
The Decision Exploration Lab
Supporting the business analyst in understanding automated decisions

Bertjan Broeksema

The work in this thesis has been carried out under the auspices of the IBM France Center for
Advanced Studies (CAS), the Scientific Visualization and Computer Graphics (SVCG) research
group, and the Laboratoire Bordelais de Recherche en Informatique (LaBRI). SVCG is affiliated
with the university of Groningen. LaBRI is affiliated with the university of Bordeaux. The work
was financed by IBM France and through two IBM Ph.D. Fellowship awards.

ISBN: 978-90-367-6786-6
ISBN: 978-90-367-6785-9 (Electronic version)

c© 2013, Bertjan Broeksema

Document prepared with LATEX and typeset by pdfTEX
Cover deisgn:
Printed by:

The Decision Exploration Lab
Supporting the business analyst in understanding

automated decisions

Proefschrift

ter verkrijging van de graad van doctor aan de
Rijksuniversiteit Groningen

op gezag van de
rector magnificus, prof. dr. E. Sterken

en volgens het besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

maandag 3 maart 2014 om 11:00 uur

door

Albertus Hendrik Johan Broeksema

geboren op 10 april 1983
te Enschede

Promotores:
Prof. dr. A. C. Telea
Prof. dr. G. Melançon

Copromotor:
Dr. T. Baudel

Beoordelingscommissie:
Prof. dr. J.-D. Fekete
Prof. dr. A. Kerren
Prof. dr. M. J. McGuffin

Thesis summary

A Decision Management System (DMS) provides means to model and automate enterprise de-
cisions and they are applied in a wide range of industries, among which health care, commerce,
insurance, finance and transportation. These systems make millions of decisions each day with-
out direct human supervision, impacting the life of millions of people and impacting economies
at a large scale. The multiplicative effect of decision automation provides the opportunity to
fine-tune the decision system. By analyzing its global and emerging properties rather than focus-
ing on the details of each decision, the system as a whole can be better adapted to the reality it
models.

Like expert systems, DMSs provide a clear separation of decision logic, information related to
individual decisions and decision execution. These data spaces contain a wealth of information
related to the structure and functioning of a DMS. In this thesis various ways are explored to
visualize and analyze this data in order to help a business user to gain a deeper understanding
of automated decisions.

To address the problem of understanding the global and emerging properties of automated
decision making systems, we combine interactive analysis of the decision data with analysis of
the decision logic. We present a visual analytics system, the Decision Exploration Lab (DEL),
which provides a verbal analysis mode and a visual decision exploration mode. In verbal mode
the user can make selections on past decisions using controlled natural language. In visual de-
cision exploration mode, the decision data is analyzed using Multiple Correspondence Analy-
sis (MCA). The analysis results are visualized using interactive techniques to show the important
structure of the decision data to the user. Correlated concepts can be clustered at a level of gran-
ularity that suits the needs of the business analyst. Clustered concepts can next be linked to the
rules of the decision logic that are relevant for the subset of decisions which match these concepts.
We evaluated our approach with two use case scenarios from the car insurance industry.

Apart from the above, we propose a number of technical contributions, enhancements and
extensions to information visualization methods, for multivariate categorical data. Firstly, we
present a generic algorithm to generate all well-known treemap layouts as well as other rect-
angular space-filling layouts. Secondly, we present explanatory and interactive visualization
techniques to support interpretation and usage of MCA. Thirdly, we present labeling and scale
adjustment techniques in order to improve the usability of 2D-plots.

v

Samenvatting

Een Decision Management System (DMS) is een systeem om dagelijkse enterprise besluiten te
modeleren en te automatiseren. Dit soort systemen worden toegepast in verschillende indus-
trieën zoals de gezondheidszorg, de handel, het verzekeringswezen, het bankwezen en de trans-
port sector. Deze systemen maken elke dag milioenen besluiten met betrekking tot de bedrijfs-
voering, en hebben zodoende invloed op zowel de levens van milioenen individuen alswel op
economiën. Het vermenigvuldigende effect van het automatiseren van dagelijkse besluiten biedt
de mogelijkheid tot een preciese afstemming van DMSs. Door het analyzeren van de globale
eigenschappen die zich voordoen, in plaats van de aandacht te richten op individuele besluiten,
kan het systeem als geheel beter aangepast worden aan de realiteit die het modeleert.

Net als expert systemen, hebben DMSs een duidelijke scheiding van de besluit logica, infor-
matie die betrekking heeft op individuele besluiten en de uitvoer van besluiten. Elk van deze drie
data domeinen bevat een grote hoeveelheid informatie die aspecten van de structuur en het func-
tioneren van een DMS beschrijven. In dit proefschrift onderzoeken we verschillende manieren
om deze informatie te visualizeren en te analyzeren om een business analist een dieper inzicht te
geven in het functioneren van geautomatiseerde besluiten.

Voor het verkrijgen van dit inzicht, combineren we interactieve analyze van besluit data met
analyze van de besluit logica. We presenteren een visual analytics systeem, het Decision Explo-
ration Lab (DEL), dat een verbale analyze modus and een visuele besluit analyze modus biedt.
In de verbale modus kan de gebruiker selecties maken van historische besluiten door gebruik
te maken van gecontrolleerde natuurlijke taal. In de visuele besluit exploratie modus, wordt de
besluit data geanalyseerd met Multiple Correspondence Analysis (MCA). De resultaten van de
analyze worden gevisualiseerd, gebruik makend van interactieve technieken, om de belangrijke
structuren van de besluit data inzichtelijk te maken voor de gebruiker. Gecorreleerde concepten
kunnen geclusterd worden op een niveau dat geschikt is voor de vragen die de business analist
probeert te beantwoorden. Geclusterde concepten kunnen vervolgens gelinkt worden aan regels
van de besluit logica die relevant zijn voor de besluiten die overeenkomen met de concepten in
het geselecteerde cluster. We hebben onze aanpak geëvalueerd met behulp van twee scenario’s
uit de autoverzekering branche.

Naast de boven genoemde contributie, presenteren we verschillende technische contributies,
verbeteringen en uitbreidingen van informatie visualisatie technieken voor multivariate cate-
gorische data. Allereerst presenteren we een generiek algoritme om alle bekende treemap en
andere ruimte vullende, rechthoekige, layouts te genereren. Ten tweede, we presenteren verk-
larende en interactieve visualisatie technieken om het gebruik en de interpretatie van MCA te
ondersteunen. Ten derde, we presenteren labeling en schaal aanpassings technieken om de bruik-
baarheid van 2D-plots te verbeteren.

vii

To my amazing wife Agnes
and to my beautiful daugther Venne

Where is the Life we have lost in living?
Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

— T.S. Elliot, The Rock, 1934 —

Contents

Summary v

List of figures xv

List of tables xvii

List of listings xix

Acknowledgements xxi

1 Introduction 1
1.1 Automating business decisions . 2
1.2 Thesis Problem and Approach . 3
1.3 Thesis Contributions . 4

1.3.1 Analytics contributions . 4
1.3.2 Technical contributions . 5

1.4 Thesis Outline . 5

2 Decision Management Systems 7
2.1 Applications of DMSs . 7
2.2 Scenario: Car insurance request processing . 8
2.3 Decision Models . 9

2.3.1 Domain model . 9
2.3.2 Business logic . 10

2.4 Decision execution . 11
2.5 Modeling business activity . 13
2.6 Analytics requirements . 14

2.6.1 Users . 14
2.6.2 Tasks . 15
2.6.3 Data . 16
2.6.4 Relation to research questions . 18

2.7 Similarities and differences with program comprehension 18
2.8 Summary . 20

xi

Contents

3 Related work 21
3.1 Decision Support . 21

3.1.1 Human decision-making support . 22
3.1.2 Automatic decision-making support . 23
3.1.3 Decision outcome analysis . 25

3.2 Program Comprehension . 26
3.2.1 Structure . 27
3.2.2 Behavior . 29
3.2.3 Evolution . 30
3.2.4 Conclusion . 31

3.3 Visual analytics techniques . 31
3.3.1 Visualization techniques for multivariate data 33
3.3.2 Visualization techniques for categorical data 36
3.3.3 Dimensionality reduction . 38
3.3.4 Conclusion . 41

4 Information Visualization for Decision Management Systems 43
4.1 Treemaps . 43

4.1.1 Motivation . 45
4.1.2 Problem statement . 47
4.1.3 Related work on rectangular layouts . 48
4.1.4 Design Space . 49
4.1.5 Phrase . 52
4.1.6 Algorithm . 52
4.1.7 Layout parameters . 57
4.1.8 Structuring . 62
4.1.9 Conclusion . 64

4.2 Rule Execution Visualization . 65
4.2.1 Visualizing rule execution graphs . 66
4.2.2 Conclusion . 67

4.3 Change Impact . 69
4.3.1 Visualizing domain model change impact . 69
4.3.2 Related applications . 70

4.4 Conclusion . 70

5 Visual Analytics for Decision Management Systems 73
5.1 Early analytic approaches . 73

5.1.1 Input attributes important for rule . 73
5.1.2 Rule co-occurrence . 74
5.1.3 Discussion . 74

5.2 Analyzing business case and decision data . 76
5.2.1 High dimensional categorical data . 76
5.2.2 Analyzing categorical data: Multiple Correspondence Analysis 78
5.2.3 MCA Visualization pipeline . 80
5.2.4 Interpretation challenges . 81
5.2.5 Visualization overview . 82
5.2.6 Discussion . 92

5.3 Rule Triggering Analysis . 95
5.3.1 What are interesting rules? . 95
5.3.2 Generalizing the problem . 96

xii

Contents

5.4 Conclusion . 97

6 Decision Exploration Lab: an exploratory environment for Decision Management Sys-
tems 99
6.1 Architecture . 99
6.2 Verbal mode . 100

6.2.1 Querying and filtering . 103
6.3 Visual decision exploration . 103

6.3.1 Dimensions view . 106
6.3.2 Analyzing Categorical Data . 106
6.3.3 Decision map . 108
6.3.4 Coloring . 110
6.3.5 Interaction . 110
6.3.6 Rule trigger view . 112

6.4 Visualization refinements . 114
6.4.1 Labels . 114
6.4.2 Scales . 119

6.5 Implementation . 126
6.6 Conclusion . 126

7 Evaluation 129
7.1 What does it take to evaluate an exploratory system for DMS 129
7.2 Data generation . 130
7.3 Preliminary user study . 131
7.4 Car insurance scenario . 133

7.4.1 Story 1: Why fewer than expected people are eligible 133
7.4.2 Story 2: Why expensive cars get low quotes 137

7.5 Conclusion and further evaluation . 138

8 Conclusion 141
8.1 Review of thesis contributions . 141
8.2 Limitations and future work directions . 143

8.2.1 DMS specific refinements . 143
8.2.2 Visualization refinements . 144
8.2.3 Collaborative analysis and knowledge engineering. 145
8.2.4 Time analysis . 145
8.2.5 Relational attributes . 145

8.3 Closing remarks . 146

List of own publications 147

Curriculum Vitae 149

A User Evaluation of the MCAView visual analysis tool 151
A.1 Preliminaries . 151
A.2 Way of working . 151

A.2.1 Introduction . 151
A.2.2 Data presentation . 151
A.2.3 Visualization presentation . 152
A.2.4 Assignment . 153
A.2.5 Experience sharing . 153

xiii

Contents

A.3 Assignment . 153
A.3.1 Q4: General questions . 155

A.4 Results . 155
A.4.1 Q1 . 156
A.4.2 Q2 . 156
A.4.3 Q3 . 158
A.4.4 Q4 . 159
A.4.5 Threats to validity . 163

Bibliography 165

xiv

List of Figures

2.1 Overview of the car insurance scenario . 8
2.2 A decision table the base premium of a car insurance. 11
2.3 Flow chart for the eligibility decision model. 12

3.1 VA systems for econmical problems. 22
3.2 Tableau based dashboard for health data. 23
3.3 Visualization of decision rules . 24
3.4 3D Matrix and scatterplot visualization for association rules. 25
3.5 3D Arena visualization for association rules. 26
3.6 Matrix visualization for association rules. 27
3.7 VA system to analyze epidemic counter measures results. 28
3.8 Formatting and syntax highlighting in IBM Operational Decision Manager. 28
3.9 Mechanical devices implementing Bertins permutation matrices. 33
3.10 Table lens . 34
3.11 Parallel coordinates for the Iris dataset, created with d3. 35
3.12 Dense pixel visualization in VisDB . 35
3.13 Fourfold display by Friendly of “hot-hand” data in basketball. 36
3.14 Mosaic displays for visualizing multiple categorical variables. 36
3.15 Parallel sets, showing a customer relationship management dataset 37
3.16 The contingency wheel by Alsallakh et al. showing a book rating dataset. 37
3.17 Dimensional stacking by LeBlanc et al. [1]. Image from [2] 38
3.18 Dimensionality reduction by principal component analysis. 39
3.19 Dimensionality reduction. 41

4.1 Visualizing an ontology with a treemap . 44
4.2 Visualizing decision logic with a treemap . 45
4.3 A strip treemap with recursion enabled . 51
4.4 Limitations for placing a chunk. 52
4.5 Functional view of the algorithm, showing dependencies among components. . . . 52
4.6 Stacking items in a chunk. 53
4.7 Four data independent phrasing strategies to create a space filling layout. 54
4.8 Various settings for the size functor. 57
4.9 Chunk scoring functions based on the aspect ratio of items. 58
4.10 A pivot treemap created using a pivot chunk scoring function and recursion. . . . 59
4.11 Chunk placement strategy examples. 60
4.12 Data independent and dependent spike phrasing strategies. 61

xv

List of Figures

4.13 Applying recursion for layout improvements and pivot layouts. 62
4.14 A rule trigger graph for two version of the car insurance Decision Model (DM). . . 66
4.15 Detail of the rule trigger graph for the car insurance DM. 67
4.16 Rule trigger graph for 1000 decisions. 68
4.17 Visualzing ontology change impact on decision logic. 69
4.18 Visualizing porting dependencies in a software system. 70

5.1 Income distribution for overall and sub-population. 75
5.2 Income distribution for overall and sub-population. 78
5.3 MCA visualization pipeline. 81
5.4 MCA visualization overview. 83
5.5 Dimensions view for the insurance dataset . 84
5.6 Projections view with attribute values. 86
5.7 Projections view with merged value cells. 87
5.8 The merge/filter view. 89
5.9 Merging states into three different groups. 89
5.10 Detailed view of projection legends . 90
5.11 Observations plot without and with selection. 91

6.1 Layered architecture of the Decision Exploration Lab (DEL) 100
6.2 The Decision Exploration Lab in verbal mode. 101
6.3 Decision details dialog showing the details of an individual decision. 102
6.4 The Decision Exploration Lab in visual decision exploration mode. 104
6.5 Interactive session with the decision map . 109
6.6 Interacting with the projection legends to see the spread of values. 111
6.7 Rule trigger view updated for a selection of decisions. 113
6.8 Possible positions for label placement when labeling point features. 115
6.9 Scatter plot of US cities data. 116
6.10 Calculating available lines of text in an inscribed circle. 117
6.11 Labeling results for two different datasets. 120
6.12 A scatterplot of file access times vs file size, containing 5,200 data points. 121
6.13 Various approaches for dual scale charts. 122
6.14 Different scales for scatterplot of file access times vs file size. 124
6.15 Solving clutter in the barycenter of MCA plots . 126

7.1 Projections view for the adult education dataset. 132
7.2 Details of the dimensions view showing the age and eligibility variables. 134
7.3 Interactive analysis of variables of interest. 135
7.4 Decision table for initial eligibility and high risk driver rules. 136
7.5 Car values correlated to quotes in an unexpected way. 137

A.1 User story - step 1 . 159
A.2 User story - step 2 . 159
A.3 User story - step 3 . 160
A.4 User story - step 4 . 160
A.5 User story - step 5 . 161
A.6 User story - step 6 . 161
A.7 User story - step 7 . 162

xvi

List of Tables

2.1 Relationship between users, tasks and our research questions. 18
2.2 Similarities between software engineering and decision modeling and automation. 19

3.1 The analytical tasks as identified by Amar et al. [3]. 32

4.1 Dimensions of the sequential, rectangular space-filling layouts design space. 50

5.1 Basic data types and their properties . 77
5.2 An example data space. 77
5.3 An example dataset . 78
5.4 Cross tabulation for the car type and car value attributes. 78
5.5 Indicator matrix encoding three attributes. 79
5.6 Data types for the US car insurance dataset. 83

6.1 An example Burt matrix for three variables. 107

7.1 Results of the user evaluation of the MCA visualization. 133

xvii

Listings

4.1 The chunking algorithm . 53
4.2 Basic layout algorithm . 55
4.3 Draw function implementation . 56
4.4 Elementary chunking functions . 58
4.5 Calculating score based on average and minimum aspect ratio 59
4.6 Pivot layout functions. 60
4.7 Hilbert phrasing function. 61
4.8 Layout function for hierarchical structures . 63
4.9 Recursive draw function for hierarchical structures 63
4.10 Structuring . 64

xix

Acknowledgments

Even though the journey towards this thesis was lonely at times, I have not been walking on
my own. There have been many people who have made this journey lighter, more interesting
and more exciting. Moreover, these people have kept me pushing forward, made me push my
boundaries and encouraged me not to give up.

My supervisors, Alex Telea from the university of Groningen and Thomas Baudel from IBM
France, have been instrumental for the development of my academic and professional capabil-
ities the last years. Alex has been supervising me first during my final master internship and
the last years during my Ph. D. Working with him was one of the best things that could have
possibly happened in the process of pursuing a Ph. D. He has teached and explained to me a
lot of things which would have been complete magic for me years ago. Thomas has been super-
vising me from the business side of things. His knowledge on decision automation, information
visualization and his reluctance to accept a world that is run by automated intelligent(?) systems
have truly shaped my thinking. What I appreciated even more was his constant gentle, though
persisting pressure to reach further, put the bar higher. You have made me push my boundaries
to a much larger extent than I would have done on my own. I also truly enjoyed the many, many
discussions I have had with both of you on research, life, the universe and everything. I also owe
thanks to Guy Melançon, who kindly agreed to arrange the French side of my research setup. We
had the pleasure to meet and exchange ideas, although not as often as I would have liked.

Research is always performed in a community. Therefore I would like to thank all reviewers
who have been reading and commenting on my work, mostly anonymous. In particular I would
like to thank the three reviewers of this thesis, prof. dr. J.-D. Fekete, prof. dr A. Kerren and prof.
dr. M. J. McGuffing. Their remarks and questions led to a large number of improvements of this
thesis.

There have been many colleagues at IBM that have provided me with invaluable input on
general context and background of decision management, technical issues, customer needs and
even code. In particular I would like to thank Patrick Albert, Pierre Chardin, Paolo Crisafulli,
Christian Deutsch, Adil El Ghali, Pierre Feillet, Laurent Grateau, Alain Neyroud, Pierre-andre
Paumelle, Jean Pommier, Christian de Sainte Marie and Nicolas Sauterey. Additionally, there
always has been a coming and going of Ph. D. students and interns who made life at IBM pleasant
by means of fun conversations, picnics and games of pool. So, thanks, Amina, Nicolas, Penelope,
Olva, Samir, Lexi, Pierre André, Alioune, Abdessamad, Valerio, it was really fun to have you
around.

Many friends and family have made our stay in Paris possible, easier and joyful, too many to
name them all. All those of you who have visited us, called us, send us postal cards, emails or
other signs of life, thank you. Two of you I want to thank in particular, as you basically became
part of our furniture: Luuk and Inge. Dad, Wim, Henk, you all have been a great help to get

xxi

LISTINGS

us settled in Paris. I would also like to thank the members of the Eglise Réformée Néerlandais
à Paris, who have welcomed me and Agnes with open arms from the very beginning. In partic-
ular, thanks to all members of “Kring Parijs”, I really enjoyed the monthly meetings and yearly
barbecues.

I would like to thank my parents in law, Piet and Marleen. You both have been of great
support over the years, even though I took your daughter to Paris. In particular I would like to
thank Piet. You have been a great inspiration for me and encouraged me to keep expanding my
knowledge.

Fifteen years ago I asked my parents why I would ever need lo learn German or French when
I knew that I wanted to pursue Computing Science. Now I know... and now I wonder why you
never used the rod on me at the time (Proverbs 22:15). It was because whatever path I would
chose, you would never and have not given up your loving support. Dad, mom, I dearly love
you! Finally, I’d like to dedicate this thesis to my wife Agnes. You would probably not believe
me when I say that this thesis would not have happened without you, but really, it wouldn’t. Life
is a wonderful ride with you on my side and provokes talents which I never expected to have.
Your love, your support, your patience and even you correcting me at times give brilliance to
every moment we are together, and make me long for home every moment we are apart. I dearly
hope to enjoy your companionship for many years to come.

Bertjan Broeksema
Paris September 29, 2013

xxii

Chapter 1

Introduction

It’s a mystery to me - the game commences
For the usual fee - plus expenses

Private Investigations, MARK KNOPFLER

The use of Information Technology (IT) to support enterprises in becoming more effective,
efficient and customer oriented has increased significantly the last decades. In the sixties

and seventies, centralized systems were developed and found their way in enterprises in the form
of mainframes. These systems enabled multiple users to send their enterprise critical tasks to the
mainframe. Additionally, scale enlargement could take place due to automated mass processing
of large amounts of data. In the eighties, personal computers became more and more common.
Business users were now supported individually and could structure and improve their business
activities by using spreadsheets, text documents and databases. Networking capabilities took a
large step forward with the speed increases of network traffic in the nineties. Sharing work
across business users by means of email and file sharing became ubiquitous. It made large scale
business-to-business trading possible and opened new ways for interaction between businesses
and customers.

One of the main challenges that businesses faces these days is the integration of business
strategy and goals with their IT-systems. This has led to the emergence of software systems that
operates on the intersection between business and technology. Various systems have been devel-
oped to model and automate business processes, handle business events and automate enterprise
decisions. Business Process Modeling software enables business users to gain understanding
of complex business processes. It allows them to reason about these processes, automate the
processes and better align them with business goals and client needs. Complex Event Process-
ing combines various sources of information streams in order to analyze and structure business
events and the business’s reaction to these events. A Decision Management System (DMS) allows
enterprises to model and automate their enterprise decisions.

With these developments, it also became clear that for agile and adaptive business automa-
tion, direct involvement of domain experts is crucial. As opposed to IT-departments which are
merely concerned with the technical aspects of IT, domain experts have a clear understanding of
their sector and the enterprise’s policies. Directly involving experts from sectors such as finance,
legal or marketing is of importance for a revenue generating, legal and targeted automation of
business. To decrease the implementation time of new processes and decisions and the adapta-
tion of existing ones, business automation software systems have become tools that are increas-
ingly put into the hands of such users. Effectively, one could say that business users became
programmers, though the underlying hardware of their ’programs’ is not a computer but the en-
terprise itself. Continuing this metaphor, business users also need to ’debug’ and analyze their
automated business processes. However, unlike in software engineering, the questions business
users deal with are open ended. Markets, regulations and business policies change all the time
and business needs are often not precisely defined. These considerations lead to the need for
new exploratory tooling that helps business users understand their processes and decisions, find
clues for improvements and new business opportunities.

2 1. Introduction

In this thesis we particularly focus on DMS. DMSs are applied to a wide range of domains
such as banking, retail and insurance. They help enterprises to make complex decisions in a con-
sistent and automated way, manage risk, reduce time-to-market and increase customer satisfac-
tion. One has to realize that many of these decisions involve actual money, e.g. loan applications,
insurance quotes, cross-selling offers, and are made in large volumes. Clearly, these systems can
have a huge financial impact, both on the enterprise and on society.

1.1 Automating business decisions

Enterprises make decisions all the time, both major (e.g. in which country to do business? Do
we start the development of a new product?) as well as minor (e.g. do we offer a customer
a discount? Is this transaction fraudulent?). Some of the decisions will be made only once or a
couple of times while others might be taken thousands of times a day. Each of the business critical
decisions that are taken stem from a business policy dictated by the responsible management.

Suppose an enterprise decides that each customer with a portfolio value above one million
should be contacted on a monthly basis. Although this is a sufficient clear policy in itself, it rises
various questions. What to do with the decision? How can management and the responsible
persons know that the policy exists? How can management know that this policy is enforced in
a consistent manner? It also brings up deeper questions such as: Is it the right decision? And, if
this decision changes, what is the impact of this change?

These questions pertain to the remark of James Taylor, stating that business decisions should
be treated as corporate assets [4, p19-20]. He continues to describe that corporate assets are
strategic, managed, visible, reusable and improving. An asset is strategic when it is considered how
it can be used to reduce costs, increase revenue and expand business. An asset is managed,
meaning that it is reviewed and improved on a regular base to be kept in good order. Assets
must be visible to management in order to be used correctly. They are normally not left idle
but reused and leveraged as much as possible. Finally, assets are improved constantly, thus in
the case of decision making the learning-improvement loop must be closed. Based on results,
decision outcomes are analyzed and improved.

DMSs are designed to meet these goals as they enable enterprises to model and automate their
decisions. With decisions being modeled in a central place, they become visible to management
and thus can be used as strategic tools. The decisions can be reviewed on a regular basis in order
to verify whether they are still aligned with the business goals. Each decision is made as a service
to all other business applications, ensuring that the policy is enforced consistently and that it is
reused throughout the application portfolio of the enterprise.

Let us come back to our former example of the portfolio value policy. These kinds of policies
are simple enough to be encoded in an executable format. A DMS enables this and Business
Process Management software allows for hooking the policy in the overall business process. Each
time the portfolio value of the customer changes, we have what we call a business case that
requires an action. This business case is passed into the decision service that was designed to
decide what action should be taken. The resulting decision flows back into the IT-infrastructure,
ensuring that the actual action is performed. In this case it could be the enabling of a monthly
email reminder, sent to the consultant responsible for dealing with the respective customer.

Although a DMS addresses many of the above questions, still important questions are left
open: How can management learn whether or not the right decisions are made and what happens
if a decision changes? How do customers with a portfolio value of more than a million develop,
given that they are contacted once per month? What would happen if they where contacted twice
a month or once each two months? Do we need to adapt the schedule of our manufacturing
process? Is there a problem with the medicine prescription of this patient? What price should

1.2. Thesis Problem and Approach 3

be offered to electricity buyers on a certain moment on the day? These questions are even more
urgent when decisions are taken at a large scale.

A wrong decision might not be harmful in an individual case, but when many of these wrong
decisions add up, they can pose great risks. Often it cannot even be known on forehand if a
decision is a good decision, such as in the case of eligibility. Only when new information comes in
over time, such as persons that where eligible for a loan who became defaulters, it becomes clear
that the decision was wrong. Learning about and understanding the causes of the aggregated
effects of these kind of phenomena are crucial in modern global economy.

1.2 Thesis Problem and Approach

This thesis focuses on the central problem of designing a system that allows business analysts
to understand the aggregated effects of massive amounts of decisions being made by DMSs.
Before we can introduce the main research question of this thesis, we first need to define the
datasets which together define the structure, logic and execution of automated decisions. A DMS
involves the management of large datasets of different kinds with strong relations to each other.
Specifically, these datasets consist of a Decision Model (DM) and a collection of decisions that
have been made over time. A DM models a business decision in an executable way by modeling
the business objects that are subject to the decision and the rules that describe how a decision is
being taken. We therefore have three related datasets of interest for a particular business decision:

1. Domain Model: description of the business domain. An ontology that describes the at-
tributes and allowed values of the instances that serve as input for a decision and instances
that represent the actual decision being made for a given input. The domain model is part
of the DM.

2. Decision Logic: In all generality this logic is a program. In practice it is a set of rules de-
scribing business policies, regulations and constraints. These rules define how a decision
is being made and what actions should be taken. They may be structured in control flows
and decision tables. The decision logic is part of the DM.

3. Decisions: Each decision being made results in the storage of three objects: a trace of exe-
cuted business rules, an instance of the Domain Model for the input object(s) and an in-
stance for the decision outcome(s).

The domain model and the decision logic are both part of the Decision Model (DM) and can
be analyzed statically (i.e., withouth any decision being taken). Making sense of and manipu-
lating such datasets already raises challenges when they reach over a few hundred artifacts, as
demonstrated by existing Semantic Web research [5]. In practice, a DM will have hundreds of
concepts (terms describing objects from the business domain) and thousands of attributes in the
domain model, thousands of rules that describe the decision logic and millions of executions.
Certain events, such as changes in regulations or changing physical circumstances, force enter-
prises to make changes to the DM’s of affected decisions. However, as pointed out by Taylor,
managing decisions means that supervision of decision takes place to ensure that improvement
and optimization of decisions are ongoing and proactive [4, p. 42]. Active supervision and un-
derstanding of the decision performance, enables an enterprise to pro-actively deal with risk and
changing markets, and to find new business opportunities. Summarizing the above, we can state
our central research question as follows:

4 1. Introduction

Research question: How can we support a business analyst in supervising automated decisions,
such that he gains a better understanding of the operating and effectiveness of these decisions?

To understand the operation of an automated decision an analyst must improve his insight
in the structure of the DM and the effect of changes. To assess the effectiveness of a DM the
analyst must understand if the aggregated results of many decisions actually lead to the expected
business performance. We further refine this research question into various concrete challenges:

Q1 How can an analyst gain insight in the overall structure of the domain model and decision
logic?

Q2 When a Decision Model is changed, how can a business analyst find out about the impact
of the change and whether there are related parts of the Decision Model that might need to
change as well?

Q3 What is the structure of the business cases and decisions? Are there correlations between
concepts, trends, outliers?

Q4 How do these concepts relate to the decisions being made?

Q5 Which parts of the decision logic are relevant for a given selection of decisions?

Q6 How can a business analyst find opportunities to enlarge the scope of decisions based on
captured data?

Q7 How can a business analyst determine the kind of changes that are needed to optimize the
business performance of a DM?

To address these problems, we base our research on prior work in information visualization,
visual analytics, software visualization, mathematics and statistics and business software to iden-
tify partial solutions that help solving stated challenges. We develop a number of generalizations
and improvements for visualization techniques involving high-dimensional categorical data in
general. Next, these improvements are integrated in a framework that supports the understand-
ing of automated decisions.

1.3 Thesis Contributions

The contributions of this thesis are as follows.

1.3.1 Analytics contributions

• Model assessment: We introduce a new and interesting problem domain from industry
to the InfoVis and VAST research communities, namely Decision Management Systems.
Specifically, we highlight the dual nature of the data that can be extracted from these sys-
tems. On the one hand we have the DM which represents a certain view on the business
reality that it tries to capture and react to. On the other hand we have an accumulation
of business cases which is a concrete view of what has happened until a certain point in
time. In the ideal case, what has happened matches with the expectations underlying the
DM, but this is unlikely to happen. The relation between explicit knowledge and facts (in
the form of business cases) backing up this knowledge, brings up interesting questions and
challenges that fit a Visual Analytics (VA) approach.

1.4. Thesis Outline 5

• Visual Analytics: We introduce the Decision Exploration Lab (DEL), an interactive and
integrated approach that enables querying and understanding of decisions. Interaction
and statistical techniques are added to enable gaining insight in the relation between the
business cases, decided actions and decision logic.

• Evaluation: We present the evaluation of our approach which was done to assess its oper-
ating and effectiveness. This evaluation consists of two parts. First, we did a preliminary
user study to evaluate our novel technique for exploratory analysis of multivariate categor-
ical data. Second, we evaluate our VA solution with two scenarios from the car insurance
industry.

1.3.2 Technical contributions

The development of DEL resulted in the contribution of various visualization and exploration
techniques for high-dimensional categorical data. These contributions can be summarized as
follows:

• A generic algorithm for rectangular space-filling layouts. We review various layout algo-
rithms in this category and extract design principles. Using these principles we construct
a generic layout algorithm that can be configured to produce a wide range of well-known
and new layouts. In addition we show how the complexity of this algorithm is linear in
most cases and quadratic worst case with certain configurations.

• We introduce a new interactive approach to analyze high-dimensional categorical data.
This approach is based on dimensionality reduction and provides various visual and inter-
active features to overcome the typical interpretation problems that come with dimension-
ality reduction.

• Two improvements for scatter plots that have a large number of points. We developed a
static labeling method which is able to label areas of a scatter plot in a meaningful way
without clutter and loss of information at the cost being able to link individual points and
labels. We also developed two methods to determine appropriate adjustments of the scales
for a scatter plot in order to reduce the influence of outliers to the visual appearance of the
plot.

1.4 Thesis Outline

CHAPTER 2 describes decision management systems in more detail. It introduces the important
concepts and the various technical artifacts that are available for analysis and the challenges that
these systems bring. This is followed by a discussion of the analytical requirements related to the
identified challenges.

CHAPTER 3 discusses related work in the three main areas that revolve around the application
domain of DMS and provide solutions for similar (sub)problems: Decison management systems,
program comprehension and visual analytics approaches.

CHAPTER 4 presents and discusses information visualization directions to solve the partic-
ular problem of this thesis. It presents methods to visualize both the domain model and the
business logic using treemaps. Treemaps proved to be an interesting research direction in itself
and resulted in a generic algorithm for space-filling layouts. Additionally, we present our work
in visualizing rule execution and visualization of the impact of changes to either the business
logic or the domain model. The chapter concludes with the observation that visualization of the

6 1. Introduction

available technical artifacts and/or data is not enough to solve stated problems and that analytics
is needed.

CHAPTER 5 starts with a discussion on two early approaches of applying analytics to decision
management systems based on serendipity. Next an exploratory VA approach is presented for
categorical data in general and business cases in particular based on multiple correspondence
analysis. This is followed by a discussion on and analytical approach for the analysis of business
rule triggering patterns.

CHAPTER 6 presents an integrated solution for the challenge we address and which allows
a business analyst to explore decision data. First, the overall architecture of the Decision Ex-
ploration Lab is discussed. This is followed by the presentation of the core components of the
system: the querying and filtering mechanism and visual decision exploration. The constructions
of this systems led to various refinements to earlier proposed sub-solutions, which are discussed
here as well.

CHAPTER 7 evaluates the system presented in CHAPTER 6. To this extent we first discuss
what it takes to evaluate a solution for DMSs. This is followed by two scenarios from the car
insurance industry that demonstrate how the system can be used to understand the functioning
of a DMS.

CHAPTER 8 concludes the thesis by summarizing the contributions of this thesis and outlin-
ing open challenges with respect to the understanding of the functioning of DMSs.

Chapter 2

Decision Management Systems

Waiting hurts. Forgetting hurts. But not knowing which
decision to take can sometimes be the most painful.

MI VIDA, JOSÉ N. HARRIS

D
ecisions are becoming an increasingly important asset in modern business. In highly com-
petitive complex and rapidly changing markets, it is important that business decisions are

traceable and adaptable [6, 7]. Decision automation is one approach to reach those goals [8]. The
value proposition of a Decision Management System (DMS) is that it separates the business logic
from the enterprise applications implementing business processes. It encompasses encoding of
business knowledge in an executable Decision Model (DM). As opposed to the more traditional
approaches, these models may not be created and maintained by IT-departments, but by business
analysts, or more generally knowledge engineers.

DMSs are commonly used in combination with Business Process Modeling systems. The latter
are used to model and track the end-to-end business process, while DMSs are used to model and
automate individual decisions that are part of the overall business process. From a high-level
view a DM can be thought of as a function that takes an input and results in an action.

This chapter gives a high-level overview of DMSs, based on IBM’s Operational Decision Man-
ager (ODM) [9]. However, the presented concepts apply to similar systems such as Drools [10]
and FICO Blaze Advizor [11] as well.

2.1 Applications of DMSs

Not every decision lends itself for modeling in a way that allows execution. The decisions in-
volved when designing a new building, for example, are highly specific and often one-time deci-
sions. Decisions suitable for automation with a DMS have different properties, the most impor-
tant being that they are highly repetitive. They also slightly change on a frequent basis due to
events such as changes in regulations or customer preferences. As a result, DMSs can be found in
a wide range of applications such as health care, tax processing, insurance and fraud detection.

When prescribing drugs to a patient a number of things must be checked in order to make
sure that the prescribed drugs does not cause any harm. Questions like: Is the dose not too high?
Does the prescribed drug interplay with other drugs that the patient is currently using? And
has the patient any allergies? must be answered properly before the drug is actually prescribed.
These kind of questions can by directly answered by a human specialist but are prone to human
error. Systems that have access to a patients dossier can answer these questions automatically
and raise a warning to the right persons.

Reducing fraud is an ongoing topic for financial institutes such as tax authorities and banks.
Often data mining is used on past data to learn about the properties of fraudulent transactions.
Based on these findings decision rules can be found that help to identify new transaction that
have a high probability of being fraudulent. This helps focusing the fraud detection and research
resources and helps reducing fraud in a more efficient way.

8 2. Decision Management Systems

Another typical use case for DMSs is the insurance industry. Based on customer input, an
insurer has to find a balance between the risk this new customer would bring and the offer he
has to make in order to convince the customer to take the insurance. This balance often results in
a eligibility check and in a quoting decision. The former decides whether or not the person can
become a customer, while the latter decides the quote and possible deductions and surcharges
that make up the final quote.

In order to make our discussion, with respect to the problems we want to address, more con-
crete, we use a scenario from the car insurance industry. This scenario will serve as a running
example through the remainder of this thesis. Let us now first consider this scenario, the pro-
cessing of car insurance requests, in more detail.

Figure 2.1: Overview of the car insurance scenario: A request for a car insurance, containing in-
formation about the driver, the vehicle and the requested insurance is processed by two decision
models (DM 1, DM2) resulting in either manual processing, a rejection or a pricing offer.

2.2 Scenario: Car insurance request processing

The scenario describes the business process of determining the eligibility of a person and the
quote of the insurance. Given some customer input, an insurance quote is calculated or the
customer is notified that he is not eligible. This process is supported by two decision models
that deal with risk management (DM1) and pricing (DM2). Figure 2.1 gives an overview of this
scenario using the Business Process Modeling Notation (BPMN) [12].

Both models have as input an AutoQuoteRequest object, which details information about the
driver, the car and the requested insurance. This object is created by a front-end such as a web-
form that requires the customer to fill in the required information. The risk management decision
model DM1 determines if a driver is eligible for an insurance. Its output is one of the following:

• Eligible: the system could automatically determine that an insurance can be given.

• Ineligible: the system found reasons to deny the request.

• Manual processing: the system could not take a decision, and a human operator should
intervene.

This model represents a risk trade-off. If too many drivers, having a high chance of being
involved in an accident, get an insurance, the enterprise will lose profit due to the high amount
of claims. On the other hand, when too many drivers are rejected it might not be profitable at all.
The goal of decision automation in this case is to make the best risk trade-off in a consistent and
automated way, therefore the number of manual processed requests should be minimal.

2.3. Decision Models 9

Once DM1 has determined eligibility, the pricing decision model DM2 is triggered. This DM
calculates the final quote of the insurance. First it determines a base premium based on the value
of the car, the requested deductible and the insurance type. Next it determines all the discounts
and surcharges based on both properties of the car and of the customer. For example, a car
with anti-lock brakes will get a 5% discount. When the base premium, discounts and surcharges
are determined, the final quote is calculated and an AutoQuoteResponse object detailing all this
information, is returned. The pricing model represents a trade-off as well. On the one hand, the
prices should be competitive with respect to other insurers in order for customers to accept the
offer. On the other hand, the prices should cover the expected claims, business running costs and
generate profit.

2.3 Decision Models

A DM describes both the business domain and the business logic, thus consists of two parts. The
first part models the business domain of the decision. It describes the concepts that are subject to
the decision and those which represent the decision outcome as well as the the concepts’ prop-
erties, or attributes. The second part of a decision model is a program that, given an instance
of the domain model as input, generates the output, i.e. decision. Both the input and output
parameters of a DM are described by the domain model.

2.3.1 Domain model

A domain model defines the objects, their attributes and the attribute types of the objects that
are subject to the decision. As such it serves as a type system for the business logic. It can be
described using various techniques such as XML-Schema, relational database schema’s or using
an object oriented language such as Java. Chniti et al. presented the integration of semantic web
technologies in DMSs [13]. An ontology, in information science, represents a set of concepts and
their relations in order to support reasoning. We will use the term ontology to refer to the domain
model and the concepts that it represents even though it might technically be implemented using
different techniques.

