
Automated Abstraction of Class Diagrams

ALEXANDER EGYED
Teknowledge Corporation

Designers can easily become overwhelmed with details when dealing with large class diagrams.
This article presents an approach for automated abstraction that allows designers to “zoom out”
on class diagrams to investigate and reason about their bigger picture. The approach is based on a
large number of abstraction rules that individually are not very powerful, but when used together,
can abstract complex class structures quickly. This article presents those abstraction rules and an
algorithm for applying them. The technique was validated on over a dozen models where it was
shown to be well suited for model understanding, consistency checking, and reverse engineering.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms: Design

Additional Key Words and Phrases: Class abstraction, class diagrams, class patterns, reverse
engineering, transformation, unified modeling language

1. INTRODUCTION

In the course of software development, a software system may be refined con-
currently in various dimensions. There is the physical refinement of a software
system into subsystems, components, packages, classes, methods, and actual
lines of code. There is the logical refinement of a software system where a
greater level of detail about a given software element is unraveled the closer
one looks. And there is the goal-driven refinement of a software system where
requirements (small or big) are refined into design or implementation.

Refinement is often considered the “natural course” of software development
where a problem is evolved into a solution, but the more a software problem
is refined, the more there is a need to “step back” to investigate the bigger
picture. We define abstraction to be the reverse of refinement. Abstraction is
a process that transforms lower-level elements into higher-level elements con-
taining fewer details on a larger granularity. Abstraction provides software de-
signers and programmers with the ability to zoom out of diagrams to investigate

This research was supported by Rational Corporation and DARPA through contracts F30602-99-
1-0524, F30602-00-C-0200, and F30602-00-C-0218.
Author’s address: Teknowledge Corporation, 4640 Admiralty Way, Suite 231, Marina Del Ray,
CA 90292; email: aegyed@acm.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 1049-331X/02/1000-0449 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002, Pages 449–491.



450 • Alexander Egyed

them where fewer details mask their interrelationships. Class abstraction has
a number of vital uses:

(1) It aids program and model understanding by reducing the number of lower-
level elements to the most important, higher-level elements.

(2) It supports consistency validation by comparing existing higher-level mod-
els [Egyed 2000] or architectures [Egyed and Medvidovic 2000] with ab-
stracted ones.

(3) It assists reverse engineering by transforming lower-level models into
higher-level ones [Mueller et al. 2000].

In essence, the process of abstraction is the simplification of models by re-
moving details not necessary on a higher, more abstract level. This article inves-
tigates the problem of abstracting class diagrams (i.e., as defined in the Unified
Modeling Language [Booch et al. 1999]) where the traditional perception of
abstraction is often seen as the grouping of lower-level elements into higher-
level elements (classes are grouped into packages or into higher-level classes)
[Fahmy and Holt 2000; Siegfried 1996]. This article will first demonstrate the
limitations of grouping as a mechanism for abstraction and it will then present
a rule-based technique for automated abstraction of class diagrams that avoids
these limitations.

Our abstraction technique uses abstraction rules that have input and result
patterns. Abstraction rules define the semantics of how a set of model elements
can be replaced by a less complex, more-abstract model element. Our abstrac-
tion algorithm then performs syntactic matching of the abstraction rules on the
model. Whenever an input pattern of a rule is encountered in the model, then
that pattern is replaced by the result pattern of that rule. We require that every
abstraction rule has a result pattern that is simpler than its input pattern. It
follows that every application of a rule simplifies a given model.

We evaluated our abstraction technique on over a dozen real-world case
studies ranging from in-house-developed models to third-party models. Most
notably, we used our technique in connection with the Inter-Library Loan Sys-
tem [Abi-Antoun et al. 1999], a part of a Satellite Ground System [Alvarado
1998], C2SADEL to UML integration [Egyed and Medvidovic 2000], Video-On-
Demand System [Dohyung 1999], SDS Statechart Simulator [Egyed and Wile
2001], and other projects. The sizes of the models ranged from several dozen
to several hundred model elements (see also Section 8). The validation showed
that our technique scales and that it produces correct abstractions 96% of the
time. Our approach is fully automated and tool supported.

2. HMS EXAMPLE

For illustrative purposes, this article uses a simplified Hotel Management
System (HMS) that provides support for reservations, check-in/check-out pro-
cedures, and associated financial transactions. Figure 1 shows a potential
hierarchical decomposition of the HMS into the two packages ServicePack-
age and FinancialPackage. Both packages are further subdivided into classes
and relationships describing calling dependencies, inheritance, and part-of

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 451

ServicePackage FinancialPackage

HMS

contains contains

contains contains

ExpensePayment

Person

Transaction

is-ais-a

Account0..1

1..n

0..1

0..n+transactions 0..n

+account

Reservation

Hotel

0..n0..n
Room

0..n0..n

Guest
is-a

0..n

1..n1..n

has_reservation0..1

0..n

0..1

0..n

stays_at

Fig. 1. Tree-like refinement of the HMS from system to packages to classes.

relationships. Figure 1 uses the UML notation [Booch et al. 1999] to describe
the three depicted layers of the HMS system (top layer, package layer, and
class layer). In particular, UML packages are used to describe the system and
packages. UML classes and various types of UML relationships (generalization,
association, and aggregation) make up the class layer.

The FinancialPackage captures accounts and monetary transactions of peo-
ple (Person). It defines that a Person may have an Account and that a single
account may belong to multiple persons; it also defines that an account may
have Transactions and transactions may be either Expenses or Payments. The
realization of Person in form of Guest provides a bridge between the generic
FinancialPackage and the specific, domain-dependent ServicePackage. The Ser-
vicePackage uses the FinancialPackage and defines additional services for reser-
vation and check in/out procedures. Both Room and Reservation are part of
Hotel to indicate that instances of Room and Reservation are unambiguously
associated with particular instances of Hotel. Guest is also related to Room and
Reservation but less tightly via calling dependencies. These two calling depen-
dencies describe that an instance of Guest may stay at a Room of a Hotel or may
have several Reservations for any given Hotel.

A note on terminology issues: Given the variety of different but similar terms
in the transformation, reverse engineering, and consistency-checking commu-
nity, we decided to align our terminology according to the UML definition. A
“model” is a description of a system (i.e., HMS) and “diagrams” are visualiza-
tions of a model. Whereas a model describes the entirety of a system, diagrams

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



452 • Alexander Egyed

Hotel

Expense

Guest

0..n

0..n

0..n

0..n

reservation_for

0..n

0..n

0..n

0..n

stays_at

0..n

0..n

0..n

0..n

causes

Payment0..nmakes 0..n

ExpensePayment

Person

Transaction

is-ais-a

Account0..1

1..n

0..1

0..n+transactions 0..n

+account

Reservation

Hotel

0..n0..n
Room

0..n0..n

Guest
is-a

0..n

1..n

has_reservation0..1

0..n

0..1

0..n

stays_at

Higher-Level Class Diagram

Lower-Level Class Diagram

Fig. 2. Logical refinement (traces capture dependencies).

may depict pieces thereof (views). Figure 1 is a diagram of the HMS model and
it shows a part of its physical decomposition. For our approach, it is not of sig-
nificance whether to abstract models or their partial diagrams. Furthermore,
the term, abstraction, is not to be confused with terms such as abstract classes
in programming languages that denote class definitions with only partial code.

3. REFINEMENT, ABSTRACTION, AND HIERARCHIES

To understand the need for abstraction, this section discusses three different
refinement scenarios that may be encountered during software development—
logical refinement, goal-oriented refinement, and physical refinement. This dis-
cussion is not meant to be exhaustive and it merely presents refinement sce-
narios that are frequently observed in real-world situations. These refinement
scenarios will be used throughout this article to illustrate (1) why abstraction is
needed and (2) why the grouping of classes is insufficient to achieve abstraction.

3.1 Grouping in Context of Logical Refinement

A very common form of refinement is what we call “logical refinement.” Dur-
ing logical refinement, details are added to a given set of software elements
over time. Logical refinement can be seen analogous to a magnification glass
where more information becomes visible the closer one looks. Figure 2 shows
class diagrams of the HMS system at two levels of abstraction where the bot-
tom diagram is a refinement of the top diagram. The lower-level class diagram
(bottom of Figure 2) is the same as in Figure 1 and reflects our most detailed

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 453

Guest Expense
is-a

Guest Expense

Guest Expense

0..n1..n

+account

0..n1..n

Guest Expense

0..n

+transactions

0..n

is-a

(a)

(b)

(c)

(d)

Fig. 3. Four possible abstraction results for lower-level classes.

understanding of how the HMS works. On the other hand, the higher-level dia-
gram in Figure 2 (top) summarizes the lower-level one by omitting information
considered less relevant. For instance, using an account to maintain payment
and expense transactions could be considered an implementation detail. Natu-
rally, it is in the eye of the beholder which of the two diagrams (higher or lower
level ones) is more useful or important. The lower-level diagram makes realiza-
tion decisions that are relevant for later implementation, but the higher-level
diagram is more readable and almost as informative although it uses fewer
model elements.

Logical refinement tends to result in one-to-many mappings between single,
higher-level elements and one or more lower-level elements. However, lower-
level elements cannot always be clearly associated with single higher-level
elements. As an example, consider the Reservation class between Guest and
Hotel. It is not intuitive to claim that Reservation belongs more to Guest than
to Hotel or vice versa. Reservation is rather a “contract” that binds Person and
Hotel. For abstraction, this implies a difficulty in determining what to do with
“helper classes” such as Reservation that may seem less important. Since the
notion of important class versus helper class depends on the particular view of
the designer, the challenge of abstraction becomes how to determine abstract
relationships among important classes without “helper classes” obstructing the
view.

Note that, in the lower-level diagram of Figure 2, one cannot infer any direct
relationships among Guest, Hotel, Expense, and Payment because none exist.
Thus, if one were to use grouping as the only means of abstraction, then it would
become problematic on how to best group the classes to derive correct, abstract
relationships among them. In Figure 3, potential abstract relationships be-
tween Guest and Expense are suggested which were derived by grouping the
helper classes (Person, Account, and Transaction) between them in different
manners. For instance, if the helper classes Person, Account, and Transaction
were to be grouped with Expense, then one could derive an abstraction as in
Figure 3(a) where Guest inherits from Expense. Alternatively, if Person were
to be grouped with Guest and Account and Transaction were to be grouped
with Expense, then one could derive the abstraction in Figure 3(b). Figures 3(c)
and 3(d) show the results for grouping Person, Account, and Transaction in yet
other ways. Even if one of the four abstractions were actually correct, it is not
clear how an automated process could decide which one that would be. It follows

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



454 • Alexander Egyed

Guest may have Payment or Expense Transactions

ExpenseGuest

0..n0..n

Payment0..n0..n

Reservation may involve several
Guests but only one Hotel

Guest may have one Account

Guest

Account

0..10..1

Guest

Hotel

Reservation 1..n1..n

(a)

(b)

(c)

Fig. 4. Goal-driven refinement (see Figure 1 for refinement of above three class structures).

that grouping is not suitable to enable abstraction in this case. We will revisit
this problem later.

3.2 Grouping in the Context of Goal-Driven Decomposition

During goal-driven refinement, design information is described as it relates to
goals (i.e., requirements). Goal-driven refinement singles out subsets of classes
for specific tasks. For instance, Figure 4(a) describes a use case (task) that states
that a Guest may have Expense transactions (e.g., staying at Hotel) and Payment
transactions (e.g., paying for room). For that task, one needs to be aware of
classes such as Guest, Expense, and Payment which are a “slice” across the
physical structure in Figure 1 [Snelting and Tip 1998]. Goal-driven refinement
thus creates logical structures associated with physical structures based on
some needs. Naturally, this implies that there are potentially many logical
ways of decomposing a system. Figure 4 shows three “slices” across the physical
structure in Figure 1 (note that Figure 1 is the refinement for all three slices
and omitted in Figure 4).

For abstraction, this implies that there are many ways of abstracting a class
diagram. The slice in Figure 4(a) is a true subset of the higher-level diagram
presented in Figure 2, but an abstraction of the lower-level diagram. The slice in
Figure 4(b) is a true subset of the lower-level diagram in Figure 2, and the slice
in Figure 4(c) is a new interpretation neither visible in Figure 1 nor in Figure 2.
Figure 4(c) states that a Guest may have zero or one Accounts. In the higher-
level diagram, the class account was considered too detailed and was omitted
and, in the lower-level diagram, the class Person was added, which obscured
the relationship between Guest and Account. Conceptually, we could think of
Figure 4(c) as a partial refinement of the higher-level diagram and a partial
abstraction of the lower-level diagram. A developer thus might be interested
to know whether the addition of Person changed anything about the required
relationship between Guest and Account (consistency). Again, the grouping of
classes is not very useful for abstraction. If the classes in Figure 1 were to be
abstracted to the perceived relationships in Figure 4, then grouping would lead

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 455

is-a

FinancialPackage
<<subsystem>>

uses

FinancialPackage
<<subsystem>>

FinancialPackage
<<subsystem>>

uses

(a)

(b)

(c) ServicePackage
<<subsystem>>

ServicePackage
<<subsystem>>

ServicePackage
<<subsystem>>

Fig. 5. Three possible abstraction results for lower-level classes.

to the same problems as were described in Section 3.1. Later, it will be shown
how our abstraction technique handles this situation.

