POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione
DOTTORATO DI RICERCA IN INGEGNERIA DELL'INFORMAZIONE

Programming Wireless Sensor
Networks: From Physical to
Logical Neighborhoods

Ph.D. Dissertation of:
Luca Mottola

Advisor:

Prof. Gian Pietro Picco
Tutor:

Prof. Letizia Tanca
Supervisor of the Doctoral Program:

Prof. Patrizio Colaneri

2008 - XX

To my family
Alla mia famiglia

Abstract

Recent technological advances and progresses in hardware miniaturiza-
tion have made wireless sensor networks (WSNs) a viable solution to gather
information from the environment and make it available to scientists [1],
or to use sensed data to decide on actions to take on the environment [2].
A recent report from market research firm ONWorld [3] indicates that the
market for WSNs is expected to grow tenfold by 2011. The same report
identifies ease of programming as the major barrier to the adoption of
WSNs. To address this issue, this thesis presents a set of WSN program-
ming abstractions whose aim is to simplify application development in a
range of settings, particularly, in sense-and-react scenarios where the sys-
tem is used to close the control loop by taking actions on the environment.

The first part of the thesis describes the conceptual path to the above
objective. We present a detailed taxonomy of existing WSN programming
solutions, and cast available approaches in our classification. In doing so,
we realize how most WSN programming frameworks available to date fall
short of expectation in dealing with sense-and-react scenarios. In these
settings, programmers are indeed to cope with several challenges stemming
from node heterogeneity, changing requirements, and group-based interac-
tions, that are only partially addressed in existing approaches. The pro-
gramming solutions presented in this thesis address each of these challenges
by providing solutions to program individual devices, group of nodes, and
the network as a whole (the latter class of solutions being usually termed
“macroprogramming”). In addition, to take into account the character-
istics of the WSN hardware, we co-design the programming abstractions
with the underlying, distributed algorithms and protocols required. This
enables unprecedented degrees of interplay between the programming and
the system layer, which ultimately yield better performance than tackling
the two problems separately, as done traditionally.

In the second part of the work, we look at how to program individual
nodes. Firstly, we investigate how to reconfigure the single node behav-
ior depending on unanticipated situations. To address these needs, we
present the RUNES [4,5] and FIGARO [6] programming models. Both are
component-based approaches allowing programmers to precisely identify
the functionality that is to be reconfigured. In addition, FIGARO auto-
matically handles the whole reconfiguration process. In parallel, we study

how to blend reactive and proactive interactions in a single programming
framework, as needed in sense-and-react scenarios. Our answer to this is-
sue is the TeenyLIME middleware [7,8|, a programming model in which
we revisit the tuple space paradigm to account for the distinctive traits of
WSN applications.

The third part of the thesis investigates programming groups or subsets
of nodes. We tackle this problem with the Logical Neighborhoods [9,10] ab-
straction. Differently from the physical neighborhood of a node—implicitly
defined by the location of nodes and their radio ranges—Logical Neigh-
borhoods empower programmers with a higher-level notion of proximity
determined by application information. Using a declarative language we
devised, programmers identify the nodes part of a Logical Neighborhood
based on application-level characteristics, and interact with them using sim-
ple message-passing primitives. Instead of the nodes within radio range,
the message recipients are now the nodes matching a given neighborhood
specification, regardless of their physical position. This way, we provide
a basic building block to build more sophisticated functionality as well as
higher-level abstractions on top.

In the fourth part of this thesis, we explore the coupling of Logical
Neighborhoods with mechanisms other than message passing. We illustrate
how Logical Neighborhoods provide a natural complement to the F1IGARO
component model, by offering support to direct code updates towards a
specific part of the system [6]. Next, we describe Virtual Nodes [11]: a
programming abstraction whereby application-defined groups of nodes can
be abstracted into a single, logical one. Finally, we describe how Logical
Neighborhoods can be embedded within an existing macroprogramming
language [12,13]. This allows to precisely identify the specific portions of
the system that need to be involved in achieving a given goal.

To substantiate our claims regarding the superior effectiveness of our co-
design approach, we always analyze our solutions from two complementary
perspectives. On one hand, we quantify the programming effort in devel-
oping non-trivial reference applications both using our solutions and with
mainstream programming tools. On the other hand, we study the system
performance w.r.t. metrics such as network overhead and system lifetime
compared to traditional communication schemes.

To conclude, we maintain that future work in programming WSNs must
focus on providing stronger semantics and guarantees, as well as on verify-
ing the correctness of the resulting implementations.

i

Riassunto

I recenti sviluppi tecnologici e i progressi nella miniaturizzazione hanno
reso possibile utilizzare le reti di sensori wireless (Wireless Sensor Networks
- WSNs) per ricavare informazioni dall’ambiente e renderla disponibile agli
scienziati del dominio [1], o per utilizzare i dati sensoriali per guidare azioni
sull’ambiente [2]. Una recente indagine dell’agenzia ONWorld [3] prevede
che il mercato delle WSNs cresca di un ordine di grandezza entro il 2011.
La stessa indagine identifica la facilita di programmazione come la maggior
barriera all’adozione di WSNs. Per affrontare questa problematica, questa
tesi presenta un insieme di astrazioni di programmazione per WSNs il cui
scopo ¢ di semplificare lo sviluppo di applicazioni in scenari diversi, in
particolare, in scenari di tipo sense-and-react dove il sistema & usato per
chiudere ’anello di controllo effettuando azioni sull’ambiente.

La prima parte di questa tesi descrive il cammino concettuale per rag-
giungere tale scopo. Presentiamo una tassonomia dettagliata delle soluzioni
esistenti e classifichiamo gli approcci disponibili. Nel fare cio, realizziamo
come la maggior parte dei sistemi di programmazione oggi disponibili non
sono applicabili a scenari sense-and-react. In tali situazioni, il programma-
tore deve affrontare diverse problematiche originanti dall’eterogeneita dei
nodi, da requisiti mutevoli, e da interazioni basate su gruppt di nodi che
sono solo parzialmente supportate dagli approcci esistenti. Le soluzioni pre-
sentate in questa tesi affrontano queste problematiche fornendo soluzioni
per la programmaczione di nodi individuali, di gruppi di nodi, e della intera
rete (l'ultima classe di soluzioni normalmente chiamata “macroprogram-
ming”). In aggiunta, in luce delle caratteristiche dell’hardware dei nodi
WSNs, adottiamo un approccio di co-design nel progetto delle astrazioni
di programmazione e dei protocolli distribuiti a supporto. Cido permette una
stretta collaborazione tra gli strati di programmazione e di sistema, pro-
ducendo migliori performance che affrontando i problemi separatamente.

Nella seconda parte del lavoro ci concentriamo sulla programmazione dei
singoli nodi. Dapprima investighiamo come riconfigurare il comportamento
del nodo a fronte di mutevoli requisiti. Per rispondere a questo bisogno,
presentiamo i modelli di programmazione RUNES [4, 5] e F1IGARO [6].
Entrambi sono approcci a componenti che permettono al programmatore
di identificare con precisione la funzionalitd da riconfigurare. In aggiunta,
F1GARO gestisce automaticamente 1’intero processo di riconfigurazione. In

iii

parallelo, studiamo come fondere interazioni reattive e proattive in un solo
modello di programmagzione, come richiesto in scenari sense-and-react. La
nostra risposta a questo problema ¢ il middleware TeenyLIME, un modello
di programmazione dove rivisitiamo il paradigma a spazi di tuple per tenere
in considerazioni i tratti distintivi delle applicazioni WSNs.

La terza parte della tesi investiga la programmazione di gruppi o sot-
toinsiemi di nodi. Affrontiamo questo problema con l'astrazione Logi-
cal Neighborhoods [9,10]. Diversamente dalla neighborhood fisica di un
nodo—implicitamente definita dalla posizione dei nodi e dal loro raggio di
comunicazione—Logical Neighborhoods fornisce una nozione di prossimita
di pin alto livello determinata da informazioni applicative. I programma-
tori identificano i nodi in una neighborhood logica in base a caratteristiche
applicative ed interagiscono con essi usando un paradigma a scambio di
messaggi. I destinatari dei messaggi sono ora i nodi rispondenti ad una
definizione di neighborhood indipendentemente dalla loro posizione fisica.
Forniamo quindi un blocchetto fondamentale per la costruzione di funzion-
alita piu sofisticate e di astrazioni di piu alto livello.

Nella quarta parte della tesi esploriamo 'uso di Logical Neighborhoods
con meccanismi diversi dallo scambio di messaggi. Illustriamo come Logical
Neighborhoods fornisce un complemento naturale al modello a componenti
F1GARO offrendo supporto per dirigere gli aggiornamenti di codice verso
una specifica parte del sistema [6]. Successivamente, descriviamo Virtual
Nodes [11]: un’astrazione di programmazione con cui gruppi di nodi iden-
tificati dall’applicazione possono essere incapsulati in un unico nodo logico.
Da ultimo, descriviamo come Logical Neighborhoods puo essere incorporato
in un linguaggio di macroprogramming esistente [12,13]. Cid permette di
identificare con precisione le porzioni di sistema che devono essere coinvolte
nel raggiungimento di uno specifico obiettivo.

Per affermare la superiore efficacia del nostro approccio co-design, anal-
izziamo le nostre soluzioni sempre da due prospettive complementari. Da
un lato, quantifichiamo lo sforzo di programmazione nello sviluppo di ap-
plicazioni di riferimento sia usando le nostre soluzioni sia comuni strumenti
di programmazione. Dall’altro lato, studiamo la performance del sistema
rispetto a metriche quali il traffico di rete e il tempo di vita del sistema
confrontandole con meccanismi di comunicazione tradizionali.

Per concludere, argomentiamo come ulteriori sforzi di ricerca sono richi-
esti nel fornire garanzie e semantiche pit forti e nella verifica della corret-
tezza delle implementazioni risultanti.

iv

Acknowledgments

It is anything but easy to thank all the people who contributed to this
thesis and, most importantly, to my personal and professional development
during my Ph.D. studies.

More than anyone else, however, my Advisor Gian Pietro Picco has been
the one who made me think research was what I really wanted to do. His
enthusiasm has always been contagious, regardless of whether we were at
a research meeting, on some long-haul flight, or in front of the vending
machine. I learned a lot, not only on a professional plane, and I owe to
him most of what I know about doing research.

Other people I met over these years also contributed in different ways.
Amy L. Murphy, Cecilia Mascolo, and Giampaolo Cugola have been great
collaborators as well as good friends. Carlo Ghezzi and Luciano Baresi
have always been supportive and proved to care about me well beyond
professional life. Viktor Prasanna allowed me to be exposed to a stimu-
lating research environment during my stay at the University of Southern
California, Los Angeles (CA, USA).

Besides the above, my colleagues Paolo, Davide, Animesh, and Matteo
C. have also been good friends and wonderful people to work with. By
the same token, I am grateful to friends inside and outside the professional
environment, people I simply shared good moments and laughter with:
Alessandro B., Sabrina, Irene, Roberta, Anna M., Francesco, Alessandro
L., and Daniele. A special thank goes to Pincy, who first whispered the
word “research”.

More than anyone else, however, my family has been fundamental. Even
when we had to face problems way more important than anything I could
write in this thesis, I never missed your unconditional support to my pro-
fessional development. Eventually, I hope to have a chance to return what
you gave me.

Thank you.
Luca

Ringraziamenti

Non & facile ringraziare tutte le persone che hanno contribuito a questa
tesi e, soprattutto, al mio sviluppo personale e professionale durante i miei
studi di dottorato.

Ci0 nonostante, il mio Advisor Gian Pietro Picco & stato colui che, pin di
chiunque altro, ha sviluppato in me la convinzione di voler fare ricerca. Il
suo entusiasmo € sempre stato contagioso, sia che fossimo ad una riunione,
su qualche volo intercontinentale, o davanti alla macchinetta del caffé. Ho
imparato molto, non solo sul piano professionale, e gli devo gran parte di
¢io che so sul fare ricerca.

Altre persone hanno contribuito in diverse maniere. Amy L. Murphy,
Cecilia Mascolo, e Giampaolo Cugola sono stati collaboratori eccezionali e
buoni amici. Luciano Baresi e Carlo Ghezzi non hanno mai fatto mancare
il loro supporto e hanno dimostrato di tenere a me ben al di 1& dei rapporti
professionali. Viktor Prasanna mi ha permesso di essere esposto ad un
ambiente di ricerca stimolante durante la mia permanenza presso University
of Southern California, Los Angeles (CA, USA).

Oltre alle persone di cui sopra, i miei colleghi Paolo, Davide, Animesh,
e Matteo C. sono stati buoni amici e splendide persone con cui lavorare.
Alla stessa maniera, sono grato agli amici dentro e fuori I’ambiente profes-
sionale, persone con cui ho semplicemente condiviso risate e bei momenti:
Alessandro B., Sabrina, Irene, Roberta, Anna M., Francesco, Alessandro
L., e Daniele. Un grazie speciale é per il Pincy, con cui per primo ho parlato
di “ricerca’.

Pin di chiunque altro pero, la mia famiglia é stata fondamentale. An-
che quando abbiamo dovuto affrontare problemi ben pili importanti di
qualunque cosa possa scrivere in questa tesi, non avete mai fatto mancare il
vostro supporto incondizionato al mio percorso professionale. Spero, prima
o poi, di avere la possibilita di ritornare cido che mi avete dato.

Grazie.
Luca

vii

Contents

1. Introduction

I. Programming Wireless Sensor Networks

2. Background
2.1. Introduction
2.2. Reference Architecture L.
2.3. Sensor Network Applications
2.4. Taxonomy Overview
2.5. Characterizing the Language
2.5.1. Communication Perspective
2.5.2. Computation Perspective
2.5.3. Programming Idioms
2.5.4. Distribution Models
2.6. Architectural Aspects
2.6.1. Composability
2.6.2. Reach
2.6.3. Stack Penetration.
2.6.4. Supported Platforms
2.7. Completing the Picture
2.8. Mapping and Discussion

3. Beyond the State of the Art
3.1. Open Problems
3.2. Contribution Lo

Il. Programming with Physical Neighborhoods

4. Component Models for Software Reconfiguration
4.1. Scenario

11
11
13
17
21
23
23
31
37
38
42
43
45
47
48
49
52

59
59
60

63

65
65

ix

Contents

4.2. Motivation and Contribution
4.3. The RUNES Middleware Foundation
4.3.1. Component Model
4.3.2. Kernel Implementations
4.4. The RUNES Middleware in Action
4.5. Evaluating the RUNES Middleware
4.5.1. Middleware Kernel Evaluation
4.5.2. Scenario-Based Evaluation
4.6. The FiIGARO Programming Model
4.7. F1GARO Node-Level Run-Time Support
4.8. Evaluating the FiIGARO Component Model
4.9. Related Work,

87

4.9.1. System Support for Pervasive Embedded Applications 87

4.9.2. Software Reconfiguration in WSNs

5. The TeenyLIME Middleware
5.1. Introduction L.
5.2. Scenario and Motivation
5.3. TeenyLiME: Basic Concepts and APT
5.4. Application Development with TeenyLIME
5.4.1. Sense-and-react Applications
5.4.2. Sense-only Applications and System Services
5.5. The TeenyLiME Middleware
5.5.1. Architecture. L.
5.5.2. Implementation
5.6. Evaluation
5.6.1. Evaluating the Programming Model
5.6.2. Evaluating the Middleware Implementation
5.7. Related Work

Ill. From Physical to Logical Neighborhoods

6. The Logical Neighborhood Abstraction
6.1. Introduction
6.2. Programming with Logical Neighborhoods
6.2.1. Basic Concepts
6.2.2. The SPIDEY Language
6.3. Communication APT

88

91
91
93
95
98
98
104
107
107
108
109
109
115
120

123

Contents

6.4. Demonstration L. 136
6.4.1. Traffic Control 138

6.4.2. Adaptive Lighting 139

6.4.3. Fire Control 141

7. Routing for Logical Neighborhoods 143
7.1. Motivation and Overview 143
7.2. Routing for Logical Neighborhoods 145
7.2.1. Building the State Space 145

7.2.2. Finding the Members of a Logical Neighborhood . . 148

7.3. Evaluation 151
7.3.1. Analyzing the Routing Behavior 151

7.3.2. Performance Characterization 154

74. Related Worko oo 157
IV. Building upon Logical Neighborhoods 161
8. Fine-Grained Software Reconfiguration in WSNs 163
8.1. Imtroduction 163
8.2. Distribution Model and Tool Support 165
8.3. Routing Protocol for Selective Code Distribution 166
8.3.1. Building the Mesh Topology 168

8.3.2. Distributing Code 171

8.4. Evaluation 172
8.5. Related Work oo 176

9. The Virtual Node Abstraction 179
9.1. Introduction 179
9.2. Programming WSNs with Virtual Nodes 183
9.2.1. Focusing on Relevant Nodes 183

9.2.2. Virtual Sensors 184

9.2.3. Virtual Actuators L. 186

9.2.4. Virtual Nodes Made of Virtual Nodes 188

9.3. Virtual Nodes in Practice 189
9.3.1. Virtual Nodes Language Support 189

9.3.2. Run-Time Support 190

94. Evaluationo 193
9.4.1. Benefits to the Programmer 193

xi

Contents

9.5.

9.4.2. System Performance
Related Work o oo

10.Routing from Multiple Sources to Multiple Sinks

11.

10.1.
10.2.
10.3.
10.4.

10.5.

10.6.

Motivation
Contribution
System Model and Optimal Solution
A Distributed Solution
10.4.1. Protocol Overview
10.4.2. Computing the Routing Quality
10.4.3. Computing the Expected Lifetime
10.4.4. Putting All Together
Evaluation
10.5.1. Analyzing the Protocol Behavior
10.5.2. Performance Characterization
Related Work oL

Enabling Scoping in Sensor Network Macroprogramming

11.1.
11.2.
11.3.

11.4.

11.5.

Introduction oL L
The ATaG Programming Model
Scoping in a Macroprogramming Language
11.3.1. Determining Scopes
11.3.2. Scoping in ATaG
11.3.3. ATaG Constructs for Scoping
System Support oL
11.4.1. Compilation
11.4.2. Node-level Run-time
Evaluation L o oL

12.Conclusion and Future Work

xii

201
201
203
206
209
210
211
214
215
216
219
223
227

231
231
236
237
237
238
238
242
242
243
245

251

List

1.1.
1.2.
1.3.

2.1.
2.2.
2.3.
2.4.

2.5.
2.6.

2.7.

2.8.

2.9.

2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.

2.20.

2.21.

of Figures

Bridging virtual and physical environments using WSNs. . . 1
WSN programming approaches.

Thesis organization. 4
Reference architecture. 13
Dimensions for classifying WSN applications. 17
Example WSN applications in space and time. 18
Mapping example WSN applications to the classification in

Figure 2.2. 20
Taxonomy organization. 22
Topological characteristics of group based communication.

Grey nodes are those addressed by the black node. 24
nesC Active Message interfaces for sending and receiving

MESSAZES. © « v . e e e e e e e e e 25
Sense and broadcast component in nesC. 26
Abstract Regions API (adapted from [14]).. 28
Object tracking in Abstract Regions (adapted from [14]).. . 29
A street-parking application in Pleiades (adapted from [15]). 30
A sample ATaG program. 33
Plume monitoring using Regiment (adapted from [16]). . . . 35
Monitoring bird nests using TinyDB (adapted from [17]). . 36
Fire tracking with Agilla (adapted from [18]). 40
Subscription format in DSWare (adapted from [19]). 41
Role specification for the coverage problem (adapted from [20]). 44
Reading light values using Hood (adapted from [21]). 46
Mapping WSN programming abstractions to the taxonomy

in Figure 2.2—language aspects. 23
Mapping WSN programming abstraction to the taxonomy

in Figure 2.2—architectural aspects. 04
Mapping WSN programming abstractions to the character-

istics of WSN applications. 56

xiil

List of Figures

xiv

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.

4.11.
4.12.
4.13.

4.14.
4.15.
4.16.

5.1.

0.2.
9.3.
5.4.

9.5.

2.6.
5.7.

5.8.
2.9.
5.10.
0.11.

The RUNES software architecture.
The Kernel API.
The RUNES component model.
Fire in a road tunnel: application design..
Configuration of the application as the scenario unfolds.

RUNES Middleware memory overhead.
RUNES Middleware run-time overhead
Application component size.
FiGARO: an example of component interface.
F1GARO: a component implementing the interface of Fig-
ure 4.9. . Lo
An example of component configuration.
The life cycle of a FiIGARO component.
A sample evolution of the component configuration in Fig-

Memory overhead. Lo oo

F1GARO calls across components vs. native C function calls.

Time and energy to install the Blinker component..

High-level scheme of a building monitoring and control ap-
plication.
Tuple space sharing in TeenyLIME.
TeenyLimMe APL.o o
Sequence of operations to cope with fire. Notified about
increased temperature, a node controlling water sprinklers
queries the smoke detectors to verify the presence of fire. If
necessary, it sends a command activating nearby sprinklers.
TeenyLIME code for an actuator node interested in temper-
ature values. Lo
TeenyLIME code for a temperature node.
TeenyLIME code for a smoke detector node. Initialization
routines and error handling are not shown, capitalized key-
words represent constant values.
Processing of capability tuples.
Component configuration in object tracking.
TeenyLIME component configuration.
A temperature node in our reference application, using plain
TinyOS. The processing above is equivalent to the Teeny-
LiME version in Figure 5.6.

79
80
81

83
85
86
86

94
95
97

5.12.

5.13.
5.14.
5.15.

5.16.

5.17.
5.18.

6.1.
6.2.

6.3.
6.4.

6.5.

6.6.

6.7.

List of Figures

Comparing the TeenyLiME-based implementation against T'i-
nyOS. ML represents the maximum number of co-located air
conditioners needing to exchange the same token tuple, NC
represents the maximum number of air conditioners around

a temperature sensor.o 111
Component configurations. 117
Emulation parameters. 117
Execution times in the components of our benchmark appli-

cations. 118
CPU time breakdown in TeenyLIME-based implementations. 118
System lifetime.o 119
Performance of TeenyLIME reliable protocol. 120
A portion of a node’s state and characteristics is exported

at the application-level by means of (logical) node instances. 128
Sample node definition and instantiation. 128
Sample neighborhood definition and instantiation. 129
A pictorial representation of the example in Figure 6.3. The
black node is the one defining and using the logical neighbor-
hood for communication, and its physical neighborhood (i.e.,
nodes lying in its direct communication range) is denoted by
the dashed circle. The grey nodes are those satisfying the
neighborhood template HighTempSensors when the thresh-
old is set to 100°C. However, the nodes included in the actual
neighborhood instance htsn100 are only those lying within
2 hops from the sending node, as specified through the hops
clause during instantiation. 129
The conceptual relationship between templates and their in-
stantiation.o oL 130
Grammar showing the abstract syntax of the SPIDEY lan-
guage. <target_lang_expr> is any valid expression in the
target language that evaluates to a type compatible with the
attribute or parameter at hand. <numeric_targetlangex-
pr> further constraints the expression in the target language
to evaluate to a numeric type. <node_predicates> is any
well formed boolean predicate over node attributes. 132
An example of a complex neighborhood template, where
TEMP and SMOKE are variables in the target language. 134

XV

List of Figures

Xvi

6.8.
6.9.
6.10.
6.11.

6.12.
6.13.

6.14.

6.15.

6.16.

7.1.
7.2.
7.3.
74.

7.5.

7.6.

7.7.

7.8.

8.1.
8.2.
8.3.

APT for the communication component providing the logical

neighborhood abstraction. 136
Tunnel scenario. 137
Setup and nodes controlling fans and lights. 137
A neighborhood including nodes controlling fans in given

sectors or traffic lights on a specific lane. 138
Example of nodes involved in traffic control. 139
A neighborhood including nodes controlling the lights for a

given number of consecutive sectors inside the tunnel. . . . 139

Example of nodes involved in adaptive lighting. getNorma-
lizedLightIntensity() returned 2 when the message was

sent to the logical neighborhood. 140
A neighborhood including nodes controlling traffic lights or

fans in three adjacent tunnel sectors. 140
Example of nodes involved in fire control. 141
An example of PROFILEADV. 145
An example of State Space Descriptor (SSD). 146
The SSD of Figure 7.2 at a node with a sending cost of 1,

after receiving the PROFILEADV message in Figure 7.1.. . . 146
Building and navigating the state space. (In parenthesis is

anode’s sending cost.) 147

State space generation. The first PROFILEADV message
spreads throughout the system as no node disseminated its
profile yet. Profiles advertised by other nodes propagate only
until a smaller cost is encountered, partitioning space in re-
gions centered on neighborhood members. The white node
does not receive the message in the first propagation—due to
collisions—but eventually receives it in later retransmissions. 151
An application message navigates the state space. Solid lines

are decreasing paths, dashed lines are exploring paths. . . . 152
A message navigating a state space where sending costs fol-

low the distribution at the bottom. 152
Evaluation against gossip and ideal multicast, in static and

dynamic scenarios.o e 156
Declaring node attributes. 165
Declaring the reconfiguration target. 166
A mesh connecting all target nodes. 167

8.4.
8.5.
8.6.
8.7.
8.8.

8.9.

9.1.
9.2.

9.3.
94.

9.5.

9.6.
9.7.
9.8.
9.9.

9.10.

9.11.
9.12.
9.13.

9.14.

9.15.
9.16.

10.1.
10.2.

List of Figures

A distribution tree exploiting the mesh. 167
Routing table at node 3 in the situation of Figure 8.6(c). . . 168
Example of mesh construction (grey circles are target nodes). 169
Node 3 has equal cost to all target nodes. 171
F1GARO performance vs. topology and system size (target
nodes are 10% of the total). 174
F1GARO performance vs. number of target nodes (100 nodes
arranged ina grid). 174
. F1IGARO convergence speed (100 nodes arranged in a grid). 174
Interactions in building automation. 180
Virtual sensor and actuators. Dashed lines show the real
nodes associated to a virtual one. oo 182
Node definition and instantiation. 183
Neighborhood definition and instantiation on a node con-

trolling the lighting. (myLocation() returns where in the

building the node is deployed.) 184
Definition of a virtual vibration sensor on a node controlling
the lighting. oo 185
Classification of some example functions. 186
A virtual actuator used to deactivate all the air conditioners. 187
Virtual nodes built upon other virtual nodes. 188
Definition of a presence sensor from (virtual) vibration and
sound SensSOrS. e 188
Component configuration on the control station. White com-

ponents are developed by the programmer, gray ones are
automatically generated or belong to our run-time support. 190

Complete nesC code for the control station. 191
Multi-source, multi-sink communication. 192
Component configuration on the control station node using

plain-TinyOS. 193

Comparing a virtual node-based implementation against plain
TinyOS. (SPIDEY specifications are counted as lines of code). 195

Sample topology used in experiments. 196
Virtual nodes performance. 197
A sample multi-source to multi-sink scenario. 203
An efficient solution to routing from multiple sources to mul-

tiplesinks.o 204

xvii

List of Figures

10.3. A routing topology where all transmissions are pair-wise. . . 207
10.4. Sample assignments for T%A. 208
10.5. Sample interplay between routing quality and expected life-

time. L 210

10.6. An abstract view of a WSN with multiple sources and mul-
tiple sinks. Source Z generates data to be delivered to sink
S, routed through node A. Besides Z, node A is a neighbor
of B, C, and D. At node A, the current parent towards S
is C'. However, a better choice is represented by D, since it
enjoys the highest number of overlapping paths and served

sinks among A’s neighbors. 212
10.7. Information used to compute the routing quality metric for

a neighbornode. Lo oL 213
10.8. A sample adaptation process. 215
10.9. Data stored at node E in the situation depicted in Fig-

ure 10.8(a). 215
10.10Classes of nodes depending on remaining energy. 218
10.11Energy consumption over time using independent trees (225

nodes in the system). L. 218
10.12Energy consumption over time using our routing solution

with no load balancing. L. 220
10.13Highlighting the nodes in Figure 10.12(a) that were involved

in the initial tree. oo 221

10.14Energy consumption over time using our complete protocol. 222
10.15System lifetime vs. number of nodes, in a system with 4 sinks.224
10.16Grid topology: number of active source-sink paths over time

vs. nodes (4sinks).o Lo 225
10.17Grid topology: nodes involved in routing. 226
10.18Grid topology: per node remaining energy when simulation

SEOPS. .« o e 226
10.19System lifetime vs. number of nodes, in a system with 4 sinks.227
11.1. Traffic management scenario. 232
11.2. Data processing in traffic management. 233
11.3. A sample ATaG program. 236
11.4. The ATaG program for the traffic management application. 239
11.5. XML declaration for @speedSensor in Figure 11.4. 240
11.6. Logical hops over the HighwaySector attribute. 241
11.7. The ATaG node-level run-time. 244

xviil

List of Figures

11.8. Simulation parameters. 247
11.9. Reference application performance. 248
12.1. Buonconsiglio castle in Trento (Italy). 253

xix

List of Figures

XX

1. Introduction

Wireless Sensor Networks (WSNs) are distributed systems composed of a
high number of tiny devices, each equipped with a low-power processing
unit, a wireless communication interface, and sensing or acting function-
ality. By embedding processing and communication within the physical
world, WSNs can be used as a tool to bridge real and virtual environ-
ments. Harmonizing these two dimensions, however, can be achieved along
different directions, as illustrated in Figure 1.1.

WSNs can be used to gather information from the environment and make
it available to scientists for studying the corresponding dynamics. Seminal
research in WSNs mostly tackled this type of sense-only scenarios. Initial
deployments indeed concentrated on applications such as environmental
monitoring [22], wildlife tracking 23], and supervised agriculture [24]. In
these scenarios, WSNs unveiled their potential to academic and industrial
researchers, though they remained far from the actual domain-experts, i.e.,
their intended end-users. FEarly players in the WSN arena immediately
acknowledged ease of programming as the main obstacle to a widespread
adoption of this technology [25].

Command
Execution

|

|

|

|

i

i

i

i

] AX

{ > Control
| Algorithm
% Engineers

|

i

|

|

i

i

i

|

Data Collection
and Processing

!

—
Long-Term
Storage

,,

Physical Virtual

Figure 1.1.: Bridging virtual and physical environments using WSNs.

1. Introduction

node- centrlc groups of nodes macroprogramming
éa

low level of abstraction high level of abstraction

e}
) @
Ac)
) %
) N %
pr)
) /
) 6)
<) %;’))
\\\ ‘\’ TN
8) S
! 6;@//
WJ) is
@Lﬂ/

%‘w
&
\\)

AUz W’

Figure 1.2.: WSN programming approaches.

Besides the above scenarios, sensed data can be used by control engineers
to decide on actions to take on the environment [2]. Similar sense-and-react
scenarios hold the potential for enabling unattended control systems that
blend transparently with the physical world. The ability to react to exter-
nal stimuli indeed enables novel applications such as home automation [26],
building monitoring and control [27], and emergency response [4]. How-
ever, driving actuation based on sensed data further complicates the pro-
grammer’s life, due to decentralization of the application logic. Therefore,
providing the appropriate programming abstractions to domain-experts ac-
quires even greater importance.

The first part of this thesis describes the conceptual path to the above
objective. As intuitively illustrated in Figure 1.2, existing programming
solutions for WSNs have been hitherto classified depending on the level of
abstraction provided. On one end of the spectrum, node-centric program-
ming frameworks focus on individual nodes. Differently, macroprogram-
ming approaches give developers the ability to treat the WSN as a whole,
and express the application processing regardless of the single devices. A
few proposal also exist to find a trade-off between these two extremes, by
providing abstractions to program groups of nodes. As discussed in Chap-
ter 2, we maintain that this classification fails in capturing the essence of
existing WSN programming abstractions. Therefore, in the same chapter
we present a detailed taxonomy of existing WSN programming solutions,
and cast available approaches in our classification. In doing so, it is easy
to realize how most of the current state of the art is devised for sense-
only scenarios. Although this kind of programming solutions served as a
stepping stone for WSNs, they fall short of expectation in dealing with
sense-and-react scenarios, being essentially ill-suited to express the corre-

sponding requirements. Sense-and-react scenarios indeed exhibit unique
characteristics and traits, which require programmers to cope with several
challenges:

C1: Heterogeneous devices must coordinate so that each of them, with its
own capabilities and features, contributes to accomplish a higher-level
goal. Coordination usually occurs in the form of localized interac-
tions, to keep processing close to where actuation is to be performed,
thus saving on latency and resource consumption.

C2: The application demands are no longer carved in stone. When the
high-level application goals change, the system must adapt its be-
havior accordingly. Therefore, programmers are to deal with a fluid
set of requirements that dynamically evolve depending on a priori
unknown conditions.

C3: Multiple tasks must run concurrently, each having a different set of
sensors as input, and controlling disparate classes of actuators. Con-
sequently, different groups of devices must interact among themselves.
The focus is therefore on subsets of nodes, as opposed to individual
devices or the whole network.

As we describe in Chapter 3, in this thesis we aim at providing flexible
programming abstractions to address the three challenges above. In doing
so, we explore the whole spectrum of WSN programming approaches, by
providing solutions to program individual devices, group of nodes, and the
sensor networks as a whole. At the same time, this is only our minimal goal.
Our solutions may indeed prove useless if the underlying implementations
do not account for the very characteristics of WSN hardware. Therefore, in
this work we co-design the programming abstractions with the underlying,
distributed support required. This enables unprecedented degrees of inter-
play between the language constructs and the mechanisms providing the
corresponding semantics, which ultimately yield better performance than
tackling the two problems separately, as done traditionally.

Figure 1.3 graphically illustrates the thesis organization, and how our
contributions meet the three challenges above. In the second part of this
work, we start addressing some of those challenges by looking at how to pro-
gram individual nodes. Facing a changing set of requirements (C2) requires
programmers to reconfigure the single node behavior depending on unan-
ticipated situations. Mainstream solutions for single node programming

1. Introduction

Ci: i C3: ; C2: '
‘ coordination among , focus on ! changing .
‘ ! heterogeneous devnces subsets of nodes | requirements
Scoplng in '

Macroprogramming i
(Ch 11) ; i

FiGaRo l
‘g:“;'aﬂzdfos) Distribution ;
Model (Ch. 8) |

NS

i TeenyLIME . Logical
i Middleware i Neighborhoods i
! (Ch. 5) | (Ch.6and 7) ;

Figure 1.3.: Thesis organization.

RUNES/FiGaRo
Component
Model(s) (Ch. 4)

(e.g., |28]), however, provide little or no support to identify what func-
tionality need to be reconfigured, and how to carry out the reconfiguration
process. In Chapter 4, we report on our work on two component models ex-
plicitly devised to support fine-grained software reconfiguration in WSNs.
We first describe the RUNES programming model |4,5], a component-based
solution aiming at an extreme form of heterogeneity where not only WSN
devices are involved in the application processing, but also more powerful
nodes such as PDAs. RUNES allows us to identify the minimal set of no-
tions and operations to enable reconfiguration of single functionality. Based
on our experience with RUNES, we identify a further set of open issues,
this time specific to the WSN domain. We address them with the FIGARO
component model [6]. Compared to RUNES, FIGARO provides an enriched
programming model where component dependencies and versions become
first-class citizens and, differently from RUNES, it automatically handles
the whole reconfiguration process.

To achieve coordination among heterogeneous devices (Cl), program-
mers must be empowered with appropriate abstractions enabling both re-
active and proactive interactions. The former are needed to take actions
based on external conditions, whereas the latter are required to gather the
measures of interests (e.g., a sensor reading) and drive actuation. Unfortu-
nately, existing programming frameworks only provide basic communica-
tion facilities, usually based on message-passing. We instead provide both

types of language constructs in the TeenyLIME middleware [7,8], described
in Chapter 5. TeenyLIME considerably raises the level of abstraction by giv-
ing programmers the high-level abstraction of a tuple space [29]. Nonethe-
less, this cannot be re-applied as is in WSNs. Therefore, we revisit the
tuple space paradigm to account for the distinctive traits of WSN applica-
tions, and augment the programming model with sensor-specific features
to further simplify the programming activity.

The third part of the thesis departs from programming individual de-
vices by providing a foundation to deal with subsets of nodes (C3). Key
to this goal is how to identify the relevant subsets, and how to describe
simple interactions among them. Still, directly applicable solutions are
mostly missing in the current state of the art. We tackle this problem by
introducing the notion of Logical Neighborhood [9,10], described in Chap-
ter 6. Differently from the physical neighborhood of a node—implicitly
defined by the location of nodes and their radio ranges—Logical Neigh-
borhoods empower programmers with a higher-level notion of proximity
determined by application information. Using a declarative language we
devised, programmers identify the nodes part of a Logical Neighborhood
based on application-level characteristics. For instance, a node controlling
a fan in a tunnel can define a logical neighborhood including all smoke
sensors on a given lane that are currently reading a value above a safety
threshold, and query them to find out about the current situation.

In principle, the notion of scoping provided by Logical Neighborhoods is
orthogonal w.r.t. the interactions among nodes in a specific subset. For
instance, one could couple Logical Neighborhoods with a query-response
paradigm by directing interests towards a specific part of the system. Al-
ternatively, one could combine our solution with a tuple space paradigm
by enabling tuple sharing only among nodes in a Logical Neighborhood.
To avoid restricting the spectrum of possible usages, programmers leverage
off Logical Neighborhoods using a broadcast-based, message passing API—
still described in Chapter 6—which mimics the traditional communication
facilities of common WSN programming frameworks. The message recip-
ients, however, are the nodes matching a given neighborhood definition,
instead of those within radio range. Message delivery to nodes in a logical
neighborhood occurs thanks to a dedicated routing protocol, also illus-
trated in Chapter 7, that we explicitly devised for Logical Neighborhoods.
Existing solutions were indeed ill-suited to support the corresponding com-
munication patterns. This way, we provide a full-fledged, basic building

1. Introduction

block atop which one can build more sophisticated functionality as well as
higher-level abstractions.

The above claim is substantiated in the fourth part of this thesis, where
we explore the coupling of Logical Neighborhoods with mechanisms other
than message passing. Reconfiguring the system behavior to address mu-
table requirements (C2) not only entails the ability to reconfigure single
functionality on individual devices, but also requires to deliver the cor-
responding implementations only to the interested nodes (C3). In this
respect, Chapter 8 illustrates how Logical Neighborhoods provide a natu-
ral complement to the FIGARO component model, by offering support to
direct code updates towards a specific part of the system [6]. Indeed, as
the definition of Logical Neighborhoods is entirely up to the programmer,
subsets of nodes can be identified also depending on their current software
configuration, e.g., to target all devices running component "ABC" with
version less than 3.

Despite the flexibility of Logical Neighborhoods, complex interactions
among heterogeneous devices (C1) are still difficult to express using sim-
ple message-passing. To better support programmers in addressing this
challenge, we leveraged off Logical Neighborhoods to build higher-level lan-
guage constructs. In Chapter 9, we describe Virtual Nodes [11]: a program-
ming abstraction whereby application-defined groups of nodes (C3) can be
abstracted into a single, logical one. Spanning both ends of the control
loop, virtual nodes take the form of virtual sensors or virtual actuators.
The former abstract the data sensed by real sensors into the reading of a
single, fictitious node; whereas the latter provide a single handle to control
a distributed set of actuators. Although the distributed support for virtual
actuators is readily implemented using the Logical Neighborhoods commu-
nication layer illustrated in Chapter 7, existing routing schemes turned out
to be highly inefficient for implementing the semantics required by virtual
sensors. Based on the demands posed by the corresponding language con-
structs, we therefore devised a dedicated routing solution [30], described in
Chapter 10, that also enjoys wider applicability beyond our own program-
ming framework.

After addressing individual node programming, and investigated solu-
tions geared towards group of devices, the missing tile is therefore to look
at the WSN as a whole. Unfortunately, macroprogramming approaches
usually assume homogeneous scenarios where a single, system-wide task
is to be accomplished. Hence, existing solutions are unable to express in-

teractions among heterogeneous devices limited to specific portions of the
system (C1, C3). To address this issue, in Chapter 11 we describe how a
notion of scoping can be embedded within an existing macroprogramming
language [12,13], and how this affects the corresponding compilation pro-
cess [31]. This allows to identify the specific portions of the system that
need to be involved in achieving a given goal, while retaining the high level
of abstraction usually provided by macroprogramming.

To substantiate our claims regarding the superior effectiveness of our
co-design approach, we always analyze our solutions from two complemen-
tary perspectives. On one hand, we quantify the programming effort in
developing non-trivial reference applications both using our solutions and
with mainstream programming tools. This gives a measure of the gener-
ality, flexibility, and easy-of-use of the abstractions we propose. On the
other hand, we study the system performance w.r.t. metrics such as net-
work overhead and system lifetime compared to traditional communication
schemes. This way, we evaluate the advantages brought by our integrated
approach to the final system performance.

After addressing the three challenges above, we maintain that future
work in programming WSNs must focus on providing stronger semantics
and guarantees, as well as on verifying the correctness of the resulting
implementations. Our thoughts in this regard are illustrated in Chapter 12,
which concludes this thesis.

Part |.

Programming Wireless
Sensor Networks

2. Background

Ease of programming has long been recognized as a major hurdle to the
adoption of WSN technology. In response to this need, several program-
ming solutions have been hitherto developed. A well-established charac-
terization of the available approaches is, however, largely missing. As a
result, researchers are unable to orient themselves in this diverse field, and
developers struggle in identifying the solutions most appropriate to their
application requirements.

To address this issue, in this chapter we describe a taxonomy of WSN
programming abstractions based on multiple characterizing dimensions. In
doing so, our objective is twofold: i) we define a framework to put in con-
text the contribution of this thesis, and ii) we aim at providing the WSN
community at large with a foundation to classify, compare, and evaluate
existing and future approaches.

2.1. Introduction

Leveraging off WSNs to bridge the gap between virtual and real environ-
ments, as outlined in Chapter 1, requires domain experts to develop WSN
applications without being knowledgeable in embedded system program-
ming. In view of these needs, the research community put increasing effort
in devising programming solutions for WSNs. To date, however, none of the
proposed approaches emerged as a clear winner in the WSN programming
arena. Indeed, WSNs applications are still mostly developed at a very low
level of abstraction, essentially atop the bare operating system. As a result,
WSN software is typically unreliable, inefficient, and almost non-reusable.
This greatly complicates the achievement of the above vision.

The issues causing the aforementioned situation are essentially twofold:

e WSNs are a truly interdisciplinary field, with applications ranging

11

2. Background

from environmental monitoring in remote locations (e.g., [22]) to con-
trol of emergency situations in road tunnels (e.g., [4]). These typically
exhibit the most disparate requirements, thus preventing the use of
“one size fits all” solutions.

e A systematic characterization of the existing solutions in the field is
largely missing. As a result, researchers struggle in comparing dif-
ferent approaches on a common ground. Likewise, the end-users are
unable to relate the characteristics of a given programming approach
to their application requirements.

To address the above issues, this chapter describes a classification of
existing WSN programming abstractions based on multiple dimensions.
To organize our effort, in Chapter 2.2 we define a conceptual architecture
we use as a term of reference throughout the rest of the chapter. Chap-
ter 2.3 examines paradigmatic sensor network applications, highlighting
the requirements developers must meet when choosing the most appropri-
ate programming platform. This serves to better investigate the charac-
teristics of existing WSN applications at the origin of the first issue above.
Chapter 2.4 gives a bird’s eye view on our taxonomy, highlighting its over-
all organization and the two major directions we follow for classification.
The first direction looks at the nature of the language constructs provided
to programmers. In this respect, the different dimensions for classification
we identify are discussed in Section 2.5. Differently, the second, comple-
mentary line of investigation considers the architectural aspects tied to a
given programming framework. The corresponding dimensions for classifi-
cation are described in Section 2.6. In both cases, for each characterizing
dimension we intertwine the discussion with a description of distinguished
solutions falling in the corresponding category. Moreover, Section 2.7 com-
plements the description of relevant examples from the current state of the
art by surveying further programming solutions. Next, Section 2.8 illus-
trates a mapping of existing WSN programming solutions to our taxonomy,
so to give the reader a broad, yet well-organized perspective on available
approaches. Finally, in the same section we draw several observation and
discuss common trends emerged from our analysis.

12

2.2. Reference Architecture

Application
Programming Abstraction
System Services
S
=]
8|3 |g53Es
S |If|lo |3 |E2|S2
S | 2|S|e 8225
«©Q 6 ° (] «Q o0
> =2
MAC Operating System
Hardware
Radio
CPU/Memory Sensors/Actuators

Figure 2.1.: Reference architecture.

2.2. Reference Architecture

Traditional distributed systems have been designed with a strict layered
approach. Full-fledged operating systems providing lots of functionality
have been used, along with network stacks comprising several levels, from
the physical access layer up to the application level.

A gimilar approach is ill-suited to WSNs, because of the characteristics
of the devices employed. Indeed, resource scarcity demands for cross-layer,
lightweight approaches where the functionality are optimized to take ad-
vantage of feedback information at different levels. The operating system
is limited to providing basic mechanisms, e.g., scheduling and thin hard-
ware abstraction layers, while the network stack is most often tailored to
the specific application and usually comprises only the MAC and routing
layers. Given the wide range of possible configurations enabled by this de-
sign approach, it is useful to define a conceptual architecture to cast our
taxonomy in the context of WSN research at large.

A pictorial representation of our reference architecture is shown in Fig-

13

2. Background

ure 2.1. Its core constituents are described in the following, along with
brief mentions of relevant examples in the current state of the art.

Application. Interestingly, in the current literature the term “sensor net-
work application” is used in a very broad sense. For instance, in [21]
mechanisms such as node localization and time synchronization are also
termed as “applications”. We explicitly separate similar functionality from
the application level to avoid confusion, and term them as system services.
Specifically, in our reference architecture an application provides data the
end-user can make direct use of. Differently, system services are mecha-
nisms which do not provide any useful information by themselves, yet they
are needed in support of specific applications.

Notably, an application’s distinctive traits dictate the features that the
most appropriate programming abstraction must have to express the corre-
sponding requirements. Therefore, in Section 2.3 we provide a classification
of the characteristics of relevant WSN applications in light of the influence
they bear on the possible programming solutions of choice.

Programming abstraction. Solutions at this level constitute the major
focus of our taxonomy. They empower programmers with higher-level con-
structs to express various forms of processing, from the application itself
to system services, e.g., routing protocols. In this field, the only charac-
terizing dimension that received some attention so far is the one of node-
centric programming vs. macroprogramming [32]. The former generally
refers to programming abstractions to express the processing of individ-
ual nodes. Consequently, the overall system behavior must be described in
terms of pair-wise interactions among nodes within radio range. Differently,
macroprogramming solutions are usually characterized by higher-level ab-
stractions used to program the system as a whole, regardless of the single
devices.

Nonetheless, the above distinction falls short of expectation in capturing
the essence of currently available programming abstractions. For instance,
both TinyDB [17] and Kairos [32] are commonly regarded as macropro-
gramming solutions. However, the former provides an SQL-like interface
where no mention of individual nodes is made. The latter, instead, revolves
around an imperative programming language where dedicated constructs
are provided to iterate trough the neighbors of a given node, and commu-
nication occurs by reading or writing shared variables at specific nodes.
Therefore, the notion of individual device does not disappear in Kairos’
programming model.

14

2.2. Reference Architecture

To gain a deeper understanding of existing WSN programming approaches,
we pursue our investigation along two orthogonal lines:

e In Section 2.5, we study the nature of the language constructs pro-
vided to programmers. These constitute the entry point to the system
functionality, and are therefore pivotal for describing the application
processing.

e In Section 2.6, we analyze the architectural aspects of existing WSN
programming solutions. In a sense, we explode the programming
abstraction layer in Figure 2.1. This allows us to have a closer look
at how the different approaches relate to each other and to the other
conceptual blocks in our reference architecture.

System services. As already mentioned, these include additional mecha-
nisms built atop the core functionality provided by the operating system.
Based on the requirements of the application at hand, only a subset (or
none) of these mechanisms may be employed. For instance, generic routing
mechanisms [33] fall in this category, alongside with localization mech-
anisms (34| and time synchronization protocols [35,36]. Notably, some
approaches in routing play at border between system services and pro-
gramming abstractions by providing simple language constructs to express
the data flows required, e.g., as in Directed Diffusion [37]. Solutions pro-
viding storage services have also been proposed, e.g., [38,39]. Mechanisms
to enable dynamic linking of binary code are present either at this layer, or
at the operating system level. As for the former approach, two examples
are the Impala [40] middleware and FlexCup [41], the latter empowering
the TinyOS [42] operating system with the ability to update single compo-
nents at run-time. Similar techniques are often coupled with mechanisms
allowing for differential patching [43,44], and dedicated dissemination pro-
tocols [45-49]. Reprogramming is brought to an extreme using wvirtual
machines for WSN nodes. These usually sit atop the operating system
and enable on-the-fly execution of arbitrary, scripting-like code. Repre-
sentatives of this class are Maté [50], ASVM [51], VMStar [52], and Swis-
sQM [53]. The majority of these solutions use a dedicated instruction set,
whereas SwissQM [53| enables the execution of custom SQL queries. As
for layering aspects, instead, a notable exception is SquackVM [54|, which
sits directly atop the bare hardware and enables execution of a dedicated
subset of the Java language.

15

2. Background

Operating system. It is in charge of providing functionality such as
scheduling and basic concurrency mechanisms. In addition, it usually
provides a thin layer of abstraction to access the underlying hardware,
e.g., [55]. Several operating systems for WSN nodes have been proposed
so far. The most widespread solution is the TinyOS [42] operating sys-
tem. Alternatives are the Contiki OS [56], SOS [57], Mantis [58], RE-
TOS [59], and NANO-rk [60]. Among them, SOS, Mantis, and Con-
tiki feature dynamic linking functionality. The concurrency model em-
ployed varies from event-driven solutions [42] to preemptive, time-sliced
multi-threading [58,59] and asynchronous message passing [57]. These ap-
proaches have also been further augmented in several works. Examples are
Fibers [14], TinyThreads [61], and Y-Threads [62]. These approaches add
a threading model to TinyOS by enabling different forms of blocking calls.
Fiber allows a single blocking context, whereas TinyThreads enables co-
operative multi-threading by giving programmers a way to yield explicitly
the current execution context. Y-Threads, instead, are similar to Fiber,
but they provide preemptive multi-threading. Protothreads [63] enables a
form of cooperative multi-threading in Contiki. However, they do not store
the execution contexts, thus requiring the programmer to save and restore
the relevant state by hand. The Object State Model [64] extends the event
model with state machines. It also provides the ability to compose different
state machines to build hierarchies.

MAC. A plethora of MAC-layer protocols have been hitherto proposed [65,
66]. These essentially fall in two categories. Randomized protocols such
as [67-69] regulate the access to the physical layer opportunistically, based
on the current transmission requests. Conversely, time-slotted protocols
assign the nodes with predefined time-slots to schedule their transmissions
over time, e.g., as in [70,71]. While the former class of protocols is eas-
ier to implement and better tolerates nodes joining or leaving, the latter
class enables better reliability and greater energy savings. The radio can
indeed be switched to a low-power mode based on the current transmis-
sion schedule. Nonetheless, the latter protocols generally require tight time
synchronization among the nodes in some k-hop neighborhood.

Hardware layer. Comprising the micro-controller and data/program
memory, the radio device, and the possible sensors or actuator attached, it
defines the capabilities of the chosen platform in terms of communication,
processing, and interactions with the environment. A plethora of WSN
hardware platforms exist both as commercial products and in the form of

16

2.3. Sensor Network Applications

Sense-only

\ 4

Purpose
Sense-and-react

One-to-many

|

Interaction
Pattern

Many-to-many

Many-to-one

WSN
Applications

|

Space
Time

Event-driven

Figure 2.2.: Dimensions for classifying WSN applications.

research prototypes, e.g., [72-80]. However, the individual hardware com-
ponents used for processing and communication do not differ sensibly. Most
platforms use a 16-bit Texas Instruments MSP430 processor or a 8/16-bit
micro-controller of the Atmel ATMega family. Notable exceptions are the
IMote 2 and SunSPOT platforms, using the more powerful Intel PXA and
ARM920T cores, respectively. The amount of volatile memory ranges from
2 Kb to 512 Kb, whereas external memory support varies from 128 Kb
to 4 Mb. As for radio hardware, most platforms work in the 2.4Ghz ISM
band, and feature IEEE 802.15.4 |81]-compliant radio chips, e.g., the Chip-
Con 2420. Alternative solutions operate in the 868/916 Mhz band, e.g.,
using the ChipCon 1000 transceiver. Various types of sensors and actua-
tors may be attached, also using expansion boards like [82]. The specific
type of sensing/actuator device is largely application-specific.

2.3. Sensor Network Applications

WSNs are being employed in a variety of settings. As we previously ob-
served, these usually differ in the requirements developers must satisfy.
Nonetheless, it is possible to identify common characteristics that can fa-

17

2. Background

Space

Global -} -- Ha_bita,t _______ FI_ooc! ,,,,,,
Monitoring Monitoring

Local -}--- HVACin (Z Intrusion (¢
Buildings Detection

»
|

Periodic Event-driven

Figure 2.3.: Example WSN applications in space and time.

cilitate the mapping to existing programming abstractions. Figure 2.2 pro-
vides a high-level view on the various dimensions we deem relevant to this
goal. These are described next.

Purpose. As pointed out in Chapter 1, WSNs can be used to sense from
the environment and collect data for later, off-line analysis. Nevertheless,
the system can also react to sensed data, and use them to drive actuation
on the environment under control, thus closing the control loop. Notably,
introducing actuators drastically change the nature of the application: the
system becomes highly heterogeneous, as opposed to the mostly homoge-
neous architectures employed in sense-only scenarios; and multiple activi-
ties must be carried out simultaneously, e.g., to control actuators installed
in different parts of the system.

Interaction pattern. Depending on the application goals, the nodes in
the network collaborate differently. Early WSN deployments mostly fea-
tured a many-to-one interaction pattern: data is funneled from all nodes
in the network to a central collection point. Conversely, more recent ap-
plications are characterized by many-to-many or one-to-many interactions.
For instance, the former is germane to scenarios where multiple actuators
need to gather data from overlapping sets of sensing devices, as in [27].

Space and time. WSN applications deal with interacting with the sur-
rounding environment in space and time. Therefore, a distinction can be
made along these two orthogonal dimensions, as illustrated in Figure 2.3.
The application behavior over time can be classified as either:

18

2.3. Sensor Network Applications

e Periodic: applications like HVAC in buildings [27] are designed to
continuously process information. The application therefore performs
periodic tasks to gather data, coordinate with other part of the sys-
tem, and perform the actuation needed.

e Event-driven: applications like flood monitoring [83, 84| perform
some relevant processing only when specific environmental conditions
are met, e.g., a sensor reading raises above a thresholds. Until then,
the system is mostly quiescent.

Dually, two classes of applications can be identified depending on their
behavior in space:

e Global: applications such as habitat monitoring [22| sense and pro-
cess data throughout the whole system, as the phenomena observed
usually spans the whole geographical area where the system is de-
ployed.

e Local: applications like intrusion detection [85], on the other hand,
limit their processing in some vicinity of the phenomena observed.
This is usually limited in space, so that data coming from global
observations are not needed.

Interestingly, the range of existing WSN application covers all combina-
tions of the above dimensions. For instance, flood monitoring (83, 84] is
representative of applications where the phenomena of interest is sporadic,
yet data must be sensed and processed throughout the system. This is
needed to give domain-experts the ability to understand a given phenom-
ena based on environmental conditions possibly distant from the phenom-
ena itself. Dually, HVAC in buildings exemplifies applications where the
processing is continuous and limited to specific regions of the system. For
instance, controlling an air conditioner in a room usually requires sensing
temperature and humidity only in the same room [27].

Figure 2.4 illustrates a mapping from WSN applications found in the
current literature to the above characterization. Several observation can
be drawn:

e Sense-only applications are mostly characterized by many-to-one in-
teractions. The few examples requiring many-to-many interactions
are due to the possible co-existence of multiple users willing to gather
the same data.

19

Background
‘ Application ‘ SO/SR ‘ Interactions ‘ Space ‘ Time
Habitat Monitoring |22] SO Many-to-one Global | Periodic
Wildlife Monitoring [23] SO Many-to-one Global | Periodic
Glacier Monitoring [86,87| SO Many-to-one Global | Periodic
Grape Monitoring [24] SO Many-to-one Global | Periodic
Landslide Detection [88] SO Many-to-one Global | Periodic
Volcano Monitoring [89] SO Many-to-one Global | Periodic
Passive Structural SO Many-to-one Global | Periodic
Monitoring [90]
Fence Monitoring [91] SO Many-to-one Local Event-driven
Sniper Localization [92] SO Many-to-one Local Event-driven
Intrusion Detection [85] SO Many-to-one Local Event-driven
Forest Fire Detection [93] SO Many-to-one Global | Event-driven
Flood Detection [83,84] SO Many-to-one Global | Event-driven
Heaqlth Emergency SO Many-to-one Local Periodic
Response [94]
Awalanche Victims Rescue [95] | SO Many-to-many | Local Periodic
Smart Tool Box [96] SO Many-to-many | Global | Event-driven
Vital Sign Monitoring [97] SO Many-to-many Global | Event-driven
Vehicular Traffic Control [98] SR Many-to-many | Local Periodic
Smart Homes [26] SR Many-to-many | Local Periodic
Assisted Living [99] SR Many-to-one/ Local Periodic
One-to-many
Building Control and SR Many-to-one/ Local Periodic
Monitoring [100] One-to-many
Active Structural SR Many-to-many Local Periodic
Monitoring [90]
Heating Ventilation and SR Many-to-many,/ | Local Periodic
Air Conditioning Control [27] One-to-many
Tunnel Control and SR Many-to-many,/ | Local Periodic
Monitoring [4] One-to-many

Figure 2.4.: Mapping example WSN applications to the classification in
Figure 2.2.

20

e The behavior in space and time of sense-only applications varies sen-
sibly. Although applications periodically gathering data on a global
scale constitute a sizable portion of the domain space, several exam-
ples exist featuring different combinations of space/time behavior.

e The space behavior of sense-and-react applications is mostly local.
Actuators are indeed limited in the extent by which they can influ-
ence the environment. Therefore, they do not need to gather sensor
readings outside their range of actuation [2].

e Similarly, the behavior in time of sense-and-react application is mostly
periodic. Classical control mechanisms indeed require continuous in-
teractions with the environment to adapt the actions taken to the

2.4. Taxonomy Overview

physical world dynamics.

Based on the above observations, in the following we survey currently
available WSN programming abstractions in light of the requirements pro-
grammers must meet.