In our scenario both DMs use the same ontology. This ontology describes concepts such
as AutoQuoteRequest, Driver and V ehicle. For each of these concepts it also describes the
properties or attributes such as: AutoQuoteRequest.driver, AutoQuote Request.maxPriceLimit,
Driver.age and V ehicle.hasAntilockBrakes. ODM also allows the business analysts to specify
verbalizations for each of the concepts in the ontologies, e.g.:

AutoQuoteRequest . dr iver : the dr iver of the request
Vehic le . hasAnti lockBrakes : the v e h i c l e has a n t i l o c k brakes

This allows writing sentences in controlled natural language [14] for an ontology. Concepts of
an ontology are structured in packages, similar to Java classes. Ontologies can therefore be con-
sidered to have a hierarchical structure following the natural grouping of packages, concepts or
types and attributes. Additionally, concepts in the ontology can refer to each other. For example,
the AutoQuoteRequest.driver attribute is defined by the Driver concept. Therefore, an ontology
is better described using a compound tree structure.

Depending on the context, these ontologies can become large and therefore hard to main-
tain. One typical task in maintaining ontologies is to analyze the structural relationships and
coupling between concepts and attributes. In the context of semantic web techniques, ontologies
are described with the Web Ontology Language (OWL). A well-known platform for ontology
modeling and knowledge acquisition is protégé [15, 16]. Protégé has a number of plugins that

10 2. Decision Management Systems

visualize artifacts of an ontology [17]. Given the high similarity with traditional type systems of
programming languages, a way to visualize ontologies is to use UML class diagrams. This might
be applicable for relative small ontologies such as the one in our scenario, which consists of 22
objects with a total of 94 attributes. However, dataset sizes in industrial applications of DMSs are
much larger, containing hundreds of concepts each having tens of attributes. A more successful
approach could be the usage of the edge bundling technique by Holten [18]. This would support
the analysis of coupling between concepts in the ontology.

2.3.2 Business logic

The business logic in a DM prescribes how, given the input parameters, the output parameters
are determined. In all generality, the decision logic in a DM is a program. Because business
policies can typically be expressed using IF � THEN rules, they lend themselves very well
to be modeled with expert systems. Overall, the decisions taken by these systems are complex
and span multiple domains (e.g. law, finance or marketing). However, the logic used in these
decisions is often simple. Even though the logic of individual policies might be simple, expert
systems such as DMSs are Turing complete, therefore there is no loss of generality.

Business policies are typically expressed as logical conditions that are linked to an outcome
when the conditions are met. This property makes business rules suited to express them using
a forward chaining expert system. Forward chaining is a computational model that allows for
declarative expression of the business logic. In a business context this gives the advantage that
the focus can be primarily on the business policies without too much burden of technical details
related to programming such as control flow. Because the lack of control flow in declarative
languages, the order in which rules are executed is not described either but deduced based on
the input, logical conditions and the actions.

Business logic is described by a set of production rules, which in ODM can be represented
either with IF � THEN statements or with decision tables. Rules have unique identifiers and
are structured in packages. Production rules have a precondition (IF statement), and an action
that is executed when the precondition is met (THEN statement), as in the following example:

IF
the v e h i c l e has a n t i l o c k brakes

THEN
add a 5% discount to the quote , reason : "Anti-lock Brakes Discount" ;

Both the precondition and the action can have an arbitrary amount of elements, allowing for
the composition of more complex rules such as:

IF
a l l of the fol lowing condi t ions are t rue :
� the age of the dr iver i s between 18 and 21
� the number of a c c i d e n t s the dr iver has been involved i s a t l e a s t 1
� the number of t r a f f i c t i c k e t s the dr iver has rece ived i s a t l e a s t 1

THEN
add a $8 surcharge to the Auto Quote Response ,
reason : "Young driver surcharge" ;

As stated before, production rules can be represented in ODM using decision tables, as shown
in Fig. 2.2. The columns with a white background represent the preconditions and the column
with the gray background the action, of which there can be more than one as well. Internally,
each line of a decision table is represented as an individual production rule. For example the first
line of the decision table in Fig. 2.2 could be written, using the natural language representation,
as:

2.4. Decision execution 11

Figure 2.2: A decision table to determine the base premium of an insurance based on the car value
and the deductible.

IF
the value of ’ the vehic le ’ i s more than $0 and at most $5000

AND the deduct ib le of ’ the coverage ’ i s $250
THEN

s e t base premium f o r ’ the coverage quote ’ to $43

Decisions tables are basically a convenient way to specify decision trees without having to
write a large number of rules manually, thus they structure the decision logic in a compact way.
More importantly, they are a way to treat numerical input variables, such as the value of a vehicle
in this particular case as ordinal variables. The decision table in Fig. 2.2 treats the numerical
value attribute of the Vehicle concept as a nominal variable with six categories. The boundaries
of these categories are determined by the business analyst based on experience and analysis of
the business domain.

Although the forward chaining execution model fits business policies, for modeling a com-
plex decision it is still sometimes convenient to have some control flow. It can be considered
part of the business knowledge that a complex decision is being split up in several steps. For
example, an insurance quoting decision could first determine the base premium, next determine
the adjustments, followed by a calculation of the final quote. Modeling this order explicitly helps
retaining insight in complex decisions that would have been hard to retain when the full quot-
ing calculation was just modeled by a set of rules and decision tables. Control flow diagrams
allow the user to make explicit how a decision is taken. These diagrams allow business users to
articulate how multiple subsets of rules are orchestrated to make the decision. These subsets of
rules typically deal with individual topics in the decision such as base quote, surcharges and dis-
counts. An example is shown in Fig. 2.3, which depicts the control flow diagram for the eligibility
DM. Each flow task represents either a single rule or a selection of rules. The High-Risk driver
flow task for instance, is implemented by four decision rules and a decision table containing an
additional three rules.

In this thesis, we work with a simplified domain model and decision logic. That is, the de-
cision model we use does not represent a real decision model that is used in production. We
reduced it in size, both in terms of domain concepts and decision rules. This simplified model is
sufficient to present all structures that are part of a DMS. Yet, using a simplified model makes it
easier to present all required concepts.

2.4 Decision execution

Rule execution engines are responsible for making an actual decision. These engines are typically
wrapped in a service oriented architecture to provide a decision service to the other business
applications in an enterprise’s IT environment. Each time a decision service is called, the rule-

12 2. Decision Management Systems

Figure 2.3: Flow chart for the eligibility decision model.

execution engine performs the decision logic for the given instances of the input parameters
of the DM. For completeness, we note that such instances are also known under the name of
individuals in artificial intelligence and observations in statistics.

Given an instance, the engine determines which rules need to be triggered, and in which
order, to reach the final decision. To this end, rule execution engines use, like forward chain-
ing expert systems, inference algorithms based on variants of RETE or TREAT [19, 20]. These
engines have a working memory in which the input instances are injected. They evaluate the
IF-statement of each rule for the objects in the working memory in order to determine if the rule
must be triggered. When a rule is triggered, the action part results in the modification of ob-
jects in working memory or the creation of new objects. As a result rules that where until now
discarded for execution might again become candidates for being triggered.

As noted in Sec. 2.3.2 the order in which rules are applied can be specified using control flow
diagrams. When each rule in the DM is specified by a single flow task, the order of execution
is fully defined by the control flow diagram. However, this is typically not the case, both due
to the large number of rules in a typical DM and due to the existence of decision tables. A
flow task typically is specified to apply a selection of rules which are either explicitly specified
or by means of selectors (e.g. all rules in the insurance.eligibility.HighRiskDriver package:
insurance.eligibility.HighRiskDriver.�).

The exact selection and order of execution of rules for a particular input instance is therefore a
side-effect of the rule execution engine. When testing a new or changed DM before deployment,
this order can be of importance. In particular when a DM gives unexpected decisions with a test-
dataset for which the expected decisions are known. However, from a business perspective this
order does not reflect a particular business meaning as long as it results in the expected decision
outcome.

After each execution of a decision, two kinds of data are logged in the operational data store
of the DMS. First, the instance data for both the input parameters and the output parameters of
the DM are stored. Second, the list of rules that were triggered to reach the actual decision are
also stored.

2.5. Modeling business activity 13

2.5 Modeling business activity

Decision automation is a means to react in an automated way to events that relate to the business.
A car insurance is requested, a credit card transaction is made, a package is received and so on.
In order to react in a rational way to these events, information which is deemed relevant must
be captured. Which information is being captured is specified by the domain model (Sec. 2.3.1).
Clearly, the full complexity of reality cannot be modeled and this is not what business analysts
strive for when they construct the domain model. Using their knowledge about the domain,
business policies and regulations, they chose what gets modeled by the domain model and what
is left out. Information might be left out of the domain model because it is deemed irrelevant,
may not be captured due to regulations, is overlooked or not known about.

By writing control flow diagrams, decision tables and business rules the business analyst
models the business logic (Sec. 2.3.2) which determines how is dealt with a particular event. This
business logic is restricted by the domain model in what can be reasoned about. That is, a rule
can only distinguish between males and females when the gender of a person is actually captured
by the model. Rules deal with both constraints that are external to the enterprise and the policies
of the enterprise itself.

External constraints are those that the enterprise must adhere to without being able to influ-
ence them in most cases. These constraints include for example regulation with respect to the
domain of business and physical constraints. An example of such constraints is that the deci-
sion logic is not allowed to discriminate on race, gender or religion. Anoter example of such a
constraint, is that a package can only be send by airmail from a certain city if there is actually
an airport in this city. When reality changes (e.g. new regulations are put in place), these rules
must be adapted accordingly. Like with the domain model, not all external constraints will be
captured by the business logic.

For the rules that encode the business policies the situation is different. These policies reflect
how the enterprise balances its risks and business goals. The policies are based on experience
of business analysts, analysis of and assumptions about the business domain. Thus, production
rules that implement business policies encode assumptions about reality, such as the following
rules:

IF
the dr iver has been caught f o r dr iving under i n f l u e n c e

THEN
s e t the s t a t u s of the insurance request to i n e l i g i b l e

IF
the dr iver has more than four speeding t i c k e t s

THEN
s e t the s t a t u s of the dr iver to High Risk Driver

The underlying assumption of the first rule is that it is never a good idea to sell an insurance
to someone who has been caught for driving under influence. For the second rule the underly-
ing assumption is that four speeding tickets is the limit to mark a driver as risky that results in
the best balance between risk and business performance. Unlike rules that encode external con-
straints, these rules can be changed at any time. Changing these kind of rules is a way to reach
a different balance between risk taking and business performance. This kind of adaptive control
helps an enterprise to keep its strategic advance and to adapt to changes in the market.

With complex models, consisting of hundreds of concepts in the domains model and thou-
sands of rules several problems arise:

1. It is very hard or even impossible to know if all these assumptions are correct.

14 2. Decision Management Systems

2. The interplay between these assumptions and the external constraints as encoded in the
business logic becomes more complex and consequently harder to fully understand.

3. It becomes harder to determine if information and logic that was not modeled should be
included after all.

Over time, decisions are being taken with these models resulting in a gathering of facts that
can be used to analyze and verify above mentioned assumptions and interplay. These decisions
are taken out of human sight on a massive scale, millions of times a day sometimes. As a result,
aggregated effects can have a huge impact on the business performance or can result in a huge
risk. When for example a decision involving a financial transaction results in a one cent loss for
each transaction, the result loss is enormous when this decision is taken hundreds of thousands
times a day. Another example is when the risk limits in a loan application decision are almost
but just not reached by a majority of the applications. As a result there will be more defaulters
than expected in the end because many of them are so close to the risk limits. The problem we
try to address with our approach generalizes the above observations, and can be summarized as
follows: How can we support the exploration and understanding of how the reality (as captured
by the decision model) diverges from the reality encoded by actual decisions taken over time?

2.6 Analytics requirements

In order to steer the solution for the above stated problem in the appropriate direction and eval-
uate the results we need to define the scope of the problem we address. As outlined in [21, Ch.
8], this scope is defined by the targeted users, the tasks that should be supported and the data
available for analysis.

In itself, a DMS is just a software system that is not designed for one particular business area.
Its goal is to enable enterprises to model their decision logic, whatever the domain is. Thus, one
can find these systems in various business domains such as health care, finance and insurance
with different goals such as improving efficiency, reducing fraud and increasing sales. Therefore
a careful discussion of the above mentioned ingredients of the problem scope is required.

2.6.1 Users

When looking at DMSs we broadly distinguish three kinds of people working with these sys-
tems: software engineers and architects, integrators and business analysts.

Software engineers and architects work on the actual implementation of DMSs. They gen-
erally have only a very high-level understanding of the possible application domains. Their
concerns relate to implementation details of the theoretical foundations of DMSs and software
engineering related issues such as the performance and maintainability of the system.

Integrators guide the process of integrating a DMS in a enterprise’s IT infrastructure. Inte-
grators have a reasonable deep understanding of the technical details and limitations of a DMS.
They understand the role of a DMS in an enterprise in more details. Additionally they have a
good understanding of the particular application domain, though not in such detail that they can
model all the business logic themselves. Their main concern is the connection of the DMS with
the other critical components of the IT infrastructure. Eaxmples are, where does the DMS get its
inputs from and which systems are notified once a decision is being taken such that it actually
results in an action.

2.6. Analytics requirements 15

Business analysts have a deep understanding of the particular application domain, related
regulations and business policies. They use their specific knowledge to model both the domain
and business logic, a process also known under the name knowledge engineering. They are
concerned with keeping the business adhere to local and national regulations, optimizing the
business performance and at the same time reduce risk. Following the discussion earlier in this
chapter, it should be clear that business analysts are the users targeted by our work. It should be
kept in mind that, although we limited the target users to business analysts we still deal with a
broad group of users. These analysts work, as mentioned before, in different domains and have
different competences (marketing, finance, risk-management). As a result we should expect a
broad range in the level of skills related to analytical methods and tooling used by these analysts.

2.6.2 Tasks

Introducing a DMS into an enterprise IT infrastructure brings a whole range of new tasks and
concepts into the scope a business analysts. Some of these tasks will be straightforward and easy
to understand while others might be more foreign to the business analyst.

Authoring and maintenance: The first task an analyst is confronted with is the authoring
and maintenance of the decision models for the automated decisions. This consists of modeling
the business domain and defining the business logic using control flow diagrams, decision tables
and business rules. Depending on the scale of the enterprise, authoring might include access
management as well. That is, global business policies are managed by different analysts than
local or regional policies. Also different areas of expertise (legal, marketing, risk management)
might managed by different analysts. In both cases analysts are only allowed to access parts of
the DM that involve their responsibility and expertise. Finally, the DM will change over time as
a result of changing regulations or business policies, requiring version management.

Monitoring: Once a DM is put in production its performance needs to be monitored. A busi-
ness analyst is not mainly interested in the technical performance of a DMS but in the business
performance resulting from the decisions being made by the DMS. This business performance is
typically expressed in terms of Key Performance Indicators (KPIs). KPIs are metrics calculated
over the decisions. These can be simple metrics such as the total number of eligible insurance re-
quests. Sometimes they involve more complex calculations such as the expected revenue which
is based on the quotes of sold insurances minus a risk factor times expected damage. Both the
risk factor and expected damage come from statistics gathered by the enterprise. Based on ex-
perience and business policies, limits will be set for each KPI. These limits can represent both
business goals that should be reached within a certain time-frame or border values that should
not be exceeded. An important observation with respect to these limits is that natural common
sense constraints have to be taken into account. For example, naively optimizing a decision for a
particular KPI, will lead to decisions that are not optimal in the long term. When optimizing for
revenue one could simply increase the price of the product. However, this will likely result in a
lower number of sold products with the obvious negative impact on revenue. Weighing trade-
offs with respect to these limits involves common sense and the expertise of domain experts.

Troubleshooting: From time to time it is necessary to investigate a particular decision. For
example, a customer might call that his insurance application got rejected while according to the
policies he should be eligible. Or the analyst has learned that the business performance is unex-
pected with respect to certain sub-population and wants to understand why the DMS behaves
like it does with respect to this population. In both cases the analyst needs to find a particular
or a specific selection of decisions and dive into the details of these decisions. This troubleshoot-

16 2. Decision Management Systems

ing might go as far as stepping through a single decision and inspecting the internal state of the
working memory in order to detect why the DMS produces the unexpected result.

Simulation and optimization: This can be considered one of the most important tasks of an
analyst. Based on his experience and gathered data he will set up simulations that let him deter-
mine the best values for limits in decision tables and business rules. These simulations involve
comparing the results of different versions of a DM with the same input data.

From these high-level tasks we can extract the following analytical tasks that we want to
address with our approach:

T1 Gain insight in the static structure of a DM.

T2 Create selections of decisions for performance monitoring, validation, auditing and testing
purposes.

T3 Understand correlations between input data and decisions.

T4 Verify expected and discover unexpected functioning of the decision system.

T5 Find KPI-related opportunities for improvement of existing decisions.

T6 Inject common sense and external knowledge in the discovery process.

2.6.3 Data

A DMS is a complex software system that comprises a multitude of components each of which
produces a number of artifacts available for analysis.

User management: The amount of control a business analyst has over the DMs of an enter-
prise is depending on his specialties and responsibilities. Typically a DMS can be configured
for multiple users and assign rights to these users. This allows for tight control who can read
and modify which parts of a DM. The resulting artifacts include user details and access rights.
Analysis of this data could result in various insights. It can be used to find the analyst who is
responsible and has particular knowledge about a given topic. More interestingly, it can be used
to create a map of how knowledge is spread over the analysts: If there is one analyst is respon-
sible for most of the DMs, then he is a potential single point of failure. When on the other hand,
access (and therefore knowledge) is equally spread over the analysts of the enterprise, this risk is
mitigated.

Authoring: This component supports the main activity of users of a DMS: writing rules.
It provides several kinds of editors to model the domain and enter business rules in the forms
discussed in Sec. 2.3.2. At a lower level there are Application Programming Interfaces (APIs)
available to parse these rules, used in the editors for features such as rule checking and auto-
completion. The artifacts related to this components are the domain model and the rules specified
in domain specific languages. Analysis of this data could help understand the impact of changes,
i.e. when I change an attribute of a particular type in my domain model, which rules are affected?

Version Control: For various reasons changes to a DM need to be traceable. In some contexts
audits on DMs are performed to verify conformance with regulations. When various versions of
a DM are used during the period for which the audit is performed, a non-conforming decision

2.6. Analytics requirements 17

must be traced back to the actual DM that was used to make the decision. Also in cases of trou-
bleshooting it might be required to analyze a decision with a specific version of a DM. In order to
find the analyst that is accountable for a particular version of a rule, each change to a rule must
be linked to the author. The artifacts related to this component are the typical version control
system data: change set, author and time-stamp. Analysis of these artifacts can give insight in
how a DM has evolved over time and who have been contributing to which parts of the DM.

Decision Execution Engine: The execution engine performs the actual decision. It loads the
DM and processes the input parameters in order to set the output parameters to correspond-
ing values. An Integrated Development Environment (IDE) tailored for DMSs provides step-
debugging a decision execution. In production the engines will be optimized in order to be able
to process large volumes of decisions. The artifacts resulting from a single execution are instances
of the domain model for both the input and the output parameters of the DM and an object that
contains a list of the triggered rules. For a single execution the artifacts do not provide much in-
formation. At best they can be used to troubleshoot a particular decision but to really understand
why the execution gave the unexpected result the decision will have to be executed again in a
debugging environment.

Logging: The decision execution engine is only responsible for performing the decision. In
principle the software stack can be configured to emit an event containing the decision outcome
and then remove the instance data from memory. For auditing, troubleshooting and analysis
purposes this information needs to be stored though. The artifacts of this component therefore
consist of an accumulation of decision execution data, i.e. instances of the input and output pa-
rameters and an execution trace. This data is serialized into a database.

Scale: Ontologies of a DM are complex, they consist of large amounts of concepts, which are a
mix of categorical, numerical and temporal variables. Moreover, decision automation is usually
applied in areas that have a high throughput. This leads to a large collection of facts with a high
complexity that has a strong relation with the business logic. For instance, the above described
scenario has the following metrics. The ontology for the Decision Models consists of 22 objects
with a total of 94 attributes. The associated decision logic has 166 production rules. As input-set
we used a sample of 100000 insurance requests, consequently resulting in 100000 decisions for
DM1 and about 80000 decisions for DM2.

Dataset sizes in industrial applications of DMSs are much larger. For instance, IBM domain
experts have been applying decision management in various commercial contexts such as the
loan and credit card industries. A typical use case in the loan industry has a decision model
which consists of 100 concepts with an average of 20 attributes per concept. The business logic
in this model is described by 2600 production rules. The throughput for this decision service is
in the range of hundreds of executions per second. The IBM credit card decision model has 1300
concepts. For this model, multiple rule-sets are used, each ranging between 10000 to 20000 rules.
The throughput of the decision services in this case is of 2400 decisions per second on average,
with peak days of 55 million decisions. With these large amounts of decisions that are taken out
of human sight, aggregated effects can easily start happening and go undetected.

These data sources form a heterogeneous set containing large amounts of data related to the
structure, evolution and functioning of a DM. In this thesis we are focusing on the structure and
functioning of DMs and will therefore mainly involve the following three data sources:

DS1 Decision model: The ontology and production rules operating on this ontology that de-
scribe how decisions are made.

18 2. Decision Management Systems

Users \Tasks T1 T2 T3 T4 T5 T6
Software engineers
& architects

Integrators Q1, Q2 Q5
Business analysts Q3, Q5 Q3, Q4 Q3, Q4 Q3, Q4, Q5 All

Q6, Q7 Q6, Q7 Q5 Q6, Q7

Table 2.1: Relationship between users, tasks and our research questions.

DS2 Decision instances: Instances of the ontology for which a decision has been made accord-
ing to the decision model.

DS3 Decision execution traces: A trace of triggered production rules for each decision.

2.6.4 Relation to research questions

We now have identified possible users and also the tasks that we want to support. The number
of challenges to solve is vast and we cannot address them all in within the scope of this thesis. In
table Table 2.1 we lists in each cell the challenges that we outlined in Sec. 1.2, which are (partly)
addressed when performing the corresponding task. From the table it is clear, that we focus our
research mostly on tooling for a business analyst, who is interested in optimizing the business
performance. However, some of our work is also useful for integrators who are, among other
things, concerned with the run-time performance of DMs. The table does not sketch the full
extent of the challenges related to DMS, but it marks the scope we try to address in this thesis
and illustrates the fact that this scope part of a broader problem domain.

2.7 Similarities and differences with program comprehension

From the above discussion on the scope of our problem domain in terms of users, tasks and
data we see that this problem domain has quite some similarities with the domain of software
engineering in general and program comprehension in particular. By program comprehension,
we understand here the entire set of activities performed by a software engineer for gaining
knowledge about the structure, behavior, and evolution of a computer program [22]. Table 2.2
gives an overview of the most clear similarities.

Besides these similarities, there are also some important differences. First, tools such as ver-
sion control systems, integrated development environments, debuggers and profilers belong to
the standard toolset of most software engineers. Such tools provide well-delimited and well-
specified functionality which is closely bound to the actual task. For most business users many
of these tools and concepts are foreign. In addition some of these tools (such as version control)
are seamlessly integrated in decision management systems and therefore likely not understood
as clearly separate concepts.

Secondly, performance has different meaning in both contexts. From a software engineering
side, performance is typically related to the actual runtime performance of a software system. For
example, in case of a DMS a software engineer would be interested in the number of transactions
that can be processed by the system. A business user is interested in the business performance,
such as the number of ineligible applicants and the number of insurance offers. In addition to
that, additional information relating to the business performance might become available later:
An accepted loan resulted in payment issues after some time or the number of claims related to
a sold insurance.

2.7. Similarities and differences with program comprehension 19

Software engineering DMS
Tasks

Software engineers write code, Business analysts write domain
including classes that model the models and business logic to
problem and control flow to get automate business decisions.
the expected functioning.
Software engineers use version control DMSs provide version
systems to keep track of the programs control for decision models
evolution. for accountability and

auditing purposes.
Software metrics are extracted and KPIs are calculated and
monitored over time for software monitored to maintain an
quality purposes. acceptable service level.
Debuggers are used to troubleshoot Decision executions are debugged
malfunctioning of a software system. to understand why a faulty

decision was taken.
Profiling tools are used to analyze There is a need to understand the
run-time performance of software resulting business performance
and to find areas in the software related to automated decisions.
that should be improved.

Data
Access to software repositories is Access to decision models is
usually managed on a comitter base. managed based on responsibilities.
Source files structured in Ontology, business rule and rule
directories. flow representations stored in

directories.
Detailed information of who changed Detailed information of who
what and when in VCS. changed what and when in VCS.
Compiled executables that can be Execution engine that can be
tooled to log program execution tooled to log decision execution
traces. traces.

Table 2.2: Similarities between software engineering and decision modeling and automation.

Finally, even though software engineering problems can be complex and require advanced
tooling, in the end many of the questions pertaining maintenance activities throughout its life-
time are well defined. When a software system is developed, the development is based on re-
quirements and at the end of the day software engineers want to know if the requirements are
met. Still, the requirements may be ill-defined but this is a problem that is not so much related to
software engineering itself but to the requirement engineering process. As we have detailed in
Sec. 2.5 a DM models both well understood constraints as business policies that are expected to
give the right balance between the various business goals. Consequently, the process of under-
standing if the balance is met, if there is room for improvement and understanding deviations
from the expected functioning is an exploratory process involving open-ended questions.

In the domain of software engineering, the field of software visualization evolved, which
visualizes structure, behavior and evolution of software [22]. Various exploratory systems have
been devised in order to address a broad range of software engineering related problems outlined
above. In the context of DMSs we have, like in the software engineering domain, a heterogeneous
set of data sources. The similarities with the software engineering domain, together with the

20 2. Decision Management Systems

observation that, in the domain of DMS, questions are more open-ended and require common
sense and external knowledge, seems to suggest that a Visual Analytics approach is appropriate
for the problem at hand.

2.8 Summary

In this chapter we have introduced decision management systems. These systems are suitable for
automating highly repetitive enterprise decisions. Throughout this thesis we use as an example
of such a decision, eligibility for and quoting of car insurances. A decision model consists of
a domain model, which describes the concepts, and the decision logic, which describes how
a decision is taken for a given business case. We have argued that a decision model cannot
model the full complexity of reality and that therefore, a divergence might take place between
the expected functioning of a DM and the actual results of decisions taken over time. We also
have pointed out the similarities of comprehension tasks in the context of DMSs with program
comprehension tasks. In the next chapter we review relevant literature in the fields of decision
support, program comprehension and visual analytics

Chapter 3

Related work

I go checking out the reports - digging up the dirt
You get to meet all sorts in this line of work

Private Investigations, MARK KNOPFLER

I
nformation visualization and Visual Analytics (VA) have become a field of research with a
solid body of knowledge [23, 24, 25, 26, 27]. However, as we have seen in CHAPTER 2, our

problem is much wider than just the need for visualizing a certain dataset. Decision automa-
tion has close ties with artificial intelligence on the one hand and decision making on the other
hand. We also showed in CHAPTER 2, that on a technical level there are many similarities with
software comprehension tasks. In this chapter we will therefore review relevant literature on
decision support, program comprehension and visual analytics tools and techniques involved in
understanding the structure, behavior, and evolution of such systems.

3.1 Decision Support

Decision automation has its roots in artificial intelligence. Knowledge modeling, representation,
reasoning over knowledge, and consistency checking are topics from this field that closely relate
to our problem domain. Another related topic from this field is machine learning, where predic-
tive models are built from observations. This is different from what we try to do as we have an
existing model expressed as IF-THEN production rules and want to use observations to let users
discover how suitable this model is for a given set of observations. For a complete overview of
the artificial intelligence field, we refer to Russell et al. [28].

Decision Management is embedded in a broader context called operational intelligence. Op-
erational intelligence is the umbrella term for dynamic analysis of real-time data and business
events and operations. A commonly known aspect of operational intelligence is business intelli-
gence which involves data warehousing and data analytics in order to monitor and analyze data
streams resulting from business activities. For analyzing data, data mining and predictive model
building a wide range of tools is available such as SPSS [29], R [30], STATA [31] and Matlab [32].
The main focus of these tools is the analysis of tabular data, which is too limited for our purposes
as we also have graph structured data that we want to take in account. More importantly, our
analyses target questions located at a higher level than described by a single or a few data tables,
so more sophisticated analysis tools are required.

Designing a new Visual Analytics tool or framework that supports decision making is a
daunting task. Wang et al. present a methodology and work flow for designing Visual Analytics
systems for decision support in organizations [33]. This methodology consists of a two-stage ap-
proach, the first stage being observation and characterizations and the second stage being user
centric refinement. In the first stage essential analytical processes are identified. These identified
processes are transformed into visualization and interaction specifications. In the second stage
individual users’ analytical processes are incorporated. The usage of a system by individual
users is tracked by recording the actions of users. Based on analysis of these logs and qualitative

22 3. Related work

evaluations, visualizations and interactions are refined. Although the framework provides many
helpful insights, it is a general framework that focuses on decision support. It does not fully pro-
vide for the particular challenges that come with a Decision Management System (DMS) and our
concrete problem of giving insight in automated decisions that are otherwise taken out of human
sight.

a. Interactive analysis of the resulting lose or gain in
an auction

b. Interactive risk analysis for financial investment
portfolios.

Figure 3.1: VA systems for economical problems by Savikhin et al. Images from [34, 35].

3.1.1 Human decision-making support

Several Visual Analytics systems have been developed to support humans in the understand-
ing of complex data and decision making in various contexts. Savikhin et al. [34] address the
problem of deciding the optimal bid for an item at an auction. Making an informed auction bid
is important to overcome the winner’s and loser’s curses. These curses relate to naive bidding
resulting in either paying too much for the item (assuming that the average bid represents the
actual value) or bidding too low and therefore never win the auction. Most bidding subjects fail
to take in account that the value of the item is known to the owner and that they bid the expected
value of the item. In order to overcome this problem Savikhin et al. present an approach which
help users to gain understanding about the relation between the bid, the value of the item and
the expected loss or gain. A simple graph (Fig. 3.1a) shows the possible values of the item versus
the expected profit or loss based on the current bid. In analysis mode the user can interactively
change the bid and generate random item values to analyze the results of his bid.

Another decision problem from the financial domain is deciding the acceptable level of risk
when selecting a suitable portfolio of investments. The two questions that arise are if the indi-
vidual has a clear understanding of the risk level of each asset in the portfolio and if he is able
to choose a portfolio that is appropriate for his risk tolerance. PortfolioCompare (Fig. 3.1b) is
a visual analytics tool that supports financial planning decisions for financial investment port-
folios [35]. In this tool, users can add multiple financial portfolios and analyze risk and return
aspects of each portfolio. A portfolio consists of a number of selected funds for which can be
allocated for a certain percentage. PortfolioCompare has a number of views that are updated
when the active portfolio changes. The Risk/Return display, a 2D scatter plot, shows the risk and
return aspect of the items in a portfolio. The Return Variability display shows the variability of
the return for each item in the portfolio. By interactively updating the portfolio and monitoring
the views, the user can compose a portfolio that matches his risk preferences.

3.1. Decision Support 23

Figure 3.2: Tableau based dashboard for health data by Al-Hajj et al. Image from [36].

AlHajj et al. [36] address the problem domain of injuries based on a dataset containing
mortality and morbidity injury data in British Columbia. This massive and complex data, which
includes patient details, injury types and geographic location, contains a wealth of information
that can be used to support health related decision-making. In order support exploration of this
dataset a Tableau-based visualization (Fig. 3.2) was built containing time series visualization and
a dashboard. The dashboard view consists of linked views which are updated to reflect changes
in one view due to user interaction in the other views as well.

All above tools focus on improving the human decision-making process. The tools help do-
main experts to explore the dataset at hand and gain a deeper understanding of the phenomenon
under study. This gained understanding combined with external knowledge is than used to write
new policies or regulations. In contrast, we want to give a human insight in, and ways to im-
prove, automated decisions. These decisions differ in two ways from the decisions involved in the
above cases. In the first place they are automated, it is not a human who makes the decision but
a DMS. Moreover, the decisions are in most cases made fully out of human sight. Secondly, these
automated decisions are not rare or one-time decisions, but made thousands of times per day or
even per hour.

3.1.2 Automatic decision-making support

Understanding Decision Models (DMs) becomes increasingly different when the number of con-
ditions in individual rules and the number of decision rules grows. Wlodyka et al. [37] study
the effectiveness of two decision rule visualizations in a medical context. The first representation
is a decision tree (Fig. 3.3a), which is basically a node-link diagram based representation of the
rules. Each rule is represented by a box that is connected to other rules with a link that represents
the rule outcome. The second representation are so called rule-diagrams (Fig. 3.3b, showing one
layer), which represent the conditional parts of the rules in a 3D matrix. In each layer of this
matrix the rows and columns represent a condition value (or a combination of condition values)
and each cell is colored by the decision outcome.

A problem very similar to understanding decision rules can be found in the field of data

24 3. Related work

mining, which extracts association rules from datasets. An association rule is an implication
of the form X Ñ Y , where X is a set of antecedent items and Y is the consequent item [38].
More concrete, consider the following example of an association rule: a car that has anti-lock
brakes and day-time running lights also has triple airbags. That is, tanti � lock brakes, day �

time running lightsu Ñ ttripleairbagsu. Two values are calculated for each association rule to
determine its usefulness: support and confidence (also known as predictability and prevalence).
The support of a rule X Ñ Y is defined as the percentage of items in S that satisfy the union of
X and Y , where S is the overall set of terms. The confidence of a rule X Ñ Y , is the percentage
of items in the dataset that satisfy both X and Y .

Although not exactly the same, association rules are very similar to decision rules. Using
the support or confidence of an association rule, one could use association rules as a basis for
decision rules:

IF the car has ant i�lock brakes
AND the car has day�time running l i g h t s

THEN s e t the p r o b a b i l i t y of
the car having t r i p l e a i rbags to 80%

Association rules are automatically mined from datasets. Often many rules are found by this
process and it is up to the user to find the more interesting rules. Various visualization techniques
have been proposed to help the user in this process.

Wong et al. [38] present a 3D visualization as shown in Fig. 3.4. In this visualization rules and
items or topics are presented in a matrix. Each row represents a topic and each column represents
a rule. The antecedents of a rule are marked blue in a column and the consequence is marked
red. On top of the matrix a bar chart is showing both the confidence and the support for each
rule.

Blanchard et al., [39], also present a 3D visualization for association rules as shown in Fig. 3.5,
but use a completely different metaphor. They use an arena like view in which each rule is placed,
represented with a sphere placed on top of a cone, like spectators in a real arena. The position
of the object represents the implication intensity, which is a measure of the rules’ statistical sur-

a. Decision tree. b. Rule diagram.

Figure 3.3: Decision rules visualizations by Wlodyka et al. Images from [37].

3.1. Decision Support 25

prisingness. Support is represented by the visible area of the sphere. Finally, the confidence is
represented by the cone height.

Hahsler and Chelluboina [40], wrote an extension for the R statistical computing and graph-
ing software to visualize association rules. Similarly to Wong et al. they use matrix views to dis-
play rules versus topics as shown in Fig. 3.6 They use 2D matrices though and replace the actual
topic (or set of topics) with ids in order to be able to show a larger number of rules. Addition-
ally, they apply grouping to rules (sets of topics) to reduce the number of rules to a manageable
amount (Fig. 3.6b). These groups can be interactively analyzed, which result in a similar grouped
view but only for the terms that are in the analyzed group.

All above presented methods are based on the assumption that rules, whether they are deci-
sion rules [37] or association rules [38, 39, 40], are extracted automatically. The main focus of these
methods is on finding the interesting rules among a large corpus, which is typical for knowledge
discovery. We, on the other hand are not in the first place interested in finding interesting rules,
but in the aggregated effects of decisions resulting from these rules and the relationship between
decisions and rules.

3.1.3 Decision outcome analysis

The systems in the previous section focused on supporting making decisions. In this section we
discuss some systems that, more in the line of our work, focus on the decision outcome.

When there is an epidemic outbreak various actions (e.g. closing a school or applying antibi-
otics) are taken to stop the spread of the epidemic. Deciding which actions to take and simulating
various chains of actions is important to understand how an epidemic is best fought. Afzal et
al. [41] describe a system for interactive what-if analysis of the impact of decisions to fight epi-
demic spread. The system contains a spatial temporal view (Fig. 3.7, left), which is used to track
the spread of an epidemic over time and space. This view is combined with various graphs that

Figure 3.4: 3D visualization for association rules by Wong et al. Image from [38].

26 3. Related work

Figure 3.5: 3D visualization of association rules by Blanchard et al. Image from [39].

show the development of various variables (e.g. hospitalization case, death cases) at the selected
point in time. A second view, called the history tree view (Fig. 3.7, right), shows the develop-
ment of a variable (e.g. lives lost or number of hospitalizations) over time as a function of taken
decisions. This helps analyzing the relation between a set of decisions and the outcome, where
outcome is considered to be one variable.

Risk assessment is important in many areas such as medicine, security and forensics. Deci-
sion making is based on large amount of multi-dimensional data and foreseeing and weighing
consequences is crucial for making balanced decisions. Migut and Worring present an interactive
risk assessment framework [42]. Their approach is based on predictive models of the risk at hand
(e.g. is a criminal offender going to offend again?). They want to give insight in the models in
order to let the user obtain an intuitive understanding of it and thus support his decision making.
To this end they focus on decision boundaries of classifiers and data elements that are responsible
for a given classifier. The system they propose uses a scatter plot matrix to show all possible com-
binations of variables. In a scatter plot the data items are colored based on the classification by
the predictive model and size shows if it was a misclassification. Additionally, they use Voronoi
diagrams on top of these scatter plots in order to approximate the decision boundaries. Ordinal
data is treated differently by visualizing it with mosaic plots [43].

The problem that Migut and Worring [42] address comes close to our problem, but our focus
is different: Explore the decisions made by a user-programmed rule-based system (as opposed
to a trained classifier) and see how rules and decisions interact. We are interested to see the
aggregated effects of the same decision made potentially millions of times. Thus, we do not
focus on a sequence of different decisions but on one particular decision and consider that each
decision has its own output variables. This is opposed to [41] where all decisions influence the
same output variable.

3.2 Program Comprehension

Software visualization aims to visualize the structure, behavior and evolution of software [22]
in order to support comprehension of the program at hand. As outlined in CHAPTER 2, there
are several similarities between the life-cycle of software systems and decision models, and sim-
ilarities between the involved data structures. Therefore we review various techniques from this

3.2. Program Comprehension 27

a. Ungrouped visualization for 5668 association rules.

b. Grouped visualization, using 20 groups, for 5668 association rules.

Figure 3.6: Matrix visualization for association rules by Hahsler and Chelluboina. Images from
[40].

field and see if and how they apply to our particular problem domain.

3.2.1 Structure

Structure refers to the static parts and relations of a software system, parts that can be computed
or inferred without running the program [22, p. 3]. In software systems this includes the source
code, data structures, static call graph and module organization. Many of these parts can also be
found in DMSs. Rules are represented in various domain specific languages, they are organized
in packages and control flows have some similarities with call graphs.

Common techniques applied to textual representations of source code are pretty printing and
typesetting. Pretty printing consists of formatting the source code to make its structure more
clear to the reader. Most algorithms for pretty printing are based on Oppens algorithm [44].
Typesetting source code goes back to Donald Knuth, inventor of TEXthe document typesetting

28 3. Related work

Figure 3.7: VA system to analyze the results of epidemic counter measures by Afzal et al. Image
from [41].

system. He introduced term literate programming [45, 46], supporting his view that computer
programs should be considered as works of literature. Although this idea did not led to a major
change in how software is written, the importance of using typography to enhance the readability
of source code was further investigated by Baecker and Marcus [47, 48]. Modern programming
environments provide syntax highlighting and formatting, increasing readability of source code,
for basically all modern programming and scripting languages. In the domain of DMSs we see a
similar approach as shown in Fig. 3.8. Formatting is done manually, to our knowledge there are
currently no editors that support automated formatting of controlled natural languages. Syntax
highlighting is done automatically, variables are shown in light brown, keywords in dark blue
and string values in green.

Figure 3.8: Formatting and syntax highlighting in IBM Operational Decision Manager.

Various diagrammatic approaches have been proposed to relations between program parts.
Jackson diagrams [49] draw programs hierarchically using a node-link tree, with as basic ele-
ments actions which are decomposed in sub-actions. Goldstine and von Neumann introduced
control flow graphs [50], in which rectangular nodes represent actions and diamond nodes con-
tain branch conditions. Nassi and Schneidermann introduced structograms [51], better known as
Nassi-Schneidermann diagrams, which are nested rectangular diagrams to model control flow.
A common way to model software architecture and interaction of components is by the use of
Unified Modeling Language (UML) diagrams, which is a combination of the methods proposed
by Booch, Rumbaugh and Jacobsen [22, p. 58]. Irani and Ware proposed a 3D visualization of
software architecture by means of geons, a set 24 primitive, view-point independent 3D objects
[52, 53]. As we already saw in Fig. 2.3 control flow diagrams are used in the context of DMS as
well. They are used to make the decision structure more explicit. Control flows in a DM therefore
help a user, who is unknown with the decision model, to quickly form a mental model of what
the decision is about and how it is structured.