3.3 Grouping in the Context of Physical Refinement

Figure 1, discussed earlier, depicted the physical refinement of the HMS into
packages and classes. Figure 1 is an example of a tree-structured hierarchy that
results from refining systems into packages (subsystems), and packages into
classes using a one-to-many mapping over several levels of refinements. This
form of refinement is simply achieved by subdividing higher-level elements into
one or more lower-level elements. Given the simple one-to-many mapping dur-
ing physical refinement, abstraction may be seen as the grouping of nonoverlap-
ping sets of lower-level elements into individual, higher-level elements until the
desired granularity is reached [Racz and Koskimies 1999]. Nonetheless, even
in context of physical refinement the grouping of classes may be inadequate
to achieve abstraction since relationships among grouped classes may not map
easily to relationships among packages. Consider the inheritance relationship
between classes Guest and Person, which is the only relationship that spans
across the two packages (Figure 1). Clearly, it is wrong to “raise” interdepen-
dencies established on the class level to the package level. Figure 5(a) shows
the result of grouping the classes belonging to packages and using the relation-
ships among classes as relationships among their packages (i.e., generalization
between Guest to Person). The given result is wrong since ServicePackage does
not inherit the FinancialPackage just because Guest inherits from Person.

Alternatively, Fahmy and Holt [2000] assume that lower-level elements
have to be reinterpreted in the language of the higher-level elements dur-
ing abstraction. For instance, they define a “method call” relationship among
classes to be abstractable to a “uses” relationship among packages with the
same directionality. Consequently, they would infer that either FinancialPack-
age uses ServicePackage (Figure 5(b)) and/or ServicePackage uses Financial-
Package (Figure 5(c)). However, in the given example, we find that a gener-
alization relationship and not a method call relationship (i.e., association) is

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



456 • Alexander Egyed

the bridge between ServicePackage and FinancialService. How could one inter-
pret the generalization between Guest and Person in context of the “uses” rela-
tionship? It is invalid to conclude that ServicePackage uses FinancialPackage
simply because Guest inherits from Person. For example, if some class “Foo”
in FinancialPackage calls Person, then polymorphism during object-oriented
programming would make it possible that class Foo could call Guest (Finan-
cialPackage would use ServicePackage as in Figure 5(c)). We will discuss in the
next section how our abstraction technique solves this problem.

4. SEMANTIC ABSTRACTION

The main goal of abstraction is to hide information from a lower-level diagram
that is perceived as not relevant from a higher-level perspective. Since a model
can be abstracted in any arbitrary manner, it follows that an abstraction tech-
nique needs to be guidable. Guidance may be as simple as a user (i.e., software
programmer, designer, or architect) selecting model elements that are of partic-
ular interest or guidance may also be given automatically via trace dependency
information [Egyed 2001; Gotel and Finkelstein 1994]. In the following, we pre-
sume that such guidance is available. The goal of abstraction is then to hide all
lower-level elements that were not selected from or traced to so that the result-
ing abstraction depicts only the desired elements and their perceived types,
attributes, methods, and interdependencies that summarize the now-hidden
information.

The main challenge of abstraction is that hiding information alone is not suf-
ficient to transform lower-level elements into higher-level elements. Instead,
the hidden information has to be reinterpreted in the context of the remain-
ing, nonhidden elements. For instance, if we were to hide the lower-level class
Reservation and its relationships in Figure 2, then the abstraction would lose
the knowledge that Guest may have a reservation for Hotel. An abstraction
process therefore needs to hide Reservation but add a relationship that rein-
terprets the now-hidden information (class Reservation) and its relationships.
Given the limitations of grouping (as discussed in Section 2), our technique will
instead demonstrate that class patterns can be abstracted in a manner that
uses semantic information in diagrams. Our abstraction technique still uses
a form of grouping as a method to hiding information but instead of grouping
classes our method groups collections of classes with their relationships into
higher-level relationships. Simply speaking, our technique uses rules that de-
fine how lower-level patterns of classes and relationships can be reinterpreted
as higher-level relationships.

This sections will present generic abstraction rules (patterns) that are based
on the UML notation for class diagrams [Booch et al. 1999]. Currently sup-
ported are class diagrams with the four types of relationships: generalization
(inheritance), association (calling direction), aggregation (part-of), and depen-
dency. The presented abstraction rules are generic and applicable to a wide
range of software projects. Users of our approach are not required to extend
or modify this rule set unless they wish to fine tune it (e.g., domain specific
rules).

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 457

4.1 Semantic Rules

Revisiting Figure 4 (scenario 3), we are given a requirement that describes the
interdependency between the classes Guest and Account. This requirement is
realized in the lower-level diagram (Figure 2) where it is described that a Guest
is a type of Person and Person may have zero or one Accounts. If a developer
would like to make sure that the lower-level diagram does indeed realize the
requirement correctly (consistency), then he/she would need to replace the class
Person and its two relationships to Guest and Account with a higher-level re-
lationship that transitively summarizes the replaced elements. A developer is
thus seeking an abstract relationship that hides Person. To find out whether
there is indeed such an abstract relationship, we need to analyze the semantic
meaning of the relationships among Guest, Person, and Account.

The information that a Person may have an Account (association relation-
ship) implies a property of the class Person (class properties are methods, at-
tributes, or relationships). Furthermore, the information that Guest is-a Person
(inheritance) implies that Guest inherits all properties from Person. It follows
that Guest inherits the association to Account from Person implying that a Guest
may have zero or one Accounts. This knowledge of the transitive relationship
between Guest and Account implies that the class Person and its two relation-
ships to Guest and Account could be “collapsed” into a composite, more abstract
relationship linking Guest and Account directly. That composite relationship
should be of type association with the cardinality “0..1”. This example shows
a case where knowledge about the semantic properties of classes and relation-
ships makes it possible to eliminate a helper class and derive a slightly more
abstract class diagram. The example above can be seen as a class abstraction
pattern of the following form (cardinalities are discussed later):

{1} GeneralizationRight - Class - AssociationRight⇒
AssociationRight

We use relationship names post-fixed with either “Left” or “Right” to indi-
cate directionality. “GeneralizationRight - Class - AssociationRight” im-
plies a generalization relationship terminating in the given class and an as-
sociation relationship originating from that same class. On the other hand,
“GeneralizationRight - Class - AssociationLeft” implies both generaliza-
tion and association relationships terminating in the same class. Given that
the above abstraction rule captures an observation that is universally true
(meaning true for all instances), this rule may be used to collapse any occur-
rence of the given pattern (before “⇒”) into an occurrence of the implies pattern
(after “⇒”).

The transitive property of inheritance may also be used for other types of
relationships. For instance, Guest could also inherit other relationships from
Person (e.g., aggregation, dependency, or reverse association relationships—see
rules below).

{2} GeneralizationRight - Class - DependencyRight ⇒ DependencyRight
{3} GeneralizationRight - Class - AssociationRight ⇒

AssociationRight

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



458 • Alexander Egyed

{4} GeneralizationRight - Class - [Agg]AssociationRight ⇒
[Agg]AssociationRight

{5} GeneralizationRight - Class - DependencyLeft ⇒ DependencyLeft
{6} GeneralizationRight - Class - AssociationLeft ⇒ AssociationLeft
{7} GeneralizationRight - Class - [Agg]AssociationLeft ⇒

[Agg]AssociationLeft
{8} GeneralizationRight - Class - Association ⇒ Association

UML class relationships are usually unidirectional, requiring us to differ-
entiate “Left” from “Right.” The only exception is the association relationship,
which may also be bidirectional. Rule {8} in the above block of patterns
therefore states that the bidirectionality of the association is maintained if
abstracted together with a generalization.

{9} GeneralizationRight - Class - GeneralizationRight ⇒
GeneralizationRight

The previous assumption about inheritance is true for all relationship types
except for generalization relationships. On the one hand, it is valid to state
that A inherits from C if A inherits from B and B inherits from C (see rule
{9}); however, if both A and C inherit from B (A and C share a common
parent), then transitively this does not imply a relationship between A and
C. It follows that no relationship exists between Payment and Expense in
the lower-level diagram in Figure 2. Similar restrictions apply if two classes
share a common child (multiple inheritance). Rules {10} and {11} express
these situations. The symbol “Ø” is used to indicate that no abstraction is
possible.

{10} GeneralizationRight - Class - GeneralizationLeft ⇒ Ø
{11} GeneralizationLeft - Class - GeneralizationRight ⇒ Ø

To find more abstraction rules, consider the relationship between Guest and
Hotel in Figure 2. In the higher-level diagram, it is shown that a Guest may
have reservation for a Hotel. The lower-level diagram then uses the helper class
Reservation to further refine the reservation for relationship. For abstraction,
this implies that one needs to replace the class Reservation and its relation-
ships to Guest and Hotel with a more abstract interpretation. In order to do
that, it is again necessary to investigate the transitive meaning of the to-be-
replaced model elements. The lower-level diagram shows the class Hotel with
an aggregation relationship from Reservation to Hotel implying that Reserva-
tion is a part of Hotel. The lower-level diagram also defines that Guest has an
association relationship to Reservation (instance of Guest may call instance of
Reservation). Given that Reservation is a part of Hotel implies that the class
Reservation is conceptually within the class Hotel. If, therefore, Guest depends
on Reservation and Reservation is part of Hotel, then Guest must also depend
on Hotel. It follows that Guest relates to Hotel in the same manner as Guest
relates to Reservation. We thus have found another abstraction rule (rule {12}).
ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 459

As before, the same reasoning can be applied to other relationships (e.g., rules
{13}–{17}):
{12} Association - Class - Association [Agg] ⇒ Association
{13} AssociationRight - Class - Association [Agg] ⇒ AssociationRight
{14} AssociationLeft - Class - AssociationLeft[Agg]⇒ AssociationLeft
{15} AssociationLeft[Agg] - Class - AssociationLeft[Agg] ⇒

AssociationLeft[Agg]

Note that aggregations are UML associations with the aggregate property
[Agg] at one of its ends. The directionality of aggregations also has relevant
semantic meaning. For example, if Hotel were part of Reservation, then one
could not readily apply the above patterns (e.g., as with relationship between
Person and Transaction in lower-level diagram in Figure 2).

4.2 Living with Ambiguous Model Definitions

The example of determining the relationship between Person and Transaction
(lower-level diagram in Figure 2) introduces a new challenge. If one were to
derive the transitive relationship between Person and Transaction, then one
would need to abstract away the helper class Account and its relationships. Per-
son currently has an association to Account and Transaction is part of Account
(“AssociationRight - Class - [Agg]Association”. By Person having an asso-
ciation to Account, one could argue that Person relates to every part of Account.
Since Transaction is a part of Account, it follows that Person must also relate
to Transaction. Although this argument is true in many situations, it is flawed
nonetheless. We make the assumption that, by Person relating to Account, it
relates to all its parts. It is, however, conceivable that Person only relates to a
subset of Account—a subset other than Transaction (i.e., mostly the case where
classes provide independent services, e.g., a math library).

Taking a more critical stance on our abstraction rules, one may find that
this is not the first case of uncertainty. Consider again the very first rule {1}
“GeneralizationRight - Class - AssociationRight ⇒ AssociationRight.”
Previously, it was stated that Guest has an association relationship to Account
simply because it inherited one from Person. To illustrate this reasoning more
precisely, assume that Person has a method “foo” that creates an instance
of Account (“0..1” association between Person and Account). Based on that
assumption, surely, one can infer that Guest also has a “0..1” association
relationship to Account because Guest inherits method “foo” from Person. But
is this statement always correct? Imagine that Guest inherits method “foo” but
overwrites its body so that it does not create an instance of class Account nor
calls the overwritten method of the parent. In such a case, Guest would not
inherit the “0..1” association relationship from Person to Account. Abstracting
the pattern “GeneralizationRight - Class - AssociationRight” is thus
“AssociationRight” in some cases but not abstractable (no relationship) in
other cases.

Observations like these naturally cause a dilemma. On the one hand, we
are opposed to using abstraction rules that are not 100% reliable; however,
on the other hand, we encounter imprecise model definitions that take away

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



460 • Alexander Egyed

from our ability to reason precisely. We refer to these uncertainties as “model
ambiguities” because imprecise model definitions lead to potentially different,
ergo ambiguous interpretations. A simple solution to this ambiguity problem
is to create a semi-automated abstraction process that lets the user make deci-
sions in case of uncertainty (e.g., Racz and Koskimies [1999]). Given the large
and complex nature of models, semi-automated abstraction can become very
costly. Indeed, it has been our observation that not computing time but human-
intervention constitutes key complexities in activities such as model transfor-
mation and consistency checking [Egyed 2000] (see also Section 8). We thus find
it unsatisfactory to restrict our abstraction process to semi-automated use. A
similar unsatisfactory solution to this problem is to make arbitrary decisions
about the most likely abstraction case and ignore less likely scenarios (e.g.,
ignore that the child may overwrite method “foo” of the parent). This solution
is unsatisfactory because it makes our approach less reliable producing poten-
tially erroneous abstraction results without the user being aware of it.

UML class diagrams, like many other graphical description languages, were
not defined completely precise and unambiguous [Jackson and Rinard 2000].
Indeed, we find that their relaxed nature often encourages their use since soft-
ware developers are sometimes either unable or unwilling to make precise de-
sign decisions. For instance, in UML, it cannot be modeled whether or not class
A overwrites methods it inherits from class B. Although a lack of precision on
part of UML, one may argue that it may not always be obvious during design
time when to overwrite methods. More recent research has shown that formal
annotations can improve the precision of UML (or alike notations) [Evans et al.
1998; Övergaard 1998; McUmber and Cheng 2001] but their use is generally
optional and left to the discretion of the designer.