2.4. Taxonomy Overview

The overall organization of our taxonomy of WSN programming abstrac-
tions is illustrated in Figure 2.5. Following the two major lines of investi-
gation previously introduced, we investigate in Section 2.5 the distinctive
traits of the language constructs provided to the programmer. Firstly, we
look at how developers describe computation vs. communication. Indeed,
in the current state of the art both aspects are described to different ex-
tents, by focusing on single nodes, group of nodes, or the system as a whole.
Next, we analyze the programming idioms employed in the different solu-
tions, and the corresponding distribution models used by programimers to
express the necessary coordination among nodes.

In Section 2.6 we study how the various solutions interact with each
other, and with the rest of our reference architecture. We begin by in-
vestigating the extent to which a solution can be composed with other.
Indeed, approaches exist that are designed to be building blocks employed
in collaboration with other programming solutions, as opposed to holistic
approaches providing complete support for writing full-fledged applications
without the ability to coordinate with different abstractions. Next, we in-
vestigate the reach of a given WSN programming solution in our reference
architecture. Remarkably, some of the existing approaches are not lim-
ited to writing applications. Rather, they are able to reach into the lower
level of the architecture, e.g., by providing support to the implementation
of system services. Moreover, we study whether currently available ap-
proaches allow the application requirements to penetrate the stack, e.g.,
investigating the presence of features giving programmers control over low-
level functionality. Finally, we assess the range of supported platforms to
evaluate the actual viability of the corresponding solutions.

Throughout the discussion, we provide relevant examples to illustrate
the various dimensions for classification. In every case, we first provide an
overview on the specific solution, describing the abstractions at the core of
the programming model. Then, we illustrate an example taken from the

21

2. Background

neighborhood 9 P
».| Communication i Group Multi-hop
Perspective ': Group based) Topology

Global view Multi-hop

non-connected

Node centric

Computation i

Perspective Group centric

|

WSN
Programming
Abstractions

Message
passing

| Language
Programming | |
Hybrid
Database-
oriented
Data sharing
Distribution | |
Model
ode Mobile code

\ 4
o

.‘

Building
blocks

Application
level

Reach

Vertical
solutions

—»| Architecture

Distribution
hiding

Stack

Penetration
Low-level

hooks

Real hardware

> Supported

Platforms)
Simulated

environments

Figure 2.5.: Taxonomy organization.

22

2.5. Characterizing the Language

corresponding literature, and conclude by providing some highlights on the
underlying implementation of the programming model at hand.

2.5. Characterizing the Language

In this section, we study the nature of the language constructs made avail-
able to WSN programmers through a series of paradigmatic examples. In
a sense, here we play at the border between the application and program-
ming abstraction layers in Figure 2.1, to study how developers can leverage
off the functionality available at lower levels.

2.5.1. Communication Perspective

WSN nodes can hardly perform any useful task if left alone. It is indeed
the overall collaboration of a large number of such devices that allows the
system to accomplish a higher-level goal. Therefore, communication among
different nodes plays a pivotal role in describing the application processing.

Classification

Existing WSN programming abstractions radically differ in the way they let
developers express inter-node communication. Three approaches primarily
emerge in the current state of the art:

e Physical neighborhood: approaches such as NesC [28] and
FACTS [101] give programmers basic communication facilities to ex-
change messages with nodes within radio range. Message recipients
can either be all reachable nodes (broadcast communication) or a spe-
cific device (unicast communication). The addressing scheme lever-
ages off statically assigned node identifiers.

e Group based: solutions like Hood [21], Abstract Regions [14], and
EnviroSuite [102] provide APIs to target subsets of nodes depending
on application-level information. The addressing scheme is mainly
based on programmer-provided information. Furthermore, the topo-
logical characteristics of the group may also differ, as depicted in
Figure 2.6:

— Single-hop groups: the target nodes are assumed to be reach-
able from the sender with a single message transmission, as in
Hood [21]. An example is depicted in Figure 2.6(a).

23

2. Background

(a) Single-hop group. (b) Multi-hop connected (¢) Multi-hop non-
group. connected group.

Figure 2.6.: Topological characteristics of group based communication.
Grey nodes are those addressed by the black node.

— Multi-hop connected groups: the target nodes can be mul-
tiple hops away from the sender, yet there must be a path of
only target nodes from the sender to the farthest target node,
as in EnviroSuite [102]. Figure 2.6(b) reports such an example.

— Multi-hop non-connected groups: no assumptions on the
geographical location of the target nodes are made, as in Ab-
stract Regions [14]. An example is illustrated in Figure 2.6(c).

e Global view: differently from the aforementioned approaches, so-
lutions such as TinyDB [17]| and Pleiades [15] allow programmers to
look at communication from a global viewpoint, without necessarily
taking the perspective of a single node sending data to a specific set
of destinations.

Generally, solutions based on physical neighborhood or group based com-
munication do not radically differ from traditional distributed computing.
Indeed, communication is still played from the perspective of an individual
node willing to exchange data with some remote hosts. In a sense, this
places the programmer inside the network. Approaches based on global
views, instead, provide a node-independent standpoint. Programmers play
the role of an external entity, describing communication from outside the
network.

As paradigmatic examples of the above classification, here we illustrate
the nesC [28] language and Active Messages [103] for communication in the
physical neighborhood, the Abstract Regions [14] programming model for

24

2.5. Characterizing the Language

interface AMSend {
command error_t send(am_addr_t addr, message_t* msg, uint8_t len);
command error_t cancel(message_t* msg);
event void sendDone(message_t* msg, error_t error);
command uint8_t maxPayloadLength();
command void* getPayload(message_t* msg, uint8_t len);

}

interface Receive {
event message_t* receive(message_t* msg,void* payload,uint8_t len);

}

Figure 2.7.: nesC Active Message interfaces for sending and receiving mes-
sages.

group-based communication, and the Pleiades [15] system for communica-
tion based on global views.

Physical neighborhood communication: nesC

Overview. nesC is an event-driven programming language for WSNs de-
rived from C. Its main goal is to provide basic programming abstractions
for the TinyOS [42] operating system. Applications in nesC are built by
interconnecting components that interact by providing or using interfaces.
An interface lists one or more functions, tagged as commands or events.
Commands are used to execute actions, while events are used to collect the
results asynchronously. A component providing an interface implements
the commands it declares, whereas the one using the interface implements
its events. Therefore, data flows both ways between components connected
through the same interface.

Although higher-level abstractions have been developed atop nesC [104],
the communication mechanisms are mainly based on Active Messages: a
scheme whereby messages are tagged with an identifier that specifies what
component must process a given message upon reception. Components
leverage off Active Messages mainly using two simple interfaces, shown in
Figure 2.7. Additional interfaces are also provided to deal directly with the
radio hardware, e.g., by setting the transmission power level on a per-packet
basis.

Example. A fragment of code implementing a component that queries the
sensing device and sends the reading in broadcast is reported in Figure 2.8.

25

2. Background

module Sampler {
uses interface Boot;
uses interface TemperatureSensor;
uses interface AMSend;

¥

implementation {

bool transmitLock;
message_t msgBuffer;

event void Boot.booted {
call TemperatureSensor.getData();
}

event void TemperatureSensor.dataReady(uintl6_t v){

uint16_t* msg_payload = (uint16_t*) msgBuffer->payload;
*msg_payload = v;
if (!transmitLock) {
transmitLock = TRUE;
if (!call AMSend.send (TOS_BCAST_ADDR, &msgBuffer,
sizeof (message_t))) {
transmitLock = FALSE;

}
}
}
event void AMSend.sendDone(message_t* msg, result_t success) {
if (transmitLock && msg == msgBuffer) {
transmitlLock = FALSE;
} else {
// Error...
}
}

Figure 2.8.: Sense and broadcast component in nesC.

The booted() function in the Boot interface is called at system start-up.
Inside it, we call the getData() command in the TemperatureSensor in-
terface, whose providing component is directly bound to the sensing device.
This is a typical split-phase operation [28]: the command returns immedi-
ately, and the caller component is asynchronously notified when the device
completes its operation, in our case using the dataReady event. In the cor-
responding event handler, we pack the sensed value in a message and call
the AMSend.send command. To make sure we do not try to send another
message while the transmission is in progress, we set the transmitLock
flag. This is unset inside AMSend.sendDone, that is automatically called
when the ongoing transmission completes. The level of abstraction pro-

26

2.5. Characterizing the Language

vided is therefore quite low, as the programmer is forced to deal directly
with radio-related aspects such as scheduling multiple transmissions over
time.

Implementation highlights. The mechanisms implementing the Active
Message interfaces are normally bound the specific MAC-level mechanisms
employed, e.g., [67], or directly to radio hardware. As a result, part of
them is often platform-specific. Generally, the implementations provide
(unreliable) 1-hop unicast or broadcast transmissions. Specific MAC layers,
nonetheless, can offer some form of reliability when coupled with specific
radio chips [68,105]. Moreover, there is no support for packet buffering.
Instead, the application provides its own storage for sending and receiving
messages.

Group based communication: Abstract Regions

Overview. Abstract Regions is a set of general-purpose communication
primitives providing addressing, data sharing, and aggregation among a
given subset of nodes. A region defines a neighborhood relationship be-
tween a specific node and other nodes in the system. For instance, a re-
gion can be defined to include all nodes within a given number of hops or
within distance d. Data sharing is accomplished using a tuple space-like
paradigm, while dedicated constructs are provided to aggregate informa-
tion stored at different nodes in a region. Although Abstract Regions are
built atop nesC/TinyOS, they also employ a lightweight thread-like con-
currency model called Fibers to provide blocking operations. The Abstract
Regions API is depicted in Figure 2.9. By their nature, Abstract Regions
target applications exhibiting some form of spatial locality, e.g., tracking
moving objects, or identifying the contours of physical regions [106].

Example. To demonstrate the use of Abstract Regions, we illustrate how
to write an object tracking application using the API in Figure 2.9. Similar
applications involve taking periodic measures from relevant sensor devices
(e.g., magnetometers), and compare them against a threshold. Nodes sens-
ing a value above the threshold coordinate to elect a leader, e.g., the node
with the highest reading. The leader computes the centroid of all readings,
and transmits the result back to the user.

Figure 2.10 shows the Abstract Regions code for object tracking. All dis-
tributed processing required is performed through the region API. Initially,
every node sets up the region to include the 8 geographically closest nodes

27

2. Background

// Discover region

result_t Region.formRegion(<region specific args>, int timeout);
// Wait for region discovery

result_t Region.sync(int timeout);

// Set and get shared variables

result_t SharedVar.put(sv_key_t key, sv_value_t val);

result_t SharedVar.get(sv_key_t key, addr_t node,
sv_value_t *val, int timeout);

// Wait for shared variable gets

result_t SharedVar.sync(int timeout);

// Reduce ’value’ to ’result’ with given ’operator’

// ’yield’ returns the percentage of nodes responding

result_t Reduce.reduceToOne(op_t operator, sv_key_t value,
sv_key_t result, float *yield,
int timeout);

// Reduce and set result in all nodes

result_t Reduce.reduceToOne(op_t operator, sv_key_t value,
sv_key_t result, float *yield,
int timeout);

// Wait for reductions to complete

result_t Reduce.sync(int timeout);

Figure 2.9.: Abstract Regions API (adapted from [14]).

(k_nearest_region.create()). In the main loop, each node periodically
queries the sensor, and makes the output available to other nodes in the
regions, along with its physical location. This is achieved by leveraging off
different shared variables, and using region.putvar() to set their value. If
the sensor reading is above the threshold, every node first determines the
highest reading in the region by using region.reduce() with operation
MAX. If the local node is indeed the one with the highest reading, a series
of sum-reductions is performed over the shared variable in the region to
compute the centroid, and the result is sent to the base station.

Implementation highlights. Abstract Regions leverages off nesC to pro-
duce executable code. As for implementation of the mechanisms behind the
Abstract Regions API, these depend on the particular region employed. For
instance, the region used in the example is implemented using a form of
geographically-limited flooding. Differently, a planar-mesh region used in a
contour-finding application can be implemented based on Yao graphs [107].
Generally, different regions require different implementations.

28

2.5. Characterizing the Language

location = get_location();

// Region setup to include 8 nearest neighbors
region = k_nearest_region.create(8);

while (true) {
reading = get_sensor_reading();

// Store data as shared variables
region.putvar(reading_key, reading);
region.putvar(reg_x_key, reading * location.x);
region.putvar(reg_y_key, reading * location.y);

if (reading > threshold) {
// Retrieve the id of the node with max reading
max_id = region.reduce(0OP_MAXID, reading_key);

// If this node is leader
if (max_id == my_id) {
// Compute centroid
sum = region.reduce(0P_SUM, reading_key);
sum_x = region.reduce(0P_SUM, reg_x_key);
sum_y = region.reduce(0P_SUM, reg_y_key);
centroid.x = sum_x / sum;
centroid.y = sum_y / sum;
send_to_basestation(centroid);
T
}
sleep(periodic_delay);
}

Figure 2.10.: Object tracking in Abstract Regions (adapted from [14]).

Global view communication: Pleiades

Overview. Pleiades is a programming language providing a global view
on the entire sensor network. To achieve this; Pleiades extends the C syn-
tax with constructs for addressing the nodes in a network and accessing
the local state of individual nodes. A Pleiades program normally features
a sequential thread of control, i.e., execution unfolds with only one node
in the system executing any Pleaides instruction at any point in time.
Nonetheless, a dedicated language construct called cfor is provided to
introduce concurrent executions. Using cfors, multiple nodes may be ex-
ecuting different Pleaides instructions simultaneously. If deemed required,
the underlying run-time can guarantee serializable execution of cfors.

Example. Figure 2.11 depicts an example Pleiades program to imple-

29

2. Background

#include "pleiades.h"

boolean nodelocal isFree=TRUE;
nodeset nodelocal neighbors;
node nodelocal neighborIter;

void reserve (pos dst) {

boolean reserved = FALSE;

node nodelter, reservedNode = NULL;

node n=closest_node(dst);

nodeset loose nToExaming = add_node(n, empty_nodeset());
nodeset loose nExamined = empty_nodeset ();

if (isfree@n) {

reserved = TREE; reservedNode = n;
isfree@n = FALSE;
return;

}

while (!'reserved && 'empty(nToExamine)) {
cfor (nodelter=get_first(nToExamine);
nodelter !'=NULL;
nodelter = get_next(nToExamine)) {
neighbors@nodelter=get:neighbors(nodelter);
for (neighborIter@nodelter=get_first(enighors@nodelter);
neighborIter@nodelter |=NULL;
neighborIter@nodelter=get_next(neighbors@nodelter)) {
if (!member (neighborIter@nodelter,nExamined))
add_node(neighborIter@nodelter,nToExamine);
¥
if (isfree@nodelter) {
if (!'reserved) {
reserved=TRUE; reservedNode=nodelter;
isfree@nodelter=FALSE;
break;
}
}
remove_node (nodelter,nToExamine);
add_node (nodelter,nExamined);

Figure 2.11.: A street-parking application in Pleiades (adapted from [15]).

ment a street-parking application. Sensors are deployed in parking spots
to monitor whether they are currently occupied. The application goal is to
identify the node with a free spot closest to the driver’s destination. This is
achieved by iterating among the nodes in the network in search of the first
device installed in an available spot, starting from the node closest to the
desired destination. The program makes use of most of Pleiades language

30

2.5. Characterizing the Language

features:

e The node data type provides an abstraction of a single WSN device,
whereas nodeset gives programmers a way to iterate in a collec-
tion of nodes. Various helper functions are provided to obtain node
collections. For instance, get_network_nodes() returns a nodeset
containing the entire set of currently available nodes. Differently,
get_neighbors(n) returns n’s one-hop neighbors.

e Variables are normally shared across all nodes in the system. When
the processing requires nodes to have private variables, these are de-
clared using the nodelocal attribute, e.g., isfree in Figure 2.11.
Node-local variables are accessed using var@e, where var is anodelocal
variable and e is a node.

e The cfor construct allows for concurrent execution of the loop body
on all nodes in a nodeset. If needed, the Pleiades run-time can ensure
that the effect of a cfor corresponds to some sequential execution of
the loop. Here, this is required to make sure that only one free node
is reserved for the car arriving. Differently, access to loose variables
is not synchronized inside cfor loops.

Implementation highlights. The Pleiades compiler performs data-flow
analysis to partition the program in a set of independent execution units
called nodeculs. Each nodecut is designed to run on a single node. The
compiler assigns nodecuts to single nodes based on the expected communi-
cation cost for accessing variables at remote nodes inside a given nodecut.
When the execution flow transitions from one nodecut to the following,
the control flow is migrated across nodes. A dedicated locking mechanism
is provided to implement serializable execution of cfors. A coordinator
is elected among the nodes possibly involved, which manages the locks
on shared variables depending on the current state of execution. As this
may lead to deadlocks, e.g., in the case of nested cfors, the coordinator
also monitors the execution state of other nodes involved to determine the
presence of deadlocks.

2.5.2. Computation Perspective

Computation constitutes an orthogonal dimension w.r.t. communication.
Nonetheless, the provision of expressive language constructs to describe the

31

2. Background

processing required is key to expressing the application behavior. Further-
more, the interplay between communication and computation in WSNs
plays an even more important role, e.g., in minimizing communication
thanks to local aggregation and fusion of sensed values.

Classification

Similarly to communication, existing WSN programming solutions give de-
velopers different ways to express the application processing:

e Node centric: solutions such as nesC [28] and ATaG [108] revolve
around constructs whose execution is guaranteed to alter the state of
individual nodes.

e Group centric: differently from node-centric solutions, approaches
like Regiment [16] and Pieces [109] allow the application processing
to alter the state of some subset of nodes at once.

e System centric: group-centric approaches are brought to an ex-
treme when the effects of a single instruction span the whole network,
e.g., as in TinyDB [17].

To make this illustration more concrete, in the following we describe the
ATaG [108] framework as example of node-centric approaches, the Reg-
iment [16, 110] system for group-centric processing, and TinyDB [17] as
example of a system-centric solution.

Node-centric computation: Abstract Task Graph (ATaG)

Overview. The Abstract Task Graph (ATaG) is a programming frame-
work providing a mixed declarative-imperative approach. The notions of
abstract task and abstract data item are at the core of ATaG’s programming
model. A task is a logical entity encapsulating the processing of one or more
data items, which represent the information. Different copies of the same
task run on different nodes, yet they are independent of each other. The
flow of information between tasks is defined in terms of their input/output
relations. To achieve this, abstract channels are used to connect each data
item to the tasks that produce or consume it.

The code within a task is written using an imperative language. To
express data exchange between tasks, programmers are provided with the

32

2.5. Characterizing the Language

‘ [nodes-per-instance: 1] ‘ ‘ [area-per-instance:10 sq. m] ,‘
‘ [periodic:10] _ ‘ ‘ [anydata] /"
~

~

Firing Rule

Sampler Cluster-Head

~

Abstract Instantiation
Task domain Rule
Channel , -
Annotations Abstract
Channel
Abstract —+4 Temperature
Data

Figure 2.12.: A sample ATaG program.

abstraction of a shared data pool, where each task can output data, or be
notified when some data of interest is available. Dedicated APIs are pro-
vided for this. To support the former aspect, a single putData(Dataltem)
operation is made available. The second aspect is handled by providing the
programmer with an automatically generated template for each task, that
lists an empty handleDataIltem() function for each incoming channel. The
programumer fills these functions implementing the processing associated to
each input data item.

Example. Figure 2.12 illustrates a sample ATaG program specifying a
cluster-based, data gathering application. Sensors within a cluster take pe-
riodic temperature readings, which are then collected by the corresponding
cluster-head. The former behavior is encoded in the Sampler task, while
the latter is represented by Cluster-Head. The Temperature data item is
connected to both tasks using a channel originating from Sampler, and a
channel directed to Cluster-Head.

Tasks are annotated with firing and instantiation rules. The former
specify when the processing in a task must be triggered. In our example,
the Sampler task is triggered every 10 seconds according to the periodic
rule. The Cluster-Head fires whenever at least one data item is available
on any of its incoming channels, in accordance with its any-data firing
rule. Tasks run on the individual nodes according to the instantiation rules
specified by programmers. The nodes-per-instance:1 construct requires
the task to be instantiated once on every node. On the other hand, the
area-per-instance construct used for Cluster-Head entails partitioning
the geographical space according to the given parameter, and deploying

33

2. Background

one instance of the task per partition.

Abstract channels are annotated to express the interest of a task in a
data item. In our example, the Sampler task generates data items of type
Temperature kept local to the node where they have been generated. The
Cluster-Head uses the domain annotation to gather data from the tempera-
ture sensors in its cluster, which binds to the system partitioning obtained
by area-per-instance and connects tasks running in the same partition.

Implementation highlights. The ATaG compiler takes as input the
description of tasks and channels, examines the corresponding flow of data,
and decides on some allocation of tasks to nodes depending on information
on the target environment, e.g., the location of nodes. The output of the
compiler targets a dedicated node-centric run-time layer, designed to be
highly-modular [111]. Different concerns are therefore isolated in different
modules. Some of the mechanisms are, however, not provided beforehand.
For instance, the programmer must provide the most appropriate routing
scheme depending on the specific application and target environment.

Group-centric computation: Regiment

Overview. Regiment is a functional language geared towards applications
exhibiting spatial locality. In Regiment, the programmer manipulates sets
of data streams called signals. These may represent readings on individual
nodes, the outcome of a node’s local computation, or an aggregate value
obtained by processing multiple signals. In addition, Regiment features a
notion of region as a set of spatially correlated signals, e.g., the set of sensor
readings generated by nodes in a given geographic area. The processing is
expressed by applying programmer-provided functions to the data streams
in a region. In addition, a Node construct is provided to access the state of
individual devices, e.g., to gather the local node identifier or to query the
sensing device.

Example. Consider a system for plume monitoring. Sensors are deployed
over a large geographical area for early detection of plumes. Key to the
correctness of the application is avoiding false positives due to noisy read-
ings from individual sensors. To meet this requirement, we must make sure
the sum of the readings gathered by nodes around the phenomena exceeds
a pre-specified threshold.

Figure 2.13 depicts an example Regiment program to implement the
above processing. The programmer first defines a set of functions used in

34

2.5. Characterizing the Language

fun abovethreshold(t) { t > CHEM_THRESHOLD }
fun read(n) { sense("concentration", n) }
fun sum(r) { rfold((+), 0, r) }

readings = rmap(read, world);
detects = rfilter(abovethreshold, readings);

hoods = rmap(fun(t, nd){ khood(1l,nd) }, detects);
sums = rmap (sum, hoods);
base <- rfilter(fun(t){ t > CLUSTER_THRESHOLD }, sums);

Figure 2.13.: Plume monitoring using Regiment (adapted from [16]).

the rest of the program, e.g., to filter sensed data (abovethreshold()), to
gather the reading from the sensor (read())), or to sum all values sensed
in a region (sum()). In the latter, rfold is used to aggregate all values in
region r into a single signal, using the + operator and O as initial value.
Next, the programmer must identify a region of nodes that surpass their
local thresholds. This is accomplished by first gathering the local readings
at all nodes in the system, and then performing the necessary filtering.
The former operation is expressed as the application of read() to all the
nodes in the system, using rmap. This takes as input a function and a
region, and applies the function to all values in the region. The world
region in the example represents all nodes in the system. The filtering
part is accomplished using rfilter, which takes a boolean function and a
region as inputs, and returns a region including values for which the input
function yields true.

In the example, hoods is instead a nested region. It consists of the set
of nodes in the one-hop neighborhood of every node in detected. This is
obtained by applying a region formation function (khood()) to all nodes in
detects. Regions can be formed similarly to Abstract Regions, described
in Section 2.5.1. The remaining instructions are used to sum the readings
in the nested regions created earlier, and to send a notification to the base
station in case any of these sums turns out to be above the safety threshold.

Implementation highlights. The Regiment compiler leverages off multi-
ple steps of compilation to generate the final, node-centric running code. A
Regiment program is first translated into an intermediate language called
RQuery. Subsequently, the region streams are translated into local streams.
The output of the compiler is event-driven code written in an intermedi-
ate language called token machine language [112]. This language does not

35

2. Background

SELECT AVG(light), AVG(temp), location
FROM sensors AS s
SAMPLE PERIOD 2 s FOR 30 s

Figure 2.14.: Monitoring bird nests using TinyDB (adapted from [17]).

assume any thread-like concurrency model. It is therefore suited for im-
plementation on top of event-driven operating systems for WSNs, such as
TinyOS. As for communication, nodes in a given region exchange data us-
ing spanning trees. These are created and maintained by the Regiment
support layer on every node.

System-centric computation: TinyDB

Overview. TinyDB is a query processing system for WSNs whose focus is
to optimize energy consumption by controlling where, when, and how often
data is sampled from the sensing devices. In TinyDB the user submits
queries at the base station. These are parsed, optimized depending on
the data requested, and injected into the network. Upon reception of a
query, a node process the corresponding requests, gathers some reading if
needed, and funnels the results to the base station. The language used
to express queries is a dialect of SQL. The data model revolves around a
single sensors table, that logically contains one row per node per instant
in time, and one column per possible data type the node can produce
(e.g., temperature or light). The data in this table is materialized only
on request, unless materialization points are created in the network to
proactively gather the data.

Example. Consider an application to monitor the presence of birds in
nests. The user would like to gather the average light and temperature
readings close to the nest. In addition, she wants to do so once every 2
seconds for 30 seconds total.

The above processing can be encoded in a TinyDB query as illustrated in
Figure 2.14. The SELECT, FROM and WHERE clauses have the same semantics
as in standard SQL. The location attribute is assumed to be obtained
from some external localization mechanism. The SAMPLE PERIOD construct
is used instead for specifying the rate and lifetime of the query.

Implementation highlights. When the query is injected from the base-

36

2.5. Characterizing the Language

station, a routing tree is built spanning all the nodes in the network. The
routes are then decorated with meta-data to provide information on the
type and nature of data sensed by nodes in a specific portion of the tree.
While executing the query at each node, the TinyDB engine performs sev-
eral optimizations to reduce the amount of data flowing upwards towards
the base-station. These mechanisms result in a query-specific execution
plan. For instance, data sampling and transmissions are interleaved so
to reduce the overall power consumption without affecting the quality of
data reported. A dedicated transmission scheme is also employed to sched-
ule the transmissions at nodes at different levels of the tree. The goal is
to make data flow upward starting from the leaves, so that intermediate
nodes can aggregate information before sending their own readings to the
base station.

2.5.3. Programming Idioms

The example solutions described so far already highlight the variety of
programming idioms offered to sensor network developers, ranging from
fully declarative to purely imperative approaches. As the nature of the
constructs provided partially dictates the learning curve for new program-
mers, the specific idiom employed bears some influences on the acceptance
of the language itself.

Classification

Looking at the current state of the art, four major categories can be iden-
tified:

e Imperative approaches: by far the most widespread, this class
of programming solutions leverages off purely imperative languages
with sequential or event-driven semantics. Examples of the former
class are Abstract Regions [14] and Pleaides |15|, whereas a solution
adopting the latter is nesC [28].

e Declarative approaches: purely declarative solutions are usually
very concise in describing the system behavior, yet they are often
intended for very specific application domains. Existing solutions in
this category follow either database-style, or rule-oriented approaches.
Representative example of the former class are TinyDB [17] and Cou-
gar [113], whereas FACTS [101] is an example of rule-based solution.

37

2. Background

e Functional approaches: approaches like Regiment [16] as well as
snBench [114] are built upon functional languages. Developers ex-
press the application processing by applying one or more functions
to data sensed in some part of the system. Similarly to declarative
approaches, leveraging off this programming idiom often yields very
concise implementations.

e Hybrid approaches: combining more than a single idiom to address
different aspects can help in achieving separation of concerns, as in
ATaG [108].

To better illustrate each of the above classes, here we resort to exam-
ples described earlier. Specifically, the Pleiades [15] system, described in
Section 2.5.1, provides a natural illustration for imperative approaches fea-
turing sequential semantics. Indeed, Pleiades programs closely resemble
standard C code. Furthermore, serializable executions of cfors guarantees
sequential semantics across different nodes. The Regiment system [16,110],
illustrated in Section 2.5.2, is an example of functional language. Applica-
tions needing to process sensed data through multiple stages are naturally
expressed this way. The TinyDB [17] query processor we described in Sec-
tion 2.5.2 features a fully declarative approach. By leveraging off a SQL-like
interface, programmers are able specify constraints on the data of interest
without specifying the exact procedure to gather the data themselves. Fi-
nally, the ATaG framework illustrated in [108], features a hybrid approach.
Communication among nodes is described in a declarative manner, whereas
computation is expressed using an imperative language.

2.5.4. Distribution Models

Existing solutions provide different abstractions to deal with the data ex-
changed among nodes. Depending on the requirements posed by the ap-
plication at hand, specific approaches may be more suited than others. At
an extreme, specific solutions may not be applicable to a given application
domain.

Classification

Four approaches emerge in the current WSN literature:

e Database oriented: systems like TinyDB [17] tend to regard the

38

2.5. Characterizing the Language

sensor network as a relational database, and give programmers con-
structs to pose SQL-like queries.

e Data sharing: approaches such as Kairos [32] and Abstract Re-
gions [14] are based on sharing data in the form of remotely accessi-
ble variables or tuples. Nodes can read or write data in the shared
memory space using dedicated constructs.

e Mobile code: code migration is exploited in SensorWare [115,116]
and Agilla [18]. However, a small fraction of existing system provides
strong mobility [117]: a mechanism whereby the code migrates along
with the current status of execution, including the program counter.
Often, a data sharing mechanism is employed under the covers for
coordination.

e Message passing: solutions such as nesC [28] and DSWare [19]
are based on exchanging messages among the nodes. Messages may
represent raw sensed data or higher-level, logical events obtained from
various stages of processing.

A natural illustration of database-oriented approaches is the TinyDB sys-
tem, described in Section 2.5.2. In TinyDB, sensed data are made available
as entries of a sensors table. The user accesses the table using SQL-like
queries. Abstract Regions, illustrated in Section 2.5.1, is an example of
data-sharing model. Programmers use dedicated constructs to export local
data as shared variables, and to read other nodes’ data by addressing the
information of interest based on unique keys. To describe the remaining
classes of distribution models, here we illustrate Agilla [18] as an exam-
ple of mobile code system, and DSWare [19] as representative of message
passing approaches.

Mobile code: Agilla

Overview. Agilla is a middleware system for WSNs adopting a mobile
code paradigm. Programs are composed of one or more software agents
able to migrate across nodes. Differently from alternative mobile code
systems for WSNs, Agilla provides strong mobility. In this sense, an Ag-
illa agent is similar to a virtual machine with its own instruction set and
dedicated data/instruction memory. Coordination among agents is accom-
plished using a Linda-like tuple space [29]. Agents can insert data in a

39

2. Background

BEGIN pushn fir
pusht LOCATION

pushc 2

pushc FIRE

regrxn // Register fire alert reaction

wait // Wait for reaction to fire
FIRE pop

sclone // Strong clone to the node detecting fire
// Fire tracking code

Figure 2.15.: Fire tracking with Agilla (adapted from [18]).

local data pool to be read by different agents at later times, using a pat-
tern matching mechanism to identify the data of interest. The use of tuple
spaces allows to decouple the application logic residing in the agents from
their coordination and communication. They also provide a way for agents
to discover the surrounding context.

Example. Consider a fire monitoring application in a forest. Lightweight
fire-detection agents are deployed to monitor the temperature in various
regions. When a rise in temperature is detected, these spawn fire-tracking
agents that swarm around to collect information about the exact location
of the fire.

To implement a similar application, Agilla provides APIs to interact with
the tuple space at each node, and to clone agents. As for the former aspect,
Agilla provides operations to insert, read, and remove tuples. In addition,
it gives programmers the ability to add reactions to its tuple space. These
express the interest of an agent in a specific piece of data. When a tu-
ple matching the reaction is inserted in the tuple space, the agent that
previously installed the reaction is asynchronously notified. Operations to
clone agents are named smove, wmove, sclone, and wclone. The w and s
in front of the operation name specifies whether strong or weak mobility is
required. Weak operations only migrate code, and the execution resumes
from the beginning. Moving entails migrating state and code, and resum-
ing execution on a new different node. Cloning instead resumes execution
on both the old and new node.

Figure 2.15 shows how a fire tracking agent is notified about the presence
of a rise in temperature. When such an agent is injected into a node, it
registers a reaction for FireAlert tuples and waits for it to fire. This occurs
when a fire detection agent outputs the corresponding tuple in the tuple
space. Upon triggering of the reaction, the agent immediately clones itself

40

2.5. Characterizing the Language

INSERT INTO EVENT_LIST

(EVENT_ID, RANGE_TYPE, DETECTING_RANGE,
SUBEVENT_SET, REGISTRANT_SET, REPORT_DEADLINE,
DETECTION_DURATION [, SPATIAL_RESOLUTION 1)

Figure 2.16.: Subscription format in DSWare (adapted from [19]).

to a different node node. Once there, it will continue to clone to gather
information in regions around the phenomena.

Implementation highlights. Agilla is implemented on top of TinyOS.
The instruction set and the mechanisms enabling on-the-fly execution of
code are based on Maté. On every node, an agent manager maintains
each agent’s context, allocates memory when the agent arrives, and deal-
locates the same memory space when the agent leaves or dies. The latter
aspects are dealt with using a lightweight implementation of dynamic mem-
ory, as this functionality is not originally available in TinyOS. The context
manager determines the node location and maintains the list of reachable
neighbors, whereas the tuple space manager implements the operations to
read /write from/to the tuple space, and registers/triggers reactions when
required. Most importantly, migrating agents requires reliable transmis-
sions. This is achieved using a hop-by-hop retransmission scheme whereby
messages not yet acknowledged are re-sent upon expiration of a timeout.

Message passing: DSWare

Overview. DSWare is a message passing middleware system whose fo-
cus is the real-time detection of sporadic events. It employs a form of
Publish/Subscribe [118] in which users specify subscriptions based on the
characteristics of the phenomena of interest. A higher-level notion of event
is provided that programmers can use to infer the occurrence of specific
phenomena from the raw sensor observations. For instance, an event can
be defined as the composition of two physical sub-events occurring within
a specific time interval one from the other. Confidence levels can also be
defined to specify the relationships among sub-events with other factors
that potentially affect the decision on the higher-level observation, e.g., the
relative importance of sub-events, or their fitness to a known pattern.
Subscriptions are expressed using a dialect of SQL from the user base-
station, according to the structure in Figure 2.16. Besides the event iden-

41

2. Background

tifier, RANGE_TYPE and DETECTING_RANGE specify the group of sensors re-
sponsible for detecting the event. The corresponding notification is re-
ported before the REPORT_DEADLINE to every node in the REGISTRANT_SET.
DETECTION_DURATION instead specifies the total duration of this subscrip-
tion, whereas SPATTAL_RESOLUTION determines the geographical granular-
ity for the event’s detection. Finally, the SUBEVENT_SET specifies a group
of sub-events that must occur for this event to be observed, their timing
constraints and confidence levels.

Example. Consider an application to detect explosions in a given geo-
graphical area. Temperature, light, and acoustic sensors are deployed to
accomplish the task. We can therefore define a sub-event occurring when
the temperature is higher than a safety threshold, a light sub-event corre-
sponding to a sharp change in the light intensity, and an acoustic sub-event
representing the occurrence of a sound whose signature bears similarities
with those known for explosions. The higher-level event corresponding
to an explosion is defined as the combination of the aforementioned sub-
events when occurring within a specified time interval and within a given
geographical region.

Implementation highlights. Subscriptions are propagated in the net-
work until they reach the area of interest. In doing so, a routing tree is built
connecting the base-station issuing the subscription to all sensor nodes in
charge of observing the phenomena at hand. Two optimizations are per-
formed in case multiple nodes subscribe for the same information. First, in
case the subscriptions are for the same data yet they have different rates,
DSWare places copies of the relevant information at intermediate nodes
to limit the net amount of information flowing in the network. Second,
DSWare tries to merge the paths leading to different base-stations to min-
imize redundant transmissions [119]. To guarantee real-time delivery of
event notifications, an earliest deadline first scheduling mechanism is em-
ployed. An alternative, energy-aware scheduling technique is also provided,
although it may occasionally fail in meeting the requested deadlines.

2.6. Architectural Aspects

In this section, we describe the relationships among the programming so-
lutions themselves and with the rest of the conceptual blocks we identified
in Section 2.2.

42

2.6. Architectural Aspects

2.6.1. Composability

Here we look at whether a given programming solution can work alongside
other programming approaches. Indeed, despite most of the solutions in the
current state of the art cannot be combined together, researchers recently
begun observing that having smaller, composable building-blocks could be
a way to tackle the complexity in developing WSN applications [120].

Classification

Based on the above observation, it is possible to make a distinction along
the following lines:

e Holistic approaches like Kairos [32] and snBench [114] are designed
as general-purpose solutions to enable the development of a wide
range of applications. By the same token, they are intended to be
used as the only programming platform for a given application sce-
nario, and are therefore unable to work in combination with other
approaches.

e Building-blocks such as Hood [21] and Generic Role Assignment [20],
instead, are conceived to solve very specific problems, and to be used
in conjunction with additional programming solutions to tackle dif-
ferent issues.

The majority of the existing WSN programming platforms fall in the
former class. For instance, the TinyDB [17] system, illustrated in Sec-
tion 2.5.2, covers a large spectrum of applications, yet it does not leave any
room for being used in collaboration with other programming abstractions.
Instead, as example of building-block solution, in the following we describe
Generic Role Assignment [20,121].

Building-block: Generic Role Assignment (GRA)

Overview. GRA aims at tackling the specific problem of self-configuring
WSN devices depending on programmer-specified requirements, while leav-
ing concerns like data collection and dissemination to other, complemen-
tary solutions. To address the configuration issue, the authors present a
role specification language and distributed algorithms to implement the
required role assignments. A role specification is a list of role-rule pairs.
For each possible role, the corresponding rule describes the conditions for

43

2. Background

ON :: {
temp-sensor == true &&
battery >= threshold &&
count (2 hops) {
role == 0N &&
dist (super.pos, pos) <= sensing-range
}<=171%
OFF :: else

Figure 2.17.: Role specification for the coverage problem (adapted
from [20]).

this role to be assigned to the local node. Rules are expressed as boolean
predicates that either refer to the properties of the node considered (e.g.,
the remaining energy or its geographical location), or to the properties of
other nodes within a given number of hops (e.g., how many temperature
sensors are reachable within 3 hops).

Example. Here we describe how GRA can be used to solve the coverage
problem. A certain geographical area is said to be covered if every physical
point in this area lies within the observation range of at least one sensor
node. If nodes are densely deployed, redundant nodes can be turned off to
save energy. However, when active nodes run out of power, we must switch
the redundant nodes on again.

The above application essentially requires a proper assignment of the
roles ON and OFF to WSN nodes. Figure 2.17 shows the corresponding
role specification. For a given node to take the ON role, it must have a
temperature sensor, a minimum battery level, and at most another node
with role ON must be found within the node’s sensing range. The latter
condition is specified using the count operator. This takes as input a
number of hops and the returns the number of nodes within such range
matching the specification in curly braces.

Implementation highlights. All nodes in the network are provided with
all role specifications. Based on those, they evaluate how many hops they
need to push their local information so to guarantee other nodes are able
to evaluate their rules. To account for changing node properties and net-
work dynamics, the role specifications are periodically re-evaluated. In the
former case, a node re-evaluates the specification only if the change may
affect its or some other node’s role. As for the latter, distributed protocols
are provided to recognize when the nodes join or fail.

44

2.6. Architectural Aspects

2.6.2. Reach

Differently from the previous dimension, in this section we look at how
deep a programming abstraction can serve into our reference architecture.
This usually occurs opposed to an increase in the level of abstraction. For
instance, solutions presenting lower levels of abstraction often provide sup-
port for implementing system services besides full-fledged applications.

Classification

The above observation suggests the following classification:

e Application-level solutions are those that can be applied only at
the level of end-user applications, i.e., the topmost layer in Figure 2.1.
Examples are Pleiades [15] and Cougar [113].

e Vertical solutions, instead, are able to express the processing re-
quired at various levels of our reference architecture, which we illus-
trated in Section 2.2. Examples in this category are nesC [28| and
Hood [21]. Indeed, these approaches can be used, for instance, to
implement localization mechanisms and MAC protocols besides end-
user applications.

Similarly to the previous dimension, the majority of research efforts fall
in the first category. For instance, the Pleiades system, described in Sec-
tion 2.5.1, does not easily allow the specification of system services due to
the high level of abstraction provided. Indeed, the mechanisms germane
to lower levels of the reference architecture, e.g., localization mechanisms,
are more easily expressed using physical neighborhood communication and
node-centric computation. In fact, these approaches implicitly convey to
the programmer the notion of geographical co-location of nodes, while giv-
ing easy access to low-level facilities in the node hardware. In this category,
a notable example is Hood [21], described next.

Vertical solution: Hood
Overview. Hood enables a notion of neighborhood as a programming

primitive in nesC. Constructs are provided to identify a subset of a node’s
physical neighbors based on application criteria, and to share state with

45

2. Background

generate attribute LightAttribute from int;

generate neighborhood LightHood {

wire filter LightThrehshold;

set max_neighbors to 5;

reflection LightRefl from LightAttribute;
¥

Figure 2.18.: Reading light values using Hood (adapted from [21]).

them. A node exports information in form of attributes, which are de-
fined by the programmer at compile-time. Membership in a programmer-
specified neighborhood is determined using filters. These are boolean func-
tions that examine a node’s exported attributes and determine, based on
their values, whether the remote node is to become part of the considered
subset. If so, a mirror for that particular neighbor is created on the local
node. The mirror contains both reflections, i.e., local copies of the neigh-
bor’s data that can be used to access the shared data, and scribbles, which
are local annotations about that neighbor. As different functionality may
require different criteria to establish membership in a neighborhood, Hood
allows for multiple, independent neighborhoods. The complexity of node
discovery and data sharing is automatically dealt with by the underlying
Hood run-time. Notably, the neighborhood concept in Hood is applicable
to a range of mechanisms, from target tracking applications to localization
mechanisms and MAC protocols [21].

Example. Consider a simple application where nodes monitor light read-
ings. Figure 2.18 depicts a fragment of Hood code to define a neighborhood
including light sensors whose current reading is above a specified threshold.

The generate construct is used either to define an attribute, or to de-
clare a new neighborhood. In the former case, our example simply creates
a LightAttribute out of an integer value. The LightHood neighborhood is
instead created by specifying what filter is to be used for establishing mem-
bership in this neighborhood (LightThreshold), the maximum number of
members of this neighborhood (5), and the specific attribute mirrored on
the local node. The former is supposed to be provided as a nesC module
implementing a standard interface.

A simple API is given to programmers to interact with the neighborhood
in the application code. For instance, nesC commands are provided to
iterate through the current members of a given neighborhood, and access

46

2.6. Architectural Aspects

their local mirrors. Differently, nesC events are defined to fire when the
value of a locally mirrored attribute changes.

Implementation highlights. The Hood constructs to define attributes
and neighborhoods are given as input to a dedicated pre-processor that
outputs plain nesC code. The underlying distributed implementation is
simply based on periodic 1-hop broadcasting and filtering on the receiver
side. This also servers for neighbor discovery and maintenance. In case the
application wants to control the spreading of local information directly, e.g.,
because of a sudden increase in a sensed value, it can require broadcasting
the local attributes on demand.

2.6.3. Stack Penetration

Although a given programming solution may not lend itself to the descrip-
tion of mechanisms below the application level, some of the existing solu-
tions provide hooks into the lowest layers to give applications the ability
to tune the system behavior depending on changing requirements.

Classification

Taking the above observation into account, it is worth making the following
distinction:

e Solutions such as Cougar [113| and Kairos [122] completely hide all
low-level concerns related to distribution. By doing so, they relieve
programmers from the burden of handling gory details deep in the the
stack. The same solutions, however, may miss optimizations obtained
by letting the application requirements percolate down through the
architecture.

o Approaches like MiLAN [123] and Abstract Regions [14] provide hooks
into the lowest layers to control the behavior of physical devices such
as the radio, while trying to retain a reasonable high level of ab-
straction. This is dual to the previous class of solutions: program-
mers can perform fine-grained adaptation on various system aspects,
e.g, changing the number of retransmissions per message, yet they
are somewhat forced to mix high-level programming constructs with
low-level concerns. Similar approaches therefore allow programmers
to explore the trade-off between accuracy and resource-consumption,

47

2. Background

although the effect of fine-grained tunings on overall system behavior
is generally hard to predict.

Almost all available approaches featuring global view communication
or system-centric computation fall in the former category. An example
to illustrate the latter class of solutions is Abstract Regions, described in
Section 2.5.1. It provides a notion of quality feedback to give the application
information on the accuracy or completeness of a given operation. Based
on this information, the programmer can leverage off a tuning interface to
gain access to the underlying communication protocols, and change their
behavior depending on whether the application requirement are currently
satisfied. For instance, in case reduction operations have a low yield due to
message losses, the application can increase the number of retransmissions
per packet until the data received satisfies the user’s needs. By the same
token, however, this choice increases network traffic, and therefore affects
the overall energy consumption.

2.6.4. Supported Platforms

Despite the plethora of available programming approaches, the range of
supported platforms, as reported in the current literature, is surprisingly
Narrow.

Classification

The following trends can be noted in the current state of the art:

e Real hardware: at the operating system layer, most higher-level
abstractions are built by adding a pre-processing step to nesC, e.g.,
as in EnviroSuite [102|. Thus, they leverage off TinyOS as operating
system, and should therefore support any TinyOS-compliant WSN
platform.

e Simulated environments: often, simulated environments are used
to assess the performance of a given solution. In this case, either
custom simulators or TOSSIM [124] are used. Early performance
studies, e.g., [19], have also been carried out using ad-hoc network
simulators, such as NS-2 [125] or GlomoSim [126].

Nonetheless, experiments using real nodes are seldom reported in the lit-
erature. This is essentially due to i) the lack of portability between different

48

2.7. Completing the Picture

hardware platforms, ii) the difficulty in setting up reproducible experiments
using real hardware. As for the first issue, for instance, although nesC code
may compile seamlessly for different target nodes, modifications are usu-
ally needed to account for the very characteristics of the devices employed,
notably including the radio transceiver. Instead, the difficulties in repro-
ducing real-world experiments are mostly due to the characteristics of the
wireless medium. For instance, the radiation patterns may change over
time because of multiple reasons, ranging from temperature and humidity
fluctuations to the presence of people nearby. In this respect, more effort
is required from a methodological standpoint.

2.7. Completing the Picture

Before introducing the mapping from currently available solutions to our
dimensions for classification, we briefly survey relevant approaches that we
did not consider in the previous sections.

Cougar. Similarly to TinyDB, Cougar [113] provides programmers with
a SQL-like interface for querying the sensor network. Therefore, they are
both geared towards data collection applications, while lacking constructs
to express fine-grained control flows. At the system level, they are both
based on a routing tree rooted at the user base station. The techniques used
to achieve energy efficiency are, however, different. For instance, Cougar
tries to push selection operators down the routing tree to reduce the amount
of data flowing up, yet it does not consider acquisitional issues, as TinyDB
does.

EnviroSuite/EnviroTrack. The programming solution presented in [102,
127] is explicitly conceived for tracking applications. An object-oriented
programming model is provided where objects represent physical phenom-
ena. The programmer express the conditions for creating these objects
(e.g., an object is created when a magnetometer reports a possible presence
of a moving vehicle), and associates operations to process the corresponding
data (e.g., inferring the size of the vehicle based on known acoustic pat-
terns). Dedicated protocols are provided and used depending on the nature
of the phenomena being observed, e.g., its speed of movements. The com-
piler infers the nature of the phenomena from the object conditions, or
from programmer-provided information.

FACTS. In [101], the authors present a rule-based programming model in-

49

2. Background

spired by logical reasoning in expert systems. Data is represented as facts
in a dedicated repository. The appearance of new facts trigger the execu-
tions of one or more rules, that may generate new facts or remove existing
ones. Native C functions can be used to interact with the sensing devices
and provide inputs to the creation of new facts. Facts can be shared among
different nodes. The basic communication primitives provide 1-hop data
sharing, although multi-hop protocols can be employed in collaboration
with the basic rule engine.

Flask. A data-flow language is presented in [128], whose programming
model revolves around the notion of data-flow operator. This is a compu-
tational unit taking multiple inputs, and producing a single output value.
Programs in Flask are composed by wiring operators in an acyclic graph.
The control flow migrates across operators in a depth-first manner. Differ-
ent operators can be located on different nodes, and interconnected using
a form of Publish/Subscribe communication infrastructure. The underly-
ing routing scheme can be changed by programmers on a per-application
basis. Flask programs are completely executed at compile-time, yield-
ing executable nesC code as output. Interestingly, Flask is also designed
for building higher-level abstractions in terms of data-flow operators, e.g.,
FlaskDB [128].

Market-based programming. The authors of [129] present a frame-
work for expressing system-centric computation using a market oriented
approach. The objective is to obtain a globally efficient behavior under
dynamic conditions. Every node is characterized by the actions it can
take, the corresponding cost, and a possible reward the node receives in
exchange for performing a given action. To maximize its own profit, nodes
autonomously decide which actions to take based on the current rewards,
the actions’ cost, and the surrounding context. The user induces the de-
sired behavior by dynamically changing the rewards given to nodes for each
type of action. Communication is delegated to a specific routing scheme
chosen by programmers depending on the application’s requirements.

MiLAN. The work in [123] provides an explicit notion of data quality to
programmers. The application specifies the expected reliability for each
input sensor providing raw data, as well as the minimum requirements
that the high-level information must meet in terms of rates and confidence.
Based on how the high-level information is derived from the raw data,
MiLAN identifies the minimum set of sensors that need to be queried for

50

2.7. Completing the Picture

satisfying the application needs while minimizing energy consumption. The
underlying communication protocols are decoupled from the optimization
logic. Therefore, they are expected to offer the appropriate hooks so that
the information inferred by MiLAN on the minimal set of sensors needed
can be exploited also at the lowest layers.

Pieces. Focusing on collaborative applications where multiple, geograph-
ically related data must be processed, the solution in [109] provides a pro-
gramming abstraction based on a notion of group. Similarly to Abstract
Regions, system support must be provided on a per-group basis. Constructs
are provided to determine the role of nodes in a group (e.g., to determine
when a node is to be elected as the leader), and to share information. The
application processing is expressed in discrete steps as input/output oper-
ations on state variables. The inputs are governed by sensed data, whereas
the outputs are the result of some processing based on the previous values
of state variables and the current inputs.

TAG. Along the same lines of Cougar and TinyDB, TAG [130] is based
on a dialect of SQL to let programmers query the sensor network. At
the implementation level, TAG also leverages off a routing tree. However,
it focuses on how to achieve energy efficiency in aggregation queries. To
do so, TAG employs information on the mathematical properties of the
aggregation function at hand, and adapts message routing accordingly. For
instance, in case not all input data are needed to compute the aggregated,
some nodes are excluded from the query, or their values are inferred from
those sensed at other, nearby nodes.

SensorWare. Similarly to Agilla, SensorWare [115,116] allows to move
TCL-based scripts from node to node, while providing explicit support for
multiple applications running concurrently on the same sensor network.
Nonetheless, it only provides weak mobility, i.e., the execution state does
not move with code, which results in the execution always resuming from
the beginning on a different node. Differently from other mobile code
solutions, coordination is accomplished using direct communication across
different nodes instead of shared memory spaces. When migrating code,
policies regarding the energy required by a given script can be specified
to determine the acceptance of the same script on a node. The current
implementation targets fairly powerful devices, e.g., PDAs like Compaq
iPAQs or embedded devices with XScale processors.

SINA. Compared to TinyDB, the work in [131] overcomes the limitation of

51

2. Background

SQL dialects using an imperative language called SQTL, that enables the
injection of arbitrary code into the network. Support is provided to export
the outcome of SQTL-based processing as query results. This enables the
description of more sophisticated coordination patterns w.r.t. pure SQL.
For instance, cluster-based information aggregation can be implemented
using SQTL, and the results gathered using a pure SQL query.

snBench. The work in [114] targets shared, multi-user sensor networks,
and exports a strongly-typed, functional language to express the applica-
tion processing. Partially deviating from the functional idiom, however,
repetitions and assignments to local variables are also allowed. To imple-
ment the programming model, a central entity keeps track of the current
status of each host in the system, and injects single processing units in
the network accordingly. In doing so, the individual processing units are
optimized to take advantage of programs’ shared computation and depen-
dencies, with the ultimate goal of making more efficient use of computation,
network, and storage resources. Sensors are named via URI relative to the
host they are connected to. Therefore, processing is assumed to occur on
fairly powerful nodes controlling several sensors, as opposed to mote-class
devices usually equipped with a few sensing devices.

Spatial Programming. In [132], the authors propose a logical address-
ing scheme coupled with a lightweight form of mobile code technology. In
Spatial Programming, the environment is viewed as a single address space,
and nodes are accessed using spatial references. This refers to the expected
physical location of a node (e.g., hill:camera[0]), and may optionally
point to some property of the node itself (e.g., whether the node is cur-
rently active). A dedicated run-time system maintains the mapping from
spatial references to the physical nodes. Smart Messages are used for mi-
grating code and data across nodes. These represent a form of scripting
language targeted to a virtual execution environment. A shared memory
space is provided for coordination among Smart Messages, and also used
to determine how to route a smart message at each hop, thus allowing to
change the routing policy dynamically.

2.8. Mapping and Discussion

Figures 2.19 and 2.20 illustrate the overall mapping from the programming
solutions hitherto described to our taxonomy.The former concentrates on

52

2.8. Mapping and Discussion

Programming Communication | Computation | Programming | Distribution
Abstraction Idiom Model
Abstract Group based, Node centric Imperative Data sharing
Regions [14] Multi-hop
non-connected
Abstract Task Global view Node centric Hybrid Data sharing
Graph [108]
Agilla [18] Routing Node centric Imperative Mobile code
dependent,
Cougar [113] Global view System centric | Declarative Database
oriented
DSWare [19] Global view System centric | Declarative Message passing
EnviroSuite/ Group-based, Group centric Imperative Data sharing
EnviroTrack Multi-hop
[102,127] connected
FACTS [101] Physical Node centric Declarative Data sharing
neighborhood
Flask [128] Routing Node centric Functional Message passing
dependent
Generic Role Group-based, Node centric Declarative Data sharing
Assignment Multi-hop
[20,121] connected
Hood [21] Group-based, Node centric Imperative Data sharing
Single-hop
Kairos [32] Global view Node centric Imperative Data sharing
Market-based Routing System centric | Declarative Message passing
programming dependent
[129]
MiLAN [123] Physical Group centric Imperative Message passing
neighborhood
nesC 28] Physical Node centric TImperative Message passing
neighborhood
Pieces |109] Group based, Group centric Imperative Data sharing
Multi-hop
connected
Pleiades [15] Global view Node centric Imperative Data sharing
Regiment [16, | Group based, Group centric Functional Data sharing
110] Multi-hop
connected
SensorWare |115, | Physical Node centric Imperative Message passing/
116] neighborhood Mobile code
Spatial Group based, Group centric Imperative Mobile code
Programming Multi-hop
[132] non-connected
SINA [131] Global view System centric | Hybrid Database
oriented
snBench |114] Group based, Group centric Functional Data sharing
Multi-hop
non-connected
TAG |130] Global view System centric | Declarative Database
oriented
TinyDB [17] Global view System centric | Declarative Database
oriented

Figure 2.19.: Mapping WSN programming abstractions to the taxonomy

in Figure 2.2—language aspects.

93

2. Background

Programming Composability Reach Stack Supported
Abstraction Penetration Platforms
Abstract Holistic Application Tuning TOSSIM
Regions [14] level interface
Abstract Task Holistic Application No N/A
Graph [108] level
Agilla 18] Holistic Application No Mica2
level
Cougar [113] Holistic Application No NS-2
level
DSWare [19] Holistic Application No GlomoSim
level
EnviroSuite/ Holistic Application No Mica2, XSM
Enviro Track level
[102,127]
FACTS [101] Holistic Vertical No ESB,
solution ScatterWeb
Flask [128] Holistic Vertical No TMote Sky
solution
Generic Role Building-block Vertical No Custom
Assignment solution simulator
[20,121]
Hood |21] Building-block Vertical On-demand Mica2
solution attribute
broadcast
Kairos [32] Holistic Application No Mica2,
level Mica2Dot
Market-based Holistic Application No TOSSIM
programming level
[129]
MiLAN [123] Holistic Application Data quality N/A
level guarantees
nesC 28| Holistic Vertical Active Message | All TinyOS
solution interfaces hw platforms
Pieces [109] Holistic Application No Custom
level simulator
Pleiades [15] Holistic Application No TelosB
level
Regiment [16, | Holistic Application No Custom
110] level simulator
Spatial Program- | Holistic Application Node iPAQ
ming [132] level properties
SensorWare |115, | Holistic Application No iPAQ, XScale
116] level
SINA [131] Holistic Application No Custom
level simulator
snBench |114] Holistic Application No N/A
level
TAG [130] Holistic Application No Custom
level simulator
TinyDB (17| Holistic Application No Mica2
level

Figure 2.20.: Mapping WSN programming abstraction to the taxonomy in
Figure 2.2—architectural aspects.

54

2.8. Mapping and Discussion

the language aspects, highlighting the distinctive traits of the different
approaches. Interestingly, the following patterns emerge:

e The way computation is expressed bears some influence on the pro-
gramming idiom employed. System-centric solutions privilege declar-
ative approaches, whereas approaches featuring group- and node-
centric computation mostly leverage off functional and imperative
approaches, respectively. Indeed, interactions at the system level are
easier to describe in a declarative fashion, taking advantage of sev-
eral compilation steps to obtain the executable code to be deployed on
the individual nodes. Differently, when computation affects a limited
portion of the system, functional approaches are suited to describing
the processing of information by assuming data sensed in a group as
the input, and directing the output to a single node. Finally, im-
perative approaches are most intuitive when the processing affects
individual nodes. Indeed, this programming style closely resembles
the traditional way of developing distributed applications.

e Similarly, a relation exists between how communication is described,
and the distribution model employed. Generally, message passing and
mobile code are employed in conjunction with physical neighborhood
or group based communication. The larger is the scope used to de-
scribe communication, however, the more data sharing and database
approaches are privileged. It would indeed be unreasonable to give
programmers high-level views on the communication occurring in the
network, and still ask them to reason in terms of messages flowing
from a specific sender to a given destination.