Another common practice in software comprehension is the extraction of software metrics.
These metrics are single values calculated from software data and can be interpreted as the degree

3.2. Program Comprehension 29

to which a software system possesses a certain quality [54]. Examples of such metrics are lines of
code, number of bugs and number of classes. Display of these metrics is usually done by simple
means such as bar charts or spider diagrams. In business intelligence we see a similar practice.
Relevant business data is gathered in data warehouses and over this data functions are specified
that calculate metrics that relate to the performance of the business. Such a metric is called a Key
Performance Indicator (KPI) in a business context. These KPIs are monitored using dashboards
and trigger alarms when they violate specified thresholds. Although KPIs somewhat relate to
our problem, as they can indicate that a business decision does not perform as expected, they
are indeed not more than indicators. These indicators, as is the case with software metrics, just
represent a change in some aspect but do not explain why this change occurred.

3.2.2 Behavior

Another common task related to program comprehension is that of runtime analysis, i.e. given
a certain input what is the behavior of the program. Probably the must used incarnation of this
task is step-by-step debugging that is supported by most integrated development environments
for the major programming languages such as Java and C++. To support debugging, software
is usually compiled with debugging symbols which allow to extract human readable informa-
tion from the executable at runtime. IBMs Operational Decision Manager, a software system for
decision automation, also has a debug-mode which provides a similar step-through feature for
automated decision debugging.

Other applications of runtime analysis require explicit instrumentation of the software. A
common approach is to let users create a software architecture in a graphical way [55, 56, 57, 58].
From this architecture, source code is generated which is instrumented and serves as a base for
the actual implementation of the software. When the software is run, runtime information is
gathered and used to enrich the static representations or to generate sequence diagrams.

An interesting feature of Shimba [56] by Systä et al. is that, when drawing the sequence di-
agrams, it can make use of the abstractions in the static structure diagrams. Thus, it can group
software artifacts into higher-level components. This is interesting in the context of a DMS be-
cause the execution of a single rule involves many function calls to all domain objects that are
involved in the tests of the rules. For a business user, these low level calls are of no-interest be-
cause to him, these low-level calls are technical details which he probably does not understand.
The rules that are executed to make a single decision is the level of granularity that makes sense
to a business user. Therefore, aggregation of low-level artifacts (function calls) into higher-level
artifacts (decision rules) is useful in the context of DMS.

De Pauw et al. [59] present various components to visualize dynamic aspects of software sys-
tems such as object allocation, method activation over time and object communication. Ducasse
et al. [60] use so-called polymetric views in order to visualize runtime metrics. Two other ap-
proaches exploit the relation between execution traces and signals in time [61, 62]. To overcome
scalability problems, Cornelissen and Holten et. al. present their tool EXTRAVIS [63, 64, 65],
which combines a circular bundle view [18] with a massive sequence view.

In general, tools that visualize the dynamics of a software program, try to support low-level
tasks such as the investigation of runtime performance, debugging a certain problem, detect
late binding of software components and understanding of control flow in the software. When
looking at a DMS from a user’s perspective (as opposed to developers of DMSs) most of these
problems are only of minor relevance. Runtime performance is expected to meet the require-
ments of the business environment but when it does not, it is up to the DMS provider to solve
this issue. Debugging is sometimes required for complex DMs, however comparing the number
of decisions that require debugging to the number of decisions being taken debugging can be
considered of minor relevance. Understanding control is an interesting issue. Control flow is

30 3. Related work

made partly explicit in a DM by control flow diagrams that specify in which order sets of rules
must be applied. However, the concrete control flow of decisions, i.e. the order in which rules are
executed, is considered a side effect of the rule execution engine and therefore does not have a
particular business meaning.

More important, the comprehension tools described above are designed to support a devel-
oper in understanding how a software systems works. What the software system is supposed to do
is not considered to be a question, this is specified by the requirements. A rule execution engine
for example, is designed to perform decisions, given an input and a DM. It will not generate an
input nor generate a proper DM for the decision at hand, that would be a complete different sys-
tem with other requirements. The problem we address, on the other hand, is an open problem.
A DM models a decision that meets regulations and tries to optimize business goals. However,
these goals are not always clear, they may change over time and optimization depends on the in-
put which changes over time as well. As a result the questions that arise when addressing these
problems are at a different level than the questions addressed by above described systems.

3.2.3 Evolution

Change plays a major role in the life cycle of successful software. If software is delivering value
after its first release, the need to adapt the software to changing user requirements and environ-
ments will come up sooner or later. When software changes it is not only the source code that
changes, but also the metrics (Sec. 3.2.1), the software archive, the structure of the software and
the coupling.

SeeSoft [66] and SeeSys [67] are tools for visualizing statistics associated with source code.
Both techniques use space-filling layouts in order to display statistics for large code bases. In
SeeSoft, every file is represented by a box and in this box each line of code is depicted as a
single line of pixels. The color of each line represents a metric such as last author, code age,
number of bugs or profiling data. Evolution of these metrics is shown using animation, each
frame visualizes the current metric at a different point in time. SeeSys uses treemaps because
it captures well the hierarchical structure that is inherent to software. The treemap is used to
reflect the component, module, submodule and file structure, while color is used to represent the
value of a metric. Like in SeeSoft, evolution of these metrics is shown by creating an animation
of visualizations at different points in time.

A software archive stores the history of a software project by means such as a Version Control
System (VCS) and a bug database. These sources contain a wealth of information related to
source files, such as who has been authoring the files or by which bugs it has been affected.
VCSs are also used to keep track of released versions of the source code. Many clients exists for
major VCSs such CVS, subversion and git, e.g. [68, 69, 70], showing the revision graph using
various graphic representations. CVSScan [71] uses an approach that adapts the one of SeeSoft.
In CSVScan, a source file is represented by a fixed width column in which each line of code
is represented by a line of pixels, but these are of fixed length and do not use indentation. To
visualize history of a source file, each version of the file is represented by such a column which
are shown next to each other. Each line of code is than colored by a specific metric such as author,
type of construct or line status.

A DM is subject to change as well. One of the common reasons for change is the need to adapt
business to new regulations. For example, our car insurance DM stores rules that relate to state
specific regulations in a separate package for each state. Now, when relevant regulations change,
the responsible manager needs a way to verify that this is actually reflected in the DM. A tool
similar to CVSScan [71], could be applied as an aid. Using such a tool, he can look at the history
of the relevant package and discover that it has not been changed for the last months. Although

3.3. Visual analytics techniques 31

there is certainly use for such an approach in DMSs, the evolution of a DM is not the focus our
research.

3.2.4 Conclusion

We have seen that various techniques that come from the field of software visualization indeed
can or already do solve low-level problems in the domain of DMSs. However, as we pointed
out, the questions for decision management systems (Sec. 2.6) are quite different from typical
questions in software comprehension. Two main reasons can be identified which explain the
different type of questions. Firstly, these differences stem from the different execution model
(non-deterministic for rule-sets vs deterministic for software systems). Secondly and more im-
portantly, our core question is different: How do the realities as captured by the decision model
and the executed decisions diverge? This question is of a higher level than what typical software
comprehension tools, such as dependency graphs and executions charts, directly address. Our
core question reflects a deep difference between software comprehension and decision under-
standing. When trying to comprehend a piece of software, the question is not so much: does this
software the right thing? Rather the questions are: how does the software what it does and does
it do its task correctly? When automating a decision, the question of how is subordinate to the
what question. This might seem counter intuitive because one could ask: what is unclear about
the what of a legibility decision? And indeed, such a decision might behave as expected with
the 10 or 20 example use cases that are available at the time of modeling. However, what does
the decision really do when it is executed thousands or even millions of times. Does it bring the
expected balance between risk, revenue and other interests that need to be balanced? This is a
much harder question to answer and differs deeply from the typical questions answered by tools
used for software comprehension.

3.3 Visual analytics techniques

Nowadays business data typically consists of many dimensions, both categorical and numerical.
Studying, analyzing and visualizing such data is critical for understanding the underlying busi-
ness processes. Recent work on both multivariate and categorical data [72, 73, 74] acknowledges
the importance for tools that support understanding these kinds of datasets. In the context of
this thesis we are in particularly interested in cause—effect relations. That is, what are the prop-
erties of the business cases that result in a certain decision outcome? In this section, we review
Information Visualization (InfoVis) and VA techniqes, without making a distinction between the
two, we review them collectively.

Metaphorically, we could compare a set of decisions with a statistical experiment, where each
decision is an observation. In this experiment we have independent variables, that is all input
variables, and dependent variables, that is all decision variables. Note that not all input variables
are independent in themselves. Take for example the education level of persons, which serves
as an input variable for a decision. The education level of a person is at least dependent on
the age but likely also on other social and economical factors. However, these factors are not
modeled in a DM, therefore these kind of variables are from a DM perspective independent.
Unlike in the typical statistical experiment though, there is not a black box between independent
and dependent variables. Decision variables are the result of processing business cases by means
of the business rules in the DM. Therefore, decision variables are not only dependent but there
is also information available on the structure of this dependence in terms of business rules and
execution traces. In this section we take a look at techniques that can help the understanding of
multivariate data consisting of both numerical and categorical variables.

32 3. Related work

Raw data has no value in itself, only the information that can be extracted from it has value.
Therefore data must be processed and visualized properly in order to support reasoning for the
task at hand [21, p. 1]. Visualizing data in order to extract information is a means to support
the analytical process of someone who tries to understand a particular problem domain. Johann-
son et al. [75] use a broad classification of analysis tasks in the context of analyzing datasets
that contain both quantitative and categorical attributes: similarity related tasks and frequency
related tasks. Amar et al. [3] state that in this process, generally the person will formulate spe-
cific, low-level queries on the data. They argue that information visualization can benefit from
understanding these tasks (summarized in Table 3.1) that the user tries to accomplish.

Task Description
Retrieve Value Given a set of specific cases, find attributes

of those cases.
Filter Given some concrete conditions on attribute

values, find data cases satisfying those conditions.
Compute Derived Given a set of data cases, compute an aggregate
Value numeric representation of those data cases.
Find Extremum Find data cases possessing an extreme value of

an attribute over its range within the dataset.
Sort Given a set of data cases, rank them according

to some ordinal metric.
Determine Range Given a set of data cases and an attribute of

interest, find the span of values within the set.
Characterize Given a set of data cases and a quantitative
Distribution attribute of interest, characterize the

distribution of that attributes values over
the set.

Find Anomalies Identify any anomalies within a given set of
data cases with respect to a given relationship
or expectation e.g. statistical outliers.

Cluster Given a set of data cases, find clusters of
similar attribute values.

Correlate Given a set of data cases and two attributes,
determine useful relationships between the
values of those attributes.

Table 3.1: The analytical tasks as identified by Amar et al. [3].

Visualizing information on paper or computer screens is bound by the two-dimensional re-
striction of these media. To escape these flatlands [76], additional information can be encoded by
using other visual means such as color, variable sizes of objects, contours, shading and texture,
described in great detail in [25]. Choosing the right combination of visual cues is important to
avoid confusing visualizations. When for example, perspective is used to visualize a three di-
mensional view, size of objects matters in determining their location: small objects are farther
away, larger objects are close by. If at the same time size of objects is used to encode a variable
of the dataset, it will become hard to compare two objects that are far away from each other with
respect to this variable.

The visual analytics process tightly couples automatic and visual methods through human in-
teraction to support knowledge extraction from data [21]. To efficiently support this knowledge
extraction, a VA system has to provide the user with suitable interaction techniques to explore

3.3. Visual analytics techniques 33

the model settings and data at hand. Moreover, interaction support, transforms a one-time infor-
mation extraction process into an iterative process which allows an analyst to change the focus of
visualized data to those that match his reasoning. This importance of interaction has led to vari-
ous taxonomies that describe the design space of interaction techniques. An extensive overview
is given in [77], where they distinguish between four kinds of taxonomies: of low-level inter-
action techniques, taxonomical dimensions of interaction techniques, of interaction operations,
and of user tasks. Their study of these taxonomies led to the specification of seven interaction
categories based on user intents. Heer and Shneiderman [78] also use a categorization approach
in their taxonomy. The taxonomy consists of three high-level categories: data and view specifica-
tion, view manipulation, and process and provenance. Each of these categories contains four task
types. The approach of Heer and Shneiderman is further refined by Kerren and Schreiber [79],
who add the two additional task types reconfigure and adjust to the data and view specification
category.

Two common methods to visualize univariate data are Tukey’s box plots [80] for numerical
data and histograms for categorical data. Datasets with more dimensions and which are a mix
of both numerical and categorical data require more advanced visualization techniques. In the
following sections we will evaluate techniques for high-dimensional data, techniques which are
specifically designed for categorical data and at dimensionality reduction.

3.3.1 Visualization techniques for multivariate data

Various interactive visualizations for multivariate data have been proposed. One of the early
approaches is the permutation matrix of Bertin [81]. Permutation matrices are a display and ana-
lysis strategy for multivariate data with a medium number of samples. In these matrices each row
represents a variable and each column represents an observation. Each value is represented by a
bar of which the height represents the actual numerical value. Finding patterns in a dataset us-
ing a permutation matrix is done by permuting (hence the name) rows and columns until visual
patterns appear. Bertin even realized various mechanical devices, as shown in Fig. 3.9. Given the
limited computer power at the time, these devices allowed him to actually make permutations
of the data and look for patterns. Permutation matrices have led to various approaches, mainly
in the context of graph visualization. Van Ham used it to visualize multilevel call hierarchies
[82]. This approach was generalized in Matrix Zoom, by Abello and van Ham [83]. Henri et al.
proposed hybrid approach for graph visualization, combining a node-link representation with
matrix visualization [84] and MatLink [85], another hybrid approach where links are overlaid
on the borders of a matrix. Chang et al. apply a matrix visualization to visualize time-varying
data in WireVis [86]. Dinkla et al. present compressed adjacency matrices for visualizing gene
regulatory networks [87]. Matrix based visualizations have been proven an efficient means, for
graph related tasks in particular [88, 89].

Figure 3.9: Mechanical devices implementing Bertins permutation matrices.

34 3. Related work

Rao et al. introduced table lenses [90, 91] a multivariate visualization that is in many ways
very similar to Bertins permutation matrices. Table lenses represent variables by columns and
observations by rows and values are represented by bar lengths. The table lens uses a single
pixel line for each observation, allowing for a large number of observations to be shown on the
screen. Correlations between variables are found by manual sorting the data on a particular
variable and then visually scan the other variables. Categorical data items are displayed by
colored patches that have a fixed width and a position in the cell that depends on the value
(Fig. 3.10). Additionally, they provide a focus + context mechanism that is based on the fish-eye
technique from Sarkar et al. [92]. This technique gives rows and columns around the focus point
more height respectively width than the ones outside the focus area.

Figure 3.10: Table lens from Rao and card [90].

Table lenses have seen various improvements over time. Tenev and Rao propose a technique
to have multiple focus levels and address the problem that arises when the number of data rows
is larger than the number of pixel lines [93]. Telea extends the table lens view with the ability
to sort on multiple columns and highlights clusters by drawing luminance cushions over the
columns [94]. One of the main ideas of a table lens is to show a full tabular dataset in one view.
This is also its weakness, because both horizontal and vertical available screen space determine
the number of observations and variables that can be shown. When the number of records is
larger than the number of vertical pixels either rendering artifacts occur or multiple records must
be summarized by one pixel line. The dataset of our interest contains hundreds of thousands of
observations or even millions, making table lenses an unsuitable technique.

Feiner and Besher present the worlds within worlds [95] interaction metaphor for n-dimen-
sional data. Their n-Vision system implements this metaphor, which supports interaction with
high-dimensional data spaces by nested heterogeneous coordinate systems. The user is respon-
sible for building the world and deciding how to explore it, this is a major drawback as we want
a solution that highlights the important information.

Inselberg proposed parallel coordinates [96] for visualizing multivariate data. In this tech-
nique, each variable is mapped as a vertical axes. All axes are aligned along the horizontal screen
dimension. For each observation or data item a line is drawn through these axes, and crosses an
axis at the value that the observation has for the particular variable. Fig. 3.11 shows a parallel
coordinates visualization for the Iris dataset. The parallel coordinates approach, transforms the
search for correlations in the data in a 2D pattern finding problem. The approach can be enhanced
by interaction techniques such as automated or interactive ordering [97] of axes and highlighting

3.3. Visual analytics techniques 35

Figure 3.11: Parallel coordinates for the Iris dataset, created with d3.

selections of lines by brushing (e.g. [98]). The Parallel coordinates technique is known to only
scale to about a dozen of variables and a limited amount of data points. Too many variables lead
to axis that are placed to close to each other to identify any patterns in between. One approach
to leverage the problem of too many dimensions is proposed by Yang et al. [97]. Their hierar-
chical dimension ordering method creates dimension hierarchies based on dimension similarity
to reduce the number of displayed dimensions. Too many observations lead to an over plotting
of lines, also hiding patterns. This, could be partly solved by using translucent lines, but over
plotting will still occur with millions of observations as the case in our datasets.

Figure 3.12: Dense pixel visualization in VisDB for a five dimensional dataset with 100 000 items.

Keim and Kriegel present VisDB [99], a dense pixel visualization where each pixel represents
one data item. Pixels are arranged based on the query that is performed by the user. Data items
that best match the query are laid out close to the center, gradually moving out in a spiral man-
ner for data items less relevant to the query. Based on the visual feedback, users can adapt the
parameters of the query in order to explore the dataset. Multiple dimensions are displayed by
placing the views in a grid such as shown in Fig. 3.12. Although this method can visualize a large
number of data items, finding interesting phenomena still largely depends on the user being able
to provide an initial query that leads to insights that help him address the problem at hand.

36 3. Related work

Figure 3.13: Fourfold display by Friendly of “hot-hand” data in basketball.

3.3.2 Visualization techniques for categorical data

Categorical dimensions are frequent in nowadays business data. Examples are gender, car brand,
car security features and medication type. Studying, analyzing and visualizing those properties
is of importance to understand the underlying business processes. Some of the techniques for
multivariate data are less suitable for categorical data. All techniques that use an axis for a vari-
able, such as parallel coordinates, force an ordering on the values of the categorical variable.
Order of categorical values is meaningless, for example, when dealing with color, what does it
mean that blue becomes before yellow? A particular order of values will create visual patterns.
However, a different order, which is as valid, results in different visual patterns.

Many visualizations exist for categorical data, as reviewed by Friendly [100]. Fourfold dis-
plays [100] show two-by-two tables such as the “hot-hand” basketball data in Fig. 3.13. A four-
fold display is used to visualize odds ratio, e.g. what are the odds that a player has a second hit
after the first hit. A two-by-two table is a representation for two binary variables, which clearly
is too limited for our use case.

Mosaic plots (Fig. 3.14a) and mosaic matrices (Fig. 3.14b) show multi-way tables [100, 43,
101]. In mosaic plots each tile represents variable value and has a size that is proportional to the
frequency. The data is interpreted as hierarchical data. For example the hierarchy in Fig. 3.14a

a. Mosaic display b. Mosaic matrix of Titanic data.

Figure 3.14: Mosaic displays for visualizing multiple categorical variables.

3.3. Visual analytics techniques 37

would be: hair color, eye color, gender. That is, at the first level tiles are split by hair color (vertical
gaps that take full height). At the second level, each first level tile is horizontally for each eye
color. And finally at the third level tiles are split vertically to represent males and females. This
process can be repeated in order to show more than three variables.

CatTrees [102] use treemaps [103] to visualize categorical data. A hierarchical structure of
tabular data is initially deduced by assuming that the index of the column represents the depth
in the hierarchy. Afterwards the user can interactively remove variables from the hierarchy or
place them at a different depth. When it comes to the layout CatTrees produce the same layouts
as mosaic plots.

Figure 3.15: Parallel sets by Bendix et al. Showing a customer relationship management dataset
containing 93.872 data items.

Parallel sets by Bendix et al. [104] is a technique that adapts parallel coordinates for cate-
gorical data. Each categorical value of a variable is represented by a box on the horizontal axis
representing the variable as shown in Fig. 3.15. The single lines for each observation in parallel
coordinates are replaced with bands that represent the count of items that have selected the val-
ues for the two variables that are connected by the band. Recognizing that order of values has no
meaning, parallel sets supports interactively reordering of values in order to reduce crossing of
bands. However, like parallel sets, the number of variables that can be shown at the same time
in a meaningful way is low.

Figure 3.16: The contingency wheel by Alsallakh et al. showing a book rating dataset.

The contingency wheel [73] by Alsallakh et al. shows categories as sectors in a ring chart as
shown in Fig. 3.16. The size of each sector maps the marginal frequency of the category. Rows

38 3. Related work

that have a count for a particular value are drawn as nodes in the corresponding sector. Like the
four-fold display, the contingency wheel can only be used to display two variables at a time.

Another approach to visualize multi-dimensional categorical data, proposed by LeBlanc et al.
[1], is dimensional stacking. This approach starts by taking the two dimensions with the lowest
cardinality and divide the two axes of the 2D visual plane by the dimension that is assigned to
the axis. Next, each resulting sub-area is further divided by a third and forth dimension of the
data. This way, multiple categorical dimensions can be mapped to the same spatial axis as shown
in Fig. 3.17. Dimensional stacking is used and adapted in various techniques and tools, such as
in [105, 106, 107]. One of the problems with dimensional stacking, as pointed out in [2], is the
combinatorial explosion that quickly occurs even if the cardinality of dimensions is relatively
low. As a consequence, in most cases not all dimensions can be visualized at once, leaving it to
the user to determine which are the relevant dimensions to visualize.

Figure 3.17: Dimensional stacking by LeBlanc et al. [1]. Image from [2]

Emerson et al. [108] observed that scatterplot matrices [23], are hiding features of the data
when it contains categorical dimensions. Therefore they proposed the Generalized pair plots,
which shows a different plot in each matrix cell based on the data types of the two dimensions
visualized in the cell. This technique was further refined and adapted by Im et al. [2] in their
Generalized plot matrix, which adds various interactive features and visual refinements to the
generalized pairs plot.

Although these methods are specifically designed for categorical data, they are also more
focused on, and effective for, frequency-related tasks. In contrast, we want to enable exploration of
correlations and, in the same time, classification of the data at a granularity that suits the user.

3.3.3 Dimensionality reduction

Dimensionality reduction is a way to summarize the structure of high-dimensional data in a
lower number of dimensions, usually two or three. These new dimensions give the best rep-
resentation of the similarity structure of both the observations and the variables. This lower
dimensional data space can then be visualized using classical techniques such as scatter plots.
Dimensionality reduction techniques have been used in a wide variety of contexts such as ana-
lysis of text documents [109, 110, 111], multimedia [112] and biomedical data [113, 114]. In this
section we detail the principles of dimensionality reduction followed by a review of techniques.

Dimensionality reduction principles

A widely used technique to study multivariate data is Principal Component Analysis (PCA) [115,
116, 117]. The goal of PCA is to summarize a data table by representing the important information
as a set of new, orthogonal variables. These variables are called principal components or factors.
Both variables and observations can be plotted in a new map, where proximity of two points
reflects similarity.

In PCA, the principal components are defined as the axes in the original data space which
represent the largest variance in the data. As an example of PCA we take Fig. 3.18, which shows

3.3. Visual analytics techniques 39

an artificial 2D dataset. We start with Fig. 3.18a, which shows the data points in a regular scatter
plot, the red axis representing the original scales of the two variables. Next, in Fig. 3.18b, the
principal components, i.e. the axes along which the spread of the data is largest, are determined.
The principal components are depicted as the green axis and are also known as eigenvectors.
The first axis explains the largest spread direction and the second axis, which is orthogonal to the
first, explains second largest spread direction of the data. Each data point is now projected on
both axes as shown by the blue lines in Fig. 3.18b. The projected values for each point on each
axis are called the factor scores. Finally, the factor scores are used to plot the original data points
in the new coordinate system of the principal components.

a. An artificial dataset in the original
space.

b. Principal components or factors
are determined and observations are
projected onto them.

c. Principal components serve as the
new coordinate system in the reduced
space.

Figure 3.18: Dimensionality reduction by principal component analysis.

From this simple 2D example we can make some observations. First, it is easy to see that
the PCA of a 2D dataset basically results in the rotation of this dataset such that the horizontal
axis shows the largest spread. We can also see that that there is no transformation of the data
other than the rotation. That is, the inter-point distance in the new plot is exactly the same as
the inter-point distance in the original dataset. Applying, PCA to a data table results in as many
principal components as there are variables in the original dataset. Furthermore, each principal
component explains part of the variance in the data, and all principal components explain the full
variance. Finally, each of the principal components is a linear combination of the original axes.
The converse is also true: each observation coordinate is a linear combination of the eigenvectors.

When applying PCA to a data table with more than two dimensions, with the goal to re-
duce to two dimensions, one of these observations is no longer valid. Since we keep only two
eigenvectors, it means we need to ignore part of the data variance. Still, the resulting projection
on the first two principal components, can be interpreted as a rotation of the original dataset.
However, we are now projecting on two axes while we have N , N ¡ 2, variables. As a result,
some information is lost: The projected-space distances will no longer be proportional to the
original-space Euclidean distances. When using PCA as a dimensionality reduction technique,
the amount of information lost when retaining only the two main components can be computed
using all the eigenvalues: it is the sum of the N � 2 other eigenvalues divided by the sum of all
the N eigenvalues. For other (non-linear) approaches, the resulting deformation, or difference of
the high-dimensional versus the low-dimensional Euclidean distances, is often measured by a so-
called stress function. Also, with a growing number of variables it becomes harder to understand
what the axes of the projected space mean.

PCA is applied to data tables that consists of numerical variables, while in our case we are also
dealing with categorical variables. For categorical variables extensions of PCA are developed,
namely Correspondence Analysis (CA) and Multiple Correspondence Analysis (MCA) [118, 119].

40 3. Related work

CA is a generalization of PCA, for analysis of two categorical variables. MCA is an extension of
CA to deal with more than two categorical variables. They both operate on data tables that
represent frequencies. The resulting factor scores are usually visualized using scatter plots or
biplots [120, 121, 122].

Dimensionality reduction techniques

Techniques such as PCA, CA and MCA are all based on Singular Value Decomposition (SVD).
The problem with the SVD is that it is computational intensive, making it less suitable for large
datasets. As such, research in various domains, led to a multitude of dimensionality reduction
techniques which are faster at the cost of allowing for a larger deformation in the 2D or 3D pro-
jection space. Paulovich et al. distinguish between three types of projection techniques: spectral
decomposition, nonlinear optimization, and force based schemes [113].

Spectral decomposition: Spectral techniques are also known as classical scaling and they project
data points along the eigen vectors that have the largest eigen values of the point-wise distance
matrix. Some approaches reduce the calculation time by using numerical methods which are
specifically devised to solve sparse eigen problems, such as LLE [123] and Isomap [124, 125].
Even more speed increase can be won by applying classical Multi Dimensional Scaling (MDS)
to a small subset of representative points such as done in Landmarks MDS [126] and Pivot MDS
[127]. The remaining points are projected by using local interpolation. Fastmap achieves linear
complexity in the input point count [112], at the cost of a less well minimized stress cost.

Nonlinear optimization: Nonlinear optimization methods iteratively search the projection pa-
rameter space to find a minimum for the stress cost [128, 129]. To speed searching, as opposed
to naive gradient descent, multigrid numerical solvers can be used [130]. Pekalska et al. propose
a speed-up based on projecting a representative subset (using gradient descent) and fitting the
remaining points using local interpolation [131].

Force based schemes: Force-based methods are a special class of nonlinear optimization DR
methods, and have been used mainly in the graph drawing area [132]. Chalmers speeds this
up by using the small representative subset idea outlined earlier [133]. Further speed-ups are
achieved by using multilevel solvers and GPU implementations [134, 135], and by recursively
selecting representatives using a multilevel approach [136]. Tejada et al. use a heuristic to em-
bed instances by a force-based relaxation mechanism [137]. LSP positions a representative subset
with a force-based scheme and fits the remaining points using Laplacian smoothing [110]. LAMP
also uses a representative subset to locally construct affine projections, and allows users to inter-
actively place these points to optimize for the desired overall projection layout [109].

All dimensionality reduction techniques, from the simple PCA to the more complex non-
linear techniques, share acommon problem: Interpreting the results of an otherwise valuable
analysis can be hard. The result of these techniques is a 2D or 3D point cloud. Without additional
visualization and interaction techniques it is hard to understand such a point cloud. Even more,
most of these techniques require many parameters to be configured. These parameters require a
deep knowledge of the technique at hand to understand their impact of a parameter setting on
both the performance and the resulting projection. Finally, it is not clear how accurately a low-
dimensional projection reflects the point proximities in high dimensions, due to inherent projec-
tion errors implied by dimensionality reduction. Above mentioned problems have challenged
the usage of such techniques in business contexts where end users need fast, easy to interpret,

3.3. Visual analytics techniques 41

results and may not have the time or background needed to map the more abstract multivariate
data analysis results to their concrete problems.

a. Projection of the segmentation dataset from
[138] using the LAMP [109] technique.

b. Projection of a document set using the LSP
[110] technique.

Figure 3.19: Dimensionality reduction.

3.3.4 Conclusion

There are various visualization techniques for multivariate data containing both categorical and
numerical dimensions. However, none of these techniques can directly and fully address a solu-
tion to all our challenges. Indeed, what we need is not just to show similarity relations between
data points, but also cause-effect and correlation-effect relations – for instance, which production
rules cause a certain decision and how does a correlation of values influence the triggering of
production rules.

For multivariate data we identify a number of computational techniques to reduce the num-
ber of dimensions, while preserving the similarity structure. The resulting projection is often
visualized using either 2D or 3D scatter plots. Points are colored based on an attribute of the
original variables, in order to help users assign meaning to clusters, i.e. explain which proper-
ties neighbor points share. Fig. 3.19 shows two examples of results presented in dimensionality
reduction technique papers: a colored point cloud. Although, [110] mentions automatic genera-
tion of labels, the actual coloring is still after manual classification. Even with labeling, there is
however, no explicit explanation of what we see and interaction and manual work is required to
understand what the point cloud means. This makes it hard to discover classes, to understand
their meaning and their relations. Additionally, for end-users the results of all these different
techniques are hard and/or not intuitive to learn and use. Thus, even though there are many
MDS techniques, the interpretation of their results poses difficulties to end-users.

Sec. 4.1 was published as: Capturing the Design Space of Sequential Space-Filling Layouts
Baudel, T. and Broeksema, B.
in IEEE Transactions on Visualization and Computer Graphics, 18(12).

Chapter 4

Information Visualization for Decision Management
Systems

Meanwhile, feedback control systems where creeping into
factory assembly lines, because a mechanical system, too, can
modify its own behavior. Feedback is the governor, the
steersman.

The Information, JAMES GLEICK

The artifacts of a Decision Management System (DMS) provide a wealth of information that
can be visualized to support understanding of the Decision Model (DM). Our overall goal is

to develop tools which extract information from these artifacts and provide insights. This insight
serves as feedback to improve the understanding that a business analyst has on the functioning
of the decision. Based on the newly gained insights and his expertise, he should be able to infer if
and how a DM should be changed to improve the business performance. Due to similarities with
software comprehension, as pointed out in CHAPTER 2, we next apply and refine techniques that
have been successfully used in the context of program comprehension. In particular, we apply the
following techniques to various artifacts of a DMS: treemaps, graph drawing and bundled edge
views. The application of these methods lead to the support of comprehension of the structure
of a DM, finding rule execution patterns and understanding the impact of changes to the DM.
The chapter concludes with a discussion on why these methods, even though providing valuable
insights, do not fully addres the the core question of this thesis: How can we support a business
analyst in supervising automated decisions, such that he gains a better understanding of the
operating and effectiveness of these decisions?

4.1 Treemaps

In an early attempt to visualize the various data spaces mentioned in Sec. 2.6.3, Baudel applied
his discovery framework [139]. Recognizing that these spaces contain tree-structured data, he
used treemaps as a visualization tool. Using the parsing and information extraction Application
Programming Interface (API)s from ODM he exported the available data in a format suitable for
visualization. This enabled him to visualize the ontology and the decision logic (DS1) [140].

Fig. 4.1 shows the ontology visualized with a treemap. From top to bottom, the tree levels
consist of packages (one or more levels), concepts (one level) and attributes (leaves). Each non-
leaf level has a label stating the name of the package or concept and the number of children.
Attributes (i.e. leaf nodes) are colored as follows: functions are colored light blue, attributes
that have a concept as type are dark blue and primitive typed attributes are colored black. This
compact representation allows for the display of large ontologies. The user can interact with
the treemap by clicking nodes to get more details about an attribute and use zoom to dive into
regions of interest.

44 4. Information Visualization for Decision Management Systems

Figure 4.1: Visualizing an ontology with a treemap

As with ontologies, the logic of a DM can become very complex, in terms of both the number
of rules as well as the complexity of individual rules themselves. To support the understanding
of the rules of a DM, Baudel used the treemap to display the business logic from two different
angles. Fig. 4.2a shows the first angle, which is a straightforward representation of the rules as
they are structured in packages. Each non-leaf node represents a level of the package path and
each leaf node represents a business rule from the domain logic. This view allows a business
analyst to gain a quick overview of the organizational structure of the business logic and dive
into a region of interest.

In Fig. 4.2b the decision logic is displayed from a different angle. As outlined in Sec. 2.3.2 the
decision logic is expressed as production rules having one or more conditions. Each condition
consists of an operator and one or two operands, the conditions themselves are combined by
logical operators. Baudel extracted all conditions from a DM neglecting how they are combined
with logical operators. Next, he created a tree structure consisting of three levels:

1. the attributes of the DM that are tested;

2. the operators that are used to test the attributes;

3. the values against which the attributes are tested.

This creates a view on the decision logic that helps identifying how tests for captured aspects
of the input attributes of a DM are spread over the decision logic. For example, in the center of
Fig. 4.2b we see the test for the gender of an applicant. The decision logic contains four tests for
both females and males, which seems to suggest that there is no explicit gender-based discrimi-
nation in this decision logic. On the other hand, bottom-right we can see that there are five tests
for SUV vehicles, while there are only one or two tests for the other vehicle types.

The above presented methods successfully visualize various aspects of a DM. This approach
is comparable to the static program visualization approach from the software visualization do-
main, which consists of visualizing software programs or program analysis results. The goal of
this activity is to gain understanding about the structure of a program. Analogously, the above
introduced visualizations support gaining insight in the structure of a DM.

4.1. Treemaps 45

a.

b.

Figure 4.2: Visualizing the decision logic of DMS from different angles with a treemap. (a) Logic
is represented using the package structure. (b) The logic is parsed to extract the tests from the
rules. The tree levels are: attribute that is tested, operator and the value against which is tested.

4.1.1 Motivation

The successfulness of a treemap visualization is depending on quite some factors. First of all,
there are many layout algorithms such as the original slice and dice algorithm by Schneidermann,
squarified layouts and pivot layouts. Besides, various drawing aspects such as labels, margins
and coloring contribute to the ease of interpretation as well. All these options present the users

46 4. Information Visualization for Decision Management Systems

with a combinatorial problem each time they want to visualize data with a treemap: how to
chose which values for all of these variables? These consideration lead to the idea that a useful
approach to this problem is to provide sane defaults based on the data (e.g. depth of the hierarchy
and data types at each level) and possibly some guidelines from the user with respect to the
kind of questions he wants to answer. Before such an approach can be developed though, more
fundamental work is needed to unify the many layout algorithms. Below we present an unifying
algorithm and discuss the design space it spans.

Treemaps are now over twenty years old [103] and have generated much enthusiasm in the
information visualization community. Treemaps even have become a small research area of their
own [141]. Therefore, the topic of treemaps or more general rectangular space-filling layout is an
interesting research direction in itself. In the general public, treemaps have had their moments of
fame with the map of the market [142]. They are also making their way as a standard device in
the toolkit of graphic designers [143, 144]. Success stories for treemaps are the result of talented
graphic design work, where the visualization designer has crafted the layout and visualization
parameters to match a specific context and narrative.

We attribute the need for careful crafting to the lack of a good understanding of their design
space. Choosing the right layout parameters to suit a particular dataset and features to be high-
lighted requires a solid experience and a dedicated presentation effort. In analysis contexts, this
presentation effort is a distraction from the research task and therefore often sub-optimal layouts
are used. This lack of presentation automation, or easier customizability, creates a barrier to more
widespread adoption in the contexts where rectangular space-filling layouts, such as treemaps,
could really bring insight.

Our goal here is to define more precisely the design space of a particular class of layout algo-
rithms that lie at the root of the treemap concept: rectangular space-filling layouts, i.e. the layouts
that tile a unit square with rectangles in a space-filling manner. We describe how input data is
transformed into a set of rectangles that tile the unit square through a process that is constrained
by the dimensions that span this design space. In addition we present a universal algorithm for
a given class of rectangular space-filling layouts. This universal algorithm is parametrized by
functors that represent the described dimensions. We present the algorithm with various exam-
ples of useful values for these dimensions, which allow creating well known as well as novel
rectangular, space-filling layouts. We believe that a solid understanding of this design space can
serve as a basis to develop methods and heuristics that determine the most appropriate layout
given a particular dataset. Finally, it has been suggested that the design-space of space-filling
rectangular layouts is very large, and that the generic problem of creating such layouts falls in
the category of NP-hard problems [145]. To the contrary, we show here that:

1. Useful rectangular space-filling layouts belong to a class of limited complexity, which we
call sequential space-filling layouts. They have an average complexity ofOpnq orOpn log nq,
with worst case at Opn2q.

2. Only five dimensions suffice to characterize the task of sequentially laying out a dataset
in space-filling rectangles: order, size, chunk, recurse and phrase (the chunk and phrase
dimensions echo Buxton’s perspective on the structure of input [146]).

3. Functional representations (functors) of these five dimensions are the parameters of a uni-
versal algorithm for the class of sequential, rectangular, space-filling layouts.

To support those assertions, we first state the problem more formally by specifying the class
of problems we address and place our work in context. Next we describe the five dimensions
of the design space spanning the introduced problem class. This is followed by the construction
of an universal algorithm which covers this space. Next, we show how these dimensions serve

4.1. Treemaps 47

as parameters of the algorithm and demonstrate how various values for each dimension result
in different well-known or new layouts. Finally, we extend the algorithm to allow handling
hierarchical data structures for the realization of a generalized treemap layout framework. This
lets us conclude on the potential of our algorithm to help mastering better the design space of
treemaps and rectangular space-filling layouts, as well as address more general visualization
techniques with similar algorithmic space characterizations.

4.1.2 Problem statement

There are various ways to define the concept of rectangular space-filling layouts which underlie
the design space of treemaps. We choose to state the problem in a more general, yet simple to
formalize way. The problem we address can be stated formally as follows. A rectangular space-
filling layout is an algorithm which

• takes as input an ordered list of N positive integers: ta, b, c, ...u, whose sum is equal to S;

• outputs a tiling of the unit square r0, 1s � r0, 1s with N non-overlapping, rectangles of sur-
faces ta{S, b{S, c{S, ...u. The sides of these rectangles are only allowed to be aligned with the
sides of the unit square, i.e. no rotation is allowed. Colloquially, we call these “orthogonal”
or “Manhattan” rectangles;

• maximizes a given objective function.

The objective function will define, for a large part, the algorithm to apply. This function is gener-
ally a weighted sum of objectives [147] involving criteria such as:

1. Aspect ratio of rectangles should be close to 1 or some chosen value.

2. Preservation of the input order.

3. Stability to resizing or adding or removing a small number of items.

Other criteria could be interesting to investigate, such as including the input surfaces as part of
the objective function instead of posing them as hard constraints.

While the layout phase is the center of our attention, treemaps are often perceived as a method
to visualize hierarchies. To address this perception, our generalized approach applies the solu-
tion for the above layout problem to each level of the hierarchy. This definition discards some
interesting work from our focus: Ellimaps [148] or Voronoi Treemaps [149] for instance, are
moved out of our scope. The former is not space-filling and both methods use non-rectangular
shapes to pave the surface. Still, our proposal covers most of the central area of treemap research:
slice and dice, squarified, pivot layouts. We stress, however, that our approach is not limited to
treemaps but also covers related rectangular space-filling visualizations such as mosaic displays,
icicle plots and 100% stacked bar charts.