Since the basic notation of UML is ambiguous, we took the stance that au-
tomated abstraction needs to be able to handle ambiguities. Our solution to
the ambiguity problem is to maintain the ambiguity during abstraction. For in-
stance, if it is unknown whether methods get overwritten during inheritance,
then we argue that “GeneralizationRight - Class - AssociationRight” is
“AssociationRight” in some cases and “null” (no relationship) in other cases.
This implies that abstract relationships indicated by our approach may or may
not factually exists. In cases where more complex abstractions allow multiple
abstract interpretations, our approach will suggest all of them and indicate this
uncertainty (ambiguity) in form of an annotation (“and/or” label). Our solution
has the advantage that no abstract results are omitted although false positives
may happen. Section 8 will show that the likelihood of false positives is very low
(∼4%). Note that an alternative solution would be to use a subset of abstraction
rules that are known to be 100% correct. The problem with this alternative so-
lution is that only very few such rules exist and large-scale abstraction would
be rather ineffective as a consequence.

4.3 Other Abstraction Rules

Thus far, we focused on class patterns that use generalization and aggregation
relationships. In the following, we briefly discuss some abstraction patterns
that use association and dependency relationships.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 461

Room Guest Account
(a)

(b)
A BQueue

Fig. 6. Abstracting association relationships.

An association relationship describes calling operations among classes. For
instance, Person having an association relationship to Account implies that
a method of Person may call methods of Account. If class A calls meth-
ods of class B and class B calls methods of class C, then, transitively,
class A might also call methods of class C (AssociationRight - Class -
AssociationRight ⇒ AssociationRight). In case an unidirectional associa-
tion is abstracted together with a bidirectional association, the bidirectionality
is replaced. For instance, if class A can only call class B but classes B and
C can call one another, then, transitively, class A can still only call class C
but not the other way around (AssociationRight - Class - Association ⇒
AssociationRight). Association relationships are rather straightforward to ab-
stract, except if they are counter directional. Figure 6 depicts the two scenarios
of counter-directional association relationships.

If a helper class has two outgoing association relationships (e.g., Guest in
Figure 6 (a)), then no interaction is possible (e.g., Room and Account cannot in-
teract). Abstracting “AssociationLeft - Class - AssociationRight” results
in no relationship. The situation is much less simple in case two associations
terminate in a helper class (e.g., Queue in Figure 6(b)). One could argue that
it is not possible for class A to access methods of class B and for class B to ac-
cess methods of class A since no transitive calling dependency exists but what
about data dependency? For instance, it is possible that class A stores data in
the queue which is then read by class B. Interestingly, UML class diagrams
do not have relationship types for data dependence. Therefore, no abstraction
exists for the pattern “AssociationRight - Class - AssociationLeft.”

Dependency relationships are used in UML to indicate a required presence
of classes. For instance, if class A depends on class B, then class B must be
present for class A to function. The notion of a dependency is other than calling
(association) and is used, that is, to single out classes that are used as parame-
ters in method calls (i.e., class A does not call class B but class A has a method
that expects an instance of class B as a parameter). It is thus safe to state
that “DependencyRight - Class - DependencyRight” must also abstract to a
“DependencyRight.” Since dependencies can also be inherited (generalization)
and a dependency of a part also implies a dependency of the whole (aggregation)
the usual assumptions can be made about their abstraction.

On a final note, abstraction rules for generalization relationships are very
similar to those of aggregation relationships. It is our finding that the transi-
tive meaning of aggregation and generalization in context of class diagrams
is close because one could perceive the parent class as a part of the child
class assuming that no methods get overwritten. A noteworthy exception is
the “[Agg]AssociationRight - Class - AssociationLeft” pattern that is not

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



462 • Alexander Egyed

abstractable because it states that only the whole can access the part and not
vice-versa. On the other hand, the similar pattern based on generalization
“GeneralizationRight - Class - AssociationLeft” is abstractable because
of object-oriented polymorphism.

4.4 Complete List of Abstraction Rules

To date, we have validated our approach in context of UML class struc-
tures and the relationship types generalization, association, dependency,
and aggregation. Considering directionality, this implies eight unidirectional
relationship types such as GeneralizationRight or AggregationLeft plus
three bidirectional relationship types Association, [Agg]Assocition, and
Association[Agg]. Altogether, those relationships may form 121 different pat-
terns (11∗11). Some of those patterns are abstractable (e.g., “Association -
Class - AggregationRight”) while other patterns are not abstractable (e.g.,
“GeneralizationRight - Class - GeneralizationLeft”). Table I gives the
complete list of abstraction patterns as they are currently defined in our
approach.

It is interesting to observe that 29 patterns cannot be abstracted whereas
the remaining 92 patterns have abstract counterparts. Given that it should
not matter from what direction a pattern is viewed (or abstracted), it fol-
lows that mirror images of abstraction patterns must have the same values.
For instance, the pattern “GeneralizationRight - Class - Generalization
Right” (rule 1) is equvalent to the pattern “GeneralizationLeft - Class -
GeneralizationLeft” (rule 16).

5. COMPOSITE ABSTRACTION

The previous section discussed abstraction in context of numerous simple rules.
Every abstraction rule in itself is not very powerful, but this section will demon-
strate that complex class structures can be abstracted by using those rules
together. The following will discuss the serial and parallel application of ab-
straction rules. Serial abstraction describes how to remove a sequence of helper
classes. Parallel abstraction describes how to reconcile results of alternative ab-
straction options (paths). This section will also describe several special cases.

5.1 Serial Abstraction

Abstraction rules can be serialized to abstract a sequence of classes. Consider
Figure 7 where, on the upper left, an association relationship between Person
and Account is depicted. It is furthermore stated that Guest is a child of Person
and that Transactions are part of Account. If it is of interest to know the more
abstract relationship between Guest and Transaction then the abstraction rules
in Table I may be applied in sequence to eliminate both helper classes Person
and Account.

For instance, Rule 3 (Table I) may be used to remove Person and its relation-
ships to Guest and Account; and to add a more abstract association relationship
from Guest to Account directly (Figure 7 upper-right). Alternatively, rule 54
may be used to eliminate Account (Figure 7 lower-left). Both abstraction

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 463

Table I. Complete List of Abstraction Rules for Class Diagrams

1. GeneralizationRight - Class - GeneralizationRight -> GeneralizationRight

2. GeneralizationRight - Class - DependencyRight -> DependencyRight

3. GeneralizationRight - Class - AssociationRight -> AssociationRight

4. GeneralizationRight - Class - [Agg]AssociationRight -> [Agg]AssociationRight

5. GeneralizationRight - Class - GeneralizationLeft -> Ø
6. GeneralizationRight - Class - DependencyLeft -> DependencyLeft

7. GeneralizationRight - Class - AssociationLeft -> AssociationLeft

8. GeneralizationRight - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]

9. GeneralizationRight - Class - Association -> Association

10. GeneralizationRight - Class - [Agg]Association -> [Agg]Association

11. GeneralizationRight - Class - Association[Agg] -> Association[Agg]

12. GeneralizationLeft - Class - GeneralizationRight - Class-> Ø
13. GeneralizationLeft - Class -- DependencyRight -> Ø
14. GeneralizationLeft - Class - AssociationRight -> Ø
15. GeneralizationLeft - Class - [Agg]AssociationRight -> Ø
16. GeneralizationLeft - Class - GeneralizationLeft -> GeneralizationLeft

17. GeneralizationLeft - Class - DependencyLeft -> DependencyLeft

18. GeneralizationLeft - Class -- AssociationLeft -> AssociationLeft

19. GeneralizationLeft - Class -- AssociationLeft[Agg] -> AssociationLeft[Agg]

20. GeneralizationLeft - Class - Association -> AssociationLeft

21. GeneralizationLeft - Class - [Agg]Association -> AssociationLeft

22. GeneralizationLeft - Class - Association[Agg] -> AssociationLeft[Agg]

23. DependencyRight - Class - GeneralizationRight -> DependencyRight

24. DependencyRight - Class - DependencyRight -> DependencyRight

25. DependencyRight - Class - AssociationRight -> DependencyRight

26. DependencyRight - Class - [Agg]AssociationRight -> DependencyRight

27. DependencyRight - Class - GeneralizationLeft -> DependencyRight

28. DependencyRight - Class - DependencyLeft -> Ø
29. DependencyRight - Class - AssociationLeft -> Ø
30. DependencyRight - Class - AssociationLeft[Agg] -> Ø
31. DependencyRight - Class - Association -> DependencyRight

32. DependencyRight - Class - [Agg]Association -> DependencyRight

33. DependencyRight - Class - Association[Agg] -> DependencyRight

34. DependencyLeft - Class - GeneralizationRight -> Ø
35. DependencyLeft - Class - DependencyRight -> Ø
36. DependencyLeft - Class - AssociationRight -> Ø
37. DependencyLeft - Class - [Agg]AssociationRight -> Ø
38. DependencyLeft - Class - GeneralizationLeft -> DependencyLeft

39. DependencyLeft - Class - DependencyLeft -> DependencyLeft

40. DependencyLeft - Class - AssociationLeft -> DependencyLeft

41. DependencyLeft - Class - AssociationLeft[Agg] -> DependencyLeft

42. DependencyLeft - Class - Association -> DependencyLeft

43. DependencyLeft - Class - [Agg]Association -> DependencyLeft

44. DependencyLeft - Class - Association[Agg] -> DependencyLeft

45. AssociationRight - Class - GeneralizationRight -> AssociationRight

46. AssociationRight - Class - DependencyRight -> DependencyRight

47. AssociationRight - Class - AssociationRight -> AssociationRight

48. AssociationRight - Class - [Agg]AssociationRight -> AssociationRight

49. AssociationRight - Class - GeneralizationLeft -> AssociationRight

50. AssociationRight - Class - DependencyLeft -> Ø

continued

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



464 • Alexander Egyed

Table I. Continued

51. AssociationRight - Class - AssociationLeft -> Ø
52. AssociationRight - Class - AssociationLeft[Agg] -> Ø
53. AssociationRight - Class - Association -> AssociationRight

54. AssociationRight - Class - [Agg]Association -> AssociationRight

55. AssociationRight - Class - Association[Agg] -> AssociationRight

56. AssociationLeft - Class - GeneralizationRight -> Ø
57. AssociationLeft - Class - DependencyRight -> Ø
58. AssociationLeft - Class - AssociationRight -> Ø
59. AssociationLeft - Class - [Agg]AssociationRight -> Ø
60. AssociationLeft - Class - GeneralizationLeft -> AssociationLeft

61. AssociationLeft - Class - DependencyLeft -> DependencyLeft

62. AssociationLeft - Class - AssociationLeft -> AssociationLeft

63. AssociationLeft - Class - AssociationLeft[Agg] -> AssociationLeft

64. AssociationLeft - Class - Association -> AssociationLeft

65. AssociationLeft - Class - [Agg]Association -> AssociationLeft

66. AssociationLeft - Class - Association[Agg] -> AssociationLeft

67. [Agg]AssociationRight - Class - GeneralizationRight -> [Agg]AssociationRight

68. [Agg]AssociationRight - Class - DependencyRight -> DependencyRight

69. [Agg]AssociationRight - Class - AssociationRight -> AssociationRight

70. [Agg]AssociationRight - Class - [Agg]AssociationRight -> [Agg]AssociatRight

71. [Agg]AssociationRight - Class - GeneralizationLeft -> [Agg]AssociationRight

72. [Agg]AssociationRight - Class - DependencyLeft -> Ø
73. [Agg]AssociationRight - Class - AssociationLeft -> Ø
74. [Agg]AssociationRight - Class - AssociationLeft[Agg] -> Ø
75. [Agg]AssociationRight - Class - Association -> AssociationRight

76. [Agg]AssociationRight - Class - [Agg]Association -> [Agg]AssociationRight

77. [Agg]AssociationRight - Class - Association[Agg] -> AssociationRight

78. AssociationLeft[Agg] - Class - GeneralizationRight -> Ø
79. AssociationLeft[Agg] - Class - DependencyRight -> Ø
80. AssociationLeft[Agg] - Class - AssociationRight -> Ø
81. AssociationLeft[Agg] - Class - [Agg]AssociationRight -> Ø
82. AssociationLeft[Agg] - Class - GeneralizationLeft -> AssociationLeft[Agg]