Instead, Figure 2.20 provides a high-level view on the architectural aspects
of currently available solutions. The following trends can be noted:

e Compared to the whole spectrum of available approaches, there are
very few programming abstractions that are designed to work in col-
laboration with other solutions. The diversity of WSN applications,
however, is likely to require an overarching approach where different
programming abstractions collaborate into a single, coherent frame-
work to achieve a high-level goal [120]. Although most of the existing
approaches are well suited to particular application domains, they
lack extensibility as they cannot be composed with additional solu-
tions to tackle different issues.

95

2. Background

Programming SO/SR | Interaction Space Time
Abstraction Pattern
Abstract Regions [14] SO Depending on Local Periodic/
region Event-driven
Abstract Task Graph [108] SR Many-to-many | Local Periodic
Agilla [18] SO Many-to-many | Local Event-driven
Cougar [113] SO Many-to-one Global Periodic
DSWare [19] SO Many-to-one Local Event-driven
EnviroSuite/ SO Many-to-one Local Event-driven
EnviroTrack [102,127]
FACTS [101] SO Many-to-many | Local Event-driven
Flask [128] SO Many-to-many | Global Periodic/
Event-driven
Generic Role SO Many-to-many Global Periodic
Assignment [20,121]
Hood |21] SO Many-to-many | Local Periodic
Kairos [32] SO Many-to-many | Global Periodic
Market-based SO Many-to-one Global/ Periodic
programming [129] Local
MiLAN [123] SO Many-to-one Global Periodic
nesC 28] SO Many-to-many | Local Periodic/
Event-driven
Pieces [109] SO Many-to-one Local Event-driven
Pleiades [15] SO Many-to-many | Global Periodic
Regiment [16,110] SO Many-to-one Local Event-driven
Spatial Programming [132] SO Many-to-one Local Event-driven
SensorWare |115,116] SO Many-to-one Global Periodic
SINA [131] SO Many-to-one Global Periodic
snBench [114] SO Many-to-one Local Event-driven
TAG [130] SO Many-to-one Global Periodic
TinyDB [17] SO Many-to-one Global Periodic

Figure 2.21.: Mapping WSN programming abstractions to the characteris-
tics of WSN applications.

e Similarly, most of the existing solutions do not feature hooks into
lower layers to adapt the system behavior dynamically. Most often,
this choice is motivated by the difficulty by which programmers can
predict the effect of some fine-grained tuning on the final system
performance. By the same token, however, completely masking com-
munication concerns seems to clash with the increasing demand for
cross-layer solutions, in turn motivated by the resource scarcity of
common WSN hardware.

Interestingly, we can draw further remarks by comparing Figure 2.19 against
Figure 2.20:

e All vertical solutions we surveyed feature node-centric computation.

56

2.8. Mapping and Discussion

Indeed, the inherent tension between the level of abstraction used
to express computation and the functionality needed to implement
lower-level mechanisms, e.g., as in the case of system services, would
prevent using group-centric or system-centric computation. Lower-
level mechanisms usually need to work close to the hardware layers,
which is precisely what group level and system level computation
tend to avoid.

Dually, approaches characterized by system-centric computation rarely
feature hooks into the lowest levels of the stack. The level of abstrac-

tions provided by the former is usually too high for accommodat-

ing similar functionality without affecting the overall programming

framework.

Finally, Figure 2.21 provides a mapping from existing programming solu-
tions to the characteristics of WSN applications we identified in Section 2.3.
Here, we aim at providing indications about which programming solution is
most appropriate for a given application domain, while pointing out open
issues and challenges. The fundamental remarks we can draw are summa-
rized as follows:

e Looking at the current state of the art, most solutions support a
many-to-one form of interaction. They are therefore appropriate for
application such as habitat monitoring [22], that essentially revolve
around pure data collection. When many-to-many interactions are
supported, this usually occurs only within the boundaries of the phys-
ical neighborhood.

Similarly, localized interactions seem to be better supported for event-
driven applications, e.g., detection of moving targets [85]. Dually, a
good fraction of available solutions is appropriate for describing pe-
riodic tasks when the application processing spans the entire system,
as in data collection scenarios.

As a result of the previous points, none of the existing solutions, with
the notable exception of ATaG [108], seems appropriate for sense-and-
react applications. As we already pointed out, these usually require
many-to-many interactions spanning multiple hops, as well as con-
tinuous monitoring limited to specific portions of the system. The
current state of the art seems ill-suited to these requirements.

o7

2. Background

In the following chapter, we further elaborate on the above observations,
illustrating how we plan to tackle the corresponding issues in the rest of
this thesis.

58

3. Beyond the State of the Art

Based on the conclusions drawn at the end of the previous chapter, we
maintain that most of the research efforts in WSN programming have de-
voted themselves to sense-only scenarios. Nevertheless, the ability to affect
the environment based on sensed data is pivotal for widening the range of
possible applications. The contributions discussed in this thesis are mostly
geared towards the latter application scenarios. In doing, so we cover mul-
tiple and diverse aspects of programming WSNs.

To give a broader look at our contributions, in this chapter we briefly
revisit the high-level challenges we illustrated in Chapter 1, and cast our
solutions in the tazonomy introduced in the previous chapter. The objective
1s to provide a common ground for understanding the work described in this
thesis.

3.1. Open Problems

Based on the description of the current state of the art outlined in Chap-
ter 2, we maintain the following issues are still to be solved in the context
of WSN programming:

e Software reconfiguration. In the highly dynamic scenarios we tar-
get, changing single functionality running on the individual nodes is
of paramount importance. Nonetheless, existing programming solu-
tions featuring node-centric computation rarely provide support for
identifying what part of the application functionality is to be changed,
and how to carry out the reconfiguration process.

e Coordination. To save on latency and resource consumption, in
sense-and-react applications the processing must be brought into the
network, as opposed to residing at the fridges of the system on some
powerful base-station. This requires strict coordination among the

99

3. Beyond the State of the Art

devices involved. This issue is further exacerbated by the hetero-
geneity germane to the scenarios we target, where different types of
sensors provide the inputs to control various classes of actuators.

e Scoping. In sense-and-react applications, multiple tasks must run
concurrently, each affecting only a given part of the system. There-
fore, programmers need to identify the relevant subsets of nodes, and
express interactions among them. A similar feature is missing in the
current state of the art. Available approaches either constrain the
topological characteristics of the subset considered, e.g., as in pro-
gramming solutions featuring group-based communication for I-hop
and connected topologies, or do not provide the ability to address
arbitrary subsets of nodes.

In this thesis, we tackle the problems above at different levels of ab-
stractions, from programming in the physical neighborhood up to sensor
network macroprogramming. The next section provides a high-level view
on our contribution.

3.2. Contribution

Software reconfiguration. The RUNES and F1IGARO component mod-
els, described in Chapter 4, offer a foundation to enable software reconfig-
uration on single nodes, therefore providing support for changing the ap-
plication behavior dynamically. Indeed, the component abstraction makes
it easier to limit the scope of reconfiguration to the required functionality.
Moreover, the FIGARO component model promotes component dependen-
cies and versions to first-class citizens in the programming model, giving
developers an unprecedented degree of control on how to carry out the
reconfiguration process.

Coordination. The TeenyLIME middleware, described in Chapter 5, ad-
dresses the above challenges by providing a solution featuring node-centric
computation and physical neighborhood computation. The latter is not at
at all a limitation in the scenarios targeted by TeenyLIME, where actuators
are usually co-located with the sensor that trigger them. Moreover, the
tuple space abstraction of TeenyLIME, coupled with various WSN-specific
features, provides a data-sharing distribution model that sensibly raises the
level of abstraction w.r.t. traditional node-centric solutions.

60

3.2. Contribution

Scoping. With the Logical Neighborhoods abstraction, described in Chap-
ter 6, we empower programimers with a foundation to enable communica-
tion among application-defined subsets of nodes. Our dedicated routing
layer, illustrated in Chapter 6, achieves group-based communication regard-
less of the physical location of the nodes involved, thus giving programmers
the ability to define subsets of nodes irrespective of the underlying network
topology.

Interestingly, Logical Neighborhoods can be exploited also as a building-
block to empower system-level mechanisms or to design higher-level ab-
stractions. In the last part of the thesis we explore this possibility at
different levels of abstractions. Our contributions in this respect can be
summarized as follows:

e Fine-grained software reconfiguration. Besides identifying what
is to be reconfigured on the single nodes, in sense-and-react applica-
tions programmers must also determine where reconfiguration must
occur, i.e., the subset of nodes required to change their behavior. Ex-
isting system-level mechanisms for code distribution, however, usually
target the whole system by distributing the same binary image to all
the nodes. To meet this requirement, we augment the F1IGARO com-
ponent model with a customized version of Logical Neighborhoods,
giving FIGARO programmers the ability to target a specific subset of
nodes based on their logical characteristics or current software con-
figuration.

e Virtual nodes. Although Logical Neighborhoods provide the ability
to identify the relevant subsets of nodes, expressing the very applica-
tion processing still rests on the programmer’s shoulders. Neverthe-
less, existing programming solutions targeting group-based commu-
nication rarely address sense-and-react scenarios. The virtual node
abstraction, described in Chapter 9, is designed as a natural exten-
sion of Logical Neighborhoods. With virtual nodes, programmers
abstract groups of physical devices into a single, fictitious node. This
greatly masks distribution and heterogeneity, drastically simplifying
application development. In addition, our dedicated routing layer,
illustrated in Chapter 10, achieves significant performance improve-
ments w.r.t. traditional communication schemes.

e Scoping in macroprogramming. Applying macroprogramming
approaches in sense-and-react systems is usually difficult, as they

61

3. Beyond the State of the Art

62

mostly target homogeneous scenarios where the application process-
ing is the same on all the nodes. As a result, we miss the opportunity
to exploit their high level of abstraction in the context of WSN ap-
plications involving actuation. In Chapter 11, we leverage off Logical
Neighborhoods as a building block to enable a notion of scoping in an
existing macroprogramming framework. The resulting programming
model allows programmers to allocate a different processing to dif-
ferent group of nodes, and express complex interactions among these
groups. Despite the high level of abstraction provided, the resulting
system performance is still reasonable, thanks to a dedicated run-time
layer we developed.

Part II.

Programming with Physical
Neighborhoods

63

4. Component Models for
Software Reconfiguration

As we discussed in Chapter 1, modern WSN applications require program-
mers to deal with a dynamic set of requirements that may evolve due to
unanticipated needs. Therefore, when the application goals change, the sys-
tem must be able to adapt its behavior accordingly. In these scenarios,
the ability to reconfigure portions of the software running on WSN nodes
becomes imperative.

To address this issue, here we describe two contributions in the field of
component models for WSN programming. Compared to existing alterna-
tives, our solutions focus on reconfigurability as the chief design criteria.
On one hand, we tackle an extreme form of heterogeneity with the RUNES
middleware: a platform-independent programming model able to scale from
WSN-class devices to powerful nodes such as PCs or PDAs. On the other
hand, we move past RUNES and ezisting works in the field of WSNs with
FiGARO: a component model whereby component dependencies and ver-
sions become first-class citizens in the programming framework, and the
entire reconfiguration process occurs with no intervention from the program-
mer. The contributions reported in this chapter appeared in [4—6].

4.1. Scenario

Modern WSNs must support very challenging application scenarios. For
instance, consider an application for control and monitoring in road tun-
nels [133]. Sensors monitor environmental conditions such as temperature,
humidity and air quality. Actuator devices operate tunnel safety systems
such as sprinklers, fans, and traffic signs. The system also incorporates
larger, more powerful, devices which act as gateways and allow the sensors
to report readings both directly to the actuator systems and to a tunnel

65

4. Component Models for Software Reconfiguration

control centre.

When an accident occurs, the system’s first responsibility is to detect
and report the accident and carry out any automated emergency sequences.
In addition, some nodes may be damaged and the system must reconfigure
itself to compensate for this. As the situation unfolds, a team of firefighters
eventually arrives. They carry PDA-class devices capable of interacting
directly with the tunnel system. At this point, the tunnel system plays
the role of a tool that can be directly manipulated by the firefighters.
For instance, it can be selectively queried by the firefighters to help them
operate in poor visibility conditions, and the firefighters can directly control
the actuator devices.

The distinctive traits of the scenario outlined above can be summarized
as follows:

e The system is highly heterogeneous. Different devices play different
roles in the application, e.g., sensors act as data producers whereas
actuators function as data consumers. The nodes may be equipped
with different sensing/actuation devices, and be externally powered
as opposed to running on batteries. Moreover, the hardware plat-
forms range from tiny sensors to controller PCs and the PDA-class
devices carried by the firefighters.

e Devices are resource poor. Apart from the obvious issues of power
and CPU speed, memory can be a significant limitation that can
severely constrain the amount of processing nodes can handle, or
their capability to buffer messages.

e Finally, such scenarios are inherently dynamic due to changing envi-
ronmental conditions. For instance, firefighters need to spontaneously
create new patterns of interaction as they move around in the tun-
nel. Such situations require the system to be capable of dynamically
loading new functionality onto devices, and offloading functionality
as resources dwindle.

4.2. Motivation and Contribution

When it comes to dynamically reconfigure the WSN software in such chal-
lenging scenarios, several issues must be addressed. For instance, program-
mers must identify which functionality is to be reconfigured, and express

66

4.2. Motivation and Contribution

the processing to let the new functionality cooperate with those already
running on a node. In addition, they must make sure that in case a new
piece of functionality does not reach all the interested nodes, backward
compatibility can be still be maintained. Finally, programmers must adopt
the appropriate mechanisms to identify malicious code being uploaded to
the WSN nodes, and force the system not to load the corresponding func-
tionality.

Among the issues mentioned above, programming support is the ba-
sic building-block that enables programmers to build highly-reconfigurable
systems. In this field, we investigate the use of component-based program-
ming with a focus on the ability of dynamically reconfiguring a node’s
functionality. Our contribution is twofold:

e The RUNES middleware, described in Section 4.3, is based on a
two-level architecture: the foundation is a language-independent,
component-based programming model that is sufficiently minimal to
run on any of the devices typically found in pervasive embedded envi-
ronments. Above this is a layer of software components that offer the
necessary application functionality and can be selectively deployed
according to current resource constraints and application needs. In
this context, our work specifically concentrated on WSN-class devices.
The RUNES middleware, however, lies at the core of an overarching
hardware/software architecture [134] whose aim is to tackle an ex-
treme form of heterogeneity, spanning tiny embedded devices as well
as powerful nodes such as laptops and PDAs. Section 4.4 describes
how this cross-platform approach enables a broader look at the is-
sues arising in our motivating scenario, by giving developers a single
programming platform to tackle different concerns at once. Here we
also report on the implementation of the RUNES programming model
for non-WSN nodes, and provide a unified evaluation of the system
performance in Section 4.5.

e The FIGARO component model, illustrated in Section 4.6, moves
past the RUNES middleware in the sensor network context. Differ-
ently from other component models for WSNs (e.g., [28]), FIGARO
provides dedicated constructs to deal with component dependencies
and versions. Our run-time support, described in Section 4.7, makes
sure new components are installed only when the corresponding de-
pendencies are satisfied. Moreover, in FIGARO we simplify the re-
configuration process itself by automatically changing the component

67

4. Component Models for Software Reconfiguration

Application/Middleware Components

_____________\

- Middleware Kernel AP }-

Platform Specific

Platform Specific
Kernel Implementation

Kernel Implementation Kernel Implementation

Platform Specific J

[Platform Specific 0S8] [Platform Specific 0S8] [Platform Specific 0S8]

Figure 4.1.: The RUNES software architecture.

interconnections, thus relieving programmers from specifying how re-
configuration must be carried out. Our evaluation of the overhead in-
curred by the component model shows a very limited overhead w.r.t.
native implementations, as illustrated in Section 4.8.

We conclude the chapter in Section 4.9 by comparing our approaches with
the current state of the art.

4.3. The RUNES Middleware Foundation

In this section, we first describe the RUNES component model and its asso-
ciated API. As shown in Figure 4.1, this API is provided at run-time by the
middleware kernel. We then discuss the middleware kernel implementation
for three different hardware platforms and briefly comment on components
we have developed to tackle the issues in our reference application.

4.3.1. Component Model

The RUNES component model comprises the following elements: compo-
nents, component types, interfaces, receptacles, connectors, connector facto-
ries, attributes and capsules. The API associated with the model is defined
in Figure 4.2 in terms of the OMG’s Interface Definition Language (IDL).
In addition, the relationships between the various elements is shown dia-
grammatically (using UML) in Figure 4.3.

68

4.3. The RUNES Middleware Foundation

interface Capsule : {

ComponentType load(in Pattern p);

void unload(in ComponentType t);

Component instantiate(in ComponentType t);

void destroy(in Component c);

Connector connect(in Interface i, in Receptacle r,
in ConnectorFactory cf);

void setAttribute(in Entity e, in Attribute a);

sequence<Attribute> getAttributes(in Entity e,

in Pattern p);
sequence<Entity> getEntities(in Pattern p);

Figure 4.2.: The Kernel API.

*

Entity
ConnectorType
Interface Connector Receptacle
1.*
from a T
from a
C Type C
<—
instantiates
Pattern
from a
instantiates
ConnectorFactory [z~ Capsule Attribute
*

*

loads
Loader

Figure 4.3.: The RUNES component model.

In the model, components are the basic run-time units of encapsulation

and deployment. They are instantiated at run-time from component types,

69

4. Component Models for Software Reconfiguration

such that each component type can be used to create multiple component
instances at run-time. This is performed using the instantiate() opera-
tion in Figure 4.2. Components can be deleted as well, using destroy().
Component types can themselves be dynamically loaded and unloaded at
run-time (see load () and unload()), which provides the basis for the dy-
namic nature of the RUNES programming model'. The semantics asso-
ciated to the internal processing and states of a component is generally
application-specific. Programmers should only pay attention not to share
state explicitly across components. This may indeed cause problems in
case a component is destroyed while others are trying to access the shared
state. Additional support to programmers for dealing with these issues is
provided in our FIGARO component model, described in Section 4.6.

Components offer their functionality through one or more interfaces each
of which is defined in a programming language independent manner as a
set, of types and operation signatures. In addition, components can access
the functionality of other components using one or more receptacles. To
this end, a component must have each of its receptacles connected (using
connect()) to a corresponding interface on some external component be-
fore it can execute. This connection between a receptacle and an interface
is explicitly represented in the model through a so-called connector, which
is itself a component and therefore can be deleted using destroy().

The model also incorporates the notion of connector factories. These
are components that create connectors that embody a specific piece of be-
haviour to be invoked every time a call is made over a given receptacle/in-
terface connection. In this way, connectors may encapsulate arbitrary func-
tionality and can thus be used to perform such functions as monitoring or
intercepting communications between their associated receptacle and inter-
face. For instance, a connector factory may create customized connectors
to log the communication between two components on permanent storage
for debugging purposes. Connector factories are passed as arguments to
connect (); or, if a null argument is passed, a “default” connector factory
is used which binds the receptacle directly to the interface. Note that
connector factories are mot normally used to abstract over network com-
munications; rather, they are intended for “local” use only. Network com-
munication is assumed to be encapsulated within middleware components
(see Section 4.4) and is thus transparent to the component model.

!The pattern argument to load() is simply a flexible way of specifying a component
type.

70

4.3. The RUNES Middleware Foundation

All of the above entities (i.e., components, component types, interfaces,
receptacles, and connectors) may be annotated with attributes. These are
key /value pairs that can be used to express arbitrary meta-data. Attributes
are managed using setAttribute() and getAttributes(). Finally, all of
the entities reside inside a capsule which serves as a run-time component
container, providing name space functionality. A capsule can be imple-
mented as an operating system address space although this is not manda-
tory. All the entities currently inside a capsule can be enumerated using
the getEntities() operation.

4.3.2. Kernel Implementations

Here we describe concisely how the core abstractions defined by the RUNES
component model are realised in three different implementations: (i) a
Java-virtual-machine-based implementation; (77) a C/Unix-based imple-
mentation; and (77) an implementation based on tiny embedded devices
running the Contiki [56] operating system.

Component Types and Components. In the Java implementation,
component types are straightforwardly represented as classes that inherit
from a specific abstract class. This approach allows us to “factor out” the
code needed to support component instantiation and destruction. There-
fore, components can be realised simply as objects instantiated from a class
representing a component type, and the load () operation is simply imple-
mented using the default Java class loader. In the C/Unix implementation
component types are represented as Unix “shared objects” compiled from
source files conforming to a specified structure. The load() operation is
implemented in terms of the native load/link facilities provided by the op-
erating system, e.g., using dlopen(), and instantiation is accomplished by
allocating a struct containing per-component state. Fach interface oper-
ation defined in a component type (realised as a C function) takes as its
first argument a pointer to this per-component struct so that the particular
component instance being invoked can be determined. In the Contiki im-
plementation, component types are similarly implemented as C source files
which map to Contiki “services”; and the Contiki dynamic loading facility
is used. Because Contiki supports only a single instance of a given type
of “service”, the instantiate() operation currently only returns a newly
instantiated component once for each component type. We are currently
looking into removing this limitation.

71

4. Component Models for Software Reconfiguration

Interfaces, Receptacles and Connectors. In the Java environment,
interfaces are trivially implemented as Java interfaces, whereas receptacles
are implemented as Java objects. Component types contain initialisation
code to create the appropriate receptacles at component instantiation time.
In the C/Unix environment both interfaces and receptacles are represented
as C structs. Both contain an array of function pointers. In the case of an
interface, these pointers point at the target operations (C functions). In
the case of a receptacle, they are assigned during connect () either directly
to the function pointer values in the associated interface, or indirectly via
functions within the specified connector that contains some intermediate
functionality. In the Contiki environment, a similar approach is adopted.
In the Java and C/Unix environments we provide the ‘full’ semantics of
connectors, i.e., we provide the ability to employ user-defined connector
factories to customize their behaviors as described above. Currently we do
not provide this functionality in the Contiki environment, but there is no
a priori reason why the Contiki implementation could not be extended in
this way.

4.4. The RUNES Middleware in Action

Using the three kernel implementations described above, we have developed
a set of middleware and application components that collectively address
the road tunnel scenario outlined earlier. The overall design of the resulting
application is depicted in Figure 4.4.

The application is structured as follows. TMote Sky [73] nodes run-
ning the Contiki-based kernel support a Data Acquisition component and
a Data Dissemination component that together monitor and disseminate
environmental conditions in the tunnel. These report, via gateways run-
ning the C/Unix kernel and supporting a Packet Forwarding component, to
a central control station that includes a Data Logging component running
on a PC that uses the Java kernel. The communication is handled by an
underlying yuAODV component which provides multi-hop routing.

When an emergency occurs, the Data Acquisition components respond
initially by sending readings more frequently. In addition, the pAODV
component has the ability to automatically recover from damage to either
sensors or communication paths. Eventually, firefighters arrive equipped
with mobile, wireless devices, forming a mobile ad-hoc network. The fire-
fighters’ devices instruct the sensors to send their readings directly to the

72

4.4. The RUNES Middleware in Action

B L L e R RR S PREETE P sensor node

) | Publish-Subscribe dynamic
41— | on Sensors deployment &

control center _
deploys
oy Data
Acquisition

% <

Gul Deployment
0 : Data
| 1
: i
: i

Publish-Subscribe Dissemination

on MANETs O

n_ms.
..... *_E_,%_s\\ - data forwarding
s
publish data
ey
- — gateway
A , data
: .- reporting . reporting reporting
‘@, [Publish-Subscribe . — — publish data (__pacov__] (__pnoov] (_proov_)
— on MANETs : AY @ @ @ 3
= | 2 o
ﬁ Diccaminati 3

[@ @

n._”c Tﬁi Deployment _ ___ T_uxa_azoL T, Data E
e _

deploys | Publish-Subsctibe } Data _ Data _ ﬁ Data w
— R - _r on Sensors Acquisition Acquisition Acquisition

| Publish-Subscribe | |

| onSensors ! |

sensor node sensor node sensor node

73

interface

Figure 4.4.: Fire in a road tunnel: application design.

4. Component Models for Software Reconfiguration

Device Kernel Middleware
Platform | Components

Step 1 Sensor Contiki Data Acquisition
Quiescent Data Dissemination
conditions LAODV

Gateway C/Unix Packet Forwarding

Control center | C/Unix Data Logging
Step 2 Firefighter Java Publish-Subscribe
Fire detected GUI Component
Step 3 Sensor Contiki Publish-Subscribe
Firefighters Firefighter Java Publish-Subscribe
reconfigure sensors | Firefighter Deployment

Figure 4.5.: Configuration of the application as the scenario unfolds.

firefighter as well as to the Data Logger. Also, the firefighters coordi-
nate their actions using a Publish-Subscribe [118] component that helps
them sharing locally sensed information. The firefighters additionally run
a Deployment component that has the capability to dynamically deploy a
Contiki version of the Publish-Subscribe component directly onto the sen-
sor devices so that the latter can start broadcasting directly to any nearby
firefighters who subscribe to relevant events, e.g., temperature readings
above a safety threshold. The Deployment component first checks if the
sensors within range already run the Publish-Subscribe component. If not,
the owning firefighter is prompted about the possibility of uploading the
component on those sensor devices still lacking it. If there is no space on
a sensor for the Publish-Subscribe component, the original Data Dissem-
ination component is removed. All of this behaviour is under the control
of the firefighters who interact with their devices using a GUI component.
Figure 4.5 summarises the configuration of the devices involved as the sit-
uation unfolds.

The Publish-Subscribe component is the most complex of the compo-
nents described above and deserves further explanation. The component
employs a layered architecture, in which two sub-components take care
respectively of the two concerns relevant to dealing with host mobility,
i.e., overlay maintenance and route reconfiguration on top of the overlay.
The separation of these two concerns is especially beneficial in allowing
independent customisation of these two aspects. In more detail, the first
sub-component takes care of creating and maintaining a tree-shaped over-
lay based on the algorithm described in [135]. The second sub-component
is then in charge, using the mechanism described in [136], of setting up

74

4.5. Evaluating the RUNES Middleware

message routes on top of the overlay, and reconfiguring these routes in case
of topology change.

The application provides a clear illustration of the benefits of the RUNES
approach. First, a unified component-based software development ap-
proach is adopted regardless of the type of device involved. Second, the
component approach encourages the development of independent pieces of
functionality that can be composed in various useful ways depending on
context. Third, the dynamic loading capability relaxes the need to antici-
pate all the functionality that will be needed on a node. This is especially
beneficial for WSN nodes on which it may not be possible to fit all the
components required beforehand. Fourth, the dynamic (re)connection ca-
pability makes it possible for newly deployed components to interact in
complex ways with the existing components in a type-safe manner. For
example, initially, the Data Acquisition component is bound to the Data
Dissemination component; however, when the Publish-Subscribe compo-
nent is uploaded, it is dynamically rebound to the latter.

4.5. Evaluating the RUNES Middleware

This section assesses the effectiveness of the RUNES middleware in cop-
ing with heterogeneity, resource scarcity and dynamic scenarios, and also
assesses its specific competence for our reference scenario. Specifically, we
present an evaluation of the different implementations on the three hard-
ware/software platforms we considered, followed by performance figures
related to the specific components developed for our prototype application.

4.5.1. Middleware Kernel Evaluation

First we present an evaluation of the middleware kernel implementations.
As evaluation testbed, for the Java implementation we used Sun JVM
v5.01a running on a Pentium 4 3.2Ghz with 1 GB RAM. For the C/Unix
implementation we used a Pentium 4 2.4Ghz running Linux 2.6, and for
the C/Contiki implementation we used TMote Sky motes [73].

Metrics. To demonstrate the ability of the middleware to support het-
erogeneity and resource scarcity, we measure the kernel memory footprint,
i.e., the data and code memory footprint consumed by the run-time sup-
port for the RUNES component model. In addition, to evaluate the mem-
ory overhead required to represent the component, interface and receptacle

75

4. Component Models for Software Reconfiguration

Performance Measure Java C/Unix | C/Contiki
(Memory Footprint)

Kernel Code 14.65 KB 16 KB 780 bytes
Kernel Data 840 bytes 4 KB 52 bytes
Null Component Data 544 bytes | 24 bytes 9 bytes
Per-Interface Data 200 bytes | 40 bytes 2 bytes
Per-Receptacle Data 264 bytes | 22 bytes 2 bytes

Figure 4.6.: RUNES Middleware memory overhead.

concepts from the programming model, we measure the memory footprint
of a null component and the per-interface, per-receptacle memory footprint.
A null component is a component with no interfaces/receptacles and null
initialisation /destruction routines.

To investigate the dynamic aspects of the middleware, we consider the
overhead of null operation calls through a default connector. A null op-
eration is one with no in/out parameters performed across a connector
without intervention in the control flow, and introduces some overhead
w.r.t. “native” operation calls (e.g., a method invocation in Java). This
measure represents the run-time overhead of introducing connectors in the
programming framework. We also consider the operations needed to dy-
namically modify the software running on a node. To that end, the kernel
must load a new component, instantiate it, and connect the new instance
to an existing component. In the case of the Java and C/Unix kernels, we
measured each of these aspects separately, using a null component. We
note that the fine-grained time aspects cannot be measured on the motes
due to timer service limitations.

Results. The RUNES approach addresses heterogeneity effectively. This
is shown by implementing the same software component model on a vari-
ety of devices, ranging from powerful desktop PCs to resource-constrained
devices. Different programming languages and concurrency models have
been used on different platforms. Our support of heterogeneity is further
demonstrated by the relative sizes of the different middleware kernel imple-
mentations, shown in Figure 4.6. This highlights that our implementations
scale down to severely constrained devices.

Even on the most resource-constrained of the platforms considered, the
TMote Sky motes, the kernel footprint of 780 bytes is less than 1% of the
total available flash memory of the motes (48KB internal and 1MB external
flash memory). The overhead due to the introduction of components, in-

76

4.5. Evaluating the RUNES Middleware

Performance Measure Java C/Unix | C/Contiki
Overhead of null Calls

(DefaultConnector) 158.93% 99.84% 137.5%
Component Loading Time 0.0006 ms | 0.2116 ms 2.4973 s
Component Instantiation Time | 0.0047 ms | 0.7674 ms N/A

Figure 4.7.: RUNES Middleware run-time overhead

terfaces and receptacles in the programming model of Contiki is negligible
with respect to the amount of RAM (10KB) available on the TMote Sky
motes onto which they would be loaded. This minimal overhead obtained
is due to the simplicity of the RUNES component model. This enables
software reconfiguration through simple, yet powerful, abstractions, that
are easily implementable.

Figure 4.7 reports on the dynamic aspects of our implementations?. The
overhead introduced by null operation calls through default connectors
may appear to be non-negligible with respect to their “native” equivalents.
However, further investigation revealed that invoking a void Java method
through a default connector takes only 23.5 us, on average. Therefore, the
time needed to execute an actual fragment of code inside the method body
would consume the majority of the overall computation time, making the
overhead of the connector negligible. Similar considerations apply for the
C/Unix and the Contiki implementations.

The remaining data in the same table refers to the operations needed to
change the software running on a node. Among these operations, compo-
nent loading and instantiation are the most expensive, because of the work
involved in transferring the component and creating data structures within
the middleware kernel. Given the values obtained, and also considering
that such operations should be triggered only when needed, we argue our
kernel implementations are able to adapt sufficiently quickly to a changing
environment.

4.5.2. Scenario-Based Evaluation

We now provide a basic evaluation of aspects of the road tunnel scenario
reported in Section 4.4. These measurements were made on an experimen-
tal set-up consisting of a TMote Sky node representing a sensor device in
the tunnel, and two laptops representing firefighter devices. More precisely,

2We executed 10,000 iterations and averaged the results.

77

4. Component Models for Software Reconfiguration

Performance Data Data Publish-
Measure Acquisition | Dissemination | Subscribe
Source Lines of Code | 287 lines 181 lines 197 lines
Memory Footprint 1462 bytes 738 bytes 772 bytes

Figure 4.8.: Application component size.

the firefighter devices each comprise a laptop plus a TMote Sky node at-
tached to the laptop via a USB cable; the TMote Sky node simply forwards
packets from the firefighter laptop to the tunnel sensor and vice versa. The
sensor device runs the Contiki implementation of the middleware kernel,
whereas the firefighter devices run the Java version.

First, we evaluated the sizes of some of the components running on the
sensor device. The results in Figure 4.8 show that these are negligible
compared to the available resources of the TMote Sky motes. By adding
together the footprints of the components and the middleware kernel, we
see that the size of the sensor node installation is 3750 bytes. This is still
less than 1% of the total memory available on a TMote Sky mote.

We also measured the lines-of-code and memory overhead for the Java
Publish-Subscribe component on the firefighter devices. This amounts
to 1327 lines of non-commented code, and occupies 8.23 KB of memory.
Again, a very acceptable overhead.

Finally, we carried out some basic performance measures to confirm that
the network overheads are sufficiently small for run-time reconfiguration
to be feasible. To this end, we measured 2.07 seconds to deploy a null
component onto the sensor device, and 4.25 ms for a Publish-Subscribe
message sent between firefighter devices. These figures indicate that the
network overheads are indeed acceptable.

Despite the generality and efficiency of the RUNES middleware, pro-
grammers are still required to manage the reconfiguration process by hand,
using the API in Figure 4.2. Moreover, they lack support to handle compo-
nent dependencies and versions, making it difficult to integrate functional-
ity from different parties. To address these issues, we devised the FIGARO
component model, described in the following.

4.6. The FiGaRo Programming Model

F1GARO is a flexible component-model explicitly conceived for WSN de-
vices. It is currently built atop the Contiki [56] operating system, and

78

4.6. The F1GARO Programming Model

DECLARE_INTERFACE(data_collection_if, {
void (* broadcast_interest)(void* data, u8_t len);
void (* report)(uip_ipaddr_t dest, void* data, u8_t len); })

Figure 4.9.: FIGARO: an example of component interface.

DECLARE_COMPONENT (tree_routing, data_collection_if, 2)

DECLARE_DEPENDENCY(radio_receptacle, radio_if, 3, MANDATORY | STATIC)

void broadcast_interest(voidx* data, u8_t len) {
CALL(radio_receptacle, send(&broadcast_addr, &msg, 64));
//

}

void report(uip_ipaddr_t dest, void* data, u8_t len) {
//

}

ON_RUNNING({ // ON_SUSPEND, ON_DESTROY are also available
//

i)

Figure 4.10.: F1GARO: a component implementing the interface of Fig-
ure 4.9.

therefore relies on the C programming language. It leverages off dedicated
C macros to move most of the processing to the compilation stages while
not requiring any pre-processing step. Its core abstractions are described
next.

Components, Interfaces, and Dependencies. Similarly to RUNES, in
F1GARO, a component represents a single unit of functionality and deploy-
ment. The services provided by a component are described by its interface.
For instance, Figure 4.9 shows the declaration of an interface for data col-
lection. This specifies the signature of two operations to broadcast interests
and to report the data, respectively. Components must provide the code for
all the operations in the interface declaration, as in the case of Figure 4.10.
The DECLARE_COMPONENT macro is used to specify the name of the compo-
nent (tree_routing), the interface it implements (data_collection_if),
and the component version (2).

To accomplish its goal, a component interacts with others on the same
node. Interaction occurs through function calls across components using
CALL, as shown in the first operation of the component in Figure 4.10.
However, it is not for granted that a component provides an (interface

79

4. Component Models for Software Reconfiguration

data_collection_if W logging_if
Min version: 3 Min version: 5
Deps: MANDATORY | =-=w-e----. O Deps: OPTIONAL

Status: CONNECTED Status: DISCONNECTED

—o interface | Tree Routing v.4 |[—(C receptacle

Figure 4.11.: An example of component configuration.

containing the) operation required by another, while the caller component
may not be able to continue its execution without a callee component imple-
menting the required interface. Therefore, the presence of a CALL statement
determines a dependency between caller and callee.

In F1GARO, dependencies are explicitly declared by the programmer us-
ing the DECLARE_DEPENDENCY macro. The first parameter of this macro is
a receptacle, the dual of an interface. An interface specifies a set of op-
erations provided by a component to others, while a receptacle specifies
the set of interfaces a component requires from others. In the case of Fig-
ure 4.10 the dependency being declared specifies the name of the receptacle
(radio_receptacle), the interface required (radio_if), and the minimum
component version allowed for a component (3). Moreover, the programmer
can also specify a bit-masked constant describing the nature of the depen-
dency. In the example, MANDATORY specifies that the component cannot
run without relying on the needed interface. Otherwise, the dependency is
considered optional, and the component is expected to work correctly also
in absence of the specified interface. Instead, STATIC indicates that once a
callee component is bound to the caller through the receptacle, the callee
component cannot be changed. Otherwise, a reconfiguration can take place
substituting the component with another providing the same interface.

Figure 4.11 shows an example of component configuration. The Sampling
component is responsible for querying the sensor, and calling the report
function in TreeRouting, which transmits the data to a sink. Note how
TreeRouting satisfies only the MANDATORY dependency of Sampling, while
the OPTIONAL one is currently not satisfied. This information is reflected
in the receptacle descriptor inside the run-time support, as described in
Section 4.7.

80

4.6. The F1GARO Programming Model

DESTROY
/
SUSPEND
RESTART

Figure 4.12.: The life cycle of a FIGARO component.

Component Life Cycle. The life cycle of a component is illustrated in
Figure 4.12. A component becomes RUNNING when all its dependencies on
other components are satisfied, i.e., component implementing the required
interfaces are available on the node. Note that dependencies are inherently
recursive, i.e., a component may depend on some others, which in turn
may depend on others, and so on. Therefore, the instantiation of a com-
ponent may trigger the instantiation of an entire component closure, based
on the declared dependencies. In practice, however, WSN applications are
made of a small number of components with short dependency chains. The
instantiation of a set of components bound by dependencies occurs atomi-
cally, i.e., control returns to the application only when the instantiation of
all components is complete. When a component providing services to oth-
ers undergoes a reconfiguration, the components exploiting those services
move to the SUSPENDED state, and revert to the RUNNING state when the
reconfiguration completes. Instead, the DESTROYED state is reached when
the component has been replaced by another with the same interface.
Programmers can intervene at each step of the life cycle by specifying
code fragments to be executed when entering a given state, as shown in
Figure 4.10. When starting a new component, for instance, the body of
the ON_RUNNING macro is executed. Similar operations exist for each state.
The ability to intercept run-time activities is particularly important in the
case of SUSPEND, to give programmers the ability to release resources held
by the suspended components, and avoid deadlocks and run-time faults.

Component Reconfiguration. Differently from RUNES, in FIGARO

81

4. Component Models for Software Reconfiguration

programmers do not need to manage the reconfiguration manually using a
dedicated API. Instead, the underlying run-time automatically and trans-
parently manages the reconfiguration process, based on dependencies and
component versions. When components are instantiated at start-up, the
run-time keeps track of their version, the interface they implement, and
their dependencies. Upon receipt of a new component C, reconfiguration
unfolds as follows, provided C’s MANDATORY dependencies can be satisfied:

e (' is instantiated if there is no running component with the same
interface, or

e (replaces another component C,;; implementing the same interface
as C' if:

— (s version is greater than Cyy’s,

— no component currently relying on Cg;y has a STATIC depen-
dency on it.

If a component cannot be immediately instantiated because of one or more
unsatisfied MANDATORY dependencies, it is buffered in the hope that the
necessary components are received later on. If this does not happen, the
component is discarded after a timeout.

As an example, Figure 4.13 shows a possible evolution of the config-
uration shown in Figure 4.11. When a Logging component is received,
the node-level run-time determines that it can be used to satisfy the op-
tional dependency of Sampling. However, Logging has a MANDATORY depen-
dency of its own, which cannot be satisfied right now. Therefore, Logging
is temporarily buffered and remains disconnected from the other compo-
nents, yielding the configuration in Figure 4.13(a). In Figure 4.13(b), a
FlashWriter component satisfying the dependency of Logging is received.
The run-time determines, by recursively travelling the component graph,
that all dependencies are now satisfied, and instantiates the new compo-
nents in the correct order (i.e., FlashWriter before Logging), yielding the
configuration shown in the figure.

The automatic reconfiguration mechanism relieves the programmer from
checking the conditions for the reconfiguration to take place, changing the
component interconnections, and managing the coordination among the
components involved. Although similar approaches (e.g., [137]|) already
proved their effectiveness in other contexts, to the best of our knowledge
we are the first to enable this functionality in WSNs.

82

4.7. F1IGARO Node-Level Run-Time Support

data_collection_if
Min version: 3
Deps: MANDATORY
Status: CONNECTED

logging_if
Min version: 5
Deps: OPTIONAL
Status: DISCONNECTED

Tree Routing v.4

: Logging v.5 |

flash_writer_if
Min version: 4
Deps: MANDATORY
Status: DISCONNECTED

(a) Logging is received.

logging_if
Min version: 5
Deps: OPTIONAL

Status: CONNECTED
data_collection_if flash_writer_if

Sampling v.1 Logging v.5
Min version: 3 Min version: 4

Deps: MANDATORY [~ ©@> O v 77 Deps: MANDATORY

Status: CONNECTED Status: CONNECTED
Tree Routing v.4 Flash Writer v.4

(b) FlashWriter is received.

Figure 4.13.: A sample evolution of the component configuration in Fig-
ure 4.11.

4.7. FiGaRo Node-Level Run-Time Support

F1GARO provides the constructs described in Section 4.6, concerned with
node-level reconfiguration, by making extensive use of C macros, therefore
moving at compilation time most of the added complexity. However, dy-
namic reconfiguration requires specialized run-time support, provided by
library functions we developed, linked against the (unmodified) Contiki
kernel.

Similarly to the Contiki version of the RUNES middleware, the F1IGARO
run-time maps FIGARO components to Contiki services [56], and leverages
off Contiki’s dynamic linking facility [138] to install new code. Conse-

83

4. Component Models for Software Reconfiguration

quently, the implementation of the CALL macro uses Contiki look-up func-
tions to find a pointer to the callee component, and perform the operation
requested. Interfaces and receptacles are represented by descriptors (stan-
dard C structs) containing an array of function pointers. In the case of
interfaces, these always point to the corresponding functions in the com-
ponent currently implementing the interface. Instead, the pointers inside
receptacles are assigned the function pointer values of the associated inter-
face, when connected, or NULL otherwise. In addition, receptacle descriptors
contain further fields to keep track of the nature of dependency, as well as
the minimum version required by any component connected to it, as shown
in Figure 4.13.

Based on the information gathered by our macros during the compilation
phase, our run-time maintains on every node an internal representation of
the exported attributes and current software configuration. This is repre-
sented as a graph where vertexes are components, and edges are labeled
to reflect the nature of the dependency at hand, similarly to Figure 4.13.
When a new component arrives, simple graph traversal algorithms are used
to check the conditions for the installation of a new piece of functionality. If
the new component can indeed be installed, the run-time fires the relevant
state transitions on all involved components, installs the new component by
reconfiguring the involved receptacles, and updates the graph accordingly.

4.8. Evaluating the FiGaRo Component Model

Our objective here is to quantify the overhead imposed by F1IGARO w.r.t.
plain Contiki. The implementation of our component model on single nodes
may affect several aspects. For instance, further data structures are needed
to keep track of the current component configurations, and additional pro-
cessing is required before and after installing a new component. Motivated
by these considerations, we consider the following performance figures:

o The memory occupation caused by our component model, w.r.t. both
program and data memory. We evaluated the former by looking at the
size of binary images after compilation. As for the latter, we manually
inspected the code managing components and their interconnections,
looking for any data structure we defined.

e The additional processing time caused by the presence of components.
This is affected both by the installation of a new component compared

84

4.8. Evaluating the F1IGARO Component Model

Performance Measure | Memory | Footprint
Dependency Checks Program 1.1 KB
Helper Functions Program 802 bytes
Helper Data Structures Data 230 bytes
Per-Component Data Data 15 bytes
Per-Interface Data Data 8 bytes
Per-Receptacle Data Data 10 bytes

Figure 4.14.: Memory overhead.

to the native Contiki dynamic linker, and by function calls across
components using CALL instead of a direct C call. As for the latter,
we placed the call in a loop and repeated the operation a million
times, since the single call is too quick to be measured precisely.

e The energy consumption during reconfiguration, which may increase
as a result of the additional processing required to manage compo-
nents and dependencies.

We measured processing time and energy consumption using real nodes
as opposed to simulation environments, as similar fine-grained aspects are
only partially modeled in existing simulators. Practically, we measured the
processing overhead using a JTAG programmer attached to the node to
measure the time elapsed between the execution of different instructions.
Energy consumption was instead evaluated using an Agilent 54832B oscil-
loscope and a multimeter hooked to a node, which in our case was a TMote
Sky [73]. We repeated the experiments concerning these metrics 5 times
using 3 different nodes, and averaged the results. New components have
been injected via a USB cable attached to the node, to avoid any bias due
to the radio.

To gather the above metrics, we employed a Blinker component offer-
ing a single interface with two operations to start/stop the blinking of a
led. We varied the number of receptacles within the component itself to
evaluate our performance w.r.t. a varying number of dependencies. The
processing within Blinker is the same as in [138], and is quite simple being
described by only 17 lines of C code. This choice was intentional, as simpler
components make the overhead more evident w.r.t. the above metrics.

Results. Figure 4.14 shows the memory overhead, which turns out to be
quite reasonable, w.r.t. both program and data memory. As for the former,
the binary code deployed in addition to the operating system accounts for

85

4. Component Models for Software Reconfiguration

Function Type Time Overhead %
Empty 157.5%

50 integer additions 20.1%

3 ¢ 3 matriz inversion 5.4%

5 ¢ 5 matriz inversion 0.98%
Fourier Transform (100 input values) 0.78%
Fourier Transform (1000 input values) 0.03%

Figure 4.15.: FIGARO calls across components vs. native C function calls.

Time (s) Energy (mJ)
g
E
T T
5 £ g 2 g
g = = = <
% [} P =} &
2 @) @)
Q0 2 > 2 >
A < ® < ©)
1 0.518 sec | +0.019 | 3.45 +0.07
2 0.520 sec | +0.021 | 3.45 +0.07
3 0.525 sec | +0.026 | 3.47 +0.09
4 0.528 sec | +0.029 | 3.49 +0.11
5 0.532 sec | +0.033 3.5 +0.12

Figure 4.16.: Time and energy to install the Blinker component.

less than 2 Kbytes in total. This cost, along with the overhead due to
helper data structures, is paid once and for all, regardless of the number of
components and the number of their interfaces/receptacles. Conversely, the
bottom section of Figure 4.14 reports the memory consumption incurred
every time a component, interface, or receptacle is loaded on a node. In
this case as well, the overhead is fairly limited. Based on these results, we
maintain that our approach can scale to a sizable number of components
simultaneously running on the same node, presumably well beyond the
current needs of common WSN applications. As for the amount of code to
be deployed, we compared the size of the binary image of the plain-Contiki
Blinker process used in [138] against ours, implemented as a FIGARO
component. The size increases from 1.01 Kbytes to 1.11 Kbytes, yielding
an overhead of only 9.98%. We believe this value is good, given the little
complexity of the processing at hand.

The overhead in performing calls across components against direct C
function calls is reported in Figure 4.15. Interestingly, when the function
called does not contain any real processing the overhead due to using CALL

86

4.9. Related Work

is high. In this case, performing the look-up of the Contiki service im-
plementing the requested component dominates the processing time. In
contrast, some even simple processing within the function called makes
this metric drop abruptly. For instance, in the case of a Fourier transform
(e.g., employed to perform in-network processing in WSN applications such
as [90]) the overhead becomes less than 1%. Therefore, although our pro-
gramming model does introduce an overhead, the performance penalty is
expected to be negligible in real applications.

By the same token, the time for installing a new component, and hence
the energy consumed during this process, increases only marginally w.r.t.
the standard Contiki dynamic linker, as shown in Figure 4.16 for a varying
number of dependencies in the component being installed. Note how these
values are independent of the size of the component being deployed, as
they represent the overhead imposed by our run-time layer in addition to
the Contiki dynamic linker, which we left unmodified. Also, they scale well
with the number of dependencies, showing only a very small increase. To
place Figure 4.16 in context, consider that the energy overhead in the case
with 5 dependencies is equal to only about 5% of the total energy required
to transmit a 32-byte message.

4.9. Related Work

We first compare our work on RUNES against alternative solutions provid-
ing support for developing pervasive or embedded applications. Next, we
take a closer look at the current state of the art in software reconfiguration
for WSNs, and compare our contributions against relevant examples.

4.9.1. System Support for Pervasive Embedded Applications

There is a substantial body of literature on reconfigurable middleware sys-
tems for pervasive applications. Grawvity [139] is a component model built
on top of the Open Services Gateway Initiative (OSGi) Framework [140].
P2PComp [141] is a lightweight service-oriented component model for mo-
bile devices which is also built using OSGi; it provides location independent
synchronous and asynchronous communication between components. The
Dynamically Programmable and Reconfigurable Software (DPRS) architec-
ture [142] is a component-based design for dynamically programmable and
reconfigurable systems. PCOM [137] is a distributed component model

87

4. Component Models for Software Reconfiguration

for pervasive computing. It allows for designing applications as a collec-
tion of potentially distributed components, which make their dependencies
explicit. If those dependencies are invalidated, PCOM can attempt to au-
tomatically adapt by detecting alternatives according to various strategies.
FarGo-DA [143] is a distributed component model that uses logical mobility
to allow disconnected operation. The Software Dock [144] is an agent-based
software deployment network that allows negotiation between software pro-
ducers and consumers. THINK [145] presents an approach for building
component-based operating system kernels. And finally, one.world [146] is
a system for pervasive applications that supports dynamic service compo-
sition, migration of applications and discovery of context.

In summary, there are two main differences between the approaches out-
lined above and our work on RUNES. The first difference relates to gener-
ality: RUNES is a generic software fabric that is designed from the ground
up to be implementable on a wide range of devices, and to allow the imple-
mentation of a large number of very different primitives. This is an essential
requirement of pervasive applications such as disaster management. The
second difference relates to our two-layer architecture in which systems are
built by selecting (and dynamically reconfiguring) appropriate middleware
and application components on top of the middleware kernel. This capa-
bility, lacking in other works, results in significantly greater flexibility than
current systems offer.

4.9.2. Software Reconfiguration in WSNs

Different component-based programming models are specifically targeted
at embedded systems. These are not, however, necessarily networked. Ex-
amples include Pebble [147], PECOS [148], PBO [149], SaveCCM [150] and
Koala [151]. Most of these are build-time only technologies—components
are not visible at run-time and therefore these systems do not support
dynamic reconfiguration.

In WSNs, several solutions enable the installation of new code on indi-
vidual nodes. At the operating system level, besides Contiki also the SOS
operating system [57] provides dynamic linking, while FlexCup [41] enables
this functionality in TinyOS [42], where this was initially not possible.
These solutions concentrate on efficient dynamic linking, and are therefore
complementary to our approach. In principle, both the Contiki version of
RUNES and F1GARO can be re-applied in SOS and FlexCup with minimal
modifications, as they are mostly based on standard C macros. We chose

88

4.9. Related Work

Contiki because, unlike FlexCup, it preserves the application state without
requiring a reboot after code loading and, in comparison to SOS, its service
functionality eases the implementation of our component models.

Alternative approaches to software reconfiguration use interpreted lan-
guages and virtual machines (e.g., [50,52,53]), with some also allowing for
extensible instruction sets, e.g, [51]. Nonetheless, the trade-offs between
interpreting code and executing native binaries, as discussed in [50], sug-
gest the use of the latter for long-running systems where reconfiguration is
a not so frequent event, as in the scenarios we target.

Most importantly, none of the above approaches provides support to the
programmer for managing the interactions among the different functional-
ity on a node during reconfiguration. Indeed, even though component mod-
els for WSN programming have already been proposed (e.g., [28,152]), they
do not include any dedicated construct for managing mutable component
configurations. Conversely, in FIGARO we made component dependencies
and versions first-class citizens in the programming model, and designed the
reconfiguration mechanism by balancing automation and customizability.

89

5. The TeenyLIME Middleware

In the sense-and-react scenarios we outlined in Chapter 1, actuators are
physically interspersed with the sensors that trigger them. This solution
mazimizes localized interactions, improving resource utilization and reduc-
ing latency w.r.t. solutions with a centralized sink. Nevertheless, applica-
tion development becomes more complex: the control logic must be embedded
in the network, and coordination among multiple tasks is needed. The latter
requirement usually demands for both reactive and proactive interactions.
Unfortunately, mainstream WSN programming frameworks seldom provide
similar features.

In this chapter we present the design, implementation, and evaluation
of TeenyLIME, a WSN middleware designed to address the above chal-
lenges. TeenyLLIME provides programmers with the high-level abstraction
of a tuple space, enabling data sharing among different software compo-
nents on the same node, as well as neighboring devices. TeenyLIME yields
simpler, cleaner, and more reusable implementations, at the cost of only
a very limited decrease in performance. We support these claims through
a source-level, quantitative comparison between implementations based on
TeenyLIME and on mainstream approaches, and by analyzing measures of
processing overhead and power consumption obtained through cycle-accurate
emulation. The results presented here have been published in [7, 8].

5.1. Introduction

The sense-and-react pattern we described in the introductory part of this
thesis has a relevant impact on application development. Appropriate pro-
gramming constructs are required to deal with the increased complexity of
specifying how multiple tasks coordinate to accomplish the desired global
functionality. Dedicated abstractions must be provided to describe the
stateful interactions commonly present in control mechanisms. Moreover,

91

5. The TeenyLIME Middleware

the ability to locally react based on external stimuli is as important as—if
not more important than—the ability to gather data. These aspects are
discussed in more detail in Section 5.2, where we describe a paradigmatic
sense-and-react application. In addition, in the same section we also illus-
trate how many characteristics germane to sense-and-react are common to
sense-only applications and generic mechanisms, e.g., such as those in the
system services layer we described in Section 2.2.

To meet the requirements above, we developed TeenyLIME: a WSN mid-
dleware whose foundation is the notion of tuple space |29], a repository of
elementary sequences of typed fields called tuples. This is revisited in
TeenyLIME by considering WSN requirements (e.g., resource consumption
and reliability) in the programming model. TeenyLIME adopts a minimal-
ist approach: a limited number of powerful operations, with a simple and
yet efficient implementation, allow for the development of both applications
and system services. An overview of TeenyLLIME’s core concepts and ap-
plication programming interface (API) is provided in Section 5.3. Instead,
Section 5.4 illustrates concretely the power of TeenyLIME’s abstractions by
showing them in action in the design of the aforementioned sense-and-react
application, as well as by briefly describing how TeenyLIME can be applied
to the development of sense-only applications and system services.

At the same time, the development of WSN middleware must reconcile
the need for expressive power and ease of programming with the reality
of resource-scarce devices. In this respect, Section 5.5 provides a concise
account of the TeenyLIME internal architecture and implementation.

Section 5.6 evaluates quantitatively TeenyLIME along two dimensions.
First, we assess the effectiveness of its programming model in different con-
texts. We examine the implementation of the reference application, whose
design we sketched in Section 5.4, and report about uses of TeenyLIME
in sense-only applications and for implementing system services. We de-
rive code metrics for the TeenyLIME implementations and their counter-
parts, implemented using plain nesC or the higher-level support provided
by Hood [21]. Results indicate that the expressive power of TeenyLIME
yields cleaner, simpler, and more compact code. Second, we analyze the
TeenyLIME implementation. We compare its overhead, in terms of process-
ing time and energy consumption, against existing programming platforms.
The results gathered using cycle-accurate emulation demonstrate that the
beneficial higher level of abstraction provided by TeenyLIME comes with
only a very limited overhead.

92

5.2. Scenario and Motivation

5.2. Scenario and Motivation

As a paradigmatic example, here we consider building monitoring and con-
trol. Modern buildings typically focus on the following functionality:

e heating, ventilation, and air conditioning (HVAC [27]) systems pro-
vide fine-grained control of indoor air quality;

e emergency control systems provide guidance and first response, e.g.,
in case of fire [100].

These applications, as any other embedded control system, feature four
main components, illustrated in Figure 5.1. The user preferences represent
the high-level system goals, e.g., the desired temperature in the building
and the need to limit fire spreading. Sensing devices gather data from
the environment and monitor relevant variables, in our case, humidity and
temperature sensors monitor air quality, while smoke and temperature de-
tectors recognize the presence of a fire. Actuator devices perform actions
affecting the environment under control: air conditioners adjust the air
quality, while water sprinklers and emergency bells are used in case of fire.
Control laws map the data sensed to the actions performed, to meet the
user preferences. In our case, a (simplified) control loop may activate air
conditioners when temperature deviates significantly from the user pref-
erences, tuning this action based on the humidity in the same location.
Further, it may immediately activate emergency bells when the tempera-
ture increases above a safety threshold, but operate water sprinklers only if
smoke detectors actually report the presence of fire. Oscillating behaviors
must be avoided in all situations.

Application development in these scenarios is complicated not only by
the peculiarities of devices, but also by the complexity of their interactions.
The many requirements can be grouped into high-level challenges:

e Localized computations [153] must be privileged, to keep processing
close to where sensing or actuation occurs. In sense-and-react appli-
cations it is indeed unreasonable to funnel all the sensed data to a
single base-station, as this may negatively affect latency and reliabil-
ity without any significant advantage [2].

e The system performs multiple tasks in parallel. In our example, two
control laws coexist: one for air conditioning, the other for handling

93

5. The TeenyLIME Middleware

£ Control Laws

®: Actuation B N -~ Sensing

> User >

i1

= r o o l l‘ -~

Q: 5 3 Temperature

£ 3 < > 4
: || Sensors

3 -%ﬁ' HlP =< 21 smoke

S B Emergency‘ Detectors | :

I.E Water Bells " = i
: |Sprinklers Air Humidity
E Conditioners Sensors :
H Actuator Devices = = Sensing Devices =

Figure 5.1.: High-level scheme of a building monitoring and control appli-
cation.

emergencies. These need to share data (e.g., temperature readings)
generated by a subset of the sensing devices.

e Differently from sense-only scenarios, sense-and-react applications of-
ten require stateful coordination, e.g., using current shared conditions
(state) to act collaboratively. This, in combination with the use of
WSNss for safety critical applications, motivates an explicit account
for reliability in the programming model.

o Reactive interactions, actions that automatically fire based on exter-
nal conditions, assume a prominent role. In our case, a temperature
reading deviating from user preferences triggers an action in both of
the two application tasks. Proactive interactions, common in many
sense-only scenarios, are still needed to gather information and fine
tune the actuation about to occur. For instance, the sprinklers in the
building ask for smoke readings before taking any action.