A Generic Algorithm

We propose a generic algorithm, whose parameters allow specifying points (i.e. concrete rect-
angular, space-filling layouts) in a specific portion of the problem space described above. For
convenience, in the remainder of this section we will use the following conventions. Our algo-
rithm takes as input a collection of N tuples [150], which we will denote T . We refer to a single
element in T as ti P T with 0 � i N . Each tuple ti has a finite number of attributes, which we
denote aj for the jth attribute.

The output of our algorithm is a representation of the input data presented as a list of graphic
instructions in the form drawRectanglepti, xi, yi, wi, hiq for each i. This list is constrained: output

48 4. Information Visualization for Decision Management Systems

rectangles do not overlap and together they fill the unit square. In our algorithm description,
we consider that the output is produced through a succession of calls to a rendering function:
render : T � Rectangle Ñ Graphical Output. Hence, our algorithm can be characterized as a
function that takes a collection of tuples T and a renderer R: draw : T �RÑ Graphical Output.

Sequential methods

Considering that our target problem is defined as a combinatorial optimization problem, it would
seem, at first sight, that reaching optimal solutions is a hard problem. Some have assumed that
the disjunctive nature of the problem makes it NP-hard [145]. We do not adhere to this view. We
will show that the constraints for tiling the full surface impose some severe restrictions on the
allowed choices, and that dynamic programming-based solutions work satisfactorily.

However, it remains clear that describing the full algorithmic design space of rectangular
space-filling layouts, of unbounded complexity, is a challenging task. Rather, we decide to focus
on a class of greedy methods, which we call sequential layouts. These methods are not allowed to
use backtracking techniques of unbounded depth. They can perform a fixed number of passes on
the input set and partition the input set to apply to each partition element a further layout method
(divide and conquer/dynamic programming approach). This class of algorithms corresponds to
the class of input-linear visualizations [151, 139], augmented with partial recursion capability. As
defined in [151], algorithms are input-linear (or data-linear) when there is a constantK such that,
for any input set T of length N , for all i N , ti is accessed at most K times. Augmented with
local recursion, the algorithms we consider are contained in the class that we call quasi� input�
linear algorithms, defined by the proposition that ti is accessed logpNq �K times on average and
N �K at most, which gives algorithms in this class a worst-case complexity of OpN2q.

There are several reasons to restrict oneself to exploring this class:

• All widely known algorithms that tile rectangles belong to this class.

• If further improvements are needed, local optimization techniques provide a range of sim-
ple techniques to move down to local minima.

• A design space of this class of algorithms can be fully characterized in a simple way.

Algorithms in this class are conveniently written as a sequence of ordered passes (sequences)
over the dataset, which is why we call this class ”sequential algorithms”.

4.1.3 Related work on rectangular layouts

In the previous section, we have restricted our ambitions to provide for a simpler model. Still the
space-filling model we describe covers a large number of commonplace views which are used in
various contexts.

Tables, grids, file browsers, but also simple hierarchical trees are representable in our model.
For the later case, it suffice to replace the rectangle renderer with a node-link renderer to obtain
commonplace trees out of a space-filling layout algorithm.

Rectangular space-filling layouts also cover a large portion of common statistical graphics.
Equal height and 100% stacked bar charts are two of the simplest space-filing layout to imple-
ment. More interestingly, treemaps are predated by mosaic plots [43, 152], which are hierarchical,
space-filling layouts too. Dimensional stacking [1] and pixel bar charts [153] are also covered by
our design space.

Starting from the seminal paper of Johnson and Shneiderman [103], treemaps have been a
widely explored area. The issue of the poor aspect ratios produced by the slice and dice tech-
nique have been addressed quite rapidly after: M. Hascoet-Zizi proposed, as soon as 1992, the

4.1. Treemaps 49

squarified layout algorithm [154]. Bruls et al. [145] rediscovered this technique and popularized
it. Around the same time, Wattenberg proposed a variety of pivot-based layouts, while Bederson
introduced strip and quantum layouts [155]. A recent technique worthy of discussion is spatially
ordered treemaps [156]. We refer to Shneiderman [141] for a more exhaustive listing. All the
techniques presented above are particular instances of our generalized layout technique.

Of interest to our work are some recent efforts to model the treemap design space more for-
mally. Onak et al. introduced ”Fat Polygonal Partitions” [157] and ”Circular partitions” [158]
which are interesting variants of the problem we address, splitting the unit square with quadri-
laterals instead of rectangles. The extra degree of freedom gained lets them improve the op-
timization results, and in particular provide better overall aspect ratios. Interestingly enough,
both techniques can be recreated with a generalization of our universal layout algorithm wherein
the output is changed to general quadrilaterals. Schulz et al. [159] survey the design space of
implicit hierarchical visualization. They define layout as one of the axes of this space. However,
they only distinguish between subdivision and packing, which leaves layout still as an ill-defined
black box. We show that layout can be defined more precisely and covers a design space on its
own. Vliegen et. al. [160] discuss several of the dimensions we consider for our space: direc-
tion, size, nesting as a equivalent to our partitioning operator, but not our recurse functor. They
also discuss other dimensions: transformation, uniform density. However, those dimensions are
treated as parameters of finite range (or black-box parameters) and the algorithm features that
are the foundation of the problem space are not discussed.

Our work inscribes itself in a variety of foundational work on describing the structure of
graphical representations. Our approach is inspired by some seminal work in formalizing the
design space of information visualization such as Chi et al. [161]. Bertin’s seminal Semiology
of Graphics [162] provides numerous insights, including a treemap layout (p. 270). Wilkin-
son’s Grammar of Graphics [163] went much further by including data projection and statistical
concerns in his framework. This work was extended by Wickham and Hofmann [164] who pro-
pose 1D and 2D primitives for mapping data to various space-filling and non-space-filling plots.
We are not aware of related work regarding decomposing and rationalizing the layout problem.
Slingsby et al. [165] proposed a general technique to configuring hierarchical space-filling lay-
outs. Our design space is structured quite similarly, but has been inspired by the earlier work on
Discovery [139]. Our contribution over the work of Slingsby et al. is that, instead of providing
a preset number of layout functions, we request the specification of five functional parameters:
order, size, chunk, recurse and phrase. In short, our model does not rely on a preset number
of ”black boxes” predefined layouts. All possible layouts in the class we consider are described
through parameter settings only. Order and Size are similar to Slingsby’s sSize and sOrder op-
erators. Slingsby’s model can probably replace its oLayout operator with oChunk, oRecurse and
oPhrase operators and make all those operators functional to reach the full expressiveness of our
model. Recently, Schultz et al. [166] proposed a generative approach for rooted tree drawings.
Their approach is similar to our in that they provide functional building blocks which are strung
together in a pipeline that captures the layout process. As opposed to our model, they do not
consider their building blocks as a design space which allows them to have dependencies be-
tween the building blocks. This gives a greater flexibility in the kinds of trees that can be drawn.
However, it trades of the insight a design space yields for a “getting the job” done approach.
Our contribution is aimed at the understanding of the design space to support further research
in automatic parametrization of the layout algorithm.

4.1.4 Design Space

The design space for sequential, rectangular space-filling layouts is determined by five indepen-
dent dimensions: order, size, chunk, recurse and phrase. Those dimensions are functional: they

50 4. Information Visualization for Decision Management Systems

Dimension Signature Description
Order T Ñ T Order in which the data items are laid out.

Size T Ñ R� Determine how individual data items
are sized.

Chunk C � R� Ñ B Determine how data items are chunked
together.

Recurse C Ñ B Determine how a chunk lays out its content.
Phrase C Ñ pSide,Directionq Determine how chunks are assembled in

the available space.

Table 4.1: Overview of the five dimensions that span the design space of sequential, rectangular
space-filling layouts. All functors are stateful, meaning their actual signature is X � state Ñ

Y � state.

are functors that define choice points to be taken based either on the input data or on the current
state of the layout process. For example, a particular instance of the chunk functor can make the
decision to start a new chunk every tenth item. All functors are stateful, meaning that their actual
signature is X � StateÑ Y � State A brief overview of those functors is given in Table 4.1.

Order

The data is handled sequentially. Therefore, the first dimension that determines the layout is
the order in which to process input. The functor that defines this dimension takes as input the
original data items to be laid out and return the items in a particular order. Basic ordering func-
tions include sorting data items ascending or descending based on a particular input attribute ai.
More elaborate ordering functions can be used: for instance, returning all items at even indices
followed by items at odd indices. Functionally this dimension is represented as a permutation,
or:

order : T Ñ T

We must take in account an important restriction: because we cover only the class of sequential
algorithms, only ordering functions that are sequential can be used in our model. This includes
linear time sort algorithms such as bucket sort and divide and conquer sort algorithms such as
quick-sort.

Size

We have defined the layout problem as the tiling of a unit square, given a list of sizes. The size
determines the relative space a given data item will take in the final layout. Retrieving these
sizes from the original data can be expressed as a function on the input data. The most trivial
functions return either a fixed size or use a particular numeric data attribute. Other possibilities
include calculations on attributes of the data items or transforming categorical data attributes to
a numeric value that serves as size based. Functionally this dimension is represented as:

size : T Ñ R�

Here, sizepT risq returns the size of the ith tuple (i.e. L[i], from the initial problem statement).

4.1. Treemaps 51

Figure 4.3: A strip treemap with recursion enabled. Elongated items that would have been placed
horizontal are now placed vertically.

Chunk

A chunk is a rectangle in the unit square that fully contains one or more of the output items. In
the remainder, C denotes the list of chunks that pave the unit square and ci the ith chunk, with
0 i � N . When i � N , all items are laid out in separate chunks.

A consequence of the limitation that the algorithm must be sequential is that items must be
placed sequentially in successive chunks. How big these chunks are, i.e. how many items are
laid out at once, can be determined in various ways. Therefore, Chunking defines yet another
dimension of our design space. The decision of adding an item to the current chunk or to the next
can be based on various variables such as the number of items in a block with respect to the total
number of items to layout or the aspect ratio of items in a chunk. Functionally this dimension is
represented as:

chunk : C � R� Ñ B

Here, chunkpcrjs, Lrisq returns false when Lris should be added to the jth chunk and true
when a new chunk should be formed. Recall that C denotes the list of chunks that pave unit
square, thus when this method returns true, a new chunk is added to this list.

Recurse

The recurse dimension indicates whether, after having isolated a chunk, the algorithm should
recurse into the chunk, reapplying itself to further improve the aspect ratio or other optimization
goals. This is a partial recursion and it is bounded by the number of data items to be laid out. This
functor therefore causes the algorithm’s worst case complexity to grow into OpN2q, just under
the same kind of scenario as the quicksort algorithm: the worst case occurs when N �1 items are
laid out in a chunk and in the recursion proceeds N � 2 times, until finally no items are left to
process. This results in NpN � 1q{2 � OpN2q steps.

This dimension allows implementing the various types of pivot layouts. Recursion can be
used for instance to improve the aspect ratio of small items in a strip treemap without compro-
mising the ordering (Fig. 4.3). Functionally this dimension is represented as:

recurse : C Ñ B

Where, recursepCrjsq returns true when the algorithm must recurse into the jth chunk and
apply itself recursively to the items in this chunk and false otherwise.

52 4. Information Visualization for Decision Management Systems

Figure 4.4: When it is decided to place chunk A of size 1 in this square of surface 4, and if there
are only two items left to fit in the square which sizes are 0.5 (B) and 2.5 (C), then there is no way
to produce a rectangular space-filling tiling of the square.

4.1.5 Phrase

When a chunk is finished it must be laid out in the available space. Once a chunk is laid out, no
changes to the aspect ratio or to the location of the chunk can be made (because of fixed depth
backtracking). Consequently, the way a chunk can be located in the available space rectangle is
strongly constrained, as explained in Fig. 4.4: if a chunk was allowed to be placed anywhere in
the available space, using any aspect ratio, it would be easy to create input sequences that defeat
the space filling constraint and therefore the sequential constraint. Hence, there are only four
possible locations for a new chunk: the four sides of the containing rectangle. Besides newly cre-
ated chunks must take either full height (resp. width) and grow horizontally (resp. vertically) as
items are added. Finally, items can be stacked in various directions inside a chunk. In a horizon-
tal chunk, items can be either stacked from left to right or vice versa. In a vertical chunk, items
can be stacked from top to bottom or vice versa. This brings the total number of possible block
configurations to eight. For completeness we note that items could be stacked vertical in hori-
zontal chunks and stacked horizontal in vertical chunks, doubling the number of configurations.
Functionally this dimension is thus represented as:

phrase : C Ñ pSide,Directionq

Here, Side P tNorth, South,East,Westu and Direction P tUp,Down,Left,Rightu. The
function call phrasepCrjsq returns the layout configuration for the jth chunk.

Figure 4.5: Functional view of the algorithm, showing dependencies among components.

4.1.6 Algorithm

Now that we have specified the dimensions that span the design space of rectangular, sequential
space-filling layouts, we can stitch them together in order to construct a universal algorithm that

4.1. Treemaps 53

creates rectangular space-filling layouts in a sequential manner. Fig. 4.5 summarizes the steps
required for creating rectangular space-filling layouts. It gives a functional view of the algorithm
and shows the various functors that transform data into rectangles.

a. b. c. d.

Figure 4.6: Stacking items in a chunk.

Chunks

Our algorithm stacks items in a chunk as shown in Fig. 4.6. The chunk is placed on the left side
of the unit square, and three out of six equally sized items are added to the chunk. Items are
stacked from bottom to top. The order of stacking is depicted by color, going from black for the
first to light gray for the last item. In Fig. 4.6a, no item is added, hence the chunk height is equal
to the available space plane and its width is zero. Next, in Fig. 4.6b one item is added and the
chunk now has a width proportional to the size of the item that was added previously over the
total size to be laid out. In Fig. 4.6c a second item is added. The width of the chunk again grows
proportionally, but the heights of the items are reduced as they are stacked in the chunk. Finally,
Fig. 4.6d shows the result of adding yet another item to the chunk.

A chunk has six properties: side, direction, fromX, toX, fromY and toY. These are initialized
using an initial chunk configuration (combination of side and direction), and the available space
rectangle, but with a flat rectangle along the progress direction. Once no more items are to be
added to a chunk, it can reduce the available space rectangle by moving one of its corresponding
borders proportionally to the chunk’s surface. Assuming that Fig. 4.6d shows the final state of
the chunk, the available space would be reduced to rx : 0.5, y : 0, w : 0.5, h : 1s. This progressive
reduction of the available space is materialized by the reduce function in our algorithm.

function chunk (Array T)
// size and score are global function pointers

Chunk currentChunk = new Chunk ()
Chunk chunks [] = [currentChunk]
f l o a t prevScore = �i n f
for (var i = 0 ; i < N; ++ i)

f l o a t curScore = score (currentChunk , s i z e (T [i]))
i f (curScore < prevScore)

currentChunk = new Chunk ()
chunks . append (currentChunk)
prevScore = score (currentChunk , s i z e (T [i]))

e lse
prevScore = curScore

currentChunk . add (T [i])

return chunks ;

Listing 4.1: The chunking algorithm

54 4. Information Visualization for Decision Management Systems

Chunking

Chunking is the process of deciding whether ti gets added to cj or cj�1. This decision is based
on a simple scoring function which takes a chunk cj , the size of tuple ti and returns a score s. Or
more formally:

score : C � R� Ñ R

Here, scorepcj , tiq ¡� scorepcj , ti�1q when adding item ti�1 is considered to be an improve-
ment of the layout. Like the main functors of our algorithm, score is stateful as well. The function
describes an optimization function whose successive local maxima are used as chunk delimiters
as the algorithm progresses through the input. This chunking process is described as pseudo
code in Listing 4.1.

Phrasing

When a new chunk is started, it must be decided how the chunk will be laid out in the available
space. Recall that a chunk must be placed along one of the four sides of the available space,
and that a stack direction must be given as well. Those two characteristics, taken together, form
a chunk configuration. Phrasing is the process of picking a configuration for each successive
chunk. Phrase is a functor that takes the previous chunk ci�1 and returns the chunk configuration
for chunk ci. That is, phrasepchunkjq Ñ pside, directionq. The first chunk is phrased according
to the initial configuration set given to the algorithm, which is one of the above mentioned 16
possibilities. Depending on the strategy, the next configuration can be determined in a number of
ways. There are four simple and useful strategies, which we call data independent. An overview
of these strategies is shown in Fig. 4.7. Color depicts order of placement from first (dark) to last
(light) and the arrow depicts the direction in which the items are placed in the chunk. These
strategies work as follows:

a. Strip b. Zigzag c. Spiral d. Spikes

Figure 4.7: Four data independent phrasing strategies to create a space filling layout.

• Strip (Fig. 4.7a) - Using this strategy, each chunk is put the same way in the available space.
This results in each first item of ci being placed next to the first item of ci�1 for i ¡ 0, i.e. a
discontinuous placement of items.

• Zigzag (more accurately, Boustrophedon1) (Fig. 4.7b) - Is similar to strip except that the
stack order of the items is reversed for every new chunk. Each first item of ci is placed next
to the last item of ci�1 for i ¡ 0, i.e a continuous placement of items.

1This term comes from Greek boustrophēdon. It means ox-turning, referring to the turning of oxes when plowing a
field.

4.1. Treemaps 55

• Spiral (Fig. 4.7c) - In this strategy, chunks are laid out against the next border of the available
space based on the border and layout direction of the previous chunk. Each first item of ci
is placed next to the last item of ci�1 for i ¡ 0, i.e a continuous placement of items.

• Spikes (Fig. 4.7d) - Chunks are laid out perpendicularly to the previous chunk so that the
first item of ci is close to the first item of ci�1 for i ¡ 0, i.e. a discontinuous placement of
items.

Layout

All the basic components of our layout algorithm have now been introduced. The actual layout
algorithm can be described by extending the earlier presented chunk function as follows. The
first chunk is given an initial configuration. Next we start chunking as detailed before. However,
before a new chunk is started, we first test if recursive layout is required and apply the algorithm
recursively if so. Next, the phrase functor is used to determine the configuration for the new
chunk. The resulting pseudo code is listed in Listing 4.2.

function layout (Array T , i n t from , i n t to)
Rect av a i l ab le Spa ce = new Rect (0 , 0 , 1 , 1)
Chunk currentChunk = new Chunk (phrase (null) , a va i la b le Sp ace)
i n t currentFrom = from
Chunk r e s u l t [] = [currentChunk]
T = order (T , from , to)
f l o a t prevScore = �i n f

for (i = from ; i < to ; ++ i)
f l o a t i temSize = s i z e (T [i])
f l o a t curScore = score (currentChunk , i temSize)
i f (curScore < prevScore)

currentChunk . reduce (av a i lab le Spa ce)
i f (recurse (currentChunk))

Chunk recursiveChunks [] = layout (T , currentFrom , to)
i f (! recursiveChunks . isEmpty ())

r e s u l t . pop ()
r e s u l t . append (recursiveChunks)

currentChunk = new Chunk (phrase (currentChunk) , av a i l ab leS pa ce)
r e s u l t . append (currentChunk)
currentFrom = i
prevScore = score (currentChunk , i temSize)

e lse
prevScore = curScore

currentChunk . addItem (i temSize)

i f (currentFrom != from && recurse (currentChunk))
Chunk recursiveChunks [] = layout (T , currentFrom , to)
i f (! recursiveChunks . isEmpty ())

r e s u l t . pop () // replace last chunk with subdivision result.

r e s u l t . append (recursiveChunks)

return r e s u l t

Listing 4.2: Basic layout algorithm

56 4. Information Visualization for Decision Management Systems

Finally, we can implement the draw function mentioned in the input and output section as in
Listing 4.3. The chunk.rectanglemethod simply assigns iteratively a rectangle to each item in the
chunk based on the chunk’s rectangle and its direction attribute and increments a local counter
to assign the border of the next item to be drawn.

function draw (T , R)
Chunk chunks [] = layout (T , 0 , T . length ())
foreach (chunk : chunks)

R . drawRect (chunk . r e c t a n g l e ())
foreach (t : chunk) { // item in chunk

R . drawRect (t , chunk . r e c t a n g l e (t))

Listing 4.3: Draw function implementation

This fully describes our universal algorithm that solves the problem stated in Sec. 4.1.2 with
sequential methods. Note that some parts of the algorithm are optimized in practice. For exam-
ple, the ordering and sum functors are memoized, instead of being recalculated for each recursive
iteration. These kind of optimizations are left out for clarity.

Completeness

As we have mentioned in the introduction, the dimensions we describe are independent, and
each covers a functional, recursively enumerable, domain. We can show in a nonconstructive
way that our generic algorithm allows the depiction of any sequential, rectangular, space-filling
layout as defined in Sec. 4.1.2: The order functor is instantiated with a general function that can
perform any calculation and store its result in the state variable. The chunk, phrase and recurse
functors are then free to reuse those results as they see fit. Hence, it is always possible to ”pack”
a knowingly sequential algorithm into the order functor, which has the adequate signature, and
leave the other functors just retrieve precomputed values to perform the layout. Finally, as long
as the order function stays sequential in the sense of Sec. 4.1.2 and the other functions stay in
constant time, all possible parametrizations of our generic algorithm stay sequential.

While this sketched analysis somewhat downplays the use of separate phrase and chunk

functors, these two dimensions greatly simplify the expression of a large variety of rectangular
space-filling layouts. Phrase and chunk allow expressing in a terse way the base ingredients of a
divide and conquer approach to layout. The divide and conquer approach is a sensible technique
to encompass efficiently the various objective functions of the problem stated in Sec. 4.1.2.

Indeed, the combination of chunk and phrase functors capture the fact that the chunking
process needs to proceed by growing chunks along the borders of the area to fill. If a sequential
layout algorithm decided to attribute to a chunk a rectangle that is not on the border of the
available area, and does not extend to the full height or width of this area, then it suffices to
input the algorithm two (or more) additional items which cannot be made to fit the remaining
space: the algorithm fails to find a proper tiling. Fig. 4.4 illustrates this fact. In other words,
an algorithm that wishes to chunk some items together into a distinctive block to further layout
this block independently must proceed by placing the distinctive block along one of the edges
of the area to layout, or be allowed to perform backtracks of arbitrary depth to decide how to
organize those blocks together in the alloted space. These backtracks of arbitrary depth push the
complexity of the method beyond the realm of input-linear and quasi-input-linear methods.

These considerations let us claim that our algorithm is universal for the class of algorithms
considered, i.e. sequential methods for tiling the unit square with rectangles of varying surfaces.
We acknowledge that a detailed proof for this claim is desirable. However, such a proof goes
beyond the scope of this thesis as it would require further formalization and introduction to the

4.1. Treemaps 57

class of input-linear algorithms. Instead, we now show how in practice those five dimensions
can be combined to provide a wide variety of layouts.

4.1.7 Layout parameters

This section presents various examples of functions for each of the considered dimension and
demonstrates how different configurations of the algorithm create instances of well known or
new layouts. First, we briefly discuss the order and size functions as these are rather trivial.
Next, we illustrate how the score and phrase functions interplay with each other to allow pro-
ducing a variety of known or novel layouts. Finally, we discuss the recursion functor which
adds the ability to reenter the layout algorithm inside chunks. In the following we use a dataset
containing US cities, the states they belong to and measures for various properties such as popu-
lation, climate, education and health care. Individual items are colored by item index from light
(low index) to dark (high index) and separated by red lines. Chunks are separated by black lines.

Order and Size

The order functor orders (a subset of) the original input dataset. When this functor is not specified
the original order of the data is kept. A trivial example of an ordering function is one which
sorts the tuples based on a particular attribute of the dataset, e.g. by population. However,
we explicitly named this dimension order because more complex ordering methods, which fall
outside the range of sorting, are allowed. For example, we chose to access first the tuples that
have an even index, followed by the tuples that have an odd index.

The size functor lets one specify which attribute or function to use to compute the size of each
tuple. There are only a limited number of useful size functions:

• Constant (Fig. 4.8a). One for tuples and nodes alike. This is useful for similar usages in grid
layouts.

• A function that returns a tuple attribute (Fig. 4.8b) which should be a ratio attribute for best
result. For nodes in a hierarchy, the value of this function is the sum of all values of the
tuples it contains. An efficient implementation will of course cache this sum for each node
to avoid recomputing it needlessly.

• The result of a computation on tuple attributes (Fig. 4.8c). This is merely a special case of
the former where a value is calculated based on one or more fields of the available data.

a. Constant b. Population c. Education over HealthCare

Figure 4.8: Various settings for the size functor.

58 4. Information Visualization for Decision Management Systems

Chunk scoring

The Chunk scoring function is the most powerful and complex parameter. The score functor
evaluates a score for a chunk composed of a current chunk and one extra item. So, this score
functor is evaluated before adding an item to the chunk. In the remainder of this section we
assume a global variable state is available for bookkeeping, which is updated by the algorithm
as required.

The simplest instances of this functor are Slice and Dice, which return the maximal score
when the chunk has only one item, resp. when its cardinality is the full node. When these
methods are alternatively applied at each level of a hierarchical data structure, this produces
the regular slice and dice layout. Equally simple is the Grid function. This function returns its
maximum when the number of items is equal to the closest approximation of the square root of
the number of children in the node. This results (approximately) in a number of chunks with
equal cardinality. To produce a perfect grid, the size functor needs to be adjusted to return the
smallest square integer above the cardinal of the input size. As its name indicates, this chunking
method produces grids (Fig. 4.8a) if the size attribute is set to constant, or some variant of a strip
layout if not.

function S l i c e (Chunk c , double itemSize , S t a t e s t a t e)
return c . itemCount == s t a t e . itemCount ? 1 : 0

function Dice (Chunk c , double itemSize , S t a t e s t a t e)
return 1 � c . itemCount

function Grid (Chunk c , double itemSize , S t a t e s t a t e)
return square (c . itemCount) <= s t a t e . itemCount ? 1 : 0

Listing 4.4: Elementary chunking functions

More interesting, yet complex, chunking functions can be used, allowing for instance to
implement a variety of squarified and strip layouts. The bestAverageAspectRatio (Listing 4.5,
Fig. 4.9a) and bestMinAspectRatio (Listing 4.5, Fig. 4.9b) functions return as a score respectively
the average aspect ratio of all the items in the chunk and the aspect ratio of the smallest item in
the chunk. The closer this value is to one, the more ”fit” the current chunk is to be laid out. To

a. Best Average b. Best Minimum

Figure 4.9: Two chunk scoring functions based on the aspect ratio of items: (a) best average aspect
ratio. (b) best aspect ratio for smallest item. The order function is not specified, resulting in a
(intentional) poor squarification of the layout.

4.1. Treemaps 59

compute these values, the width (resp. height) of the chunk has to be computed by evaluating the
ratio of the sum of the current chunk over the total sum of the square to be laid out. The height
(resp. width) is equal to that of the enclosing space. Having computed the width and height of
the chunk makes computing the average and minimal aspect ratios of its content elementary.

function BestAverageAspectRatio (Chunk c , double itemSize , S t a t e s t a t e)
Rect r e c t = s t a t e . av a i lab le Spa ce
f l o a t expandingDim = c . i s V e r t i c a l ? r e c t . height : r e c t . width
f l o a t fixedDim = c . i s V e r t i c a l ? r e c t . width : r e c t . height
i n t newChunkSize = c . sum () + i temSize
f l o a t aspec tRat io = expandingDim / (c . itemCount + 1)

/ (fixedDim ∗ newChunkSize / s t a t e . o v e r a l l S i z e) ;
return aspec tRat io > 1 ? 1 / aspec tRat io : aspec tRat io

function BestMinAspectRatio (Chunk c , double itemSize , S t a t e s t a t e)
Rect r e c t = s t a t e . av a i lab le Spa ce
f l o a t expandingDim = c . i s V e r t i c a l ? r e c t . height : r e c t . width
f l o a t fixedDim = c . i s V e r t i c a l ? r e c t . width : r e c t . height
i n t newChunkSize = c . sum () + i temSize
i n t minItemSize = (c . minItemSize () < i temSize)

? c . minItemSize () : i temSize
f l o a t aspec tRat io = expandingDim ∗ (minItemSize / newChunkSize)

/ (fixedDim ∗ newChunkSize / s t a t e . overallSum)
return aspec tRat io > 1 ? 1 / aspec tRat io : aspec tRat io

Listing 4.5: Calculating score based on average and minimum aspect ratio

Finally, to implement Pivot layout [155], other score functions can be used that split the input
data in two approximately equal parts (Listing 4.6). Pivot by middle has its maximum around
the middle of the item count, Pivot by size has its maximum at the index of the biggest item, and
Pivot by split size has its maximum where the sum of the sizes is closest to half the total sum.

Figure 4.10: A pivot treemap created using a pivot chunk scoring function and recursion.

60 4. Information Visualization for Decision Management Systems

function PivotByMiddle (Chunk c , double itemSize , S t a t e s t a t e)
return �square (c . itemCount + 1

� (s t a t e . to � s t a t e . from) / 2)

function P i v o t B y S p l i t S i z e (Chunk c , double itemSize , S t a t e s t a t e)
return �square (s t a t e . currentChunk . s i z e () + i temSize

� s t a t e . remainingSum / 2)

function PivotBySize (Chunk c , double itemSize , S t a t e s t a t e)
return s t a t e . currentIndex == s t a t e . indexOfBiggestItem ? 1 : 0

Listing 4.6: Pivot layout functions: The first two are parabolas which have their maxima
at the desired item index (Fig. 4.10).

Phrase

In Sec. 4.1.6 we introduced four simple, data independent phrasing strategies. The implementa-
tion of these strategies is done by means of functions which basically consist of a switch state-
ment over the current chunk phrase configuration to pick the next one. A novel layout is shown
in Fig. 4.11a, where we apply spiral phrasing to our US population dataset. More complex phras-
ing functions, combined with recursion, can use some state variables and a stack to produce
sophisticated layouts such as the Peano-Hilbert curve of Fig. 4.11b.

In addition, phrasing can be made dependent on the input data, to produce data dependent
strategies. Those can echo the data independent strategies described earlier. We call the data de-
pendent alternative of Strip phrasing Worst Discontinuous phrasing. In this strategy, each chunk
is placed so as to degrade the aspect ratio of the available space. Items in new chunks are stacked
in the same direction, resulting in a discontinuity at each chunking step. The data dependent
variant of zigzag is what we call the Worst Continuous strategy which places the next chunk so
as to degrade the aspect ratio and reverse the stack direction. The data dependent variant of
Spiral is what we call Best Continuous. In this strategy the chunk is placed so as to improve the
aspect ratio of the available space and orders the items so that the first item of the next chunk is
next to the last item of the previous chunk. Finally, we call the data dependent variant of Spikes
(Fig. 4.12a) Best Discontinuous (Fig. 4.12b). It places each chunk so as to improve the aspect ratio
of the available space and so that the first item of the new chunk is next to the first item of the

a. Spiral phrasing b. Hilbert curve phrasing

Figure 4.11: Two different ways to place chunks consecutively in a plane: following a spiral and
following a hilbert curve.

4.1. Treemaps 61

previous chunk. This layout is a novel and interesting improvement over the regular squarified
layout as it results in significantly squarer items, as shown in Fig. 4.12b.

function h i l b e r t P h r a s i n g (s t a t e)
s t a t e . sequence += 1
var d i r e c t i o n = s t a t e . parentConfig
i f (s t a t e . depth % 2 === 0)
// at even depth, we split in 2 blocks of 2 and reverse

// direction of the 2nd chunk

i f (s t a t e . sequence % 2 === 0)
return d i r e c t i o n

e lse
return d i r e c t i o n . reverse ()

e lse
// at odd depths we toggle the orientation of each quarter

i f (s t a t e . parentSequence % 2 === 0) // 1st half

i f (s t a t e . sequence % 2 === 0)
return d i r e c t i o n . a l t e r n a t e () // q1

e lse
return d i r e c t i o n // q2

e lse // 2nd half

i f (s t a t e . sequence % 2 === 0)
return d i r e c t i o n . a l t e r n a t e () // q3

e lse
return d i r e c t i o n . a l t e r n a t e () . reverse () // q4

Listing 4.7: .Hilbert phrasing (see Fig. 4.11b). direction, sequence
and depth are state variables maintained at the scope of each chunk.

Recurse

As with the other dimensions, recurse is a functor in our algorithm that returns a boolean. When
true is returned the layout algorithm is applied to the items of the current chunk. If the recursion
results in one or more chunks, the current chunk is removed from the result and replaced by the
chunks that resulted from the recursion step. Obviously, there must be a stop criterion for the

a. Spikes b. Best Discontinuous

Figure 4.12: Data independent and dependent spike phrasing strategies. Notice the two vertical
chunks at the left in (b).

62 4. Information Visualization for Decision Management Systems

a. Strip treemap without recursion b. Strip treemap with recursion, leading
to local improvements

c. Without recursion d. With recursion

Figure 4.13: Applying recursion for layout improvements and pivot layouts.

recursion. Therefore, the simplest value of the recurse functor should not just be a function that
returns true but limit itself based on the number of remaining items. In our implementation it
stops when only two or less items are left to be laid out.

One reason to use recursion is that it might improve aspect ratio of small items. Fig. 4.13a and
Fig. 4.13b show that after recursion many of the small items got a better aspect ratio. Another
reason for recursion is to implement various variants of the well known pivot layouts. Fig. 4.13c
and Fig. 4.13d show how recursion complements the pivot by middle scoring function.

4.1.8 Structuring

So far, we have focused purely on the layout aspect of space-filling visualizations. However, as
stated before, treemaps are a central concern, and those are most often perceived as a method
to visualize hierarchies. To accommodate this perception, we extend the presented algorithm by
introducing a structuring phase. This phase consists of partitioning and ordering which reflect
the sHier and sOrder states from Slingby et al. [165]. First we define a new structure Node,
used for representing hierarchies. This allows the algorithm to take as input either a tabular
input dataset and turn it into an ordered hierarchy according to some set criteria, or a preexisting
hierarchy of ordered nodes. Each node has a unique identifier and keeps a list of children. The
children can be tuples, nodes or a mix of both.

We adapt the previously introduced layout and draw functions to take this new context into
account. First, the layout function now takes a node n as input and additionally does not assume

4.1. Treemaps 63

the unit square as available space any longer but takes a bounding rectangle BR. Furthermore,
the children of a node can be a mix of tuples and nodes. Hence, the size function must be adapted
to return the appropriate size for the ith child of n. The required changes for the layout function
are listed in Listing 4.8.

function layout (Node n , Rect BR , i n t from , i n t to)
Rect av a i l ab leS pa ce = BR
// Same as in listing 2

i n t N = n . childCount ()
i n t S = sum(n , from , to) .
order (n , from , to)
f l o a t prevScore = �i n f
for (i n t i = from ; i < to ; ++ i)

i n t i temSize = s i z e (n . ch i ldren [i])
f l o a t curScore = score (currentChunk , i temSize)
i f (curScore < prevScore)
// Same as in listing 2

e lse
prevScore = curScore ;

currentChunk . add (n . ch i ldren [i])
// Same as in listing 2

Listing 4.8: Layout function for hierarchical structures

Like the layout function, the draw function now takes a node n and a bounding rectangle
BR instead of assuming unit square. The items in b are now elements e, which are either tuples
or nodes. In the former case, we call draw on the Renderer as before. In the latter case, we
recursively call draw, but now we set the bounding rectangle to the rectangle that was laid out
for this node. All children of the node will therefore be laid out not in the unit square but in the
input bounding rectangle. The adapted version of the draw function is listed in Listing 4.9.

function draw (Node n , Renderer R , Rect BR)
Chunk chunks [] = layout (n , BR , 0 , n . childCount ())
foreach (chunk : chunks)

foreach (element : chunk)
i f (e i n s t a n c e o f Tuple)

R . drawRect (e , b . r e c t a n g l e (e))
e lse // e is a Node

// Recursively draw the next level in the tree.

draw (n , R , chunk . r e c t a n g l e (e))

Listing 4.9: Recursive draw function for hierarchical structures

At this stage our space-filling layout algorithm is able to deal with both flat and hierarchical
data. In both cases the initial step is to convert input T into a root node containing T as children.
Now an additional structuring function is added before calling draw, which converts the flat root
node into an ordered hierarchy. The structure function executes in two phases, partitioning and
ordering. These two phases are detailed now.

Partition

Partitioning aggregates tuples in nodes according to a user provided expression. This expression
is expected to return a unique sub node identifier for each tuple, or null if the tuple is to remain

64 4. Information Visualization for Decision Management Systems

at the current level. Calling this functor on each child tuple results in creating one additional
level to the hierarchy. Listing 4.10 shows how a partitioner can be used to create a hierarchical
structure out of flat data.

function s t r u c t u r i n g (Node n , i n t depth)
Array r e s u l t = []
Map partit ionMap = {}
foreach (e : n . ch i ldren)

Object id = p a r t i t i o n E x p r e s s i o n (e , node , depth)
i f (id != null)

c h i l d = p a r t i t i o n s . get (id)
i f (c h i l d == null)

c h i l d = new Node(id)
s t r u c t u r e (chi ld , depth + 1)
p a r t i t i o n s . put (id , c h i l d)
r e s u l t . add (c h i l d)

c h i l d . add (e) // Add element to node

e lse
r e s u l t . add (e) // Add element as leaf

order (r e s u l t)
n . ch i ldren = r e s u l t

Listing 4.10: Structuring

The simplest partitioning expression, Enumeration, returns the value of a nominal tuple at-
tribute: returngetpt,myPartitioningColumnq. This partitioner allows, for instance, to group a
set of US cities by states. Likewise, date and numeric partitioners can be defined to split ac-
cording to values and fields held in a date or numeric attribute. A hierarchical partitioner can
be defined as a list of single column partitioners, resulting in mosaic plot layouts. Hierarchical
partitioners need to keep track of the depth of the current node, to invoke the proper level of
partitioning. Finally, a path partitioner takes an attribute column that describes a path (directory
+ file name, or URL, or date in the form y/M/d h:m:s, for instance). At each depth level n, this
partitioner will return the corresponding nth substring in the attribute value. This partitioner is
used for instance to display a file hierarchy in a treemap.

Order

Once partitioning is done, the resulting list can be ordered. Because the children can be either
nodes or tuples, the function used to determine order needs to take into account the possibility
of having to compare a node against a tuple. Past this hurdle, defining a comparator is fairly
simple. The most common comparator, like the Enumeration partitioner, uses a column as its
sort criteria. To handle nodes, this comparator defines an aggregation value for nodes, which
can be, for instance, the sum of all the tuple values, or their average, maximum or minimum.
Alternatively, the comparator can decide to place all nodes before or after all tuples, and sort
them according to their node id, their immediate child count or the number of tuples they contain.
Each of those possibilities will determine different placement of the nodes at a given level, but
will not affect the layout algorithm per se. Finally, when ordering is done at the structuring
phase, it should be obvious that ordering can be removed from the layout phase.

4.1.9 Conclusion

We have defined the design space of sequential, rectangular, space-filling layouts. This space is
covered by five independent, functional, dimensions, namely: order, size, chunk, recurse and

4.2. Rule Execution Visualization 65

phrase. In addition we presented a universal algorithm for sequential, rectangular, space-filling
layout. Our method leverages the observation that optimization techniques for sequential layout
methods are essentially of the divide and conquer type, requiring chunking the input into blocks
that are further laid out separately. The sequential nature of the process imposes the chunking
process to proceed from a full side of the available space to fill, and then proceed along one of
four possible sides, along one of four possible directions. Giving the user the ability to specify
the value of each of those dimensions at each step of the algorithm results in a universal method
to describe this class of algorithm. Additionally we discussed an extension of the algorithm in
order to make it suitable for hierarchical data as well.

The Discovery [139] framework implements the majority of the presented algorithms and
techniques, even though it was not formalized at the time. To provide broader access, we have
implemented the generalized space-filling layout algorithm as a small, independent component.
This component consists of only a few hundreds of lines of JavaScript code and follows closely
the presented algorithms.

A future research direction is to extend the presented algorithms to other layout problems
involving only data-linear or quasi-data-linear visualizations. We have mentioned the possibil-
ity of describing circular partitions [158] and [157] with the same techniques. Many tree and
graph drawing algorithms that do not require global heuristics (where the position of a node de-
pends possibly on all the other node positions) are also representable with our technique, simply
replacing the drawing of rectangles with drawing of arcs joining the centers of the rectangles.

Yet, let us return here to the original motivation of our work. Baudel used treemaps to vi-
sualize various static artifacts extracted from DS1 [140] (See Fig. 4.1 and Fig. 4.2). However, he
found that for a usable representation of these structures a careful selection of configuration of
the treemap layout and rendering settings is required. In a business context we cannot expect
users to have the required experience to find the most optimal representation. In order to lever-
age this problem, automatic configuration based on the tree-structure, data types and user ques-
tions would be desirable. To this extend, we defined a design space for space-filling, rectangular
layouts and presented a generic algorithm which can generate all possible layouts within this
design-space. Hence, our goal in defining this design space is to provide a more solid grounding
to support analysts in their use of space-filling displays. We envision using this design space
to develop a systematic method and a set of heuristics to (semi-) automatically choose a proper
layout given some datasets, appropriate meta-data and contextual information.