83. AssociationLeft[Agg] - Class - DependencyLeft -> DependencyLeft

84. AssociationLeft[Agg] - Class - AssociationLeft -> AssociationLeft

85. AssociationLeft[Agg] - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]

86. AssociationLeft[Agg] - Class - Association -> AssociationLeft

87. AssociationLeft[Agg] - Class - [Agg]Association -> AssociationLeft

88. AssociationLeft[Agg] - Class - Association[Agg] -> AssociationLeft[Agg]

89. [Agg]Association - Class - GeneralizationRight -> [Agg]AssociationRight

90. [Agg]Association - Class - DependencyRight -> DependencyRight

91. [Agg]Association - Class - AssociationRight -> AssociationRight

92. [Agg]Association - Class - [Agg]AssociationRight -> [Agg]AssociationRight

93. [Agg]Association - Class - GeneralizationLeft -> [Agg]Association

94. [Agg]Association - Class - DependencyLeft -> DependencyLeft

95. [Agg]Association - Class - AssociationLeft -> AssociationLeft

96. [Agg]Association - Class - AssociationLeft[Agg] -> AssociationLeft

97. [Agg]Association - Class - Association -> Association

98. [Agg]Association - Class - [Agg]Association -> [Agg]Association

99. [Agg]Association - Class - Association[Agg] -> Association

continued

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 465

100. Association[Agg] - Class - GeneralizationRight -> AssociationRight

101. Association[Agg] - Class - DependencyRight -> DependencyRight

102. Association[Agg] - Class - AssociationRight -> AssociationRight

103. Association[Agg] - Class - [Agg]AssociationRight -> AssociationRight

104. Association[Agg] - Class - GeneralizationLeft -> Association[Agg]

105. Association[Agg] - Class - DependencyLeft -> DependencyLeft

106. Association[Agg] - Class - AssociationLeft -> AssociationLeft

107. Association[Agg] - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]

108. Association[Agg] - Class - Association -> Association

109. Association[Agg] - Class - [Agg]Association -> Association

110. Association[Agg] - Class - Association[Agg] -> Association[Agg]

111. Association - Class - GeneralizationRight -> AssociationRight

112. Association - Class - DependencyRight -> DependencyRight

113. Association - Class - AssociationRight -> AssociationRight

114. Association - Class - [Agg]AssociationRight -> AssociationRight

115. Association - Class - GeneralizationLeft -> Association

116. Association - Class - DependencyLeft -> DependencyLeft

117. Association - Class - AssociationLeft -> AssociationLeft

118. Association - Class - AssociationLeft[Agg] -> AssociationLeft

119. Association - Class - Association -> Association

120. Association - Class - [Agg]Association -> Association

121. Association - Class - Association[Agg] -> Association

Guest

Person Account

Transaction

R
u

le
 5

4

Rule 3
R

u
le

 5
4

Rule 3

Guest

Person

Transaction

Account

TransactionGuest

Guest Transaction

Fig. 7. Symmetric serial abstraction; Same abstraction results produced although rules are ap-
plied in different order.

scenarios result in less complex, more abstract class diagrams that contain
less classes. However, further abstraction is necessary since the desired result
(elimination of both Guest and Account) has not been reached. Since no rule has
precedence over any other rule, both partially abstracted class diagrams need
to be abstracted further. Interestingly, we observed that most of our rules are
closed in that now the reverse set of rules is necessary to continue abstraction.
For instance, in the case where rule 3 was applied first, rule 54 needs to be

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



466 • Alexander Egyed

Account

(1)

(2)

(3)

(4)

(5)

(6)

(a) (b) (c) (d)

(7)

(8)

(9)

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(9)

(10)

Rule 54Rule 3 Rule 93

Rule 54

Rule 3

Rule 48

Rule 54

Rule 3

Rule 48
(6)

Rule 48

(11)
Rule 3

Exhaustive Abstraction
of All Path Combinations

Exhaustive Abstraction
with Subsequent Merging

Account
(a) (b) (c) (d)

Guest Person Transaction Expense

PersonGuest Transaction Expense

Fig. 8. Serial abstraction of long paths; investigation of all abstraction combinations yields results
that can be merged significantly reducing the computational complexity of abstraction.

applied next. Similarly, in the case where rule 54 was used initially, rule 3 is
applied next. In both cases, the final abstraction is an association from Guest to
Transaction

We refer to a sequence of helper classes between two important classes as a
path. Two different combinations for the same path were explored in Figure 7
and two equal abstraction results were generated. Those results can be merged
since a single path from one class to another class should only have a single
abstract interpretation. The resulting abstraction in Figure 7 is therefore a
single association between Guest and Account. If the two abstraction results
would have differed (e.g., different relationship type), then they could not be
merged and both results would have to be maintained (ambiguity). This im-
plies that all combinations of paths have to be evaluated in order to determine
abstractability. This is necessary because our simple abstraction rules have
a narrow perspective on classes and their relationships. By investigating all
combinations of abstraction rules, one essentially investigates all possible per-
spectives in which classes could be used together.

5.2 Serial Abstraction of Long Paths

Serial abstraction of long paths is possible through the repeated use of the
simple abstraction rules in Table I. Figure 8 shows the path between the

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 467

“important” classes Guest and Expense via the helper classes Person, Account,
and Transaction. In order to abstract such a long path for which no abstraction
rule exists, the path is broken down into smaller pieces followed by abstracting
those pieces and uniting their results. As was motivated previously, it is nec-
essary to explore all abstraction combinations in order to not favor some ab-
straction rules over others. Figure 8 (top) shows that initially the subpaths
Guest-Person-Account, Person-Account-Transaction, and Account-Transaction-
Expense are abstracted. The results of those abstractions are then abstracted
together with other elements of the path. For instance, the result of abstract-
ing Account-Transaction-Expense is an aggregation from Expense to Account
(rule 93), which is then abstracted as Person-Account-Expense to yield an asso-
ciation from Person to Expense (rule 54).

In order to reduce the potentially large number of abstraction results to a
minimum, alike results are merged. Figure 8 (bottom) shows that the abstrac-
tion of the subpaths Guest-Person-Account and Person-Account-Transaction
(labeled (1) and (3) in Figure 8) are abstracted separately into distinct in-
terpretations for the subpath Guest-Person-Account-Transaction. In particu-
lar, abstraction (1) together with the aggregation to Transaction (labeled (c) in
Figure 8) yields abstraction (2). Similarly, abstraction (3) together with the gen-
eralization to Guest (labeled (a)) yields abstraction (4). Since both abstraction
(2) and (4) cover the same subpath (Guest-Person-Account-Transaction) and
since both abstractions are of the same type (“Association”) and directionality
(“AssociationRight”), it is legal to merge them. The rationale is as follows: Re-
gardless of how one looks at the (sub) path, there ought to be an association re-
lationship. The final result of abstracting the path Guest-to-Expense is a single,
unambiguous, unidirectional association relationship from Guest to Expense.

Note that the computational overhead of our abstraction approach may seem
very large. This is not the case because of automated reuse and merging of
abstraction results discussed later in this section. Sections 8 will also show
empirical measurements about the performance of our approach.

5.3 Serial Abstraction with Parallel Paths

Serial abstraction works well in context of a single string of classes. However,
in class diagrams, there are often multiple paths of classes between two impor-
tant classes. For instance, there are two paths that lead from the class Guest to
the class Hotel (lower-level diagram in Figure 2; see also top of Figure 9). One
paths includes the bidirectional association between Guest and Reservation and
the aggregation from Reservation to Hotel; the other path includes the unidi-
rectional association from Guest to Room and the subsequent aggregation from
Room to Hotel. Our approach evaluates each path separately to determine its
abstraction. In Figure 9, rule 97 can reduce the Hotel-Reservation-Guest pattern
to a simple bidirectional association between Guest and Hotel. Furthermore,
rule 95 can reduce the Hotel-Room-Guest pattern to a simple unidirectional
association from Guest to Hotel.

Given that both paths use mutually exclusive model elements, one might
assume that they describe separate, abstract relationships. This is certainly

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



468 • Alexander Egyed

AND/OR

Guest

Reservation

Room

Hotel

GuestReservationHotel

GuestRoomHotel

Hotel Guest

Fig. 9. Serial abstraction with parallel paths leads to separate but related abstraction results.

true in the example in Figure 9, but sometimes a lower-level design may split a
higher-level relationship into separate lower-level elements. It is not possible to
automatically determine whether to merge abstraction results of parallel paths,
whether to declare them ambiguous, or whether to leave them separate. We thus
state that Guest and Hotel are either connected by a bidirectional association, or
a unidirectional association from Guest to Hotel, or both of the above (AND/OR
ambiguity). This uncertainty is captured as additional metainformation as can
be seen in Figure 9 (bottom).

We have not encountered a case where our rule set produces different ab-
stract relationships for a single abstraction path. However, since we allow users
of our approach to extend or manipulate the given set of rules (Table I) it is possi-
ble that even the resolution of a single path may lead to ambiguities. These am-
biguities would be handled analogously to the discussion in this section (main-
tain all results and declare them ambiguous via the “AND/OR” annotation).

5.4 Resolving Some Ambiguities during Serial Abstraction

Although individual abstraction steps may cause ambiguities, those ambigu-
ities may not necessarily lead to ambiguous, final abstraction results. This is
especially true when long paths are abstracted. Figure 10 shows one such ex-
ample in context of abstracting the paths between Hotel and Account. Since
this example is an extension of Figure 9, we encounter an ambiguity because
of the parallel paths between Guest and Hotel. As before, it is required to in-
vestigate all paths separately but interestingly there is no final ambiguity in
this scenario since only one of the two paths is abstractable.

Investigating this example in more detail, path (a) in Figure 10 can be ab-
stracted since Guest inherits the unidirectional association from Person to Ac-
count (rule 3), Hotel has a bidirectional association to Guest (rule 97), and both
of those associations can be abstracted to a simple, unidirectional association
from Hotel to Account (rule 113). Path (b), on the other hand, is not abstractable
because it is not possible to determine a calling dependency between Hotel and

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 469

Hotel

Reservation

Room

AccountPersonGuest

Hotel Reservation AccountPersonGuest

Hotel Room AccountPersonGuest

Hotel Account(65%)

(a)

(b)

Fig. 10. Resolving ambiguities during the abstraction of parallel paths; Path (a) is abstractable
and Path (b) is not abstractable which leads in nonambiguous abstraction result.

Account. This example shows that an original ambiguous premise (dual path)
did not yield an ambiguous result.

5.5 Concurrent Abstraction of Multiple, Higher-Level Classes

Concurrent abstraction of multiple classes can significantly reduce the cost of
serial abstraction by focusing on those paths only that are relevant. For con-
current abstraction, we define a set of classes that are important on a higher
level. For instance, in context of Figure 2, the higher-level diagram defined
the classes Hotel, Guest, Payment, and Expense as important; ignoring classes
such as Account, Reservation, or Person (helper classes). If one would investi-
gate all paths among Hotel, Guest, Payment, and Expense then one would find
eight possibilities (Figure 11 top): one path between Payment and Expense, one
path between Payment and Guest, one path between Expense and Guest, two
paths between Hotel and Guest, two paths between Hotel and Payment, and
two paths between Hotel and Expense.

Under normal circumstances, all eight paths would have to be abstracted to
determine the abstract relationships among the four given important classes
Hotel, Guest, Payment, and Expense. During concurrent abstraction, however,
it is not desired to know about the abstract relationships between any two
classes of the Hotel-Guest-Payment-Expense set; instead, it is desired to know
the abstractions of all four classes together. Take, for instance, the path Hotel-
Reservation-Guest-Person-Account-Transaction-Expense in Figure 11 (top). Ab-
stracting this path reveals a unidirectional association from Hotel to Expense.
The negative aspect of exploring this path is that it eliminates the class Guest
because it is a helper class between Hotel and Expense. This is invalid here
since one cannot declare Guest as an important class for abstraction but at the
same time eliminate it in some abstraction path. This is invalid because the
abstract relationship between Hotel & Expense would be redundant with other
abstract relationships between Hotel & Guest and Guest & Expense where the

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



470 • Alexander Egyed

ExpensePayment

Person

Transaction

is-ais-a

Account0..1

1..n

0..1

0..n+transactions 0..n

+account

Reservation

Hotel

0..n0..n
Room

0..n0..n

Guest

0..n

1..n

has_reservation0..1

0..n

0..1

0..n

stays_at

ExpensePayment

Person

Transaction

is-ais-a

Account0..1

1..n

0..1

1..n

0..n+transactions 0..n

+account

Reservation

Hotel

0..n0..n
Room

0..n0..n

Guest
is-a

0..n

1..n

has_reservation0..1

0..n

0..1

0..n

stays_at

Abstracted Paths
Constrained by Classes
Selected for Abstraction

Complete Set of
Abstraction Paths

without Constraints

Fig. 11. Concurrent abstraction constrains abstraction paths (nine theoretical paths on the top
versus four actual paths on the bottom).

former relationship (Hotel-Expense) is an abstraction of the latter two relation-
ships. It follows that our abstraction approach only allows the abstraction of
paths that purely consist of unimportant helper classes.

Figure 11 (bottom) depicts the subset of abstraction paths from Figure 11
(top) that do not contain any important classes. As can be seen, abstracting
multiple, higher-level classes concurrently constrains the possible set of ab-
straction paths and also make abstraction computationally less expensive (see
also Section 8).

5.6 Reuse during Abstraction

Earlier, it was shown that serial abstraction is exhaustive and can be com-
putationally expensive since all abstraction combinations have to be investi-
gated. Section 5.2 introduced “merging” as a way of coping with computational
scalability. This section discusses “reuse” as another, complementary method
to improve computational scalability. Abstraction has the benefit of exten-
sive reuse of previously derived abstraction results. Consider Figure 12 (lower
half), which recaptures the results of abstracting the Guest-Person-Account-
Transaction-Expense pattern from Figure 8 (note that Figure 12 depicts results
after merging). Reuse during abstraction makes use of previously generated
abstraction results (intermediate and final ones) to simplify subsequent ab-
stractions. Figure 12 (upper half) shows that abstracting the Guest-to-Payment

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 471

AccountPersonGuest

Payment

Expense

Transaction

Fig. 12. Reuse during abstraction: Abstraction of Guest-to-Expense (bottom) path produces three
intermediate abstraction results that can be reused during abstraction of Guest-to-Payment path
(top).

pattern only leads to three new abstraction results since it can reuse three
other (intermediate) abstraction results that were previously generated by ab-
stracting the Guest-to-Transaction pattern. Section 8 will show metrics about
the strong leverage of reuse in improving the computational complexity during
abstraction.

