Workshop on Soft-
ware Process Technologgp. 108—-124, Springer Verlag, Oct 1996. Lect. Notes Conguit.
vol. 1149.

[31] M. M. Lehman, D. E. Perry, and J. F. Ramiliriplications of evolution metrics on software
maintenancé In 14th Intl. Conf. Softw. Maintenan¢@p. 208-217, Nov 1998.

[32] M. M. Lehman, D. E. Perry, and J. F. RamiOh evidence supporting the FEAST hypothesis
and the laws of software evolutibrin Software Metrics Symposiyipp. 84—88, Nov 1998.

[33] M. M. Lehman and J. F. Ramil,The impact of feedback in the global software proteds
Syst. & Softwd6(2-3), pp. 123-134, Apr 1999.

[34] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perrry, andMV Turski, “Metrics and laws
of software evolution — the nineties viéwn 4th Intl. Software Metrics Symppp. 20-32,
Nov 1997.

29

[35] T. McCabe, ‘A complexity measure |IEEE Trans. Softw. En@(4), pp. 308-320, 1976.

[36] T. Mens, J. Ferandez-Ramil, and S. Degrandsartfe evolution of Eclipsé In Intl. Conf.
Softw. Maintenancep. 386—395, Sep 2008.

[37] E. Mills, Software MetricsTech. Rep. Curriculum Module SEI-CM-12-1.1, Software Engi-
neering Institute, December 1988.

[38] A. Mockus, R. T. Fielding, and J. D. HerbsleblWo case studies of open source software
development: Apache and MozillaACM Trans. Softw. Eng. & Methodolod$(3), pp. 309—
346, Jul 2002.

[39] MSDN, “Visual Studio 2008: Avoid excessive complexity URL
http://msdn.microsoft.com/en-us/library/ms182212xa2008.

[40] G. Myers, “An extension to the cyclomatic measure of program compfex8IGPLAN No-
tices12(10), pp. 61-64, Oct 1977.

[41] A. J. Offutt, M. J. Harrold, and P. Kolte A software metric system for module coupling.
Syst. & Softw20(3), pp. 295-308, Mar 1993.

[42] P. Oman and J. Hagemeiste€dnstruction and testing of polynomials predicting softvar
maintainability. J. Syst. & Softw24(3), pp. 251-266, Mar 1994.

[43] D. L. Parnas, Software aging In 16th Intl. Conf. Softw. Engpp. 279-287, May 1994.

[44] J. W. Paulson, G. Succi, and A. Eberleildrf empirical study of open-source and closed-
source software produc¢tdEEE Trans. Softw. En@®0(4), pp. 246—256, Apr 2004.

[45] V. T. Rajlich and K. H. Bennett, A staged model for the software life cytleComputer
33(7), pp. 66—71, Jul 2000.

[46] S. Ratanotayanon and S. E. Sinmventive tool use to comprehend big cOdEEE Softw.
25(5), pp. 91-92, Sep/Oct 2008.

[47] E. S. Raymond, The cathedral and the bazaar URL
http://www.catb.org/"esr/writings/cathedral-bazeattedral-bazaar, 2000.

[48] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and |.atiertEvolution and growth in
large libre software projectsin 8th Intl. Workshop Principles of Software Evolutiopp.
165-174, Sep 2005.

[49] D. A. Rusling, “The Linux kernél. URL http://tldp.org/LDP/IK/.

[50] W. Scacchi, Understanding open source software evoldtidn Software Evolution and
Feedback: Theory and PracticH. H. Madhaviji, J. Ferandez-Ramil, and D. E. Perry (eds.),
chap. 9, pp. 181-205, Wiley, 2006.

[51] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. QfftMaintainability of the
Linux kernel'. IEE Proc.-Softw149(2), pp. 18-23, 2002.

[52] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. OffutDétermining the distribution of
maintenance categories: Survey versus measuréniempirical Softw. Eng8, pp. 351—
365, 2003.

[53] M. Shepperd, A critique of cyclomatic complexity as a software metriSoftware Engi-
neering J.3, pp. 30—36, Mar 1988.

[54] M. Shepperd and D. C. InceA“critique of three metrics J. Syst. & Softw26, pp. 197-210,
Sep 1994.

30

[55] N. Smith, A. Capiluppi, and J. F. RamilA*study of open source software evolution data us-
ing qualitative simulatioh Softw. Process Improvement & Prat@(3), pp. 287-300, Jul/Sep
2005.

[56] D. Spinellis, “A tale of four kernels. In 30th Intl. Conf. Softw. Engpp. 381-390, May 2008.

[57] SRI, “Software technology roadmap: Cyclomatic compléxity In URL
http://www.sei.cmu.edu/str/str.pdf, 1997.

[58] L. ThomasAn Analysis of Software Quality and Maintainability Metriggh an Application
to a Longitudinal Study of the Linux Kern&h.D. thesis, Vanderbilt University, 2008.

[59] L. Torvalds, “The Linux edgé. Comm. ACMA2(2), pp. 38—39, Apr 1999.

[60] W. M. Turski, “Reference model for smooth growth of software systemk€EE Trans. Softw.
Eng.22(8), pp. 599-600, Aug 1996.

[61] E. VanDoren,Maintainability Index Technique for Measuring Program Miiinability.
Tech. rep., Software Engineering Institute, Mar 2002.

[62] E. J. Weyuker, Evaluating software complexity measutedEEE Trans. Softw. End.4(9),
pp. 1357-1365, Sep 1988.

[63] L. Yu, “Indirectly predicting the maintenance effort of open-sgewsoftwaré. J. Softw. Main-
tenance & Evolution: Res. & Prac18(5), pp. 311-332, Sep/Oct 2006.

[64] L. Yu, S. R. Schach, K. Chen, and J. OffutCéategorization of common coupling and its
application to the maintainability of the Linux kerfielEEE Trans. Softw. Eng0(10), pp.
694-706, Oct 2004.

31