Finally, our work presents some aspects that seem to be new in the area of computational
geometry. As said before, we are not aware of related work regarding decomposing and rational-
izing layout design spaces relying on algorithmic properties of the problem specification. Similar
under-specified problems (whose objective function is a weighted sum of objectives, the weights
being personal decisions) are abundant in the literature. By leveraging the cases where these
problems are satisfactorily addressed by algorithms of low complexity (sequential, dynamic-
programming...), we have found a way to characterize such algorithmic design spaces elegantly,
through a limited set of functors that represent elementary decision functions that are to be made
by the algorithm: in our context, ”how to group items together? (chunk)”, ”in what order to fill
the plane? (phrase)”, ”do we refine the groups? (recurse)”. The study of input-linear and quasi-
input linear algorithms in such contexts could bring new insights to these classes of problems.

4.2 Rule Execution Visualization

When decisions are executed, the DMS will among other things store the rules that where trig-
gered for each decision (DS3). This rule triggering information is hierarchical in that it also con-
tains the control flow tasks to which rules belong. Control flow tasks can be control flows them-

66 4. Information Visualization for Decision Management Systems

Figure 4.14: A rule trigger graph for two version of the car insurance DM.

selves, thus resulting in a hierarchical structure. Combined with the decision instances (DS2),
detailed information can be extracted with respect to the functioning of the DM.

4.2.1 Visualizing rule execution graphs

Rule execution traces for individual decisions are typically small due to the nature of the business
logic. Typically, a decision will trigger five to twenty rules. The actual patterns depend on the
on the application domain. For example, a for quoting application each decision triggers this
amount of rules, while in a fraud detection application most decisions trigger no rules at all while
some decisions (the fraudulent) result in a cascade of rules being triggered. Two common tasks
performed by the business logic are segmentation and dealing with exceptions. For segmentation
there may be tens or even hundreds of rules, typically structured in a decision table, to divide
inputs in several segments. However, each input will be put into only one segment, hence only
one of these many rules will be triggered for a given input. Dealing with exceptions means that
those cases are not expected to happen often, thus the majority of times this kind of rules will not
be triggered.

Unlike in program comprehension, in the context of DMS a single trace is only of interest if the
resulting decision is problematic. More interesting are the aggregated results of many decisions.
To this extent, Baudel constructed a structure that is comparable to a call graph [140]. Each rule
becomes a node in this graph and two rules A and B are connected with a directed link when B
is triggered after A. The thickness of an edge represents the number of decisions that triggered
the two rules connected by the edge. Note, that there is a semantic difference here with a call
graph, where the same link would represent method A calling method B.

Fig. 4.14 shows the result of an early prototype by Baudel [140]. After extracting the rule
trigger graph from the execution traces he colored the nodes based on their package names:

• light blue nodes left: separation based on insurance type

• green nodes: base quote decision table

• purple nodes: discounts

• yellow nodes: surcharges

• light blue node right: final quote calculation

4.2. Rule Execution Visualization 67

Figure 4.15: Detail of the rule trigger graph for the car insurance DM, showing how various dis-
counts are triggered together.

This graph has two purposes: the first is to find trigger patterns that look suspicious or give
hints for improvements, the second is to compare scenarios. The green edges in Fig. 4.15 reveal
how the daytime running lights discount and the anti-lock brakes discount almost always come
with a triple airbag or dual airbag discount. Even though all these option individually might
contribute to a lower chance of getting involved in accidents, business wise it is questionable if it
justifies the summed discount.

As a result of this insight a business analyst can decide to adapt the DM to adjust its function-
ing. For example, he decided to introduce one discount for cars in the price range that likely have
one or more of the above mentioned security features. After this change he would like to verify
the new functioning. This is shown in Fig. 4.14, where the green edges represent the functioning
of the first version of the DM and the red edges the new version. It is clear that with the version
of the DM, represented by the red edges, this combined triggering of discounts does not happen
any more.

However, as pointed out by various authors [167, 168, 169], scalability issues inevitably arise.
Execution traces of software systems can easily require hundreds of megabytes or even several
gigabytes of storage space. In the context of DMSs a similar problem arises. With a growing
number of decisions it becomes more likely that exception rules are being triggered. For example,
the graph shown in Fig. 4.16 is the result of 1000 executions. In this graph we can still see some
coarse grained patterns such as the three types of decision (basic, basic + personal, full coverage)
and the rejections at the left side. However, detecting more fine grained patterns in this graph is
already very hard let alone comparing different scenarios. Yet, in practice the number of decisions
can easily go into the millions making this approach unusable. Additionally, this graph is a
hierarchical graph. Laying out such a graph is a NP-complete problem and consequently takes a
long time to render, making it unsuitable for interactive analysis.

4.2.2 Conclusion

The graph survey by von Landesberger et al. [170] suggests that there are more suitable repre-
sentations for the rule trigger graph. However, there is a deeper reason that should be taken in
consideration to determine if this is a fruitful direction or not. In Sec. 2.4 we explained that the
order in which rules are triggered is largely a side effect of the execution engine. Therefore, pre-

68 4. Information Visualization for Decision Management Systems

Figure 4.16: With 1000 decisions being taken, more different rules are triggered resulting in a hard
to read rule trigger graph.

senting the rule trigger graph to a business user could become the source of subtle interpretation
problems.

First of all the resulting layout can present the decision flow in a way that does not match the
mental model that the analyst has. His mental model of a DM is reflected in representations such
as decision tables and rule control flows (see Fig. 2.2 and Fig. 2.4). Those artifacts are actually
constructed by the business analysts themselves. Additionally, while decision flow charts have a
notion of rule execution order in them, it is not said that the actual rule execution as determined
by the execution engine will exactly match this order. The explicit rule control flows might there-
fore be a better starting point than actual rule execution graphs for showing aggregated effects
of input instances flowing through the decision model.

A second reason is that this representation forces the analyst to segment the input by groups
of triggered rules as opposed to segmenting inputs by properties of these inputs. That is, the
typical reasoning that is aimed at is: by observing that rule X , Y and Z are triggered together the
analyst deduces that the inputs flowing through these rules have certain characteristics. In the
above example, the consecutive triggering of the anti-lock brakes, daytime running lights and
airbag discount rules led to the conclusions that these deal with expensive cars. Clearly, this kind
of reasoning only works if the rules are simple enough, which should not be assumed.

4.3. Change Impact 69

4.3 Change Impact

The DMs of decisions which are automated with DMSs evolve over time. To adapt to changing
markets, law and business policies, DMs are modified. These changes can involve both the rules
and the domain model. In the case of rules, new rules are added and existing rules are modified
or removed. The domain model is extended with new concepts and attributes, while existing
concepts and attributes are modified or removed.

4.3.1 Visualizing domain model change impact

Chniti et al., present an approach to model the changes that can be made to the domain model,
such as structural changes, conceptual changes or entity definition changes [171]. They focus
on how each particular kind of change will lead to potential inconsistencies in the decision logic
authored over the changing domain model. For example, when an entity or attribute is renamed,
all rules that refer to the old names have become invalid.

The approach of Chniti et al. also contains repair rules for problems or inconsistencies that
arise as consequence of a proposed change. It is not clear though, if all detected inconsistencies
can be repaired automatically. Additionally, the examples discussed in their work are typically
small, i.e. the approach is only tested with a couple of changes on small DMs. In reality, both the
number of changes and the size of the DM are much larger. Therefore, prior to performing the
changes, it might be useful to visually inspect the impact of the modeled changes.

We extended the prototype of Chniti et al. [171] as follows. Their prototype already allowed
for modeling changes and it parses the decision logic in order to find the impacted business
rules. We added export fucntionality to the prototype in order to export both the hierarchical
structure of the domain model (packages, concepts, attributes) and the hierarchical structure
of the decision logic (packages, business rules). Additionally, for each changed artifact of the
domain model a link was exported to the impacted rule. For quick prototyping purposes we
exported this compound tree structure in an XML format suitable for SolidSX [172], a visual
analysis tool for code structure, dependencies and metrics.

Figure 4.17: Visualizing the impact on the decision logic of changing the V ehicleUsage concept.

70 4. Information Visualization for Decision Management Systems

Fig. 4.17 shows how the impact on the business logic can be visualized using this well-known
approach from the software comprehension domain. The green nodes in the circular view re-
present the concepts of the domain model. Orange nodes represent packages and the red nodes
represent business rules. Business domain concept nodes and rule nodes are connected with a
blue link when the rule is impacted by a change to the concept.

4.3.2 Related applications

We addressed a similar problem in the domain of software maintenance. In [173] we describe a
system to estimate porting efforts for projects that need to port a C++ code base from one version
of a dependency to a newer version of that dependency. This system allowed a developer to
perform queries on a code base to find the usage of an API. Based on these queries we visualized
porting dependencies between subsystems as shown in Fig. 4.18. Visualizing porting dependen-
cies is conceptually very similar to the problem of changing ontology. The metaphor here is as
follows. A software library which is a dependency of the software system under analysis, is like
the domain model in the DMS case. The API of the depended library is like the concepts and
attributes of the domain model. A change in the API of the depended library, requiring changes
in the source code using the API is like a change in the domain model requiring a change in the
decision logic.

As we see, there is a conceptual similarity between change impact in the domain of DMSs and
in the domain of software maintenance. We also see that this conceptual similarity allows for a
similar practical solution. Hierarchical edge bundling has been applied in the context of soft-
ware maintenance and comprehension where it proved to be scalable to large software systems.
Therefore it is reasonable to expect that it works similarly well in the context of DMSs, where
the artifacts (domain model, business logic) do not exceed the size of earlier mentioned software
systems. However, this method does contribute only to a very limited extent to the problem we
are trying to solve in this thesis. As such, we do not pursue refining this visualization approach
further.

Figure 4.18: Understanding porting dependencies by visualizing query hit relations between sub-
systems. Image from [173]

4.4 Conclusion

In this chapter we presented various visualization approaches for artifacts that come with a DMS.
Baudel used treemaps to visualize both the domain model and the decision logic [140]. We have
set a first step to further refine his approach by presenting a generic algorithm for rectangular

4.4. Conclusion 71

space-filling layouts. Using treemaps is one possible solution for our research question Q1, gain-
ing insight in the structure of a DM. We disccused the graph visualizations approach by Baudel
[140], which visualizes the rule trigger flow and compares flows for different versions of the same
DM. While this is a possible starting point for a solution for research question Q5, we argued that
this approach does not scale to the number of decisions we are dealing with in practice. Finally,
we applied the well known circular edge bundling technique of Holten [18] in the context of
DMS. We used it to visualize the impact of domain model changes to the decision logic which
addresses our research question on change impact (Q2).

In this chapter we have shown how to visualize the structure of the DM, the rule execution
graph and change impact. We have contributed an improvement for existing techniques in the
form of a generic algorithm for rectangular layouts. Although all these artifacts have some rela-
tionship to understanding the aggregated effects, none of these techniques gives full insight in
these effects by themselves. Being able to understand the structure of a DM is important when
it comes to changing the model. Similarly, seeing the impact of a change helps understanding to
what extent a planned change to a DM affects the model and might help to detect possible side
effects of the change. Both techniques are static techniques though, thus by definition they do not
relate runtime data to the structure of a DM. These techniques do not tell if a change is useful.
Moreover, these techniques do not gives us additional insight into the statistical relationships
between concepts in the model and give no hints about the relationship of a rule to a decision
outcome.

We also note that the techniques presented here are basically just visualizations of various
data aspects. What we actually need, beyond the mere display of data, are problem-solving
techniques which allow a business analyst to incorporate his experience. That is, we do not just
want to visualize low level artifact data of a DMS but we want to enable the finding of high-
level answers. Finding these high-level answers require a broader approach. First, the answers
are not to be found in the individual data spaces, but in the interplay between them. To find
answers we need to find ways to combine structure of the DM, structure of the decision logic,
statistical properties of the business cases and rule trigger patterns. Secondly, the raw data as we
have been looking at right now might not what we want. We want to highlight interesting facts
from the modeled knowledge which triggers a business analyst to bring in external context and
common sense that has not been modeled. Therefore, in the next chapters we follow the extended
Information Visualization (InfoVis) mantra by Keim et al.: “Analyze first, show the important,
zoom/filter, analyze further, details on demand” [21]. We apply analytical methods to the data
at hand and provide work flows that allow for a more exploratory approach in order to support
the high-level tasks we outlined in Sec. 2.6.2.

Published as: Visual Analysis of Multi-Dimensional Categorical Data Sets
Broeksema, B., Telea, A. C. and Baudel, T.
in Computer Graphics Forum, 32

Chapter 5

Visual Analytics for Decision Management Systems

An approximate answer to the right problem
is worth a good deal more than an exact answer
to an approximate problem.

Super Freakonomics, JOHN TUKEY

I
n the previous chapter we have shown that information visualization is an important part of
a solution to the problem of gaining insight in the structure and functioning of a Decision

Model (DM). However, it also became clear that just visualizing information extracted from the
various artifacts of a Decision Management System (DMS) does not provide a full solution. The
approaches in CHAPTER 4 focus on the visualization of raw data from individual data spaces
of a DM. We concluded the previous chapter with the remark that a better approach would
be to combine information from multiple data sources using automated analysis, to discover
interesting and relevant bits of information for a business analyst. In this chapter, we take a
new look at the data and questions that we introduced in CHAPTER 2. We present a different
set of visualization and visual analytics techniques that address these questions. The techniques
we present in this chapter where inspired by two early approaches involving analysis of DMS
artifacts data. We first discuss these early approaches to identify what is interesting in more
detail and to find shortcomings in these approaches that have to be overcome. This discussion
is followed by a presentation of our techniques for high-dimensional data and rule triggering
analysis.

5.1 Early analytic approaches

When providing analytics in the context of a DMS, first one has to decide what to analyze, second
how to present it to the user. Baudel and van Ham took a serendipity approach in two methods
for analyzing business rules [174, 175]. The first method determines input attributes that are
important for given rule, while the second determines interesting rules for a given rule based on
co-occurrence. The idea is to present the user with information while he is editing the business
logic that might trigger interesting insight. To this extend these methods analyze input attributes
that are relevant for the edited rule and rule trigger patterns that relate to input attributes. We
next briefly summarize both methods to provide some background and understanding in the
kind of issues that we are interested in.

5.1.1 Input attributes important for rule

One aspect in understanding the function of a DMS is the correlation between the firing of a rule
and certain input/output properties. For example a certain rule may be triggered only for people
over forty, even though this was not explicitly tested for by the rule itself. By providing means

74 5. Visual Analytics for Decision Management Systems

that bring up this kind of correlations, the business analyst might get a better understanding of
the DM at hand.

In [174] Baudel and van Ham propose a method to identify correlations of potential interest.
The observation they did is that a given rule only is triggered for a subset of the overall set of
decisions. This allows for comparison between attributes. One could for example compare the
age distribution of the persons that triggered a certain rule with the overall age distribution,
using a Chi-square test to find significant differences. When a rule tests for certain age ranges,
the distribution of the subset is very likely to differ and this is therefore not a suprising difference.
Therefore additional processing is done to leave out the attributes that are tested in the rule itself.

Baudel and van Ham propose to integrate this method in a visual way in the rule editing
environment. When a rule is opened for editing the distributions of the differing attributes can
be showed together with the overall distribution.

5.1.2 Rule co-occurrence

In [175] Baudel and van Ham present a related method, focusing on the rules themselves in stead
of the attributes. As discussed in Sec. 4.2, rule trigger patterns are interesting, but their exact
execution order is not. Following this observation, the presented method keeps track of how
often each rule is triggered together with each of the other rules. Based on this book-keeping
a similarity score is calculated for each pair of rules. Next, upon editing of a rule, rules with a
similarity score above a certain threshold are shown in the editor, marked as potential interesting
rules. This prompts the business analyst to verify if the related rules should be changed as well
or if external factors may occur which require further modification of the DM.

5.1.3 Discussion

Both methods, discussed in Sec. 5.1.1 and Sec. 5.1.2, perform automated analysis on the extracted
artifacts in order to determine what is considered to be important information. The important
input attributes method [174] combines statistical analysis of the domain model attribute val-
ues with static analysis of the rules from the domain logic. The rule co-occurrence methods
[175] method aggregates rule co-occurrence statistics and use a threshold to determine interesting
co-occurring rules. Note that, unlike the execution graph visualization, this rule co-occurrence
method actually performs some analysis before presenting information to the user.

Interestingly, both methods use aggregated effects to identify important information with
respect to the function of a DM. Using these aggregated effects, the methods try to identify
patterns that might be unexpected for the user. But what does unexpected mean in this context?
Recall from CHAPTER 2 that a DM models human activity. That is, the explicit purpose of rules
forming the business logic of a DM is to express in a tangible way how an enterprise wants to treat
a certain kind of population or deal with particular events relevant to the business. Whether this
is about persons being students, cars having a value in a certain price range or loan applications
having a risk score above a certain threshold, looking at the conditions in the rules will tell what
kind of population is triggering the rule. Individual rules will not have test conditions for each
possible attribute of the domain model, each rule checks a set of conditions that have a semantic
connection that makes sense in the particular business context. Thus, there are now two hints
that make an attribute “special” in the context of this rule: First, the distribution of the attribute
values significantly differs from the overall distribution. Second, the values itself are not tested
for in the rule. Similarly, rules that co-occur together while having conditions that test for distinct
sets of domain attributes, could be said to be unexpected in the sense that the explicit knowledge
expressed by the rules do not give hints for the reason of co-occurrence.

5.1. Early analytic approaches 75

Let us assume that the analyst is looking at a rule that tests if a person has an age above forty
(we are not interested in the action at this point):

IF the age of the person i s above 40
THEN

Using the important input attributes method [174] he might be presented with two distribu-
tions of an attribute that differ significant statistically such as the persons income. Fig. 5.1 show
how this might look like. Fig. 5.1a shows the income (vertical) distribution versus the age (hor-
izontal) for all persons that passed through the decision service. Fig. 5.1b on the other hand,
shows the income distribution for the persons that triggered above rule, i.e. persons with an age
above forty.

a. b.

Figure 5.1: Income distributions for the overall population (a) and for people above 40 (b).

The two distributions differ significantly and indeed the explicit knowledge expressed by the
rule does explain the deviation or even hint at it. However, it can hardly be argued that this
would be an unexpected piece of information for a business analyst. They will not only use the
knowledge that is explicitly captured by the DM but will also bring in the contextual knowledge
they have themselves about the business domain. Using either common sense or knowledge
acquired in different ways, the analyst is likely to expect that older people in general will have
higher salaries. In a similar way, it could be argued that it is not unexpected if one of the most
co-occurring rules is the one that tests for an income above 50K:

IF the income of the person i s above 50K
THEN . . .

We can conclude this discussion, by stating that these methods by Baudel and van Ham [174,
175] might present unexpected information to the business analysts but do not necessarily do so.
As we have seen, the unexpectedness of these pieces of information depends on the contextual
knowledge and assumptions of the business analysts. Both methods are meant to be integrated
with DM authoring environment in order to provide contextual serendipity for the authoring
task. As a consequence, a business analyst must open a particular rule for editing in order to be
presented with this information.

This is a major weakness of a serendipity approach for the following reasons. Both approaches
rely on historical data being available, and therefore a first version of the DM is put into produc-
tion already. When at this point a rule is opened for modification, this means that there already
has been some trigger for this modification. A problematic decision could have been identified
or the resulting business performance related to the decision service is not meeting the expected
service levels. That a particular rule is opened suggests that the business analyst has at least some
idea what needs to happen to fix the identified problem or improve the business performance.
The information he gets presented by means of the above methods at this stage could indeed
help him to further identify issues with the DM related to the problem he tries to solve. How-
ever, at the same time it will leave other potential interesting information hidden because there

76 5. Visual Analytics for Decision Management Systems

is no correlation with the rule he is editing at the moment. Thus, for a broader understanding of
the functioning of a DM where contextual knowledge can put to use as well a more exploratory
approach is required. In the remainder of this chapter we will present two exploratory methods
for analyzing the input/output data of a DM and the rule trigger patterns.

5.2 Analyzing business case and decision data

Domain attributes of both the inputs and the resulting decisions are both numerical (e.g. a per-
sons age or the value of a car) and categorical (e.g. the brand of a car or the salary scale of a
person). When analyzing this data we would like to combine those attributes to get a complete
insight of the correlations in the data. As we already detailed in Sec. 2.3.2, numerical attributes
are typically treated as categorical (ordinal) attributes by a DM. This suggests that the appro-
priate way to analyze the input/output data is by treating it as a multidimensional categorical
dataset where numerical attributes are quantized. Categorical data is typically analyzed using
Multiple Correspondence Analysis (MCA), an analysis technique related to Principal Compo-
nent Analysis (PCA) but tailored for categorical data (see also Sec. 3.3.3 and Sec. 5.2.2). Our goal
is to expose the often complex correlations in categorical data, and answer questions such as:

1. How do values of one attribute (or variable) relate to values of the same, or other, attributes?

2. How to find clusters of similar observations?

3. How do such clusters relate to a certain value of an attribute?

To meet above goal, we propose several linked views which blend existing and new visual-
ization techniques. While the complexity of MCA analysis is introduced gently to end users, we
still allow refining MCA results to extract additional insight.

The main contributions of this chapter are as follows:

• A visualization for the analysis of relationships between the inherent dimensions of cate-
gorical data;

• An interactive legend which helps explaining the meaning of dimensions extracted by
MCA in terms of dataset attributes;

• An enhanced treeview which integrates raw-data information with the MCA analysis re-
sults;

• Interaction techniques that reduce the amount of information shown in the above views
and help finding salient data point groups and inherent data dimensions.

5.2.1 High dimensional categorical data

Representation and understanding of high-dimensional datasets is an important issue in many
contexts. The dimensionalityK of objects under study is a measure of the attributes that describe
the structure of these objects. All K dimensions that describe individual objects, together span
a K-dimensional data space in which individual objects are defined. These objects are named
differently in different contexts: points in mathematics, observations in statistics, instances in
computer science and individuals in artificial intelligence. We will use the term observation in this
thesis.

Each of the dimensions is an attribute ak, with 0 ¤ k K, of an observation whose structure
is defined by these dimensions. The location of an observation in the data space is defined by the

5.2. Analyzing business case and decision data 77

Table 5.1: Basic data types and their properties. Types lower in the table also have the properties
of above type(s).

Attribute type Supported operations
Nominal values are � or � to other values
Ordinal obeys a relation
Quantitative can do arithmetic on values

value that each attribute takes. Each dimension and therefore each attribute of an object has a
particular type, i.e. a classification of the kind of values that are considered valid for the attribute.
We distinguish three basic types: nominal, ordinal and quantitative [24, p. 20]. Additionally,
we talk about categorical attributes, by which we mean the attributes that are either ordinal or
nominal. There is an important difference between the two: order of values has a meaning for
ordinal attributes but is meaningless for nominal attributes. However, they both lack a general
measure of similarity. The properties of each type are shown in Table 5.1. Besides a data type,
each attribute has a domain which specifies the range of valid values for the attribute. Depending
on the context the data type can be the same for each dimension or a mix of different types.

When observations have only one attribute or dimension, we speak about one-dimensional
or univariate data. In the case where observations have exactly two attributes we speak about
two-dimensional or bivariate data. Finally, with three or more dimensions we speak about high-
dimensional data. A collection of I observations, each having K attributes, forms a dataset DIK .
The symbol oi, with 0 ¤ i I , denotes the ith observation in DIK . The collection of values of
attribute ak for each observation oi defines the variable Vk.

Let us consider an example dataset, where the objects under study are persons and the ques-
tions of interest relate to gender inequality with respect to education and salary. For each per-
son the following attributes are recorded: age, gender, education and salary, resulting in a 4-
dimensional dataset (i.e. K � 4). The data space, i.e. the space which spans all possible combina-
tions of values for all attributes, of this dataset is shown in Table 5.2.

Table 5.2: An example data space with K � 4 for a dataset: four dimensions with their type and
domain

k Attribute Attribute type Domain
0 Age Quantitative r0..120s P N
1 Gender Nominal Female,Male

2 Education Ordinal 0� none, 1� primary school,

2� high school, 3� bachelor,

4�master, 5� doctorate

3 Salary Quantitative r0..5M s P N

In this example we assume that 100 persons are interviewed, resulting in a datasetDI�100,K�4

with 100 observations. These observations oi can be listed in tabular form as shown in Table 5.3.
Each observation oi is represented as a row, marked with a red border. The value of each attribute
ak of an observation is shown in column k. For example, the green marked cell in Table 5.3
represents the value 28000 of attribute a3 � Salary for observation o100. Variables are represented
by the columns in Table 5.3, such as the blue marked Gender variable.

78 5. Visual Analytics for Decision Management Systems

Table 5.3: An example dataset DI
�100K�4 represented in tabular form, with an observation in red,

a variable in blue and an attribute value in green.
Age Gender Education Salary

o1 25 Female 3-Bachelor 25000
o2 31 Male 4-Master 32000
o3 51 Male 2-Highschool 12000
oi

o100 32 Female 4-Master 28000

5.2.2 Analyzing categorical data: Multiple Correspondence Analysis

Correspondence Analysis (CA) is an analytical technique for analyzing two categorical variables.
The basis of the analysis is a cross tabulation of the two variables under consideration. For ex-
ample, Table 5.4(a), which shows car price category versus car type. The rows are a classification
of the cars based on their price, three categories in this example. The columns on the other hand,
classify the cars based on their type. For example, there are 580 cars that fall in the price category
 2.5K, 420 of them being a Sedan, 130 a SUV and 30 are luxury cars.

Table 5.4: Cross tabulation for the car type and car value attributes. With (a) the actual frequencies
and (b) row normalized values.

(a)

Sedan SUV Lux. Sum
 2.5K 420 130 30 580

2.5K � 5K 150 160 50 360
¡ 5K 20 90 120 230

sum 590 380 120 1180

(b)

Sedan SUV Lux. Sum
 2.5K 0.724 0.224 0.052 1

2.5K � 5K 0.417 0.444 0.139 1
¡ 5K 0.087 0.391 0.522 1

To perform CA, each row is expressed relative to its total as shown in Table 5.4(b). Each row
gives the position of a price category in a three-dimensional space. However, because each row
adds up to one, each of the rows is projected on a 2D-triangular plane. This is shown in Fig. 5.2.
In this figure each dimension, the three car types in this case, is represented by a black axis. A
point, for example, the row for cars in the price category 2.5K, represented by the red dot,
is projected using its normalized values (blue lines). These points always fall on the triangular
plane, represented by the green lines. More generally, when there are N dimensions, with N ¡ 3,
each row is still projected on a 2D-plane in the N-Dimensional space.

Figure 5.2: Income distributions for the overall population (a) and for people above 40 (b).

5.2. Analyzing business case and decision data 79

CA, calculates the principal axis of the data points in the triangular plane (in the case of the
above example). Each axis explains a certain amount of the variance in the data, the first axis
explains most. This calculation is very similar to principal component analysis for numerical
data.

MCA extends CA to handle multiple (three or more) categorical variables [176]. Several vari-
ants of MCA exist, all leading to the same equations as pointed out by [177]. In sociology, MCA
has been popularized by Pierre Bourdieu [178] as a key tool to find hidden relationships between
various sociological factors.

We briefly overview the MCA technique, to form a basis for understanding our visualiza-
tion, and to show the MCA interpretation problems that our visualization addresses next. For a
thorough understanding of (M)CA, we refer to [179, 176] on which our implementation is based.
MCA operates by first converting data from categorical to numerical form. Naively assigning a
numerical value to each possible categorical value of an attribute can create artificial, arbitrary,
distances between two values, which would cause misinterpretations. In contrast, MCA encodes
each categorical attribute with a bitmask, one bit for each possible category value. For example, if
the domain of an attribute Car.Type is rSedan, SUV,Luxurys, the value Sedan is encoded as r100s

and the value Luxury as r001s. This effectively replaces a single attribute in the original dataset
with several new (binary) attributes. These binary attributes are stored in a so-called indicator
matrix of which we give an example in Table 5.5. Note how for each attribute only one of the
values will be set to one for a given observation oi.

Table 5.5: Indicator matrix encoding three attributes each having three distinct values.
Car.Type Car.Value Car.Airbag

Sedan SUV Lux. 2.5K 2.5K � 5K ¡ 5K None D D + P
o1 1 0 0 1 0 0 0 1 0
o2 0 0 1 0 0 1 0 0 1
...
oI 0 1 0 0 1 0 0 1 0

The indicator matrix is next processed using standard CA techniques. For a table with I

observations, each with K attributes which in turn have Jk levels or distinct values tv1k, . . . , v
Jk

k u,
let X be the I � J indicator matrix, where J �

°K
1 Jk. Performing CA on X gives a row factor

score and a column factor score. These factor scores are the projections of observations (rows)
and attribute values (columns) on the eigenvectors of X. Let N denote the grand total of matrix
X. The first step of MCA is to compute the probability matrix

Z � N�1X (5.1)

Next, we define the vectors r and c which contain the row, respectively column, totals of Z.
Let Dc � diagtcu and Dr � diagtru be matrices whose diagonals are c and r respectively. We
compute the factor scores by solving the following Singular Value Decomposition (SVD) [180].
Let

A � D�1{2
r

�
Z� rcJ

�
D�1{2

c (5.2)

then the SVD to solve is

A � P∆QJ (5.3)

with

PJP � QJQ � I (5.4)

80 5. Visual Analytics for Decision Management Systems

Here, ∆ is the diagonal matrix of the eigenvalues of AAJ, P are the eigenvectors of AAJ

and I is the identity matrix. Q are the eigenvectors of AJA. From the SVD we compute the row
factor scores

F � D�1{2
r P ∆ (5.5)

and the column factor scores

G � D�1{2
c Q ∆ (5.6)

by projecting the attributes on the respective eigenvectors. In addition to the factor scores two
additional pieces of information can be calculated that help the interpretation of the analysis
result: weights and contributions.

The weight of each column in X reflects its importance for discriminating between obser-
vations (rows). Recalling that each column in X represents an attribute value, the weight thus
reflects if a certain attribute value helps separating observations selecting this value from the
other observations. By aggregating the values per attribute, we can also use the weight to re-
flect the importance of each attribute for discriminating between observations. The weights are
calculated by first determining the barycenter cJ of X, i.e. the average observation

cJ �

�
1

1�I
�X� 1

J�1

�1

� 1
1�I

X (5.7)

where 1
1�I

is a one by I vector of ones and 1
J�1

is a J by one vector of ones. The weight of each

column of X is defined as the inverse of the column component in the barycenter

w � rwjs � rc�1
j s (5.8)

Contributions help locating the columns (attribute values), important for a given factor. The
contribution b of column j to factor l can be calculated as

bj,l �
cjg

2
j,l

λl
(5.9)

where cj is the weight of the jth attribute value, gj,l is the projection of the jth attribute value
on the lth factor and λl is the eigenvalue of the lth factor.

5.2.3 MCA Visualization pipeline

Visualizing the MCA results now follows the classical scatterplot technique used for MDS: we
take the two factors ex and ey along which the data has most variance, and plot all observation
projections, i.e. factor scores, along ex and ey . In contrast to Multi Dimensional Scaling (MDS),
we can also draw the attributes in the same plot: these are simply the projections of the J points
having one for a particular attribute value and zero for all others. Recall that the original table
was enlarged, by adding a binary column for each distinct attribute value. As a result, the at-
tribute projection contains a point for each of the J distinct values as opposed to the K distinct
attributes.

Fig. 5.3 outlines our approach. We start with a table containing categorical and/or numerical
attributes. Next, we refine this table by quantizing numerical (ratio and interval) attributes to
convert them to ordinal attributes. From this refined table, we construct the indicator matrix.
MCA extracts correlation information from this matrix, which we use to create our visualization.

Quantization is a required step to incorporate numerical attributes into the analysis. For ex-
ample, an Age attribute can be quantized to a five-class ordinal attribute r0 : 20, 1 : 20..30, 2 :

5.2. Analyzing business case and decision data 81

Figure 5.3: MCA visualization pipeline. Input: multidimensional table with numerical and cate-
gorical data. Numerical columns (e.g. salary in three levels: L, M and H) are quantized. MCA is
performed on the quantized table. MCA results are used for visualization.

30..40, 3 : 40..50, 4 :¡� 50s (years). The number of categories, and the quantization method
(constant range or constant area in histogram) is configurable for each numeric attribute. Quan-
tization settings are application-specific, in [181] an interactive technique is presented for quan-
tification of numerical and categorical attributes. It should be noted that by quantizing numerical
attributes, some information is lost. It is not possible though to include numerical attributes un-
changed in the indicator matrix. This is due to the fact that this would lead to comparison or
analysis of two different kinds of information (frequency data and ratio/interval data). The re-
sults of such an analysis would be meaningless. Additionally, one should recall that this loss of
information also happens in DMSs. We detailed in Sec. 2.3.2 how decision tables, a common part
of DMSs, treat numerical data as categorical data. Therefore, in the context of DMSs, it makes
sense to start with the quantization of attributes that mirrors the limits used in the decision tables
of the DM. Once the analyst has a first impression of the consequences of such quantizations, he
can use approaches such as presented in [181] to analyze different scenarios.

5.2.4 Interpretation challenges

As outlined above, MCA creates a plot containing both observations and attributes. Interpreting
this plot is based on proximity of points of the same kind: two observations plotted close to each
other imply that they have similar attribute values or, for categorical data, that they share several
attribute values (since two categorical values can either be equal or different). Attributes plotted

82 5. Visual Analytics for Decision Management Systems

close to each other are interpreted differently in CA and MCA. In CA, columns are actual differ-
ent attributes in the input data. Hence, when two attribute points are close, observations tend to be
similar with respect to these attributes. In MCA, two columns can be either (categorical) values of
the same attribute or values of two different attributes from the original data, given the bit struc-
ture of the indicator matrix X (Sec. 5.2.2). Close plotted points for values from different attributes
imply that observations tend to select these values together. For example, when Brand : BMW

and Antilockbrakes : true are close together, it means that most of the times BMW cars tend to
have antilock brakes. Close plotted points for different values of the same attribute imply that ob-
servations select either of these values and are similar with respect to the other attributes. For
example, when Brand : BMW and Brand : Audi are close together, it means that BMW and
Audi cars tend to have similar properties. That is, they typically fall in the same price range and
select similar security features.

Although the mathematics of MCA is relatively straightforward, interpreting MCA plots is
clearly not. This is firstly due to the abstract nature of the computed quantities, which do not
directly map to the user’s world (observations and attributes). Secondly, for many observations
and/or attributes, 2D scatterplots of observation and attribute factor scores get cluttered. Thirdly,
on a technical level, data outliers can influence the factors (eigenvectors): The 2D plot space gives
too much space to outliers and too little space to ‘interesting’ observations.

Without adequate tooling, potential insights delivered by MCA risk being lost. Hence, we
want to provide intuitive interactive visualizations of MCA analysis results, to address the fol-
lowing questions:

• How to link the MCA results (factors, factor scores) to the meaning of the original data
(observations and attributes)?

• How to show the meaning of the projected dimensions?

• How to explain the grouping of projected observations?

• How to eliminate irrelevant (outlier) dimensions or outlier values of a dimension?

• How to get an overview of values that occur together?

5.2.5 Visualization overview

To address the above goals, we propose a visualization with two main views: the dimensions view
and the projections view. These support the steps of observation classification and observation
exploration: First, one wants to classify data to a granularity level suitable for the task at hand.
For example, in a car insurance dataset, finding that students, expensive cars, and many accidents
are strongly correlated, leads one to classify such observations as “students causing accidents in
expensive cars”. Once users have a clear picture of the classes occurring in the data, they next
explore the observations to give sense to clusters and understand outliers.

The dimensions view shows the attributes and their domains. It serves both as an analysis entry
point and as a legend for the more complex projections view. The projections view shows the fac-
tors computed by MCA; it targets questions related to correlations and variances of observations
and attributes. The two views are linked via shared colormaps and selection, to support asking
questions in one view and using the other view to understand the results (Fig. 5.4). As an ex-
ample, we next use a set of 5000 US car insurance quotations, with 19 attributes per observation.
Table 5.6 shows these attributes, and how numerical attributes have been reduced to categories
by binning.

5.2. Analyzing business case and decision data 83

Examine specific
attribute or value

Legend for
attributes and values

Level of detail

Projections view Dimensions view

Figure 5.4: MCA visualization overview.

Table 5.6: Data types for the US car insurance dataset. Names between brackets are the labels used

in images.

Attribute Type #Bins Values
ageInYears (age) integer 4 35, 35..53, 54..72,¡ 72
airbagStatus category 4 none, driver only, front seats, all
antilockBrakes boolean 2 true, false
approved boolean 2 true, false
coverageType category 3 basic, collision, extensive
daylightRunningLights (lights) boolean 2 true, false
driversEdCourse boolean 2 true, false
drivingUnderInfluence boolean 2 true, false
fulltimeStudent (student) boolean 2 true, false
gender category 2 male, female
highRiskDriver boolean 2 true, false
licenseSuspendedOrRevoked boolean 2 true, false
married boolean 2 true, false
numAccidents integer 4 0, 1, 2, ¡� 3
numTrafficTickets integer 4 0, 1, 2, ¡� 3
quote USD 4 310, 310..619, 619..1043, ¡ 1043
state category 50 AL, AK, AZ, . . ., WY
vehicleType (vehicle) category 9 compact, sedan, luxury, sport, pickup

SUV, sport-luxury, collection, van
vehicleVandalizedOrStolen boolean 2 true, false

Dimensions view

The dimensions view (Fig. 5.5) shows the attributes present in the raw dataset which is the input
of the MCA analysis. Recall that a K-dimensional dataset yields an indicator matrix with J

binary attributes, where each binary attribute shows whether an observation selects a given value
(Sec. 5.2.2). We show the raw data using a two-level tree: attributes and values. The first level
shows all original attributes. On the second level, each attribute has Jk children, i.e. all its
categorical values tviku. Attribute nodes are colored as follows. First, we sort attributes based on

84 5. Visual Analytics for Decision Management Systems

Figure 5.5: Dimensions view for the insurance dataset

decreasing relevance (Eq. 5.8) and assign them colors cyclically from a fixed categorical colormap
with C � 10 hues [182]. Next, we set the nodes’ color saturations to their attributes’ relevance.
Given the attribute sorting, even if two nodes have the same hue (for datasets with more than
C attributes), their colors will differ in saturation: most important attributes are bright, and less
important ones are dull. We stress that color mapping is not a main contribution of our work:
if available, better techniques should be used. Attribute nodes are labeled by their dimension
names. Value nodes are labeled by a textual description, see, e.g. the ageInYears integer attribute
(Fig. 5.5 top) which is quantized in 4 values (35, 35..53, 54..72, ¡ 72 years). Value nodes show
three additional properties:

• The percentage of observations with that value, as a bar. This shows which values occur
most in the dataset. We later refine this insight to find if such values are indeed discrimina-
tive for the correlation of observations or not.

• The attribute value weights wj , or relevances, computed using Eq. 5.8. Large weights show
attribute values which are important for discriminating between observations.

• Value and attribute merging.

Sorting the dimensions view on the value usage column shows the distribution of values for
a particular attribute. To find attributes and values which discriminate between observations,
the view can be sorted on the relevance column. This relates to value column: Values which
are rarely used by the observations may provide more information for discriminating between
observations and are therefore more relevant; frequently used values are less interesting [179].
The dimensions view serves as a legend for the more complex projections view, which we present
next.

Projections view

This view displays projections of both observations and attributes computed by MCA. It helps
finding correlations and variances in the input data, i.e. answer questions such as which at-
tributes contribute to a given factor; along which attributes are certain observations most (or

5.2. Analyzing business case and decision data 85

least) similar; and what is the meaning of a factor. We use the classical MDS approach: We draw
a scatterplot by projecting all observations xi and attribute values vik on the two most important
factors computed by MCA (Sec. 5.2.2). We next add several visual enhancements to this plot, as
follows.

Recall that close projections of values of the same attribute mean that observations selecting
any of these values are similar vs their other attributes (Sec. 5.2.4). Close projections of values of
different attributes imply that observations tend to have these values for the respective attributes
together. In both cases, we want to find (a) the relative distances between projected values and
(b) how these values are grouped within categories.