5.7 Blind Alleys during Abstraction

Our abstraction approach does not need to investigate classes and relationships
that are not part of a path (blind alleys). As such, there is no need to investi-
gate Hotel or Reservation if it is only of interest to find the abstract relationship
between Guest and Expense; or there is no need to investigate Payment if it is
only of interest to find the abstract relationship between Guest and Expense.
In the first case, the class Hotel and Reservation are not part of any path. In
the second case, the class Payment is a detour of a valid path that terminates
shortly thereafter. The rationale for ignoring blind alleys is to avoid meaning-
less circularities (e.g., Transaction would have to be visited twice if Payment
should become part of the path from Guest to Expense).

5.8 Abstracting Cardinalities

Our abstraction rules emphasize the syntactic structure of “boxes” and “arrows”
in class diagrams. However, class diagrams consist of more than just boxes and
arrows. Figure 13 (left), depicts the familiar class diagram of the HMS system
showing the relationships among Hotel, Guest, Reservation, and Room. Addi-
tionally, the figure depicts the cardinalities among those classes as they were
originally introduced in Figure 1. For example, it is shown that a Guest may
stay at zero or one Rooms and may have zero, one, or more Reservations. Also,
a Hotel may have zero, one, or many Rooms and each Room belongs to exactly
one Hotel (the diamond head of the aggregation relationship has cardinality
one unless defined otherwise).

Figure 13 (right) shows an abstraction problem that was (partially) solved
in Section 5.5. It was shown there that the class structure Hotel-Room-
Reservation-Guest can be abstracted into two (ambiguous) relationships: a

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



472 • Alexander Egyed

Hotel

0..n0..n

0..n

1..n

0..1

0..n0..n

AND/OR

Hotel

Guest

0..*

0..*

0..1

0..*
1..*

1..*

0..*0..1

0..*0..*
1..*

1..*

ReservationRoom

Guest

0..*

Payment0..*

0..*

0..*

Expense

Fig. 13. Abstracting cardinalities.

A

A

A

CA

CA

CAA

CB

CB

CB

B C

CA

[x] [y] [w] [z]

[w] [z]

[w] [z][y]

[z][y]

[x*w] [y*z]

[w] [z]

[w] [y*z]

[y*z]

A CACB [z] [z]

(a)

(b)

(c)

(d)

(e)

Fig. 14. Abstracting cardinalities of association and aggregation relationships.

bidirectional association and a unidirectional association (Figure 13 (right)).
The following shows how cardinality information can be added to these two
abstract relationships. The reasoning is as follows: If an instance of Guest in-
teracts with zero or one instances of Room and, in turn, an instance of Room
is always associated with exactly one instance of Hotel (semantic implication
of aggregation relationship), then one can derive the transitive property that a
Guest may stay at most one Hotel at any given point in time. Since associations
and aggregations have two ends, there are always exactly two cardinalities one
has to consider. The second cardinality investigates the reverse where an in-
stance of Hotel may interact with zero, one, or more instances of Room and an
instance of Room may interact with zero, one, or more instances of Guest. This
implies that multiple guests may stay at any given hotel room. Figure 13 also
shows other abstracted cardinalities among Guest Expense and Payment.

Figure 14 depicts common scenarios of abstracting cardinalities. Since only
association and aggregation relationships can have cardinalities in UML, ab-
stracting cardinalities is only needed for those rules in Table I that result in
associations or aggregations. Scenario (a) in Figure 14 points out that the car-
dinalities of the left hand sides and the right hand sides have to be multiplied
separately if two associations are abstracted. When cardinalities have ranges,
the lower-bounds of the ranges have to be multiplied separately from the upper-
bounds (e.g., [0..1]∗[0..4] = [0..4]; [1..3]∗[2..7] = [2..21]; [0..n]∗[1..2] = [0..n]).
In case, a cardinality is a single digit (i.e., [1]), it can be interpreted as a

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 473

range with both lower bound and upper bound equal the digit value (e.g.,
[1] ≡ [1..1]). Figure 14(b)–14(e) describe additional scenarios on how to abstract
cardinalities of other relationships. Our approach enacts cardinality rules after
abstraction candidates have been identified.

6. ABSTRACTING THE EXAMPLE PROBLEMS

Section 3 discussed the inadequacy of simple grouping for abstracting class
structures and it motivated the need for a better abstraction technique. This
section briefly summarizes how our abstraction technique improves on the prob-
lems discussed there.

Figure 13 (right) showed the result of abstracting the lower-level diagram
in Figure 2 to make it analogous to the higher-level diagram presented there.
Indeed, we find that our abstraction process produces comparable results al-
though the simple grouping of classes would have failed to do the same (recall
the discussion in Section 3.1).

Section 3.3 discussed the problem of grouping in context of the physical re-
finement in Figure 1. The main challenge was to understand how the sub-
systems ServicePackage and FinancialPackage relate to one another. We then
pointed out why grouping failed to produce adequate results since general-
ization relationships cannot be transformed into “uses” relationships among
packages (recall Figure 5). We define the following mapping among UML class
associations and package relationships:

{1} Given: AssociationLeft ⇒ UsesLeft

{2} Given: AssociationRight ⇒ UsesRight

{3} Given: AssociationLeft[Agg] ⇒ UsesLeft

{4} Given: [Agg]AggregationRight ⇒ UsesRight

The above list shows that association and aggregation relationships can be
mapped directly to “uses” relationships. Generalization relationships are am-
biguous. They may or may not relate to “uses” relationships depending on their
interactions with their neighbor elements (recall discussion in 3.1). In order
to determinate the “uses” relationship between FinancialPackage and Servi-
cePackage, we need to eliminate all generalization relationships and replace
them with their semantic interpretations. In context of the HMS example, we
need to abstract the class diagram in Figure 1 so that the generalizations dis-
appear. Figure 15 shows the result of eliminating all generalizations. It can
now be seen that Guest has an unidirectional association relationship to Ac-
count (AssociationRight) which, in turn, implies that ServicePackage uses
FinancialPackage.

Finally, Section 3.2 defined several use cases (requirements) that needed
to be ensured in the HMS model. In Figure 12, we showed how to abstract
the lower-level diagram in such a manner that the direct relationships among
Guest, Payment, and Expense become visible (Figure 4(a)). We can now use this
abstraction to validate that “Guest may have Payment or Expense Transac-
tions.” We also validated “Guest may have zero or one Account” in Figure 15
where we showed the result of abstracting the relationship between Guest and

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



474 • Alexander Egyed

Hotel

Reservation
0..n0..n

Room
0..n0..n

Guest

0..n

1..n

0..n

1..n

has_reservation0..1

0..n

0..1

0..n
stays_at

Expense

Account0..10..1

0..n0..n

Payment

0..n0..n

1..n

ServicePackage
<<subsystem>>

FinancialPackage
<<subsystem>>

uses

Fig. 15. Eliminating generalization relationships to determine “uses” relationships between
ServicePackage and FinancialPackage.

Fig. 16. Abstraction algorithm for concurrent abstraction.

Account (recall Figure 4(c)). There is no need for abstracting Figure 4(b) since
that class pattern is on the same level of granularity as the lower-level diagram.

7. AUTOMATION AND TOOL SUPPORT

Our abstraction technique is fully automated to reduce manual effort and to
make abstraction results reproducible. This section describes the abstraction
algorithm and it presents its tool support called UML/Analyzer.

7.1 Algorithm

Figure 16 depicts the basic abstraction algorithm. As input, a list of important
classes has to be provided. In context of the example in Figure 11, the list
of important classes was Hotel, Guest, Expense, and Payment. The algorithm
abstractMultipleClasses (Figure 16) first identifies possible abstraction paths
followed by abstracting each path separately via the algorithm abstractPath
(Figure 17). The following discusses both algorithms in detail.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 475

Fig. 17. Abstraction algorithm for abstracting single paths.

To support concurrent abstraction (recall Section 5.5), abstractMultiple-
Classes provides an interface for specifying a set of classes considered impor-
tant from an abstract perspective. The algorithm for abstractMultipleClasses
first defines a variable that will contain all abstraction results among the given
set of classes (Step 1). Then it identifies all paths between all source and target
classes (all combinations of the list of important classes). A path may not be
circular (Section 5.7) nor may it contain important classes (Section 5.5). For
all paths found, abstractPath is called to determine their abstract result(s).
Note that a path is a sequence containing a relationship as the first and last
elements plus classes and relationships in between (e.g., AssociationLeft -
Class - GeneralizationRight)—analogous to our abstraction rules in Table I.
The abstracted results are stored in a collection variable and returned to the
caller.

The abstractPath algorithm determines the abstract interpretation(s) for a
given path (e.g., path Hotel-Reservation-Guest-Person-Account in Figure 10). If
the given path cannot be abstracted directly, it is broken up into smaller pieces
and the algorithm then calls itself recursively until the path can be abstracted
or it becomes too small. If the given path contains no element (Step 1), then
an empty list is returned (no abstraction). If the given path contains at least
one element (must be relationship), then that relationship is the abstraction
(Step 2). If the path is more complex (3, 5, 7, 9. . . items) but an abstraction
already exists, then the existing abstraction result is reused (Step 3). If no
abstraction exists, it is attempted to find an abstraction rule from Table I that
has an input pattern equals the given path (Step 4). If such a rule exists, then
its result pattern is returned.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



476 • Alexander Egyed

If no direct abstraction is possible then collection variable abstracted paths
is defined (Step 5). It will hold all abstract interpretations of the given path.
Since no rule exists to abstract the given path, the path is broken up into smaller
paths (one subset of the path excluding the first two items; the other excluding
the last two items). Steps 6 and 8 then call abstractPath recursively upon which
we can assume that a list is returned containing all found abstract relationships
(i.e., the list will contain no value if no abstraction was possible; it will hold
one value if the abstraction was unambiguous; otherwise it will hold multiple
values). Steps 7 and 9 then take the returned abstractions, append or prepend
the earlier removed elements and compare the resulting pattern against the
rule set (Table I). Each identified abstraction result is then included in the
collection variable abstracted paths. In Step 10, results may be excluded if
and only if another abstraction result exists that is considered equivalent (i.e.,
same type and directionality). The remaining elements in abstracted paths
are then added to the model and marked ambiguous if multiple, ambiguous
interpretations exist (Step 11). In a final step, the elements in abstracted paths
are returned to the caller.

Note that abstractPath is recursive and ensures that all possible subse-
quences of a given path are abstracted (recall Section 5.2). If a path is too
complex for direct abstraction, it is recursively broken down into smaller and
smaller pieces until the abstraction results of the pieces can be determined.
The return loop of the recursion then combines the abstraction results of the
pieces to abstract them further. This guarantees that abstractPath returns a
list containing only relationships that are determined to be the abstract inter-
pretations of the given path. Our algorithm also “memorizes” abstract interpre-
tations (by adding them to the model) so that abstraction results can be reused
later (recall Section 5.6).

7.2 UML/Analyzer Tool Support

Our approach was co-developed with Rational Software [Egyed and Kruchten
1999] who developed a tool called Rose/Architect to support our abstraction
technique (construction of Rose/Architect was subcontracted to Ensemble Sys-
tems by Rational Corporation). Since then, the approach was extended and
the author developed a second, nonproprietary tool called UML/Analyzer.
UML/Analyzer supports model transformation and consistency checking and
also implements the abstraction technique discussed in this article. Figure 18
depicts some screen snapshots of the UML/Analyzer tool which is integrated
with Rational RoseTM for the purpose of creating and modifying diagrams (syn-
thesis). Rational Rose models can be downloaded, abstracted, and uploaded for
visualization. Figure 18 shows Rational RoseTM in the lower windows and the
UML/Analyzer main window to the upper left (depicting the repository view of
the HMS system).

The tool uses abstraction rules (upper-right; Table I) to transform UML
models. The class diagram in the lower left is an abstraction of the lower-
level diagram in Figure 2 using Guest, Hotel, Payment, and Transaction as the
important classes (recall Figure 11). The lower right window in Figure 18 shows

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 477

F
ig

.1
8.

U
M

L
/A

n
al

yz
er

to
ol

su
pp

or
ts

cl
as

s
ab

st
ra

ct
io

n
.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



478 • Alexander Egyed

Table II. Models used for Validation

memorized, intermediate abstraction results for that example. At the current
state, the UML/Analyzer tool supports all aspects of class abstraction discussed
in this article.

8. VALIDATION

This section discusses the validity of our approach in terms of its correctness,
manual overhead, and computational complexity.

8.1 Validity of Abstraction Rules and Algorithm

Table II lists a representative subset of 12 models that were used to validate the
technique. Many of the models were built by third parties and are implemented
systems today. The “implementation stage” column in Table II differentiates
the models that were implemented and the ones that were not (model only).
In some cases, we did not have access to the implemented system (indicated
as “implemented*”). In other cases, we reverse engineered the model from the
implemented system if no model existed (e.g., Video-On-Demand, ANTS Visu-
alizer). The sizes of the models varied substantially, ranging from 10 classes to
many hundreds of classes.