Note how subsets of these requirements must be accounted for also
at lower levels, below the application. For instance, localization algo-
rithms [34|—often one of the many tasks of object tracking applications [127]—
must rely on localized interactions, as most of the approaches in the field
base the position estimation on data reported by nearby hosts. Similarly,
multi-hop routing mechanisms [33| require reactive interactions to adapt
to mutable network conditions, and may also exploit reliable operations

94

5.3. TeenyLIME: Basic Concepts and API

Communication Physical

Shared Tuple Space at node B

(a) Shared tuple space at node B.

(b) Shared tuple space at node A.

Figure 5.2.: Tuple space sharing in TeenyLIME.

to guarantee message delivery [154]. The TeenyLIME programming model,
described next, supports application development without losing the ability
to express system-level mechanisms.

5.3. TeenyLIME: Basic Concepts and API

TeenyLIME is based on the tuple space abstraction, originally proposed in
Linda [29] and here re-elaborated in the context of WSNs. A tuple space
is a repository of data represented as tuples, sequences of typed fields such
as (“foo”, 29). Three core Linda operations allow processes to manipulate
the tuple space by creating (out), reading (rd), and removing (in) tuples.
Tuple selection with rd and in is based on matching patterns such as
(“foo”, integer) against the tuple space content. Patterns may use either
actual or formal values, the latter serving as a kind of “wild card” matching
any data of a particular type. The resulting programming model promotes
anonymous and data-centric interactions. As such, it blends well with the
requirements posed by WSNs, where data is of paramount importance and
the identity of the individual nodes is not as significant.

In Linda, the tuple space is assumed globally accessible to all processes,

95

5. The TeenyLIME Middleware

an undesirable choice in WSNs. Instead, in TeenyLIME each node hosts a
tuple space, shared among nodes within direct (one-hop) communication
range. Sharing means that a node views its local tuple space as containing
its own tuples, plus those in the tuple spaces hosted by its neighbors, as
shown in Figure 5.2. Operations span the whole shared tuple space. For
instance, a query issued by a node may return a matching tuple found
in any tuple space in the one-hop neighborhood—including the local one.
Therefore, TeenyLIME programmers can specify interactions among nodes
abstractly, by focusing on the application logic (e.g., reading temperature
in the neighborhood) and leaving system configuration issues (e.g., tracking
node identity and presence) to the middleware.

The choice to limit sharing to one-hop neighbors is motivated by the
fact that interactions with these nodes are the most frequent in WSNs.
Whitehouse et al. analyzed 16 publicly available applications to determine
the node interactions, and

“All neighborhoods discovered were one-hop neighborhoods [...]"
([21], p.9)

Interestingly, all neighborhoods were of limited size (at most ten nodes),
and were used either directly at the application level to gain access to nearby
information, or as a building block for lower-level system services, e.g., to
implement multi-hop routing. These considerations also support our de-
sign choice, drawing the foundations for a highly-reusable programming
model supported a by lightweight, scalable implementation. Furthermore,
it should be noted that the applications considered in [21] were conven-
tional sense-only ones. Sense-and-react applications exacerbate the need
for localized interactions [153], and are therefore expected to benefit even
more from our design. As a result, the TeenyLIME programming model
can be used in many contexts, ranging from sense-and-react to sense-only,
and from application-level to system-level.

Figure 5.3 shows the TeenyLIME API. While in principle the program-
ming model is independent of the node platform, we present here the API
in nesC [28], as our middleware is currently built on top of TinyOS [42].
The interface provides the operations to manipulate TeenyLLIME’s shared
tuple space. The first three operations correspond to the Linda operations
discussed earlier, while rdg and ing are variants (as in [155]) that return
all matching tuples, instead of a single match.

TeenyLIME operations are asynchronous, allowing the application to

96

5.3. TeenyLIME: Basic Concepts and API

interface TupleSpace {

// Standard tuple space operations

command void out (TLOpId_t* opId, bool reliable,
TLTarget_t target, tuple *tuple);

command void rd(TLOpId_t* opId, bool reliable,
TLTarget_t target, tuple *pattern);

command void in(TLOpId_t* opId, bool reliable,
TLTarget_t target, tuple *pattern);

// Group operations

command void rdg(TLOpId_t* opId, bool reliable,
TLTarget_t target, tuple *pattern);

command void ing(TLOpId_t* opId, bool reliable,
TLTarget_t target, tuple *pattern);

// Managing reactions

command void addReaction(TLOpId_t* opId, bool reliable,
TLTarget_t target, tuple *pattern);

command void removeReaction(TLOpId_t operationID);

// Returning tuples
event void tupleReady (TLOpId_t operationId,
tuple *tuples, uint8_t number);

// Request to reify a capability tuple
event void reifyCapabilityTuple(tuple *capTuple, tuple *pattern);
}

interface NodeTuple {
// Asks for a tuple containing node-level system information

event tuple* reifyNodeTuple();
}

Figure 5.3.: TeenyLIME APIL.

continue while the middleware completes the operation execution!. This

approach blends well with the event-driven concurrency model of nesC.
Therefore, all operations are split-phase [28]: the operation is issued, and
later the tupleReady event is signaled when the operation completes. The
tupleReady event contains an identifier (or a special constant TL_0P_FAIL
in case of error), allowing the application to associate the event with its
earlier request. Depending on the operation, one or more tuples, indicated
by the number parameter, may also be contained in the event.

Tn most Linda systems rd and in are blocking, i.e., they do not return until a tuple
is matched.

97

5. The TeenyLIME Middleware

The operations provided in the API deserve further discussion. However,
instead of describing them in isolation, in the next section we discuss them
“in action”, i.e., hand-in-hand with the TeenyLimE-based design of our
reference application.

5.4. Application Development with TeenyLIME

This section describes how the TeenyLIME programming model can be
used to program sense-and-react applications as well as sense-only ones
and system services.

5.4.1. Sense-and-react Applications

As discussed in Section 5.2, our reference application contains two sub-
tasks, one managing the air conditioning system (HVAC) and the other for
emergency situations such as fire. Each sub-task involves different types of
nodes, e.g., humidity sensors in the HVAC sub-task, and smoke detectors
to address fire emergencies. Temperature sensors are instead used in both
sub-tasks. For all types of nodes, the application processing has been im-
plemented in a single component sitting entirely on top of the TupleSpace
interface, which masks completely TinyOS’ generic communication layer.
An additional component is employed to interact with the sensors/actua-
tors attached to the node.

In the following, we explain the rest of our reference application’s de-
sign and implementation. We illustrate how we exploit data sharing and
related operations, and how interactions among nodes benefit from the
WSN-gpecific API features. Throughout, the reference application is used
as a motivation and source of examples for the discussion.

Sharing Application Data through Proactive and Reactive Inter-
actions. In our design, sensed data and actuating commands take the
form of tuples. These are shared across nodes (and components on the
same node) to enable coordination of activities as well as data communi-
cation. Access to this data can occur proactively, e.g., using the rd and in
operations. However, TeenyLIME supports also a notion of reaction, a code
fragment whose execution is automatically triggered upon the appearance
of a given tuple anywhere in the shared tuple space. The tuples of interest
are identified through pattern matching, and the tupleReady event is used
to signal a reaction firing. This provides an easy and yet very powerful

98

5.4. Application Development with TeenyLIME

Temperature Emergency Water Water Smoke
Sensors Bell Sprinkler Sprinkler Detectors

out(<TEMPERA'i'UF{E,50>) | .

‘ 1 1
1 - 1
) reactign firing :
ﬁ — rdg(<SMOKE, ?bool)
reaction firing ' <SMOKE trues
activate :
bell activate |
sprinkler

out(<activate>) reaction

firing
activate
sprinkler

Figure 5.4.: Sequence of operations to cope with fire. Notified about in-
creased temperature, a node controlling water sprinklers queries the smoke
detectors to verify the presence of fire. If necessary, it sends a command
activating nearby sprinklers.

way to monitor changes in the neighbors’ data through the content of the
shared tuple space.

Figure 5.4 uses the fire control sub-task to illustrate how proactive and
reactive interactions are used together to trigger notifications, to perform
distributed operations for gathering data from neighboring nodes, and to
request actuation commands. Notably, similar patterns of interactions re-
cur in both sub-tasks of our application.

Both emergency bells and water sprinklers have a reaction registered on
their neighbors, watching for temperature tuples, as shown in the code
in Figure 5.5. Temperature sensors periodically take a sample and pack
it in a tuple, which is then stored in the local tuple space, as shown in
Figure 5.6. Insertion is accomplished using out by setting the target
parameter to TL_LOCAL, which entails outputting the tuple to the local tuple
space. This operation, by virtue of one-hop sharing, automatically triggers
all the aforementioned reactions?, which process the tuple contained in the
event tupleReady.

However, different types of actuator nodes behave differently when high

We assume that actuators are interested in all temperature values. We show later
how notifications can be triggered only when temperature is above (or below) a
given threshold.

99

5. The TeenyLIME Middleware

TLOpId_t reactlId;
command result_t StdControl.start() {
tuple tempTemplate = newTuple (2, actualField_uint16 (TEMPERATURE),
formalField (TYPE_UINT16_T));
call TS.addReaction(&reactId, TRUE,
TL_NEIGHBORHOOD, &tempTemplate);
return SUCCESS;
}
event void TS.tupleReady(TLOpId_t operationId,
tuple #*tuples, uint8_t number) {
// Notification triggered

Figure 5.5.: TeenyLIME code for an actuator node interested in temperature
values.

command result_t StdControl.start() {
return call SensingTimer.start (TIMER_REPEAT, SENSING_TIMER);

}

event result_t SensingTimer.fired() {
return call TemperatureSensor.getData();

}

event result_t TemperatureSensor.dataReady(uintl6_t reading)q
tuple tempValue = newTuple(2, actualField_uint16 (TEMPERATURE),

actualField_uintl16é(reading));

call TupleSpace.out(NULL, FALSE, TL_LOCAL, &tempValue);
return SUCCESS;

}

Figure 5.6.: TeenyLIME code for a temperature node.

temperatures are detected. The node hosting the emergency bell imme-
diately activates its device. Instead, the water sprinkler node proceeds to
verify the presence of fire, as shown in Figure 5.4. The latter behavior,
specified as part of the reaction code, consists of proactively gathering the
readings from nearby smoke detectors, using a rdg restricted (by setting
target to TL_NEIGHBORHOOD) to the union of their tuple spaces. If fire is
reported, the water sprinkler node requests activation of nearby sprinklers
through a two-step process that relies on reactions as well. The node re-
questing actuation inserts a tuple representing the command on the nodes
where the activation must occur, using out with target set to the sprin-
kler node address. The presence of this tuple triggers a locally-installed
reaction delivering the command tuple to the application, which reads the
tuple fields and operates the actuator device accordingly.

100

5.4. Application Development with TeenyLIME

Reliable Operations. Since fire detection requires the maximum degree
of reliability, its implementation takes advantage of reliable operations for
guaranteeing correct communication of reactions and query results of the
rdg operation on smoke detectors and of the out operations towards actu-
ators. In this case, TeenyLIME makes sure that all involved network-level
operations are performed correctly. Several solutions can be employed to
implement this feature, as discussed in Section 5.5.

The HVAC sub-task, instead, uses reliable operations only for actuation,
but gathers data using non-reliable rdg operations. Furthermore, in the
HVAC sub-task the system runs the risk of oscillating behavior if multiple
nodes controlling air conditioners in the same location (e.g., same floor)
independently run the control algorithm. To prevent this, we designed a
mechanism to assign a master role to only one of the co-located controller
nodes, achieving a sort of distributed mutual exclusion. The master node is
identified as the one holding a special token tuple, periodically exchanged
among co-located nodes to achieve a form of load-balancing. As a token
loss implies no controller acting as the master, strong guarantees on token
transfer are imperative. Therefore, the token exchange from the previ-
ous to the new master node is accomplished using a reliable in operation
performed by the latter.

As shown in Figure 5.3, the selection between unreliable and reliable
is done using a flag, available in most operations. The former offers a
lightweight form of best-effort communication suitable for state-less appli-
cations (e.g., data collection), while the latter offer stronger guarantees to
applications requiring stateful interactions.

Sharing System Data. Coordination of activities across heterogeneous
nodes sometimes relies on system information, such as the node location or
capabilities. In TeenyLIME, this information is made available in the same
way as application data, i.e., as tuples shared among neighboring nodes.
In our scenario, these tuples contain a field describing the (logical) location
(e.g., a room) where a node is deployed, and the sensor/actuator devices
attached. Which data to provide is defined by the application programmer,
by specifying the body of the handler for the reifyNodeTuple event, shown
in Figure 5.3. This event is signaled periodically by the TeenyLIME run-
time, and the execution of the corresponding handler regenerates the tuple
with new application-defined values. In our implementation, the local tuple
space on every node contains tuples describing each of its neighbors. This
is accomplished by appending the Node tuple to all outgoing messages;

101

5. The TeenyLIME Middleware

therefore, when the message is overheard by neighbors, they extract the
Node tuple and insert it locally. This way, it is easy to query the tuple
space to obtain information on neighbors with specific capabilities.

Filtering Data. In many WSN applications, including ours, action must
be taken only when a sensed value crosses a given threshold. Nodes con-
trolling air conditioners must receive notifications when temperature falls
outside a user-defined threshold. Similarly, the nodes controlling water
sprinklers and emergency bells described previously only need to receive
notifications when temperature rises above a safety threshold. These con-
ditions require a predicate over tuple field values—something that cannot
be achieved with the standard Linda matching semantics, which is based
on either types or exact values. In TeenyLIME, patterns are extended to
support custom matching semantics on a per-field basis. For instance, the
requirement concerning safety thresholds can be expressed concisely by us-
ing range matching, requiring the temperature field to be greater than a
given parameter, as in:

tuple temperatureTempl = newTuple(2, actualField_uint16(TEMPERATURE),

greaterField (TEMPERATURE_SAFETY));
where TEMPERATURE_SAFETY is a constant representing a specific safety
threshold. The second field in the tuple above uses the default range match-
ing, which the programmer can easily redefine.

Note how the issue is not simply one of expressive power, as it deeply
affects communication. Without filtering, the programmer can only spec-
ify a generic pattern matching any temperature. All matching, outputted
tuples would be transmitted (in our case, each time a new sample is avail-
able) and frequently discarded as out of range by the reaction code of the
requester in Figure 5.5, wasting significant communication resources.

Dealing with Short-Lived Data. In some cases, sensor data remain
useful only for a limited time after collection. For instance, an emergency
bell is not interested in temperature values sensed an hour before. Instead,
the same data may be of interest for a component that is periodically run
to build a day-long analysis of temperature trends.

In TeenyLLIME, time is divided into epochs of constant length, and every
data tuple is stamped with an application-accessible field containing the
current epoch value. Three helper functions allow the application develop-
ers to deal with time:

setFreshness(pattern,freshness)
getFreshness (tuple)

102

5.4. Application Development with TeenyLIME

command result_t StdControl.start (){
tuple capTSmoke = newCapabilityTuple(2, actualField_uint16 (SMOKE),
formalField (TYPE_BOOL));
call TupleSpace.out (NULL, FALSE, TL_LOCAL, &capTSmoke);
return SUCCESS;
¥
event void TupleSpace.reifyCapabilityTuple(tuple *ct, tuple *p){
// Request a reading from the sensor
return call SmokeDetector.getData();
¥
event result_t SmokeDetector.dataReady(uintl6_t reading){
// Sensor reading ready
tuple smokeValue = newTuple(2, actualField_uint16 (SMOKE),
actualField_bool(reading));
call TS.out (NULL, FALSE, TL_LOCAL, &smokeValue);
return SUCCESS;
¥

Figure 5.7.: TeenyLIME code for a smoke detector node. Initialization
routines and error handling are not shown, capitalized keywords represent
constant values.

setExpireIn(tuple,expiration)

The first customizes a pattern, similarly to range matching above, to impose
the additional constraint to match tuples no more than freshness epochs
old. If a pattern does not specify freshness, it matches any tuple regardless
of its age. The second function returns the number of epochs elapsed since
the tuple was created. Finally, the third specifies how many epochs the
tuple is allowed to stay in the tuple space. When the timeout associated
to the tuple expires, the tuple is automatically removed.

Generating Data Efficiently. In our application, humidity sensors and
smoke detectors need not be monitored continuously: their data is ac-
cessed proactively only when actuation is about to occur. However, when
a sensed value is requested (e.g., by issuing a rd) fresh-enough data must
be present in the tuple space. If these data are only seldom utilized, the
energy required to keep tuples fresh is mostly wasted. An alternative is
to require that the programmer encodes requests to perform sensing in a
way similar to actuation commands, enabling the receiving node to perform
sensing on-demand and return the result. However, this solution requires
extra programming effort, is error-prone, adds processing overhead, and is
therefore equally undesirable.

To deal with these (frequent) situations, TeenyLIME provides the ability

103

5. The TeenyLIME Middleware

Water Smoke
Sprinkler Detectors

reifyCapabilityTuple()

rd(<SMOKE,?bool>)
getData()

out(<SMOKE, true>)

I
<SMOKE, true> :
I

Figure 5.8.: Processing of capability tuples.

to output capability tuples indicating that a device has the capability to
produce data of a given pattern. A code example for a smoke detector
is shown in Figure 5.7. When a query is remotely issued with a pattern
matching a capability tuple, the reifyCapabilityTuple event is signaled.
This reports the pattern included in the query and the matching capability
tuple. The application handles this event by taking a fresh reading and
outputting the actual data to the tuple space. The sequence of operations
is depicted in Figure 5.8. Note how, from the perspective of the data
consumer, nothing changes. Instead, on the side of the data producer,
capability tuples enable considerable energy savings as the readings are
taken only on-demand, without the need to maintain constantly fresh data
in the tuple space.

Interestingly, capability tuples can be generalized to allow any action
to be taken by the data producer. For example, matching a pattern to a
capability tuple may invoke any application function (e.g., computing the
average of all recent temperature tuples), whose results are inserted in the
tuple space and returned to the requester.

5.4.2. Sense-only Applications and System Services

The abstractions offered by TeenyLIME support a wide range of settings.
To demonstrate this, we implemented a well known tracking application
and a multi-hop routing protocol on top of TeenyLiME. The former has
been widely recognized in the WSN literature as a benchmark to test the
flexibility of programming abstractions [14,21,32|. The latter illustrates
that the one-hop operations of TeenyLIME are powerful enough to enable
the implementation of multi-hop mechanisms.

104

5.4. Application Development with TeenyLIME

Routing Tracking Localization
TupleSpace TupleSpace TupleSpace
[Routing] [Tracking] [Localization]
TeenyLIME

Figure 5.9.: Component configuration in object tracking.

Object Tracking in TeenyLIME. Object tracking is usually implemented
as the composition of three core functionality [21]: 1) a localization service
in charge of determining the node position (e.g., using a GPS receiver), i)
a multi-hop routing protocol responsible for transporting data about the
moving object to a central, fixed base-station, and #4) a tracking mecha-
nism that determines the location of the moving object based on readings
gathered from neighbors also sensing the target. As Figure 5.9 illustrates,
using TeenyLIME we can achieve full decoupling between the three compo-
nents even on a single node, i.e., no explicit interfaces are needed to con-
nect them. Instead, the various components exchange data anonymously
through the (local) tuple space. This greatly improves the re-usability of
the single functionality.

In our implementation, the Node tuple contains an encoding of the de-
vice’s physical position, and is therefore output by the localization com-
ponent. This information is therefore available to the other components
through the local tuple space. In particular, it is used by the tracking com-
ponent to evaluate the position of the moving object w.r.t. the node’s own
location. Asin [21], this component runs a simple leader election algorithm
that identifies a specific node among the ones currently sensing the target
to perform the aforementioned computation. To determine the potential
candidate nodes, distributed reactions are used to notify a node’s neighbors
when the target is within sensing range.

When the leader node needs to send data to the collection point, it
locally outputs a tuple containing the relevant information. This triggers
a reaction installed by the routing component that immediately removes
the information from the local tuple space using in, and propagates it
towards the base-station. The decision on the next hop node is made
by querying the local tuple space to identify the neighbor closest to the
intended destination, then using a remote out operation to forward the
data. The same processing is carried out on the target node, where the

105

5. The TeenyLIME Middleware

same reaction has been previously installed. This allows to deliver the
relevant data to the base station through a sequence of reaction firings and
out operations.

Multi-hop Routing in TeenyLiME. The routing component in object
tracking already gives evidence of TeenyLIME’s ability to implement multi-
hop communication. However, to better investigate this aspect, we im-
plemented Mutation Routing [156]: a protocol to route messages from a
moving source to a moving destination along a multi-hop path. Mutation
Routing has been implemented atop Hood [21], a programming abstrac-
tion where nodes in a neighborhood share data based on the application
interests. As Hood was motivated by scenarios like Mutation Routing, the
comparison is worth to be explored, as discussed in Section 5.6.

In Mutation Routing, a field of fixed sensors is deployed, and two of them
are appointed the roles of source and destination. The former sends data
to the latter through a multi-hop path. For instance, the source may be
the sensor node closest to a moving object, while the destination may be
the sensor node closest to a different moving object trying to pursue the
former. The source sends periodic updates on the moving object to the
follower. The source/destination role must be passed between neighboring
nodes as the objects move, making it difficult to maintain a multi-hop route
connecting source to destination. Indeed, as the new source (destination) is
assumed to be in communication range of the former one, a trivial solution
may be to use the old source (destination) as the upstream (downstream)
node. However, this may result in inefficient, snake-like routes. Mutation
Routing tries to adjust these routes by overhearing messages sent within
the same neighborhood. Two techniques are employed, one for detecting
the possibility to setup a local shortcut and get rid of loops, the other to
build a new path when the current one has many redundant links.

To implement Mutation Routing in TeenyLIME, we separated out the
task of passing the source (destination) role between neighboring nodes,
and re-expressed it as the passing of a token associated to a specific role.
Interestingly, to implement this processing we reused the token-based mech-
anism discussed in our reference application. Therefore, every time the cur-
rent source (destination) wants to pass its role, it makes the token available.
This will be picked by the neighboring node interested in becoming the new
source (destination). The routing mechanism in itself is fairly simple: each
node has a pointer to a neighbor which considers its upstream node, and
is associated to a cost value (e.g., the number of hops traversed) increasing

106

5.5. The TeenyLIME Middleware

Application
EI TupleSpace E

TeenyLimeM
:| LocalTupleSpace DistributedTupleSpace]:

LocalTeenyLime DistributedTeenyLime
SendTuple HReceiveTupleI

BridgeTupleSpace

TeenyLimeSerializer

TeenyLIME

Figure 5.10.: TeenyLIME component configuration.

along the source-destination path. Both information are part of the Node
tuple. A reaction similar to that used for routing in object tracking is
installed locally, and fires when a neighbor outputs a message tuple. The
local tuple space is then queried to gather the neighbors’ position on the
route. With this information, the node processing the message can real-
ize, for instance, that some intermediate nodes are no longer needed and
therefore update its upstream node, thus shortcutting the path.

5.5. The TeenyLIME Middleware

Here we briefly describe the internal architecture of the middleware, as well
as the implementation of the most relevant functionality behind the API
in Figure 5.3

5.5.1. Architecture

The design of TeenyLIME aims at enabling easy customization and exten-
sion of the middleware. Therefore, local processing, distributed processing,
and communication concerns are fully decoupled, and one aspect can be
changed without impact on the rest of the system. The component configu-
ration within the middleware is illustrated in Figure 5.10. The TupleSpace
interface is provided® by a TeenyLimeM component delegating the opera-
tions either to the LocalTeenyLime or DistributedTeenyLime component,

3Here, the meanings of “providing” and “using” are the ones defined in the TinyOS
programming model [28].

107

5. The TeenyLIME Middleware

depending on the operation target. The former essentially provides storage
space for the local tuple space, and performs tuple matching. The latter is
responsible for distributed operations (e.g., maintaining the set of remotely
installed reactions) and exchanges data with LocalTeenyLime component
through the BridgeTupleSpace interface. The actual communication is im-
plemented in the TeenyLimeSerializer component which marshalls and
un-masrshalls TeenyLIME operations into TinyOS messages.

5.5.2. Implementation

Here we focus on the most relevant aspects of our implementation, namely,
distributed reactions, capability tuples, and the customizable matching se-
mantics. Moreover, we discuss our design choices w.r.t. the support for
reliable operations.

The implementation of remote reactions currently rely on a soft-state
approach to deal with nodes joining or failing. Each node periodically
sends a message containing control data for all reactions that should be
installed on its neighbors. Upon receipt of this message, a timer associated
with installed reactions is refreshed. If and when a timer expires, the
corresponding reaction is removed. This may happen either because the
registering node became unreachable, or the application deregistered the
reaction thus no longer refreshing it. Similar approaches are widely used
in WSN, (e.g., in [37]), as they are sufficiently lightweight and effective.

The matching semantics is completely decoupled from the rest of the
implementation. Our implementation includes the standard value- and
type-based matching as well as some TeenyLiIME-specific semantics, such
as range matching described in Section 5.4. However, developers are free
to modify or add new field matching mechanisms to better meet their
requirements. To do so, they only need to define an additional constant to
distinguish the new matching criteria, define the format of a customized
tuple field if needed, and implement a boolean function that takes two fields
as parameters and returns whether the former matches the latter according
to the required semantics.

Processing capability tuples requires keeping track of the source nodes
whose query matched a local capability tuple so that, once the actual tuple
is (locally) output by the application, it can be returned to the appropriate
node. Due to nesC split-phase operations |28], this processing requires a
lot of bookkeeping code. However, we noted that this processing is the
same as if a reaction (for the same pattern as the query) were installed

108

5.6. Evaluation

by a neighbor before the application outputs the actual tuple. Our imple-
mentation leverages off this observation and installs a local reaction for the
query pattern before firing the reifyCapabilityTuple event. When the
node outputs the tuple, this matches the aforementioned reaction and is
subsequently, automatically delivered to the intended recipient. The only
additional processing required is to remove the reaction right after it fires.
This solution only requires 24 nesC lines.

Finally, TeenyLIME poses only a single requirement on the communica-
tion layers: the ability to overhear messages for populating the tuple space
with Node tuples. As a result, many existing solutions (e.g., [69,71]) can be
employed to provide reliable operations. Nevertheless, if reliability is only
seldom required, the solutions above may be overkill, e.g., because schedul-
ing mechanisms (as in |71]) negatively impact latency. To meet scenarios
where reliable operations are rare, our current prototype includes a simple
reliability scheme based on explicit acknowledgments. Messages contain
a unique identifier, reported in the corresponding acknowledgment when
transmission succeeds. Therefore, lost packets are easily recognized and re-
transmitted upon timeout expiration. Control information is piggybacked
on application messages whenever possible, to reduce overhead.

5.6. Evaluation

In this section, we compare quantitatively TeenyLIME against common
alternatives, analyzing its impact on the application source code and on
run-time performance.

5.6.1. Evaluating the Programming Model

Our objective is to assess the effectiveness of TeenyLIME in enabling a flex-
ible design and clean implementations. To the best of our knowledge, there
are no programming abstractions expressly designed for application sce-
narios such as sense-and-react. Therefore, we compare a TeenyLIME-based
implementation of our reference application against one implemented on
top of TinyOS. On the other hand, the applicability of TeenyLIME goes
beyond sense-and-react applications, and reaches into layers below the ap-
plication. We substantiate this claim by reporting about implementations
in both TeenyLiME and Hood [21], a programming abstraction designed
around similar requirements.

109

5. The TeenyLIME Middleware

bool pendingMsg, pendingReading;

TOS_Msg sendMsg, queueMsg[MAX_QUEUE_SIZE];
uint8_t nextQueueMsg, lastQueuelsg;
nodeInterest interests[MAX_AIR_CONDITIONERS];
void interest(uintl6_t node, uint8_t t,

uint16_t tShold, uinti16_t tStamp){ // ... 2}
bool isRecipient(struct InterestMsg#* msg,
uint16_t nodeId) { // ... }

bool matchesInterest(uintli6_t reading) { // ... }
bool enqueueMsg(TO0S_Msg msg) { // ... }
bool messageWaiting() { // ... }
bool sendQueuedMsg() { // ... }
command void Boot.booted () {

// ... data initialization

return call SensingTimer.start (TIMER_REPEAT, SENSING_TIMER);
}
event result_t SensingTimer.fired() {
pendingReading = TRUE;
return call TemperatureSensor.getData();
}
event TOS_MsgPtr ReceivelnterestMsg.receive(TOS_MsgPtr m) {
struct InterestMsg* payload = (struct InterestMsg*) m->data;
if (!pendingReading && isRecipient(payload, TOS_LOCAL_ADDRESS))
interest (payload->sender, payload->type,
payload ->threshold, payload->timestamp);
return m;
}
event result_t TemperatureSensor.dataReady(uintl6_t reading)q
TO0S_Msg msg;
struct DataMsg* payload = (struct DataMsg*) msg->data;
payload->sender = TOS_LOCAL_ADDRESS;
payload ->type = TEMPERATURE;
payload->value = reading;
if (!pendingMsg && matchesInterest(reading)) {
pendingMsg = TRUE;
sendMsg = msg;
if (call SendDataMsg.send (TOS_BCAST_ADDR, sizeof(struct AppMsg),
&sendMsg)!= SUCCESS) {
pendingMsg = FALSE;
}
} else if (pendingMsg)
enqueueMsg(msg);
pendingReading = FALSE;
return SUCCESS;
}
event result_t SendDataMsg.sendDone (TOS_MsgPtr msg,
result_t success) {
if (msg == sendMsg) pendingMsg = FALSE;
if (messageWaiting()) sendQueuedMsg();
return SUCCESS;
}

Figure 5.11.: A temperature node in our reference application, using plain
TinyOS. The processing above is equivalent to the TeenyLIME version in
Figure 5.6.

110

5.6. Evaluation

Explicit states Lines of code
& .8
0
& = S oy 8
E z £z
= N = 0 S
> e > e T,
g R=EN =1 B=EN = =1
g G $ | BF | °§¢8
Component = AH H AH XEH
AirConditioner 3 8 93 282 2%
MutualExclusion (ML x 2) | (ML x 3) +1 | 153 205 48%
TemperatureSensor 0 NC + 2 44 107 100%

Figure 5.12.: Comparing the TeenyLiME-based implementation against Ti-
nyOS. ML represents the maximum number of co-located air conditioners
needing to exchange the same token tuple, NC represents the maximum
number of air conditioners around a temperature sensor.

Reference Application. In the TinyOS version of our reference appli-
cation, each type of node (e.g., temperature sensors or air conditioners)
has a component configuration similar to the one mentioned in Section 5.4,
where however TeenyLIME is replaced by the TinyOS GenericComm com-
ponent?. However, the TinyOS-based implementation is far more complex.
The reader can informally verify this statement by visually comparing the
excerpt of TinyOS code for a temperature sensor in Figure 5.11 against the
complete (and much simpler) TeenyLIME-based equivalent shown earlier in
Figure 5.6. The superior expressive power of Teeny LIME manifests itself in
several aspects:

e Developers using plain TinyOS must keep track within the applica-
tion code of all the potential data consumers. This requires several
dedicated functions, such as matchesInterest() in Figure 5.11. Us-
ing TeenyLIME, the same functionality is achieved using reactions:
no application-level bookkeeping is required.

e Figure 5.11 contains two separate execution flows: one begins when a
message is received (ReceiveInterestMsg.receive), the other when
a reading from the sensing device is ready (TemperatureSensor.da-
taReady). These two flows are not at all evident in the code, due to
nesC split-phase operations [28]. Thus, maintenance and debugging

4Or with our reliability component if reliable interactions, not natively supported by
TinyOS, are required by the application. We elaborate further on reliability in Sec-
tion 5.6.2.

111

5. The TeenyLIME Middleware

are greatly complicated [64]. This problem is significantly alleviated
using TeenyLIME, as only the latter execution flow is necessary.

e Distributed processing forces TinyOS programmers to delve into the
details of message transmission, parsing, and buffering, therefore mix-
ing communication aspects with the application semantics. Instead,
the TeenyLIME component in Figure 5.6 contains only application-
specific processing related to the actual data of interest.

e As a consequence of all the above, TinyOS programmers must man-
age state variables to deal with nearby air conditioners (interests),
the sensing device (pendingReading), and the radio (pendingMsg).
These can easily be source of race conditions [28]. Conversely, in
TeenyLIME these aspects are either handled by the middleware, or
no longer required.

A good way to assess the complexity of implementations is to analyze
them as state machines and count the number of explicit application states,
as in [21]|. These are typically stored in state variables, modified by com-
mands and event handlers to express state transitions. The higher the num-
ber of application states, the harder it is to express state transitions [64],
and the more complex and error-prone applications become.

Figure 5.12 reports this and other metrics for the temperature sensor
and other components of our sense-and-react application, showing that
the advantages of TeenyLIME hold for all the (diverse) tasks of our appli-
cation. For instance, the plain-TinyOS component implementing the air
conditioner control law has 8 explicit application states, whereas the Teeny-
LiME-based one has only 3. The reduction is due to the aforementioned
ability of TeenyLIME to hide communication details, here complemented
by the ability to express data filtering as patterns. The former avoids the
use of several state variables, while the latter delegates most of the data
processing to the middleware. Nicely, the reduction of explicit states in the
application code causes the number of lines of code to decrease as well, as
shown in the second column of Figure 5.12. Indeed, fewer state transitions,
and therefore far less bookkeeping code, are needed.

It is worth noting that the above simplifications are not accomplished
by remowving application information. Doing so would indeed affect the ap-
plication semantics. Rather, they are obtained by moving information and
related processing from the application components into TeenyLiME. This
is not possible using plain TinyOS, as its abstractions provide only message

112

5.6. Evaluation

passing and do not explicitly represent state. This is instead achieved in
TeenyLIME using the tuple space, as its content is persistent. For instance,
a reading tuple output by a temperature sensor node represents its current
state and remains in its tuple space until a new reading becomes available.

To quantify this aspect, the rightmost column in Figure 5.12 indicates
the amount of information that can be moved from the application com-
ponent into TeenyLIME, expressed as the percentage ratio between the
TeenyLiME-based and the TinyOS-based applications. We compute it by
looking at the per-component storage of global variables concerned with
application data. The results confirm the reasoning above, showing that
a considerable portion of the application state can be managed inside the
middleware. Remarkably, all the application data and related processing
for a temperature sensor can be moved into the tuple space, as shown by
comparing Figure 5.6 and 5.11.

The advantages above come at the price of a slight increase in the size of
the binary code deployed on the motes. Considering a MICA2 mote as com-
pilation target, the code of a temperature node occupies 29 Kbytes using
plain TinyOS and 38 Kbytes using TeenyLIME (including the middleware
itself). These figures increase to 33 Kbytes and 41 Kbytes, respectively, for
the air conditioner. We note, however, that the latter is a complex com-
ponent, and yet it remains well within the limits imposed by commercially
available sensor platforms (e.g., 128 Kbytes for MICAZ2).

As for the occupation of random access memory on the WSN node, our
TeenyLIME implementation is fully configurable in terms of i) maximum
number of tuples stored in the local tuple space, ii) maximum number
of registered reactions, and iii) maximum number of tuples packed in a
single physical message. As of today, our most efficient implementation
targeting the TMote Sky node |73] can deal with about 100 tuples with 4
fields each, keep about 10 active reactions, and pack at most 5 tuples in a
physical message while consuming less than 4 Kbytes of RAM. Considering
that TinyOS occupies about 1 Kbyte, 5 Kbytes are still available to the
application out of the 10 Kbytes available on a TMote Sky in total. As most
of the application data will be managed by TeenyLIME itself, as observed
above, we maintain that this performance well addresses the limitations of
today’s WSN hardware.

Sense-only applications and system services. TeenyLIME provides
relevant benefits also to the development of sense-only applications and
system-level functionality. We support this statement by illustrating in-

113

5. The TeenyLIME Middleware

sights obtained by re-implementing some of the applications used in [21]
to evaluate Hood, a programming abstraction geared towards sense-only
applications and system mechanisms that, like TeenyLIME, focuses on one-
hop interactions. Notably, by limiting ourselves to sense-only (instead of
sense-and-react) applications, and comparing against Hood on the same ap-
plications used for its evaluation, we put ourselves in the most challenging
situation.

Specifically, we consider the object tracking application and the multi-
hop routing protocol we described in Section 5.4.2. In these applications,
the evaluation using the same gquantitative metrics considered earlier for
plain-TinyOS applications shows that TeenyLIME achieves performance
comparable to Hood. Nonetheless, we can also draw qualitative considera-
tions showing that TeenyLIME yields cleaner and more reusable designs:

e TeenyLIME achieves a more flexible software architecture w.r.t. Hood.
In Hood, the three components implementing object tracking need to
be wired together using dedicated nesC interfaces. Therefore, adding
a further component (e.g., to log the position of the moving object on
external memory) requires modifications in several places. Instead, in
TeenyLIME the three components are fully decoupled, and exchange
data anonymously through the local tuple space. Thus, adding a
logging component can be easily achieved without affecting the rest
of the application.

o TeenyLIME fosters code re-use to a great extent. In Hood the pro-
cessing to pass the source (destination) role between neighboring de-
vices is interspersed with message processing, preventing its reuse.
In a TeenyLimMmE-based implementation, this processing can be ac-
complished by reusing as is the component implementing the token-
based, mutual exclusion mechanism described in Section 5.4. Simply,
we create a token for each role at system start-up, exchanged based
on the presence of the moving target close to a given node.

e TeenyLIME’s one-hop shared tuple space and associated operations
are sufficiently powerful to express multi-hop mechanisms. In both
Mutation Routing and the geographical routing component of ob-
ject tracking, messages are easily described as tuples. At each hop,
these are output to the tuple space of the next-hop node, where a
previously-installed reaction delivers the tuple to the routing com-
ponent. There, the subsequent forwarding to the next-hop node is

114

5.6. Evaluation

determined based on the status of neighboring devices, as reflected
by the information locally available in the tuple space. As a result,
all the routing decisions are encapsulated in the tupleReady event
handler. This provides an easy and clean way to implement this
functionality that cannot be achieved in Hood due to the absence of
abstractions to describe the node state.

The observations above confirm that TeenyLIME’s benefits in terms of
better design and simpler code hold not only for the development of the
application logic in sense-and-react scenarios, but also for sense-only appli-
cations and system services.

5.6.2. Evaluating the Middleware Implementation

To verify that the advantages we identified do not negatively affect the
system performance, we extend our evaluation beyond the programming
model, into TeenyLIME’s implementation. Specifically, a middleware layer
may impact the network overhead and erecution time, due to additional
processing w.r.t. a plain TinyOS implementation. As a consequence, the
system lifetime may decrease as well. The latter is key in WSNs, as nodes
are usually battery-powered and must operate unattended for long periods.

To investigate the above concerns, we conducted experiments using A-
vrora [157], an instruction-level emulator for WSNs equipped with a pre-
cise energy model. The latter is based on experimental data relative to
MICA2 [72] nodes, a widespread hardware platform for WSNs. This ap-
proach allows us to gather realistic, fine-grained statistics regarding the
energy consumption of arbitrary nesC code. We consider two benchmarks:

e The HVAC sub-task we illustrated in Section 5.2, whose TeenyLIME
implementation is described in Section 5.4.1. We place a variable
number of temperature/humidity sensors in the same neighborhood
as an air conditioner node. Every 10 seconds, each temperature sensor
randomly generates a reading, whose value can deviate from the user
preference with a 20% probability. This triggers actuation at the air
conditioner controller, which first queries nearby humidity sensors for
their most recent reading, and then decides on the specific actions to
be taken.

e A simple application using the token-based, mutual exclusion com-
ponent illustrated in Section 5.4.1. A variable number of nodes, in

115

5. The TeenyLIME Middleware

the same neighborhood, express the intention to obtain the token.
Every 10 seconds the token is released by the node holding it, and a
different, randomly chosen node is selected as the new token holder.

Both applications above involve several TeenyLIME-specific constructs.
In the first one, a temperature reading may trigger a remote reaction pre-
viously installed by the air conditioner, whose pattern contains a dedicated
range field to express the user preference as a temperature interval. More-
over, humidity values are represented as capability tuples. Therefore, the
(unreliable) query coming from the air conditioner triggers the execution
of the reifyCapabilityTuple event on the humidity sensors. These react
by locally outputting the actual tuple®, which is delivered by TeenyLIME
to the air conditioner as the result of the initial query. Similarly, in the
mutual exclusion application, releasing the token entails outputting a to-
ken tuple in the local tuple space, and possibly triggering some previously
installed, remote reaction. Nodes receiving this notification then perform a
reliable in operation to obtain the token. Among them, only one succeeds.

The processing above is the same in other scenarios where the data in-
volved have different semantics. For instance, the processing to exchange
the token (i.e., a reaction firing followed by a reliable query) is the same
executed by a water sprinkler in the fire sub-task, shown in Figure 5.4:
only the tuple content changes. In this sense, the meaning of our results
extends beyond the benchmark applications we consider here.

For comparison, we consider a plain TinyOS implementation of the same
applications. Figure 5.13 illustrates the component configurations in the
two cases. To compare them on common ground when required, we pro-
vide TinyOS with reliable communication by using our reliable protocol,
mentioned in Section 5.5.2.

The emulation settings, in Figure 5.14, are taken from real MICA2 motes.
The larger message size in TeenyLIME is due to the additional control
information contained in the tuples. As independent variables, we vary
the number of nodes in a neighborhood and the probability e of losing
a message, to investigate TeenyLLIME’s overhead w.r.t. system scale and
network conditions.

Results. In our benchmark applications, TeenyLIME does not generate
any increase in the number of messages exchanged w.r.t. a TinyOS-based
implementation. Therefore, TeenyLIME’s overhead in execution time is es-

®Gathering of physical readings from the sensor device is assumed to be instantaneous.

116

5.6. Evaluation

Application

TupleSpace
TeenyLime Application J
A SendMsg/ReceiveMsg A A iSendMsg/Rec eM A

'ReliableComm . ReliableComm
(when needed) : ' - B (when needed)

SendMsg/ReceiveMsg :

: SendMsg/ReceiveMsg

GenericComm

GenericComm

TinyOS TinyOS

(a) TeenyLiME-based. (b) TinyOS-based.

Figure 5.13.: Component configurations.

[Parameter Name | Value |
MAC Layer standard TinyOS MAC for CC1000 chip
Initial Energy Budget | =~ 2 AA batteries
Message Size 47 bytes (TinyOS), 74 bytes (TeenyLIME)

Figure 5.14.: Emulation parameters.

sentially due to extra local processing. In this respect, Figure 5.15 analyzes
the CPU time taken to perform a set of relevant operations in our bench-
mark applications. The worst case accounts for a 10.08% overhead, which
seems reasonable given the absolute values involved. We believe these re-
sults are due to the generality of TeenyLIME’s abstractions. These can
capture commonly-used sequences of operations in a natural way, which al-
lows our TeenyLIME implementation to perform close to application-specific
mechanisms.

Figure 5.16 further elaborates on the timing aspects in our TeenyLIME
implementations, showing the breakdown of CPU time in the different lay-
ers. Figure 5.16(a) illustrates the aforementioned metric for an air con-
ditioner node in the HVAC application, against the number® of tempera-
ture/humidity nodes in its neighborhood. TinyOS is responsible for most
of the processing, as it handles all hardware interrupts and radio-related
functions, triggered quite frequently. The trend of the processing dedicated
to the application and to TeenyLIME is due to the number of notifications

SHalf of the nodes in the x-axis are temperature nodes, while the other half are humidity
nodes.

117

5. The TeenyLIME Middleware

[Operation | TeenyLive [Plain TinyOS | Overhead |
Notifying the Air Conditioner 2.18ms 1.99ms 9.54%
Sending a Humidity Query 1.97ms 1.85ms 6.48%
Replying to a Humidity Query 2.25ms 2.03ms 10.08%

(a) HVAC.

[Operation [TeenyLIME [Plain TinyOS [Overhead]
Releasing the Token 2.03ms 1.97ms 3.04%
Sending a Token Notification 2.28ms 2.07ms 8.21%
Requesting the Token 2.09ms 1.92ms 8.85%

(b) Mutual exclusion.

Figure 5.15.: Execution times in the components of our benchmark appli-
cations.

100

100

aﬁplication —— appiication i

TeenyLIME - TeenyLIME -
TinyOS -3 TinyOS -3
s * oo 4 S reliable coyrnm a
Z 80r % % 1 5 80|
2 ¥]
] «
® o
2 =
» 60 S 60|
£ £
2 =)
5 5 * * 8 g
o 40r o 40r B *
2 j=2)
g g
] c
3 [
S g
2 Q
Q =%

20 r 20 -

2 4 6 8 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
temperature/humidity nodes message error rate €

(a) HVAC. (b) Mutual exclusion.

Figure 5.16.: CPU time breakdown in TeenyLiME-based implementations.

and query replies received at the air conditioner, that grows with the num-
ber of nearby nodes. TeenyLIME engages the CPU at most 15% of the
time, when 10 nodes are in reach of the air conditioner. The above metric
is not directly affected by the message error rate in the HVAC application,
as reliability guarantees are not required.

Conversely, when reliability is required it becomes the dominant factor,
and system scale bears little effect on our metrics. Figure 5.16(b) analyzes
the CPU time breakdown in the mutual exclusion application against a
varying message error rate, with eight nodes in the neighborhood. The
chart indeed shows how the reliability protocol increasingly engages the
CPU as communication becomes less reliable. In fact, our reliable protocol
runs periodic activities (e.g., checking whether messages not yet acknowl-

118

5.6. Evaluation

100 70

100

TeenyLIME —+— M j j " TeenyLIME ——
100 plain TinyOS - plain TinyOS -
% lifetime reduction - 60 | % lifetime reduction -

S — —— o — S 1 1 80
+ + + —F s s
& 8or g & 50F g

2 2

) 3) 3
S {60 £ S {60 3
@ L @
2 o £ g« E
5 g 3 z
= » T 30 »
§ sl 1% g 5 1% 8
2] ES 3
o < @ 20t e
g g

2L 4 20 420

10 -
*
oL X X X X x|, ol P s o
2 4 6 8 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
temperature/humidity nodes message error rate €
(a) HVAC. (b) Mutual exclusion.

Figure 5.17.: System lifetime.

edged need a retransmission) that take a time proportional to the number of
buffered messages. In absolute values, TeenyLIME execution times remain
the same regardless of mutable network conditions. Therefore, its relative
contribution decreases as the reliable protocol is more stressed. This is a
result of our design: TeenyLIME and the reliable communication compo-
nent are fully decoupled, and the processing implemented in the former is
independent from the latter.

It is interesting to look at how TeenyLIME affects the overall system
lifetime. Figure 5.17(a) shows the time until the air conditioner node in
the (unreliable) HVAC application runs out of power. This metric is only
marginally affected by TeenyLiME, whose additional overhead is always
under 4%. The chart also illustrates an almost constant behavior w.r.t
the number of temperature/humidity nodes. This is expected: reactions
and queries are issued in broadcast by the air conditioner, therefore the
energy expenditures for communication are independent of the number
of neighbors. Conversely, the number of temperature/humidity sensors
affects the local processing, since more neighbors correspond to more replies
received—as we already observed in Figure 5.16(a). Nevertheless, the extra
overhead imposed by TeenyLIME has a very limited impact on the overall
lifetime. Along the same lines, Figure 5.17(b) shows the lifetime in the
(reliable) mutual exclusion application, measured as when the last node
depletes its battery. The trends here are strongly tied to the message
error rate: an increasing number of retransmissions are indeed required
as communication becomes less reliable. TeenyLiME’s overhead, however,
is comparable to the HVAC application, and becomes less relevant as the

119

5. The TeenyLIME Middleware

average message retransmissions

) . avg message retransmissions —+—
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
message error rate £

Figure 5.18.: Performance of TeenyLIME reliable protocol.

probability of losing a message increases and, consequently, the reliable
protocol is involved more.

Finally, we analyzed our reliable protocol, to verify that our results are
not biased by an inefficient implementation. Instead, Figure 5.18 shows
that our solution can provide 100% message delivery with a very small
number of retransmissions. This performance is in line with alternative
reliability mechanisms in the literature [66], and therefore confirms that
our reliable protocol is a valid choice in our evaluation.

In conclusion, the trade-offs between the benefits of the programming
model and its run-time overhead are reasonable, making TeenyLIME an
effective middleware solution for WSNs.

5.7. Related Work

TeenyLIME is inspired by LIME [158], which originally introduced the no-
tion of shared tuple spaces in mobile ad hoc networks. However, not only is
TeenyLIME’s implementation based on entirely different technologies and
mechanisms from LIME, but its model and API introduce novel concepts
geared expressly towards WSNs, such as range matching, capability tuples,
freshness, and explicit control over reliability. TeenyLIME follows in time
another adaptation of LIME to WSNs, called TinyLiME [159]. The two,
however, profoundly differ in target scenario, model, and implementation.
TinyLiME focuses on mobile data collection and employs the standard LIME
middleware to provide data sharing over 802.11 among mobile sinks (the
data consumers) that, in turn, gather data from nearby WSN sensor nodes
(the data producers). Therefore, intelligence is on sinks: the TinyLIME

120

5.7. Related Work

code deployed on sensors is “dumb” and largely application-agnostic, re-
porting data to external sinks (its only interlocutor) on request. Instead,
TeenyLIME is expressly designed for scenarios where the application intel-
ligence is in the network, built around node-to-node interactions inside the
WSN.

In the context of WSN programming, the work most closely related to
TeenyL1ME is Hood [21], a neighborhood abstraction where nodes can share
state with selected one-hop neighbors. Selection is based on attributes
periodically broadcast by neighbor nodes. Neighborhoods are specified
using extensions to the basic nesC constructs, precompiled into plain nesC.
Therefore, unlike TeenyLIME, in Hood data sharing is decided at compile-
time. Moreover, Hood provides neither the ability to affect the state of
another node nor the abstractions to react to changes in the shared state.
This hampers its use in sense-and-react applications.

In Abstract Regions [14] (key, value) pairs are shared among nodes in a
region (i.e., a set of topologically-related nodes), and manipulated through
read/write operations. Similarly to Hood, there is no way to receive noti-
fications when some given data appears in the system, unlike TeenyLIME.
Moreover, although nodes in a region may leverage multi-hop communica-
tion, this and other aspects must be coded explicitly by the programmer
on a per-region basis.

Context Shadow [160] exploits multiple tuple spaces, each hosting only
locally-sensed information representing a given context. Applications re-
trieve the data of interest by explicitly connecting to one of them. There-
fore, even if the system is inherently context-aware thanks to the locality
of information, the application is likely to increase in complexity due to
the absence of any federated data space. Similarly, the tuple spaces used
in Agilla [18] for coordinating among mobile agents are shared only local
to a node. Instead, TeenyLIME enables data sharing in a neighborhood by
creating the illusion of a single address space. Moreover, these systems lack
WSN-specific tuple space constructs.

Finally, reliable communication in WSNs is an active field of research.
Solutions have been proposed both at the network and at the MAC layer.
In the former case, reliability is commonly achieved by making data re-
dundant, as in [161], or with per-hop feedback techniques, e.g., [154]. Dif-
ferently from this work, these solutions target multi-hop routes leading
to one or more base-stations. The requirement in TeenyLIME is instead
of supporting reliable communication within a neighborhood, and in the

121

5. The TeenyLIME Middleware

absence of a constant data rate. At the MAC layer, reliability is usu-
ally provided by sophisticated transmission scheduling algorithms, e.g., as
in [70,71]. However, these solutions often make fairly strong assumptions
on constant transmission rates and the data path in the network [66]. This
rules out their use in our scenarios, where the communication patterns are
hard to predict due the presence of decentralized computation and reactive
operations are triggered in response to application-specific events.

122

Part I11.

From Physical to Logical
Neighborhoods

123

6. The Logical Neighborhood
Abstraction

As we mentioned in Chapter 1, in sense-and-react applications multiple
tasks need to run concurrently, each having different sets of sensors as in-
put, and directing the outputs to a different actuator nodes. Therefore,
programmers need to focus on subsets of devices, as opposed to single de-
vices or the whole network. In these settings, new programming abstractions
are required to manage complexity without sacrificing efficiency.

To tackle the issue above, in this part of the thesis we depart from pro-
gramming individual devices by providing a foundation to deal with subsets
of nodes. To this end, we present the Logical Neighborhoods program-
ming abstraction. A logical neighborhood includes nearby nodes that satisfy
predicates over their static (e.g., type) or dynamic (e.g., sensed values)
characteristics. Logical neighborhoods enable the programmer to “illumi-
nate” different areas of the network according to the application needs, ef-
fectively replacing the physical neighborhood provided by wireless broadcast
with a higher-level, application-defined notion of proximity. In this chap-
ter, we present the definition of a declarative language for specifying log-
ical neighborhoods, highlighting its expressiveness and simplicity. Instead,
Chapter 7 illustrates a dedicated routing scheme in support of Logical Neigh-
borhoods. The contributions discussed in this part of the thesis appeared
in [9,10,162,163].

6.1. Introduction

As outline in the introductory chapter, WSNs involving actuation [2] are
increasingly employed to implement sophisticated monitoring and control
systems. In these scenarios, the system not only observes and gathers
data from the environment, but is also capable of performing a variety of

125

6. The Logical Neighborhood Abstraction

actions on the physical world. Therefore, in similar scenarios nodes are
intrinsically heterogeneous and collaborate in a decentralized fashion to
carry out a complex task, e.g., home automation [26] or chemical attack
detection [1].

Similar applications are often composed of many collaborating sub-tasks,
each affecting only a given part of the overall system. For instance, con-
sider a fire detector and controlling system deployed in a building. Ac-
tuator nodes control water sprinklers and monitor the values of tempera-
ture sensors and smoke detectors nearby (e.g., in the same room). When
a significant fraction of these sensor nodes reports high values to an ac-
tuator, it immediately activates the sprinkler it controls, and alerts the
actuators nearby (e.g., in neighboring rooms). Programming such an ap-
plication is complex, as the developer needs to worry not only about the
implementation of the application logic, but also about which subset of
the system should be involved and how to reach it. As no dedicated pro-
gramming constructs and mechanisms exist for the latter task, the result
is additional programming effort, increased complexity and, in absence of
well-established and reusable solutions, less reliable code. Therefore, to
manage the inherent complexity of this kind of system, new programming
abstractions are needed.

In WSNs, communication is constrained by the range of the wireless me-
dia. A node is therefore able to exchange data directly only with the nodes
located within its communication radius. These nodes effectively consti-
tute the physical neighborhood of a given device. The core programming
facilities of many WSN operating systems (e.g., TinyOS [42]) provide mech-
anisms for managing and exploiting communication to and from nodes in
the physical neighborhood, leveraging directly off the underlying network
communication.

Differently from the aforementioned solutions, here we address the above
issues by introducing the notion of Logical Neighborhood. The span of a
Logical Neighborhood is not limited by the physical communication range,
rather is controlled by the programmer using applicative and contextual
information. Logical neighborhoods are specified declaratively using the
SPIDEY language we designed, illustrated in the rest of the chapter, con-
ceived to be a simple extension to existing WSN programming languages
(e.g., nesC [28] in the case of TinyOS). In this context, Logical Neigh-
borhoods are used as a higher-level communication primitive, to address
only the nodes in the system that satisfy the constraints imposed by the

126

6.2. Programming with Logical Neighborhoods

neighborhood definition.

With reference to the example above, an actuator can use SPIDEY to
define a logical neighborhood that contains nodes hosting a temperature
sensor, reading a value greater than 100°C, deployed in the same room,
and placed at a maximum distance of three hops, and successively use this
neighborhood to simply “broadcast” (logically) a message to all the nodes
contained in it. By redefining the conventional broadcast-based commu-
nication primitives and coupling them to the logical neighborhood instead
of the physical one, we provide programmers with a powerful abstraction,
where neighboring relations are no longer restrained to the communication
in the immediate physical neighborhood.

The benefits of our proposal impact two orthogonal aspects. First, de-
velopers can concentrate on the actual application goals while relying on
SPIDEY and the associated communication framework as a way to logically
partition the system and interact with it. We conjecture that applications
built on top of our abstraction result in cleaner, simpler, and more reusable
implementations. Second, this strategy opens up opportunities for achiev-
ing a longer system lifetime and a better resource utilization, by focusing
only on the nodes that actually need to be involved.

The rest of the chapter is organized as follows. Section 6.2 describes the
SPIDEY framework and definition language. Next, Section 6.3 illustrates
the API made available to programmers for exploiting Logical Neighbor-
hoods. Finally, we conclude the chapter in Section 6.4 by discussing a
demonstration case study, illustrating how to develop a road tunnel moni-
toring and control application using Logical Neighborhoods.

6.2. Programming with Logical Neighborhoods

In this section, we begin with an overview of the basic concepts underly-
ing the notion of Logical Neighborhood, followed by the definition of the
SPIDEY language supporting it.

6.2.1. Basic Concepts

The abstraction we propose revolves around only two concepts: mnodes
and neighborhoods. As illustrated in Figure 6.1, a (logical) node is the
application-level representation of a physical node, and defines which por-
tion of the node’s state and characteristics is made available by the pro-
grammer to the definition of any logical neighborhood. The definition of

127

6. The Logical Neighborhood Abstraction

>

v & &

P R S

P AR SRR
&
&
9

uorjenue)su| apoN

'
!

f 31
&ﬁ

o
.

S

‘
‘
7
s ‘ |
:/’;
=
=

Figure 6.1.: A portion of a node’s state and characteristics is exported at
the application-level by means of (logical) node instances.

node template Sensor
static Device
static Type
static Location
dynamic Reading
dynamic BatteryPower

create node ts from Sensor
Device as "sensor"
Type as "temperature"
Location as "rooml123"
Reading as getTempReading()
BatteryPower as getBatteryPower ()

Figure 6.2.: Sample node definition and instantiation.

a node is encoded in a node template, which specifies the node’s exported
attributes. This is used to instantiate the (logical) node, by specifying the
actual source of data. To make these concepts more concrete, Figure 6.2
shows a code fragment specified using the SPIDEY language that defines a
node template for a generic sensor, and then instantiates a node with the
structure prescribed by the template. During this operation, each attribute
in a node template is bound to an expression of the target language, e.g. a
variable or a function.