We support this task by drawing a Voronoi partitioning of the 2D plot space, with the pro-
jected values as sites. A Voronoi partitioning of the space results in cells that contains the points
that are closest to the site that identifies the cell. Cells make reasoning about distances easier and
also provide handles for interaction. The former is particularly important for the observations
plot, where the cells help to identify which attribute value(s) are closest to an observation. Using
a larger area, while guaranteeing no overlap, make it more convenient for the user to interact
with individual values, projected in the plot. Cell colors show their categorical attribute, as in
the dimensions view (Fig. 5.5). To separate small cells of similar colors, we use parabolic shaded
cushions, akin to [183]. Finally, we label cells with their categorical values. Labels are centered
and clipped to fit in the inscribed circle in each cell. Tooltips with the full labels are shown when
brushing over the cells. Additionally, brushing links the projections and dimensions views.

Fig. 5.6 shows the projections view for the car insurance dataset. As the state attribute (light
blue) has many values (50) relative to other attributes, we see many such cells. In the center we
see a cluster of small non-state cells (different hues than light blue) surrounded by state cells (light
blue). Among these non-state cells are quote: 310, quote: 310..619, vehicle type: sport, vehicle type:
van, and #accidents: 1. Since these cells are small, their projected values are close, so we infer
that many observations select these values together. Further, we infer that customers from states
surrounding these cells, e.g. CA, FL,NJ , tend to have such a profile, while customers from states
that are at the periphery, e.g. SD, AK, NV , have different profiles. Note that the distance metric
is important here: the exact locations of the Voronoi cell borders vs the observation projections
is not decisive; the distance from the attribute projections to the observation projection is. The
Voronoi cells serve as a means to determine which is the closest attribute projection for any given
observation projection. This is determined by observing in which cell an observation projection is
located. By definition of a Voronoi tesselation, the observation projection is closest to the attribute
projection that serves as site of the cell in which the observation projection resides.

In Fig. 5.6 right, we see cells for the values (daytime running) lights: true, airbag status: all seats,
and vehicle type: SUV, luxury, sport-luxury. On the left, we see lights: false, airbag status: none, and
vehicle type: collection, compact, pickup. This shows that the X axis of this view maps the car class
(left = cheap cars with few options, right = expensive cars with many options). This pattern could
be related to wealth of the insured persons. Since wealth is not an attribute in our data, this is an
interesting finding.

At the top of Fig. 5.6 we find cells for the age categories 35..53 and 54..72 and married people.
At the bottom, we find people below 35 and who are full-time students. Hence, the Y axis maps
the phase of life people are in. Finally, outlier cells, such as students (Fig. 5.6 bottom-left), show
that observations that select this value, i.e full-time students, share less values with the other
observations as compared to observations that select values in the central cells.

In brief, the attribute plot can be interpreted as follows:

• values in central cells are used by the average person type;

• values in periphery cells are used by outlier persons;

86 5. Visual Analytics for Decision Management Systems

• the Y axis reflects life phase, with senior people at top and young people at the bottom;

• the X axis reflects car prices, with more expensive cars at right and cheaper ones at left.

Figure 5.6: Projections view with attribute values. Labels and arrows are added here manually for
illustration purposes.

Finding meaningful clusters by value cell merging

The projections view (Fig. 5.6) can easily get crowded, since it shows as many cells as there are
different attribute values in the input dataset (104, in our case). One task we want to address is
classify data in clusters at a level that is meaningful for the analysis goals at hand. To support
this, we provide four ways to cluster and filter data:

• Leave out attributes from the analysis;

• Cluster attributes in the attributes view based on distance;

• Cluster values of one user-selected attribute;

• Filter observations based on attribute value.

An attribute can be left out when it is of no importance for the analysis. This creates more
space for the remaining values. For instance, when we remove the state attribute from Fig. 5.6,
there are 50 cells less in this view. However, this may result in information loss, so users should
decide which attributes are relevant for each analysis on a case-by-case basis.

As explained, values who project closely show that observations are very similar with respect
to these values. Hence, we are not interested to examine such values separately – instead, we

5.2. Analyzing business case and decision data 87

want to find clusters of values at various levels of detail, which show us the properties that define
a homogeneous subset of our observations.

To find such clusters, we add a level-of-detail option, controlled by the slider shown under
the projections view (Fig. 5.4). The slider maps a distance δ in 2D (projection) space. When the user
changes δ, we iteratively merge pairs of value-projections which are closer than δ into a new cell
whose barycenter is the average of the merged cells’ barycenters.

More precisely, this clustering is based on the observation that the smallest cell is the center
of a cluster. Therefore we sort the cells of the Voronoi partitioning by size and start the merging
process with the smallest cell. Each of the neighboring cells is merged when its site is within
distance δ from the site of the current cell. The current cell and its neighboring cells are marked
as processed. This process is repeated until each cell is processed. Next a new Voronoi tessellation
is generated where the sites are the barycenters of each group of merged cells from the previous
step. The whole process is repeated until no merges take place. In the extreme case this means
that all projected attribute values are now in one single cell, in all cases in between it means that
no two sites are within distance δ of each other.

Fig. 5.7 shows the effect of merging: Most small cells at the center of Fig. 5.6 have now been
merged, by grouping attribute values which are selected by the average person. The merged
cells can now represent (a) either values of the same categorical attribute, or (b) values of different
categorical attributes. Outlier cells, however, stay roughly unchanged. Hence, we use less cells
to show the concept of average person, but keep the cells that show outlier persons.

Figure 5.7: Projections view with merged value cells. White label added manually for illustration
purposes.

To show which values get merged, we draw a set of concentric rings around the merged cells’
sites. The number of rings equals the number of merged values within a cell. Cells containing
only values of the same attribute are colored using that attribute’s hue, as before, and the rings
are colored black. For example, in Fig. 5.7 we see a cell grouping all states CT , FL and PA. Cells
containing values of different attributes are colored in light-gray, a reserved color not used in the
attribute colormap, to show that they groups different attributes. Rings in such cells are colored

88 5. Visual Analytics for Decision Management Systems

by the colors of the merged attributes. We read this visual encoding as follows:

• cells with many rings contain many attribute values;

• non-light gray cells with many rings contain merged values of the same attribute; the cell’s
color shows the attribute;

• light gray cells contain merged values of different attributes; the rings’ colors show the
attributes;

• cells with no rings encode individual, non-merged, values.

In Fig. 5.7, the light gray cell (under the mouse) contains many rings, i.e. many merged val-
ues. The rings’ colors show that this cell groups values from the attributes coverageType, drivin-
gUnderInfluence, and vehicleType. The tooltip shows details on demand, i.e. the merged values:
coverageType: collision, drivingUnderInfluence: false, and vehicleType: sedan. From this data, we infer
that this cell groups people who drive safely (no accidents, no traffic tickets, not caught for driv-
ing under influence) but who still request a collision-coverage insurance, which is an interesting
finding. We also show merging information in the dimensions view. Fig. 5.5 shows how (at a dif-
ferent merging level) collision is merged with six values from six attributes. When clicking on a
cell in the projections view, values merged in this cell get highlighted in the dimensions view.

Value filtering and merging

Merging value cells reduces the cell count while keeping the information encoded by the merged
cells in the view. However, the user controls this process only globally, via the projection dis-
tance. For finer-grained ways to reduce the cell count, we provide a filter/merge view (Fig. 5.8).
Filtering and merging follows three simple steps: (1) select an attribute; (2) select one or more
values thereof; (3) perform filtering or merging.

When an attribute vk is selected by clicking on its cell in the projections view or tree item in
the dimensions view, the filter/merge view shows all values vik of v along with their cell sizes in
the projections view. Sorting this list lets one pick the largest cells, which typically appear at the
periphery of the Voronoi diagram, and thus take considerable space that could be used to show
more detail in the crowded areas. After the desired attribute values are selected, one can filter or
merge the data based on this selection.

Filtering removes observations which have any of the selected attribute values. For example,
to get more insight in student characteristics, we select the fulltimeStudent: false cell, filter, and
thus remove all non-students from the view. After filtering, MCA is recomputed automatically
on the filtered data. This updates the views with a new projection with removed outliers, thus
more space for the interesting observations. In our example, our analysis will now only concern
students.

Merging simplifies the visualization by replacing several values vik of an user-selected attribute
k with one new value vnewk . Like for filtering, MCA is done anew after merging and all views are
updated. Unlike filtering, merging n attribute values will remove exactly n � 1 cells from the
projections view, since there is exactly one cell per attribute value. For example, consider the states
attribute, which has fifty values. Recalling the earlier analysis in the projections view section, we
have found cells on the right of Fig. 5.6 as high-income-related, and cells to the left as low-income-
related. If we accept this meaning, we can now merge states on the right of Fig. 5.6 to a new value
high-income states, states to the left into a new value low-income states, and the remaining (center
cells) states moderate-income states. Fig. 5.9 shows the updated view. The view has a similar layout
as before merging (modulo a rotation which is an unfortunate side-effect of MCA), but offers now
more space to other values than states, since we now have three state values instead of fifty.

5.2. Analyzing business case and decision data 89

attribute

attribute values cell sizes

Figure 5.8: The merge/filter view.

Relevance

state has now only three valuesstate: mid income

state: high income
state: low income

Figure 5.9: Merging states into three different groups.

The relevance metric for attribute values, shown in the dimensions view (Fig. 5.9 right), serves
here two purposes. First, we can use it to select which attribute values we want to filter or merge
– the less relevant ones. Secondly, this metric tells us how attributes change their relevance (for
distinguishing between observations) after a filter or merge was applied. This helps iteratively
reducing the dimensionality of the dataset by incrementally merging less relevant values into
higher-level concepts, and also helps users focus on the most relevant concepts at a given level
of detail.

90 5. Visual Analytics for Decision Management Systems

Projection legends

Dimensionality reduction techniques like MDS or MCA typically project the data alongN P t2, 3u

eigenvectors, and draw projections as N -D scatterplots. However, such plots can be hard to read
by many business users. One issue is that axes have no explicit meaning: These are factors,
coming from the SVD in the MCA case. Ideally, we would like to explain the axes in terms of the
variance of attributes and attribute values.

Figure 5.10: Zoomed-in projection legends from Fig. 5.6 with attribute contributions.

As explained in Sec. 5.2.2, for each attribute value its importance for a given factor can be
calculated (Eq. 5.9). Using this equation we can construct the contribution vectors bx � tbixu and
by � tbiyu for the two factors used to draw our 2D scatterplot. The values bix and biy give the con-
tributions of all values of attribute i to the x and y plot axes. We can now explain what the x and y
axes mean in terms of a mix of attribute values from the input data. Still, bx and by are not in the
optimal form for interpretation: Since MCA uses one column for each attribute value, our vectors
bx and by have J elements, one for each attribute value. We simplify the contribution vectors by
summing up all values that correspond to the same attribute. The resulting contribution vectors
b̃x and b̃y have now K elements, i.e. as many as the number of input attributes. Their elements
indicate the contribution of each separate attribute (and not attribute value) to the plot axes.

We show these values by interactive barchart legends [184] on the x and y plot axes. This
approach is somewhat similar to [185]. However, we only show the plots for the projected factors
and add interaction to the barcharts, as explained the following section on Observations plot. Each
bar is colored by the hue of its corresponding attribute, as in the dimensions view and projections
view.

Fig. 5.10 shows a zoom-in of the projection legends for the insurance dataset in Fig. 5.6. The x
legend has two large bars for the attributes antilockBrakes and daytimeRunningLights. If we brush
the view, we see indeed that these attributes have extreme values at the left and right of the x
axis respectively – see e.g. the cell daytimeRunningLights: true right in Fig. 5.6.

MCA shows the input data projected along the two most relevant factors. However, datasets
may be inherently of higher dimensions than two [110]. Hence, a MCA (or similar) 2D projection
may convey false insights if much of the data variance occurs along the ’discarded’ dimensions.
We show this by a third barchart: the error legend (Fig. 5.10). This barchart is built similarly to
our previous ones, but it shows the sum of contributions of all factors except the two used for
the actual projection. We read this chart as follows: Short bars show attributes whose variance is
well captured in the 2D projection. Long bars show attributes whose variance is captured mainly

5.2. Analyzing business case and decision data 91

by factors not used in this projection. Seeing such large bars, users can either (a) continue the
analysis, but refrain from making judgments about these attributes; or (b) select one of the x or y
dimensions in the current view to use the factor that has the largest variance for the attribute of
interest. This can be done by shift-clicking on the respective attribute bar.

Observations plot

As explained before, both observations and attribute values are projected in our 2D plot space.
So far, we showed how attribute values are visualized.

Fig. 5.11 shows the projections view used to explore observations, a view we call the Observa-
tions plot. Typically, one has many more observations than attribute values. To remove clutter,
and show observation density, we draw observations using additive alpha blending. Attribute
cells are shown in the background, but grayed out, so we can use colors to show the observations’
attribute values. The relation between attribute cells and observations is as follows: If an obser-
vation xi is closer to an attribute value j than to other attribute values k � j, then xi will more
likely select value j than select values k relative to the other observations. Showing the attribute
cells helps assessing such relations without having to visually locate attribute value projections,
which is hard given the dense Observations plot. To find more information about a cell close to
observations of interest, we can switch the view to the attribute plot. The cell layout stays the
same, so users keep their mental map.

Observations tend to form clusters (groups of closely packed points) in the Observations plot,
based on similarity. A standard analysis task is to explain such clusters. We assist this by adding
functionality to the projection legends: When clicking a bar in the x, y or error barcharts, observa-
tions are colored using a categorical colormap on the values of the bar’s attribute. This colormap
is different from the hue mapping used in the dimensions view and projections view and has a dif-
ferent purpose: The hue map shows the identity of an attribute, i.e. links the projections view with
the first tree-level in the dimensions view. The value colormap shows the different values of an
attribute, i.e. links the observations plot with the second tree-level of the dimensions view.

Fig. 5.11a shows an example. Two separate clusters are apparent. Both spread along both x

quotation

a)

a.

b)

b.

Figure 5.11: Observations plot: (a) without selection; (b) with ‘full-time student’ attribute selected
(blue = student, red = non-student). Legends help confirming that the clusters reflect the student
status attribute.

92 5. Visual Analytics for Decision Management Systems

and y axes, i.e. along the two factors used to create this projection. Hence, if these clusters are
determined by some attribute, this attribute contributes to both the x and y factors, otherwise the
clusters would be one-dimensional (lines). We use this hint and the projection legends to explain
the clusters, as follows. First, the clusters cannot be explained by the two long bars in the x
projection legend, antilock brakes and daytime running lights, since these attributes contribute almost
fully to the x axis, as shown by their long bars which reach almost 1. The next two longest bars in
the x projection legend, A and B, are about half height, so they contribute only 50% to the x factor.
However, they have no contributions to the y factor (very short bars A1 and B1 in the y projection
legend), so they cannot explain the spread along y. In the y projection legend, we see three attributes
that contribute almost equally to this axis. The longest one, gender, does not explain the clusters,
since it is short in the x projection legend. We have now two remaining possibilities. Clicking the
second-longest bar in the y projection legend (fulltime student) colors observations based on this
attribute, i.e. students=blue and non-students=red (Fig.5.11b). The colors match the perceived
clusters, so we conclude that the clusters reflect the student status.

In Fig. 5.11b, we see that students are mostly present in the lower left area of the plot. If we
read the attribute labels for the cells in this area (Fig. 5.10), we find that students have a

• lower probability of being married;

• higher probability of being under 35;

• higher probability of being caught driving under influence;

• higher probability of having there license suspended;

• higher probability of causing accidents.

Such findings are evidence of an increased risk for accidents under students. Analysts could use
this to adjust insurance quotations. Let us see if this was the case in our data. Looking at the error
projection legend in Fig. 5.11, we see that the insurance quotation is high, i.e. it contributes very little
to the x and y factors, and a lot to the other factors not used in this projection. If quotation and
student status were correlated, the quotation attribute should have contributed visibly to the y
axis which, as we saw, explains the student status attribute. As this does not happen, it means
the quotation is not correlated with student status, even though student status is correlated with
accident risk.

5.2.6 Discussion

Our visualization, in contrast to MDS techniques, can technically handle both categorical and
numerical (binned) data. The main value of MCA is that it enables us to have attributes, attribute
values, and observations all in the same projection. In turn, this allows linking attributes with
observations, which helps explaining the meaning of projected observations. This addresses one
problem of MDS-like plots.

For the correlating values we also presented a clustering technique which is based on the per-
ceptual space, rather than the data space. This technique is particularly suited for visualization
because it clusters values which are perceptually close to each other. Hence, it reduces the visual
clutter and, in our context, forms meaningful clusters of related concepts.

The projection legends allow seeing which attributes contribute to the x and y projection axes;
which are weakly reflected in the projection; and how values of a selected attribute map to pro-
jected observations. Understanding the meaning of a scatterplot and/or its clusters requires
much less user interaction (clicking a few attribute bars in the projection legend) than in classical

5.2. Analyzing business case and decision data 93

MDS plots where one usually has to cycle through all attributes and color projections based on
the selected attribute.

Scalability is covered at several levels: Space-filling Voronoi cells show relative locations and
distances of attributes and also which observations most likely sample these. Cell merging, done
distance-based or by attribute values, removes understood or uninteresting observations to give
more space to project the remaining ones. Computational scalability is good: MCA is OpJ2Iq for
J distinct attribute values and I observations (Sec. 5.2.2), under the assumption that J I .

Limitations

Several limitations exist, though, as follows.

Colors: The categorical colormap scheme used for the projections view and dimensions view can-
not show more than roughly 10 distinct attributes. Even though the problem is alleviated by
using colors to emphasize the most relevant attributes, i.e. the ones which are most likely to
discriminate between observations, and also by merging cells, the issue still exists. A general so-
lution that can handle datasets having hundreds of attributes, out of which a large subset could
be equally relevant, is still required.

Voronoi cell size: Voronoi cells partition the 2D plot space to place multivariate information
atop projections in a non-overlapping manner. As a by-product, outliers (e.g. at the plot pe-
riphery) get large cells. Cell area is, thus, a by-product of inter-projection distance, and does not
encode data values. Although large cells help locating outlier attribute values, the strong visual
salience of area can have undesired effects, e.g. users comparing the areas of two cells to draw
wrong conclusions about their attribute values. A related issue is the Voronoi cell adjacency: The
fact that two cells are adjacent does not carry any additional information besides the fact that they
are spatially close, i.e. that observations tend to select their respective attribute values together,
as explained in Sec. 5.2.4.

Observations vs cells: A separate challenge relates to interpreting observations vs Voronoi cells
in the observations plot. As mentioned in Sec. 5.2.5, if an observation x is closer to an attribute
value j than to other attribute values k � j, then x will more likely have value j than values k
relative to the other observations. Thus, if x falls within the Voronoi cell of some attribute value
j, it only means that x will more likely have value j than other attribute values. Cell borders are
thus only indicators of a change in attribute-value likelihood for observations, and not a precise
indication of actual attribute values for observations. Hence, observations that fall within a large
cell and are far from the cell borders are very likely to actually have the attribute value of that cell.
In contrast, for observations that fall close to cell borders, or are located in small, densely packed,
cells, we can only say that they more likely take one of the attribute values of the respective cells
than values of far-away cells. This interpretation challenge is clearly not trivial, and a recognized
limitation of our visual encoding.

Usability: Although linking our views to concepts and questions from the application domain
is arguably easier than for existing MDS plots, there is still some effort and learning curve re-
quired. Making the mapping between questions and views even simpler and more explicit is a
main point for future work. Also, investigating the use of MDS techniques, e.g. [110] instead of
our current MCA technique, would extend the scope of our explanatory visualizations to a larger
area.

94 5. Visual Analytics for Decision Management Systems

Possible expansions

We developed the techniques above in particular for MCA, which is a dimensionality reduction
technique for categorical data. Now, MCA is mathematically based on Singular Value Decom-
position (SVD), meaning that our methods are at least partially suitable for all other SVD based
methods, such as PCA, CA and classical MDS, as well. To adapt our techniques to other dimen-
sionality reduction techniques, we distinguish the following issues.

Categorical versus numerical data: As we have details in Sec. 5.2.2, each observation trans-
formed into a bit pattern, making the data numerical. As will be explained in more detail in
Sec. 6.3.2, what one is basically comparing, when two observations are compared, are frequency
profiles. Thus there are two numerical issues which must be taken in account: the explosion of
dimensions, recall that each categorical attribute results in as many columns as it has distinct
values, and the comparison of frequency profiles. MCA rescales the variances to account for the
additional dimensions and uses the chi-square distance metric as opposed to the more common
distance metrics such as the Euclidean distance. Because each categorical attribute is expanded
into many dimensions, the projection gives information about the structure at the level of attribute
values. This is not the case for numerical techniques, such as PCA, which will give structural in-
formation only at the attribute level. Other than that, MCA is conceptually not different from
other techniques and therefore our techniques should map to numerical techniques as well.

Projections: Our dimensions view, shows the projected observations or attributes only for the
first two factors. This is a design choice we made in our particular business context. It is not hard
to see though, that this view can be extended to three dimensions. This would lead to the typical
problems of 3D projections on 2D screens related to occlusion. Also, it would require adaption
of our merging algorithm to correctly merge point in 3D space as opposed to our 2D merging
approach. In a 3D projection it would be natural to also provide interactive means to rotate the
point cloud. A rotation of the projected point cloud should of course be reflected in the legends
as well.

Legends: Performing aMCA returns, among other pieces of information, for both projections
the contributions of either the observations or the attribute values to the factors. We use the
contributions of attribute values to the factors of the attribute projections in the dimensions view,
to construct the legends. In all generality dimensionality reduction techniques could be defined
as a function that maps a point from a high-dimensional space to a lower dimensional space.
Therefore, even though not always trivial, it is theoretically always possible to retrieve the con-
tribution of a high-dimensional point to each dimension of the projection space. Thus in theory,
the legends can be constructed for all other techniques as well.

Labels: We use labels in the attribute plot and clip by the cell boundaries to avoid overlap and
show the full label in a tooltip. These labels consist of an attribute and a value part. This gives a fine
granularity with respect to the correlations in the data which is not possible with numerical data.
In the latter case the label would just consist of the attribute name and a finer level of structure
cannot be reached, though this is inherent to the dimensionality reduction technique. In the case
of categorical data labels could be compressed in various ways, both with and without data loss,
to reduce the required screen space for the label. Some compression techniques are proposed in
Sec. 6.4.

5.3. Rule Triggering Analysis 95

5.3 Rule Triggering Analysis

The above presented methods support the exploration of relations between concepts (DS1) using
the instance data (DS2) of the taken decisions. So far, we only explored the insight that could be
extracted by MCA on our decision model. Correlations between input concepts are, however,
dictated by reality, e.g. students tend to be younger on average; or mid-aged people have a
higher chance of being married. Correlations between decision concepts and input concepts on
the other hand, result from the executed business logic expressed in the production rules. This
distinction pertains precisely to our core question: How can we examine how the reality (as
captured by the decision model) diverges from the reality encoded by the actual decisions taken?
We next approach this question from the rule triggering perspective.

As discussed before, Baudel and van Ham [174] took the following approach: given a rule
what are the interesting attributes? This line of reasoning follows a logic to data path, given a
rule what are interesting patterns/trends/outliers in the data. From a business perspective, the
decisions being made over time are determining the business performance. Therefore, support-
ing an exploratory approach should start from the decision outcomes, i.e. what are the interesting
rules for business cases that result in decision X. For example in our insurance case, what rules
are interesting for those business cases that resulted in manual processing?

5.3.1 What are interesting rules?

To answer the question of which rules are interesting, we first need to discuss the metrics that can
be extracted from rule triggering. When we look at all past decisions, we can calculate various
metrics:

• Absolute rule trigger count: Rule X is triggered N times.

• Proportional rule trigger count: Of all rule triggers, N% is rule X.

• Decision rule triggering ratio: Rule X is triggered for N% of the decisions.

A decision execution trace contains all rules, in the order that they where fired, that led to the
final outcome. The absolute rule trigger count is simply calculated by iterating over all traces
and incrementing a counter for each rule that is part of the trace. Once the absolute count for
each rule is determined, the proportional rule trigger count is calculated by dividing the trigger
count of each rule by the overall trigger count. The decision rule triggering ratio is based on
the observation that a particular rule can be triggered multiple times for the same decision. It is
calculated by incrementing a counter for each rule, each time it is encountered for the first time
in a decision.

In general, absolute counts are mostly not an interesting measure. When millions of decisions
are taken, absolute counts end up being large numbers which are hard to comprehend and to
compare. Therefore, initially the proportional trigger count is a more appropriate measure to
observe. It still begs the question, what is interesting? Is it interesting that a given rule is triggered
often or triggered very little or not at all? The answers on these questions is: it depends, either
on the formulation of the rules or on contextual knowledge.

96 5. Visual Analytics for Decision Management Systems

Let us suppose we have a simple DM to determine if a person is eligible for a car insurance
or not. This hypothetical model is determined by some simple rules:

IF the age of the person i s l e s s than 18
THEN s e t the s t a t u s of the person to i n e l i g i b l e

IF the age of the person i s a t l e a s t 18
THEN s e t the s t a t u s of the person to e l i g i b l e

IF the person has a driving l i c e n s e
THEN s e t the s t a t u s of the person to e l i g i b l e

IF the person was involved in more than four a c c i d e n t s
THEN s e t the s t a t u s of the person to i n e l i g i b l e

Now, when we would look at the rule trigger counts only for the decisions that have the
ineligible outcome, it should not come as a surprise that the first rule takes a relevant proportion.
Similarly, it is also not a surprise (nor interesting) that the second and the third rule are not
triggered at all for the ineligible decisions. Thus, the absolute count nor the proportional count
are interesting in these cases, they state the obvious. Rules that directly relate to the decision by
the fact that there action results in the decision could therefore be considered unimportant.

The fourth rule is a different case. Let us assume that this rule is only triggered if the person
is above 18, i.e. there is no need to fire this rule if the person is already ineligible due to his age.
When this rule would take a large proportion in the overall trigger counts for ineligible decisions,
it means that many persons that otherwise might have gotten an insurance and therefore become
a potential risk have now been turned down. However, if in the more likely case, this rule was
triggered never or only a couple of times it would be interesting as well. It means that people
involved in four or more accidents are the exception. From a business perspective this means
that the chosen limit, i.e. four accidents, might be too high in this case. When we look at a subset
of the decisions, such as only the ineligible decisions, we can calculate additional metrics:

• Absolute rule trigger count: Rule X is triggered N times for decision outcome Y.

• Proportional rule trigger count: Of all rule triggers for decision outcome Y, N% is rule X.

• Decision rule triggering ratio: Rule X is triggered for N% of the decisions for decision
outcome Y.

• Differences: For each of the above measures the difference between the value for this sub-
set and the overall set.

Finally, there are some cases where the absolute count is interesting, namely when the trigger
count is low. When a rule is triggered only a couple of times or so little that the proportion
rounds to 0.0%, the rule is actually representing corner cases. Being able to identify that these
corner cases occur can help identifying problems with the DM.

5.3.2 Generalizing the problem

Until now the discussion about analyzing rule trigger counts has been revolving around the over-
all set of decisions and subsets of decisions that represent a certain decision outcome. However,
we can generalize this approach due to the observation that the decision outcome is only one
of the many possible attributes that define a business case and the resulting decision. Instead
of selecting a subset of decisions based on the decision outcome, we could also select decisions

5.4. Conclusion 97

based on the other attributes. For example, by selecting all decisions for persons that fall in the
age category 18..25 and who are full-time student.

As we have seen, the usefulness of the counts (absolute and proportional) and the differences
between counts of a selection and the overall set of decisions is depending both on the formu-
lation of the rules and external context. In the generalized case, we can add an optional filter to
reduce the information that would be presented to the user. This filtering is similar to the action
filtering discussed before. Based on the observation that rules which test on an attribute that is
used to make a selection will bias the metrics for these rules. For example, when we have a rule
that tests on age and we select decisions based on an age category as well, it is likely that the rule
is either:

• overrepresented: the proportion of this rule in the selection is significantly higher than its
proportion in the overall set of decisions.

• underrepresented: the proportion of this rule in the selection is significantly lower than its
proportion in the overall set of decisions.

Therefore, removing rules that test for one of the attributes that were used to make the selection of
decisions could put the focus on more unexpected patterns. Presenting the results of the analysis
is a simple matter of listing the rules in a table with a column for each of the metrics. Column
sorting can be used to focus on a particular metric.

5.4 Conclusion

We have presented a set of visualization and analysis techniques that allow for analysis of a DM
beyond the limits of the techniques presented in CHAPTER 4. The first technique, presented in
Sec. 5.2, describes a visualization and a workflow for exploratory analysis of categorical data.
In contrast to classical numerical MDS, we use MCA to create 2D projections which display at-
tributes, attribute values, and observations. We introduce several visual encodings which help
correlating values, observations, and observations with values. We showed how our techniques
can be used to find non-trivial insights with limited effort in a dataset from the insurance indus-
try. A standard tool in sociology, MCA is rarely used for information visualization of multivariate
data. Yet, categorical data is very common in datasets concerning business processes. These vi-
sualization and analysis techniques are a solution to address research question Q3, about gaining
insight in the structure of the data. As the labels can be used to distinguish business case and
decision data, we also have an initial solution for question Q4.

Secondly, we presented a method for analyzing rule trigger patterns in Sec. 5.3. By extracting
various metrics for the overall set of decisions and comparing those with metrics for a selection
of decisions interesting differences can pop up that might help the analyst to understand the
functioning of the DM. This method serves as a partial solution to research question Q5, how do
we get insight in the logic for a given set of decisions.

At this point we have just introduced techniques for getting insight in a few aspects of the
various data spaces of a DM. However, we have not provided an integrated approach to analyze
the aggregated effects of many decisions. In the following chapter we will tie together the pre-
sented techniques in order to provide an exploratory environment that answers even closer the
main questions stated in CHAPTER 1 and CHAPTER 2. In detail, we will combine the techniques
presented in this chapter to provide a work flow which enables combined analysis of correlations
in the business case data and of the logic that lead to the decisions for these business cases.

Published as: Decision Exploration Lab: A Visual Analytics Solution for Decision Management
Broeksema, B. and Baudel, T. and Telea, A. C. and Crisafulli, P.
in IEEE Transactions on Visualization and Computer Graphics, 19(12)

Chapter 6

Decision Exploration Lab: an exploratory
environment for Decision Management Systems

A technicistic approach would leave the power to decide to
information processors. In a non-technicistic approach, this power
stays in the hands of humans. Technique would at most help humans
to maintain once made agreements.

Aan babels stromen, (Translated from Dutch), ROEL KUIPER

I
n this chapter we present the Decision Exploration Lab (DEL), an integrated toolset for com-
bined verbal and visual analysis of DMS datasets. Its design and implementation aims to

provide direct support for the core tasks related to DMS as outlined in Sec. 2.6.
Currently there are no tools that specifically target the analysis of the functioning of a Decision

Management System (DMS). To analyze automated decisions, a cumbersome process is followed
which does not take into account the relationships between the three data spaces. In the context
of this thesis, we integrate with IBM’s Operational Decision Manager (ODM), a software prod-
uct for managing day-to-day automated enterprise decisions. ODM allows to export either the
execution traces or the business case and decision data. The exported data are stored in a data
warehouse in a tabular format and then analyzed and monitored with the typical analytical and
business intelligence tools such as IBMs SPSS and Cognos or alternatives such as SAS business
intelligence, Oracle BI and SAPs Business Objects. Often the resulting analysis is partial, both in
the data that is analyzed and in the analyzed relationships between different data spaces.

We integrate the visualization techniques, presented in CHAPTER 5, with IBMs ODM. Con-
trolled natural language [14] plays a major role in IBMs ODM, as it is next to decision tables the
main way to express business rules. As a consequence we designed an exploratory system that
provides a verbal mode in which the business user can query decisions using controlled natural
language and a visual decision exploration mode which serves as an interface for the automated
analysis of the decision data.

The goal of integration is to design or construct a system that acts as a coordinated whole.
In CHAPTER 5 we presented Visual Analytics (VA) techniques for the data at hand, but we did
not detail how these sub-solutions are tied together in an unified workflow. Therefore, in this
chapter, we discuss the architecture and details of our toolset. In CHAPTER 7 we next present the
application of our system to real-world data-sets along with some visual refinements that took
place during integration.

6.1 Architecture

For a good separation of concerns, DEL is designed using a layered architecture as shown in
Fig. 6.1. The first layer consists of IBMs ODM which is the software product that is put into use
for automating business decisions. At this point decisions are either simulated using historical

100 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

Figure 6.1: Layered architecture of the DEL

business cases, or existing decision data are used. Simulation is needed in cases where the deci-
sion itself is not stored or where additional logging such as execution trace logging is turned of.
Additionally, normally enterprise critical systems should not be put under additional burden just
for analysis purposes. Simulation enables reusing existing business cases, retrieving the original
decisions accompanied with the required logging data. The resulting business cases, decisions
and execution trace data are stored in a database using an XML format.

In order to be able to query and analyze the decision data efficiently, it must be stored in a
suitable format. This is done in the second layer, which reads data from the decision data store
and transforms and indexes it. All fields of the business case and of the associated decision
become columns in the new data table. One row is added to this table for each decision in the
decision warehouse. Additionally, a multivalued column is added which contains the list of
triggered rules for each decision. Storing decisions like this enables efficient querying of decisions
and therefore also allows us to construct the data structures required for analysis in an efficient
manner.

The final layer contains the analytical and visualization components. These components per-
form the quantization of attributes based on user input and provide the means for exploratory
visual analysis of the decision data. This layer itself is based on a client-server architecture.
The User Interface (UI) is implemented as a web-client while the analysis and data querying is
handled by a web-server. It provides the working modes: verbal (Sec. 6.2) and visual decision
exploration (Sec. 6.3). Overall it supports an iterative approach, where data are filtered and at-
tributes are selected for analysis or deselected such that the analyzed data match the level of
detail required at any given point in the analysis process.

6.2 Verbal mode

In Sec. 2.6.2 we listed six high-level tasks that should be supported by the system. The two tasks
T2, create selections of decisions, and T5, finding Key Performance Indicator (KPI) related op-
portunities, can be related to more specific tasks where some prior knowledge can be assumed.

6.2. Verbal mode 101

Figure 6.2: The Decision Exploration Lab in verbal mode.

The first of these specific tasks encompasses troubleshooting, which can only be done when at
least some basic information that would lead to the problematic decision is available. That is, a
customer has called that he was rejected for an insurance, but he does not understand why or
agree with the decision. Details provided by the customer, such as name and address details, can
be used to find the particular decision. The second concrete task relates to KPI-based improve-
ments of the Decision Model (DM). An analyst knows how the KPI is calculated and therefore
also knows which decisions he wants to analyze. He could be interested, for example, in decreas-
ing the number of insurance requests that are processed manually. In that case he would like to
analyze at some point only the decisions that had a manual outcome. Both cases require that a
user is able to find a particular decision or selection of decisions and to analyze details.

As a first means to this end, we added a verbal mode to our system as shown in Fig. 6.2. We
call this the verbal mode because the user explores the decision data using controlled natural
language (Sec. 2.3) The two combo-boxes at the top allow the user to select which DM he want
to analyze (Fig. 6.2D) and which analysis mode he wants to use (Fig. 6.2E). In verbal mode, the
main view is a table which lists decision details (Fig. 6.2B). The user can add and remove columns
to this table based on the information that the he wants to see.

When a user selects a particular decision, a dialog opens in which he can inspect the full
details of the decision as shown in Fig. 6.3. In this dialog he can inspect all three parts of a decision
execution by clicking the panel title that holds the information he is looking for. The input panel
(Fig. 6.3a) contains the original object tree for the business case. It follows the structure of the
business case as defined in the ontology and presents the attributes and their corresponding
values in a hierarchical manner. The decision outcome is presented in the output panel (Fig. 6.3c)
in the same way. Finally, the trace panel (Fig. 6.3b) displays the execution trace. As detailed in
Sec. 2.3.2, the trace is a hierarchical structure when the user has defined decision control flows.

102 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

a. Details of the business case b. Triggered control flow tasks and businss rules

c. Details of decision

Figure 6.3: Decision details dialog showing the details of an individual decision: attribute values
of the business case (a), triggered decision tasks and business rules (b) and the attribute values
of the resulting decision (c).

A flow consists of tasks and each task represents either another decision flow, a decision table
or a selection of business rules. Each of these is represented in the tree by their corresponding
symbols (a flow chart symbol, a grey and a yellow cog).

To focus on a particular subset of decisions, the user can specify a query (Fig. 6.2A), using
controlled natural language. When a query is performed the table is updated and only lists the
decisions that match the query. These queries can be bookmarked for later reuse (Fig. 6.2C).

6.3. Visual decision exploration 103

6.2.1 Querying and filtering

Given that the number of decisions can be very large, querying lets the analyst focus on an area
of concern, rather than being confronted with too many facts. Business analysts working with
DMSs are used to express production rules in controlled natural language [14]. We extended
this approach to allow for queries on decisions that are understandable for a business user. In
the query field, the user can express queries on decisions to search for decisions based on the
checked preconditions:

f ind d e c i s i o n s such t h a t
the v e h i c l e has a n t i l o c k brakes

That is, in this particular scenario, the fact that a vehicle has anti-lock brakes is modeled as being
part of the business case. Because anti-lock brakes is a property of a business case and not of the
resulting decision, this property is only checked in the preconditions of a rule and not altered
in the action part of a rule. On the other hand, queries can also check for actions taken by the
production rules:

f ind d e c i s i o n s such t h a t
the quote has a t l e a s t one 5% discount

That is, discounts are added to a quote by certain production rules. Thus when querying for such
facts, decisions are selected based on actions taken by the DM.

This approach is usable for simple queries on the decision warehouse when users know what
to ask for. A typical use-case is auditing or troubleshooting a decision which can be reasonably
easy identified by some known criteria. These criteria typically come from a customer who calls,
providing e.g. name, surname and order id, or from an auditor who wants to see decisions
for a particular population, e.g. females who have been rejected. A second use-case is creating
selections of decision for monitoring or validation (T2).

Additionally, we use the querying mechanism as a preliminary filter for the visual exploration
mode. The query is used to reduce the data under analysis in visual exploration mode. This lets
the user reduce the set of decision instances in a way that is most suitable for the kind of questions
he wants to answer. One can think of many starting points for an analysis that lend themselves
for this approach, such as:

• persons between 18 and 25;

• decisions that involve a car of brand Peugeot or Citroën;

• decisions that have more than two discount items;

• decisions that have a quote lower than $ 150.

When the analyst wants to gain a deeper understanding of a selection of decisions, he en-
ters the query selecting these decisions in the query field. Next, the visual decision exploration
mode will restrict the analysis to the decisions selected by the current query. This way he can
really dive into the details of a very specific population which is important for finding targeted
improvements or new business opportunities (T5).

6.3 Visual decision exploration

The verbal mode does not help the analyst in fully understanding the functioning of a DM. With
possibly millions of decisions it is also hard to give a meaningful “overview first”, following the
Information Visualization (InfoVis) mantra by Shneiderman [186]: “Overview first, zoom/filter,

104 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

Figure 6.4: The Decision Exploration Lab in visual decision exploration mode, with the dimensions
view (A), the decision map (B), and the rule trigger view (C).

6.3. Visual decision exploration 105

details on demand”. Therefore we designed an additional approach which we call the visual de-
cision exploration mode and which we describe in this section. The design of this mode follows
the extended guide proposed by Keim et al. [187]: “Analyze first, show the important, zoom/-
filter, analyze further, details on demand”. It integrates the VA techniques for categorical data
presented in Sec. 5.2.2 and rule triggering analysis from Sec. 5.3. The visual decision exploration
mode of the DEL (Fig. 6.4) helps finding two kinds of relations:

1. Relations between attribute values of business cases and decisions.

2. Relations between (groups of) attribute values and the decision logic.

As starting point for our exploratory approach, we chose the first: relations between attribute
values of business cases and decisions. This mirrors the construction of a DM, which also has
to start with modeling the business cases and the decisions. That is, one can only reason about
something (e.g. a person, a car or a transaction) when this something is defined in the first place.
Now, we can break down our exploratory process following the mantra by Keim et al.:

• Analyze first: It is natural to think about business cases and decisions in related concepts
and attributes. We apply Multiple Correspondence Analysis (MCA) to find such relations
based on past decisions.

• Show the important: Related concepts of the DM, found by the MCA are visualized in
the decision map (Fig. 6.4B) and grouped together to show the important clusters of related
values. Examples that show up in our scenario:

– Persons which are student tend to be younger and unmarried.

– Expensive cars tend to have both anti-lock brakes and multiple airbags

– Ineligible persons tend to be over eighty or have a high number of tickets.