To validate the approach we applied different validation methods. In case
the source code of the system was available (e.g., ANTS Visualizer), the ab-
straction results produced by the approach were validated against the actual
source code. This method was applicable to four models and we consider it the
most reliable validation method since the source code itself is the ground truth.
In three cases, we validated the abstraction of our approach against existing
higher-level abstractions. For instance, the Cargo Router was also modeled by
a third-party using the C2SADEL architectural description language and we
used the abstraction technique to translate the UML design into a class struc-
ture that was comparable to the architecture. We then validated our technique
in its effectiveness to reproduce the architecture. Third, we used inspection
in five cases where neither source code (see implemented∗) was available nor

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 479

Table III. Excerpt of 18 Experiments Used to Validate our Abstraction Technique

abstractions existed. Inspection was a manual process conducted by the author
to investigate each abstraction result individually to reason about its correct-
ness. The only model in Table II that was not validated was the Boeing Avionics
Open Experiment model. It was not validated because of the author’s insuf-
ficient familiarity with its domain, but it was included here because it is the
largest model the technique was applied on which is relevant for computational
scalability (see Section 8.3).

The given set of models and additional ones not presented in this article
allowed us to validate our abstraction rules. It was discussed earlier that the
UML semantics are not strong enough for full precision. For instance, if an asso-
ciation follows another association relationship, then it is unspecified whether
the one really calls the other. This is a UML notation problem because, in a
class diagram, one cannot specify how associations relate transitively. Our ab-
straction results must therefore be seen as indications of relationships but not
factual ones. Given that there are often large numbers of potential transitive
interdependencies among classes but only few factual ones, it may considerably
weaken our approach if it indicates many of the wrong relationships (false pos-
itives). It was therefore our goal to validate the accuracy and correctness of our
approach by measuring the number of false positives produced.

Table III shows an excerpt of 18 experiments conducted to validate our ab-
straction technique. The experiments were based on the 12 models in Table II
where some models were abstracted in different ways depending on the view-
points of their designer. In Table III, we show single abstraction scenarios for

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



480 • Alexander Egyed

most models, two different abstraction scenarios for four models (e.g., Cargo
Router), and three abstraction scenarios for one model (Video-On-Demand).
The choice of the number of experiments per model was random. The following
discusses the columns of Table III:

—Abstract Classes. The number of important classes.
—Abstract Relations. The number of relationships among important classes

generated by our approach (= transitive relations + direct relations).
—Transitive Relations Found. The number of abstract relationships that

eliminated at least one helper class.
—Direct Relations Found. The number of abstract relationships that did not

eliminate any helper classes.
—True Positives. The number of abstract relationships generated by our ap-

proach that were validated to be correct. The validation methods used were
comparison with source code, comparison with existing models, and manual
inspection (see Table III).

—False Positives. The number of abstract relationships generated by our ap-
proach that were validated to be incorrect.

—Ambiguities (AND/OR). The number of ambiguous, abstract relationships
generated by our approach.

—Percentage of Bad Results. Percentage of false positive versus true positives.
—Percentage of Ambiguities. Percentage of ambiguous abstraction results ver-

sus true positives.
—Class Combinations. The number of potential paths among important

classes. It is computed through the formula n∗(n − 1)/2 where n is equal
the number of abstract classes. Each class combination needs to be investi-
gated to identify potential paths among classes and each such path leads to
zero, one, or more abstract relationships.

—Average Path Length. Number of original classes divided by the number
of abstract classes. This number indicates how many helper classes existed
among important classes. This number is also referred to as abstraction ratio.

—Average Path Breadth. Number of original relationships divided by number
of original classes. This number indicates the number of relationships of a
class.

—Complexity Factor. It is computed through the formula (Average Path
Breadth) raised to the power of (Average Path Length). The computational
complexity of abstraction depends on the path length and the path breadth
(see Section 8.3). Our approach requires the investigation of all paths and
the number of paths is based on all combinations of helper classes among
important classes. The complexity factor is an average indicator for this
complexity.

—Investigated Paths. The number of paths among important classes identi-
fied by our approach. Each investigated paths is abstracted and may lead to
zero or one abstract relationships.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 481

In total, considering the large number of models, experiments, and model
elements involved, we are confident in stating that our technique produces
reliable results 96% of the time (only 4% false positives). For about two-thirds
of the experiments, our approach did not produce any false positives. For the
remaining one-third, our approach produced less than 10% bad results—with
one exception: In case of the Inter-Library Loan system, our approach produced
40% incorrect results. This is a very high number but, given the small size of
the model (26 classes), higher fluctuations are to be expected. Although our
approach produces highly reliable results most of the time, all results have to be
investigated to reason about their correctness. Section 8.2 later about manual
versus automated abstraction will discuss that it is significantly cheaper to
manually inspect all abstraction results produced by our approach than it is to
abstract manually.

Table III also shows that our approach only produced a small number of am-
biguous results (recall Section 5.3 about AND/OR ambiguities). Our approach
errs in favor of identifying ambiguities in case of doubt but, in context of the
18 experiments conducted, we found that 89% of the correct abstraction results
were nonambiguous and only the remaining 11% could be merged.

Our rules are tailored in a fashion that prevents false negatives. This im-
plies that the lack of an abstraction truly means that no abstraction exists.
Because of this, our abstraction technique has 100% sensitivity. Note, sensi-
tivity refers to the proportion of paths that are abstractable who have positive
abstraction results. It is computed as (True Positives)/(True Positives+False
Negatives). Our abstraction technique also has 99.3% specificity. Specificity
refers to the proportion of paths that are not abstractable who have no abstrac-
tion results (True Negatives)/(True Negatives+False Positives). True negatives
were computed by subtracting abstracted paths from all investigated paths (see
Table III).

In summary, our technique finds all abstract relationships and it does so with
99.3% specificity (low false positives). This finding is based on a validated set
of 18 experiments on 12 different models of roughly 1500 classes and relation-
ships. On a final note, it may seem surprising that only 10% of all investigated
paths were abstractable although 70% of all abstraction patterns in Table I
were abstractable. Since abstraction rules are applied in sequence and given
that nonabstractable subpaths make whole paths nonabstractable, the sim-
ple answer is that abstraction is strongly dependent on path length and path
breadth. The longer a path, the less likely a path is abstractable. The broader
a path, the more likely a path is abstractable.

8.2 Manual Abstraction versus Automation

Despite our approach’s preference to err in favor of abstracting too much in-
stead of too little, it produces mostly correct abstraction results. This has the
advantages that the user does not get overwhelmed with too much (wrong)
information and consequently incorrect abstraction results can be identified
within reasonable effort. It can be seen in Table III that our approach produced
a total of 418 abstract relationships among 170 abstract classes (ratio of 2.45

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



482 • Alexander Egyed

relationships per class). This is not much higher than the ratio among original
relationships and original classes (ratio is 1.83).

The low number of false positives produced by our approach also implies
that it is significantly easier to validate abstraction results produced by our
approach than to have to abstract paths manually. It still requires a human de-
cision maker to make the final judgment on the correctness of the abstraction
result but our approach relieves the human user from the extremely time con-
suming task of inferring abstract relationships among all class combinations
and potential paths. Table III showed that there were 21024 potential depen-
dencies among all 170 abstract classes of all 18 experiments; but there were only
258 transitive relationships. It follows that there were almost 100 times more
dependencies to investigate than transitive relationships to validate. Even if
tool support is provided that automatically determines all paths among ab-
stract classes, Table III showed that there were 2374 different paths among
all 170 abstract classes. Most of those paths were not abstractable and it fol-
lows that there was still a 10-fold benefit in manually validating our abstrac-
tion results versus manually abstracting those paths. This data shows clearly
that it is significantly better to investigate the abstracted diagrams without
having to do all the abstraction work. The task of validating abstraction re-
sults is additionally simplified through trace information (mapping) between
abstraction results and their original input. This makes it straightforward for
designers to trace back particular abstraction results to investigate their ori-
gin and consequently their correctness. As for the actual effort required in
validating results, this is entirely dependent on the designer’s familiarity with
the models. We found that, if a designer is very familiar with a model, then
it is generally straightforward and fast to judge the correctness of abstraction
results.

Figure 19 shows the complexity involved in abstracting a class diagram of
roughly 29 classes (the Cargo Router System). Even with all optimizations en-
abled, one can observe an enormous benefit in using our fully automated tool
since having to abstract manually would require considerable human effort.
Proper class abstraction requires the exploration of all possible path combi-
nations followed by the application of proper class abstraction rules. Our tool
reduces this task to mere seconds. Figure 19 is thus a motivation that semi-
automated class abstraction (i.e., Racz and Koskimies [1999]) is infeasible for
large-scale systems. Automation is thus desirable for both quantitative and
qualitative reasons.

8.3 Complexity of Abstraction

The computational complexity of pattern matching is known to be very costly
[Fahmy and Holt 2000]. Indeed, without optimizations the abstraction of a
path (abstractPath in Figure 17) would be exponentially complex. Without
optimization, abstractPath would generate 2(length of path-3) final abstraction re-
sults generating an additional (length of path-1)∗ 2(length of path-3) intermediate
abstraction results (intermediate abstraction results are partial abstractions
due to serialization; recall Section 5.1). For instance, a path with 11 classes

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 483

Category B Category C

A WT

P erson DialogP atient DialogMedication DialogTreatment Dialog

Deficiency

S torage Collection

time needed S torage

Location

P atient Collection

Treatment Collection

Medication Collection

S ide E ffects

Nurse

Doc tor

UML-A  Generated Association Class:Treatment Dependency  (0.5)

UML-A  Generated Association Class:Treatment Dependency  (0.5)

UML-A  Generated Association Class:E mployee Coll ection A ssociation  (1.0)

A id

UML-A  Generated A ssociati on Cl ass:Employee Collection Associ ation  (1.0)

UML-A  Generated A ssociati on Cl ass:Employee Collection A ssoci ation  (1.0)

A vailable E mployee Collection

UML-A  Generated Association Class:E mployee General ization  (1.0)

UML-A  Generated Generalization Class:E mpl oyee Collection A ssociation  (1.0)

E mployee

UML-A  Generated Association Class:E mployee Coll ection A ssociation  (0.5)

UML-A  Generated Association Class:E mployee Coll ection A ssociation  (0.5)

UML-A  Generated Association Class:A bsence Reason A ssoci ation  (1.0)

Room

Facilities

OP Radiology Nursery

P atient

UML-A  Generated A ssociati on Cl ass:Employee Generalization  (1.0)

UML-A  Generated Association Class:E mployee General ization  (1.0)

UML-A  Generated A ssociati on Cl ass:Employee Generalization  (1.0)

UML-A  Generated A ssociati on Cl ass:Person Generalization  (1.0)

P erson

UML-A  Generated A ssociation Class:Visiting Record Collection A ssoci ation  (1.0)

UML-A  Generated Association Class:P ati ent A ssoci ation  (1.0)

UML-A  Generated Generalization Class:E mployee Generalization  (1.0)

UML-A  Generated A ssociati on Cl ass:Employee Collection Associ ation  (0.25)

UML-A  Generated Generalization Class:E mployee Generalization  (1.0)

UML-A  Generated Generalization Class:E mployee Generalization  (1.0)

UML-A  Generated A ssociati on Cl ass:Absence Reason A ssociation  (0.5)

V isiting Record Collection0..0

0..0

0..0

0..0

hasUML-A  Generated Association Class:P erson Generalization  (1.0)

hasUML-A  Generated Generalization Class:P atient Association  (0.5)

UML-A  Generated Association Class:P atient Association  (1.0)

UML-A  Generated A ssociation Class:Employee Generalizatio

UML-A  Generated A ssociation Class:E mployee Generalization  (1.0)

UML-A  Generated Association Class:E mployee General ization  (1.0)UML-A  Generated Association Class:P erson Generalization  (1.0)

V isiting Record

UML-A  Generated A ssociati on Cl ass:Visiting Record Collection A ssoci ation  (1.0)

UML-A  Generated A ssociati on Cl ass:Visiting Record Collection A ssoci ation  (1.0)

0..0

0..*

0..0

0..*

contains

UML-A  Generated A ssociation Class:Patient Association  (1.0)

UML-A  Generated Association Class:E mployee Generalization  (1.0)

UML-A  Generated Association Class:E mployee General ization  (1.0)

UML-A  Generated Association Class:P erson Generalization  (1.0)

Medication

UML-A  Generated Dependency Class:Treatment Association  (0.5)

UML-A  Generated Association Class:S torage Association  (1.0)

UML-A  Generated A ssociation Class:Treatment Dependency  (0.5)

has

L-A Generated Association Class:Doctor General ization  (0.25)

UML-A  Generated Association Class:Treatment Dependency  (0.5)

UML-A  Generated A ssociation Class:Facilities Generalization  (0.25)

Category A

UML-A  Generated Association Class:Medication Generalization  (0.25)

UML-A  Generated A ssociation Class:Treatment Dependency  (0.25)

UML-A  Generated A ssociati on Cl ass:Doctor Generalization  (0.125)

UML-A  Generated Association Class:Treatment Dependency  (0.25)

UML-A  Generated A ssociation Class:Facilities Generalization  (0.125)

E mployee Collection

UML-A  Generated Association Class:Nurse A ssociation  (1.0)

UML-A  Generated Association Class:A vailable E mployee Collection General ization  (0.25)

UML-A  Generated Association Class:Nurse Association  (1.0)

UML-A Generated A ssociation Class:Doctor A ssociation  (0.5)