A (logical) neighborhood is the set of nodes satisfying a predicate on
the nodes’ attributes. As with nodes, the definition of neighborhoods is
encoded in a template, which contains the predicate that essentially serves
as the membership function determining whether a node is to be included

128

6.2. Programming with Logical Neighborhoods

neighborhood template HighTempSensors(threshold)
with Device = "sensor" and
Type = "temperature" and
Reading > threshold

create neighborhood htsn100
from HighTempSensors(threshold: 100)
max hops 2
credits 30

Figure 6.3.: Sample neighborhood definition and instantiation.

neighborhood
definition

matching :
neighborhood

instance \5f Yave Lz LT .
: matching

neighborhood
template

Figure 6.4.: A pictorial representation of the example in Figure 6.3. The
black node is the one defining and using the logical neighborhood for com-
munication, and its physical neighborhood (i.e., nodes lying in its direct
communication range) is denoted by the dashed circle. The grey nodes
are those satisfying the neighborhood template HighTempSensors when
the threshold is set to 100°C. However, the nodes included in the actual
neighborhood instance htsn100 are only those lying within 2 hops from the
sending node, as specified through the hops clause during instantiation.

in the set associated to the logical neighborhood. For instance, the neigh-
borhood template HighTempSensors in Figure 6.3 selects nodes that host
temperature sensors and are currently reading a value higher than a given
threshold. As exemplified in the SPIDEY code fragment of Figure 6.3, a
neighborhood template can be parameterized, and the actual values for
the parameters are provided when instantiating the neighborhood. Also
in this case, each formal parameter can be bound to an expression of the
target language.

In addition, the instantiation of a neighborhood template specifies addi-

129

6. The Logical Neighborhood Abstraction

Neighborhood |] P T.‘.%Q?.C..???_.S_F?T.‘......‘.,, Node
Template Template
Template Level Data Data
Instance Level Scope Source
h 4
(Logical) - belongs to (Logical)
Neighborhood [~ Node

Figure 6.5.: The conceptual relationship between templates and their in-
stantiation.

tional requirements about where and how the neighborhood is to be con-
structed and maintained. For instance, the instantiation in Figure 6.3
specifies that the predicate defined in the HighTempSensors template is
evaluated only on nodes that are at a maximum of 2 hops away and by
spending a maximum of 30 “credits”. The latter is an application-defined
measure of cost, detailed further in the next section, which essentially en-
ables the programmer to retain some degree of control over the resources
consumed during the distributed processing necessary to maintain the log-
ical neighborhood abstraction. A pictorial representation of the example,
visualizing the logical neighborhood concept, is provided in Figure 6.4.

In essence, as graphically illustrated in Figure 6.5, templates define what
data is relevant to the application, while the instantiation process con-
strains how this data should be made available by the underlying sys-
tem. Separating the two perspectives has several beneficial effects. The
same template can be “customized” through different instantiations. For
instance, the same template in Figure 6.3 could be used to specify a logical
neighborhood with a different threshold or a different physical span. More-
over, this distinction naturally maps on an implementation that maintains
a neighborhood by disseminating its template to be evaluated against the
values exported by a node instance, and uses instead the additional con-
straints specified at instantiation time to direct the dissemination process.

130

6.2. Programming with Logical Neighborhoods

The simple example we just outlined already shows two distinctive fea-
tures of our approach:

e In sharp contrast with most existing works, a neighborhood defini-
tion does not make any assumption as to where the member nodes are
geographically located, or whether they are physically close to each
other. Indeed, in Logical Neighborhoods programmers reason on a
logical plane that is completely decoupled from the physical topology.
Therefore, they enjoy great flexibility in slicing the network depend-
ing on the application requirements.

e Although a neighborhood definition may not refer directly to prop-
erties or characteristics of the node defining the neighborhood itself,
in most cases we expect its instantiation to do so, albeit implicitly.
For instance, the max hops construct necessarily makes the selection
of the neighborhood members dependent on the physical location of
the instantiating node. Therefore, having neighborhoods defined on
different nodes with same member sets will be a very unlikely situa-
tion.

In light of the above features, implementing the semantics required by
our abstraction calls for dedicated routing support, as we discuss in Chap-
ter 7. In the following, we present the complete definition of the SPIDEY
language, enabling the definition of node and neighborhood templates and
their instantiation.

6.2.2. The Spidey Language

A comprehensive view of the features and constructs of the SpiDEY lan-
guage! is provided by its grammar, shown in Figure 6.6. The grammar,
however, represents only an abstract syntax, that needs to be adapted to
the characteristics of the target language in which SPIDEY is integrated.
A node template is declared with the node template construct, followed
by the list of attributes to be exported, as shown in our example in Fig-
ure 6.2. An attribute must be declared as either static or dynamic. Static
attributes represent information assumed not to vary in time, e.g., the type

'The name SPIDEY is inspired to the comic book series “Friendly Neighborhood
Spider-Man”, whose title is derived from a self-referential comment often made by
Spider-Man: “just another service provided by your friendly neighborhood Spider-
Man!” [164].

131

6. The Logical Neighborhood Abstraction

<node_template> ::=
node template <node_templ_id>
({static | dynamic} <field_name>) T

<node_instance> ::=
create node <node_id>
from <node_templ_id>
(<field_name> as <target_1ang_expr>)+

<nhood_template> ::=
neighborhood template <nhood_templ_id>
[(<par_name >(,<par_name>)*)]
[with <node_predicates >]
[{union | intersect | minus | on} <nhood_templ_id>
[<par_bindings>]]*

<nhood_instance> ::=
create neighborhood <nhood_id>[<par_bindings>]
from <nhood_templ_id>
[[{min | max}] hops <integer_value>]
[credits <numeric_value >]

<par_bindings> :: =
(<par_name>:<target_lang_expr>

(,<par_name>:<target_lang_expr>)*)

<cost_function> ::= use cost <numeric_target_lang_expr>

Figure 6.6.: Grammar showing the abstract syntax of the SPIDEY lan-
guage. <target_lang_expr> is any valid expression in the target language
that evaluates to a type compatible with the attribute or parameter at
hand. <numeric_targetlangexpr> further constraints the expression in
the target language to evaluate to a numeric type. <node_predicates> is
any well formed boolean predicate over node attributes.

of measurement a sensor node provides or the kind of system an actuator
node controls. Instead, dynamic attributes represent information that by
definition changes with time, e.g., the current sensor reading or the residual
battery power. Note that the decision about whether an attribute is static
or dynamic depends on the deployment scenario. For example, the location
of a node physically attached to a wall in a monitoring building applica-
tion may be well considered as a static attribute. Instead, the location of
a node attached to an animal in a habitat monitoring application should
be considered as a dynamic information (e.g., being derived from a GPS
receiver). Forcing this distinction enables optimizations of the communica-
tion strategies supporting our abstraction. For instance, in case of rapidly

132

6.2. Programming with Logical Neighborhoods

changing dynamic attributes, we may resort to routing using only static in-
formation, and match neighborhood templates against dynamic attributes
locally. More details on the spectrum of available solutions to deal with
these aspects are reported in Chapter 7.

The instantiation of a node is achieved with the create node construct,
which contains a list of as clauses establishing the binding between an
attribute and a value source. In its simplest incarnation, the as clause
accepts any expression of the target language. These are evaluated each
time a message addressed to a logical neighborhood arrives at a node,
and the associated neighborhood template must be matched against the
node’s values to determine its membership in the neighborhood. Template
attributes that are not bound through an as clause are not exported by
the node instance.

A neighborhood template can be defined using the neighborhood tem-
plate keywords, followed by two optional clauses. To describe the seman-
tics of the construct we refer to the example in Figure 6.7, which defines
a template for a logical neighborhood encompassing temperature or smoke
sensors reading values over some thresholds and deployed in a given room.
The with clause is used to define the predicate on node templates that
is to be checked against actual node instances to determine whether they
belong to the logical neighborhood. Complex predicates can be composed
from basic (in)equalities by means of the usual logic operators such as and,
or, and not (not shown in the grammar). If the with section is omitted, the
true predicate is implicitly assumed, therefore any node can belong to the
logical neighborhood. The symbolic names provided as parameters of the
template (the room name as well as temperature and smoke thresholds in
our case) can be used on the right-hand side of the neighborhood predicate,
with the actual values bound at neighborhood creation time to expressions
of the target language. These are evaluated on the originating node each
time an application message is sent to a given (logical) neighborhood.

The second section of the neighborhood template construct enables
the programmer to specify composition among neighborhoods. A logical
neighborhood essentially identifies a set of nodes, therefore it is natural to
express a neighborhood as a composition with already existing ones, using
the conventional set operators. For instance, the example in Figure 6.7 can
be rewritten equivalently (and more elegantly) as:
neighborhood template HighTempSmokeSensors

(room, tempT, smokeT)
on RoomSensors (room)

133

6. The Logical Neighborhood Abstraction

neighborhood template HighTempSmokeSensors
(room, tempT, smokeT)

with Device = "sensor" and Location = room and
(Type = "temperature" and Reading > tempT)
or (Type = "smoke" and Reading > smokeT)

create neighborhood htss
from HighTempSmokeSensors(room: "rooml123",
tempT: TEMP,
smokeT: SMOKE)
max hops 10
credits 30

Figure 6.7.: An example of a complex neighborhood template, where TEMP
and SMOKE are variables in the target language.

intersect HighSensors(type: "temperature",
threshold: tempT)
intersect HighSensors(type: "smoke",

threshold: smokeT)

assuming that the following definitions exist:

neighborhood template HighSensors(type,threshold)
with Device = "sensor" and
Type = type and
Reading > threshold

neighborhood template RoomSensors(room)
with Device = "sensor" and
Location = room

The on operator can be used for defining a neighborhood as a subset of
an existing one, while the union, intersect, and minus operators have the
usual meaning. The mechanics of implementing these operators are triv-
ial, since they ultimately rely on composing the neighborhood predicates
properly (e.g., by disjunction in the case of union).

Once a neighborhood template is defined, it can be instantiated by means
of the create neighborhood construct, as illustrated in Figure 6.7. In-
stantiation allows the programmer to “customize” the template by spec-
ifying the actual parameters to be used in the evaluation of the neigh-
borhood predicate. For instance, we used this feature in defining the
template HighTempSmokeSensors above, to customize the definitions of
HighSensors during composition. Note that any valid expression in the
target language can be given to bind a parameter to an actual value. In
a C-like language, for instance, a parameter can be bound to the return
value of a function. This is evaluated each time a message is sent to that

134

6.2. Programming with Logical Neighborhoods

neighborhood, thus giving programmers some degrees of freedom in chang-
ing the neighborhood membership dynamically. An example leveraging off
this feature is illustrated in our case study, reported in Section 6.4.

Moreover, appropriate clauses enable programmers to retain control on
the span of the logical neighborhood. The hops clause enables the pro-
grammer to limit such span directly, in terms of number of hops from the
sending node. Instead, the credits clause specifies the maximum cost the
system can incur in for delivering a message to logical neighbors, as de-
tailed next. If both are specified, the extent of propagation is determined
by the hops clause only when enough credits are available. If neither are
specified, the nodes to be included in the logical neighborhood can reside
anywhere in the system.

Communication cost is defined in terms of the basic operation of sending
a broadcast message to physical neighbors (called the node’ s sending cost)
and is measured in credits, whose semantics is application-defined. The
mapping between the sending of a single physical message and its cost in
credits is indeed specified by the programmer through the use cost con-
struct, which delegates the computation of this mapping to an expression
of the target language. This way, the programmer can define a vast array
of mappings, from a straightforward one where message sending has a fixed
cost, to sophisticated ones where the cost varies dynamically to adapt to
a node’s conditions (e.g., low battery power). Moreover, different nodes
can have different functions, therefore enabling the programmer, say, to set
higher costs for tiny, battery-powered sensors, and lower costs for resource
rich, externally-powered nodes. The overall number of credits necessary
to communicate with the members of a logical neighborhood is evaluated
as the sum of the costs that each node involved in routing messages in-
curs in, with each node evaluating its own cost according to the function
specified in the use cost declaration. Therefore, the ability to set the max-
imum amount of credits enables programmers to exploit different trade-offs
between accuracy and resource consumption. Neighborhoods instantiated
with a high number of credits have a broader coverage of the system, but
at the expense of a higher number of consumed credits and hence overhead.
Notably, the support for credits has been one of our chief motivation for
devising a dedicated communication scheme underpinning Logical Neigh-
borhoods. More details on these aspects are provided in Chapter 7.

135

6. The Logical Neighborhood Abstraction

void send(Neighborhood n, Message m) Send message m to all nodes belonging to the
logical neighborhood n.

receive(Message m) Receive a message.

void reply(Message r, Message m) Reply to message m with message r.

Figure 6.8.: API for the communication component providing the logical
neighborhood abstraction.

6.3. Communication API

The SPIDEY language we just described is used to define and instanti-
ate logical neighborhoods. However, neighborhoods are ultimately used in
conjunction with communication facilities, to enable interaction with the
neighborhood members. On the other hand, the notion of logical neigh-
borhood is essentially a scoping mechanism, and therefore is independent
from the specific communication paradigm chosen. For instance, one could
couple it with the tuple space paradigm to enable tuple sharing and access
only within the realm of a logical neighborhood. Similarly, logical neigh-
borhoods could be used in a publish-subscribe approach, to properly limit
the dissemination of subscriptions and event notifications.

Figure 6.8 shows the API we are currently developing, where we explore
the combination of logical neighborhoods with a simple message passing
communication model. The send operation takes as parameters a variable
(instantiated through SPIDEY) representing the logical neighborhood and
a message to be delivered to its members. Essentially, we are replacing
the broadcast facility commonly made available by the operating system
with one where the message recipients are not determined by the physical
communication range, rather by membership in a programmer-defined log-
ical neighborhood. The others are only auxiliary operations and enable the
application, respectively, to receive a message, and to reply to a message
received through the neighborhood.

6.4. Demonstration

To assess the flexibility of the Logical Neighborhoods abstraction, we in-
vestigated its use in the context of a sense-and-react application for road
tunnel monitoring and control [4]. Researchers are envisioning tunnels
equipped with WSN nodes that gather physical readings (e.g., light), mon-
itor the structural integrity of the tunnel, and sense the presence of vehicles

136

6.4. Demonstration

A, Presence N Fan N N a
‘- Sensor N7 Cor/ﬂroller _s o s LA
i ' - ; - o
| And MY AR
Traffic Light, S 0 4 T e : o @
Controller | \g) — S ' \g S : \g e‘ S :
? : : |
—_ _ o
\ H'Z 2N ’ ' i
- - 1
¥ \ o o |
I - - 1 - h 7
Z1 0y Light HEEE 2 v
i \-/ " Fire Controller LN PN 1e=
Light Sensor| Sensor : i i

i«——1st Tunnel Sector —»<——2nd Tunnel Sector—>§<—3rd Tunnel Sector—»;

Figure 6.9.: Tunnel scenario.

Figure 6.10.: Setup and nodes controlling fans and lights.

to detect a possible traffic congestion. Based on sensed data, the system
operates a variety of devices such as ventilation fans inside the tunnel, and
traffic lights at the entrances. For instance, when a sensor detects the pres-
ence of fire in a sector, the fans in the same sector are activated, and the
traffic lights are turned red to prevent further vehicles from entering the
tunnel.

The above scenario presents most of the characteristics motivating Logi-
cal Neighborhoods: the system is highly heterogeneous, and the processing

137

6. The Logical Neighborhood Abstraction

neighborhood template TrafficJam(sector, lane)

with Function = "actuator" and
((Type = "traffic_light" and Location = lane) or
(Type = "fan_controller" and TunnelSector <= sector))

create neighborhood tj
from TrafficJam(sector : mySector(), lane : myLane())

Figure 6.11.: A neighborhood including nodes controlling fans in given
sectors or traffic lights on a specific lane.

mostly involves subsets of nodes sharing similar characteristics, e.g., all the
nodes controlling a fan in a specific tunnel sector. Therefore, the program-
mer must be provided with appropriate abstractions to “slice” the system
based on the application requirements.

To demonstrate the above application, we used 20+ TMote Sky nodes [73]
to model three tunnel sectors, as illustrated in Figure 6.9. We decreased
the transmission power to create a multi-hop scenario in a limited space.
As for actuation, we modified some of the nodes to control externally at-
tached devices. Specifically, 12 V mini-fans and lights are used to model
the fans inside the tunnel and the traffic lights at the entrances. For practi-
cal reasons, fire and presence sensors are “implemented” with light sensors,
triggered using flashlights. Our setup is shown in Figure 6.10. Based on
this setup, we showcase various use cases involving different logical neigh-
borhood definitions.

6.4.1. Traffic Control

Requirement. When presence sensors recognize a traffic jam on a lane,
the fans are activated along the same lane from that location to the corre-
sponding entrance, and the traffic light is turned red only on that lane.

Design and implementation. To meet the above requirement, at all
presence sensors we define a logical neighborhood including nodes control-
ling fans from the node’s sector to the corresponding entrance, or traffic
lights on the same lane as the node. This is quite straightforward to achieve
using SPIDEY, as illustrated by the fragment of code in Figure 6.11. Note
how we define a parametrized template, and instantiate it depending on
the physical location of the node. Therefore, the shape of the (logical)
neighborhood changes depending on the sender, as Figure 6.12 exempli-

138

6.4. Demonstration

-
\

d
i i
i i
| |
| |
]]
Y ' ' A\
_/ H H 7
i i
i i
| |
i i
i i

«——1st Tunnel Sector—»<——2nd Tunnel Sector —»<«——3rd Tunnel Sector —»-

Figure 6.12.: Example of nodes involved in traffic control.

neighborhood template LightControllers (depth)
with Function = "actuator" and
Type = "light_controller" and
TunnelSector >= mySector and
TunnelSector <= mySector + depth

create neighborhood 1lc
from LightControllers(depth: getNormalizedLightIntensity ())

Figure 6.13.: A neighborhood including nodes controlling the lights for a
given number of consecutive sectors inside the tunnel.

fies. When a presence sensor recognize a blocked vehicle, it starts sending
periodic messages to nodes in the aforementioned neighborhood using our
communication API. The receivers parse the data in the message, and de-
cide on the actions to be taken.

6.4.2. Adaptive Lighting

Requirement. When light sensors read values above a safety threshold,
the lights inside the tunnel are activated to avoid shadowing effects and
improve the visibility to drivers entering the tunnel. The number of sectors
inside the tunnel where lights are to be activated must be proportional to
the light intensity.

Design and implementation. Implementing adaptive lighting requires
programmers to address a different subset of nodes depending on contextual
information, i.e., how intense is the light reading. To do so, in Figure 6.13

139

6. The Logical Neighborhood Abstraction

<O PO PO e
? ; ; :
i : : !
i«——1st Tunnel Sector —»<——2nd Tunnel Sector —»:A—Srd Tunnel Sector—»;

Figure 6.14.: Example of nodes involved in adaptive lighting. getNormali-
zedLightIntensity() returned 2 when the message was sent to the logical
neighborhood.

neighborhood template Fire(sector)

with Function = "actuator" and
(Type = "traffic_light" or
(Type = "fan_controller" and

TunnelSector <= sector+l and
TunnelSector >= sector-1))

create neighborhood fe from Fire(sector : mySector())

Figure 6.15.: A neighborhood including nodes controlling traffic lights or
fans in three adjacent tunnel sectors.

we define a neighborhood template with a parameter specifying how many
sectors in the tunnel we want to address. In the application code, we query
the light sensor periodically. If the current reading crosses a given thresh-
old, the node sends a message to the above logical neighborhood. Before
handing the message over to the network stack, the Logical Neighborhood
run-time evaluates getNormalizedLightIntensity() in Figure 6.13 to de-
termine how many sectors in the tunnel need to be addressed. Based on
this value, a different subset of light nodes receives the message, as illus-
trated in Figure 6.14. This occurs transparently to the programmer, who
simply bound one of the template parameters to a function instead of a
constant value.

140

6.4. Demonstration

member

:eighbo;'hoo\%' & 1 g QV 1 9) ' @ ;

i
i
! . |
i 7N i

o= RN i
! -

i
i

i
|

|
i

i

i<— 1st Tunnel Sector —»34—2nd Tunnel Sector—>3«—3rd Tunnel Sector —»|

Figure 6.16.: Example of nodes involved in fire control.

6.4.3. Fire Control

Requirement. When fire sensors detect the presence of fire in a sector,
the fans in the same and adjacent sectors are activated, and the traffic
lights are turned red on both ends of the tunnel.

Design and implementation. Similarly to the traffic control case, upon
detecting the presence of fire the sensor nodes send periodic messages to
the neighborhood defined in Figure 6.15. The parameters defined in the
template allows the neighborhood instantiation to change depending on the
sender location, as exemplified in Figure 6.16. In this case, however, the
actuators wait to see more than a single sensor reporting fire, as a single
reading may signal a malfunctioning node instead of a real fire.

141

7. Routing for Logical
Neighborhoods

The Logical Neighborhood abstraction is ultimately of practical interest only
in the presence of an efficient routing mechanism implement its semantics.
In principle, existing solutions can be exploited (e.g., [37]), but they exhibit
various performance drawbacks, as they are based on different assumptions
and scenarios. Therefore, we devised a novel routing protocol that is ex-
pressly devised to support our abstraction. Notably, our solution leverages
off the kind of localized interactions [153, 165] characterizing the decen-
tralized scenarios we target with Logical Neighborhoods. The corresponding
mechanisms are described and evaluated in this chapter. Based on the per-
formance results obtained, we maintain that our routing protocol efficiently
supports Logical Neighborhoods, therefore demonstrating the overall feasi-
bility of our approach.

7.1. Motivation and Overview

The Logical Neighborhood abstraction is essentially independent of the
underlying routing layer. Nevertheless, its characteristics cannot be easily
accommodated by existing routing approaches. Protocols geared towards
data collection focus on how to collect efficiently the data from many sen-
sors to a single node—the sink. In our approach the perspective is reversed:
routing must efficiently transmit a message from a single node—i.e., the
device defining the neighborhood—to those matching the neighborhood
specification. Moreover, the Logical Neighborhood abstraction is essen-
tially a scoping mechanism, and therefore can be used in conjunction with
several mechanisms other than data collection, e.g., to direct code updates
only towards nodes with obsolete versions, as we describe in Chapter 8.
As such, some of the techniques exploited by these protocols (e.g., route

143

7. Routing for Logical Neighborhoods

reinforcement based on data rates as in [37]) cannot be directly applied.

In principle, we may try to adapt some multicast protocol for wireless net-
works to our scenario. One way of doing so is to map the single atomic pred-
icates to individual channels. This solution is trivially inefficient, as even a
simple predicate such as Type = "temperature" or Type = "vibration"
would force the sender node to duplicate data unnecessarily by addressing
two distinct groups, even if the target nodes are physically close to each
other. Alternatively, we may map the entire neighborhood definition to a
multicast group. As programmers are free to use any combination of atomic
predicates in defining their neighborhoods, and even compose or intersect
them, the number of neighborhoods may be quite large. This would force
the underlying protocol to maintain a large number of multicast groups,
again with significant overhead. Moreover, adding to a running system a
further node defining a previously unseen neighborhood would force the
protocol to create a new multicast group on the fly, a functionality that is
seldom supported in existing protocols.

Finally, to the best of our knowledge there are no existing communication
schemes that implement an application-defined measure of communication
cost as we do with credits. Their management is a distinctive feature of
our approach that would anyway require appropriate integration.

Motivated by these considerations, this chapter describes a routing strat-
egy to provide a generic, yet efficient communication layer supporting the
Logical Neighborhood abstraction. Our routing approach is structure-less
(i.e., no overlay is explicitly maintained) and is based on the notion of local
search [166]. Nodes advertise their profile, i.e., the list of attribute-value
pairs specified by their template, and in doing so they build a distributed
state space containing information about the cost of reaching a node with
given data. This information dissemination is localized and governed by the
density of devices with similar profiles. Messages sent to a neighborhood
contain its template, which determines a projection of the state space, i.e.,
the part to be considered for matching. In a nutshell, the message “navi-
gates” towards members of a neighborhood by following paths along which
the cost associated with a given neighborhood template is decreasing.

The following section describes our routing solution, whereas Section 7.3
reports on its performance. We conclude in Section 7.4 by comparing the
Logical Neighborhood approach against related work.

144

7.2. Routing for Logical Neighborhoods

Source | Timestamp Node Profile Cost
Attribute | Value
Function sensor
N54 72 Type temperature 2
Location room123

Figure 7.1.: An example of PROFILEADV.

7.2. Routing for Logical Neighborhoods

The proposed routing approach is composed of two parts: the state space
generation and the search algorithm. These are individually described next.

7.2.1. Building the State Space

In our scheme, whenever a new node is added to the system it broadcasts a
PROFILEADV message containing the node identifier, a (logical) timestamp,
the node’s profile containing attributes and their values, and a cost field
initialized to zero. The first two message fields are used to discriminate
stale information, as the PROFILEADV message is periodically re-broadcast
(possibly with different content) by the node. An example PROFILEADV
is reported in Figure 7.1.

In addition, each node in the system stores a State Space Descriptor
(SSD) containing a summary of the received PROFILEADV messages. An
example is shown in Figure 7.2. The Attribute and Value fields store in-
formation previously received through a PROFILEADV message. For each
entry, Coost contains the minimum cost to reach a node with the correspond-
ing information, and Source contains the identifier of such node. The Links
field allows to store information more compactly, by retaining associations
among entries instead of duplicating them in the SSD. In Figure 7.2 each
entry is linked to the others as they all come from the same PROFILEADV
advertised by node N8. DecPath and IncPaths contain routing informa-
tion to direct the search process, as described in Section 7.2.2. Finally, each
entry in an SSD is associated with a lease (not shown), whose expiration
causes the removal of the entry if not refreshed by a new PROFILEADV.

Upon receiving a PROFILEADV message, a node first updates the cost
field in the message by adding its own sending cost, obtained by evaluating
the expression in the use cost statement described in Section 6.2.2. Then,
it compares each attribute-value pair in the message against the content
of the local SSD. A modification (entry insertion or update) of the SSD

145

7. Routing for Logical Neighborhoods

‘ Id ‘ Attribute ‘ Value ‘ Cost ‘ Links ‘ DecPath ‘ IncPaths ‘ Source ‘

1 Function sensor 5 2,3 N37 N98, N99 N8
2 Type acoustic 5 1,3 N37 N98, N99 N8
3 Location room123 5 1,2 N37 N98, N99 N8

Figure 7.2.: An example of State Space Descriptor (SSD).

‘ Id ‘ Attribute ‘ Value ‘ Cost ‘ Links ‘ DecPath ‘ IncPaths ‘ Source ‘
1 Function sensor 3 3,4 N77 N98, N99 N54
2 Type acoustic 5 1,3 N37 N98, N99 N8
3 Location room123 3 1.4 N77 N98, N99 N54
4 | Type temperature 3 1,3 N77 - N54

Figure 7.3.: The SSD of Figure 7.2 at a node with a sending cost of 1, after
receiving the PROFILEADV message in Figure 7.1.

is performed if an attribute-value pair: i) does not exist in the local SSD,
or ii) it exists with a cost greater than the one in the message (after the
local update above). The update (or insertion) of an SSD entry involves
establishing the proper values in the Links field to keep track of the rest of
the PROFILEADV message, updating the DecPath field with the identifier
of the physical neighbor that sent the PROFILEADV, and setting the Source
field to the identifier of the node whose information has been inserted in the
PROFILEADV. For instance, assume the node storing the SSD in Figure 7.2
has a sending cost of 1, and receives the PROFILEADV in Figure 7.1. Its
local SSD is then updated as described in Figure 7.3 (changes shown in
bold). Note how the Links fields are updated so that only the minimum
cost to reach an entry is kept, and yet the information about which entry
came with which profile is not lost.

After a PROFILEADV has been processed locally, it is rebroadcast only
if at least one SSD entry was inserted or updated, to propagate the state
change. An example is shown in Figure 7.4(a). The PROFILEADV is re-
broadcast as received, except for the updated Cost and Source fields. In-
terestingly, the propagation of PROFILEADV messages enables a node to
determine if it lies, for some attribute-value pair, on a path where costs
are increasing. This occurs when a PROFILEADV is overheard, through
passive listening, with a cost greater than the corresponding pivot entry in
the SSD. In this case, the identifier of the broadcasting node is inserted in
the IncPaths field of the pivot entry.

Thus far, we assumed that PROFILEADV messages contain the whole
node profile. Nevertheless, if some dynamic attribute changes frequently,

146

7.2. Routing for Logical Neighborhoods

Cclo| - Cc
Aa|3|N1 , Aa

wo

N1

Bb|O
Aa |6

“[NT
)

mhﬁ“"

e my
ﬁ m Cc
(2

Cclo]| -
Aa|2|N1f

N o

Aa N1f

(a) Building the state space (time goes from left to right). Arrow labels denote
sending of PROFILEADV messages, showing only the attribute-value (e.g., A a),
and Cost fields. SSDs are shown only with attribute-value, Cost and DecPath
fields. After N1 disseminated its profile, N5’s PROFILEADV need not be propagated
system-wide, but only where updates in SSDs are needed to make its presence
known.

Cc|o]| - Cc

[}
Aa|3|N1 : Aa|3|NL
Bb|3|N4 Bb|3|N4
Bb[o| - N32 - Bb [0 N32
Aa|6|N5) . Aa[6|N5 B)
Cc|6]|N3 k) ’Cc 6| N3 CcIOINZI
N4 .. = N4 =
N1 N1
©]. Q) OV AW
~[Aafo] - _Ccllﬂ- = Aalo| -
: Bb|3|N3 : {ccl1]- Bb|[3(N3
N3 Cc|1|N2 / Cc|1|N2
@ @
-~ Ccl4]N3
L e — T 2
(2) Aa|2|NL (2) Aa|2|N1f
Aalol - ' Bb|2|N4 AaTol - . Bb|2|N4
Bb|2|N4 . ; Bb|2|N4 :
Cc|2|N3 o : Cc|2|N3

(b) After all the nodes performed at (c) A message navigating the state

least one profile advertisement, the SSDs space: dashed lines represent exploring

contain the costs to reach the closest directions, solid lines denote decreasing

node with a given attribute-value pair. paths. Arrow labels represent applica-
tion messages showing only the unre-
served credits and the intended recipi-
ent.

Figure 7.4.: Building and navigating the state space. (In parenthesis is a
node’s sending cost.)

147

7. Routing for Logical Neighborhoods

there is a trade-off between the network load necessary to refresh the ad-
vertisements and the accuracy of the information being propagated. A
straightforward alternative approach is to disseminate only part of the pro-
file (e.g., static attributes) and perform additional matching at the receiver.
These trade-offs are ultimately solved based on the characteristics of the
deployment scenario, e.g., by considering information about the size of the
logical neighborhood or the network density.

Finally, note how, as shown in Figure 7.4(a), profile advertisements do
not flood the entire network, as a PROFILEADV is rebroadcast only upon an
SSD update. Flooding occurs only for the first advertisement, or more gen-
erally when only one node contains a given attribute-value pair—a rather
unusual case in the scenarios we target. Instead, for a given set of attribute-
value pairs, the state space generation builds a set of non-overlapping re-
gions, each containing a node with the considered information. Within a
region, each node knows how to route a message addressed to a neighbor-
hood template that includes attributes matching those of a node, along the
routes stored in DecPath. Each region can be regarded as a “concavity”
defined by costs in SSDs, with the target node at the bottom (cost to reach
it is zero) and nodes with increasing costs around it. This is illustrated
in Figure 7.4(b), where we show the SSDs after all the nodes performed
at least one profile advertisement. Next we describe how this distributed
state space is exploited for routing.

7.2.2. Finding the Members of a Logical Neighborhood

Local search procedures proceed step by step with subsequent moves ex-
ploring the state space [166]. At each step, a set of further local moves
is available to proceed in the search process. Among them, some moves
are accepted and generate further moves, while the remaining ones are dis-
carded. In general, accepting moves depend on the heuristics one decides
to employ given the particular problem tackled. In our case, a mowve is
simply the sending of an application message containing the neighborhood
template. Upon receiving a message, the move is accepted and further send
operations are performed if the maximum number of hops, if any, has not
been reached (as per the hops construct), and either i) the move proceeds
along a decreasing path, or ii) enough unreserved credits are available on
an exploring path. The notions of decreasing path, exploring path and credit
reservation are at the core of our routing solution and are described next.

148

7.2. Routing for Logical Neighborhoods

Decreasing paths. A path is decreasing if it brings the message closer to a
node whose profile matches the neighborhood template. To do so, message
proceeds towards minima of the state space by traversing nodes that report
an always smaller cost to reach a potential neighborhood member.

To determine decreasing paths, a node must identify the projection of
the state space determined by a neighborhood template. To this end, the
node finds in the local SSD the entry matching the neighborhood template
with the greatest cost, if any. This entry is called pivot. If a pivot exists
and is associated, via the SSD Links field, to a set of other entries matching
the neighborhood template, the cost associated to the pivot represents the
number of credits needed to reach the closest matching node via the path
indicated by the DecPath field. For instance, imagine the application issues
a send(m,n) operation through our communication API to send the appli-
cation message m to the neighborhood n, and assume n is defined to address
all acoustic sensors. This neighborhood has its pivot in entry 2 of the SSD
in Figure 7.3, and its predicate (Function = sensor and Type = acoustic)
is matched via the link pointing from entry 2 to entry 1. Consequently,
the node evaluates the cost to reach the closest acoustic sensor as 5 and
forwards the message towards N37.

Due to the state space generation process, messages following a decreas-
ing path are certainly forwarded towards nodes matching the neighborhood
template. Indeed, these paths simply follow the reverse paths previously
setup by PROFILEADV messages originating from nodes whose profile con-
tains information matching the neighborhood template. Additionally, note
how the reply feature provided by our communication API can be imple-
mented trivially by keeping track of the reverse path along which a message
is received.

Exploring paths. If a message were to follow decreasing paths only, it
would easily get trapped into local minima of the state space. To avoid this,
we allow messages to be propagated also along exploring paths, i.e., direc-
tions where the cost to reach the closest node with a particular attribute-
value pair is non-decreasing. Exploring paths include directions where the
cost does not change (e.g., at the border between two regions) or where it
increases. The latter are stored in the IncPaths SSD field, as discussed in
Section 7.2.1.

Activating multiple exploring paths at each hop is ineffective, as it is
likely to generate many routes that are shortly after rejoined. Therefore,
exploration proceeds along a single increasing path, if available. Explo-

149

7. Routing for Logical Neighborhoods

ration on multiple paths, achieved through physical broadcast, is activated
only when the message reaches a neighborhood member (i.e., a minima of
the state space), or after the message has travelled for E hops, with E
being a tunable protocol parameter. This design choice stems from the ob-
servation that increasing paths are key in enabling the message to “escape”
local minima by directing it towards the boundary where a region confines
with a different one, and a different decreasing path may become available.

Credit reservation. The instantiation of a neighborhood template may
specify the credits to be spent for communicating with neighborhood mem-
bers, as discussed in Section 6.2.2. To support this feature, the number of
credits is appended by the sender to every application message sent to a
given neighborhood. A node may decide to split these credits in two: one
part reserved to be spent along decreasing paths and the other along explor-
ing ones. The splitting occurs at the first node that identifies a decreasing
path for the message being routed, and is effected by removing the reserved
credits from the amount in the message, therefore effectively reserving the
credits along the entire decreasing path. For instance, Figure 7.4(c) shows
a message sent by N5 with 6 credits, targeting a neighborhood defined by
a single predicate C = ¢. Neighborhood members are shown in white. As
the pivot in N5’s SSD reports a cost of 2 to reach the node N3 matching
the predicate, the message is forwarded to N3 with 4 unreserved credits.

To deal with credit reservation, a node checks whether its identifier is in-
serted in the message by the sender node as the next hop along a decreasing
path towards a matching node. If so, the node simply forwards the message
to the next hop on the decreasing path (found in its SSD) without modify-
ing the credit field, since the necessary credits have already been reserved
by the first node on the decreasing path. Otherwise, if exploring paths are
to be followed, the node “charges” the message for the number of credits
associated to the node sending cost, as per the use cost declaration. The
remaining (unreserved) credits are assigned to the exploring paths the local
node decides to proceed on. Normally, all these credits are assigned to the
single message forwarded along the increasing path. However, if multiple
paths are explored in parallel through broadcast according to the heuris-
tics described above, the unreserved credits are divided by the number of
neighbors before broadcasting the message. In Figure 7.4(c), N3 receives a
message with 4 remaining credits. Since it is a neighborhood member, the
message must be broadcast along all the available exploring paths. There-
fore, N3 charges the message for its own sending cost (2) and divides the

150

7.3. Evaluation

000
000

O 000
000060
000000600

0000000 0000000
0000000 0000000 0000000

Figure 7.5.: State space generation. The first PROFILEADV message
spreads throughout the system as no node disseminated its profile yet. Pro-
files advertised by other nodes propagate only until a smaller cost is encoun-
tered, partitioning space in regions centered on neighborhood members.
The white node does not receive the message in the first propagation—due
to collisions—but eventually receives it in later retransmissions.

00000
00000
00000
0000
00000
00000
00000
000000
000000
000000
000000
0000060

remaining credits by the number of its physical neighbors. This results in
activating two exploring directions, each with a 1-credit budget.

7.3. Evaluation

This section reports about an evaluation of our routing protocol for Logical
Neighborhoods. To this end, we implemented it on top of TinyOS [42] and
evaluated it using the TOSSIM [124] simulator. Our goals were to verify
that the protocol behaved as expected for what concerns the generation of
the state space and the cost-aware routing of messages, and to characterize
its performance. This is key to assess the feasibility of our approach and
abstraction. The deployment scenario we simulated is a grid where each
node can communicate with its four neighbors. This choice not only sim-
plifies the interpretation of results by removing the bias induced by more
unstructured scenarios, but also models well some of the settings we target,
e.g., indoor WSN deployments [167].

7.3.1. Analyzing the Routing Behavior

Before characterizing the performance of our routing protocol, we analyze
whether its behavior matches our design criteria. First, we verify separately
the two basic mechanisms underlying our routing, i.e., the state space gen-
eration and its “navigation” by application messages addressed to a logical

151

7. Routing for Logical Neighborhoods

0000 CC
(X o
0000000

Figure 7.6.: An application message navigates the state space. Solid lines
are decreasing paths, dashed lines are exploring paths.

Sender

Figure 7.7.: A message navigating a state space where sending costs follow
the distribution at the bottom.

neighborhood. As for the former, the key property we want to verify is that
the propagation of PROFILEADV messages is localized and partitions the
system in non-overlapping regions, each with routing information towards
a neighborhood member.

To simplify the analysis of results we developed a simple visualization
tool that, given a simulation log and a neighborhood template, displays
the propagation of PROFILEADV as well as applicative messages. Fig-
ure 7.5 shows a sample output of our tool where the logical neighborhood

152

7.3. Evaluation

we consider selects three nodes (represented as circled nodes), and the node
sending cost is equal for all devices. The three snapshots correspond to the
points in time when a given PROFILEADV, generated by one of the neigh-
borhood members, has ceased to propagate. As it can be observed, the
first PROFILEADV is propagated in the whole system, as no other profile
information exists yet. However, when the second member propagates its
profile, this is spread only until it reaches a node where the cost is less
than the one in PROFILEADV. This process partitions the state space in
two non-overlapping regions. Eventually, the system reaches a stable situ-
ation where the number of regions is equal to the number of neighborhood
members, as shown in Figure 7.5—right.

For what concerns routing of applicative messages, Figure 7.6 shows
the output of our visualization tool when a message is sent to the same
neighborhood of Figure 7.5. The credits associated to the neighborhood
are set as an over-approximation of the credits needed to reach the same
three nodes along the shortest path. (More details about setting credits
are reported later.) Note how the situation in the picture is a worst-case
scenario where the sender belongs to the same neighborhood the message
is addressed to. In this case, the message starts from a minimum of the
state space, i.e., without any decreasing path. Therefore, the initial moves
must be exploring ones, until a region different from the one where the mes-
sage originated is reached. Despite this unfavorable situation, the message
reaches all the intended recipients by alternating moves along decreasing
paths with exploration steps.

The effectiveness of our mechanisms in reducing communication costs
is unveiled when heterogeneous devices with different sending costs are
deployed. Figure 7.7 shows a situation with a single neighborhood member
and a message sender placed at the opposite corners of the grid, and where
sending costs are assigned according to an integer approximation of a bi-
dimensional Gaussian distribution. The figure shows the message dutifully
steering away from the network center, where sending costs are higher, and
striking a balance between the length of its route and the sending cost of
the nodes on it. Thanks to the way our state space is generated through
profile advertisements and SSD updates, this path is guaranteed to be,
within a region, the one with the minimum cumulative sending cost.

153

7. Routing for Logical Neighborhoods

7.3.2. Performance Characterization

Here, we study quantitatively the performance of our protocol. Therefore,
we defined a set of synthetic scenarios with a variable number of nodes
placed 35 ft apart and with a communication range! of 50 ft. Each run
lasted 1000 s—a value for which we verified all the measures exhibit a
variance less than 1%.

Each node is configured with a single (static) attribute whose value is
randomly chosen from a predefined set A at system start-up. This profile
is disseminated by PROFILEADV messages once every 15 8. A single sender
node is placed in the center of the grid, generating applicative messages at
the rate of 1 msg/s towards a single neighborhood defined with an equality
predicate over the node profiles. In this setting, the number of receivers
is determined by |A|, and in our case yields a number of neighborhood
members of about 10% of the nodes in the system. The node sending cost
is constant and identical throughout the system.

Credits are assigned by computing the average cost to reach each node
in the system along the shortest path and weighing this value by the prob-
ability of the node being a receiver. Then, we increased this minimal value
by about one third, to give each message some extra credits to spend on
exploratory paths. This approach clearly overestimates the actual cost to
reach a receiver, e.g., because it does not consider that two receivers may
share part of the path from the sender. The definition of a model sup-
porting fine-tuning of credit assignment to neighborhoods deserves further
investigation based on the large body of literature on ad-hoc network den-
sity and random graph theory, and is our immediate research goal.

In the absence of directly applicable solutions to compare against, we
chose a gossip approach as a baseline, because it is general enough to ad-
dress the characteristics of our scenarios (e.g., lack of knowledge about the
nature of applicative data) and yet generates less traffic than a straight-
forward flooding protocol. We set the protocol parameters so that gossip
rebroadcasts a packet received for the first time with a probability P = 0.75,
and our solution triggers new exploring directions once every F = 4 hops.
This latter choice is a reasonable trade-off between generating too many re-
dundant exploratory paths (F too small) and never activating exploratory
paths within a region (E > d, with d the region diameter).

We based our evaluation on three metrics, namely i) the message delivery

!We used the TinyOS’ LossyBuilder to generate topology files with transmission error
probabilities taken from real testbeds.

154

7.3. Evaluation

ratio, defined as the ratio between the messages received by neighborhood
members and those that have actually been sent; ii) the network over-
head, defined as the overall number of messages exchanged at the MAC
layer, thus including PROFILEADV messages; and iii) the average number
of nodes involved in routing. This metric is further divided into the nodes
processing a message at the MAC layer, and those processing one at the
application layer. Message delivery is a measure of how effectively a pro-
tocol steers messages towards the intended recipients. On the other hand,
in the absence of a precise model to evaluate a node’s power consumption,
ii) and iii) provide a sense of how a protocol exploits communication and
computational resources, respectively.

Figure 7.8 illustrates our simulation results along the aforementioned
metrics and w.r.t. the network size. Each chart is the average result of
5 different runs. As it is clear from the figures, our protocol outperforms
gossip in all metrics. Message delivery is consistently higher than in gossip,
and is even significantly less sensitive to an increase of the network size.
As for network overhead, we provide additional insights by showing the re-
sults for our protocol with and without PROFILEADV advertisements, and
by comparing against the ideal lower bound provided by routing along the
minimum spanning tree rooted at the sender and connecting all neighbor-
hood members (computed with a global knowledge of network topology).
The chart evidences that we generate almost half of the overhead of gossip
and yet deliver significantly more messages. The gap between the two is
even more evident in the curve without the PROFILEADV messages, which
essentially highlights how efficient is the pure routing mechanism, once the
routing information is in place. This is particularly significant because the
dissemination of PROFILEADV during state space generation is a fixed cost
that is paid once and for all. In other words, adding another sender—
regardless of the neighborhood it addresses—does not increment the over-
head due to state space generation. In addition, the chart shows how the
performance of our protocol in this case is closer to the ideal lower bound
than to gossip. Finally, for what concerns the nodes involved in processing,
Figure 7.8 shows that our performance at MAC layer is in between gossip
and the minimum spanning tree, while at the application layer our routing
requires only about half of the nodes exploited by gossip to process applica-
tion messages and exhibits a performance closer to the minimum spanning
tree. Therefore, our protocol is likely to provide a considerably longer net-
work lifetime. This result is due to our guided exploration process, which

155

7. Routing for Logical Neighborhoods

1
>
—~
()
>
2
[
Q 2
<
Fd
& 2
s 3
w2
2}
S
0
100 -
=
< 4
L i<
= @
5
[-
>3
(@) 2
&2
o =z
g 2
£ 3
é) 8
0
100
g &
-
— 0
o 8
s £
H
N
w0 2
5} S
'U 5
o 8
A
B
0

08

0.6

02

J— Gosslp Peragallun P= Ov7‘5
Sp\dey Routing E=4

50 100 150 200 250 300 350
Network Size

80 -

60

40 |

20

—+— Gossip Propagation P=0.75

---x-—- Spidey Routing E=4
- Spidey Routing E=4 (excluding ProfAdv)
=3 Minimum Spanning Tree

50 100 150 200 250 300 350
Network Size

80

60 -

40t

20

— GOSSIp Propaga\lon P=0.75

---x--—- Spidey Routing E=4 (physical layer)
- Spidey Routing E=4 (application layer)
=~ Minimum Spanning Tree (physical layer)

————— Minimum Spanning Tree (application layer)
R e R eemrenreaeneeee x
Beig a x g g 2

50 100 150 200 250 300 350
Network Size

(a) Static Network

400

Overhead (thousand of messages) Delivery ratio

% nodes involved in a message send

1 T
— Gusslp Propaga{lon P=0. 75
--x-—- Spidey Routing E=4
08
06
04 |
02
0
50 100 150 200 250 300 350 400
Network Size
— Goss\p‘ Propagél\on P:O‘.75
100 | - Spidey Routing E=4
*--- Spidey Routing E=4 (excluding ProfAdv)
= Minimum Spanning Tree
80
60 -
40
20
0
50 100 150 200 250 300 350 400
Network Size
100
— Goss\p Propagaﬂon P=0175
---x--—- Spidey Routing E=4 (physical layer)
- Spidey Routing E=4 (application layer)
g0 | & Minimum Spanning Tree (physical layer)
—————— Minimum Spanning Tree (application layer)
60 -
40 -
20
0
50 100 150 200 250 300 350 400

Network Size

(b) Dynamic Network (failures)

Figure 7.8.: Evaluation against gossip and ideal multicast, in static and
dynamic scenarios.

privileges unicast messages (that, unlike broadcast, do not reach the ap-
plication layers at all nodes in range), thus saving processing. In contrast,
gossip explores the system in a completely “blind” way.

As shown in the right column of Figure 7.8, the evaluation was carried
out also in a more dynamic scenario where 10% of the nodes are randomly
turned off for 30 s and then reactivated without allowing any settling time

156

7.4. Related Work

in between?. A similar setting has already been used in existing works on
routing for WSNs (e.g. [37]) to simulate node failures or the addition of
new nodes. As Figure 7.8 shows, our protocol still provides higher deliv-
ery than gossip at lower communication and computational costs, despite
node failures. In particular, although nodes joining or leaving the system
generate additional profile advertisements to change the shape of the state
space, the network overhead remains far from the one of gossip. This result
is due to the ability of the state space to change its shape very rapidly in
response to network topology changes. For instance, a single PROFILEADV
message dissemination among nodes in close proximity to the changing one
is usually all it is needed to restore a stable situation.

Finally, the results illustrated in this section should be regarded as worst-
case. Indeed, not only the credit assignment can likely be fine-tuned to
waste less resources, but also our choice of neighborhood predicates (single
constraint) is restrictive. Indeed, it forces each message to follow at most
a single decreasing path at a time: neighborhood templates containing
multiple elementary disjuncts instead can be routed more accurately by
exploiting multiple decreasing paths, therefore further increasing delivery.
Moreover, setting uniform costs throughout the system does not leverage
the ability of our protocol to route in a cost-aware fashion. Nevertheless,
we chose these settings to be fair to gossip, which does not provide these
capabilities.

7.4. Related Work

Only few works propose distributed abstractions for WSNs that support
some notion of scoping. Moreover, unlike the strongly decentralized sce-
narios we target with Logical Neighborhoods, many assume a single data
sink.

The work closer to ours is the neighborhood abstraction described in
Hood [21], where each node has access to a local data structure where
attributes of interest provided by (physical) neighbors are cached. How-
ever, communication is expected to flow only according to a many-to-one
paradigm. In addition, the current implementation considers only 1-hop
neighbors and is mainly based on broadcasting all attributes and perform-
ing filtering on the receiver’s side. Our framework is more flexible as it

*We excluded from this random selection the intended message recipients, as this would
irremediably impact the message delivery ratio.

157

7. Routing for Logical Neighborhoods

provides a general application-defined neighborhood abstraction, which is
decoupled from the application functionality and therefore can be used for
a wide range of purposes (e.g., network reprogramming).

The work on Abstract Regions [14], instead, proposes a model where
<key,value> pairs are shared among the nodes belonging to a given re-
gion. The span of a region is based mainly on physical characteristics of
the network (e.g., physical or hop-count distance between sensors), and
its definition requires a dedicated implementation. Therefore, each region
is somehow separated from others. This results in a much lower degree
of orthogonality and flexibility with respect to our approach. In Abstract
Regions, the concept of tuning interface provides access to a region’s imple-
mentation, enabling the tweaking of low-level parameters (e.g., the number
of retransmissions). Differently, our approach provides a higher-level notion
of cost that can be used to control resource consumption.

In TinyDB [17], materialization points create views on a subset of the
system. In this sense, common to our work is the effort in providing the
application programmer with higher-level network abstractions. However,
the approach is totally different, as TinyDB forces the programmer to a
specific style of interaction (i.e., a data-centric model with SQL-like lan-
guage) and targets scenarios where a single base station is responsible for
coordinating all the application functionality. SpatialViews [168] is a pro-
gramming language for mobile ad-hoc networks where virtual networks can
be defined depending on the physical location of a node and the services it
provides. Computation is distributed across nodes in a virtual network by
migrating code from node to node. Common to our work is the notion of
scoping virtual networks provides. However, SpatialViews targets devices
much more capable than ours, focuses on migrating computation instead of
supporting an enhanced communication facility as we do, and yet provides
less general abstractions.

Finally, in [20], the authors propose a language and algorithms support-
ing generic role assignment in WSNs with an approach that, in a sense,
is dual to ours. In fact, their approach imposes certain characteristics on
nodes in the system so that some specified requirements are met, while in
our approach the notion of logical neighborhood selects nodes in the system
based on their characteristics.

As for our routing protocol, we were influenced by Directed Diffusion [37]
in using a soft-state approach based on periodic refresh of routes. How-
ever, our solution is radically different as it targets more general scenarios.

158

7.4. Related Work

We do not assume data collection as the main application functionality,
and therefore we cannot rely on any knowledge about message content, re-
quired in Directed Diffusion for interpolation along failing paths. Similarly,
we take into account an explicit notion of communication cost without re-
lying on an application-defined notion of data rate. Moreover, our profile
advertisements do not propagate to the whole network, unlike interests in
Directed Diffusion. Finally, routing in Directed Diffusion is entirely deter-
mined by gradients, while we make the system more resilient to changes by
allowing exploratory steps, whose use is nevertheless under the control of
the programmer through the credit mechanism.

159

Part V.

Building upon Logical
Neighborhoods

161

8. Fine-Grained Software
Reconfiguration in WSNs

In the introductory part of this thesis, we discussed how WSNs are in-
creasingly being employed in scenarios whose requirements cannot be fully
predicted, or where the system must adapt to changing conditions. In these
scenarios, the ability of injecting new functionality in the system is of
paramount importance. In addition, recent WSN proposals often employ
heterogeneous nodes (e.g., sensors and actuators), which require the de-
ployment of different code on different devices, based on their characteris-
tics. Unfortunately, existing work in the field largely focuses on scenarios
where the same, monolithic program is distributed to all the nodes.
Chapter 4 presented component-based programming models to address the
first issue above, i.e., identifying what functionality needs to be reconfigured
on the single nodes. In this chapter, we leverage off our work on Logical
Neighborhoods to address the latter challenge, namely, specifying where
reconfiguration occurs. To achieve this, we develop a customized version
of Logical Neighborhoods combined with the FIGARO component model.
Notably, this also includes a novel, dedicated routing scheme providing code
distribution to given subsets of nodes. We describe the integration between
the two solutions and report on the performance of our code distribution
mechanism, showing that its communication overhead lies within 9% of the
theoretical optimum. The results presented here appeared in [6].

8.1. Introduction

The nodes of a WSN are often deployed in large numbers and inaccessible
places, making individual code uploading an impractical solution. This
problem was early recognized in the WSN research field, leading to solutions
exploiting the wireless link for on-the-fly software reconfiguration [169].

163

8. Fine-Grained Software Reconfiguration in WSNs

However, these solutions were designed to suit the needs of early WSN
architectures, i.e., application-specific systems with homogeneous devices.

Problem and Motivation. Today, WSNs are proposed in contexts where
their functionality changes over time and/or cannot be predicted a priori.
For instance, in emergency response [4] systems the WSN must be recon-
figured on-the-fly by mobile operators which demand customized behavior
to carry out their activities. In similar scenarios, anticipating all expected
needs, if at all possible, may lead to complex and unreliable code cluttered
with rarely-used functionality. Therefore, software reconfiguration—even
if representing a rare activity compared to the application operations—
becomes a much-needed feature. For reconfiguration to be fully effective,
however, programmers must retain fine-grained control over what is being
reconfigured, by updating selected functionality to minimize energy con-
sumption. However, most platforms allow updates only of the full appli-
cation image. In the very few exceptions, programmers sorely miss proper
constructs to deal with dependencies among different functionality, ver-
sions, and other fundamental aspects of reconfiguration [169].

Moreover, modern WSNs are typically heterogeneous, containing a mix-
ture of sensing devices and/or actuators. In building monitoring, for in-
stance, a wide range of sensor and actuators is deployed, e.g., to implement
heating, ventilation, and air conditioning (HVAC) control [27]. As different
nodes are likely to run different application code, software reconfiguration
may be limited to a specified portion of the WSN. For instance, a structural
engineer inspecting a building may want to load a new piece of functionality
only on seismic sensors deployed in a specific location (e.g., the floor being
inspected), to process the sensed data in a previously unanticipated man-
ner [90]. In this case, fine-grained control over where the code is deployed,
based on application attributes of the nodes, is largely missing from exist-
ing approaches, which instead are designed to distribute the same code to
all the nodes, regardless of their function [169].

Contribution. We already tackled the former issue above in Chapter 4,
using component-based programming solutions. Specifically, we illustrated
how our F1IGARO component model defines flexible constructs for structur-
ing the code on the single nodes. Moreover, differently from other compo-
nent models for WSNs (e.g., [28]), FIGARO provides dedicated constructs
to deal with component dependencies and versions, and to simplify the
reconfiguration process.

By leveraging off the work on Logical Neighborhoods, described in the

164

8.2. Distribution Model and Tool Support

DECLARE_NODE ({

Function = SENSOR

Type = TEMPERATURE

Floor =1

Battery = getBatteryReading()
b

Figure 8.1.: Declaring node attributes.

third part of the thesis, here we describe how we augment the F1GARO
programming model with constructs to restrict component dissemination
only to a given subset of nodes—the reconfiguration target—based on
programmer-specified characteristics of the nodes or their current software
configuration. These features are described in Section 8.2. This way, FI-
GARO tackles the two problems in an integrated way, spanning all the
aspects from the programming model to code distribution.

To enable the approach above, we need an efficient code distribution
scheme able to deliver the new functionality to a subset of nodes only.
These requirements call for a customized approach to routing. Our solution
to this issue, illustrated in Section 8.3, is both lightweight and efficient,
as demonstrated in the evaluation reported in Section 8.4. Notably, our
solution for code distribution results in a communication overhead within
9% of the theoretical optimum, which is instead computed in a centralized
manner and with global knowledge of the system topology.

Finally, in Section 8.5 we compare the code distribution scheme of Fi-
GARO against the current state of the art.

8.2. Distribution Model and Tool Support

Borrowing from our earlier work on Logical Neighborhoods, here we de-
scribe how we empower FIGARO with the ability to delimit the portion of
the WSN where reconfiguration takes place. This is achieved with dedi-
cated programming constructs that enable programmers to: i) declare the
attributes characterizing a node; i) specify the reconfiguration target—i.e.,
the subset of nodes for component deployment—using boolean predicates
over the nodes’ attributes. Our current implementation leverages off the
Contiki [56] operating system.

Figure 8.1 shows an example where we use the DECLARE_NODE macro
to specify that a node hosts a temperature sensor and is located on a

165

8. Fine-Grained Software Reconfiguration in WSNs

DECLARE_TARGET ({
Function == SENSOR && Battery >= 70 &&
(Type == TEMPERATURE || Type == VIBRATION) &%
RUNNING(TreeRouting) &&
VERSION(TreeRouting) <= 11
b

Figure 8.2.: Declaring the reconfiguration target.

given floor. Note how, in principle, attributes can be assigned any legal
C expression, including C functions as in the case of the Battery field.
The nodes targeted by the reconfiguration can be specified declaratively
as an (arbitrary) boolean predicate over node attributes using the macro
DECLARE_TARGET. In Figure 8.2, we specify as reconfiguration target the
set of temperature or vibration sensors with at least 70% of battery left,
and running a TreeRouting component with version less than 11. Notably,
the latter requirement leverages off information automatically exported by
the FIGARO run-time layer illustrated in Section 4.7, which describe the
current component configuration on a node. Specifically, the parametric,
built-in predicate RUNNING takes as input the name of a given component
C, and yields true when evaluated on a node where C' is currently in such
state. Instead, the built-in function VERSION returns the version of the
component given as parameter.

Differently from the FIGARO language constructs described in Chap-
ter 4, however, the constructs concerned with the reconfiguration target
require a minimal amount of pre-processing. On the user base-station, re-
configuration is triggered using a dedicated executable, whose arguments
are two files: one containing the component binary image and one with the
reconfiguration target (e.g., as in Figure 8.2). A dedicated pre-processor we
developed parses them together, generates a unique reconfiguration identi-
fier, divides the binary image into smaller chunks fitting in single physical
messages, and starts injecting them into the network. The details of the
routing protocol determining their propagation are described next.

8.3. Routing Protocol for Selective Code
Distribution

Our dedicated distribution scheme revolves around two base mechanisms:

166

8.3. Routing Protocol for Selective Code Distribution

G OO @) O mehon

Point

Figure 8.4.: A distribution tree exploiting the mesh.

e While the application is running, we exploit its message traffic to
build a mesh topology interconnecting all nodes with same attribute-
value pairs, as in Figure 8.3, to identify all possible alternative paths
connecting the relevant nodes.

e When a reconfiguration is about to occur, a subset of the mesh paths
are exploited to build a tree rooted at the target node closest to the
injection point, as in Figure 8.4. The tree is then used to propagate
the component chunks to all target nodes.