• Filter: To gain a deeper understanding of a subset of decisions, the verbal mode (Fig. 6.2)
can be used to filter unrelated decisions. Additionally, by using brushing concept islands
in the visual decision exploration mode, the set of decisions can be filtered even further to
focus on a very specific subset of decisions.

• Analyze further: Filtering the decisions using verbal mode, triggers MCA anew and results
in a more detailed analysis of the decisions of interest in visual decision exploration mode.

• Details on demand: In verbal mode individual decisions can be inspected to retrieve details
(Fig. 6.3).

However, this still does not incorporate the business logic. To this extend we integrate the
rule trigger analysis as follows. In Sec. 5.3 we described how various metrics can be calculated
for the overall set of decisions and subsets of decisions. We did not detail though, how to retrieve
subsets of decisions that could lead to meaningful insights in our integrated approach. Such
subsets are created interactively by combining the current query in verbal mode with brushing
in visual decision exploration mode. For example, the analyst could first reduce the decisions
by focusing on students. Next, in the visual decision exploration mode he finds that students
who are married tend to have a lower number of speeding tickets. By brushing the Married: true
and Number of tickets: low values, the decisions will be further filtered and the rule triggering
metrics will now be calculated for students (by the query which is specified in the verbal mode)
who are married and have a low number of tickets (by brushing these values in visual decision
exploration mode).

106 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

The DEL has three main components in visual decision exploration mode: The dimensions
view (Fig. 6.4A) shows all Business case and Decision attributes. The decision map (Fig. 6.4B) helps
understanding correlations between these attributes. The rule trigger view (Fig. 6.4C) shows how
production rules map on actual executions. To implement these components, we build upon the
techniques presented in CHAPTER 5. However, the techniques presented in Sec. 5.2.2 have been
initially introduced in the general context of analyzing multivariate categorical data. We adapted
and extended these techniques to our more specific context of analyzing ontologies, rule sets, and
the execution thereof, as follows.

6.3.1 Dimensions view

To support analysis on ontology instances from the decision model, i.e. business cases and de-
cisions, we reuse and refine the dimensions view from Sec. 5.2.5, as follows (see also Fig. 6.4A).
Each ontology attribute of basic data type (e.g. boolean, string, numeric) becomes a tree node.
Parent nodes are created following the object hierarchy. For example, the input parameter Insur-
anceRequest has a property of type Person, which in turn has a numeric attribute age. This leads to
a branch input.InsuranceRequest.Person.age in our tree.

We separate variables in three sub-trees: categorical, numerical and temporal. We added
check-boxes to categorical variables so that they now can be added or removed from the analysis
interactively, as opposed to our earlier approach where all categorical variables where always
taken in account. All variables together define the data space that comprises our decision in-
stances. Numerical and temporal variables can be binned into categorical variables. This way,
they can be directly handled by our underlying decision-map analysis which uses the MCA tech-
nique (Sec. 5.2.2). When binning numerical variables, users can choose the number of bins to
match the precision needed for targeted questions. Temporal variables can be binned with var-
ious time spans such as year, quarter, month or day. Binning a variable can be done as often as
needed, until the binned variable meets the expectations or needs of the analyst.

To each categorical variable node, we finally add, as leafs, all possible values that the respec-
tive category can take. For numerical and temporal variables, we display statistics (minimum,
maximum, average, and standard deviation) to inform the analyst about the basic properties of
these variables. For each value of a categorical variable, a bar is shown in the tree, represent-
ing the number of times this value was encountered in the dataset. The bars form together a
histogram of the variable (see Figs. 6.4 and 7.2).

6.3.2 Analyzing Categorical Data

As outlined above, we reduce the inherently hierarchical structure of the ontology of a DM to
a tabular structure. Using the dimensions view, the analyst can quantize numerical attributes in
a way that fits his expectations or the kind of questions he wants to answer. Quantizing an
attribute results in a new ordinal attribute that shows up in the dimensions view. The analyst can
next select attributes from the categorical subtree in order to start the analysis process. Each time
an attribute is selected or deselected, the analysis is performed anew.

Our initial approach, presented in Sec. 5.2.2, was based on the indicator matrix. Recall, that
in this matrix each business case and decision was represented by one row. Additionally, each
possible value of each of the attributes becomes a column in this matrix. When a certain value of
an attribute is selected by the business case, the matrix cell matching the case and the value is set
to one and zero otherwise. It is easy to see that the size of this matrix is bounded by the number
of business cases as this will grow over time, while the number of distinct attribute values is
fixed.

6.3. Visual decision exploration 107

Car.Type Car.Value Car.Airbag
Sedan SUV Lux. 2.5K 2.5K � 5K ¡ 5K None D D + P

Sedan 1500 0 0 1200 200 100 400 1000 100
SUV 0 1000 0 300 500 200 250 600 150
Lux. 0 0 400 20 100 280 0 50 350

 2.5K 1200 300 20 1520 0 0 340 865 315
2.5K � 5K 200 500 100 0 800 0 180 455 165

¡ 5K 100 200 280 0 0 580 130 330 120
None 400 250 0 340 865 315 650 0 0

D 1000 600 50 180 455 165 0 1650 0
D + P 10 150 350 130 330 120 0 0 600

Table 6.1: An example Burt matrix for three variables.

As detailed in Sec. 5.2.2, one of the steps MCA comprises a Singular Value Decomposition
(SVD) which decomposes a matrix A into three matrices (Eq. 5.3). For the visual approach pre-
sented in CHAPTER 5 all three matrices are required. As discussed by Golub et al., [188, p. 254],
the complexity of this operation for a matrix Amn, withm " n, is O

�
4m2n�22n3

�
. Thus, in order

to be able to perform real-time analysis we must reduce the size of this matrix.
MCA can be thought of as a weighted Principal Component Analysis (PCA) on either rows

or columns [121]. It treats rows (observations) and columns (variables) symmetrically and thus
allows analysis of both instances and variables. Besides the computational issues as pointed
out above, when having millions of observations, it is questionable if the scatter plot approach
works without applying techniques such as sampling [189] or splatting [190]. As a consequence,
another approach is taken that only gives the analysis for the columns (attribute values) of the
indicator matrix. To support interactive, real-time visual analysis, we thus base our framework
on the Burt matrix B, which is defined as

B � XJ �X (6.1)

where X is the indicator matrix. Applying Eq. 6.1 to the earlier example of an indicator matrix
in Table 5.5, results in the Burt matrix as shown in Table 6.3.2. In this matrix each sub-matrix
(identified by the borders in the table) has the same sum, 2900 in this case. This sum represents
the number of observations, thus number of rows in the original indicator matrix X. Each row,
and therefore each column because the matrix is symmetric, represents the frequency profile of
a particular value. For example, the first row represents Sedan cars, of which there are 1500 in
the dataset. From these 1500 cars, 1200 have a value below $2500 and 100 have airbags for driver
and passenger (D + P).

Using the Burt matrix for analysis as opposed to the indicator matrix brings various compu-
tational advantages, making it possible to perform real-time analysis of large sets of decisions.
Firstly, the Burt matrix is a symmetric square matrix whose rows and columns are the attribute
values. As a result, the size of the matrix is bounded by the number of distinct variable values
and is independent from the number of decisions. In our context, this number is several orders
of magnitude smaller than the number of decisions. For example, the eligibility DM, from the car
insurance scenario (Sec. 2.2), contains 23 attributes with a total of 158 distinct values, while it was
used to perform 100000 decisions. Secondly, the Burt matrix itself can be constructed efficiently
by performing J queries on the data table constructed by the indexer, where J is the total number
of distinct values. These queries are called faceted queries and are supported by search platforms
such as Apache Solr [191]. Finally, because the Burt matrix is symmetric it is no longer needed to

108 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

compute the full SVD. It is now sufficient to compute only P and ∆, which is O
�
2mn2 � 11n3

�
[188, p. 254], with m �� n and mburt ! mIndicator.

As before, MCA results in three pieces of information for analysis:

1. The projection of the original data points on the factors fi, or eigenvectors of the Burt ma-
trix. These are sorted by explained variance, i.e. f1 explains most of the variance, f2 ex-
plains second most of the variance, and so on.

2. The amount of variance explained by each factor fi.

3. The contribution of each attribute to a factor, or how much of the variance of a given factor
is explained by a certain attribute.

6.3.3 Decision map

The Decision map is a dynamic map analogous to the one presented by Zizi et al. [154]. However,
while Zizi et al. assign space to areas in the map based on instances, Decision map maps data
attributes. It follows the classical scatterplot technique used for MDS (see Fig. 6.4B): We take
the two factors f1 and f2 along which the data has most variance, and plot all attribute value
projections, i.e. factor scores, along f1 and f2. Hence, the f1 and f2 factors correspond to the x
and y axes of our 2D scatterplot. Similarity between attribute values is reflected by proximity
between 2D plot points. In other words, we use in the Decision map the same technique as in
the projections view from Sec. 5.2.5, but now we make its semantics more explicit and thus more
useful by linking the meaning of Voronoi cells with domain specific concepts. We see that the
techniques from CHAPTER 5 become less abstract and therefore more usable when we apply
them in a particular application domain.

MCA, like similar techniques such as Multi Dimensional Scaling (MDS) and PCA, tries to mir-
ror the projection (2D) distance with the distance in the original data space. By design, MCA uses
the chi-square distance metric. This metric is based on relative frequencies of variables, adjusted
by the contribution of an attribute to the average instance. Each of the resulting factors is a com-
bination of the variables used in the analysis. When most of the variance is explained by the first
two factors f1 and f2, MCA is good for exposing the original data structure: Proximity between
projected attribute values means that those values are correlated. Additionally, contributions of
each attribute can be calculated, to explain how much the x and y plot axes are determined by a
certain attribute.

However, the complexity of the chi-square distance metric makes the interpretation of the
x and y plot axes hard for business analysts. As such, we leave these axes out, and use the
2D scatterplot points as sites for a Voronoi diagram. Due to the strong relation with concepts
from the ontology, we name Voronoi diagram cells concept islands. A concept island containing
one concept represents all decisions that have this concept. Islands with more than one concept
represent a set of decisions that have all these concepts.

As mentioned, each factor explains part of the variance in the data and is a combination of
the original variables. To make the Decision map easier to read, we add three bar plots to it (for
f1, f2, and for all factors fi¡2). Bars in the first two plots show the contribution of each attribute
to the x (f1) and y (f2) axes respectively. Bars in the third plot show the contributions of all
variables which have not been captured by the plot, i.e. contributions captured by the factors
fi¡2. Contributions in each plot, i.e. bar lengths, are sorted decreasingly, so we can locate the
most important variables that map to the x and y axes or which are not captured by the 2D plot
at all.

6.3. Visual decision exploration 109

a.

b.

c.

Figure 6.5: Interactive session with the decision map. First the analyst selects age and eligibility
(a). Next he adds Driving Under Influence (DUI) (b). Finally he adds number of accidents and
number of tickets and uses merging to get meaningful clusters (c).

110 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

6.3.4 Coloring

The MCA visualization presented in Sec. 5.2.5 uses a categorical color map to show the identity
of the mapped variables. This technique was initially designed as a generic tool for exploratory
analysis of categorical data and presented as such [192]. Applying these techniques to the specific
context of analyzing decision data exposes various problems, among which the used coloring
scheme.

Even though, the usefulness of this color scheme scored relatively high (see our evaluation
described further in APPENDIX A.4) in the preliminary evaluation, there is a number of problems
with this approach. It uses a fixed amount of ten colors to map identity of attributes. Ten is
already a high number as early research found that out of 210 different colors only eight colors
and white could be named consistently [193]. When using color for labeling categories, estimates
for the optimal number of colors vary between five and ten [194]. Additionally, when there are
more than ten attributes, cycling is used mapping the same or very similar colors to different
attributes. This forces users to perform additional interaction to find out which attribute(s) are
represented by a concept island.

We thus further refine the projections view from Sec. 5.2.5 in the context of decision manage-
ment, by using a two-color map. This leads to two advantages. First and foremost, it allows us
to show the relation between business case concepts and decision concepts. More generally, we
can now see dependent vs independent variables, where the user determines which variables are
of which type. Secondly, we avoid all above mentioned color mapping problems which occur
when color maps attribute identity. The decision map in Fig. 6.7 shows how the three values (eli-
gible, manual and ineligible) of the decision concept eligibility (green concept islands) relate with
respect to values of input concepts (blue concept islands).

6.3.5 Interaction

We support real-time exploration and filtering of decisions by several interaction techniques.
First, we use the dimensions view to select the variables of interest, by (un)checking their respective
checkboxes in this view (Fig. 6.4A). When variables are added or removed, MCA is performed
anew on the selected variables and the decision map is updated. Given the efficient computation
of the Burt matrix (Sec. 6.3.2), this process works in real-time even for large datasets. The way of
working is simple: An analyst starts with a selection of variables of interest determined by e.g.
textual search (Sec. 6.2.1). From this selection, variables which do not contribute to the structure
of the data (e.g. show up having small contribution in the projection legends) are next iteratively
removed. This yields a decision map where real data correlations become more visible.

Secondly, we provide a merge slider, which merges (see Sec. 5.2.5 for details) concept islands
that are close together based on the distance configured by the slider. Merging results in new
concept islands that represent not one value, but a selection of correlated values. When a de-
cision concept is merged with an input concept, e.g. like the eligible concept island in Fig. 6.7,
the concept island will be colored green as well. Merging helps users to segment the decision
instances based on correlated properties.

These first two techniques can be seen in action in Fig. 6.5, we disabled the projection legends
for clarity. In this small session the analyst wanted to learn about the relationship between age,
eligibility and risk factors: number of tickets, number of accidents and Driving Under Influence
(DUI). Initially he selects age and eligibility which results in the decision map as shown in Fig. 6.5a.
He continues to add DUI and the map is updated as shown in Fig. 6.5b. Finally, he adds the
”number of tickets” attribute and the ”number of accidents” attribute to the analysis as well.
He notices that a lot of labels overlap in the upper part of the screen and uses the merge slider
to merge closely projected values. This results in the map as shown in Fig. 6.5c, where he now

6.3. Visual decision exploration 111

sees meaningful clusters at the top. Top-left he finds eligible people, who fall mainly in the age
category 25..80, were not caught for DUI and have a low number of accidents. Top-right he finds
the ineligible people, which is most strongly related to persons below 18. Other values in this
area are more than three traffic tickets and persons above eighty.

Thirdly, we add interaction to the projection legends to enhance understanding of the decision
map. When a bar, representing a variable, is hovered or brushed in one projection legend, bars
in the other projection legends representing the same variable are highlighted. For example, in
Fig. 6.6a the user brushed the bar representing number of tickets, which is now highlighted in
red in all legend plots. This helps users to see how much a given variable is explained along the x
and y axes, and also how much is not explained by the plot at all. Thus, in Fig. 6.6a, the user sees
that number of tickets is only somewhat represented in the x-axis (about 5 percent) and almost
not at all in the y-axis. And, unsurprisingly, it has a large share in the error-legend.

At the same time, all concept islands that belong to the hovered variable are colored using a
gradient color scheme based on ColorBrewer [195]. This interaction feature is demonstrated in
Fig. 6.6, where the analyst wants to find out the relation between number of tickets or accidents
and eligibility. He first selects the number of tickets by clicking the appropriate bar in the legend
which updates the decision map as shown in Fig. 6.6a. From the map, he quickly sees that highest
number of tickets (darkest value) is closely projected to the ineligible decision. The other values
are roughly equally close projected to the eligible decision. When selecting the number of accidents
(Fig. 6.6b), he sees that the number of tickets is increasing when moving farther away from the
eligible decision, resulting in a gradient in the top left quarter of the figure, marked by a green
line. Looking at the projection legends however, he learns that both attributes (number of tickets and
number of accidents) do not explain much of the variance for either the first nor the second factor.
This comes as a surprise to him as he would have expected that the DM would enforce a stronger
correlation between number of accidents or number of tickets and the eligibility of a person.

Finally, each concept island can be hovered and brushed. At hovering, a detail panel, not
shown in the figure, is updated to show the full name of this island. This way, we can show partial
labels or no labels for small concept islands and concept islands that contain multiple values in

0 tickets

1 ticket
2 tickets

3 or more tickets

a.

0 or 1 accident(s)

2 accidents

3 or more accidents

b.

Figure 6.6: Interacting with the projection legends to see the spread of values. The green lines are
added manually to emphasize how the values are spread in the decision map, lowest value at the
dot. (a) The number of tickets is selected. (b) The number of accidents is selected.

112 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

the decision map to avoid clutter. Brushing implements dynamic queries [24] on the decisions
by selecting one or multiple concept islands. By default, all decisions are shown in the decision
table. When brushing concept islands, decisions are filtered based on the values represented
by the brushed concept islands. This allows for creating selections of decisions (T2) based on
correlations found in the data (e.g. mid-aged, married people). Brushing allows discovering
correspondences between the decision instances (DS2) and the decision logic (DS3). In other
words, brushing the concept islands provides a graphical way to perform queries on a dataset,
based on individuals corresponding to specific concepts extracted from the dataset. This is in
contrast to most brushing techniques which provide detail-on-demand or show the same data in
different (linked) views.

6.3.6 Rule trigger view

The decision map helps the exploration of relations between concepts (DS1) using the instance
data (DS2) of the taken decisions. So far, we only explored the insight that could be extracted by
MCA on our DM, that is correlation between attribute values. We can distinguish three kinds of
correlations:

• between values of business case attributes;

• between values of business case attributes and decision attributes;

• between values of decision attributes.

In the first case, correlations between values of business case attributes, the analyst finds
correlations that are dictated by reality. For example, students tend to be younger on average;
or mid-aged people have a higher chance of being married. In the second case, when values of
business case attributes correlate to values of decision attributes, the analyst found a correlation
that is a result of the business logic. For example, when the DM contains a rule that states:

IF the age of the person i s below 18
THEN s e t the s t a t u s to i n e l i g i b l e

all persons below 18 will be marked as ineligible. This results in a projection of those two values
close together such as shown in the top-right corner of Fig. 6.5c. Sometimes business rules will
interplay or are formulated in a more advanced manner making these relationships less clear.
For example when we have the rule:

IF the number of t r a f f i c t i c k e t s i s g r e a t e r than 2
AND the number of a c c i d e n t s i s a t l e a s t 1

THEN s e t the s t a t u s to i n e l i g i b l e

then the correlation between the decision attribute value “ineligible” and a high number of traffic
tickets might be less clear, an effect that was shown in Fig. 6.6. Clearly, rules like this formulate
the expectations of an enterprise with respect to number of tickets, number of accidents and
expected risk. If the analyst was to find that there are a lot of persons with two traffic tickets and
at least one accident, the above rule should perhaps be reformulated.

In the case where two decision attribute values are projected close together, we can have two
sub-cases. First, values of the same decision attribute are projected close together. Following
the general MCA explanation, this means that the observations that trigger either one of these
decision values, are similar with respect to their other attributes. For example, when both the
“manual” and the “ineligible” decision outcomes would be projected close together, then ap-
parently there are no clear rules to separate the two. An analyst would need to gain a better
understanding of the observations that trigger those two decision outcomes. This should allow

6.3. Visual decision exploration 113

Figure 6.7: Rule trigger view updated for a selection of decisions. The selected cell represents
people between 25 and 80 who are married and no longer full time student. These people tend
to get less often marked high risk drivers and are less often caught for driving under influence.

him to add or rewrite business rules that better separate the two outcomes and lower the number
of manual decisions (which are expensive). Second, values of different decision attributes are
projected close together. This can happen when a decision has a more complex structure such as
an insurance offer describing the insurance type, the base quote, the deductions, the surcharges
and the final quote. When for example a low final quote value is projected close to the extensive
insurance type value, a certain interplay between rules is causing an insurance that was meant
to be more expensive to have a low quote.

These issues pertain precisely to our core question (Sec. 2.5): How can we examine how
the reality (as captured by the decision model) diverges from the reality encoded by the actual
decisions taken? As explained before, this distinction is shown in the decision map by using a
two-color mapping. We further visualize this distinction using the decision execution trace in-
formation available (DS3) using rule trigger analysis as discussed in Sec. 5.3.

Recall that each decision is the result of the production rules that triggered for a given in-
put. Given a random population of decisions, we can expect that each rule is triggered in the
same proportion as for the overall population. Thus, selecting a particular decision subset and
comparing the expected trigger count to the observed trigger count for this selection gives us in-
sight on whether the decision logic of this rule is either over- or underrepresented for this input
population segment. We sort the rules triggered for a subset of decisions by the absolute differ-
ence between the expected count and the observed count. Combining the correlation between
properties with over- or underrepresented logic leads to a better understanding of

1. How a subpopulation of instances impacts the overall behavior of the decision.

2. How a particular formulation of rules leads to a unexpected behavior for a given subpop-
ulation.

For this, we use a new view: the Rule Trigger view (Figs. 6.4C and 6.7). The view displays
the rules triggered for a selection of decisions in a table. From left to right, the table columns

114 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

show the unique rule identifier, the expected trigger count, and the actual trigger count for the
currently selected decisions. The table background is colored red when the expected count is
below the actual count, and green when the expected count is above the actual count. In Fig.
6.7, the selected concept island represents people between 25 and 80 who are married and no
longer full time student. From the corresponding Rule Trigger view, we learn that these people
are less often caught for driving under influence (Fig. 6.7: 1), and get less often marked as high
risk drivers (Fig. 6.7: 2). They do get tickets (Fig. 6.7: 3), but this occurs less often in combination
with accidents (Fig. 6.7: 4). As the selected island is close to the eligibility cell, this enforces his
expectation (T3, T4) that people who are eligible are indeed people who have reasonable driving
habits.

We also considered showing rules that did not trigger for a selection. However, this leads to
visual clutter. For example, when the selection contains only females, all rules that only apply to
males will show up in this list.

6.4 Visualization refinements

In its most simple form a 2D scatter plot consists of 2 axes, both representing a variable of the
dataset. In our case the projection of an attribute on the first and second factor, resulting from
the MCA. Each data point is drawn on the intersection of the lines that are perpendicular to
the axis at the location that represents the value of the variable represented by the axis for the
observation. This simple form can be extended by encoding additional variables using color such
as proposed by Ware et al. [196] or by the size of each visual object representing an observation.

Attribute values that are selected by the majority of observations are projected close to the
barycenter of the 2D projections point-cloud by the MCA. When using the scatter plot approach,
taking the first two factors and use these as x and y-axis for the scatter plot, this often leads to a
strong cluster near the barycenter and some outliers surrounding it. From a business perspective
it can be argued that the values in the center are initially the most interesting as they describe
the properties of the average business case. Yet, less space is assigned to the attribute values
projected in this region. As a consequence the points in these clusters cannot be labeled without
causing clutter which enforces interactive techniques to identify the points.

In this section we present two techniques that address these problems. We first present a
method to label areas of a plot in a meaningful way in Sec. 6.4.1. Next, in Sec. 6.4.2 we present
two methods for automatically adjusting the scale of a scatter plot in order to reduce the screen
estate that is devoted to outlier values.

6.4.1 Labels

When observations have a textual description, labels can be shown in the scatter plot near each
point to identify individual observations in the plot. In our particular case each point in the
decision map is labeled with the attribute and the value it represents. The decision map has an
abstract nature as opposed to geographical maps where knowledge of the user can be of help to
identify point features without labels. Due to this abstract nature labeling is essential to give the
user an initial understanding of what he is seeing.

Labeling techniques can be classified into two categories: static labeling and dynamic labeling
[197]. Static labeling means that a label is visually associated with each observation in the best
possible manner. That is, it is clear which label belongs to which observation, is readable and does
not hide any other important information. Dynamic labeling (also called tooltips sometimes)
works on a subset of all points based on interaction with the view and is therefore bound to
interactive visualizations.

6.4. Visualization refinements 115

Related work for labeling

Static labeling of plots or more general point features has been studied for quite some time,
especially in the area of cartography. Christensen et al. [198] performed an empirical study of
algorithms for point-feature label placement in which they also give an extensive overview of
proposed algorithms. They distinguish two main classes for label placement algorithms: those
that perform a global search for the most optimal label placement and those that perform searches
on a local basis only. In general these algorithms, besides their computational complexity, are
likely to leave out labels in dense areas or perform overlap.

Been et al. present a method for placing labels in dynamic maps which support continuous
zooming and panning [199]. We have a fixed map and do not support zooming and panning.

There have also been some dynamic methods for labeling proposed. Fekete et al. presented
Excentric labeling [197], where a focus region that is directed by the user, is used to label only
a selection of points. Refinements for this technique are discussed by Fink et al., which propose
various algorithms to connect data points from the focus region with their corresponding label
[200]. These two methods leave the user in our context with no other information than a cluster of
points. We would like to be able to provide some initial labeling in order to guide the exploratory
process of the user.

Shneiderman et al. presents Direct Annotation [201], which employs a drag-and-drop strat-
egy for labeling photos. This method is only useful when the objects that are to be labeled are
known beforehand and can be recognized visually.

Area labeling method

We extend our initial labeling approach from Sec. 5.2.5 to provide more detailed labels. This
extended approach for labeling MCA scatter plots is based on the observation that it is not the
individual points (attribute values) of the plot that are of interest but the groups of closely pro-
jected points. In all generality we label areas of a plot with meaningful labels based on the points
that fall into this area. Therefore, we loosen the challenge stated by Fekete et al., [197]: A label
is non-ambiguously related to its graphical object. Given that we label areas of the plot it is not
always possible to exactly identify each point. Nevertheless, in the context of displaying the re-
sults of a MCA this is not a real problem. The label method we present here comprises two steps:
determine the areas which are labeled and perform label compression.

Figure 6.8: Possible positions for label placement when labeling point features. Image from [198].

Determine Label areas: One important feature of label placement is the prevention of label
overlap. Many methods place labels at one of the eight locations as shown in Fig. 6.8. Overlap is
prevented by alternating the label position for a given point until there is no or minimal overlap.
Another way to look at this problem is as follows. When taking the Voronoi tessellation of a set
of points, each cell represents the space that is closest to the point in it. In other words, when a
label is placed within the bounds of a Voronoi cell belonging to a point, prevention of overlap is
guaranteed. Fig. 6.11 shows a scatter plot of a dataset containing US cities. The longitude and
latitude are mapped to the x-axis and y-axis of the plot. The labels, not shown in this plot, have
the form ${state:city}$, e.g. “NY:New York“ or ”CA:San Francisco“.

116 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

At this point there are still two open problems. First, as can be seen in for example the top-
right section of Fig. 6.9b, there are many data points that result in such small cells that there is
not enough space for even one character, let alone a meaningful label. Second, assuming that
we want to place labels in a horizontal manner, some cells are very elongated allowing for a
meaningful label in a vertical way but not horizontally, while others are flat allowing for a label
and yet others are squarish allowing for some text but not a full label. We address these two
issues by using cell-merging to obtain larger cells in crowded areas and by using the maximum
inscribed circle to determine the available space for a label.

Cell merging is applied under the assumption that a group of points that have a small distance
can perhaps not be labeled individually in a static way but can be labeled with a meaningful
summarizing label. We start with the observation that small cells are the center of a cluster, i.e.
the cell is small because it is closely surrounded by other sites. Thus sorting a list of cells by size
in ascending order means that the centers of clusters are at the start of the list. Next we proceed
by iterating over this list and each cell is merged with all its neighboring cells, where all visited
and neighboring cells are marked as processed. For each group of cells a new replacement site
is calculated, which is the barycenter of the sites of the cells in the group. The resulting set of
barycenters is used to create a new Voronoi tessellation. This new Voronoi tessellation is next
used to repeat the process. The stop criteria for this merging process is visual and can be either

a. Initial dataset b. Voronoi tessalation of dataset

c. Voronoi tesselation of merged cells d. Maximum inscribed circles of Voronoi cells

Figure 6.9: Scatter plot of US cities data. (a) Plain scatter plot where X and Y represent longitude
and latitude. (b) Voronoi tessellation of the plot using the data points as Voronoi sites. (c) Initial
cells are merged to gain larger cells for labels. (d) Cells are merged even further and inscribed
circles are shown to illustrate the space that will be used for labeling.

6.4. Visualization refinements 117

manual or automatic based on heuristics. In the manual case the user interacts with a slider
to create a merging that results in a labeling that fits the presentation needs, very similar to the
mechanism presented in Sec. 5.2.5. Alternatively, this process can be stopped based on heuristics.
One obvious heuristic would be to continue until the smallest cell has reached a certain area.
Another heuristic is to stop when the cells have roughly similar sizes, by choosing a merge factor
that minimizes the variance of the cell sizes.

Voronoi cells are obtained from the intersection of half-spaces and thus are always convex. To
determine the available area for a label in these convex polygons we used maximum inscribed
circles centered on the barycenter of the cell polygon. Both the cell its barycenter and the radius
of the inscribed circle, which is equal to the length of the straight line to the nearest edge, are
easily calculated using standard geometry. Every text that falls into this circle is guaranteed to
stay within the bounds of the cell as shown in Fig. 6.9d.

Figure 6.10: Calculating available lines of text in an inscribed circle. r: the radius of the inscribed
circle; h: the line height based on font and font size; k: the index of the label; 1/2 l: half of the
line length for a given line

Given the inscribed circle of a cell a label can be constructed by dividing the circle into lines
based on the font height. The calculation of the length of a line is straightforward as shown in
Fig. 6.10. The initial line is placed in the center of the inscribed circle taking full width. Consec-
utive lines are placed above and below this initial line. The length of each line is calculated by
solving the triangular inequality

r2 � p.5h� khq2 � p.5lq2 (6.2)

with r and h known, l unknown and k being the index of the line above the central line.
Another approach, is sorting the labels on length, iterate over each label and put them alternately
in two different arrays. Next, concatenate the first array with the reverse of the second. The
resulting array contains the labels in a roughly circular or ellipsoid shape based on length. Based
on the calculated lengths, label texts must be determined and compression must take place when
these labels exceed the calculated lengths.

Label Compression: As stated before, each label has two parts: the attribute and the value.
When grouping points together it can happen that the group of points contains values of the
same attribute. To reduce the screen space required for the final label of this group of points
various compression techniques can be applied both without and with loss of information.

A lossless compression technique is merging values of the same attribute. Instead of drawing
the full label for each value, a single label can be constructed by taking the attribute name and
append the values separated by a comma.

Before:

118 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

Occupation: Adm-clerical

Occupation: Prof Speciality

Occupation: Craft-repair

After:

Occupation: Adm-clerical, Prof Speciality, Craft-repair

When the attribute value descriptions are long, this approach quickly results in long labels.
To overcome this, some loss of information could be allowed, by taking the first N characters of
value instead of its full name. Here N must be sufficiently large to distinguish the values from
each other.

Before:

Occupation: Adm-clerical, Prof Speciality, Craft-repair

After: (N=4)

Occupation: Adm-, Prof, Craf

Even though there is some loss of information, under the assumption that the user has a clear
understanding of the domain, this will still provide enough information at first sight.

Another lossless way of compressing labels is based on the data type of the attribute, in par-
ticular for boolean and nominal attributes. In the case of boolean attributes the point is indicating
that the attribute is true or false. These attributes are likely to be named in such a way that adding
“true” to the label does not add any information. Therefore we omit the value in the positive case
and we prefix the label with “not” in the negative case.

Before:

CompeletedDriversEducationCourse: true

CompeletedDriversEducationCourse: false

After:

CompeletedDriversEducationCourse

not CompeletedDriversEducationCourse

In the case of nominal attributes there is a ranking of the values. Therefore, if there are three
or more consecutive values part of the same group, it is not needed to list all these values in the
label. When the ordinal variable is the result of quantization, the upper and lower bounds can be
used for a more precise label.

Before:

Rank: 1,2,3,4,5,8,9

Age: 25-35,35-45,45-55

After:

Rank: 1-5,8,9

Age: 25-55

Finally there is the case where all values of a particular attribute are merged into the same
group. In the context of MCA this indicates that there are no particular features separating the
observations with respect to this attribute. That is, for all other attributes these observations tend
to have the same distribution of values. When looking at the results of a MCA we are interested
in clusters of attribute values that separate part of the observation from the rest. Clearly, when all

6.4. Visualization refinements 119

values of one attribute fall into the same cell, this does not provide any distinguishing informa-
tion. Therefore, the label can be left out completely but this can be confusing to a user who will
see values at a certain level of merging which disappear at a coarser level of merging. To solve
this latter problem, the attribute can still be displayed with a postfix indicating that all values are
merged in the cell.

Before:

Gender: Male, Female

After:

{No - label}

Gender: All

Some of the above discussed techniques are application specific, especially those that involve
the data types. These are therefore not applicable to more general sets of labeled point features
such as the above dataset of US cities. A generalization can be applied to perform similar com-
pression to a general set of labels. Instead of depending on a Category : V alue format, one can
still look at the longest prefix for a set of labels which is then used in a similar way as the category
in our above discussion.

When strictly keeping labels within the bounds of the inscribed circles there will be no overlap
of labels. However, as can be seen in Fig. 6.9d, this method does not guarantee the most efficient
space usage. The cell in the bottom-right corner for example has an inscribed circle that leaves out
quite some additional horizontal space. Additionally, when a merged cell contains many points,
even a compressed label might not fit in the inscribed circle requiring leaving out information
or not show a label at all resulting in a labeling as shown in Fig. 6.11a for the US-cities example.
Still, when allowing labels to overflow the circle and using the manual stop criterion, a pretty
good global labeling can be obtained in many cases such as shown in Fig. 6.11b. In practice this
technique should be combined with interactive techniques in order to follow the “overview-first,
details-on-demand” paradigm.

6.4.2 Scales

Scatter plots, or bi-variate plots, are such a common tool for both exploratory and explanatory
visualization that rarely thoughts are given about how misleading they can be. Nowadays, these
plots are automatically generated, sometimes from huge datasets, and used in business contexts
with little caution about checking the significance of the visually extracted conclusions. They
are often used to find features of a dataset [202] which are identified using relative distance
between points. However, with a large number of points, problems arise as shown in Fig. 6.12.
This scatterplot shows file access time (horizontal) versus file size (vertical) for 5200 files for a
software project directory. It is clear that most activity is in the third quarter of the timespan
covered by the X-axis. Yet, a handful of outliers, access time wise, in the first half of the timespan
take up a lot of screen estate, therefore hiding interesting details in the second half. Similarly,
only a couple of small files, make that the majority of points is cramped in the upper quarter of
the plot, again hiding details for the majority of points.

The problem in this plot is that the density of points is not uniform along both axes, resulting
in more than one data point per display unit. This problem also arises when multiple data points
have the same value which can happen when data points are categorical or integer, in which
case data points are plotted at exactly the same location. Plots needs to be carefully designed in
order to overcome these kind of problems and a number of guidelines and design considerations
exist [162, 203, 204, 205, 206]. Concluding, a common problem for 2D plots with a high number

120 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

a.

b.

Figure 6.11: Labeling results for two different datasets. (a) Labeling of the US-cities dataset, lots
of information gets lost in crowded area such as top-right. (b) Labeling of a MCA result, nicely
identifying the two clusters at the top.

6.4. Visualization refinements 121

Figure 6.12: A scatterplot of file access times vs file size, containing 5200 data points. Horizontal
the time at which files where accessed, vertical the size of the file that was accessed. Outliers for
both access time and file size have a strong impact on the appearance of the plot. The red lines
indicate average values for both axes.

of points is that structure, patterns and details easily get hidden by outliers possibly leading to
false conclusions. The automatic generation of data-dependent scales, which we introduce, aims
at transforming automatically the projection space to better reflect the relative distribution of
points. With this approach we aim to support the user with:

• detecting the overall distributions of the points better by leveraging the scale’s marks

• revealing local structures and patterns without the need for the user to find the correct scale
that shows these features.

As an interesting complement, data-dependent scales provide support for other common
tasks performed with 2D plots. For instance, when the plot is showing the results from a di-
mensionality reduction technique such as PCA or MCA, as is the case in our decision map, the
analysis is driven more by the relative position of points on the map than by the overall shape
of the cloud. The decision map therefore extends the projections view by adding data-dependent
scales, which enable preserving relative positions while reducing visual clutter.

Related work for plot scales

In many cases it is common to use non-linear scales, for example log and power scales, provided
by most charting packages. More advanced transformations are proposed in statistical graphics
packages and literature [23, 163], such as the probit and logit scales, which more adequately ad-
just the scale when their distributions follow a symmetric and unimodal distribution (e.g. normal
or logistic distributions). However, these scales have to be chosen manually based on first visual
inspection or prior knowledge of the data. The general point of applying a scale different than
linear is to assign more space to dense areas of the plot. This rescaling is based on the assump-
tion that the relevant regions of a plot are the dense areas. Thus, spreading out the data in the
high density regions will help to uncover hidden features and discard outliers: the rescaling we

122 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

propose is not based on correlations between values of the data in the two dimensions but on the
density of the data along each axis.

More sophisticated, non-monotonous transformations, such as warping, popularized by To-
bler’s cartograms [207] can be applied to better spread the data on bi-dimensional plots. Our
concern is to keep the type of transformation easily interpretable. Hence we discard transforms
whose nature could not be conveyed on a single, one-dimensional scale.

a. Regular chart b. Bifocal chart

c. Lens chart d. Broken chart

e. Superimposed chart f. Cutout chart

Figure 6.13: Various approaches for dual scale charts. Images from [208]

Another approach is to apply a transformation to the dense parts of a scale. In an empirical
user study Isenberg et al. [208] evaluate five different approaches to dual scale charts, shown
in Fig. 6.13. These charts divide the scale of a particular axis into two main scales, where one
scale is used for the focus region and the other for the context region. Cleveland suggests [23,
Ch. 2] that these kind of charts are displayed using a broken chart such as Fig. 6.13d. The
superimposed chart (Fig. 6.13e) uses the full width of the chart for both the focus region and the
context region showing the scales for each region on opposite sides of the chart. The cutout chart
(Fig. 6.13f) shows both the full region and the focus region in two different charts, using visual
clues to convey which part of the full region is shown in the focus chart. Finally, the bifocal chart

6.4. Visualization refinements 123

(Fig. 6.13b) and the lens chart (Fig. 6.13c) show the two different scales along the axis. This results
in a chart where the focus region is enlarged to fill a larger part of the drawing space. The lens
chart uses a transfer function that gradually moves from one scale to another, while the bifocal
chart abruptly changes its scale at the end of the focus region.

For none of above approaches it is discussed how these scales should be chosen. With global
approaches the scale is chosen after initial visual inspection of the data or based on prior knowl-
edge or expectations. Local approaches seem to hint to an interactive implementation where the
focus area can be moved around based on the needs of the user. In contexts where the main focus
is on the dense areas initially, automatic methods to emphasize these regions could be of great
help.

To address the issue of local clutter, a variety of interactive techniques such as Fisheye views
[209, 92], Magic Lenses [210], and Excentric Labels [197] can be used. Those techniques allow
to transform portions of the display interactively, which provide for deeper inspection of local
areas. They are not yet very much encountered in common charting packages. Brushing and
linking techniques (e.g. [211]) on the other hand appear to be a more common way to reveal
underneath patterns or trends in a 2D plot.

Data Based Scaling

The idea of finding the best scale type automatically by analyzing the dataset is the starting point
of our work. We propose two different approaches to this problem, which both automatically
rescale the axes without requiring the user to input any parameters. Global scaling preserves
the global appearance of the data, in that distances between points do not change too much.
Local scaling focuses on the local density, i.e. number of points in a given area, of the data and
gives any subset of points a surface in the plot that is proportional to the number of points, at
the expense that distance in the scaled plot can vary greatly from the original distances. Both
approaches output a rescaling function that maps the coordinate of a point in the original scale
to its coordinate in the new scale. All axes are rescaled independently from each other.

Global scaling We want to increase the surface assigned to dense regions of the data plot, using
a smooth function to preserve distances. We do this by matching the actual distribution of points
to distributions in a catalog and finding the best fit. This catalog contains the four most common
families of distributions for rescaling data plots: uniform, power, log, and normal. First, for
each of the distribution families in the catalog, we use the least squares method to find the best
fitting parameters. Next, we keep the function that has the least squares distance from the actual
distribution. Finally, the cumulative distribution function of the best fitting distribution is the
rescaling function that will result in an optimal spread with respect to the functions in the catalog.
Each distribution fitting has a complexity linear in the size of the input set, so this method scales
very well for large datasets.

Local scaling When a distribution is multi modal, the global approach gives suboptimal results,
unless the catalog would contain every possible function for multi modal distributions. To deal
with this case, we have to abandon the requirement for a smooth scaling function and adopt a
local approach. Cleveland [212] suggests to improve plots by showing a weighted regression
line, which is also a local approach. We take a different approach by assigning for any subset of
points an interval whose length is proportional to the density of the set. This will reveal parts of
the plot that have a high density and a small spread in the original scale. The transformation of
the scale is done as follows.