UML-A  Generated Association Class:Doctor Association  (0.25)

UML-A  Generated A ssociation Class:Employee Generalization  (0.5)

UML-A  Generated Generalization Class:E mployee Association  (0.5)

UML-A  Generated A ssociation Class:Available Employee Collecti on Generalization  (0.5)

UML-A  Generated Association Class:Treatment Dependency  (0.25)

UML-A  Generated Association Class:Facilities Generalization  (0.125)

Treatment

UML-A  Generated Association Class:P ati ent Dependency   (0.5)
UML-A  Generated Association Class:P ati ent Dependency   (0.5)

UML-A  Generated A ssociati on Cl ass:Patient Dependency  (0.5)

UML-A  Generated A ssociati on Cl ass:Medication A ssociation  (1.0)

ociation Class:Medication A ssociation  (1.0)

UML-A  Generated A ssociati on Cl ass:Medication Generalization  (0.5)

UML-A  Generated Dependency Class:Patient Association  (0.5)

UML-A  Generated Dependency Class:Doctor Association  (0.5)

depends_on

applies_on

performed_by

UML-A  Generated Generalization Class:P atient Dependency  (1.0)

UML-A  Generated Dependency Class:Medication Generalization  (0.5)

UML-A  Generated Dependency Class:E mpl oyee Generalization  (0.5)
UML-A  Generated Dependency Class:Employee Generalization  (0.5)

UML-A  Generated General ization Class:P erson Dependency  (1.0)

UML-A  Generated Dependency Class:Doctor Generalization  (0.5)

uses

UML-A  Generated Dependency Class:Facilities Generalization  (0.5)

A bsence Collection

UML-A  Generated A ssociation Class:Employee Association  (1.0)

UML-A  Generated Generalization Class:E mpl oyee Association 

UML-A  Generated Association Class:E mployee Association  (1.0)

UML-A  Generated Generalization Class:E mpl oyee Association  (1.0)

UML-A  Generated Generalization Class:E mployee A ssoci ation  (1.0)

UML-A  Generated Generalization Class:E mpl oyee Association  (1.0)

UML-A  Generated Association Class:E mployee Association  (0.5)

UML-A  Generated Dependency Class:Employee A ssociation  (0.25)

P atient Processing

UML-A  Generated A ssociati on Cl ass:Patient Collection Dependency  (0.5)

UML-A  Generated Association Class:P atient Collection Dependency  (0.5)UML-A  Generated A ssociation Class:Patient Collection Dependency  (0.5)

UML-A  Generated A ssociation Class:Patient Collection Dependency  (0.5)

UML-A  Generated A ssociati on Cl ass:Treatment Dependency  (0.5)

UML-A  Generated Association Class:Treatment Dependency  (0.25)

UML-A  Generated A ssociation Class:Treatment Dependency  (0.25)

UML-A  Generated A ssociation Class:Patient Collection Dependency  (0.25)

UML-A  Generated A ssociation Class:Treatment Dependency  (0.125)

A bsence Reason

UML-A  Generated Association Class:A bsence Col lection A ssociation  (1.0)

UML-A  Generated Generalization Class:E mpl oyee Association  (0.5)

UML-A  Generated A ssociati on Cl ass:Absence Col lection A ssociation  (1.0)

UML-A  Generated Association Class:E mployee Association  (0.25)

UML-A  Generated A ssociation Class:Employee Association  (0.125)

UML-A  Generated Association Class:A bsence Col lection A ssociation  (1.0)

UML-A  Generated A ssociati on Cl ass:Employee Collection Associ ation  (0.5)

UML-A  Generated Association Class:A bsence Col lection A ssociation  (1.0)

UML-A  Generated A ssociation Class:Available Employee Collecti on Generalization  (0.5)

UML-A  Generated A ssociation Class:Absence Col lection A ssociation  (0.25)

UML-A  Generated A ssociation Class:Absence Col lection A ssociation  (1.0)

UML-A  Generated A ssociation Class:Treatment Dependency  (0.125)
UML-A  Generated Association Class:Facilities Generalization  (0.0625)

UML-A  Generated A ssociati on Cl ass:Treatment Dependency  (0.125)

supervises

UML-A  Generated Dependency Class:AW T Dependency  (1.0)

UML-A  Generated Dependency Class:Treatment Dependency  (1.0)

UML-A  Generated Dependency Class:Treatment Dependency  (1.0)

UML-A  Generated Dependency Class:Treatment Dependency  (1.0)

UML-A  Generated Dependency Class:Treatment Dependency  (0.5)

UML-A  Generated Dependency Class:Treatment Dependency  (1.0)

UML-A  Generated Dependency Class:Treatment Dependency  (0.5)

UML-A  Generated Dependency Class:Treatment Dependency  (0.5)
UML-A  Generated Dependency Class:Treatment Dependency  (0.5)

UML-A  Generated Dependency Class:Treatment Dependency  (1.0)
UML-A  Generated Dependency Class:Facilities Generali zation  (0.5)

Fig. 19. Complexity of abstracting class diagrams motivates automation; Given example is the
cargo router model with only 29 classes.

would abstract to 2067 intermediate and 256 final abstraction results. In order
to reduce this complexity to a reasonable amount, intermediate abstraction re-
sults are reused (Section 5.6) and similar abstraction results within the same
(sub) path are merged (Section 5.2). These optimizations reduce the computa-
tional complexity of path abstraction to polynomial time.

Reuse is mostly important during concurrent abstraction but it also sup-
ports abstractPath since the abstraction of a single path may explore partially
overlapping subpaths (recall Section 5.2). In experiments, reuse has reduced
the computational complexity by two-thirds (e.g., a path with 11 classes would
abstract to 776 intermediate and 256 final abstraction results). Merging pro-
duces the most leverage because it combines abstraction results if they are
of the same type, directionality, and connecting to the same classes (recall
Section 5.2). Merging makes path abstraction polynomial complex—O(n2). As
such, a path with 11 classes abstracts to 44 intermediate and 1 final abstraction
result, assuming no ambiguity is encountered along the way. AND/OR ambigu-
ities during the abstraction of a single path are rare in our approach but since
the designer has the option of altering abstraction rules, they may occur. Each
introduced ambiguity during the abstraction of a path may potentially double
the number of intermediate and final abstraction results.

Figure 20 depicts the computational complexity during path abstraction for
variable path length assuming no ambiguity. As can be seen, the simple nature
of our abstraction patterns combined with reuse and merging results in very
fast abstraction (note the logarithmic scale on the “y”-axis).

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



484 • Alexander Egyed

Scalability of Path Abstraction

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15

Path Length

N
u

m
b

er
 o

f 
A

b
st

ra
ct

 R
el

at
io

n
sh

ip
s

G
en

er
at

ed

Path Abstraction Without
Optimization
Path Abstraction With
Reuse

Path Abstraction With
Reuse and Merging

Fig. 20. Improving computational complexity.

Quantifying Abstraction Results through Reuse and Mergi

0

20

40

60

80

100

120

140

160

180

200

HMS
Example

CargoRouterVOD Movie
Player

Spacecraft
Telemetrie

Hospital
System

N
u

m
b

er
 o

f 
A

b
s

tr
a

ct
 R

el
a

ti
o

n
sh

ip
s

 G
en

er
at

e
d Concurrent

Abstraction W ithout
Optimization
Concurrent
Abstraction with
Reuse
Concurrent Abstraction
With Reuse and
Merging

Fig. 21. Improving computational complexity and quality of results during concurrent abstraction.

Besides improving the computational complexity of abstractPath, we
also improved the complexity of abstractMultipleClasses, which calls
abstractPath for every path it identifies. Again, we reuse and merge results if
they share overlapping paths and these improvements reduce the number of
generated, abstract relationships by a factor of 2–5. Figure 21 visualizes these
optimizations in context of five different class models. As can be seen, the most

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 485

significant optimization for abstractMultipleClasses is reuse since concurrent
abstraction can make use of existing abstractions of previous paths. Merging
also reduces the number of generated relationships.

It must be noted that reuse in abstractMultipleClasses saves computa-
tional time by not having to re-evaluate the same path twice. Merging, on the
other hand, still requires the full evaluation (or reuse) of a path, but it improves
the quality of results by eliminating redundant and overlapping information.
In the context of abstractPath, both merging and reuse improve computational
complexity.

Although our approach abstracts paths quickly and is thus significantly
better than most existing abstraction approaches that rely on patterns (e.g.,
Fahmy–Holt), computational scalability may still cause problems. We observed
that the number of paths may increase sharply with two primary factors con-
tributing to the problem: (1) path length and (2) path breadth. The more helper
classes per important class (average path length) and the more path alter-
natives (average path breadth), the more paths need to be investigated. The
complexity factor in Table III showed that this factor increases fast since it is
exponential (complexity = average path breadth raised to the power of average
path length). As a consequence, it is our observation that the computational
complexity of abstraction is not so much dictated by the number of model ele-
ments (the size of the model) but the “ratio of abstraction.” The larger the ratio
between important classes and helper classes during abstraction, the more com-
putationally intensive is its abstraction as it increases the average path length
and average path depth. This data, and our qualitative analysis about the cor-
rectness of abstraction results, implies that large-scale abstraction should be
attempted in multiple, small, sequential steps.

9. DISCUSSION

This section discusses some border issues of class abstraction that are relevant
for the usefulness of our approach:

9.1 Ambiguous Results

Our approach is based on heuristics to reason in the presence of ambiguous
model definitions. We found that it is impossible to create “precise” abstraction
rules in context of UML and many other modeling definitions. Consequently, we
had the dilemma of how to deal with false positive or true negatives (both un-
desirable). We decided to err on the side of false positives (showing abstractions
although there are none) since we found it easier to eliminate wrong abstraction
results rather than generate missing abstractions. Our experience shows that
our approach produces correct results in most cases and, as Jackson–Rinard
[2000] argued, “even when incorrect, may provide a useful starting point for
further investigation.”

9.2 Extensibility of Rules

In Table I, we defined abstraction rules for four types of relationships. Our
rules can be altered or extended to capture other types of relationships or even

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



486 • Alexander Egyed

classes. For instance, new rules could be created to support utility classes or pa-
rameterized classes. It is also possible to make use of UML extensibility mech-
anisms such as stereotypes .[Booch et al. 1999] to define model elements more
precisely. We went through several iterations of refinement of our abstraction
rules and found that the precision of our approach increases with the number
of abstraction rules. It must be noted that our tool support for extensible rules
is limited. Future work is needed to address this issue.

9.3 Methods and Attributes

Another problem is on how to abstract methods and attributes in classes. This
article only described how class patterns can be abstracted into new, abstract
relationships with directionalities and cardinalities. Currently, we do not ab-
stract methods and attributes of classes. We will investigate this problem in
future work.

9.4 Complex Abstraction Rules

Our abstraction rules are very simple and, in some cases, this simplicity may
add to the ambiguity of the solution. It is possible to create more complex ab-
straction rules to counter this problem. Take, for instance, the following rule
consisting of two helper classes and three relationships:

GeneralizationRight - Class - Association[Agg] - Class -

GeneralizationLeft⇒ Association[Agg]

Our approach supports new rules like the one above, but our approach is
restricted to paths only. Thus, we do not support the creation of a single ab-
straction rule with blind alleys (Section 5.7) or parallel paths (Section 5.3). We
are currently investigating how to incorporate a more extensible rule structure
into our abstraction process. It is our hope that such extensibility leads to a
richer rule set (i.e., representing design patterns [Gamma et al. 1994] as rules)
without sacrificing computational scalability.

9.5 Manual Intervention

Although our abstraction technique is fully automated, we do find it necessary
to allow human users to alter abstraction results or even perform abstraction
semi-automatically. Our tool currently does not support human intervention
during abstraction but the work of Racz and Koskimies [1999] shows how our
tool could be extended to do so. The issue of manual intervention has a draw-
back in evolutionary terms. For instance, if models change, then how can one
preserve abstraction results that were provided manually? We assume that
considerable effort was spend creating them and thus they should not get lost.
We are currently investigating the issue of “smart evolution” that deletes ab-
straction results only if they have become obsolete.

10. RELATED WORK

Many techniques have been proposed to aid the understanding of complex class
structures. There are reading techniques such as inspection [Fagan 1986] that

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 487

use group effort to cope with complexity. Most of these techniques are manual
and involve high effort and manpower. Using multiple views is an effective form
of separating concerns [Tarr et al. 1999]. Class structures can be subdivided into
multiple views [Altmann et al. 1988; Finkelstein et al. 1991; Garlan 1988] where
partial and potentially overlapping portions of the structure are depicted. The
sum of all views (diagrams) is the complete class structure itself. Multiple views
make use of the fact that one does not need access to all classes to understand
a particular concern. Although multiple views can make classes belonging to
individual concerns more understandable, they generally do not project a high-
level, simplified abstraction of the overall class structure.

Lieberherr et al. [1994] defined class transformation methods to capture evo-
lution. They argue that class evolution is inevitable and results in new class
models that, preferably, should be as consistent as possible with earlier ver-
sions. Although, one could argue that evolution is a form of refinement, we take
a more narrow stance. For us, refinement has to maintain consistency within a
given model. Their work thus addresses evolutionary “refinement” and “consis-
tency issues” that are considered outside the scope of this article. Nonetheless,
one can envision a strong need for our approach to be combined with theirs
so that model refinement and abstraction can be complemented with model
evolution.