In principle, the two mechanisms above could be designed independently.
Nonetheless, our solution is explicitly conceived to take advantage of their
mutual interplay. As our objective is to build shortest paths to the target
nodes, we make all paths in the mesh bi-directional. This allows us to
exploit the same shortest paths regardless of where the code is injected.
Moreover, our solution is designed to create a planar mesh topology, i.e.,
one in which no two paths with different end-points cross at any interme-
diate node, as in Figure 8.3. Results in graph theory indeed demonstrated

167

8. Fine-Grained Software Reconfiguration in WSNs

‘ Source ‘ Attr ‘ Val ‘ Cost ‘ Bridging ‘ Bridge Cost ‘ Next Hop ‘ Timestamp ‘

Node 3 B 3 0 null null self 4
Node 4 A 1 1 Node 1 3 Node 4 25
Node 1 A 1 2 Node 4 3 Node 2 72

Figure 8.5.: Routing table at node 3 in the situation of Figure 8.6(c).

how planar graphs involve fewer routing loops [170]. As a result, the tree
topology built atop the mesh easily identifies near-optimal paths, as we
demonstrate in Section 8.4.

8.3.1. Building the Mesh Topology

Architecture and Data Structures. As the mesh is built during nor-
mal system operation, we must minimize the impact of the mesh-building
protocol on the application behavior. We obtain this goal by designing a
solution that does not generate explicit control messages. Rather, we lever-
age off the application traffic by piggybacking the current value of a node’s
attributes on every outgoing message'. This is achieved by interposing a
thin software layer between the application and the underlying network
layers whose interface is the same as the original network stack, making its
use transparent to the application.

The information piggybacked is overheard by all nodes in range?, and
used to populate a simple routing routing table (e.g., as in Figure 8.5), that
describes the paths of the mesh. Each entry in the table contains a node
identifier and the associated attribute-value pair, the next hop to reach
that node along with the corresponding cost in hops, and a timestamp
to discriminate stale information. In addition, the Bridging and Bridge
Cost fields are used to distinguish entries corresponding to bidirectional
paths. The former possibly contains the identifier of another node with
same attribute-value pair, representing the opposite end-point of the path
itself, whereas the latter stores the total path length in hops. Each entry
in the table is associated with a lease (not shown) that, if not refreshed,
causes the entry removal.

Protocol Operation. Figure 8.6 describes an example of mesh construc-
tion. The initial situation, depicted in Figure 8.6(a), illustrates the physical

'In case a node is silent, we generate dummy messages at a pre-specified rate.
2A simple hook within the Contiki radio layers allows us to overhear also unicast
messages.

168

8.3. Routing Protocol for Selective Code Distribution

(=}
n
S
o
n
w

@)
R0

(4

ORCL

B=3 E=2 D=4 E=2

(a) Initial situation. Arrows de-
scribe the physical topology.

bridge 1<+>4
cost 3 A=1

brldge 14
cost5

(c) Node 3 and node 7 recog-
nize it is possible to build a bidi-
rectional path connecting node 1

A=1

(b) Node 1, 4, 5 and 8 send ap-
plication messages. Bold arrows
describe the Next Hop field for A
= 1.

bridge 1<>4
cost 3

gﬂ@ﬂ@ﬂ
o

(d) The path through node 3 is
complete. The one through node
7 is pruned as unnecessary.

no bridging

and node 4.

Figure 8.6.: Example of mesh construction (grey circles are target nodes).

network topology and the attributes defined in the node declarations, along
with their corresponding values. Initially, all routing tables contain only
entries relative to the local node. For instance, let us focus on the nodes
having attribute A equal to 1 as target. When node 1 first sends an ap-
plication message, we append a subset of node 1’s routing table entries to
it3. The nodes in range parse this information, increments all cost fields by
one, and add these entries to their routing tables provided no other entry
with same attribute-value pair but smaller or equal cost exists. By doing
this at every node, node 1’s specification spreads across multiple hops. For
instance, node 5’s piggybacked information also includes node 1’s initial
entry, as it was overheard from node 1’s transmissions. Assuming node
4 and 8 eventually send some application message as well, the resulting
situation is as depicted in Figure 8.6(b).

3Entries are selected in round-robin, their number limited by a configuration parameter.

169

8. Fine-Grained Software Reconfiguration in WSNs

To recognize when a bidirectional path can be established, we look for
received entries containing an attribute already stored in the local table,
but from a different source and greater or equal cost. This is the case in
Figure 8.6(c), where node 3 receives from node 2 an entry for attribute A
with value 1 and cost 2. In this situation, a bidirectional path for the same
attribute can be established, with node 1 and node 4 as end-points. To
establish the path, we insert the newly received entry in node 3’s routing
table with the Bridging field set to the identifier of the opposite end-point
of the path (e.g., node 4 in case of node 3 in the last entry of Figure 8.5),
and the Bridge Cost field set to the total cost of the path itself. Similarly,
we update any entry already in the table that refers to the other end-point
of the bidirectional path—as it is the case for the second entry in Fig-
ure 8.5—modifying the Bridging and Bridge Cost accordingly. Afterwards,
entries with non-null Bridging fields are propagated only towards the node
reported in the Bridging field itself. Thus, the second entry in Figure 8.5
is propagated only towards node 1, whereas the last entry spreads only
towards node 4. This is as simple as appending an optional field to all
outgoing messages stating what nodes propagate what entries.

As a side-effect of the above processing, more than a single bidirectional
path connecting node 1 and node 4 could be established. For instance, a
further path is eventually built through node 5, 6, 7 and 8, with a total cost
of 5. This, however, poses unnecessary communication overhead. To allevi-
ate this undesirable behavior, non-null Bridging entries are propagated only
if the node is not aware of other (bidirectional) paths with smaller cost. In
our example, node 7 eventually stops propagating its non-null Bridging en-
try after overhearing the last entry at node 3, which contains a smaller cost.
This ultimately yields the situation in Figure 8.6(d). Although this scheme
does not completely prune all redundant paths, it greatly diminishes their
number. Pruning all the paths but the shortest one would indeed require
propagating the minimum cost entry multiple hops away from the shortest
path. How far to propagate is hard to determine without knowledge of the
network topology. Also, the additional paths may be used as back-ups in
case of sudden faults. We plan to investigate this in the near future.

Dynamic Attributes and Topology Changes. The protocol operation
occurs whenever the application generates network traffic. Therefore, in the
case of time-varying attributes, the accuracy provided by the mesh topology
w.r.t. the current values of attributes is ultimately dictated by the amount
of application traffic over time. Applications generating more traffic allow

170

8.3. Routing Protocol for Selective Code Distribution

QO
O®
QO
O S:5:$.0

Figure 8.7.: Node 3 has equal cost to all target nodes.

OO0

our protocol to build more accurate topologies, whereas it is difficult to
do so if the amount of traffic flowing in the network is insufficient to keep
up with the dynamics of the varying attribute. As for topology changes,
e.g., due to failing nodes, invalid routes will eventually expire without be-
ing refreshed. As soon as the application generates further messages, our
protocol identifies alternative routes according to the new topology. Still,
the time taken to build the new routes depends on the amount of traffic
generated by the application. In case the system needs to react quickly
to changes, yet the application traffic is insufficient to adapt the routes
immediately, our protocol can be forces to generate dummy messages at a
high rates.

Enforcing Planarity. By construction, our scheme does not generate
multiple paths with different end-points crossing at an intermediate node.
Indeed, the only way this can be obtained is to have, in the same routing
table, more than one non-null Bridging entry for the same attribute-value
pair with different source. Consider Figure 8.7: node 3 may try to establish
two crossing paths, e.g., connecting node 1 to node 5 and node 2 to node 4.
This cannot occur in our protocol, as received entries with cost greater or
equal to the local table for the same attribute-value pair are ignored, end
every non-null Bridging entry can be used to establish a single bidirectional
path. Therefore, node 3 in Figure 8.7 will never be able to generate crossing
paths.

8.3.2. Distributing Code

When a reconfiguration takes place, code is distributed along a tree: re-
dundant paths in the mesh are identified based on the position of the code

171

8. Fine-Grained Software Reconfiguration in WSNs

injection point, using a marker message. This contains the reconfiguration
identifier generated by our pre-processor, and an encoding of the predicate
defining the required reconfiguration target. The former serves to support
multiple concurrent reconfigurations. The latter is used by nodes to de-
termine, based on their routing table, the next hop for the marker. Upon
forwarding, target nodes add to the marker the cost accumulated along the
last bidirectional path traversed. This way, the marker eventually reaches
all the target nodes, making them aware of their distance from the injection
point. This information is used at each target node to configure a dedi-
cated distribution tree by selecting as parent the target node that, along
the links of the mesh, is the closest to the injection point. The selection
is communicated to the parent with a message containing the identifiers
of the source target node and of the selected parent. Note how code dis-
semination can start before the entire tree is built. When receiving a code
chunk, a node that has not yet determined its children simply defers for-
warding and buffers the chunk. Buffering would happen in any case, since
a component cannot be reconstructed until all chunks are received.

The code distribution phase demands reliable communication, e.g., be-
cause all code chunks must be correctly delivered. We employ a simple
hop-by-hop reliability mechanism, based on implicit acks. Nodes on a tree
path buffer every message, waiting for the downstreamn node to re-send
it. When this occurs, the upstream node overhears the transmission, and
concludes the message was received; otherwise, it is re-sent. Similar tech-
niques have already been successfully employed in WSNs [171]. However,
our implementation decouples this aspect, enabling the use of alternative
reliability schemes.

8.4. Evaluation

In this section we assess the effectiveness of our solution for code distri-
bution by reporting about simulations performed using Cooja, the Contiki
simulator.

The evaluation of code distribution protocols for WSNs has hitherto fo-
cused on metrics such as latency and message overhead [169]. However,
these are usually affected by mechanisms other than the distribution pro-
tocol itself. For instance, latency is affected also by the MAC layer proto-
col, as back-off timers, random transmission delays, and transmission slots
in TDMA schemes are employed to reduce collisions. Similarly, message

172

8.4. Evaluation

overhead is affected by the specific reliability mechanism employed.

However, the above concerns are orthogonal w.r.t. the problem we are
tackling and the essence of the solution we presented, whose performance is
determined primarily by the shape of the tree used during the distribution
phase. Indeed, the number of hops separating the injection point from the
target nodes strongly impacts both latency and message overhead irrespec-
tive of the MAC layer and reliability mechanism employed, which instead
affect the individual 1-hop transmissions. Therefore, we choose to evaluate
our protocol by focusing on the number of links employed during the code
distribution phase*, and compare this metric against the optimal distribu-
tion tree computed with a shortest path algorithm and global knowledge
of the network topology. We also measured the convergence speed of our
mesh-building algorithm, i.e., how many messages the application must
generate for the routing tables to stabilize. In both cases, we rely on the
standard Contiki MAC layer as implemented in Cooja. Moreover, we used
the reliability mechanism discussed in Section 8.3, for which simulations
confirm a 100% delivery in all the experiments discussed next.

As for simulation settings, each node exports a single attribute whose
value is randomly selected at start-up. Reconfiguration targets are defined
by a single equality predicate on this attribute. During the mesh-building
phase each node sends an application message every 5 + D seconds. D
is a random delay we introduced to avoid locking effects among nodes,
and to generate executions with varying traffic rates at different nodes.
Application messages are 64 bytes in size, to which we piggyback 24 bytes
of control information corresponding to 4 entries from the local routing
table. During the simulations, the mesh-building phase takes place first.
The convergence speed is determined when routing tables at all nodes do
not change for 5 consecutive message sends. At this point, the mesh is
considered stable: a random node is chosen as injection point and the
tree-building phase is started. We discuss results obtained in regular grids
and random topologies. In the former, each node can communicate with
4 neighbors. This setting models some of the applications we target (e.g.,
indoor WSN deployments [167]). In the latter the number of neighbors
varies from 3 to 7. For each scenario, we averaged the results over 20
repetitions with varying distribution scopes and injection points.

*In cases where nodes can forward a message towards n neighbors with a single physical
packet we still count n links, as most reliability mechanisms would send separate
messages anyway.

173

8. Fine-Grained Software Reconfiguration in WSNs

45 T g T T 60 T g T T
FiGaRo (average) —+— FiGaRo (average) —+—
Optimal (average) -~ Optimal (average) -~

° 40 - FiGaRo (std deviation) ° 50 FiGaRo (std deviation)
S 35t 5
[=3 o
8 § 40r
o 30 9
2 2
£ £ L
5 251 = 30
5 5
E 20r £ 20
= =

15 +

¥ 10
10 L
50 100 150 200 250 300 50 100 150 200 250 300
Nodes Nodes
(a) Grid topologies. (b) Random topologies.

Figure 8.8.: FIGARO performance vs. topology and system size (target
nodes are 10% of the total).

30
3 25¢
£
=
x
© 20
L
£ .
S 15 [
Q
E
2 10t _ |
FiGaRo (average) —+—
Optimal (average) - SV
5 . FiGaRo (std deviagion) B

0 10 20 30 40 50
Percentage target nodes

Figure 8.9.: FIGARO performance vs. number of target nodes (100 nodes
arranged in a grid).

20 T u T T
FiGaRo convergence speed —+—
15
n
(]
{=2]
©
a
o 10 r
£
€
Q
2]
5|
0
0 10 20 30 40 50

Number of different attribute-value pairs

Figure 8.10.: F1IGARO convergence speed (100 nodes arranged in a grid).

174

8.4. Evaluation

Results. Figure 8.8 shows how the number of links exploited by our so-
lution varies according to the system size and topology. Remarkably, the
performance of our protocol remains always within 9% of the theoretical
optimum, and is almost constant as the number of nodes increases. By
examining the simulation logs, we realized that the gap is mostly due to
cases where it may be more convenient to access the mesh from more than
a single entry point. When this does not hold and the injection point is
very close to a target node (i.e., within 2-3 hops), the average gap w.r.t. the
optimal solution is even lower, around 3%. This confirms that our mesh-
building algorithm, thanks to its planarity property, yields near-optimal
routes in the distribution trees built atop. Further, note how Figures 8.8(a)
and 8.8(b) exhibit similar trends, although the results on random networks
show higher variability due to the irregularity of the topology.

Figure 8.9 provides a different perspective by analyzing the behavior of
our protocol w.r.t. the percentage of target nodes. As shown in the chart,
our solution is barely affected by this parameter. The high variability ob-
served with few target nodes is due to cases where nodes end up aligned
w.r.t. the injection point, and the distribution tree degenerates in a chain.
In these configurations, intermediate nodes are reached at essentially no
cost. The probability of these configurations decreases as the number of
target nodes grows. We limited our experiments to half of the nodes in the
system as targets. Beyond this point, the scenario starts bearing similari-
ties with traditional code distribution in homogeneous networks, where all
nodes are target. In this case, existing solutions are better suited, e.g., [45].

Finally, we verified that the convergence speed of the mesh-building
phase is not affected by the system scale. Indeed, the extent to which
routing entries are propagated is not dictated by the overall number of
nodes, rather by the amount of redundancy among attribute-value pairs.
This claim is supported by Figure 8.10, showing the number of messages
required to build the mesh against the number of (distinct) attribute-value
pairs in the system. When the latter is small the mesh builds quickly, as the
bidirectional paths connecting nodes with the same attribute-value pairs
are likely to be short. Instead, when attribute-value pairs are highly het-
erogeneous the mesh takes more time, due to the dual argument. Overall,
the values in the chart are good: only 17 messages need to be sent when
50 different attribute-value pairs are present, i.e., only 2 nodes in the 100-
node network of Figure 8.10 have the same attribute-value pair—a rather
unusual setting. In any case, the values in the chart should represent only

175

8. Fine-Grained Software Reconfiguration in WSNs

a very little fraction of the overall system lifetime, typically measured over
months or even years.

8.5. Related Work

To the best of our knowledge, we are the first to provide efficient distri-
bution of code to an arbitrary subset of nodes identified by programmer-
provided information. In doing so, we leveraged off our work on Logical
Neighborhoods [10], described in the second part of this thesis. Nonethe-
less, tackling the issues germane to code distribution required a completely
different routing support, as described in Section 8.3.

In the field of code distribution, the approach closest to ours is the Tiny-
Cubus framework [172], where code can be distributed to all nodes with a
given role, e.g., all cluster-heads. This is far less flexible than predicate logic
over programmer-defined attributes, and does not encompass the ability to
identify the target nodes based on their current software configuration,
e.g., as provided by the RUNNING built-in-predicate. At the network level,
TinyCubus assumes a priori knowledge of the system topology and of the
location of nodes with a given role, as it requires to specify an upper bound
on the number of hops separating nodes with the same role. In contrast,
our solution is fully dynamic and decentralized.

Network-wide distribution of code has been widely investigated, tack-
ling different facets of the problem. On one hand, solutions have been
proposed to reduce the size of the code to be distributed by employing
differential patching and smart linking mechanisms, e.g., [43,44]. Still,
similar concerns are orthogonal to the problem we tackle in this work, and
the corresponding solutions may be integrated in our framework for even
better performance, e.g., by injecting a patch instead of the whole binary
when the new component is going to replace an older version. Instead,
other approaches focused on routing. Trickle [45] uses a counter-based
technique called “polite gossip”, whose objective is to suppress redundant
transmissions while guaranteeing eventual delivery. Deluge [46] uses a sim-
ilar technique, with the addition of a negotiation phase to guarantee the
proper sequencing of packets. This is also used in MNP [47] to address
the hidden terminal problem before transmitting the actual code. Sprin-
kler [48] and Firecracker 49| instead leverage off node hierarchies, by first
sending code to “core” nodes up in the hierarchy, which then forward the
code to nodes in their vicinity. As the objective of all the above solutions

176

8.5. Related Work

is to distributed code to all nodes, they can avoid any background activity
under normal operating conditions. For the same reason, however, these
mechanisms are hardly applicable in our case. For instance, it would be
fairly inefficient to add multi-hop negotiation in Deluge to address the case
where the target nodes are multiple hops away.

177

9. The Virtual Node Abstraction

The Logical Neighborhoods abstraction, described in the third part of this
thesis, provides a basic building block to identify arbitrary subsets of nodes,
and interact with them. By redefining the traditional broadcast-based com-
munication API, Logical Neighborhoods enable building a range of higher-
level language constructs atop, thus providing a stepping stone for the de-
velopment of flexible programming abstractions.

In this chapter, we explore this possibility by defining virtual nodes, a
programming abstraction that greatly simplifies the development of WSN
applications. Virtual nodes are built as a natural extension of the Logi-
cal Neighborhoods concept, by abstracting programmer-specified subsets of
nodes (e.g., all temperature sensors in a room) into a single, logical one.
Spanning both ends of the control loop, virtual nodes take the form of virtual
sensors or virtual actuators. The former abstract the data sensed by real
sensors into the reading of single, fictitious node; whereas the latter pro-
vide a single handle to control a distributed set of actuators. Virtual nodes
drastically increase the programmer productivity and foster a higher-quality
design, as illustrated in our quantitative evaluation. Moreover, by virtue of
our dedicated distributed run-time support, they also yield improved system
performance—e.q., an 80% increase in lifetime w.r.t. traditional solutions.
A preliminary version of the work described here appeared in [11].

9.1. Introduction

As we illustrated in Chapter 1, in sense-and-react applications decentralized
architectures are the prominent design choice to ensure efficient and timely
operations [2]. As a result, the complexity of application development
increases dramatically, and ease of programming becomes fundamental.

Scenario. Consider a building automation [173] scenario. Sensors are
deployed to monitor various phenomena, (e.g., temperature, humidity, vi-

179

9. The Virtual Node Abstraction

individual locations

1
F——== QL
| Humldlty Temperature (—'
1 Peciple :
1 |

|
! Y &y \, : v |
| Vibration People Air/Light |
| Presence Controller ‘ ‘ |
| [
| |
| |
1

0 NG

/ turn on/ turn on/low-power

turn off

- Sound
L nghtlng Air Conditioner
L <.)

‘ B S :
indirectinteraction thiough & | Energy) wmow
the environment Sensor u) low-power
ow ot semsed dmin > I
flow of sensed data
—) = Control
flow of actuation Actuator Controller ‘ I Station ‘ I
commands

entire building

Figure 9.1.: Interactions in building automation.

bration, sound) and the energy consumption of air conditioners and lights.
The system controls the activation of these devices to minimize the overall
energy consumption. As depicted in Figure 9.1, programmers are to express
complex interactions among different subset of nodes, e.g., vibration sen-
sors and light controllers in individual locations such as private offices, as
well as energy sensors and air conditioners throughout the whole building.
Typical requirements are [173]:

R1: when people is detected from (averaged) vibration and sound readings
in individual locations, lights must be activated and air conditioners
set for predefined temperature and humidity values.

R2: in the absence of people, lights must be turned off and air conditioners
switched to a low-power mode.

R3: when the overall energy consumption exceeds a safety threshold, a
central control station must deactivate the air conditioners to avoid
blackouts.

State of the art & motivation. Based on the taxonomy described in

Chapter 2, WSN programming has hitherto leveraged off solutions provid-
ing communication in the physical neighborhood, e.g., nesC [28], or based

180

9.1. Introduction

on system-centric computation, e.g., TinyDB [17]. Using the former, pro-
grammers reason at a very low-level of abstraction, where the application
processing is described in terms of pair-wise interactions between nodes
within radio range. In contrast, in the latter developers program the system
as a whole, regardless of the individual nodes. The interactions involved in
our reference application, however, make these approaches ill-suited to the
requirements at stake. Several distinctive traits can indeed be noted:

e The use of heterogeneous nodes: different types of sensors are de-
ployed, and multiple actuators are installed to influence the envi-
ronment differently. This prevents the use of approaches providing
system-centric computation, as they usually assume a homogeneous
scenario.

e The focus is on programmer-specified subsets of nodes, not on the
whole network: adjusting the lighting in a corridor involves only ac-
tuator nodes in a specific location. However, traditional WSNs pro-
gramming frameworks lack the appropriate abstractions to partition
the system based on application requirements.

e A high degree of decentralization: processing must be kept close to
where the actuation is to be performed, to minimize latency and
save on resource consumption [2]. Physical neighborhood commu-
nication, however, only provides the ability to exchange messages
between nodes within radio range, and every additional functionality
must be coded explicitly.

Contribution. In this chapter we propose virtual nodes: a programming
abstraction that strikes a balance between the two extremes above. As
illustrated in Figure 9.2, virtual nodes abstract application-defined subsets
of nodes into a single, logical entity. This applies at both ends of the control
loop, i.e., while sensing from the environment, as well as in performing
actuation. As for the former, virtual semsors process the data sensed by
a subset of real nodes through programmer-provided functions, and offer
the corresponding output as the reading of a logical node. Dually, virtual
actuators provide a single entry point to control a group of geographically
sparse actuators. The set of nodes to be abstracted into a virtual one is
specified with Logical Neighborhoods, using an extension of the SPIDEY
language we described in Chapter 6. The salient characteristics of the
virtual node abstraction are illustrated in Section 9.2.

181

9. The Virtual Node Abstraction

commands

%\T h, T b corridor

~— actuator actuator
(air conditioner) (light controller)

Figure 9.2.: Virtual sensor and actuators. Dashed lines show the real nodes
associated to a virtual one.

Our current implementation, described in Section 9.3, revolves around
a dedicated preprocessor for the SPIDEY language, coupled with a flexible
run-time support that our preprocessor automatically customizes. For in-
stance, some of the functions describing the mapping to a virtual sensor
can be computed in-network, i.e., by letting intermediate nodes between
sources and receivers evaluate and transmit partial results instead of raw
data. This reduces the amount of transmitted data, and yields a better
distribution of the processing load. When this technique can be applied,
our preprocessor properly customizes the run-time support.

As illustrated in Section 9.4 by comparing our approach against tradi-
tional solutions, virtual nodes boost programming performance and design
quality, while improving the system performance. Indeed:

e Virtual nodes give developers an intuitive way to deal with subsets
of nodes and their interactions. Hence, it is easier to decompose and
decouple application concerns into smaller and simpler ones, each
affecting different parts of the system. This ultimately yields simpler,
cleaner, and more reusable implementations.

e The SPIDEY preprocessor provides a tight coupling between the pro-
gramming abstraction and the distributed protocols in our customiz-
able run-time, enabling remarkable performance improvements. In-
deed, using cycle-accurate emulation of WSN nodes we demonstrate
an increase of 80% in system lifetime.

We conclude the chapter in Section 9.5 with a brief survey of related
work in the field.

182

9.2. Programming WSNs with Virtual Nodes

node template Sensor
static Function
static Type
static Location
dynamic Reading

create node vibration from Sensor
Function as "sensor"
Type as "vibration"
Location as "officel"
Reading as getVibrationReading()

(a) Sensor node.

node template Actuator
static Function
static Type
static Location
operation Activate(int tuning)
operation Deactivate()

create node lighting from Actuator
Function as "actuator"
Type as "light"
Location as "officel"
Activate(int tuning) as setLightIntensity(tuning)
Deactivate() as setLightIntensity(0)

(b) Actuator node.

Figure 9.3.: Node definition and instantiation.

9.2. Programming WSNs with Virtual Nodes

In this section we illustrate the core concepts and language constructs of
virtual nodes, while Section 9.3 describes the corresponding language and
run-time support.

9.2.1. Focusing on Relevant Nodes

In our reference application, R1 and R2 require a node controlling the
lighting in a private office to average nearby vibration and sound readings,
and combine them to infer the presence of people. The ability to focus on
a subset of relevant nodes is key to achieve this functionality, and is readily
provided by Logical Neighborhoods.

Therefore, before specifying the relevant node subsets, the programmers

183

9. The Virtual Node Abstraction

neighborhood template VibrationSensors(loc)

with Function = "sensor" and
Type = "vibration" and
Location = loc

create neighborhood vb_my_location
from VibrationSensors(loc: myLocation())

Figure 9.4.: Neighborhood definition and instantiation on a node control-
ling the lighting. (myLocation() returns where in the building the node is
deployed.)

of our reference application specify the characteristics of the nodes, based
on which selection occurs. Figure 9.3(a) shows a fragment of SPIDEY code
describing a sensor node, using the language constructs illustrated in Chap-
ter 6. Similarly, Figure 9.3(b) illustrates the definition of an actuator node.
This time, however, the latter template also contains operations, in our case
to activate and deactivate the actuator. Note how the instantiation in Fig-
ure 9.3(b) binds them to the same function, i.e., the one used to regulate
the light intensity. The desired subset of nodes is then identified using
boolean predicates on the node characteristics. Figure 9.4 illustrates a log-
ical neighborhood including all vibration sensors in a location. This can be
used, for instance, on a node controlling the lighting to identify the relevant
input sensors.

The SPIDEY constructs shown so far identify subsets of nodes without
expressing any interaction among them. In a sense, we are still playing on
the bottom plane of Figure 9.2, by “drawing” the dashed lines denoting the
relevant nodes. Next, we describe how virtual nodes build upon Logical
Neighborhoods to provide expressive abstractions that greatly simplify the
programming chore.

9.2.2. Virtual Sensors

If our reference application were to be developed using a programming
model such as nesC [28], the processing to average the vibration readings
in a location would need to be coded in all its gory details. A large fraction
of these include communication, and therefore serializing outgoing data,
parsing and buffering received packets, storing partial results, and dealing
with concurrency issues due to multiple activities occurring simultaneously.
The complexity increases further if in-network processing is employed to

184

9.2. Programming WSNs with Virtual Nodes

create node virtual_avg_vibration from Sensor
Function as "virtualSensor"
Type as "avgVibration"
Location as myLocation()
Reading as average input vb_my_location every 30
summary algebraic

PartialAvg average(PartialAvg pa, Node n) {
pa.sum += n.Reading;
pa.avg = pa.sum / ++pa.count;
return pa;

}

Figure 9.5.: Definition of a virtual vibration sensor on a node controlling
the lighting.

reduce resource consumption. Indeed, this entails processing on all nodes,
not only where the final measure is required. The programmer is thus forced
to delve into application-level routing, understand when and how interme-
diate nodes forward the data, intercept the corresponding processing—and
therefore progressively losing touch with the very application logic.
Instead, virtual nodes enable the programmer to achieve the same func-
tionality above in a few lines of code. Notably, as shown in Figure 9.5,
the virtual sensor is instantiated using the same Sensor template of Fig-
ure 9.3(a). As such, it is perceived by the application exactly as if it were a
local sensing device. The relevant data, however, comes from a distributed
data source, as depicted in Figure 9.2. The mapping from the physical
readings to the virtual node is expressed during instantiation. The value
of Reading, formerly provided by the underlying hardware, is now derived
by applying the function average () to data sensed by nodes in the logical
neighborhood vb_my_location defined in Figure 9.4. The every clause
determines the rate at which the virtual sensor reading is updated.
Besides these basic features, the extended SPIDEY also provides con-
structs enabling language-driven in-network processing. This is accom-
plished by defining: i) a uniform way to express the functions employed,
and 1) constructs to characterize their mathematical properties.
Functions are expressed in a way similar to [130], namely:

(state’) = f((state), (input))

where (state) is a partial state record computed over one or more sensor
values, and (input) is a set of input values. For instance, averaging a set

185

9. The Virtual Node Abstraction

l Function l Output l Aggregation‘
average() | Summary Algebraic
max () Exemplary Distributive
sum() Summary Distributive
median () Exemplary Holistic

Figure 9.6.: Classification of some example functions.

of values can be expressed as:

sum~+tvalue

count+1 sum+value, Count—|—1>

average({avg, sum, count), (value)) ::= (

which straightforwardly translates into the code for average() in Fig-
ure 9.5. Note that complex functions can be expressed this way, e.g.,
isobar-finding algorithms [130].

Instead, to characterize the properties of the functions employed we take
inspiration from Gray et al. [174] and consider two dimensions, shown in
Figure 9.6. One is concerned with the nature of the output w.r.t. the
inputs. The output of an exemplary function contains one or more repre-
sentative values from the input set. Instead, a summary function computes
some property over all values, not necessarily corresponding to any value
in the input set. The other dimension is concerned with the nature of the
aggregation performed. The output of a distributive function can be ob-
tained by applying the same function on disjoint subsets of input values
individually. This does not hold for algebraic functions, although the par-
tial states are still of constant size. Finally, in holistic functions the size
of the partial states grows with the size of the subset of the input values
involved.

The SPIDEY preprocessor uses the information above to decide if and
how in-network processing can be applied, and to customize our run-time
layer accordingly. For instance, in-network processing can be applied for
summary, algebraic functions like average (). Conversely, the input data of
holistic functions must be reported to a central node where processing takes
place in a single step. Details about how this customization is achieved are
in Section 9.3.

9.2.3. Virtual Actuators

In our reference scenario, R3 requires the control station to deactivate
the air conditioners when the overall energy consumption exceeds a safety

186

9.2. Programming WSNs with Virtual Nodes

neighborhood template AirConditioners()
with Function = "actuator" and
Type = "airConditioner" and
provides Deactivate () and
provides Activate()

create neighborhood air_conditioners
from AirConditioners()

create node virtual_air_conditioner from Actuator
Function as "virtualActuator"
Type as "airConditioner"
Deactivate() as apply Deactivate ()
over air_conditioners reliably
Activate () as apply Activate()
over air_conditioners reliably

Figure 9.7.: A virtual actuator used to deactivate all the air conditioners.

threshold. Monitoring can be accomplished with a virtual sensor, which
aggregates the energy consumption sensed throughout the building using
a sum() function. Instead, performing distributed actuation without dedi-
cated support would require an ad-hoc encoding of commands and parame-
ters, message serialization and parsing, and a dedicated routing mechanism
to address the relevant nodes without flooding the entire network.

Using virtual nodes, R3 is met easily by instantiating a virtual actuator
whose operations are bound to a neighborhood including all the air con-
ditioners, as in Figure 9.7 where Activate and Deactivate are executed
over the air_conditioners neighborhood. In general, different operations
of the same virtual actuator may operate on different neighborhoods. Note
how the neighborhood template includes, besides conditions on attributes,
a built-in predicate named provides that yields true when evaluated on a
node that exports the operation given as parameter.

The optional reliably clause determines whether the run-time layer
must guarantee the delivery of messages carrying actuation requests. This
is needed in some application scenarios (e.g., firing an alarm in intrusion
detection systems), but usually incurs higher message traffic. A best-effort
scheme is preferable otherwise. Our run-time support provides both alter-
natives, as described in Section 9.3.

187

9. The Virtual Node Abstraction

people
presence
PARN
/s’ \
¢ \
average N~ average

vibration | sound "
.
.

Figure 9.8.: Virtual nodes built upon other virtual nodes.

neighborhood template VirtualVSSensors(loc)

with Function = "virtualSensor" and
Location = loc and
(Type = "avgVibration" or Type = "avgSound")

create neighborhood avg_vs_my_location
from VirtualVSSensors(loc: myLocation())

create node virtual_presence from Sensor
Function as "virtualSensor"
Type as "presence"
Location as myLocation()
Reading as inferPresence input avg_vs_my_location
every 120 holistic

Figure 9.9.: Definition of a presence sensor from (virtual) vibration and

sound sensors.

9.2.4. Virtual Nodes Made of Virtual Nodes

Virtual nodes are perceived by the application just like their concrete coun-
terparts, e.g., by accessing attributes or invoking operations. Therefore,
programmers can freely mix concrete and virtual nodes, by including the
latter in logical neighborhoods and use them as input (output) to higher-
level virtual sensors (actuators). For instance, inferring the presence of

188

9.3. Virtual Nodes in Practice

people as required in R1 and R2 can be achieved by creating a virtual pres-
ence sensor from the (virtual) vibration and sounds sensors reporting the
average readings, leading to the hierarchy in Figure 9.8. As illustrated in
Figure 9.9, the programmer is not required to learn new concepts, as the
SPIDEY constructs described so far are already sufficient to accomplish the
corresponding definition. The only difference is the use of the Function
and Type attributes in the neighborhood template, here used to distinguish
the relevant virtual sensors from the physical nodes.

9.3. Virtual Nodes in Practice

Our prototype targets the nesC [28] programming language and the TinyOS
operating system [42]. Section 2.5.1 provided a concise introduction to
nesC. Here we illustrate how virtual nodes are provided in this language,
along with the most relevant characteristics of our run-time support.

9.3.1. Virtual Nodes Language Support

We designed virtual nodes to integrate seamlessly with the nesC program-
ming model, by bringing the duality between commands and events to
a distributed setting. nesC commands allow the application to interact
with lower-level components. Similarly, virtual actuators allow commands
to flow downward towards the nodes controlling the relevant actuators.
Therefore, the interface used to access a virtual actuator lists a command
for each operation bound to a logical neighborhood. In the case of Fig-
ure 9.7, this yields:

interface virtual_air_conditioner_if {
command result_t Deactivate();
command result_t Activate();

}

Hence, distributed actuation is achieved transparently as if the actuator
were directly attached to the node.

Dually, nesC events make sensed data flow upward from low-level com-
ponents to the application. Similarly, virtual sensors allow data sensed by
real nodes to flow upward towards the defining node. The data are there-
fore made available to the application as periodic nesC events, as in the
following interface for the virtual sensor defined in Figure 9.5:

interface virtual_avg_vibration_if {
event result_t Reading(int value);

}

189

9. The Virtual Node Abstraction

virtual_air_conditioner_if

=
Virtual Actuator Virtual
Proxy Nodes

G

uonels
|o4u0)

Layer

awi-unyg
SOPON [eNMIA

Virtual Sensor ’ Routing
Proxy

virtual_energy_if

Figure 9.10.: Component configuration on the control station. White com-
ponents are developed by the programmer, gray ones are automatically
generated or belong to our run-time support.

where the Reading() event is signaled every 30 seconds, according to the
every clause we specified.

The processing behind the interfaces is automatically generated by our
SPIDEY preprocessor as a set of proxy components, bridging the application
and our run-time support. For instance, Figure 9.10 shows the component
configuration on the control station node. The ControlStation compo-
nent, entirely depicted in Figure 9.11, constitutes the only application code
written directly by the programmer. This code uses a virtual sensor re-
turning the overall energy consumption in the building (vs_energy_if),
and a virtual actuator to deactivate the air conditioners when needed
(va_air_conditioners_if). A handful of nesC lines is sufficient, as most
of the complexity is hidden in our customizable run-time, described next.

9.3.2. Run-Time Support

Existing communication protocols for WSNs are only partially suited for
implementing virtual nodes. Therefore, we designed a dedicated communi-
cation layer in support of our abstraction. This partially leverages off the
Logical Neighborhoods routing layer, described in Chapter 7, but it also
includes novel mechanisms to address the requirements germane to this
particular approach.

Virtual Actuators. Virtual actuators require a one-to-many flow of in-
formation where messages carrying commands are pushed to a subset of
nodes. The Logical Neighborhood routing layer, designed to ensure com-
munication from a node to all the members of a logical neighborhood,
provides a foundation towards this goal. OQur SPIDEY preprocessor gener-

190

9.3. Virtual Nodes in Practice

includes VirtualNodes;
module ControlStation {
uses interface virtual_energy_if;
uses interface virtual_air_conditioner_if;
}
implementation {
uint8_t isActive = O0FF;
event result_t virtual_energy_if.Reading(int value){
if (value > ENERGY_THRESHOLD
&& isActive == LOW_POWER) {
call virtual_air_conditioner_if.Deactivate ();
isActive == O0FF;
} else if (value <= ENERGY_THRESHOLD
&& isActive == O0OFF){
call virtual_air_conditioner_if.Activate();
isActive == LOW_POWER;
¥
return SUCCESS;

Figure 9.11.: Complete nesC code for the control station.

ates an appropriate encoding of commands and parameters, which are then
packed as application messages dealt with by this routing protocol. More-
over, we extend our original solution with a simple reliability scheme based
on implicit acknowledgments, similar to other solutions in WSNs [171], as
guaranteed message delivery is required by the reliably clause shown in
Section 9.2.3.

Virtual Sensors. Unlike virtual actuators, virtual sensors exhibit a many-
to-many communication pattern: the same subset of nodes (sources) fun-
nels data towards multiple destinations (sinks). In our application, vibra-
tion and sound sensors report their readings to both the node controlling
the lights and the air conditioner in a room. To accomplish this, we may
re-use well-established techniques for data collection, e.g., by building a
routing tree rooted at each sink [37].

However, similar techniques are inefficient with multiple sinks: as shown
in Figure 9.12(a), different trees are built independently, and a sensible
amount of resources is wasted, e.g., by splitting routes (hence duplicating
messages) too early. We tackle this problem of multi-source to multi-sink
routing with a novel communication scheme that, as illustrated in Fig-
ure 9.12(b), maximizes the overlapping among routing trees to decrease the
amount of redundant information transmitted. This solution, initially mo-

191

9. The Virtual Node Abstraction

sink C sink D

sink C

source A source B source A source B
tree rooted at C €—— tree rooted at C «€—
tree rooted at D <€----- tree rooted at D <€-----

merged path ‘— merged path ‘—

(a) Two trees rooted at (b) Two branches

the two sinks are built of the trees in Fig-

independently. ure 9.12(a) are
merged.

Figure 9.12.: Multi-source, multi-sink communication.

tivated by the need for supporting virtual sensors, enjoys wider applicability
beyond our programming abstractions, e.g., in case multiple applications
are running on different sinks. In this respect, the next chapter presents
a mathematical formulation of the multi-source to multi-sink problem, an
in-depth description of the mechanisms of our distributed protocol, and an
extensive evaluation of the protocol itself.

The above solution still requires modifications to support in-network pro-
cessing. In our run-time, each sampled data carries a tag (generated by
the SPIDEY preprocessor) that determines the function responsible for its
processing, e.g., average (). When such data is received as part of an appli-
cation message, the function identified by the tag is executed, and the con-
tent of the message possibly changed based on the aggregation semantics.
Moreover, our preprocessor also determines which protocol implementation
must be linked against which application code, based on the characteris-
tics of the functions employed as specified by the programmer, and on the
nodes types found in the application.

192

9.4. Evaluation

TimerC
| Timerf] |

MultiHopLEPSM

Data Collection

RouteControIHSendHReceive |-

MultiHopEngineM
(o L T Tsena]

GenericComm —

uoness |0u0)

Figure 9.13.: Component configuration on the control station node using
plain-TinyOS.

9.4. Evaluation

We evaluate quantitatively the benefits that virtual nodes bring to applica-
tion development and system performance. As we mentioned in Section 9.1,
and further discuss in Section 9.5, no existing platform explicitly addresses
the application scenarios we consider. In the absence of alternatives, we
compare against nesC/TinyOS, by far the most common programming plat-
form for WSNs.

9.4.1. Benefits to the Programmer

The use of virtual nodes impacts beneficially both the design and the im-
plementation phases.

Design. With respect to the design we obtained with virtual nodes, the
equivalent implementation of our reference application in plain TinyOS is
much more cumbersome. By comparing the plain-TinyOS component con-
figuration shown in Figure 9.13 against Figure 9.10, it is immediate to note
how virtual nodes yield a much cleaner and reusable design. Due to the lack
of appropriate support in TinyOS, we had to implement lots of functional-
ity not directly related to the application, e.g., an Addressing component
to determine whether a node is to perform a given action. Further, to
the best of our knowledge, no general purpose routing protocol exists to
deliver messages to arbitrary subsets of nodes. Therefore, we developed a

193

9. The Virtual Node Abstraction

Gossip component based on probabilistic forwarding of messages [175], as
similar solutions are known to provide good performance with reasonable
overhead.

It is also worth noting how Figure 9.13 is the result of several design
iterations. Initially, we intended to re-use the standard TinyOS multi-hop
protocol [176] for data collection. However, due to the need of support-
ing other concerns (e.g., actuation) the planned design failed. Most often,
this was due to run-time memory overflows that we could not solve given
the limited memory budget of WSN devices and the intrinsic difficulty in
tuning the various protocol parameters. To address this issue, we had to
dissect the TinyOS multi-hop protocol to investigate if some optimizations
were possible and, luckily, we found a way to share the queueing mecha-
nism between multi-hop routing and gossip. In doing so, however, we had
to modify or rewrite about 40% of the code, dramatically increasing the de-
velopment time. Instead, we did not experience similar issues with virtual
nodes: the design in Figure 9.10 worked without further modifications.

Implementation. The cleaner design enabled by virtual nodes is reflected
in simpler code within individual components. Typically, the code com-
plexity of WSN implementations is evaluated by analyzing them as state
machines |21, 63, 64], as processing is usually expressed as state transi-
tions triggered by external events (e.g., a sensor reading above threshold).
Specifically, the number of explicit states is regarded as the main measure
of complexity [21]. For instance, an explicit state is one that describes the
current condition of an air conditioner with a value among on, low-power,
and off. The higher the number of states, the more difficult is to express
state transitions [64], and the more complex and error-prone are the im-
plementations. Counting the number of states in TinyOS implementations
is straightforward, as they are typically stored in global variables inside
components, such as isActive in Figure 9.11.

Figure 9.14 reports the metric above for some node types in our ap-
plication. As the plain-TinyOS implementation deals with communication
directly, it requires several states, for instance, to keep track of whether the
radio is busy transmitting. These are not needed in our approach, as all dis-
tribution concerns are hidden from the programmer. Further, TinyOS re-
quires variables to coordinate the gathering of data from the sensor devices
with their reporting to the actuators. These variables are easily source of
race conditions [28], as they are modified concurrently across components.
Again, we do not need them because our preprocessor automatically (and

194

9.4. Evaluation

Explicit states| Lines of code (% of hand-written code

=] = =]

n 9 " .2 0 9

= @ v |® 43

SuaQ@ AL) 3 32l aQ 3

ESEE §EYEE §|EgEE| %

Node Type |» &&EH| & P aMbBE| B [» 8 |MH ~
Control Station| 2 | 18 [88.8% |57 [1032(94.4%(12.8%|48.2% 73.4%
Air Conditioner| 2 | 16 [87.5%(118| 972 [87.8%[14.5%49.1% 70.4%
Sensors (any) 0 8 |100% | 84 | 672 |87.5%|5.7% |41.2% 86.1%

Figure 9.14.: Comparing a virtual node-based implementation against plain
TinyOS. (SPIDEY specifications are counted as lines of code).

safely) generates the corresponding functionality. Remarkably, the only
state variables needed with virtual nodes are related to the very applica-
tion processing, e.g., the isActive variable in Figure 9.11 keeping track of
the current state of a set of air conditioners.

Figure 9.14 also evidences how the reduction in the number of explicit
states causes a 90% decrease in lines of code, on the average. Indeed,
fewer state transitions are to be expressed, and much less bookkeeping code
is needed. Simpler implementations foster highly reusable components:
as long as the control logic remains unmodified, the ControlStation in
Figure 9.11 can be reused as is, e.g., to shut down the air conditioners on
a floor, instead of those in the entire building. TinyOS provides much less
decoupling, and similar modifications require changes in several places (e.g.,
the Control, Actuation, and Addressing components in Figure 9.13).

The rightmost column in Figure 9.14 reports the fraction of hand-written
code w.r.t. the total code deployed. In a sense, this captures the expressive
power of the programming abstractions. Using virtual nodes the program-
mer writes only a small fraction of the final running code, as most of it is
generated by our preprocessor. TinyOS abstractions, instead, are not ex-
pressive enough and require a substantial programming effort, as illustrated
earlier by Figure 9.13.

Finally, the size of the binary code loaded on the real nodes is compara-
ble. The control station node represents the worst case, with a binary image
of 43.5 Kbytes using virtual nodes, against the 41 Kbytes using TinyOS.

9.4.2. System Performance

WSN nodes are typically battery-powered. Hence, system lifetime is re-
garded as the main performance metric in WSNs [2]. To evaluate it, we

195

9. The Virtual Node Abstraction

i]
] p : I
' &
" ___ Temperature Sound |
]
: Temperature i i) |
Vibration
" |
| L l
" . ’/[““.'\ f,;‘:]
" I Lighting Air Conditioner
| ay '
: Humidity) :
0 Vibration [
I D) '
< |
: Humidity Humidity
e

Figure 9.15.: Sample topology used in experiments.

conducted experiments using Avrora [157], a cycle-accurate emulator for the
popular MICA2 node [72]. Unlike other simulators (e.g., TOSSIM [124]),
Avrora’s fine-grained emulation considers all aspects concurring to energy
consumption, from radio communication to CPU processing.

Settings and Metrics. A variable number of nodes is randomly placed in
a connected topology, as in Figure 9.15. The field is divided in smaller sub-
areas representing single locations in the building. Each location contains
an average of 10 nodes, with at least one sensor node per type, and two
actuator nodes as air conditioner and light controller. Additionally, a single
actuator is placed randomly, acting as the control station. On the average,
each node has 4 neighbors. For each combination of parameters, 10 different
topologies are generated and the results averaged.

Each sensor generates a reading every 30 s, while a controller sends a
command to its target actuators every 5 min. We set the forwarding prob-
ability of the plain-TinyOS Gossip component to 0.75, a value sufficient to
deliver the commands to operate the actuators. For virtual nodes, we use
the reliability scheme mentioned in Section 9.3.2. The maximum packet
size is 60 bytes for virtual nodes, and 29 bytes for plain TinyOS. Virtual
nodes require longer messages due to increased control information. We
use the standard TinyOS MAC layer.

To evaluate the system lifetime, each node is given an initial energy bud-
get comparable to a pair of AA batteries. The experiments stop when the
first network partition preventing the application to close the control loop

196

9.4. Evaluation

60

100

50 r

40

system lifetime (days)
w
o
T
% lifetime improvement

10 | virtual nodes (VN) —+—] 20
virtual nodes w/o in-network processing ---->---
plain TinyOS (TOS) -
% Iifetirqe imprgvemeqt VN vs. TOS‘ = : 0
40 60 80 100 120 140 160 180 200
number of nodes

(a) System lifetime.

100

95

>
5] 90 -
2
[} - ¢
o
o 85 e
(=)
®
[}
8 80 |
75 | virtual nodes —+—

virtual nodes w/o in-network processing -
70 ‘ ‘ ‘ ‘ plain TinyOS -

40 60 80 100 120 140 160 180 200
number of nodes
(b) Data delivery ratio.

Figure 9.16.: Virtual nodes performance.

occurs, e.g., when only one path to an actuator remains, and a node dies
on that path. In addition, we also evaluate the delivery ratio of messages
flowing from the sensor nodes to controllers. This gives a measure of the
level of service provided by the running system. If messages are lost on this
path, the information available at a controller node may not be accurate.

Results. Figure 9.16 shows the results of our experiments. Our dedicated
run-time support drastically increases the system lifetime w.r.t. a plain-
TinyOS implementation, up to a 80% factor. Moreover, more than half of
the gain is due to the automatic customization made by our preprocessor.
Indeed, the ability to perform in-network processing (e.g., while computing

197

9. The Virtual Node Abstraction

the average vibration readings based on the code in Figure 9.5) significantly
reduces the amount of data that needs to be transmitted, which bears great
influence on energy. Without in-network processing, the system lifetime
improves “only” by a factor of 35%, on the average.

Analogous observations hold for the delivery ratio, shown in Figure 9.16(b).
The reduction in network traffic due to in-network processing corresponds
to less congestion on the wireless medium, which yields fewer packet col-
lisions. Consequently, packet delivery increases, and our solution scales
much better w.r.t. the same routing scheme without in-network processing
and the standard TinyOS routing.

In principle, similar in-network processing mechanisms can be coded by
the programmer on a per-application basis, at the cost of hampering their
reuse. Instead, virtual nodes harmonize the expressiveness and flexibility
provided by the programming abstraction with the effectiveness of the un-
derlying run-time, empowering programmers with the tools for developing
reusable and efficient implementations.

9.5. Related Work

We conciliated expressiveness and efficiency by co-designing the language
constructs and the supporting distributed protocols. Similar approaches
are Directed Diffusion [37] and TinyDB [17]. In the former, data is named
by attribute-value pairs and the user poses queries by expressing constraints
on the data of interest. At the network level, this is implemented by flood-
ing a user’s query throughout the whole system, and setting up gradi-
ents along the reverse path to the query source. Instead, TinyDB offers a
database-like interface, whereby the user retrieves the data of interest by
expressing queries with a subset of SQL. A tree topology is exploited for
routing, with several optimizations to avoid querying sensors that would
not provide useful data.

Our work departs from the above, in that we focus on actuation in ad-
dition to sensing. The solutions above are indeed ill-suited to cope with
actuation, being essentially designed for data collection. As a consequence,
our run-time must account for multiple data consumers (e.g., multiple actu-
ators receiving data from the same sensors), as opposed to the many-to-one
pattern in TinyDB and Directed Diffusion.

Although ours is an integrated solution, some of the individual problems
we tackled in this work have been widely researched.

198

9.5. Related Work

Programming Abstractions. Constructs for programming groups of
resource-constrained devices have been proposed in [102,109]. These solu-
tions, however, target specific applications where processing exhibits phys-
ical locality, e.g., object tracking. Virtual nodes straightforwardly encom-
pass these scenarios, while providing more powerful constructs enabling a
logical notion of proximity, rather than physical.

Notions of scoping similar to Logical Neighborhoods have been proposed
in [14,21]. In these cases, there is no programming support to express the
very application processing, as opposed to our solution where virtual nodes
leverage off logical neighborhoods to describe the application operation at
a higher level of abstraction. Moreover, [21] only targets 1-hop neighbor-
hoods, whereas [14] essentially requires the implementation of a dedicated
routing support for each different type of region defined.

Data Aggregation. TAG [130] and TinyDB [17] provide data aggregation
constructs. Their programming model, however, is inherently data-centric,
lacking constructs to deal with actuators. Again, this prevents their use to
implement control systems like the ones we target.

At the routing layer, several solutions have been proposed. For instance,
the work in [177] studied the placement of aggregation operators to mini-
mize network traffic. Data aggregation in the presence of multiple, mobile
sinks is investigated in [178]. The problem we consider here is different
from the ones above. We do not take mobility into account, as we target
systems deployed in controlled environments, e.g., buildings. Moreover, we
consider scenarios with both multiple sources and multiple sinks. However,
we are investigating if some of the techniques above can be borrowed and
adapted to our goals.

Data-Centric Routing. Looking at the vast literature in WSN routing,
it is easy to recognize how most solutions aim at optimizing communica-
tion from multiple sources to a single sink [33]. However, the scenarios
we target inherently calls for routing solutions to report to multiple sinks.
Similar problems have been investigated in [179,180]. As in our scheme,
in [179] broadcast transmissions are used to let nodes collect information
on alternative routes. However, the sources are not aware of each other,
thus missing the opportunity to share paths towards receivers. The solu-
tion in [180] adjusts the sensing rate at different nodes to eliminate the
redundancy in the data gathered. Instead, we do not assume the ability to
influence the source behaviors.

199

10. Routing from Multiple
Sources to Multiple Sinks

Early deployments of WSNs were based on a a single sink collecting data
from o number of sources. Recently, however, scenarios where multiple
sources must communicate with multiple sinks are increasingly being pro-
posed, e.q., to deal with actuator nodes. The resulting many-to-many com-
munication pattern is difficult to address using state-of-the-art WSN routing
protocols. Existing solutions for single-sink routing are straighiforwardly
inefficient, as the many-to-one interactions they foster is ill-suited to the
requirements ot stake. Likewise, multicast protocols for wireless networks
do not capture some of distinctive traits of the scenarios considered. Indeed,
they usually foster one-to-many interactions that miss the opportunity of
making sources collaborate with each other.

In this chapter, we present a novel routing scheme in support of many-
to-many interactions in WSNs. We first study the problem from a theo-
retical perspective, using o mathematical formulation inspired to the multi-
commodity network design problem. We derive an optimal solution that,
albeit based on global knowledge, provides us with a theoretical lower bound
to evaluate decentralized solutions against. We then illustrate an adaptive,
distributed protocol that minimizes the number of message exchanged while
balancing the routing load. Adaptation is driven by two orthogonal metrics:
the routing quality of a node, dictated by topological information, and its
expected lifetime. Our evaluation shows how our protocol performance lies
within 10% from the optimal solution, and yields a 75% increase in network
lifetime. A preliminary version of this work appeared in [30].

10.1. Motivation

Early deployments of wireless sensor networks (WSNs) were based on a
single-sink architecture, e.g., as in habitat monitoring applications [22].
Recent developments, however, increasingly call for scenarios where the

201

10. Routing from Multiple Sources to Multiple Sinks

data sensed fro multiple sources must be delivered to multiple sinks. For
instance, similar communication patterns are needed in support of high-
level programming constructs for sense-and-react scenarios, such as the
virtual node abstraction described in Chapter 9. In this case, the physical
nodes in the system need to communicate their data to multiple receivers,
where a different processing is performed. However, the need for a similar
communication pattern arises in also other situations, e.g., when the same
WSN is serving multiple applications, each running on distinct devices.
Moreover, multiple sinks are increasingly required to implement advanced
applications. For instance, data collection is evolving into complex in-
network data mining [181]. In these applications, the mining process is
distributed across the nodes in the system, each collecting readings from
different sets of data sources.

Unfortunately, existing protocols and algorithms are ill-suited to cope
with scenarios where data must be reported from multiple sources to mul-
tiple sinks, i.e., in a many-fo-many fashion. Most routing protocols in
WSNs focus on reporting data from multiple sources to a single sink, ad-
dressing the needs of many-to-one communication. To address multi-sink
scenarios, they simply replicate the routing infrastructure. For instance,
the well-known Directed Diffusion protocol [37] sets up a tree along which
sources report their data to the single sink. Dealing with multiple sinks
involves setting up a separate, independent tree for each sink—a rather in-
efficient solution. Multicast routing protocols, on the other hand, are also
an imperfect match for the scenarios at stake. Usually, they implement a
one-to-many communication pattern that straightforwardly misses the op-
portunity of making sources collaborate among themselves. For instance,
data aggregation or fusion techniques cannot be applied.

To see why this is a problem, consider the sample scenario with two
sources and two sinks illustrated in Figure 10.1(a). Node A reports data
to both sinks, whereas node B only transmits to sink C. To achieve multi-
hop communication, a traditional tree-based routing protocol would build
two independent trees rooted at the two sinks, e.g., by flooding a control
message from each sink and having each node remember the reverse path
to the sink, as in [37]. This base solution involves 13 nodes in routing.
Moreover, to report to the two sinks node A is forced to duplicate its data
right at the first hop. Differently, Figure 10.1(b) depicts how a multicast
routing protocol would address the scenario considered above. Although
node A does not duplicate its data right at the first hop, readings originated

202

10.2. Contribution

sink C sink D sink C sink D
P] PR
* > y £
A‘“‘:‘> 1 —>—|—>' 1
‘\ . 4 . 4
! p g p g
i
_____< _____
| A
1 1
1 1
i 1
, A
!
-»
source A source B source A source B
tree rooted at C €—— multicast tree from A <€———
tree rooted at D <«€----- multicast tree from B <€-----

(a) Two trees rooted at the (b) Multicast trees for the
two sinks are built indepen- scenario in Figure 10.1(a).
dently.

Figure 10.1.: A sample multi-source to multi-sink scenario.

from node A and node B are still routed independently. For instance, this
makes the system unable to take advantage of data aggregation techniques
when applicable, as data from different sensors travel separately.

10.2. Contribution

In this chapter, our goal is to support efficient routing from multiple sources
to multiple sinks. In this respect, Figure 10.2(a) illustrates a better solu-
tion to the scenario in Figure 10.1(a), based on the scheme we describe in
the rest of the chapter, obtained by adapting the routing topology to min-
imize the number of nodes involved in routing messages. The two parallel
branches starting from node A have been merged in a single one, and node
B leverages off this merged path instead of relying on an independent one.
As a consequence, only 9 nodes are involved in routing. By reducing the
number of nodes involved, we decrease the amount of redundant informa-
tion flowing in the network, and duplicate data only if and when strictly
necessary. This increases the system life-time, and reduces the contention
on the wireless medium and packet collisions, therefore ultimately increas-
ing reliability. Moreover, the readings coming from the two sources can
be either aggregated using some application-specific processing along the

203

10.

source A source B
tree rooted at C €—
tree rooted atD «-----

merged path

(a) Two branches of the
trees in Figure 10.1(a) are

Routing from Multiple Sources to Multiple Sinks

sink C sink D

source A source B

tree rooted at C «€——
tree rooted atD «-----

merged path ‘—

(b) The merged path tran-
sitions to a different set of

merged. nodes to balance the load.