Fahmy and Holt [2000] examined structural aspects of models in form of
graph re-writing. In their work, they define rules on how to transform graph pat-
terns. They do not single out class diagrams; however, their work is applicable
since class diagrams can be seen as graphs containing vertices (classes) and
edges (relationships). They also define transformation rules for “lifting” and
“hiding interior/exterior,” which could be seen analogous to our approach. In-
deed, graph rewriting could provide a more generic framework for our work and
we are considering to integrate some of their ideas; however, currently, they do
not define class abstraction rules in the level of detail we do, nor do they define
an algorithm that can avoid the problem of race conditions (i.e., preference to
individual abstraction rules—Section 5.1) and ambiguities during abstraction
(Section 5.3). Furthermore, their transformation algorithm is computationally
very expensive since they can define complex patterns and antipatterns. In-
stead, our approach relies on relatively simple patterns that can be abstracted
quickly (recall Section 8).

The works of Schuerr et al. [1995] is similar to Fahmy and Holt. They also
propose a graph-rewriting approach called PROGRES with similar limitations.
However, an interesting feature of PROGRES is the improved performance
of pattern matching, which they recognized as being a severe problem. They
propose an heuristic-based approach that optimizes the use of a limited set
of graph rewrite rules to achieve faster performance. The limitation of their
improvement is that it works best on small sets of rules. We took an alternative
approach with a large number of graph rewrite rules (abstraction rules), but
only allow a very simple rule pattern structure (string of relationships). Our
pattern matching approach is thus as simple and as efficient as string matching.
As such, we see their work as an interesting alternative in dealing with the
computationally expensive problem of pattern matching.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



488 • Alexander Egyed

Snelting and Tip [1998] devised a technique in restructuring class hier-
archies by investigating how classes are used by applications. In a form,
they abstract the essence of classes by creating perspectives of class hierar-
chies as relevant to individual applications. They then combine those individ-
ual perspectives to yield a better structured class hierarchy. Although their
work reinterprets class diagrams (hierarchies), it cannot be used to reason
about abstract interdependencies among classes. It is, however, a good ex-
ample that class hierarchies (or diagrams) are ambiguous and information
within them (i.e., methods) can be moved around without destroying behavioral
consistency.

Racz and Koskimies [1999] created an approach to class abstraction that
is probably the closest to ours. They also recognized the powerful but simple
nature of abstracting relationships with classes into abstract relationships.
However, they only defined a small set of abstraction rules and they did not
investigate the issue of serial and concurrent abstraction, abstraction reuse,
and ambiguity handling. As a result, they did not devise an automatable ab-
straction technique but instead developed a tool for semi-automated use. In
Section 8, we pointed out the disadvantages of semi-automated abstraction on
largescale class diagrams. Irrespective of the drawbacks of their approach, we
see their work as an confirmation of the validity of our abstraction technique
because, like us, they acknowledge the usefulness of abstracting class patterns
based on the transitive meaning of relationships.

Murphy et al. [1995] devised a reflexion model on how to abstract and re-
late classes in a complex class structure. They essentially group implementa-
tion classes into clusters and then observe method calls among those clusters
dynamically (i.e., while testing scenarios). As a response, they can determine
how clusters interacted with one another. Their technique has the disadvan-
tage that observing the runtime behavior of clusters only gives information
about calling dependencies, which is just one of the properties we are inter-
ested in. They cannot distinguish inheritance, dependency, or aggregation on
an abstract level. Furthermore, their technique requires exhaustive dynamic
analyses to produce abstractions. This is a very time-consuming effort if done
manually.

Our abstraction technique is conceptually related to transformation tech-
niques such as Sequence to Statechart transformation [Koskimies et al. 1998;
Schönberger et al. 2001], Collaboration to Statechart transformation [Khriss
et al. 1998], and Sequence to Class transformation [Tsiolakis and Ehrig 2000].
All these approaches recognized the fact that model transformation in general
can be done without the use of intermediate, third-party languages. For in-
stance, Koskimies et al. [1998] describes an approach for combining sequence
diagrams into statechart diagrams directly without creating the overhead of
using an additional languages. These works demonstrate that it is possible
to define precise, formal transformations using informal languages (UML di-
agrams) as input and to generate other informal languages as output. Our
approach is also well defined and formal and, like their approaches, we avoided
using third-party languages to represent UML, although such languages
exist.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 489

11. CONCLUSION

This article presented an approach for automated abstraction of class diagrams.
Our approach exploits the semantic meaning of patterns of classes and their
relationships to infer transitive properties. Although our abstraction rules are
primitive in structure, they are rich enough in number to abstract large-scale
class diagrams. To date, we have validated our abstraction technique and its
rules on numerous third-party applications and models with up to several hun-
dred model elements. We showed that our technique scales, produces correct
results most of the time, and addresses issues such as model ambiguities that
are inherently part of many (UML) diagrams. We demonstrated various forms
of ambiguities and showed that there are ways of living with them—even pre-
serving them during transformation.

Our abstraction process is fully supported through the public UML/Analyzer
tool and partially supported through the proprietary Rose/Architect tool owned
by Rational Corporation. UML/Analyzer provides a superset of the functionality
of Rose/Architect, which only supports simple abstraction patterns (Section 4)
combined with nonexhaustive path abstraction. Both tools are integrated with
Rational Rose and both tools only require a low-level UML class diagram as
well as a specification of what classes are important for abstraction. In the case
of model understanding and reverse engineering, the list of important classes
likely has to be provided by a human user. In the case of consistency checking,
the list can also be derived automatically in some cases.

We find our abstraction technique to be well suited for model understanding,
reverse engineering, and consistency checking. During model understanding,
our technique provides users a lightweight, fast, and easy-to-use method for
“zooming out” of a model for inspection (e.g., whenever the model changes). For
reverse engineering, our technique helps in creating higher-level interpreta-
tions of implementation classes and their relationships. Those interpretations
can then be saved as abstract class diagrams. And for consistency checking, our
approach provides a comparison infrastructure where a lower-level diagram can
be abstracted so that the existing higher-level diagram can be compared with
the abstracted lower-level diagram.

Future work is to investigate the applicability of our approach on other types
of models. We will also investigate means of qualifying the likelihood of correct-
ness of individual abstraction rules using reliability numbers. Those reliability
numbers could then be used for approximating the correctness of abstraction
results produced by our approach.

ACKNOWLEDGMENTS

We wish to thank Philippe Kruchten for the initial idea and support. We
also wish to thank Barry Boehm, Cristina Gacek, Paul Grünbacher, Nenad
Medvidovic, Dave Wile, and the anonymous reviewers for insightful discussions.

REFERENCES

ABI-ANTOUN, M., HO, J., AND KWAN, J. 1999. Inter-library loan management system: Revised
life-cycle architecture. Center for Software Engineering, University of Southern California,
Los Angeles, Calif.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



490 • Alexander Egyed

ALTMANN, R. A., HAWKE, A. N., AND MARLIN, C. D. 1988. An integrated programming environment
based on multiple concurrent views. Austral. Comput. J. 20, 2, 65–72.

ALVARADO, S. 1998. An evaluation of object oriented architecture models for satellite ground sys-
tems. In Proceedings of the 2nd Ground Systems Architecture Workshop (GSAW), El Segundo,
Calif.

BOOCH, G., RUMBAUGH, J. AND JACOBSON, I. 1999. The Unified Modeling Language User Guide.
Addison-Wesley, Reading, Mass.

DOHYUNG, K. 1999. Java MPEG Player. http://mirage.snu.ac.kr/dhkim/java/MPEG/.
EGYED, A. 2000. Heterogeneous view integration and its automation. Ph.D. Dissertation, Univ.

Southern California, Los Angeles, Calif.
EGYED, A. 2001. A Scenario-driven approach to traceability. In Proceedings of the 23rd Interna-

tional Conference on Software Engineering (ICSE), 123–132.
EGYED, A. AND KRUCHTEN, P. 1999. Rose/Architect: A tool to visualize architecture. In Proceedings

of the 32nd Hawaii International Conference on System Sciences (HICSS), Maui, HI.
EGYED, A. AND MEDVIDOVIC, N. 2000. A formal approach to heterogeneous software modeling. In

Proceedings of 3rd Foundational Aspects of Software Engineering (FASE), Berlin, Germany. 178–
192.

EGYED, A. AND WILE, D. 2001. Statechart simulator for modeling architectural dynamics. In
Proceedings of the 2nd Working International Conference on Software Architecture (WICSA),
Amsterdam, The Netherlands. 87–96.

EVANS, A., FRANCE, R., LANO, K., AND RUMPE, B. 1998. The UML as a formal modeling language. J.
Comput. Stand. Interf. 19, 325–334.

FAGAN, M. E. 1986. Advances in software inspections. IEEE Trans. Softw. Eng. (TSE) 12, 7, 744–
751.

FAHMY, H. AND HOLT, R. C. 2000. Using graph rewriting to specify software architectural trans-
formations. In Proceedings of the 15th IEEE International Conference on Automated Software
Engineering (ASE), 187–196.

FINKELSTEIN, A., KRAMER, J., NUSEIBEH, B., FINKELSTEIN, L., AND GOEDICKE, M. 1991. Viewpoints:
A framework for integrating multiple perspectives in system development. Int. J. Softw. Eng.
Knowl. Eng. 31–58.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1994. Design Patterns Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass.

GARLAN, D. 1988. Views for tools in integrated environments. In Advanced Programming Envi-
ronments, 314–343.

GOTEL, O. C. Z. AND FINKELSTEIN, A. C. W. 1994. An analysis of the requirements traceability
problem. In Proceedings of the 1st International Conference on Requirements Engineering, 94–
101.

JACKSON, D. AND RINARD, M. 2000. Software analysis: A roadmap. In Proceedings of the 20th Inter-
national Conference on Software Engineering (ICSE), 133–145.

KHRISS, I., ELKOUTBI, M., AND KELLER, R. 1998. Automating the synthesis of UML statechart di-
agrams from multiple collaboration diagrams. In Proceedings for the Conference of the Unified
Modeling Language, 132–147.

KOSKIMIES, K., SYSTÄ, T., TUOMI, J., AND MÄNNISTÖ, T. 1998. Automated support for modeling OO
software. IEEE Softw. 87–94.

LIEBERHERR, K. J., HURSCH, W. L., AND XIAO, C. 1994. Object-extending class transformations. J.
Form. Asp. Comput. 6, 4, 391–416.

MCUMBER, W. E. AND CHENG, B. H. C. 2001. A general framework for formalizing UML with formal
languages. In Proceedings of the 23rd International Conference on Software Engineering (ICSE),
433–442.

MUELLER, H., JAHNKE, J. H., SMITH, D. B., STOREY, M. A., TILLEY , S. R., AND WONG, K. 2000. Reverse
engineering: A roadmap. In Proceedings of the Conference on the Future of Software Engineering,
47–60.

MURPHY, G. C., NOTKIN, D., AND SULLIVAN, K. 1995. Software reflexion models: bridging
the gap between source and high-level models. In Proceedings of the 3rd ACM SIG-
SOFT Symposium on the Foundations of Software Engineering. ACM, New York, 18–
28.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.



Automated Abstraction of Class Diagrams • 491

ÖVERGAARD, G. 1998. A formal approach to relationships in the unified modeling language. In
Proceedings of the Workshop on Precise Semantics for Software Modeling Techniques (PSMT’98),
91–108.

RACZ, F. D. AND KOSKIMIES, K. 1999. Tool-supported compression of UML class diagrams. In Pro-
ceedings of the 2nd International Conference on the Unified Modeling Language (UML), 172–187.

SCHUERR, A., WINTER, A. J., AND ZUENDORF, A. 1995. Graph grammar engineering with PROGRES.
In Proceedings of the 5th European Software Engineering Conference (ESEC), 219–234.

SCHÖNBERGER, S., KELLER, R. K., AND KHRISS, I. 2001. Algorithmic support for model transformation
in object-oriented software development. Concur. Computat. Prac. Exp. 13, 5, 351–383.

SIEGFRIED, S. 1996. Understanding Object-Oriented Software Engineering. IEEE Computer Soci-
ety Press, Los Alamitos, Calif.

SNELTING, G. AND TIP, F. 1998. Reengineering class hierarchies using concept analysis. In Proceed-
ings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering. ACM, New
York, 99–110.

TARR, P., OSHER, H., HARRISON, W., AND SUTTON, S. M. JR. 1999. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the 21st International Conference on Soft-
ware Engineering (ICSE 21) (Los Angeles, Calif.). 107–119.

TSIOLAKIS, A. AND EHRIG, H. 2000. Consistency analysis of UML class and sequence diagrams using
attributed graph grammars. In Proceedings of GRATRA 2000 (Berlin, Germany). 77–86.

Received October 2001; revised April 2002; accepted September 2002

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 4, October 2002.

aegyed
CORRECTION! On page 488, the paper incorrectly describes an article from Murphy et al. [1995]. Their technique allows a developer to define a high-level model of what the system is expected to be doing which is then compared to what the system is actually doing. While the high-level model is defined by a developer, the observation of what the low-level model is doing can be derived statically from source code or dynamically from the system's execution. The latter was misrepresented in this article. Their technique can be used to map (almost all) binary relationships one can extract between source-level program elements. Some common examples of relationships they look at are calls between functions (methods), accesses to global variables, event interactions, and inheritance. So contrary to our characterization, their technique is not limited to runtime behavior. 