Figure 10.2.: An efficient solution to routing from multiple sources to mul-
tiple sinks.

merged path, or simply packed in a single physical message to reduce the
per-reading header cost.

Nevertheless, an undesirable side-effect of the above solution may be to
deplete the energy available at nodes on the merged path more quickly
than in the rest of the system. This may yield an uneven degradation of
performance, to the point of partitioning the network even though some
nodes would still be able to operate. To address this issue, we employ
a novel scheme to balance the routing load among the nodes possibly in-
volved. Our solution “juggles” with the routes whenever alternative paths
exists that may guarantee a longer system lifetime. For instance, our so-
lution allows the routing topology shown in Figure 10.2(a) to eventually
morph into the one in Figure 10.2(b). The latter configuration has equal
cost w.r.t. the former in terms of nodes involved in routing, yet it leverages
off a different set of devices along the merged path, thus achieving a better
overall balancing. At a later time, however, the system may return to the
configuration in Figure 10.2(a) if deemed convenient to improve the system
lifetime w.r.t. the current situation.

Our scheme enhances the traditional single-sink tree-based solution, thus

204

10.2. Contribution

enabling easy integration of our solution into existing routing schemes,
e.g., |37]. Therefore, we assume the presence of a very basic routing infras-
tructure made of separate trees connecting the sources to the corresponding
sinks. In this case, a single path connecting a given source to each sink is
always established. This is a common approach in WSNs, motivated by
the reduction in network traffic w.r.t. a solution exploiting multiple paths
from a source to the same sink. Furthermore, we do not make any as-
sumption about the pairing of sources and sinks, as it is indeed determined
by the initial tree structure. Given this setting, our objective is to enable
efficient routing from the sources to the corresponding sinks by minimizing
the number of nodes involved and mazimizing the system lifetime.
To achieve our goal, our contribution is twofold:

e We present a theoretical model of the problem, inspired to the multi-
commodity network design problem [182,183]. Indeed, graph algo-
rithms usually employed to study multicast protocols are not appli-
cable in our case, as the metric we minimize is the number of nodes
employed for routing by considering all the sources at once. Differ-
ently, algorithms such as minimal spanning trees consider a single
source at a time. Thanks to our formulation, we reuse available re-
sults and tools for integer programming to compute the theoretical
optimal topology for our routing problem. The model and optimal
solution are illustrated in Section 10.3. This technique, however,
assumes global knowledge of the system topology and is therefore
derived in an off-line, centralized fashion, impractical for real WSN
deployments. Nevertheless, this theoretical result is valuable for pro-
viding a lower bound against which to compare more practical and
decentralized solutions.

e We present and evaluate our own decentralized solution, based on
a periodic adaptation of sink-rooted trees. The adaptation consists
of selecting a different neighbor as the parent towards a given sink.
The decision to adapt is taken locally by a node and is based on two
metrics: 1) a routing quality figure based on topological information,
and ii) the expected lifetime of a node. Our adaptive protocol, whose
details are illustrated in Section 10.4, is simple enough to be easily
implemented on resource-scarce WSN devices. At the same time, as
shown in Section 10.5, it is able to improve the system lifetime of
about 75% w.r.t. the base solution with independent trees, a result
close to the theoretical optimum we derive in Section 10.3.

205

10. Routing from Multiple Sources to Multiple Sinks

We conclude the chapter with a survey of related efforts in Section 10.6.

10.3. System Model and Optimal Solution

In this section we provide a mathematical characterization of our problem.
Besides providing a formal foundation for the results presented here, in this
section we show how our model can be used to derive the optimal topology
for our routing problem, using tools for mathematical programming.

System Model. Our model is inspired to the multi-commodity network
design problem [182]. In the most common formulation of this problem, we
are given a directed graph (e.g., representing a road network) with node set
N and arc set A , and a set of commodities C (e.g., a set of physical goods).
The goal is to route each commodity k € C from a set of sources O(k) C N
to a set of destinations D(k) C A, by minimizing a given metric.

We can straightforwardly model a WSN as a directed graph whose node
set AV is composed of the WSN devices, and whose arc set A is obtained by
setting an arc (i,) between two nodes i and j when the latter is within the
communication range of the former. Without loss of generality, as shown
in [183], a commodity can be assumed to flow from a single source to a
single destination. In this case, since commodities generated from the same
source and directed to the same destination follow the same route, one can
state a one-to-one mapping between the route connecting any source-sink
pair (o(k),d(k)), and any commodity k.

With this notion of network, we can capture message routing with a set
of decision variables:

o { 1 if the route for the source-sink pair k contains arc (i,)
W 0 otherwise
(10.1)
A value assignment V(i,j) € A to these variables formally represents the
route messages follow from the source o(k) to the sink d(k).

Metric. Usually, the metric of interest in the multi-commodity network
design problem is the number of arcs exploited for routing. For instance,
in modeling a transportation system the number of arcs used represent the
single trips required to transport a physical good between two locations.
Applying the same metric in WSNs, however, does not capture the broad-
cast nature of the wireless medium. For instance, compare Figure 10.3
against Figure 10.2(a). In case the objective is to minimize the number of

206

10.3. System Model and Optimal Solution

sink C sink D
PR

source A source B

tree rooted at C €——
tree rooted atD <€-----

merged path ‘—

Figure 10.3.: A routing topology where all transmissions are pair-wise.

network links exploited for routing, both solutions look optimal. Neverthe-
less, the configuration shown in Figure 10.2(a) is preferable in a broadcast
network, since node E can forward data to different destinations using a
single broadcast transmission. As the minimum number of broadcast trans-
missions involved corresponds to the number of nodes along the route, in
our model we minimize the number of nodes instead of network links. To
this end, we capture the fact that node 7 is involved in at least one source-
sink route as:

[1 fFkeCjeN|rf =
Ui = { 0 otherwise (10.2)
and define our metric of interest as:
NodesInvolved(C, A) = Z U; (10.3)

(B)eN

Based on the above, our goal consists of finding the optimal set of routes
used to deliver data messages from sources to sinks. Formally:

Goal: to find the value assignment of rﬁj,sz €CV(i,j) e A
that minimizes the value of NodesInvolved(C, A).

The relation between r¥ i ; and u; defined in (10.2) captures the essence of
the problem, as well as the rationale of our distributed solution, presented
next. Indeed, to minimize NodesInvolved one should aim at reusing as

207

10. Routing from Multiple Sources to Multiple Sinks

’ Variable ‘ Value ‘ ’ Variable ‘ Value ‘
rg’g 1 r‘g’g 1
b 1 "5 1
Remaining T%A 0 Remaining riC]’.A 0
sink A B sink A B
D source C D sourceC
(a) An assignment and (b) An assignment and topol-
topology representing non- ogy representing meaningful
consistent routes for a routes for a commodity flow-
commodity flowing along ing along the source-sink path
the source-sink path (C, A). (C,A). Constraint (10.4)
Node B and D do not obey holds for every node.
to (10.4).

Figure 10.4.: Sample assignments for T‘Z»Cj’-A.

much as possible nodes along the routes serving other source-sink pairs,
i.e., for which the cost w; is already paid. Minimizing the nodes involved in
routing, in turn, corresponds to mazimizing the overlapping among source-
sink paths. In Section 10.4 we present a protocol for achieving this goal.

Although this formalization of the problem is simple and general, alter-
natives exist and are discussed in Section 10.6.

Finding the Optimal Solution. Based on the model we just presented,
we can derive an optimal solution using techniques of mathematical pro-
gramming, provided that we specify the constraints to be satisfied by any
meaningful solution. We first require that rﬁj and u; are integer, binary
variables and that the following relation holds among them:

V(i,j) € AVEEC, rf;<u

In our case, these constraints are satisfied by construction through (10.1)
and (10.2).
k

Most importantly, we state the requirement that the assignment to r;’;
contains a connected, end-to-end path for each source-sink pair k. This can
be expressed by requiring every node different from the source o(k) and the

208

10.4. A Distributed Solution
sink d(k) to “preserve” the message, i.e.:

1 it i = o(k)

Vi e N,Vk €C, >k rhi=1 =1 ifi=d(k)
m:(i,m)eA n:(n,i)eA 0 otherwise
(10.4)

The previous expression is similar to a network flow conservation equation,
and effectively imposes the existence of a multi-hop route from each source
to every sink. Figure 10.4 illustrates the concept in the case of a single
source-sink pair. The solution in Figure 10.4(a) is not acceptable, as the
message originated at C and directed to A is lost at node B and suddenly
reappears at node D. Indeed, the constraint in (10.4) does not hold for
node B and D, as its left-hand side evaluates to -1 when ¢ = B and to 1
for ¢ = D, and neither node is an origin or destination for the source-sink
path. Conversely, the solution in Figure 10.4(b) is perfectly meaningful: a
connected, multi-hop path from the source to the sink exists, and indeed
the constraint in (10.4) holds for every node.

With this formulation, the problem of finding the optimal assignment
that satisfies our goal can be solved straightforwardly using well-established
techniques and tools from mathematical programming. These techniques
require global knowledge of the system state and are computationally ex-
pensive, and therefore impractical for WSNs. For this reason, we devised
a distributed scheme that relies only on local (i.e., within the 1-hop neigh-
borhood) knowledge, and can be implemented on resource-constrained de-
vices. We return to the theoretical optimal solution in Section 10.5, where
we show how it is efficiently approximated by the distributed solution, dis-
cussed next.

10.4. A Distributed Solution

As we discussed in Section 10.2, in our solution the goal of minimizing
the number of nodes involved in routing and that of balancing the load
are played in an integrated manner. In this section, we first illustrate the
mutual interplay between the solutions we devised to achieve this goal, and
then detail the single mechanisms.

209

10. Routing from Multiple Sources to Multiple Sinks

R R A
Q
T T
(a) High routing quality (b) Medium routing qual-
neighbor with short lifetime. ity neighbor with longer life-
time.

Figure 10.5.: Sample interplay between routing quality and expected life-
time.

10.4.1. Protocol Overview

We assume that the initial state of the system is such that a tree exists for
each sink, connecting it to all the relevant sources. These sink-rooted trees
are easily built using mechanisms available in the literature, e.g., along the
reverse path of interest propagation as in Directed Diffusion [37]. These
mechanisms are designed to build each tree independently of the others,
and therefore do not guarantee any property regarding their overlapping.

As already mentioned, minimizing the nodes involved in routing can be
achieved by maximizing the overlapping of the paths used to route data
from a given source to a given sink. In our solution, adapting the routes
to achieve this goal is based on topological information about the neighbor
nodes, e.g., how many overlapping source-sink paths it is currently serving,
piggybacked on application messages and overheard during transmission.
This control information is fed into a routing metric R(n, s) that yields a
measure of the quality of a neighbor n as the parent towards a sink s, and
evaluated each time a node has data to send to s.

To balance the load, we periodically evaluate the expected lifetime 7'(n)
at every node n. The specific technique used for this purpose is described
in Section 10.4.3. This quantity is multiplied by the value of R(n,s) to
obtain a time-extended quality metric Q(n,s) = R(n, s) - T'(n). Indeed, as
intuitively shown in Figure 10.5, given a sink s) provides a measure of the
routing metric for a specific neighbor n extended over time. The neighbor
whose time-extended quality metric @) is shown in Figure 10.5(a) has high

210

10.4. A Distributed Solution

routing quality, yet it will not be able to serve for a long period of time.
Differently, the neighbor whose time-extended quality metric @ is depicted
in Figure 10.5(b) has lower routing quality. However, it is able to serve for
a longer period of time, and is therefore preferable w.r.t. the former.

The time-extended quality metric @) is used at each node to manipulate
the source-sink paths by changing the neighbor serving as its parent towards
a given sink. Changing the current parent to a different neighbor n occurs
when Q(n, s) is maximum among all neighbors for sink s. If so, the node
simply begins forwarding data to the new parent. Note that alternating
among many different routes is the most natural way to balance the load.
Our solutions achieves precisely this behavior, due to varying values of T'(n)
over time that, in turn, influence the value of (). Nevertheless, switching
to a different parent does not incur in any additional cost. This operation
is indeed managed without additional control messages by using a timeout.

10.4.2. Computing the Routing Quality

In principle, the routing quality metric R can be designed to rely on various
quantities. Here, we present and evaluate an instantiation of our protocol
where our routing quality metric relies on:

e dist(j,s), the distance (in hops) from a node j to a given sink s, as
determined by the initial interest propagation;

e paths(j), the number of source-sink paths passing through a given
node j, i.e., using the notation in Section 10.3:

paths(j) = Zrﬁj (i,j)e A
keC

e sinks(j), the number of sinks a given node j currently serves.

The distance between a neighbor and a sink is of fundamental importance in
increasing reliability and reducing overhead. Indeed, the higher the number
of nodes traversed by a message, the higher the probability to lose data due
to unreliable transmission, and the higher the overall computational and
communication cost paid to deliver the message end-to-end.

The rationale behind the choice of the other two quantities can be visual-
ized with the help of Figure 10.6. In the network shown, a source Z needs to
send data to the sink S, and to do so it routes messages upstream through

211

10. Routing from Multiple Sources to Multiple Sinks

sink S

2 sinks 5 sinks
served seryed
B
/\
5 overlapping U o 5 overlapping
paths ’ paths

2 overlapping
paths

source Z

Figure 10.6.: An abstract view of a WSN with multiple sources and multiple
sinks. Source Z generates data to be delivered to sink .S, routed through
node A. Besides Z, node A is a neighbor of B, C, and D. At node A,
the current parent towards S is C'. However, a better choice is represented
by D, since it enjoys the highest number of overlapping paths and served
sinks among A’s neighbors.

its neighbor A. Node A, in turn, has three neighbors B, C, and D, with C
being the current parent in the tree rooted at S. Nevertheless, the figure
also shows how both B and D are currently traversed by more source-sink
paths than node C. Therefore, if A were to choose either of these neighbors
as the new parent towards S, they would guarantee higher overlapping than
in the current situation—which is exactly our goal. Finally, the figure also
shows that D is serving more sinks than node B. Therefore, with respect
to B, D is more likely! to be already reporting readings to S, possibly on
behalf of other sources. If this is actually the case, choosing D leads to
reusing an “already open” path towards S, therefore further increasing the

! As we know only the number sinks(j) of sinks served by j we cannot be sure that S
is really among them. To obviate to the problem, we could propagate the identifier
of the sinks served instead of their number. However, as shown in Section 10.5, the
latter already yields good performance and generates much less overhead.

212

10.4. A Distributed Solution

Field Name ‘ Description ‘

neighborld The identifier of the neighbor relative to this entry.

dist An associative array containing, for each sink in the system, its distance
from neighborld.

paths The number of different source-sink paths currently passing through neigh-
borld.

sinks The number of sinks served through neighborld, possibly along a multi-hop
path.

Figure 10.7.: Information used to compute the routing quality metric for a
neighbor node.

overlapping of source-sink paths at no additional cost. Therefore, node D
is the highest routing quality neighbor of A.

Here, we designed ¢ to be a linear combination of the three quantities
above:

q(n,s) == 4 - dist(n, s) + ay - paths(n) + ag - sinks(n) (10.5)

where J, a1, ag are tuning parameters of the protocol. Again, the shape of
the function R and its constituents can in principle be different. Although
the results presented in Section 10.5 with the routing quality metric in
(10.5) are already very positive, investigating the impact of alternative
definitions of R is in our immediate research agenda.

To compute R(n,s) for a given neighbor n and sink s, a node must first
determine the three constituents dist(n, s), paths(n), and sinks(n). These
are evaluated by relying on a data structure maintained by each node. Fig-
ure 10.7 shows the data structure fields for a single neighbor. Note how
the various fields are maintained differently. The value of the field neigh-
borld serves as the key to index the data structure. The content of dist is
determined from the messages flooded by the sink either during the tree
setup phase, or in successive flooding operations performed to keep this in-
formation up-to-date with respect to nodes joining or failing. The values of
paths(n) and sinks(n) are instead derived by the node through overhearing
of messages sent by n. These messages piggyback the control information
above, which can then be used to update the data structure in Figure 10.7.
Note how the overhead due to this additional control information is very
small: only two integer values are needed.

213

10. Routing from Multiple Sources to Multiple Sinks

10.4.3. Computing the Expected Lifetime

Evaluating the expected lifetime of WSN devices is a challenge per se, as it
depends on various factors such as the amount of processing generated by
the application, the network traffic, and the characteristics of the hardware
employed. Here we propose a simple mechanism to compute this metric.
This proved to be sufficiently accurate for our purposes, as we discuss in
Section 10.5.2. Nonetheless, our approach decouples this aspect from the
rest of the protocol, allowing for the use of alternative approaches, e.g.,
more sophisticated models taking into account the non-linear behavior of
commercially available batteries [184, 185].

In our solution, each node periodically evaluates its remaining energy.
Some commonly used WSN nodes are able to provide this value through
dedicated hardware probes, e.g., [186]. Otherwise, most of the WSN nodes
are able to read the current battery voltage, which can be used to com-
pute the remaining energy based on information about the current draw
as reported in the node data sheets. The difference between two consec-
utive readings represents the energy consumption F; during the i-th time
interval.

The N most recent E; are fed as input to an exponential moving average
(EMA) of type:

E:a-Ei_l —l—(l —a) -FEi g (10.6)

We choose an EMA as it reacts faster to recent changes than other types
of moving averages, thus allowing the system to adapt quickly to sudden
events affecting the overall system state, e.g., whenever a node dies. To
account for the limited memory budget of WSN nodes, we express the
smoothing factor a as suggested in [187], namely, in terms of the N mea-
surements that we allow in memory:

2

- 10.
TN+ (107)

The above formulation indeed gives more accurate results when the moving
average spans a limited time frame. E; provides us with an estimate of the
current energy drawing of the node. Using this value and the current energy
budget, we can compute T'(n) as the number of time intervals the node is
going to survive given the current situation.

214

10.4. A Distributed Solution

sink C sink D sink C sink D
‘4 - N“ ‘4 - h“
[[
) A1 ﬁ) AN 1
£ RO N
G i G i
A LA A A A
i i
E F i E F i
(. H (................
A»* » A > * M
| : i
source A source B source A source B
2 branches overlapping &-—— - 2 branches overlapping & ——: -
no overlapping - Nno overlapping <
(a) Initial configuration. (b) Node FE changes its

parent from G to F.

Figure 10.8.: A sample adaptation process.

Field Name [Value]

neighborld G

dist {C=2,D=4}
paths 1

sinks 1

neighborld F

dist {C=2,D=4}
paths 2

sinks 2

Figure 10.9.: Data stored at node E in the situation depicted in Fig-
ure 10.8(a).

10.4.4. Putting All Together

Figure 10.8 illustrates a sample adaptation process. For the sake of the
example, we focus on node E and sink C, and we assume T(F) = 6,
T(G) =5,and 06 = oy = az = 1 in (10.5). With these values, node E
evaluates R(n, s) towards sink C' for its two neighbors F' and G. Figure 10.9
shows the content of the data structures in Figure 10.7 for F' and G. The
evaluation returns R(G,C) =2+ 1+1=4and R(F,C)=2+2+2=6.
Therefore, E computes Q(G,C) = 4-5 = 20 and Q(F,C) = 6-6 = 36,
thus recognizing F' as the best next-hop towards C. Based on this, E
changes its parent to F, as depicted in Figure 10.8(b). The immediate

215

10. Routing from Multiple Sources to Multiple Sinks

benefit of this change can be easily seen by computing the number nodes
involved: the network in Figure 10.8(a) uses 12 nodes, against the 10 nodes
of Figure 10.8(b).

To break ties between the current parent and a new one, a node always
selects the latter, as it is guaranteed to enjoy a higher value of R after
becoming a parent. Indeed, at least the number of source-sink paths passing
through it increases by one. In selecting the new parent, the only additional
constraint is to not select as a new parent a neighbor whose distance from
a sink is greater than that of the selecting node. Without this constraint,
a node could potentially select one of its children as the new parent, hence
creating a routing loop.

Finally, our distributed protocol is complemented by a simple scheme
for packing multiple readings in the same network message. To this end,
each node maintains a buffer for each neighbor, limited by the number of
readings allowed in a message. Upon receiving a reading from another node,
the reading is inserted in the buffer for the neighbor on the route to the
target sink. When the buffer for a given neighbor is full (or upon expiration
of a timeout) a message is created and forwarded to the neighbor. This
simple scheme decreases the per-reading header cost and helps reducing
collisions, since buffers are likely to become full at different times and
therefore messages are going to be reasonably spread in time. In principle,
the same packing scheme can be used without our adaptation protocol.
However, its impact is greater in the presence of adaptation, since the
latter guarantees a higher degree of overlapping among trees, with more
readings being funneled through the same links.

10.5. Evaluation

In this section, we assess the effectiveness of our protocol using cycle-
accurate emulation of WSN devices. Specifically, we implemented our pro-
tocol on top of TinyOS [42], and used the Avrora [157] emulator to study
its dynamics. The latter allows for fine-grained emulation of the popular
MICAZ2 platform [72], and also includes a detailed energy model to emulate
its power consumption [188].

In all our tests, we employ the standard TinyOS MAC layer for MICA2
nodes. A single sensor reading is represented by a 32-bit integer value,
while the message size at the MAC layer is 52 bytes, possibly containing
up to 8 sensor readings. The sources generate one message per minute.

216

10.5. Evaluation

Hereafter, the time period between two successive readings generated from
the same source is termed epoch. Initially, all nodes are provided with an
energy budget equivalent to a pair of commercially available AA batteries.
All experiments are repeated 20 times, and the results are averaged.

We first report about experiments in a regular grid, where each node
can communicate with its four neighbors. This choice simplifies the inter-
pretation of results by removing the bias induced by random deployments,
while also well modeling some of the settings we target, e.g., indoor WSN
deployments for control and monitoring [27]. To this end, the nodes are
placed 25 meters apart with a communication range of 40 meters. More-
over, we also evaluated the performance of our protocol in deployments
with a random topology, characterized by a pre-specified average number
of neighbors for each node. With respect to the grid deployment, these
scenarios allow us to assess the impact of the connectivity degree on our
results, as well as to evaluate our protocol in more unstructured scenarios
(e.g., modeling outdoor WSNs deployments).

The initial tree is built by flooding the system with a “tree construction”
message sent by every sink. Each node keeps track of messages received
from the same sink, and stores the identifier of the neighbor along which
the message was received with the least number of traversed hops. This
way, the initial tree is built by minimizing the length of the path connecting
each source to every sink. This base tree is also used, without any addi-
tional modification, as point of comparison against our solution. Indeed,
it essentially provides a baseline, representative of protocols that build in-
dependent trees (e.g., Directed Diffusion [37]), against which we show the
benefits of our adaptive scheme. The same “tree construction” message is
periodically re-sent to possibly update a node’s distance from the sink.

For what concerns the protocol parameters, we verified experimentally
that the combined contribution of a; and o yields the best results in
minimizing the number of nodes involved in routing. Therefore, we set
(aq = 1,9 = 1). Nonetheless, a more thorough investigation of how the
value of these parameters affect the routing performance is in our imme-
diate research agenda. As for the distance from sinks, we discussed in
Section 10.4.2 how its contribution is key in achieving a good ratio of de-
livered readings. Differently from the two quantities above, the lower is
this value, the better (closer) is the neighbor located w.r.t. a given sink.
For this reason, we always set § = —2 throughout all the test runs, so that
neighbors closer to the considered sink are preferred over neighbors farther

217

10. Routing from Multiple Sources to Multiple Sinks

100%-75% remaining energy
75%-50% remaining energy
50%-25% remaining energy

25%-0% remaining energy

A E N

dead node

Figure 10.10.: Classes of nodes depending on remaining energy.

(a) Snapshot after 1000 (b) Snapshot after 1250 (c) Epoch 1339: one of
epochs. epochs. the sink is disconnected
from the network.

Figure 10.11.: Energy consumption over time using independent trees (225
nodes in the system).

away. As we verified experimentally, this value provides a good trade-off
w.r.t. the other parameters.

Our evaluation is split in two parts. First, we study our protocol in a
synthetic scenario to assess whether its behavior matches our design crite-
ria. Next, we quantitatively evaluate its performance in different scenarios
and along several metrics.

218

10.5. Evaluation

10.5.1. Analyzing the Protocol Behavior

To precisely analyze the behavior of our solution, we run experiments where
we keep track of a node’s remaining energy over time. In the charts pre-
sented hereafter, we distinguish among five classes of nodes depending on
their remaining energy, as illustrated in Figure 10.10. To better interpret
the results, we used a synthetic scenario with only two sources and two
sinks, placed at the opposite corners of a grid topology. This essentially
serves to study our protocol behavior as the system evolves. For the same
reason, however, the quantitative results obtained here are not indicative
of our protocol performance, which is instead evaluated in Section 10.5.2.

Results. Figure 10.11 depicts different snapshots of the system state using
the base protocol, i.e., a base tree construction with neither path merging
nor load balancing. As the figures illustrate, two source-sink paths cross in
the middle of the topology. Nodes in that area are therefore exploited for
routing towards two different sinks, and consume energy more rapidly than
others. The nodes closest to the two sinks are similarly exploited, as they
lie where the two paths leading to the same sink converge. Consequently,
at some point nodes start failing in the middle of the topology as well as
around the two sinks, until one of them is completely disconnected from its
sources, as shown in Figure 10.12(c). Although the chart shows the case
with 225 nodes in the system, we observed about the same patterns with
different system scales.

On the other hand, Figure 10.12 illustrates the behavior of our protocol
using path merging, yet still without load balancing. Here, it is evident
how maximizing the overlapping of source-sink paths yields the formation
of a sort of “backbone” in the middle of the system. Nodes along this
merged path consume energy more quickly than others. They are indeed
required to send larger messages whenever multiple readings can be packed
in the same physical packet, or to serve multiple source-sink pairs when
the paths are not merged. The latter situation can temporarily occur even
though no nodes have died yet. For instance, if a tree construction message
is lost, a node may receive the tree update from different upstream nodes
at different times, thus changing its distance from the sink. In turn, this
modifies the node’s routing quality as perceived by its neighbors. They
may therefore decide to change their parent, thus momentarily separating
previously merged paths.

Interestingly, Figure 10.12 also shows a few nodes outside the backbone

219

10. Routing from Multiple Sources to Multiple Sinks

(a) Snapshot after 1000 epochs. (b) Epoch 1319: the system is
still running.

(c) Snapshot after 1450 epochs. (d) Epoch 1542: one of the sink
is disconnected from the net-
work.

Figure 10.12.: Energy consumption over time using our routing solution
with no load balancing.

consuming a small amount of energy, and then conserving their remaining
power until the end of the experiment. These devices, better highlighted
in Figure 10.13, correspond to the nodes used by the base tree, as it can
be observed by comparing Figure 10.13 against Figure 10.11(a). Without
the load balancing scheme, these nodes are indeed involved in routing only
initially, until the adaptation mechanism converges on the merged path.

Despite our protocol insists on the nodes in the middle of the topology,

220

10.5. Evaluation

@5 €y

Figure 10.13.: Highlighting the nodes in Figure 10.12(a) that were involved
in the initial tree.

the overall system performance is already improved. Using the base pro-
tocol, one of the sinks is disconnected from its sources after 1339 epochs.
This happens because of nodes dying close to the sink itself, as in Fig-
ure 10.11(c). Even if it may seem our protocol cannot address this issue,
by inspecting the logs of our experiments we verified that a partial merging
occurs also among the nodes around the sinks as the two paths from the
sources come closer. This reduces the number of physical messages these
nodes need to send, thus increasing their lifetime. Indeed, using our pro-
tocol at the same epoch both sinks are still connected to both sources, as
shown in Figure 10.12(b), and only two nodes died throughout the system.

Figure 10.14 depicts the dynamics of our complete protocol, i.e., us-
ing adaptation driven by both routing quality and expected lifetime. A
comparison of these snapshots against Figure 10.11 and 10.12 provides im-
mediate indications on the effectiveness of our load balancing scheme. The
“backbone” effect is much less evident. Moreover, the number of nodes con-
suming at least 25% or 50% of their available energy remarkably increases
over time. This is due to the ability of our solution to distribute the routing
effort evenly, hence involving different nodes at different times.

More specifically, as illustrated in Figure 10.14(a), after 1000 epochs no
node is yet under 25% of remaining energy. After 1339 epochs, as shown in
Figure 10.14(b), the system is still running with no failed nodes, whereas
at the same epoch Figure 10.11(c) shows the base protocol already with a
sink completely disconnected from its sources. A similar reasoning holds

221

10. Routing from Multiple Sources to Multiple Sinks

a) Snapshot after 1000 epochs.) Epoch 1339: the system
is stlll running with no failed
nodes.

¢) Snapshot after 1542 epochs. d) Epoch 1699: one of the sink
is disconnected from the net-
work.

Figure 10.14.: Energy consumption over time using our complete protocol.

between Figure 10.14(c) and Figure 10.12(d). In the latter, our proto-
col without load balancing yields a partition between one of the sink and
the rest of the system. At the time of the first network partition, shown
in Figure 10.12(d), almost all nodes spent at least 50% of their available
energy. Notably, the partition still occurs because of some nodes dying
around one of the sink. However, this happens far later in time, as our
scheme is able to merge the paths around the sinks and wisely alternate
among these critical nodes. Obtaining a similar behavior was precisely our

222

10.5. Evaluation

chief design objective, which we therefore deem accomplished based on the
results presented in this section. The impact of these mechanisms on the
overall system performance is quantitatively assessed next.

10.5.2. Performance Characterization

In this section, we report on experiments comparing the performance of
our solution against the base mechanism without adaptation as well as the
optimal solution identified in Section 10.3. To compute the latter, we used
the GLPK [189] solver to determine the ideal topology connecting sources
to sinks, given their respective placement in the system and the constraints
defined in Section 10.3. These solutions provide the two extremes for our
evaluation: we indeed demonstrate that our adaptation strategy provides
remarkable benefits w.r.t. mainstream tree-based solutions, and that its
effectiveness approaches the theoretical optimum.

As for the modeling of sources and sinks, each scenario is set so that 10%
of the nodes are data sources, whereas we vary the number of sinks involved
to study how our protocol handles a variable number of source-sink paths.
To investigate quantitatively our protocol performance, we measured the
following quantities:

e the ratio of readings delivered to the sinks over those sent;

e the system lifetime, computed by stopping the experiments when the
last source-sink paths becomes interrupted. This indeed corresponds
to the point in time when the application is no longer able to process
any data;

e the number of nodes exploited, i.e., the metric we aim at minimizing
to obtain more efficient routes connecting sources to sinks.

Results. We first focus on grid topologies. As for the ratio of messages
delivered to the sinks, our protocol improves of about 15% w.r.t. the base
solution, mostly irrespective of whether the load balancing scheme is used.
Though a similar result may seem marginal, the system lifetime improves
drastically using our approach, as illustrated in Figure 10.15. The path
merging mechanism alone increases the system lifetime of about 50%. In
combination with the load balancing scheme, our complete scheme achieves
improvements around 75%, on average. Similarly to what we observed in
Section 10.5.1, we verified that most of the network partitions are due to

223

10. Routing from Multiple Sources to Multiple Sinks

1800

‘BESE
Path merging only ---¢---
Path merging and load balancing -3
1600 (K-

N
1400 | T— |
1200 | -

1000 ~ 1
800 | 1

100 150 200 250 300
Nodes

System lifetime (Epoch)

Figure 10.15.: System lifetime vs. number of nodes, in a system with 4
sinks.

nodes around the sinks depleting their battery. Nonetheless, our protocol
exploits these nodes much better than the base protocol, thanks to the two
complementary mechanism we designed. One on hand, the path merging
technique decreases the number of physical messages these nodes need to
transmit. On the other hand, the load balancing mechanism achieves a sort
of fair load allocation among these nodes, exploiting their resources evenly.

To find out how the system behaves during the additional running time
allowed by our solution, Figure 10.16 provides a finer-grained analysis of the
system evolution over time. Regardless of which solution is employed and
the system scale, the number of active source-sink paths always decreases
abruptly, as soon as some nodes around a sink prevent communication to-
wards some part of the system. However, our scheme pushes the moment in
time when this occurs much farther. Hence, during the time that our solu-
tion allows in addition to the base protocol, the system effectively operates
to its full capabilities.

The above results are enabled by the combination of path merging and
load balancing. To study the effectiveness of the former, Figure 10.17
reports the number of nodes involved in routing using our adaptive protocol
compared to the base solution, before any node fails. In addition, we also
report the minimum number of nodes needed to connect sources to sinks
computed using the model in Section 10.3, i.e., in a centralized manner and
with global knowledge of the system topology. As the chart illustrate, our
solution drastically improves over the base solution. Moreover, it always
lies within 10% from the theoretical minimum, yet it does not require any
apriori knowledge of the system topology. These results hold both against

224

10.5. Evaluation

40 . . 60 . .
Base —— Base ——
Path merging only - Path merging only -
" 35 Path merging and load balancing v 50 Path merging and load balancing
2 2
g 30 &
£ z i
@ 5 40 L
g 8 i
H 2 3
& 20 & 30
© o
s H
< 15 <
g 5 20
z 5 k]
E 5
z z 101
5|
oL . . . L . . 0 P S
1000 1100 1200 1300 1400 1500 1600 1700 900 1000 1100 1200 1300 1400 1500 1600
Epochs Epochs
(a) 81 nodes, 32 source-sink paths. (b) 121 nodes, 48 source-sink paths.
Base 'Base —
100 | Path merging only - Path merging only -
" Path merging and load balancing " 120 - Path merging and load balancing 1
T gl o 100 f
€ €
@ @
8 g sof
5 eof 3
n n
2 2 6of
S ot g
5 5
3 5 40
g 2
E » 5
z 2 ol
i
0 N . ol . . . M . i
700 800 900 1000 1100 1200 1300 1400 1500 700 800 900 1000 1100 1200 1300 1400 1500
Epochs Epochs
(c) 225 nodes, 88 source-sink paths. (d) 289 nodes, 112 source-sink paths.

Figure 10.16.: Grid topology: number of active source-sink paths over time
vs. nodes (4 sinks).

a variable number of source-sink paths, as highlighted in Figure 10.17(a),
and w.r.t. the number of nodes in the system, as Figure 10.17(b) illustrates.

Instead, to assess the contribution of our load balancing scheme we also
measured the energy remaining at every node when the experiment stops.
Figure 10.18 illustrates this metric against the system scale. Interestingly,
using the path merging scheme alone this quantity ends up being almost
the same as in the base protocol. Differently, a node’s remaining energy
using the load balancing scheme is much lower w.r.t. the previous cases.
In addition, the variance of the results also decreases, Consequently, we
maintain that the contribution brought by this mechanism to the system
lifetime comes from spreading the routing load more wisely, so that a higher
number of nodes eventually participate in routing.

Next, we repeated the experiments above by generating random topolo-

225

10. Routing from Multiple Sources to Multiple Sinks

Base
160 - Path merging -

" Base
140 Path merging -
Theoretical optimum -3

Theoretical optimum -3

140

120 -
120 -

100 -
100 -

Number of Exploited Links
Number of Exploited Links

I 40 ¥
SR 20 ‘ ‘ ‘ ‘
60 70 80 90 100 110 120 130 140 100 150 200 250 300
Source-Sink Paths Nodes
(a) Nodes involved against number of (b) Nodes involved against system size
source-sink paths (225 nodes). (4 sinks).

Figure 10.17.: Grid topology: nodes involved in routing.

50 T
Base (avg) —+—
Base (stdDev) ——
. Path merging only (avg) -
8 Path merging only (stdDev) s
ER Path merging and load balancing (avg) ----
<3 Path merging and load balancing (stdDev)
8
::j T T X [|
=3
£
= § .
g 2
4
@
3
2
5 10 -
o [E— L L]
0
100 150 200 250 300

Nodes

Figure 10.18.: Grid topology: per node remaining energy when simulation
stops.

gies with a pre-specified average number of neighbors per node. The results
and conclusions we discussed above still hold in these alternative settings,
thus assessing the effectiveness of our solution also in more unstructured
scenarios. In random topologies, however, we observed again how the sys-
tem lifetime is ultimately dictated by the running time of nodes around
the sinks. To better investigate this aspect, we run an additional set of ex-
periments where the node location is decided semi-randomly. Specifically,
we divide the physical space in squared sub-areas whose side is 200 meters
long. In each sub-area A, we deploy a set N(A) of nodes, and impose their

226

10.6. Related Work

j Base —+—
2600 | Path merging only -~
% Path merging and load balancing -3
2400 -
2200 + ’ ¥
2000 X
1800 | R

1600

System lifetime (Epoch)

1400

1200 \\\]
0000)))]

100 150 200 250 300
Nodes

Figure 10.19.: System lifetime vs. number of nodes, in a system with 4
sinks.

density in A be driven by the following formula:

N(A K
| ;)IZZ 3 prTa" (10.8)

s€SneN(A)

where S is the set of sinks used in a given experiment, dist(ni,ns) returns
the geographical distance between node n; and ng, and K is a constant
large enough to yield a connected topology. Intuitively, the above formula
forces our topology generator to deploy more nodes around the sinks, while
decreasing their density exponentially as nodes are placed farther.
Interestingly, generating the topology as described above amplifies the
improvements of our solution w.r.t. the base protocol. In particular, the
gains due to the load balancing scheme become larger, as illustrated in Fig-
ure 10.19. This evidences once again how the aforementioned scheme wisely
exploits the available resources. Indeed, if more nodes are deployed around
the sinks, our protocol can push even farther in time the moment where one
of the sink becomes disconnected, by simply alternating among more nodes
for routing. This occurs with no modification to internal mechanisms of
the protocol, that automatically adapts to the particular topology at hand.

10.6. Related Work

The model we presented in Section 10.3 is derived from the large body of
literature in operational research and network design. Our choice of the
multi-commodity network design problem as a modeling framework is mo-
tivated by the generality it allows in pairing sources and sinks. In contrast,

227

10. Routing from Multiple Sources to Multiple Sinks

modeling the same problem as a p-source minimum routing cost spanning
tree |190] or a Steiner minimal tree [191] would force us to consider ev-
ery node (or source, respectively) to be a sink as well. At the same time,
the model we presented here is a simple instance of the multi-commodity
network design problem. More sophisticated formulations exist, e.g., tak-
ing into account the capacity of network links [192]. In this case, when
the capacities along a path are exhausted, alternative, parallel paths are
used to share the traffic load, therefore activating more links. However, in
WSNs it is difficult to evaluate precisely the actual bandwidth available,
due to contention of the wireless medium, collisions and unreliable trans-
missions [193]. Moreover, these issues are amplified as the number of links
used to route messages increase. Therefore, we believe these formulations
are not suited for the wireless setting.

For what concerns distributed solutions, it is safe to say that most re-
search in sensor network focuses on optimizing communication from mul-
tiple sources to a single sink, as witnessed by the vast amount of literature
on the subject [33]. As we already mentioned, these approaches cannot
provide efficient solutions to support programming abstractions geared to-
wards sense-and-react scenarios, which inherently call for routing solutions
to report to multiple receivers.

In [194] the authors propose mechanisms to build sink-rooted trees in-
crementally, to perform data aggregation and in-network processing. A
path from a single source to the sink is first built, and then shared by
other, nearby sources. In this sense, their approach resembles our rational
of minimizing the number of nodes exploited to reduce the network traffic.
However, their solution is geared to single-sink scenarios, and their results
are barely comparable to ours, as they are obtained in simulation using a
MAC layer derived from IEEE 802.11. Devising mechanisms to combine
the two techniques could provide further benefits, and is a topic worth
further investigation.

The work in [179] addresses the problem of routing from a single source
to multiple sinks. Common to our approach is the use of broadcast trans-
missions to let nodes collect information on alternative routes. However,
the adaptation in [179] is performed based on long-range information (e.g.,
the number of hops from a node to the different sinks). As this information
may not be immediately available, the algorithm starts with a worst case
estimation and randomly tries different routes, including those deemed less
favorable. When the information gathered during this exploration phase is

228

10.6. Related Work

not modified for a given number of iterations, the algorithm switches to a
stable phase where the discovered routes are used. The adaptation mecha-
nism we proposed in this work is instead based mainly on local information
that is immediately available (e.g., the number of source-sink paths passing
through a node), Moreover, our algorithm is basically self-stabilizing, and
does not require distinct phases of operation.

Some researchers addressed the problem of routing from multiple sensors
to mobile sinks, focusing on mechanisms to deal with frequent location
updates. To this end, in [195] a two-level grid structure is proactively built
by the sources. This identifies a reduced subset of nodes responsible for
storing information about the sink position, and to which location updates
are sent. Conversely, in [196] a stationary sensor node builds a tree on
behalf of one or more mobile sinks. These remain linked to this node
until they move too far away, at which point they are forced to select a
different stationary node. In-network data processing in the presence of
mobile sinks is also considered in [178|, where a tree is built by a master
sink and then shared by slave sinks. Local repair strategies are employed to
adjust the tree according to sink mobility. Differently from our approach, in
these works sink mobility is the distinctive feature of the target scenario,
and the proposed solutions are aimed at reducing the overhead due to
it. In contrast, we concentrate on optimizing the source-sink paths, as
this is key to improve the system lifetime in our target scenarios, actually
less dynamic. In doing so we make only minimal assumptions about the
node capabilities (i.e., the ability to overhear messages sent by neighbors),
while all the aforementioned proposals require nodes to be aware of their
geographical position, exploited for routing.

Instead, the work in [180] introduces an algorithm targeting monitoring
applications for achieving energy-efficient routing to multiple sinks. The
optimizations proposed are centered around the ability to adjust the sens-
ing rate at different nodes, eliminating the redundancy in the data gathered
while preserving the ability to reconstruct the corresponding phenomenon.
Instead, we do not assume the ability to influence the source behaviors.
Conversely, common to our approach is the problem formulation based on
integer linear programming. The authors then map this formulation to a
distributed search algorithm based on subgradient optimization, executed
in a decentralized fashion. However, they do not provide any insights on
the processing overhead this solution would impose on real, resource con-
strained nodes. We use instead the model presented in Section 10.3 as a

229

10. Routing from Multiple Sources to Multiple Sinks

theoretical bound for careful analysis of a lightweight, distributed solution
straightforwardly implementable on WSN devices.

Finally, other works have focused on the opportunity to employ multiple
sinks not to meet an application requirement, but as a mechanism to in-
crease the system lifetime. For instance, the work in [197| investigates the
design problem related to optimally locating multiple sinks in the sensor
field, so as to achieve a pre-specified operational time. In this case, even
if multiple sinks are present, these simply act as cluster-heads, with each
sensor node reporting to only one of them. Similarly, the proposal in [198]
studies the problem of selecting, at each node, one of the many sinks present
in the system to minimize the overall energy expenditures. Clearly, this is
a different problem w.r.t. ours, where the multiple sinks actually represent
different system actors, that need to simultaneously gather sensor data for
potentially different tasks.

230

11. Enabling Scoping in Sensor
Network Macroprogramming

As we discussed in Chapter 2, WSN programming solutions providing system-
centric computation or global view communication are usually termed as
macroprogramming approaches. Compare to mainstream programming frame-
works, e.g., nesC [28], these usually provide higher-level abstractions to
programmers, thus simplifying the development task. FExisting approaches
in this field, however, mostly assume homogeneous scenarios where a sin-
gle, system-wide task is to be accomplished. As a result, they are unable
to express interactions limited to specific parts of the system, which are
commonly found in sense-and-react applications.

To address this issue, in this chapter we again leverage off Logical Neigh-
borhoods as a building-block to serve higher-level abstractions, similarly to
the approach we pursued in Chapter 9. Specifically, here we exploit Logical
Neighborhoods to provide a flexible notion of scoping in the context of a
sensor network macroprogramming framework. The resulting approach en-
ables the specification of complex interactions among system partitions, thus
greatly simplifying the development process. Moreover, this is not detrimen-
tal to performance: our approach results reasonably close to an optimal so-
lution computed with global system knowledge, while exhibiting a 70% gain
w.r.t. baseline solutions. The work presented here appeared in [12,13,51].

11.1. Introduction

Early deployments of wireless sensor networks (WSNs) focused on a single,
system-wide goal, and featured fairly simple architectures. For instance,
habitat monitoring [199] can be implemented using mostly homogeneous
nodes, each running the same application code. Existing macroprogram-
ming solutions well adapts to similar requirements.

231

11. Enabling Scoping in Sensor Network Macroprogramming

Forwarding
.. Node .. . Speed Limit
o A 2 2 Dis;.')lay

-«———i-th Highway Sector ——»i«— (i+1)-th Highway Sector——»

: J

i 3

! N \'/q,u::‘}, - N |
s L e L T
B - " Sensor s ' . AT I
T &Ee T =
=N 7 ! o
! 0—o’ — ' Presence — |
= T /T T T T T O T T 5 T Sensor —_—
! o e !
' — 77N e _ ARy |
i ./ | — L/ i
VAR 7N 7N AR 17N 77N 1
PN/ _/ _/ N_/ _/ _/ !
i Ramp Signal ! |
! ' i
1

Figure 11.1.: Traffic management scenario.

Nevertheless, the recent advent of more powerful sensor nodes is en-
abling the use of WSNs in increasingly sophisticated settings, from smart
spaces [26] to monitoring and control in buildings [27]. These applications
often involve heterogeneous nodes equipped with actuators to influence the
environment, and their ultimate goal is usually obtained by composing mul-
tiple, collaborating activities. These characteristics, however, make avail-
able approaches ill-suited to develop similar applications.

Reference Scenario. Consider, for instance, a highway traffic monitoring
and control application, a field where WSNs have gained increasing at-
tention [200]. Various techniques exist to influence the vehicle movements
(e.g., to minimize pollution and fuel consumption), that use solutions such
as speed signaling and ramp metering [201]. The former aims to control
the behavior of traffic by suggesting appropriate speeds, while the latter
influences traffic by controlling access to the highway. In these fields, differ-
ent proposals exist to optimize goals such as pollution and fuel consump-
tion [98]. These systems are often logically divided into disjoint sectors,
with each sector usually being controlled depending on the current status
of the same and neighboring sectors.

A sample highway scenario is depicted in Figure 11.1, where a sector
is identified by a single ramp leading to the highway, i.e., it spans the
portion of highway from a ramp to the following. The system has five main
components: i) speed sensors installed on the highway lanes to measure and

232

11.1. Introduction

R Ramp Signal -
— —» Avg Queue Length(s) ——| Ramp Signal
r Calculator

Speed Limit
Calculator

Speed Limit

SYSTEM

ENVIRONMENT

HighwaySector;.4

|
|
|
|
: T HighwaySector;
|
|
|

v] HighwaySector;.

Figure 11.2.: Data processing in traffic management.

report the speeds of vehicles, i) presence sensors installed on the highway
ramps to report the presence of vehicles, i) speed limit displays installed
one per highway sector to inform of the recommended speed limit, i) ramp
signals installed one per highway ramp to allow or disallow cars onto the
highway, and v) forwarding nodes installed on the road side at regular
intervals to enable wireless communication between the various nodes.

Figure 11.2 illustrates, from a high-level perspective, the various stages
of data processing in the application. Data is collected from the sensing
devices and processed to derive aggregate measures —the average speed
of vehicles in a highway sector or the average queue length on a ramp.
This information is fed as input to an algorithm determining the actions
to achieve the system objectives, e.g., maximize the flow of vehicles on the
highway. These actions are then communicated to the ramp signals and
speed limit displays. The specific algorithms employed depend on the goals
and metrics of interests.

Need for Scoping. As illustrated in Figure 11.2, multiple concurrent ac-
tivities must be performed to achieve the overall application goal, in our
case, regulating the vehicles’ speed and access to the highway. Each of these
activities can be decomposed into several, inter-dependent steps where the
outputs of one step are fed as input to the following one. Since nodes
have different capabilities, each such step must be ultimately mapped to
a different system partition that includes only nodes with specific charac-

233

11. Enabling Scoping in Sensor Network Macroprogramming

teristics. As a result, each processing step can be regarded as mapping
the inputs obtained from a specific subset of nodes to a different subset
of nodes. Therefore, the programmer must not only identify the differ-
ent scopes based on the application requirements, but, more importantly,
express non-trivial interactions among them.

Scoping in Macroprogramming. Most of the existing macroprogram-
ming frameworks provide little or no support for scoping. For instance,
in EnviroSuite [102], contexts are defined with conditional statements to
create a mapping between software objects and real-world elements, e.g.,
a moving target. Contexts determine a scope including a set of physically
connected nodes with no intermediate hops outside the partition. Albeit
sufficient for applications exhibiting spatial locality, such notion cannot be
used to address, e.g., a set of geographically sparse actuators, as in our
reference application.

TinyDB [17] offers a database interface to WSNs where users submit
queries specified with a dialect of SQL. A notion of query scoping is present
whereby queries are not delivered to nodes that cannot provide useful data.
However, this does not emerge at the programming level, as the span of
a query is ultimately dictated by the current sensor readings, and not by
application-specified requirements.

The work in [114] targets shared, multi-user sensor networks, and ex-
ports a strongly-typed, functional language to express processing. Sen-
sors are named via URI relative to the host they are connected to. Still,
programmers are not provided with dedicated constructs to specify inter-
actions among logically-defined system partitions, e.g., to direct a given
output from a highway sector to the adjacent ones.

Kairos [32] and Pleiades [15| propose a macroprogramming model in-
spired by parallel architectures. Developers express the application be-
havior by writing or reading variables at nodes, iterating on the 1-hop
neighbors, and addressing arbitrary nodes. Regiment [16] is a functional
macroprogramming language based on the notion of region stream: a spa-
tially distributed, time-varying collection of node states. These are taken
as input to functions used to express the application processing. In these
cases, no generic construct is provided to express interactions among arbi-
trary subsets of nodes.

In conclusion, most of the existing approaches target focus on specific
classes of applications [102], or do not provide scoping as a first-class pro-
gramming construct [17]. These characteristics drastically limit their ap-

234

11.1. Introduction

plicability in the scenarios we target.

Contribution. To address the above issues, in this chapter we leverage off
Logical Neighborhoods to empower an existing macroprogramming frame-
work with the ability to express interactions among programmer-defined
subsets of nodes. To this end, we make the following contributions:

e Programming Constructs for Scoping in Macroprogramming.
In Section 11.3 we illustrate language constructs enabling the specifi-
cation of complex interactions among application-defined scopes. The
addition of scoping to macroprogramming provides application devel-
opers with a logical layer on top of the underlying physical system,
abstracting away the physical location of data. This greatly sim-
plifies the programming activity, thus speeding up the development
process. To illustrate our ideas, we enable scope-based interactions in
ATaG [108], a macroprogramming framework. Nonetheless, our tech-
niques can, in principle, be incorporated also in alternative macro-
programming approaches.

e Compiler and Run-time Support for Scoping. We demonstrate
the feasibility of our approach by developing a complete development
framework in support of the resulting programming model. In this
respect, Section 11.4 illustrates the compilation process used to map
the new macroprogramming constructs to the API provided by a ded-
icated, node-level run-time. Next, Section 11.5 discusses code metrics
gathered on the implementation of our reference application, as well
as simulation results obtained by running the actual code resulting
from the compilation process. Our results show that the ease of pro-
gramming brought by our approach does not come at the cost of de-
graded system performance. These present significant improvements
w.r.t baseline solutions, and scalability properties similar to optimal
solutions computed with global system knowledge.

The next section briefly illustrates the ATaG programming model, pro-
viding the foundations needed for the rest of the work. For a comparison
between ATaG and alternative macroprogramming models, the reader is
referred to Chapter 2.

235

11. Enabling Scoping in Sensor Network Macroprogramming

‘ [nodes-per-instance: 1] ‘ ‘ [area-per-instance:10 sq. m] ,‘
‘ [periodic:10] _ ‘ ‘ [anydata] I"
~

~

Firing Rule

Sampler Cluster-Head

~

Abstract Instantiation
Task domain Rule
Channel , -
Annotations Abstract
Channel
Abstract —- Temperature
Data

Figure 11.3.: A sample ATaG program.

11.2. The ATaG Programming Model

The Abstract Task Graph [108] (ATaG) is a macroprogramming framework
providing a mixed declarative-imperative approach. The notions of abstract
task and abstract data item are at the core of ATaG’s programming model.
A task is a logical entity encapsulating the processing of one or more data
items, which represent the information. The flow of information between
tasks is defined in terms of their input/output relations. To achieve this,
abstract channels are used to connect each data item to the tasks that
produce or consume it.

Figure 11.3 illustrates a sample ATaG program specifying a cluster-
based, data gathering application. Sensors within a cluster take peri-
odic temperature readings, which are then collected by the corresponding
cluster-head. The former behavior is encoded in the Sampler task, while
the latter is represented by Cluster-Head. The Temperature data item is
connected to both tasks using a channel originating from Sampler, and a
channel directed to Cluster-Head.

Tasks are annotated with firing and instantiation rules. The former
specify when the processing in a task must be triggered. In our example,
the Sampler task is triggered every 10 seconds according to the periodic
rule. The Cluster-Head fires whenever at least one data item is available on
any of its incoming channels, in accordance with its any-data firing rule.
The instantiation rules govern the placement of tasks on real nodes. The
nodes-per-instance:1 construct requires the task to be instantiated once
on every node. On the other hand, the area-per-instance construct used

236

11.3. Scoping in a Macroprogramming Language

for Cluster-Head entails partitioning the geographical space according to
the given parameter, and deploying one instance of the task per partition.

Abstract channels are annotated to express the interest of a task in
a data item. In our example, the Sampler task generates data items of
type Temperature kept local to the node where they have been generated.
The Cluster-Head uses the domain annotation to gather data from the
temperature sensors in its cluster, which binds to the system partitioning
obtained by area-per-instance and connects the tasks running in the
same partition.

The code within a task is the only imperative part in an ATaG program.
To express data exchange between tasks in the imperative code, program-
mers are provided with the abstraction of a shared data pool, where each
task can output data, or be notified when some data of interest is available.
Dedicated APIs are provided for this.

11.3. Scoping in a Macroprogramming Language

In this section, we describe how we bring scoping in macroprogramming
by augmenting the ATaG model. We first illustrate how subsets of nodes
are specified, and then discuss the novel programming constructs we intro-
duced using an ATaG-based implementation of our reference application as
example.

11.3.1. Determining Scopes

Subset of nodes can be determined in several ways. In this work, we take a
simplistic yet general approach, and identify the nodes in a given subset as
those satisfying a membership function fs(i), where s is a scope and i is a
node. The boolean output of f returns whether ¢ belongs to scope s or not.
In turn, the actual definition of f is obtained as the composition of atomic
boolean predicates on the nodes characteristics (called node attributes here-
after). As an example, fs(i) ::= isInSector(1,i) A hasSpeedSensor(i) iden-
tifies the subset of nodes equipped with a speed sensor and deployed in the
first highway sector.

The boolean predicates are automatically generated by an additional tool
we developed that essentially inspects the attributes attached to nodes, and
presents a list of predicates to the programmers who only need to compose
them in the desired way. With this approach, it is quite natural to deter-
mine the desired scopes. In turn, node attributes can be straightforwardly

237

11. Enabling Scoping in Sensor Network Macroprogramming

generated in a variety of means, e.g., from third-party meta-data describing
the characteristics of a specific hardware platform [202].

11.3.2. Scoping in ATaG

To enable interactions between scopes, we need to modify primarily two as-
pects in the ATaG programming model: task placement and data ezchange
between tasks. The former express the scopes where processing will take
place, whereas the latter describe the interactions among scopes.

Task Placement. From the application perspective, higher expressivity in
task allocation is motivated by the need of mapping a specific processing to
nodes equipped with the required sensing/acting devices, or those present
in specific regions. For instance, a task designed to operate the ramp signal
must be instantiated on a node having that particular device attached.
However, we need only one task to compute the average speed for each
highway sector, so we need to identify the different sectors uniquely. This
has been achieved with revised instantiation rules, that give application
programmers the ability to map tasks to application-defined subsets of
nodes, e.g., all the nodes deployed in the same highway sector.

Data Exchange. Albeit necessary, the above additions do not yet enable
the description of interactions between scopes. For instance, in our sce-
nario the speed limit is decided based on the information sensed in three
neighboring highway sectors. To achieve this, we should not only identify
the speed sensors deployed in three consecutive sectors, but also deliver
their sensed data to the nodes where a task computing the speed limit
has been instantiated. To achieve this level of expressivity, we define new
channel interests in ATaG, so that application programmers can specify
the task interests by referring to logical properties of data, regardless of
their physical location.

11.3.3. ATaG Constructs for Scoping

The syntax and use of the scoping constructs are shown in Figure 11.4,
where we illustrate an ATaG implementation of our reference application.
All the application information is represented as ATaG data items. The
actual algorithm determining the actuation part is encapsulated in two
tasks: SpeedLimitCalculator and RampSignalCalculator, whose inputs are
the data produced by tasks deriving the average measures. Once the re-

238

Language

Macroprogramming

ing in a

11.3. Scop

[nodes-per-instance:
1@presenceSensor]

[periodic:10]

vm::os.nm?_:m»m:nm
1/HighwaySector]

[anydata] 7

RampSampler

AvgQueuelength
Calculator

(tocal)

m domain

R

VehiclePresence

[nodes-per-instance:
1@speedSensor]

7 7 [partition-per-instance:

1/HighwaySector] 7

[periodic:10]

SpeedSampler

[anydata] |

AvgSpeed
Calculator

m local u

m domain

v m local w

R

R

logical-hops: 1
(HighwaySector)

RawSpeed

AvgSpeed

[partition-per-instance: 7 7 [nodes-per-instance:

1/HighwaySector] 1@speedLimitActuator]

[anydata]

SpeedLimit

Calculator

(doman) (Cecal)

R

SpeedLimit

Displayer

logical-hops: 1
(HighwaySector) SpeedLimit
logical-hops: 1
{HighwaySector)

1/HighwaySector]

[partition-per-instance: [nodes-per-instance:
1@rampSignalActuator]

[anydata]

[anydata]

logical-hops: 1
{HighwaySector)

AvgQueuelength

RampSignal

Calculator

C

domain u m local u

B

RampSignal

RampsSignal

Displayer

Figure 11.4.: The ATaG program for the traffic management application.

239

11. Enabling Scoping in Sensor Network Macroprogramming

<task name="SpeedSampler">
<instantiationrule >
<nodes-per-instance
number="1"
scopePredicate="hasSpeedSensor"/>
</instantiationrule >
</task>

Figure 11.5.: XML declaration for @speedSensor in Figure 11.4.

quired actuation is determined, the corresponding information is given as
input to the tasks operating displays and ramp signals. As described next,
only three additional constructs are needed to describe the interactions re-
quired in our reference application. Still, their combination enables the
specification of complex communication patterns otherwise hard (or im-
possible) to describe.

Instantiating Multiple Tasks in a Scope. The SpeedSampler task
is in charge of gathering the raw data from a speed sensor on a ramp
leading to the highway. Therefore, it must run on a node equipped with
the corresponding sensing device. To express this requirement, the no-
des-per-instance:1@speedSensor construct is used, where @speedSensor
is a placeholder for fspeedsensor(i) ::= hasSpeedSensor(i). In our current
prototype, this is specified using a simple XML file, shown in Figure 11.5'.
Similar constructs are used for RampSampler, SpeedLimitDisplayer, and
RampSignalDisplayer.

Instantiating a Single Task in a Scope. The AvgSpeedCalculator task
takes as input the raw data coming from the speed sensors in a sector,
and derives the average speed of vehicles in the same sector. Therefore,
we need such a task to be instantiated once per sector. To express this,
the partition-per-instance:1/HighwaySector construct is used. Again,
HighwaySector is a placeholder for a membership function that identifies
all the nodes in a specific sector. The compiler generates all possible values
of the corresponding node attribute —that describes the sector where a
node is placed in the highway— and requires the task to be instantiated
on one node in each sector only.

'Tt is not our intention to force the programmer to write XML directly, we instead
envision these specification to be auto-generated by an integrated development envi-
ronment.

240

11.3. Scoping in a Macroprogramming Language

T I i
_______ N
S N O e
= = > /N g - = U = U
/N N N Y 7N N N 7N\
/Nt N N) [N
HighwaySector A HighwaySector B HighwaySector C
logical hops from A: 0 logical hops from A: 1 logical hops from A: 2

Figure 11.6.: Logical hops over the HighwaySector attribute.

Inter-Task Communication. To bind tasks running in the same High-
waySector, the domain annotation can still be used. However, this time it
binds to the system partitioning obtained through the partition-per-in-
stance instantiation rule. Differently from area-per-instance, this rule
determines the different partitions at a logical level, by considering the
node attributes instead of the geographical location.

More generally, the construct logical-hops:1(HighwaySector) con-
necting, e.g., the AvgSpeed Calculator to both the Speed LimitCalculator and
the RampSignalCalculator is used to push a data item to a different highway
sector. It represents a number of hops counted not on the physical network
links, but in terms of how many system partitions (derived from the at-
tribute given in parenthesis) can be crossed. Figure 11.6 illustrates the con-
cept graphically. Given the partitioning induced by the HighwaySector at-
tribute, requiring one logical hop on that attribute means, for an AvgSpeed-
Calculator task, to push a data item to the same, immediately preceding
and following highway sectors. Note how the semantics of specifying zero
hops is not to cross any partition, i.e., to push data to the same parti-
tion where the data item originated. In this sense, the domain construct
actually constitutes a particular case of the more general logical-hops
construct.

Dynamic Scopes. In this example we define only static scopes, i.e., we
use predicates over attributes that do not vary with time. However, the
resulting programming model does not prevent, in principle, the definition
of scopes involving time-varying properties of the nodes. For instance, one
may specify a predicate isSensingCar(i), that holds when a presence sen-
sor is detecting a car nearby. However, it is not clear what would be the
semantics of involving such a predicate in, e.g., a task instantiation rule.

241

11. Enabling Scoping in Sensor Network Macroprogramming

Should the task be moved to another node when the condition no longer
holds? If not, should the task be suspended and keep the previous state
when the condition holds again, or should it just reboot? At a first sight,
supporting dynamic scopes may make the programming model unnecessar-
ily complicated, and the final application behavior hard to predict. For
this reason, we are currently investigating the application scenarios that
may need such a feature, and the semantics required in each case.

11.4. System Support

Our prototype system leverages off the Java2ME [203] language and APIs to
describe the imperative part of an ATaG program, and targets the SunSpot
sensor platform [77] as underlying hardware platform. Nonetheless, any
imperative language can be used instead of Java, as long as it employs
a threaded execution model, e.g., the C language on top of the Contiki
OS [56].

11.4.1. Compilation

To generate the node-level code from the ATaG specifications, we imple-
mented a dedicated compiler, whose characteristics and performance are
illustrated in [31]. The compiler takes as input the ATaG program and
information on the attributes attached to the nodes in the final deploy-
ment. Compilation starts by deciding the specific node where each task
will be running. This is accomplished by looking at the instantiation rules
specified in ATaG, and matching them against the node attributes.

When more than one choice for instantiating a task is available, as in
the case of partition-per-instance, the compiler should place the tasks
to minimize some metrics of interests (e.g., network traffic). This problem
is orthogonal w.r.t. the support of scoping constructs, since it can be con-
sidered as an instance of a graph embedding problem. We are currently
working on this aspect as an independent direction of research [31]. Here,
instead, we intend to assess the performance of our run-time support to
scopes in isolation, without the influence of smart compilation techniques.
Therefore, we take a simplistic approach, and assign tasks to nodes ran-
domly when these are not tied to the nodes’ capabilities.

After tasks are bound to nodes, the compiler determines the program
data paths. These are logical addresses identifying the location of tasks

242

11.4. System Support

that should actually receive a data item once output by another task. Con-
sider, for instance, the data exchange between AvgSpeedCalculator and ei-
ther SpeedLimitCalculator or RampSignalCalculator in Figure 11.4. In this
case, the data path for an AvgSpeed data item includes all the nodes sat-
isfying two specific constraints: i) they are assigned SpeedLimitCalculator
or RampSignalCalculator, and ii) they are deployed either in the same sec-
tor where AvgSpeed Calculator is running, or in one of the adjacent sectors.
Notably, this can still be captured as a scope according to the specification
we introduced in Section 11.3.1. Indeed, consider for instance an AvgSpeed-
Calculator task deployed in sector 5. The subset of nodes where the data
item should be delivered can be described as:

favgSpeea(t) = (isInSector(4,i)V
isInSector(5,j)V
isInSector(6,7))A
(isSpeedLimitCalculator(i)V
isRampSignalCalculator(i))

where the former conjunct refers to an attribute describing where a node
has been placed, whereas the latter conjunct predicates over the assignment
of tasks to nodes.

Based on the above observation, the compiler looks at the scopes de-
fined in the application, and generates further scope definitions to identify
the data paths. Specifically, for each data item, the compiler creates the
corresponding data paths by combining the channel annotations between
the producer and consumer tasks with the scopes mentioned on the task
instantiation rules. These are used either to determine the target system
partition (as done for the highway sector in the example), or to identify
the receiver node based on the task it is running.

11.4.2. Node-level Run-time

The node-level code output by the ATaG compiler is designed to run atop
a supporting run-time hiding the underlying, platform-specific details. Fig-
ure 11.7 depicts the architecture of our run-time system [111]. The func-
tionality is divided into a set of modules to facilitate customization to
various deployments. support our run-time layer already provides.

The ATaGManager stores the declarative portion of the user-specified
ATaG program that is relevant to the particular node. This information
includes task annotations such as firing rule and I/O dependencies, and the

243

11. Enabling Scoping in Sensor Network Macroprogramming

| Sensors | | Actuators |
i 1 Application level
UserTask! UserTaskn
------]
|
|
— :
DataPool ATaGManager
get() and put(), concurrent N Task code,
access, reference counts b dependencies,
annotations
Logical Neighborhoods

f Data delivery across logical scopes
NetworkStack

Medium access, physical layer System level

Transceiver

Figure 11.7.: The ATaG node-level run-time.

annotations of input and output channels associated with the data items
that are produced or consumed by tasks on the node. The DataPool is
responsible for managing all instances of abstract data items produced or
consumed at the node.

As communication support, we re-used the mechanisms of Logical Neigh-
borhoods described in Chapter 6 and 7 to deliver data to the nodes satisfying
a given scope specification. In this work, we use the node attributes in-
volved in the definition of at least one data path as logical properties of the
nodes, and the data paths themselves as neighborhood definitions?. The
ATaG node-level run-time leverages off the Logical Neighborhoods commu-
nication API, described in Section 6.3, to distribute the data items output
by tasks. In particular, the inputs to this module include the data items

2The mapping from data paths to neighborhood definitions is straightforward, and
omitted here for brevity.

244

11.5. Evaluation

and the scope specifications those are addressed to. Note that only a few
modifications were required to embed Logical Neighborhoods as a module
within the ATaG run-time, thus assessing the flexibility and generality of
the Logical Neighborhoods approach.

Also thanks to the characteristics of the Logical Neighborhood rout-
ing scheme, described in Chapter 7, our run-time layer does not require
the data paths to be evaluated at compile-time. Conversely, every time a
data item is output by a task, our run-time re-evaluates the correspond-
ing scope definitions. Interestingly, this readily provides support for dy-
namic scopes and migrating tasks. Indeed, to support these features, our
approach does not require modifications to the scope definitions output
by the compiler. For instance, if the node running SpeedLimitCalculator
changes at run-time, every scope including isSpeedLimitCalculator (i) will
simply evaluate to a different subset of nodes the next time a data item is
output by AwvgSpeedCalculator. As already mentioned, however, the afore-
mentioned functionality have deep implications on the language semantics.
For instance, what happens if no node is available to accept a task willing
to migrate? We are actively studying how to address these issues in the
programming model, leveraging off the support our run-time layer already
provides.

11.5. Evaluation

One of the issues in devising high-level programming models for WSNs
is to provide an acceptable run-time performance. Indeed, the inability to
reach the lowest possible levels in the protocol stack may prevent developers
from fine-tuning the final running code. In this section, we argue that our
approach provides a reasonable trade-off between these two extremes, by
first examining the development effort in our reference application, and
then reporting on performance results gathered in simulations.

Evaluating the Programming Effort. Quantifying a developer’s effort
is a challenge per se, because of the lack of widely accepted methodologies
and metrics. This is brought to an extreme in sensor network macropro-
gramming, where most of the existing metrics cannot even be applied given
the early stages of the field. However, interesting insights can be gained
by looking at the fraction of code developers write w.r.t. the entirety of
code deployed on the real nodes. This captures the extent to which the
application semantics is achieved by either leveraging off the mechanisms

245

11. Enabling Scoping in Sensor Network Macroprogramming

in the node-level run-time, or automatically generating code. In this re-
spect, it represents the actual added value of the programming model: the
smaller is this fraction, the better the abstractions provided are assisting
the programmer, thus speeding up the development process.

With our solution, a total of 51 Java classes need to be compiled to
deploy our reference application on the single nodes. However, only 15 of
them are the direct result of developers’ effort. Furthermore, considering
the actual number of lines of non-commented code, only about 12% of them
are hand-written by developers, whereas the rest is either part of the run-
time support, or automatically generated by our dedicated compiler. We
believe these results are due to the flexibility of the scoping abstraction
we enabled in the programming model. Complex interactions can indeed
be specified in a fully declarative manner, with the compiler taking care of
automatically generating the corresponding imperative code and the inputs
for the node-level run-time.

Considering the code implementing each task, it is possible to identify
a recurring pattern with only two classes needed. One represents the task
itself, and contains the processing to interact with the data pool. This
same class usually holds a reference to a second class containing the actual
processing, e.g., to average the incoming data as in AvgQueueLengthCal-
culator. Note that all the state variables defined in these classes relate
only to the application semantics, and never refer to distribution aspects.
This is achieved as a result of the way communication patterns are speci-
fied in our approach: the data recipients are always determined implicitly
by the definition of scopes and the interactions among them. Therefore,
the programmer does not need to care about this in the actual application
code.

Simulation Settings. To verify that the above advantages do not en-
tail a degraded run-time performance, we quantitatively characterize the
behavior of our reference application in a simulated scenario. We use the
SWANS/Jist simulator [204], as it is able to run unmodified Java code on
top of a simulated network. This way, we measure the performance of the
same code that can be deployed on the real nodes.

The relevant simulation parameters are reported in Figure 11.8. We
congsider the scenario in Figure 11.1 as target network, with a highway
sector 20 meters wide and 200 meters in length. We place the forwarding
nodes 25 meters apart, and randomly distribute the speed sensors on the
four lanes so that each of them is range of at least another speed sensor or a

246

11.5. Evaluation

[Parameter Name | Value |
Propagation Model Two-ray Ground
Radio Model Additive Noise
MAC Layer CSMA
Transmission Rate 250 Kbps
Communication Range | 40 meters
Message Size 47 bytes
Simulation Time 2000 secs
Number of Repetitions 30

Figure 11.8.: Simulation parameters.

forwarding node. Similarly, the presence sensors are randomly distributed
on the ramp so that each of them is in range of at least one speed sensor
or another presence sensor. The node controlling the ramp signals and the
speed limit displays are placed between different sectors, on opposite sides
of the road. Overall, 18 nodes are deployed in each highway sector.

Note that the message rate is implicitly determined by the application it-
self, in particular by the firing rules for tasks. For instance, a node running
an instance of RampSampler generates one message every 10 seconds, as
its firing rule is periodic:10. The AvgQueuelLengthCalculator fires for any
data item received, and correspondingly outputs a new data item. There-
fore, if four RampSamplers are in its domain, AvgQueueLengthCalculator
generates a message every 2.5 seconds, on the average.

The simulation runs differ in the random seed, the location of nodes,
and the assignment of tasks to nodes when the choice is not unique. As
performance metrics, we consider i) the number of missing actuations on
the environment, resulting from one or more message losses on the path
from the sensing tasks to the actuation tasks, i) the network overhead,
represented as the overall number of messages sent at the physical layer,
and 774) the average number of physical hops traveled by a message carrying
a data item before either being discarded or delivered.

As the goal of the application developer is that of deciding actions based
on data sensed, the first quantity intuitively measures the quality of service
provided by the implemented system. Differently, as communication dom-
inates the energy expenditures in WSNs, the second measure assesses the
actual feasibility of our approach on real devices. The third measure gives
insights into the trends related to communication cost, describing where
communication takes place. As independent variable, we choose to vary
the number of highway sectors, as this indirectly dictates the system scale.

For comparison, we compute the aforementioned metrics for an optimal

247

11. Enabling Scoping in Sensor Network Macroprogramming

L Ideal Solution —+— 4
40 ATaG X &
E Flooding -~
[35 4
=
2 30t ¥ B
2
- K
8 25} P |
kS
& 20 1
5]
9] -
e} K
£ 15+ 1
3 o
w
f=J L 4
z 10 e Semmemmenen S
t t t t t t
5t ‘ ‘ ‘ ‘ ‘ ‘ 1
2 3 4 5 6 7 8 9

Number of Highway Sectors
(a) Average number of physical hops traveled.

8000

Ideal Solution ——
ATaG -
7000 Flooding - x* 7

6000 |]
5000 |- v % |
4000 .
3000 - g
2000 |-]

1000

Network Overhead (Thousands of Messages)

0

Number of Highway Sectors

(b) Network overhead.

Figure 11.9.: Reference application performance.

solution minimizing the network overhead, based on global knowledge of
the target network. We first identify the optimal task placement given the
expected network traffic, and then the minimum cost routing tree connect-
ing a sender to all the intended recipients. The performance obtained with
a pure flooding scheme are also reported as an upper bound for further
comparison.

248

11.5. Evaluation

Results. Given the message generation rates discussed earlier, our solution
can provide at least 96% of the actuations that would be occurring in case
there were no message losses. This illustrates how the messages carrying
the application data are effectively delivered to the intended recipients.
Remarkably, this metric is not affected by a varying number of highway
sectors (and is hence not shown graphically). Such a behavior demonstrates
how our scoping constructs allow the application semantics to percolate
down to the network layers. Indeed, the application processing spans at
most three adjacent highway sectors, and is therefore independent of the
overall number of highway sectors.

The chart in Figure 11.9(a) further confirms the above reasoning: as
expected, the number of hops traveled by a message using flooding rapidly
increases with the number of highway sectors. On the contrary, our solution
keeps an almost constant performance in a range of settings, effectively
ending up close to the theoretical minimum. Note how it is hard to achieve
the same form of implicit cross-layer optimization in the absence of scoping:
if the programming model does not allow interactions among application-
defined scopes to be defined, it is hard to make the routing layers aware of
them.

Figure 11.9(b) depicts the trends in network overhead against a varying
number of highway sectors. With our solution, this metric is much closer
to the optimal solution than to flooding. More importantly, the trend
as the number of highway sectors increases mimics that of the optimal
solution, while flooding reveals a much steeper increase. We believe this
performance is reasonable, also considering tasks are placed randomly when
the decision is not unique. All the metrics are indeed likely to see a dramatic
improvement if the compiler placed the tasks smartly using a cost model of
the underlying routing scheme. This is in our immediate research agenda.

249

12. Conclusion and Future Work

Recent advances in WSN technology have made it possible to build systems
that not only gather data from the environment, but also affect the physical
world by taking actions on it. This way, WSNs can be used as a power-
ful tool to bridge the physical and virtual worlds, achieving transparent
integration of this technology in our everyday life.

Nonetheless, the above scenarios pose difficult challenges to developers,
as they sorely miss the appropriate programming abstractions to describe
the complex interactions germane to this class of applications. The solu-
tions presented in this thesis aimed at simplifying the programmer’s life
in these scenarios, while also improving the system performance. Differ-
ently from previous work, we pursued this objective by co-designing the
programming abstractions with the underlying distributed support. This
way, we have been able to take advantage of the interplay between the two
aspects, obtaining remarkable performance improvements w.r.t. solutions
where the two problems are tackled separately.

To reach our ultimate goal, we initially identified the grand challenges
that programmers must address in the scenarios we target. Then, in the
first part of the thesis we aimed at understanding the characteristics of
existing programming solutions, comparing them on a common ground,
and identifying where and why they turn out to be ill-suited to developing
applications involving actuation. This served to establish the conceptual
path we followed in the rest of the thesis, providing a framework in which
we cast our contributions. In addition, we believe our taxonomy of WSN
programming can be considered as a contribution per se, as it provides a
reference point still missing in the field.

In the second part of the thesis, we started addressing some of the afore-
mentioned challenges by proposing solutions targeted to programming indi-
vidual WSN nodes. Specifically, we first attacked the problem of providing
support to programmers for reconfiguring the software running on WSN
devices. The component-based programming models we designed address
this issue effectively, imposing a very limited performance overhead. Next,
we presented the TeenyLLIME middleware as a solution for providing the

251

12. Conclusion and Future Work

abstractions needed to express coordination among heterogeneous devices.
We demonstrated how TeenyLIME greatly simplifies the programmers’ life,
almost without affecting the overall system performance.

The third part of the thesis departed from programming individual nodes,
presenting the Logical Neighborhoods abstraction as a fundamental build-
ing block to identify and interact with arbitrary groups of nodes. To achieve
this, we designed SPIDEY, a declarative language programmers can use to
identify various subsets of nodes, and devised a dedicated routing scheme in
support of Logical Neighborhoods. We demonstrated that co-designing the
programming abstraction with the underlying distributed protocols enables
remarkable performance w.r.t. re-using existing communication schemes.

In the last part of the thesis, we investigated how Logical Neighborhoods
can be coupled with different system-level mechanisms and higher-level
programming abstractions. As for the former, we integrated a customized
version of Logical Neighborhoods with our FIGARO component model,
giving the latter the ability to specify the subsets of nodes involved in a
given reconfiguration process. The integration also included a dedicated
communication layer, expressly devised in support of code distribution. In
this case also, taking into account the characteristics of the programming
abstraction in the underlying routing support enabled great performance
improvements w.r.t. alternative solutions.

As a natural extension to Logical Neighborhoods, instead, we designed
the virtual node abstraction. With virtual nodes, the programmers’ life is
further simplified, as distribution is masked to a great extent. Once again,
we designed a dedicated system support for virtual nodes, also giving our
SPIDEY compiler the ability to customize its internals. This approach re-
sulted in improved performance compared to traditional solutions. In addi-
tion, we also realized how our routing layer for virtual sensors enjoys wider
applicability beyond our own programming abstractions. Therefore, we de-
veloped a stand-alone version to give programmers the ability to leverage
off its functionality independently of our programming solutions. Finally,
we explored the coupling of Logical Neighborhoods with existing macro-
programming solutions. In this case, embedding Logical Neighborhoods
within the run-time layer of ATaG allowed us to sensibly raise the expres-
siveness of the original language. By virtue of our co-design approach, this
did not affect the overall system performance, which remained reasonable
compared to alternative mechanisms.

252

Figure 12.1.: Buonconsiglio castle in Trento (Italy).

Although we do not believe the contributions described in this thesis
represent a definitive answer to most of the problems we identified, we also
have confidence in the advancement that our work represents w.r.t. the
state of the art. Therefore, in the short term we aim at further consolidat-
ing our solutions by receiving feedback from users exploiting our solutions,
and by further tuning and evaluating the performance of our mechanisms,
especially in real-world settings. In this latter respect, we are already ex-
ploring the use of TeenyLIME for monitoring heritage buildings in Trento
(Ttaly), illustrated in Figure 12.1. The system will monitor various phenom-
ena related to the structural integrity of the building, e.g., its deformation
over time using dedicated fiber-optic sensors. The rational behind using
TeenyLiME for this application lies in the need for remotely tasking the
system, posed by the structural engineers we are currently collaborating
with. Using TeenyLIME, a similar functionality is easily implemented, as
the single sensing tasks can be represented by tuples that are remotely in-
jected in the system. The single nodes react to the presence of these tuples
by starting the corresponding sensing task. The tuples are later removed
when the task is accomplished.

In the long term, however, we foresee that programmers will increasingly

253

12. Conclusion and Future Work

require stronger semantics for their distributed applications, as opposed to
the best-effort operations that almost all of the existing approaches cur-
rently provide. At that point, the next challenge to address will become how
to define the semantics required, and how to implement it on resource con-
strained devices. Many interesting research questions will therefore arise.
Do we need novel semantics definitions, or can we re-apply the large body
of knowledge researchers have been using in traditional distributed com-
puting? How does this impact the complexity of the abstractions and of
the underlying mechanisms? We firmly believe these issues are likely to
play a pivotal role in the future of WSN programming.

Similarly, we can also expect that some high-level programming frame-
work (or a combination thereof) will eventually dominate over the others,
and research in WSN programming abstractions will come to a stable stage.
Whenever this will occur, the main issue will easily become how to verify
the correctness of the resulting implementations, both statically and at run-
time. In this case also, we will have to address difficult challenges. How
can programmer specify what is a correct execution? How can we monitor
the behavior of a highly distributed system to check its correctness with-
out interfering in its operation? These questions are currently awaiting an
answer we shall all strive to provide.

254

Bibliography

1]

[5]

[6]

I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A sur-
vey on sensor networks,” IEEE Communication Mag., vol. 40, no. 8,
2002.

I. F. Akyildiz and 1. H. Kasimoglu, “Wireless sensor and actor net-
works: Research challenges,” Ad Hoc Networks Journal, vol. 2, no. 4,
2004.

OnWorld - Emerging Wireless Research, www.onworld.com.

P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola,
G. P. Picco, T. Sivaharan, N. Weerasinghe, and S. Zachariadis, “The
RUNES middleware for networked embedded systems and its appli-
cation in a disaster management scenario,” in Proc. of the 5 Int.
Conf. on Pervasive Communications (PERCOM), 2007.

P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco, and
S. Zachariadis, “A reconfigurable component-based middleware for
networked embedded systems,” Int. Journal of Wireless Information
Networks, vol. 14, no. 2, 2007.

L. Mottola, G. P. Picco, and A. Amjad, “Fine-grained software re-
configuration in wireless sensor networks,” in Proc. of 5" European
Conf. on Wireless Sensor Networks (EWSN), 2008.

P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “TeenyLIME:
Transiently shared tuple space middleware for wireless sensor net-
works,” in Proc. of the 15' Int. Wkshp. on Middleware for Sensor
Networks (MidSens), 2006.

——, “Programming wireless sensor networks with the TeenyLIME
middleware,” in Proc. of the 8" ACM/USENIX Int. Middleware
Conf., 2007.

255

Bibliography

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

256

L. Mottola and G. P. Picco, “Programming wireless sensor networks
with Logical Neighborhoods,” in Proc. of the 1% Int. Conf. on Inte-
grated Internet Ad hoc and Sensor Networks (InterSense), 2006.

——, “Logical Neighborhoods: A programming abstraction for wire-
less sensor networks,” in Proc. of the 2" Int. Conf. on Distributed
Computing on Sensor Systems (DCOSS), 2006.

P. Ciciriello, L. Mottola, and G.P. Picco, “Building virtual sensors and
actuator over Logical Neighborhoods,” in Proc. of the 15¢ ACM Int.
Wkshp. on Middleware for Sensor Networks (MidSens06 - colocated
with ACM/USENIX Middleware), 2006.

A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and G. P. Picco,
“Expressing sensor network interaction patterns using data-driven
macroprogramming,” in Proc. of the 3" Int. Wkshp. on Sensor Net-

works and Systems for Pervasive Computing (PerSens - colocated
with IEEE PERCOM), 2007.

L. Mottola, A. Pathak, A. Bakshi, G. P. Picco, and V. K. Prasanna,
“Enabling scope-based interactions in sensor network macroprogram-
ming,” in Proc. of the the 4" Int. Conf. on Mobile Ad-Hoc and Sensor
Systems (MASS), 2007.

M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” in Proc. of 15¢ Symp. on Networked Systems Design
and Implementation (NSDI), 2004.

N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, “Reliable
and efficient programming abstractions for wireless sensor networks,”
in Proc. of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), 2007.

R. Newton, G. Morrisett, and M. Welsh, “The Regiment macropro-
gramming system,” in Proc. of the 6" Int. Conf on Information
Processing in Sensor Networks (IPSN), 2007.

S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “TinyDB:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, 2005.

[18]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

Bibliography

C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid development and flex-
ible deployment of adaptive wireless sensor network applications,”
in Proc. of the 25" Int. Conf on Distributed Computing Systems
(ICDCS), 2005.

S. Li, Y. Lin, S.H. Son, J.A. Stankovic, and Y. Wei, “Event detec-
tion services using data service middleware in distributed sensor net-
works,” Telecommunication Systems, vol. 26, no. 2, 2004.

C. Frank and K. Romer, “Algorithms for generic role assignment in
wireless sensor networks,” in Proc. of the 3" ACM Conf. on Embed-
ded Networked Sensor Systems (SENSYS), 2005.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neigh-
borhood abstraction for sensor networks,” in Proc. of 2™ Int. Conf.
on Mobile Systems, Applications, and Services (MOBISYS), 2004.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proc. of the
158 ACM Int. Wkshp. on Wireless Sensor Networks and Applications
(WSNA), 2002.

P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Ruben-
stein, “Energy-efficient computing for wildlife tracking: Design trade-
offs and early experiences with ZebraNet,” SIGPLAN Not., vol. 37,
no. 10, 2002.

J. Burrell, T. Brooke, and R. Beckwith, “Vineyard computing: sensor
networks in agricultural production,” [EEE Pervasive Computing,
vol. 3, no. 1, 2004.

K. Romer and F. Mattern, “The design space of wireless sensor net-
works,” IEEE Wireless Communications, vol. 11, no. 6, 2004.

E. Petriu, N. Georganas, D. Petriu, D. Makrakis, and V. Groza,
“Sensor-based information appliances,” IEEE Instrumentation and
Measurement Mag., vol. 3, 2000.

A. Deshpande, C. Guestrin, and S. Madden, “Resource-aware wireless
sensor-actuator networks,” IEEE Data Engineering, vol. 28, no. 1,
2005.

257

Bibliography

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

258

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” in Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2003.

D. Gelernter, “Generative communication in Linda,” ACM Comput-
ing Surveys, vol. 7, no. 1, 1985.

P. Ciciriello, L. Mottola, and G. P. Picco, “Efficient routing from
multiple sources to multiple sinks in wireless sensor networks,” in
Proc. of 4" Buropean Conf. on Wireless Sensor Networks (EWSN),
2007.

A. Pathak, L. Mottola, A. Bakshi, G. P. Picco, and V. K. Prasanna,
“A compilation framework for macroprogramming networked sen-
sors,” in Proc. of the the 3" Int. Conf. on Distributed Computing
on Sensor Systems (DCOSS), 2007.

R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using Kairos,” in Proc. of the 15t Int. Conf.
on Distributed Computing in Sensor Systems (DCOSS), 2005.

J. Al-Karaki and A. E. Kamal, “Routing techiniques in wireless sensor
networks: A survey,” IEEE Wireless Communications, vol. 11, no. 6,
2004.

K. Langendoen and N. Reijers, “Distributed localization in wireless
sensor networks: A quantitative comparison,” Computer Networks,
vol. 43, no. 4, 2003.

J. Elson and K. Roemer, “Wireless sensor networks: A new regime for
time synchronization,” SIGCOMM Comput. Commun. Rev., vol. 33,
no. 1, 2003.

B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: A survey,” Ad Hoc Networks,
vol. 3, no. 3, 2005.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva, “Directed Diffusion for wireless sensor networking,”
IEEE/ACM Trans. Networking, vol. 11, no. 1, 2003.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Bibliography

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “GHT: A geographic hash table for data-centric storage,”

in Proc. of the 1st Int. Workshp. on Wireless Sensor Networks and
Applications (WSNA), 2002.

L. Luo, C. Huand, T. Abdelzaher, and J. Stankovic, “EnviroStore: A
cooperative storage system for disconnected operation in sensor net-

works,” in Proc. of the 26! Int. Conf. on Computer Communications
(INFOCOM), 2007.

T. Liu and M. Martonosi, “Impala: A middleware system for man-
aging autonomic, parallel sensor systems,” in Proc. of the 9" SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, 2003.

P. J. Marrén, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and
K. Rothermel, “FlexCup: A flexible and efficient code update mech-

anism for sensor networks,” in Proc. of the 3" European Workshop
on Wireless Sensor Networks (EWSN), 2006.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “Sys-
tem architecture directions for networked sensors,” in ASPLOS-IX:
Proc. of the 9" Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2000.

N. Reijers and K. Langendoen, “Efficient code distribution in wireless
sensor networks,” in Proc. of the 2"¢ Int. Conf. on Wireless Sensor
Networks and Applications (WSNA), 2003.

J. Koshy and R. Pandey, “Remote incremental linking for energy-
efficient reprogramming of sensor networks,” in Proc. of 2% European
Workshop on Wireless Sensor Networks (EWSN), 2005.

P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-
regulating algorithm for code propagation and maintenance in wire-
less sensor networks,” in Proc. of the 15t Conf. on Networked Systems
Design and Implementation (NSDI), 2004.

J. W. Hui and D. Culler, “The dynamic behavior of a data dissem-
ination protocol for network programming at scale,” in Proc. of 2"
Int. Conf. on Embedded Networked Sensor Systems (SENSYS), 2004.

259

Bibliography

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

260

S. Kulkarni and L. Wang, “MNP: Multihop network reprogramming
service for sensor networks,” in Proc. of the 25" Int. Conf. on Dis-
tributed Computing Systems (ICDCS), 2005.

V. Naik, A. Arora, P. Sinha, and H. Zhang, “Sprinkler: A reliable
and energy efficient data dissemination service for wireless embed-

ded devices,” in Proc. of the 26" International Real-Time Systems
Symposium (RTSS), 2005.

P. Levis and D. Culler, “The Firecracker protocol,” in Proc. of the
11" ACM SIGOPS European Workshop, 2004.

——, “Maté: A tiny virtual machine for semsor networks,” in
ASPLOS-X: Proc. of the 10" Int. Conf on Architectural Support
for Programming Languages and Operating Systems, 2002.

P. Levis, D. Gay, and D. Culler, “Active sensor networks,” in Proc.
of the 2" Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2005.

J. Koshy and R. Pandey, “VM*: synthesizing scalable runtime envi-
ronments for sensor networks,” in Proc. of 3t" Int. Conf. on Embedded
Networked Sensor Systems (SENSYS), 2005.

R. Miiller, G. Alonso, and D. Kossmann, “A virtual machine for sen-
sor networks,” in Proc. of the FEuroSys Conf., 2007.

D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White, “Java
on the bare metal of wireless sensor devices: the SQUAWK Java

virtual machine,” in Proc. of the 2"¢ Int. Conf. on Virtual Ezecution
Environments (VEE), 2006.

J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and
I. Stoica, “A unifying link abstraction for wireless sensor networks,”
in Proc. of the 3" Int. Conf. on Embedded Networked Sensor Systems
(SENSYS), 2005.

A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proc. of 15
Wkshp. on Embedded Networked Sensors, 2004.

[57]

[58]

[60]

[61]

Bibliography

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dy-
namic operating system for sensor nodes,” in Proc. of the 3" Int.
Conf. on Mobile systems, applications, and services (MOBISYS),
2005.

H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth,
B. Shucker, J. Deng, and R. Han, “MANTIS: system support for
multimodAl NeTworks of in-situ sensors,” in Proceedings of the 2™¢
Int. Conf. on Wireless Sensor Networks and Applications (WSNA),
2003.

H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon,
“RETOS: Resilient, expandable, and threaded operating system for
wireless sensor networks,” in Proc. of the 6" Int. Conf. on Informa-
tion Processing in Sensor Networks (IPSN), 2007.

A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-rk: An energy-aware
resource-centric rtos for sensor networks,” in Proc. of the 26" Inter-
national Real-Time Systems Symposium (RTSS), 2005.

W. P. McCartney and N. Sridhar, “Abstractions for safe concurrent
programming in networked embedded systems,” in Proceedings of the
4% Int. Conf. on Embedded Networked Sensor Systems (SENSYS),
2006.

C. Nitta, R. Pandey, and Y. Ramin, “Y-threads: Supporting concur-
rency in wireless sensor networks,” in Proc. of the 2" Int. Conf. on
Distributed Computing on Sensor Systems (DCOSS), 2006.

A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: sim-
plifying event-driven programming of memory-constrained embedded
systems,” in Proc. of the 4" Int. Conf. on Embedded Networked Sen-
sor Systems (SENSYS), 2006.

O. Kasten and K. Romer, “Beyond event handlers: Programming
wireless sensors with attributed state machines,” in Proc. of the 4"
Symp. on Information Processing in Sensor Networks (IPSN), 2005.

I. Demirkol, C. Ersoy, and F. Alagoz, “MAC protocols for wire-
less sensor networks: A survey,” IEEE Communications Magazine,
vol. 44, no. 4, 2006.

261

Bibliography

[66]

[67]

[68]

[69]

[70]

[71]

[72]
73]

|74]

[75]
[76]
[77]
78]
[79]

[30]

262

P. Naik and K. Sivalingam, “A survey of mac protocols for sensor
networks,” Wireless sensor networks, 2004.

W. Ye, J. Heidemann, and D. Estring, “An energy-efficient mac pro-
tocol for wireless sensor networks,” in Proc. of the 215t Int. Conf. on
Computer Communications (INFOCOM), 2002.

J. Polastre, J. Hill, and D. Culler, “Versatile low power media ac-
cess for wireless sensor networks,” in Proc. of the 2"¢ Int. Conf. on

Embedded Networked Sensor Systems (SENSYS), 2004.

T. van Dam and K. Langendoen, “An adaptive energy-efficient mac
protocol for wireless sensor networks,” in Proc. of the 15t Conf. on
Networked Sensor Systems (SENSYS), 2003.

V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-
efficient collision-free medium access control for wireless sensor net-
works,” in Proc. of the 't Int. Conf. on Embedded Networked Sensor
Systems (SENSYS), 2003.

——, “Energy-efficient, collision-free medium access control for wire-
less sensor networks,” Wirel. Netw., vol. 12, no. 1, 2006.

Crossbow Tech., www.xbow.com.
MotelV, www.moteiv.com.

Body Sensor Network Nodes, vip.doc.ic.ac.uk/bsn/index.php?
article=926.

BTNode, www.btnode.ethz.ch.

Eyes WSN Nodes, www.eyes.eu.org.
Project SunSPOT, www.sunspotworld.com.
MeshNetics Tech., www.meshnetics.com.
ScatterWeb Inc., www.scatterweb.com.

Aduino Sensor Node Platform, www.arduino.cc.

[81]

[82]
[83]

[84]

[85]

[86]

[87]

[88]

Bibliography

P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and
Y. F. Hu, “Wireless sensor networks: A survey on the state of the art

and the 802.15.4 and zigbee standards,” Comput. Commun., vol. 30,
no. 7, 2007.

EasySen, www.easysen.coin.

D. Hughes, P. Greenwood, G. Blair, G. Coulson, P. Grace, F. Pap-
penberger, F. Smith, and K. Beven, “An experiment with reflective
middleware to support grid-based flood monitoring,” Concurrency
and Computation: Practice and Experience, vol. 23, no. 4, 2007.

IST CRUISE Project, “Flood detection wusing sensor net-
works,” www.ist-cruise.eu/cruise/business-deck /wsns-applications/
flood-detection-1.

A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Her-
man, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and
M. Miyashita, “A line in the sand: A wireless sensor network for target

detection, classification, and tracking,” Comput. Networks, vol. 46,
no. 5, 2004.

K. Martinez, J. K. Hart, and R. Ong, “Environmental sensor net-
works,” Computer, vol. 37, no. 8, 2004.

P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings, “A utility-
based sensing and communication model for a glacial sensor network,”
in Proc. of the 5" Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), 2006.

A. Sheth, K. Tejaswi, P. Mehta, C. Parekh, R. Bansal, S. Merchant,
T. Singh, U. B. Desai, C. A. Thekkath, and K. Toyama, “Senslide:
A sensor network based landslide prediction system,” in Proc. of the
3re Int. Conf. on Embedded Networked Sensor Systems (SENSYS),
2005.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fi-
delity and yield in a volcano monitoring sensor network,” in Proc. of
7th Symp. on Operating Systems Design and Implementation (OSDI),
2006.

263

Bibliography

[90]

[91]

192]

[93]

[94]

[95]

[96]

[97]

[98]

264

J. P. Lynch and K. J. Loh, “A summary review of wireless sensors
and sensor networks for structural health monitoring,” Shock and
Vibration Digest, Mar 2006.

G. Wittenburg, K. Terfloth, F. L. Villafuerte, T. Naumowicz, H. Rit-
ter, and J. Schiller, “Fence monitoring - experimental evaluation of a
use case for wireless sensor networks,” in Proc. of the 4" European
Conf. on Wireless Sensor Networks (EWSN), 2007.

G. Simon, M. Maro6ti, A. Lédeczi, G. Balogh, B. Kusy, A. Nadas,
G. Pap, J. Sallai, and K. Frampton, “Sensor network-based counter-
sniper system,” in Proc. of the 2"¢ Int. Conf. on Embedded Networked
Sensor Systems (SENSYS), 2004.

C. Hartung, R. Han, C. Seielstad, and S. Holbrook, “FireWxNet: A
multi-tiered portable wireless system for monitoring weather condi-
tions in wildland fire environments,” in Proc. of the 4'* Int. Conf. on
Mobile Systems, Applications and Services (MOBISYS), 2006.

K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, M. Welsh, and S. Moulton, “Sensor net-
works for emergency response: Challenges and opportunities,” IEEE
Pervasive Computing, vol. 3, no. 4, 2004.

F. Michahelles, P. Matter, A. Schmidt, and B. Schiele, “Apply-
ing wearable sensors to avalanche rescue,” Computer and Graphics,

vol. 27, no. 6, 2003.

M. Lampe and M. Strassner, “The potential of RFID for moveable
asset management,” in Proc. of the Wkshp. on Ubiquitous Commerce

at UbiComp, 2003.

H. Baldus, K. Klabunde, and G. Miisch, “Reliable set-up of medical
body-sensor networks,” in Proc. of 15t European Wkshp. on Wireless
Sensor Networks (EWSN), 2004.

C. Manzie, H. C. Watson, S. K. Halgamuge, and K. Lim, “On the
potential for improving fuel economy using a traffic flow sensor net-
work,” in Proc. of the Int. Conf. on Intelligent Sensing and Informa-
tion Processing, 2005.

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

Bibliography

J. A. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R. Kiran, S. Lin,
S. Son, R. Stoleru, and A. Wood, “Wireless sensor networks for in-
home healthcare: Potential and challenges,” in Proc. of High Con-
fidence Medical Device Software and SystemsWorkshop (HCMDSS),
2005.

M. Dermibas, “Wireless sensor networks for monitoring of large public
buildings,” 2005, Tech. Report, University of Buffalo. Available at
www.cse.buffalo.edu/tech-reports/2005-26.pdf.

K. Terfloth, G. Wittenburg, and J. Schiller, “Facts - a rule-based
middleware architecture for wireless sensor networks,” in Proc. of the

15t Int. Conf. on Communication System Software and Middleware
(COMSWARE), 2006.

L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic, “EnviroSuite:
An environmentally immersive programming framework for sensor
networks,” Trans. on Embedded Computing Sys., vol. 5, no. 3, 2006.

D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, “A
network-centric approach to embedded software for tiny devices,”
in Proc. of the 15 Int. Wrkshp. on Embedded Software (EMSOFT),
2001.

P. Levis et al., “The emergence of networking abstractions and tech-
niques in TinyOS,” in Proc. of 15t Symp. on networked system design
and implementation (NSDI), 2004.

TinyOS Community Forum, “TinyOS TEP 126 - CC2420 radio
stack,” www.tinyos.net/tinyos-2.x/doc/html/tep126.html.

J. Liu, P. Cheung, F. Zhao, and L. Guibas, “A dual-space approach
to tracking and sensor management in wireless sensor networks,” in
Proc. of the 15t Int. Wrkshp. on Wireless Sensor Networks and Ap-
plications (WSNA), 2002.

X.-Y. Li, P.-J. Wan, Y. Wang, and O. Frieder, “Sparse power efficient

topology for wireless networks,” in Proc. of the 35" Annual Hawaii
International Conference on System Sciences (HICSS), 2002.

265

Bibliography

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

266

A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The Ab-
stract Task Graph: A methodology for architecture-independent pro-

gramming of networked sensor systems,” in Workshop on End-to-end
Sense-and-respond Systems (EESR), 2005.

J. Liu, M. Chu, J. Reich, and F. Zhao, “State-centric programming
for sensor-actuator network systems,” Pervasive Computing, vol. 2,
no. 4, 2003.

R. Newton and M. Welsh, “Region streams: Functional macropro-
gramming for sensor networks,” in Proc. of the 15t Int. Wkshp. on
Data Management for Sensor Networks, 2004.

A. Bakshi, A. Pathak, and V. K. Prasanna, “System-level support for
macroprogramming of networked sensing applications,” in Int. Conf.
on Pervasive Systems and Computing (PSC), 2005.

R. Newton, Arvind, and M. Welsh, “Building up to macroprogram-
ming: An intermediate language for sensor networks,” in Proceedings
of the 4" Int. Symp. on Information Processing in Sensor Networks

(IPSN), 2005.

Y. Yao and J. Gehrke, “The Cougar approach to in-network query
processing in sensor networks,” SIGMOD Rec., vol. 31, no. 3, 2002.

M. J. Ocean, A. Bestavros, and A. J. Kfoury, “snBench: Program-
ming and virtualization framework for distributed multitasking sen-
sor networks,” in Proc. of the 2"* Int. Conf. on Virtual Ezecution
Environments (VEE), 2006.

A. Boulis, C.-C. Han, and M. B. Srivastava, “Design and implementa-
tion of a framework for efficient and programmable sensor networks,”
in Proc. of the 15 Int. Conf. on Mobile Systems, Applications and
Services (MOBISYS), 2003.

A. Boulis, C.-C. Han, R. Shea, and M. B. Srivastava, “Sensorware:
Programming sensor networks beyond code update and querying,”
Pervasive Mob. Comput., vol. 3, no. 4, 2007.

A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobil-
ity,” IEEE Trans. Softw. Eng., vol. 24, no. 5, 1998.

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Bibliography

P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of Publish/Subscribe,” ACM Computing Surveys, vol. 2,
no. 35, 2003.

S. Kim, S. H. Son, J. A. Stankovic, S. Li, and Y. Choi, “Safe: A data
dissemination protocol for periodic updates in sensor networks,” in
Proceedings of the Int. Wrkshp. on Data Distribution for Real-time
Systems, 2003.

Embedded WiSeNts Project, “Embedded WiSeNts Research
Roadmap,” www.embedded-wisents.org/dissemination /roadmap.
html.

C. Frank and K. Rémer, “Solving generic role assignment exactly,” in

Proc. of the 14" Int. Wkrshp. on Parallel and Distributed Real-Time
Systems (WPDRTS), 2006.

R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using Kairos,” in Proc. of the 15t Int. Conf.
on Distributed Computing in Sensor Systems (DCOSS), 2005.

W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Per-
illo, “Middleware linking applications and networks,” IEEE Network,
vol. 18, 2004.

P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and
scalable simulation of entire TinyOS applications,” in Proc. of 5%
Symp. on Operating Systems Design and Implementation, 2002.

NS2 simulator, “NS2 Home Page,” www.isi.edu/nsnam.

X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: a library for par-
allel simulation of large-scale wireless networks,” in Proc. of the 12t
Wrkshp. on Parallel and Distributed Simulation (PADS), 1998.

T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George,
S. George, L. Gu, T. He, S. Krishnamurthy, L. Luo, S. Son,
J. Stankovic, R. Stoleru, and A. Wood, “EnviroTrack: Towards an
environmental computing paradigm for distributed sensor networks,”
in Proc. of the 24" Int. Conf on Distributed Computing Systems
(ICDCS), 2004.

267

Bibliography

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

268

G. Mainland, M. Welsh, and G. Morrisett, “Flask: A language for
data-driven sensor network programs,” Harvard University, Tech.
Rep. TR-13-06, 2006.

G. Mainland, L. Kang, S. Lahaie, D. C. Parkes, and M. Welsh, “Using
virtual markets to program global behavior in sensor networks,” in

Proc. of the 11*" ACM SIGOPS European Wrkshp., 2004.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A
tiny aggregation service for ad-hoc sensor networks,” in Proc. of 1°¢
Int. Conf. on Embedded Networked Sensor Systems (SENSYS), 2003.

C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor inforation
networking architecture and applications,” IEEE Personal Commu-
nications, vol. 8, no. 4, 2001.

C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode,
“Spatial programming using smart messages: Design and implemen-
tation,” in Proc. of the 24" Int. Conf. on Distributed Computing
Systems (ICDCS), 2004.

K. Koumpis, L. Hanna, and S. Hailes, “Tunnels of terror,” Computing
and Control Engineering, February 2006.

EU IP FP6 RUNES, “Runes Project Web Site,” www.ist-runes.org.

L. Mottola, G.Cugola, and G. Picco, “A self-repairing tree overlay
enabling content-based routing in manets,” Submitted for publica-
tion. Available at www.elet.polimi.it/upload/mottola, Politecnico di
Milano, Italy, Tech. Rep., 2006.

G. P. Picco, G. Cugola, and A. Murphy, “Efficient content-based event
dispatching in the presence of topological reconfigurations,” in Proc.
of the 23" Int. Conf. on Distributed Computing Systems (ICDCS03),
2003.

C. Becker, M. Handte, G. Schiele, and K. Rothermel, “PCOM - A
component system for pervasive computing,” in Proc. of the 2™ Int.

Conf. on Pervasive Computing and Communications (PERCOM),
2004.

138

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Bibliography

A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic
linking for reprogramming wireless sensor networks,” in Proc. of 4"
Int. Conf. on Embedded Networked Sensor Systems (SENSYS), 2006.

H. Cervantes and R. Hall, “Autonomous adaptation to dynamic avail-
ability using a service-oriented component model,” in Proc. of the 26"
Int. Conf. of Software Engineering (ICSE), 2004.

The OSGi Alliance, “The OSGi framework,” www.osgi.org, 1999.

A. Ferscha, M. Hechinger, R. Mayrhofer, and R.Oberhauser, “A light-
weight component model for peer-to-peer applications,” in Proc. of
the 2" Int. Wkshp. on Mobile Distributed Computing, 2004.

M. Roman and N. Islam, “Dynamically programmable and reconfig-
urable middleware services,” in Proc. of ACM/USENIX Middleware,
2004.

Y. Weinsberg and I. Ben-Shaul, “A programming model and system
support for disconnected-aware applications on resource-constrained
devices,” in Proceedings of the 24" Int. Conf. on Software Engineer-
ing (ICSE), 2002.

R. S. Hall, D. Heimbigner, and A. L. Wolf, “A Cooperative Approach
to Support Software Deployment Using the Software Dock,” in Proc.
of the Int. Conference on Software Engineering (ICSE), 1999.

J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller, “THINK: A
software framework for component-based operating system kernels,”
in 2002 USENIX Annual Technical Conference, 2002.

R. Grimm, T. Anderson, B. Bershad, and D. Wetherall, “A system ar-
chitecture for pervasive computing,” in Proc. of the 9" ACM SIGOPS
European Wrkshp., 2000.

K. Magoutis, J. Brustoloni, E. Gabber, W. Ng, and A. Silberschatz,
“Building appliances out of reusable components using Pebble,” in
Proc. of the 9" ACM SIGOPS European Wrkshp., 2000.

M. Winter, T. Genbler, A. Christoph, O. Nierstrasz, S. Ducasse,
R. Wuyts, G. Arevalo, P. Muller, C. Stich, and B. Schonhage, “Com-
ponents for embedded software: the PECOS approach,” in Proc. Int.

269

Bibliography

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]
[157]

[158]

270

Conf. on Compilers, Architecture, and Synthesis for Embedded Sys-
tems (CASES), 2002.

D. Stewart, R. Volpe, and P. Khosla, “Design of dynamically recon-
figurable real-time software using port-based objects,” Robotics In-
stitute, Carnegie Mellon University, Tech. Rep. CMU-RI-TR-93-11,
July 1993.

H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren, “SaveCCM
— A component model for safety-critical real-time systems,” in IEEFE
Euromicro Conference, 2004.

R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The
Koala component model for consumer electronics software,” IEEE
Computer, vol. 33, no. 3, 2000.

P. Grace, G. Coulson, G. Blair, B. Porter, and D. Hughes, “Dynamic
reconfiguration in sensor middleware,” in Proc. of Int. Wkshp. on
Middleware for Sensor Networks (MidSens), 2006.

D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: scalable coordination in sensor networks,” in Proc. of the
5th Int. Conf. on Mobile computing and networking (MOBICOM),
1999.

C. Y. Wan, A. T. Campbell, and L. Krishnamurthy, “Reliable
transport for sensor networks: PSFQ—Pump slowly fetch quickly
paradigm,” Wireless sensor networks, 2004.

A. Rowstron, “WCL: A coordination language for geographically dis-
tributed agents,” World Wide Web Journal, vol. 1, no. 3, 1998.

TinyOS Official Source Tree. www.tinyos.net.

B. L. Titzer, D. Lee, and J. Palsberg, “Avrora: Scalable sensor net-
work simulation with precise timing,” in Proc. of the 4" Int. Symp.
on Information Processing in Sensor Networks (IPSN), 2005.

A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A coordina-
tion model and middleware supporting mobility of hosts and agents,”
ACM Trans. on Software Engineering and Methodology (TOSEM),
vol. 15, no. 3, 2006.

Bibliography

[159] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy,
and G. P. Picco, “Mobile data collection in sensor networks: The
TinyLime middleware,” Elsevier Pervasive and Mobile Computing
Journal, vol. 4, no. 1, 2005.

[160] M. Jonsson, “Supporting context awareness with the context shadow
infrastructure,” in Wkshp. on Affordable Wireless Services and In-
frastructure, 2003.

[161] B. Deb, S. Bhatnagar, and B. Nath, “ReInForM: Reliable information
forwarding using multiple paths in sensor networks,” in Proc. of the
28" IEEE Int. Conf. on Local Computer Networks, 2003.

[162] L. Mottola and G. P. Picco, “Using Logical Neighborhoods to enable
scoping in wireless sensor networks,” in Proc. of the 3" ACM In-

ternational Middleware Doctoral Symposium (MDS - colocated with
ACM/USENIX Middleware), 2006.

[163] ——, “Programming wireless sensor networks with Logical Neighbor-
hoods: A road tunnel use case,” in Public Demonstration in Proc. of
the the 5" Int. Conf. on Sensor Systems (SENSYS) - Best Demo
Award, 2007.

[164] Friendly Neighborhood Spider-Man - Wikipedia, en.wikipedia.org/
wiki/Friendly Neighborhood Spider-Man.

[165] H. Qi and P.T. Kuruganti, “The development of localized algorithms
in wireless sensor networks,” Sensors Journal, vol. 2, no. 7, 2002.

[166] L.A. Wosley, Integer Programming. Wiley, 1998.

[167] R. Stoleru and J. Stankovic, “Probability grid: A location estimation
scheme for wireless sensor networks,” in Proc. of the 15¢ Int. Conf. on
Sensor and Ad-Hoc Communication and Networks (SECON), 2004.

[168] Y. Ni, U. Kremer, A. Stere, and L. Iftode, “Programming ad-hoc
networks of mobile and resource-constrained devices,” in Proc. of the
ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation (PLDI), 2005.

[169] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming wireless sensor
networks: Challenges and approaches,” IEEFE Network, vol. 20, no. 3,
2006.

271

Bibliography

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

272

G. Frederickson, “Fast algorithms for shortest paths in planar graphs,
with applications,” Siam J. Computing, vol. 16, no. 6, 1987.

F. Stann and J. Hiedemann, “RMST: Reliable data transport in sen-
sor networks,” in Proc. of the 15t Int. Wkshp. on Sensor Network
Protocols and Applications, 2003.

P. J. Marrén, A. Lachenmann, D. Minder, J. Hahner, R. Sauter,
and K. Rothermel, “TinyCubus: A flexible and adaptive framework
sensor networks,” in Proc. of the 2" European Workshop on Wireless
Sensor Networks (EWSN), 2005.

J. Elson and D. Estrin, “Sensor networks: A bridge to the physical
world,” Wireless sensor networks, 2004.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and
sub-total,” in Proc. of the 12" Int. Conf. on Data Engineering, 1996.

7. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,”
IEEE/ACM Trans. Netw., vol. 14, no. 3, 2006.

TinyOS Community Forum, “TinyOS multi-hop routing,” www.
tinyos.net /tinyos-1.x/doc/multihop /multihop _routing.html.

B. J. Bonfils and P. Bonnet, “Adaptive and decentralized operator
placement for in-network query processing,” in Proc. of 2"¢ Int. Wk-
shp. on Information Processing in Sensor Networks (IPSN), 2003.

K. Hwang, J. In, and D. Fom, “Distributed dynamic shared tree for
minimum energy data aggregation of multiple mobile sinks in wireless
sensor networks,” in Proc. of 3" European Wkshp. on Wireless Sensor
Networks (EWSN), 2006.

A. Egorova-Forster and A. L. Murphy, “A feedback enhanced learning
approach for routing in wireless sensor networks,” in Proc. of the 4"
Workshop on Mobile Ad-Hoc Networks (WMAN), 2007.

K. Yuen, B. Li, and B. Liang, “Distributed data gathering in multi-
sink sensor networks with correlated sources,” in Proc. of 5" Int.
IFIP-TC6 Networking Conf., 2006.

[181]

[182]

[183)]

[184]

[185)

[186]
[187]

188

[189)]

[190]

[191]

[192]

Bibliography

K. Romer, “Distributed mining of spatio-temporal event patterns in
sensor networks,” in Proc. of the 15t Euro-American Wkshp. on Mid-
dleware for Sensor Networks (EAWMS), 2006.

B. Y. Wu and K.-M. Chao, Spanning Trees and Optimization Prob-
lems. Chapman & Hall, 2004.

K. Holmberg and J. Hellstrand, “Solving the uncapacitated network
design problem by a lagrangean heuristic and branch-and-bound,”
Oper. Res., vol. 46, no. 2, 1998.

S. Park, A. Savvides, and M. Srivastava, “Battery capacity measure-
ment and analysis using lithium coin cell battery,” in Proc. of the
2001 Int. Symp. on Low Power FElectronics and Design (ISPLED),
2001.

C. Park, K. Lahiri, and A. Raghunathan, “Battery discharge charac-
teristcs of wireless sensor nodes: An experimentla analysis,” in Proc.
of the IEEE Int. Conf. on Sensor and Ad-hoc Communications and
Networks (SECON), 2005.

iMote2, www.xbow.com /Products/productdetails.aspx?sid=267.
Y. Chou, Statistical Analysis. Holt International, 1975.

O. Landsiedel, K. Wehrle, and S. Gotz, “Accurate prediction of power
consumption in sensor networks,” in Proc. of the 2% IEEE Wrkshp.
on Embedded Networked Sensors (EmNets), 2005.

GNU Linear Programming Toolkit, www.gnu.org/software/glpk.

B. Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and C. Y. Tang,
“A polynomial-time approximation scheme for minimum routing cost
spanning trees,” SIAM J. Comput., vol. 29, no. 3, 2000.

F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Prob-
lem. North-Holland, 1992.

B. Gendron, T. G. Crainic, and A. Frangioni, “Multicommodity ca-

pacitated network design,” Telecommunications Network Planning,
pp. 1-19, 1998.

273

193]

[194]

[195]

[196]

[197]

198

[199]

[200]

[201]

[202]
[203]

[204]

G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Commun. ACM, vol. 43, no. 5, pp. 51-58, 2000.

C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Im-
pact of network density on data aggregation in wireless sensor net-
works,” in Proc. of the 22" Int. Conf. on Distributed Computing
Systems (ICDCS), 2002.

H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang, “TTDD: Two-tier
data dissemination in large-scale wireless sensor networks,” Wireless
Networks, no. 11, 2005.

H. S. Kim, T. F. Abdelzaher, and W. H. Kwon, “Minimum-energy
asynchronous dissemination to mobile sinks in wireless sensor net-
works,” in Proc. of the 1%t Int. Conf. on Embedded networked sensor
systems (SENSYS), 2003.

E. I. Oyman and C. Ersoy, “Multiple sink network design problem
in large scale wireless sensor networks,” in Proc. of 15¢ Int. Conf. on
Communications (1CC), 2004.

A. Das and D. Dutta, “Data acquisition in multiple-sink sensor net-
works,” Mobile Computing and Communications Review, vol. 9, no. 3,
2005.

Habitat Monitoring on the Great Duck Island.
www.greatisland.net.

T. T. Hsieh, “Using sensor networks for highway and traffic applica-
tions,” IEEE Potentials, vol. 23, no. 2, 2004.

P. Kachroo and K. Ozbay, Feedback Ramp Metering in Intelligent
Transportation Systems. Plenum Pub Corp, 2004.

SensorML, vast.uah.edu/SensorML.

Sun Microsystems, Sun™ Java2 Micro-edition Specification, java.
sun.com/javame.

R. Barr, Z. J. Haas, and R. van Renesse, “JiST: An efficient approach
to simulation using virtual machines,” Softw. Pract. Exper., vol. 35,
no. 6, 2005.

PoLITECNICO DI MILANO

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32 120133 — Milano