We have a collection P of N 2D points. For each pi P P we call vi the coordinate of pi on the
axis that is rescaled. The local rescaling function is defined as follows. First we sort the values

124 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

a.

b.

c.

Figure 6.14: Different scales for scatterplot of file access times (horizontal) vs file size (vertical).
(a) Linear scaling: Details and patterns hidden due to extreme outliers, both time and size wise.
(b) Global scaling: Some time patterns start to emerge, lots of activity in the beginning. (c) Local
scaling: Fine-grained time/size patterns emerge.

6.4. Visualization refinements 125

vi in increasing order. For each i P r0, N � 1s, if vi � vi�1 then the rescaling function maps
vi ÞÑ

i
N�1 . The condition vi � vi�1 is to ensure that each unique vi gets mapped to exactly one

value. (We note that this rescaling function is only evaluated for the values Pv , hence there is no
need to calculate values in between vi and vi�1). Because we sorted the vi before the mapping,
the function preserves the relative order of the points along the axis. This scaling method is
dominated by the sorting pass, with a complexity ofOpn log nq, which ensures this method scales
equally well for large datasets.

Discussion

We demonstrate the rescaling method on two datasets using a prototype that implements both
methods. This prototype lets the user switch between the original, global and local scalings. In
order to give him a visual clue on where points move, we have implemented a transformation
animation of both the data points and the scale marks.

The first dataset represents the size and modification time of a set of 6200 files from a directory
containing a software project. Fig. 6.14a shows this data with on the horizontal axis the modifica-
tion time and on the vertical axis the file size. The two plots on the left in subfigures of Fig. 6.14,
show the scaling functions for both axes. With a linear scale eight large files occupy almost three
quarters of the plot, hiding all relevant and interesting information.

With the global scaling method we notice several things. The best scaling function in the cat-
alog for the axis corresponding to the file sizes (vertical) is a log. From the linear scale it already
became clear that there are many small files, with the global scaling (Fig. 6.14b) the emphasis
now actually is on these files. On the horizontal axis (modification time) the normal distribution
matches best the actual distribution and is used for rescaling. From the linear scale it also became
clear that most files were changed in a relatively small timespan, which gets the emphasis with
the global scaling. As a result we now see that at several points in time many files where changed
in a very small time interval indicating active development and compilation. Even though a nor-
mal distribution is the best match for the actual distribution of points on the time axis, it does not
spread out these clusters well. This prevents us from analyzing patterns within these clusters.

When local scaling is applied, the vertical clusters are spread out horizontally as well. Now
fine grained details are revealed such as the patterns highlighted in Figure 6.14c. In the high-
lighted areas we see files of the same size having the same modification patterns, those corre-
spond to identical subdirectories.

The second dataset is the result of a multiple correspondence analysis of a car insurance
dataset. When performing MCA, correlated high frequent values form dense clusters. As a re-
sult there is little space for labels in these areas as shown in the highlighted area in Figure 6.15a.
Although, local scaling would result in a most uniform spread and therefore give most space for
labels, it also make interpreting distances hard. Therefore we apply global scaling, as shown in
Figure 6.15b. As a result the overall structure of the data is kept intact, while there is now more
space available for the central values.

We addressed the crowding issue by applying a transformation to the projected MCA values
as follows. First we scale both factors f1 and f2 to r0..1s. Next, we calculate the variance and
the mean value for the values of the scaled factors. These values are then used to configure two
scaling functions, one for each factor, that are centered around the mean. An uniform distribution
in the r0..1s domain has a variance of 1{12. We use this observation by assuming that when
the variance is under 1{12, the distribution is close to a normal distribution. Next, the scaling
function behaves as a cumulative density function (CDF) for a normal distribution for variances
below 1{12 and as the inverse when the scale is above 1{12. Overall, this scaling creates more
space for clustered values while keeping the overall structure intact (Fig. 6.15), because both the
CDF and its inverse are monotonically increasing.

126 6. Decision Exploration Lab: an exploratory environment for Decision Management Systems

a. b.

Figure 6.15: (a) Clutter in the barycenter of MCA plots. (b) The global transformation gives sig-
nificantly more space to central values while keeping the overall plot structure intact.

Finally, we note that our scaling methods have some conceptual relationship to dimensional-
ity reduction. Our scaling methods preserve local neighborhoods, but the absolute coordinates
of the scaled points become meaningless. This is precisely what happens in dimensionality tech-
niques.

6.5 Implementation

The Decision Exploration Lab is implemented as an extension for IBM Operational Decision Man-
ager [9]. Its input data are gathered from ODM’s decision warehouse. In detail, we extract the
data from this warehouse in a separate Apache Solr search server [191]. This decouples the load
caused by analysis from production systems. Secondly, this allows data to be indexed and stored
in a suitable format for efficient querying (Sec. 6.2.1). With this architecture, MCA can be per-
formed in real time for datasets with hundreds or thousands of decisions. Binning numerical
variables, a task that goes over all decisions, takes more time when the number of decisions
grows. However, this is normally done only at the beginning of the analysis process and hence
does not have a large usability impact.

DEL consists of a backend, which is implemented using Java technologies, and a web based
front-end. The front-end is implemented using the Dojo Toolkit [213] for the overall layout and
standard widgets. For the decision map, we used D3.js [214] which provides the needed flexibility
for custom widgets and interactions tightly bounded to the data at hand. The software is tested
on a standard dual-core 2.5 Ghz machine with 4GB of RAM. On this configuration, DEL can
easily handle 100000 decision instances in real-time.

6.6 Conclusion

We presented the Decision Exploration Lab (DEL), a visual analytics solution designed to ad-
dress prevalent issues in the area of enterprise decision management. DEL is an end-to-end
system which is integrated with IBMs Operational Decision Manager (ODM) and provides an
exploratory work flow based on the data extracted from ODM. It provides two working modes

6.6. Conclusion 127

to support the exploration process of a business analyst. Verbal mode is a new extension which
provides search and filtering facilities for the specific context of ODM. Visual decision exploration
mode refines and extends the techniques presented in CHAPTER 5. We refined the dimensions view,
by adding check-boxes to the categorical attributes in order to support changing the selection of
attributes under analysis in an interactive manner. The decision map refines and extends the pro-
jections view in various ways. Firstly, it uses a two-color scheme to distinguish business-case
attribute values from decision attribute values. Secondly, it provides a new labeling mechanism,
which complements the tool tips of the projections view in order to provide more information
without interaction. Finally, it uses data dependent scales as a mean to make better use of the
visual space in relation to the data distribution.

The decision map is a refinement of the projections view, such that the focus is on the relation
between business case and decision data. Therefore this technique now provides a better solution
for research question Q4. Further refinements in the decision map by improved labeling and data
dependent scales, result in more readable decision maps. Thus we improved our initial solution
for the research question on data structure (Q3). Additionally, we integrated rule trigger analysis
with the decision map, such that brushing the decision map gives rule trigger information about the
decisions that match the brushed properties. This addresses the research question on the relation
between business data and decision logic (Q5).

The industrial relevance of the problems addressed by DEL was expressed by one of the
IBM ODM chief architects as follows: “A significant part of the ODM customers implements a
feedback loop to improve the the logic of their automated decisions from the actual outcomes
of decisions. They gain insight in the business efficiency of these decisions by monitoring, Key
Performance Indicator (KPI)s and Business Intelligence approaches. But when it comes to fig-
uring out what concrete parts of a decision model have to be improved or rethought to meet a
particular goal, they can only rely on their knowledge.”

The toolset presented in this chapter is designed to integrate with IBMs ODM. However,
we are confident that to a large extend our approach is generic for other Decision Management
Systems (DMSs) as well. As long as a DMS supports extraction of decision instance data and rule
execution data, most of the techniques presented in this chapter can be applied directly. We store
these two kinds of data in a separate back-end, optimized for the kind of analyzes we perform
on it. The only feature that is specific to IBMs ODM is the usage of its framework for natural
language querying. This is, in the context of this thesis, not considered a major contribution or
feature and as such does not cripple the overall generality of our approach.

The originality of our approach is that we provide a toolset that supports combined analysis
of rule execution traces and decision instances. This allows business analysts to explore decision
models in the light of the accumulated facts about this model in the form of decision instances.
As a result, analysts can verify if the decision model and business cases that have come up are
diverging, and if so, understand the underlying reasons and take corrective and preventive mea-
sures.

Understanding the functioning of decision models is a challenging topic and much more work
is to be done. Both the ontology and the production rules of a decision model contain a wealth
of information that can be included in the visual analysis process.

Although we have presented a system to analyze the aggregated effects of many decisions,
we have not shown yet if and how succesful this system is. Therefore we focus on evaluation
in the next chapter: First we discuss what it takes to evaluate a system for gaining insight in
DMSs. Secondly, we present a preliminary evaluation of our Multiple Correspondence Analysis
(MCA) based analysis tool. Finally, we present two scenarios that demonstrate how the system
we presented in this chapter can be used to verify expected and find unexpected functioning of
decision models, using a Decision Model (DM) from the car insurance industry.

Chapter 7

Evaluation

Inspector: You have information for us.
V: No you already have the information,

all the names and dates are inside your head.
What you want, what you really need, is a story.

Inspector: A story can be true or false.
V: I leave such judgments to you inspector.

V for Vendetta, 2005

In Sec. 2.6.1 we identified business analysts as the target users for the Decision Exploration
Lab. Typically, business analysts are working at different enterprises than the enterprises that
develop a Decision Management System (DMS). This leads to the interesting problem that it is
practically impossible to have conversations with analysts from all domains in which DMSs are
applied. Consequentially, gaining a thorough understanding of their needs and wishes is equally
hard. This makes evaluating possible solutions a daunting task.

In this chapter, we first discuss what it takes to evaluate a system that wants to provide insight
in aggregated effects of a Decision Model (DM). Next we take three different approaches to
minimize above mentioned evaluation problems while still gaining insight in the effectiveness
of our approach. First, we did a preliminary user study with (under)graduate students as a first
sanity check for the proposed techniques. Secondly, we constructed a realistic use case scenario
based on a simplified application of DMSs in the car insurance industry. This scenario was used
to presented our work at various stages to architects and product managers who have been at
customers to integrate and troubleshoot DMSs in real world cases.

7.1 What does it take to evaluate an exploratory system for DMS

From the preceding discussion in this thesis it should be clear that we are not interested in the
inner workings of a DMS itself. Thus, just having a DMS is not enough for an evaluation of the
Decision Exploration Lab (DEL). The DEL extracts information from decision instances (DS2) and
decision execution traces (DS3). Availability of this data implies the availability of two additional
pieces of data: a DM and a set of business cases (Sec. 1.1).

A DM makes explicit how an enterprise deals with the situations particular to its business,
how it reacts to certain customer requests or how it manages certain risks. It is therefore an
asset that encodes how an enterprise keeps its strategic advances to its competitors. This kind
of information is generally considered of high confidentiality and not readily accessible for third
parties. In addition, these systems deal with highly specific markets and their DMs are sprinkled
with domain specific information and abbreviations. As a result, one does not only need access
to a DM but also significant investment of domain expertise to gain at least a basic understanding
of what a model does.

We emphasize that both realistic business case data and a realistic DM are required for an
evaluation. Each DM is constructed with certain knowledge gained by prior analysis and expec-

130 7. Evaluation

tations about the statistical properties of the business case data. In order to be able to test how
well a DM models the decision it was designed for it should be analyzed with real data. That is,
it should be tested with past business cases or with synthetic data that sufficiently reflects real
data. In both cases the correct decision belonging to a business case should be known on fore-
hand, either based on manual specification or based on an earlier (trusted) version of the DM.
Random data will lead to random results, therefore nothing interesting can be learned from an
evaluation approach that uses random data. On the other hand, a given realistic dataset, such
as traffic accident reports provided as open data by a governmental organization, is not enough
either. First of all, one needs to decide what kind of decision should be made based on the data
at hand. Next, a realistic DM must be constructed which is not a trivial task in itself and likely
requires domain expertise. Finally, once both realistic data and a DM are available, the analysis
should preferably be performed by domain experts. They have the right level of knowledge to
tell if a certain finding is expected or unexpected.

7.2 Data generation

For business case data we have similar concerns as we have for DMs. Business case data are often
highly sensitive as it typically deals with information regarding insurance requests or claims,
financial transactions, loan applications or customer spending behavior. This kind of data is of
great value for enterprises in keeping their operations targeted and risks balanced. Additionally,
often this data falls under privacy law and cannot be handed to third parties.

If a DM is available but not the business case data, data generation might become an option.
Given the wealth of information that is available from various sources such as published cen-
sus data, it becomes feasible to synthesize information that looks realistic but which is not real.
Additionally, scenarios can be planted in this data, in the form of statistical biases, which can be
used to evaluate if the tool is actually able to uncover such cases.

The need for generating data is not unique to our problem domain. Barse et al., generate data
to train, test and compare fraud detection systems [215]. Jeske et al., generate test cases in order to
be able to set a baseline for accuracy of Information Discovery and Analysis [216, 217]. Houkjaer
et al., generate data for testing the performance of database management systems [218]. These
approaches generate highly structured data. More homogeneous datasets are generated by the
Threat stream generator of Withing et al., which generates scenarios containing text documents
[219] as test datasets for visual analytics tools.

We found the most extensive discussion on the difficulties of generating artificial data in the
work of Jeske and Lin [216, 217]. Generating artificial data that looks realistic is not just about
generating data with a realistic distribution for each attribute. Attributes often have dependen-
cies that should be taken into account when generating values for each attribute (e.g. younger
people have a lower chance of being married in western countries). Jeske and Lin model these
kind of dependencies with a semantic graph.

We also took the approach of data generation for our insurance scenario, where we had a
realistic (although for presentational purposes simplified) DM of a car insurance application and
quotation application. Various sources such as the U.S. census1 and published data on car model
production and prices where used to generate business cases for the car insurance DM. A dif-
ficulty that we have found, which is not discussed in depth in the cited work, is the following.
When generating data, one often starts from already known sources, e.g. measured distributions
of age, gender, education by census bureaus. These pieces of information come at different levels
of aggregation. For example, one might find age distribution per state but car brand distribution
only on a country level. Additionally, we found that there might be a difference between the data

1http://www.census.gov/

7.3. Preliminary user study 131

which is needed for generation and the data that is actually generated. For example, to generate
a realistic income for a person, one might want to take into account the education of a person,
even if the education itself will not be part of the generated data.

Our data generation experiences in the context of DMS has led to another interesting obser-
vation. On the one hand we introduced various hidden (from the DM perspective) variables. For
example, we introduced the income of a person as a variable in order to determine the brand,
model, value and security features of the car of the person. To obtain an income we also in-
troduced an education level, which was than used to determine the income. Both income and
education are variables that are not captured by the DM. We also introduced a risk variable
which would be based on properties such as age and marital status and would in turn influence
the number of tickets and accidents. The DM is of course constructed to reduce risk and will
assign a risk score (unrelated to the one in the data generator) from properties such as the age
and the number of tickets and accidents.

On the other hand, a very common pattern in DMs is to induce these kind of hidden variables
from the information that is captured by a DM. In our particular case, the DM would capture
whether a person is currently a student or not. And various properties of the car such as its
value and security features. From this information the DM will deduct information about the
persons wealth in order to propose additional insurance features to those who are expected to be
wealthier.

Concluding, in our context we had a lack of multivariate data for a specific application do-
main with non-trivial correlations and constraints. Our goal was to generate data which are
sufficiently realistic, meaning that we can show a scenario to a business analyst that conveys the
usefulness of our solution. To this end an approach that integrates a dependency graph, similar
to what Jeske et al. do, is required. However, as we found out, to construct this dependency
graph, it is not the model of the data (i.e. the tables, table columns and relationships between
tables) that serves as starting point, but the data describing the distributions for some of the vari-
ables. These external data sources for distributions come at different levels of granularity and
therefore require a lot of manual work to construct a generator that integrates all this informa-
tion. More research is required to see how the construction of a semantic graph based on external
distribution information can be more automated.

7.3 Preliminary user study

As a first step in further evaluation of the techniques first presented in CHAPTER 5 we also
used the adult dataset from [138]. This dataset has 15 attributes related to education in the US,
including education level, educations, work hours/week, and classification (earning below or over 50K
USD). After applying cell merging (Sec. 5.2.5) to find coarse patterns, the attribute plot shows
a shape running from left to right and then curving upwards (Fig. 7.1a). The x projection legend
shows that classification explains the x axis best: The ¡ 50K attribute cell is on the left and the
 50K cell is at the right. Another left-to-right trend relates to hours/week, which is high on
the left and low on the right, i.e. correlates with earnings. A third trend, which also causes
the upward curve, follows the number of educations and education level. To the left, we find
the most educated people (many educations, education level=BSc/MSc). Going right and then up,
education decreases, with the least educated (1�4th grade) in the purple cell top-right. To confirm
this, we use the observation plot (Fig. 7.1b), with observations colored by number of educations.
We see here too the left-right-upwards trend starting with highly educated people, going through
mid-educated people, and ending with a sparse cluster of low-education people.

To better understand our visualization’s strengths and weaknesses, we conducted an ex-

132 7. Evaluation

Classification

Education: 1st-4th

Education: 5th-6th
Education#: <4

Education:
preschool

Classification: <50K
Education: 11th,12th,college
Hours/week: <20

Classification: >50K
Education: BSc, MSc
Hours/week: >77

Hours/week: 58-76

a.

Plot colored by education#

≥13
10..12

7..9

4..6

<4

low education

high education mid education

b.

Figure 7.1: Projections view for the adult education dataset. MCA arranges data along a curve
pattern following education (low..mid..high)

ploratory user evaluation2. The users were 14 computer science students (3 BSc, 7 MSc, and 4
PhD students), with 1..2 years of experience with general Infovis techniques, but no knowledge
of Multi Dimensional Scaling (MDS) or MCA. They were given a detailed demo of our tool (45
minutes). Afterwards, each had to use the tool individually and answer three types of questions:

Q1: Find a meaning for cell groups to the top, bottom, right, left, and center of the projections
view;

Q2: Explain the x and y projection axes in terms of attributes;

Q3: Find and explain salient clusters in the observation plot in terms of attributes.

The questions followed our own experiments (Sec. 5.2.5), so we could use our findings (un-
known to the users) to validate results. For each question, users had to rank the usefulness and
ease-of-use of the techniques (selection, brushing, color linking, dimensions view, observations plot,
projections view, cell merging, value filtering and merging, and projection legends) on a five-point scale:
very high (VH), high (H), low (L), very low (VL), and not used (NU). The assignment took under
2 hours and after that, the users could give additional oral feedback on their experience.

Table 7.1 summarizes the study’s findings for 13 users (one of the BSc. students dropped out
of the study). Overall, most users found the same cell groups, axis explanations, and clusters as
ourselves. Color linking and brushing were found useful and easy to use. projection legends scored
very well for Q2 and Q3 and were not used for Q1, in line with our design intention for this tool.
Merging/filtering scored lowest, which can be explained by the relatively short training time
put into this feature (5..10 minutes) and the fact that they require more involved choices (which
values to merge or filter and merge distance, see Sec. 5.2.5). Finally, the usefulness and ease-of-
use scores for the dimensions view, projections view, and observation plot indicate that most users
perceived these (very) positively.

Although this exploratory study is far from a formal user evaluation, the results suggest that
our techniques are relatively easy to learn for novice users, and can support the tasks and ques-
tions sketched in Sec. 5.2.5 up to a good extent.

2The complete evaluation can be found in APPENDIX A

7.4. Car insurance scenario 133

Question Tools usefulness and ease-of-use Results
color brushing & projection merging &

linking selection legends filtering &

Q1

VH 7 10 Found right group: 8/13
H 4 3 2 Found left group: 7/13
L 2 2 6 Found top group: 8/13
VL 1 3 Found bottom group: 5/13
NU 10 2 Found center group: 7/13

Q2

VH 6 9 1 Explained x-axis: 9/13
H 5 2 4 3 Explained y-axis: 8/13
L 2 1 5 6 Explained confidence:
VL 1 3 8 (sure); 2 (maybe); 3 (none)
NU 2 1

Q3

VH 11 2 5 Found salient clusters: 10/13
H 2 3 5 Found other clusters: 3/13
L 3 3
VL 4 3
NU 1 10

Table 7.1: Results of the user evaluation of the MCA visualization.

7.4 Car insurance scenario

We demonstrate our DEL toolset with the analysis of a business process from the car insurance
industry with two decision models, introduced in Sec. 2.2. The input instances have been synthe-
sized to avoid confidentiality and privacy concerns. The ontology on which the decision models
operate consist of an AutoQuoteRequest. An AutoQuoteRequest contains information about the
driver, the car for which insurance is requested, and the insurance type.

The logic of the risk management decision (Fig. 2.1, DM1) has 22 rules. These do various
checks on the applicants, such as age checks and checks for high risk driving indicators. The logic
of the pricing decision (Fig. 2.1,DM2) has 144 rules. A set of decision tables determines the insur-
ance base premium based on the type of the requested insurance and car value. Additional rules
determine which discounts apply for a request, e.g. anti-lock brakes and experienced-driver dis-
counts. Yet other rules determine if certain surcharges apply, such as the old-vehicle surcharge.
A final group of rules models region-specific insurance policies. These either override global
policies or encode additional discounts and surcharges that only apply in particular regions.

We next illustrate the usage of our tool by two user stories. In both cases, the users are busi-
ness analysts involved in deciding car insurance quotations. In the first story (Sec. 7.4.1), the
business analyst discovers that too many applications are rejected and wants to find out why.
In the second story (Sec. 7.4.2), the business analyst discovers that expensive cars do not get
significant higher quotes.

7.4.1 Story 1: Why fewer than expected people are eligible

Using the dimensions view (Fig. 6.4A), the analyst examines the eligible decision concept. He sees
that 88.6% of the requests are eligible, 10.4% are ineligible, and 1% are manually processed
(Fig. 7.2). This is unexpected, because the analyst designed the decision model to have an eli-
gibility rate between 90% and 95%. Thus, the analyst first learns that his model does not meet
the expected performance (T4).

Using his knowledge about the decision model and business domain, the analyst now states
that people below 18 and people above 80 are ineligible due to legislation and business policies.

134 7. Evaluation

He now wants to check this expectation against the actual age distribution of drivers. For this,
he bins the numerical age variable into five categories, two for the lower and upper ranges of
ineligible people, and three for potentially eligible people: 18 - Not eligible, r18..25q - Youth,
r25..65q - Adults, r65..80q - Elderly people and ¡� 80 - Not Eligible.

Figure 7.2: Details of the dimensions view showing the age and eligibility variables.

The binned age concept appears in the dimensions view under categorical concepts (Fig. 7.2).
The percentages of the lower and upper age categories lead the business analysts to deduct that
these two groups account for about 85% of the ineligible requests. Thus, 15% of the people that
are ineligible (1.6% of the total) are so because of other reasons than age. This is a first clue that
there is some room for decision improvement, i.e. maximizing the number of insurances sold.
To find out how we can improve, we need to find out why people are ineligible for other reasons
than their age (T5) .

The analyst is next interested in the correlation between driver attributes and the decision
(T3). He thus selects all driver attributes and the eligibility decision attribute in the dimensions
view. The resulting plot (Fig. 7.3a) shows some structure, but is hard to examine due to clutter.
Values above the top-left-bottom-right diagonal represent ineligible people. As expected, the
age 18 and age ¡ 80 values fall into this area. Values below this diagonal are related to eligible
or manually-processed requests.

From the projection legends (Fig. 7.3a: A, B), the analyst learns that only 60% of the variance
is explained by the first two factors. Additionally, he finds that there exist several attributes that
do not contribute to the structure of data (T3). These are the attributes in the bottom-right and
top-left projection legends that are on the far right of these plots (Fig. 7.3a C). Among these, we
have state and gender. This tells the analyst that state and gender do not influence the decision.

Next, the analyst iteratively removes such unimportant attributes until all remaining attributes
contribute at least 5% to f1 (horizontal axis). He now obtains a simplified map (Fig. 7.3b), with
the attributes age, eligibility, full-time student, married, DUI (driving under influence), and good
student certificate. This map now explains 76% of the variance and still shows the same diago-
nal structure as before. This enforces the earlier observation that the removed attributes do not
contribute to the data structure.

To simplify the view even further, the analyst uses the merge slider to group correlated
values in single concept islands. Left in the resulting decision map (Fig. 7.3c), he sees the con-
cept island for eligible instances. The values of the two most important input attributes are
age : r25..65, 65..80s and fulltimestudent : rfalses. Hence, the expectation that eligible peo-
ple are mainly working adults is confirmed (T4). At the top in Fig. 7.3c, the analyst sees that
ineligible people are correlated to age: ¡� 80. For instances where age is below 18, the most
important correlated value seems to be DUI .

7.4. Car insurance scenario 135

In the center of the decision map (Fig. 7.3c), the analyst finds a concept island for students
between 18 and 25. This concept island is centered between the three decision values (eligible,
ineligible, manual processing), showing that these decisions are about equally spread among stu-
dents. Realizing that business policy state that extra effort should be made to make sure that
students become customers (T6), he further investigates this population. He now sees that stu-
dents are a group where some optimization may be possible, as these are not strongly correlated
with any of the decision outcomes (T5). To find out more about students, the analyst selects
the center cell to filter decisions and updates the rule trigger view. This view now shows only
decisions for instances that have age P r18..25q and fulltime student � rtrues (5716 decisions).

a. b.

c.

Figure 7.3: Interactive analysis of variables of interest: (a) The analyst has selected all available
attributes related to drivers and clicked the age bar in the projection legend to see where the various
age groups are in the plot. (b) The analyst simplified the plot by removing all variables that did
not contribute to the structure of the data. (c) The analyst has merged values and selected the
concept island of students to examine rule triggering for this set of decision instances.

136 7. Evaluation

Figure 7.4: Decision table for initial eligibility status based on age and the business rules that deal
with high risk drivers. Note that the latter two, contain no tests on the age of a person.

Knowing the decision model, the analyst notes that the first three rules in the rule trigger
view (Fig. 7.3c at 1) come from a decision table. For the definition of these particular rules, the
business analyst turns to his rule authoring environment, IBM Operational Decision Manager
(ODM) in this case [9]. In ODM, he looks up the decision table containing the rules he just found
in the rule trigger view (Fig. 7.4). From their definitions, it is clear that these rules do a basic
separation mostly based on age. In this decision table, the analyst sees that rule 3 and 7 affect
people between 16 and 25 not living in CA, and rule 8 represents males above 21. Given that he
is looking at students, it is not much of a surprise that rule 3 and 7 are overrepresented, while
rule 8 is underrepresented for this selection of decisions (T4).

The two rules from the High Risk Driver package (Fig. 7.3c at 2) are revealing an interesting
fact about the working of the decision model. Both theDUI and the high-risk driver, for which the
definitions are given in Fig. 7.4, rules were not in particular written with students in mind. How-
ever, students trigger these rules more than the analyst should expect, given that they were not
written for this group in particular. The analyst knows that, when an insurance request is flagged
as being from a high risk driver, it will always be rejected by the decision model. However, he
also knows that business policies state that additional effort should be made to make students
customer. Using the above analysis, the business analyst decides to write an additional rule in
the decision model which marks high-risk students for manual processing. This way, such stu-
dents will be analyzed by salespeople (rather than automatically), and thus have a higher chance
to become customers (T5).

Summarizing, the analyst first found a hint that there is space for improvement in the di-
mensions view. Next, he used the decision map to find clusters of correlated values based on the
accumulated decision instances. Finally, he uses external contextual information about business
policies with respect to retaining students to find ways to improve the decision model.

7.4. Car insurance scenario 137

a. b.

Figure 7.5: Car values correlated to quotes in an unexpected way. a The highlighted values show
a clockwise trend for car values with low valued cars top right and high valued cars top left. b
After removing the quote and performing some merging the same trend is still visible (though
counter clockwise). Additionally, The triggered rules view reveal some cumulating discounts
and an underrepresentation of experienced drivers.

7.4.2 Story 2: Why expensive cars get low quotes

The KPI of the insurance quoting decision-model (Fig. 2.1, DM2) is computed as follows. First,
the sum Q of all calculated insurance quotes is computed. Next, for each insurance, two proba-
bilities ψ1 and ψ2 are drawn from a car-accident distribution and a claim-value distribution re-
spectively. ψ1 and ψ2 are combined to calculate the probable loss for the insurance, which is then
subtracted from Q. Monitoring the trend of this KPI over time will show whether the business is
profitable, but not why. Also, the KPI is less precise than it could be, given that the car-accident
and claim-value distributions do not consider the particulars of certain insurance instances.

To increase insight on the business performance, the analyst decides to analyze the insurance
quotes. For this, he bins the numerical attribute vehicle.value and quote as follows. The car value
is binned in the same way as it is done in the production rules that determine the quote base
premium (5500, 5500 - 11000, 11000 - 20000, 20000 - 35000, 35000 - 55000, ¡� 55000). Next, the
analyst assumes that quotes are correlated to car values (T6). Hence, he bins the quote variable in
proportional ranges to the binning of the value variable.

Next, the analyst selects properties of drivers, cars, and the quote variable. The projection leg-
ends show long tails of non contributing attributes. Brushing next points out that those are driver
properties. This does not come as a surprise, as the analyst assumes that car properties, especially
car value, are the most important factors for the quote. To clean up the plot, he now iteratively
removes such unimportant variables, as explained for story 1 (Sec. 7.4.1). After removing the
driver attributes from the plot, the analyst finds, to his surprise (T4), that there is no strong cor-
relation between car value and quote. To learn how car values are distributed in the decision map,
the analyst now clicks the “Car Value” bar in one of the projection legends. The gradient coloring
shows its value for ordered attributes, such as age and car value in this particular case. As visible
in Fig. 7.5a, a clockwise gradient (marked with the red arrow) shows low-priced cars placed top
right; increasing car values in-between; and expensive cars top-left. Once this pattern is clear, the
analyst now understands how spatial areas relate to car values. The quote attribute values, on the
other hand, are almost all centered, and do not show a clear vertical or horizontal distribution.
This observation is enforced by the projection legends which show that the quote attribute (green
bar) does not contribute much to either f1 (x axis) or f2 (y axis).

The analyst now removes the quote variable from the plot and performs merging in order

138 7. Evaluation

to get clusters of related values (Fig. 7.5b). He notices that car options such as all-side airbags
(concept island 1), anti lock brakes, and daytime running lights (concept island 2) correlate with
the more expensive cars. At this point, he selects the concept islands related to expensive cars
(islands 1, 2 and 3 in Fig. 7.5b). Now, he finds two interesting things in the rule trigger view: First,
the rule that gives a discount for experienced drivers is underrepresented. For this selection, it is
expected that this rule should trigger 312 times, but it is only triggered 206 times. Thus, expen-
sive cars are less often driven by drivers that are considered experienced by the business logic.
Secondly, the discount rules for daytime running lights and anti-lock brakes are overrepresented.
The daytime running light discount is triggered 229 times times instead of the expected 100; and
the anti-lock brakes discount is triggered 229 times instead of the expected 101. When the ana-
lyst selects each of these three concept islands individually, he finds two more overrepresented
discounts: In concept island 3, the passenger-and-driver airbag discount rule is overrepresented;
in concept island 1, the SUV discount rule is overrepresented.

From all the above, analysis the business analyst has now learned that:

1. The car value is, unexpectedly, not strongly correlated to the quote (T3, T4).

2. Expensive cars are less likely to be driven by experienced drivers (T4).

3. While the base quote calculation takes into account car values, expensive cars still get too
low quotes due to an accumulation of discounts (T4).

As a result, the analyst has discovered a potential revenue leak in the business logic, which
could be compensated, for instance by setting up some “luxury car” surcharge rule and using dif-
ferent calculations for the base quote (T5). This decision is subject to various checks with actuary
departments and shall require further investigations before being implemented. Nevertheless,
our tool shows here its potential for insight creation.

7.5 Conclusion and further evaluation

Using two scenarios based on a car insurance use case, we have shown how an analyst can
combine the insight he gets by using the DEL with his own knowledge to find opportunities for
improvement. Based on the insights he gains and his own experience he understands how he
has to change the model to make it more effective for a specific population. Therefore, we have
shown that the DEL provides a solution for the research questions related to these issues (Q6 and
Q7).

Due to earlier mentioned difficulties with respect to testing our framework in a production
environment, the closest industrial evaluation of our toolset consisted in presenting our tool,
and findings obtained with it, to various domain experts at IBM. The Decision Exploration Lab
was therefore presented to IBM ODM’s product managers and chief architects. As a preliminary
validation of our work, we here quote some of the feedback we received:

Product Architect (1): “The Decision Exploration Lab would be a key asset for the ODM prod-
uct to be able to assist our users with the right level of tooling and targeted analytics. From my
point of view, in this proof of concept, the algorithms are sound and the visualization is great.
We will need more use case investigations, refinement on the visual design and some task-based
approaches to adapt the ease of use to the level of understanding of our users. But I’m sure this
mid-point exists, all the more as our users, in these times of big data and business analytics, are
becoming more advanced and less intimidated by analytics in general.”

7.5. Conclusion and further evaluation 139

Product Architect (2): “The research presented in this thesis, opens perspective on decision
analytics. Big data and analytics are areas of high interest for companies with the goal to better
understand and optimize their business. The presented work makes innovative use of analytics,
applied to operational decisions. This approach opens the door to better understand segmenta-
tion of data used in automated decisions. It provides insights about how a business rule based
decision is coupled to request and outcome data. Such a analytical exploration of decisions is
original and presents value to the IBM Operational Decision Manager customer base on the top
of product capabilities.

In a smaller and quicker world speed in understanding your operations and optimize them
is key for success. For an insurance company, decision analytics allow to measure the match
between the customer, product and price segmentations in their decision operation. With these
insights you are able to detect possible enhancements to improve your decision logic and operate
with more efficiency. Most of ODM customers and prospects are looking in this direction and
expect progress in a near future.”

Senior product manager: ”This thesis introduces a new analytical approach for improving IBM
Operational Decision Manager (ODM) decision services. The main principle is to use past deci-
sions to understand why a decision service is not preforming as expected or to discover how
to improve business outcome by modifying business rules. The prototype that was developed
was very convincing: it showed that this approach is intuitive for businesses users and does not
require deep knowledge of the data analysis techniques that are used. This new concept will
help IBM enhance existing ODM capabilities and allow customers to continuously improve their
decision services using their past experience.“

At the time of writing this thesis, there is ongoing work to prepare a field evaluation, which
would serve various purposes. First, we want to apply the DEL in a different domain, one that
is not known to us in order to verify that business analysts can apply the framework to their
particular problem to verify expected and find unexpected functioning of a DM. Secondly, it will
provide a deeper understanding of the current level of tooling that is used and point out how
well our approach fits in the current environment of business analysts. Finally, we want to test
and verify in particular our specific visual analytics approach with its target audience.

Chapter 8

Conclusion

And what have you got at the end of the day?
What have you got to take away?
A bottle of whisky and a new set of lies
Blinds on the windows and a pain behind the eyes
Scarred for life - no compensation

Private Investigations, MARK KNOPFLER

O
ne of the key reasons behind the work of this thesis is the potential challenge related to
automated massive execution of enterprise decisions with a Decision Management System

(DMS): small unexpected side effects of individual decisions add up to a large combined effect
if many decisions are taken. This might cause sub-optimal performance of a business decision at
best and pose high financial risk to both the enterprise and society at worst. In response to this
challenge, this thesis explored various ways to visualize and analyze the data sources of a DMS
in order to help a business user to gain a deeper understanding of automated decisions.

8.1 Review of thesis contributions

The central problem addressed by this thesis is the development of a system which supports a
business analyst in supervising automated decisions, in order to improve his understanding of
the operating and effectiveness of such decisions.

In CHAPTER 2 we have introduced DMSs and the challenges that come with such systems.
DMSs are suitable for automating highly repetitive enterprise decisions. To place our solution in
a concrete context, we introduced examples of such decisions: eligibility for and quoting of car
insurances. We detailed how a decision model consists of two parts. A domain model, which
describes the concepts that are subject to the decisions and the decision logic, which describes
how a decision is taken for a given business case. We have argued that a decision model cannot
model the full complexity of reality and that therefore, a divergence might take place between
the expected functioning of a DM and the actual results of decisions taken over time. We also
have pointed out the similarities of comprehension tasks in the context of DMSs with program
comprehension tasks.

As a first solution direction we presented the application of well-known Visual Analytics (VA)
and Information Visualization (InfoVis) techniques (CHAPTER 4) for artifacts that come with a
DMS. We have set a first step to further refine the treemap approach of Baudel [140], which vi-
sualizes both the domain model and the decision logic. Treemaps proved to be an interesting
topic in itself because, we needed to adapt the layout for each type of data that we wanted to
visualize with treemaps. A generic approach to visualization of treemaps was implemented in
Discovery [139]. Our work led to a formal definition of this approach, expressed as a design space
for rectangular space-filling layouts. In addition we presented a generic layout algorithm based
on this design space for rectangular layouts, encompassing all treemap layouts as well as other
rectangular layouts, such as 100% stacked bar charts and mosaic displays. Thus we refined a pos-
sible solution for the research question related to gaining insight in the structure of the Decision

142 8. Conclusion

Model (DM) (Q1). Additionally, we applied the well-known circular edge bundling technique of
Holten [18] in the context of DMS. We used it to visualize the impact of domain model changes to
the decision logic which addresses our research question on change impact (Q2). We concluded
though, that these techniques, however interesting, are merely display techniques as opposed to
problem solving techniques.

In CHAPTER 5 we presented a set of visualization and analysis techniques that allow for ana-
lysis of categorical data, which is common in decision data. The first technique, presented in
Sec. 5.2, describes a visualization and a workflow for exploratory analysis of categorical data. In
contrast to classical numerical MDS, we use Multiple Correspondence Analysis (MCA) to create
2D projections which display attributes, attribute values, and observations. We introduce sev-
eral visual encodings which help correlating values, observations, and observations with values.
We showed how our techniques can be used to find non-trivial insights with limited effort in a
dataset from the insurance industry. These visualization and analysis techniques are a solution
to address research question Q3, about gaining insight in the structure of the data. As the labels
can be used to distinguish business case and decision data, we also have an initial solution for
question Q4. Secondly, we presented a method for analyzing rule trigger patterns in Sec. 5.3. By
extracting various metrics for the overall set of decisions and comparing those with metrics for
a selection of decisions interesting differences can pop up that might help the analyst to under-
stand the functioning of the DM. This method serves as a partial solution to research question
Q5, how do we get insight in the logic for a given set of decisions.

In CHAPTER 6 we presented the Decision Exploration Lab (DEL), a visual analytics solution
designed to address prevalent issues in the area of enterprise decision management. DEL is an
end-to-end system which is integrated with IBMs Operational Decision Manager (ODM) and pro-
vides an exploratory work flow based on the data extracted from ODM. It provides two working
modes to support the exploration process of a business analyst. The verbal mode provides search
and filtering of decision for the specific context of ODM. The visual decision exploration mode
refines and extends the techniques presented in CHAPTER 5. We refined the dimensions view,
by adding check-boxes to the categorical attributes in order to support changing the selection
of attributes under analysis in an interactive manner. The decision map refines and extends the
projections view in various ways. Firstly, it uses a two-color scheme to distinguish business-case
attribute values from decision attribute values. Secondly, it provides a new labeling mechanism,
which complements the tool tips of the projections view in order to provide more information
without interaction. Finally, it uses data dependent scales as a mean to make better use of the
visual space in relation to the data distribution. The decision map is a refinement of the projections
view, such that the focus is on the relation between business case and decision data. Therefore
this technique now provides a better solution for research question Q4. Further refinements in
the decision map by improved labeling and data dependent scales, result in more readable decision
maps. Thus we improved our initial solution for the research question on data structure (Q3).
Additionally, we integrated rule trigger analysis with the decision map, such that brushing the de-
cision map gives rule trigger information about the decisions that match the brushed properties.
This addresses the research question on the relation between business data and decision logic
(Q5).

Lastly, we identified what it takes to evaluate a system for analyzing the aggregated effects
of automated decisions in CHAPTER 7. We have shown that that there are large hurdles to
overcome, especially when it comes to data and users. The required data must contain both a
DM and a set of business cases that serve as input. For a useful evaluation both the business
cases and the DM must consist of real data or at least realistic artificial data. The lack real data
availability was partly overcome by performing an early user study using a publicly available
dataset. In this early user study we found that the participants were able to use our techniques to

8.2. Limitations and future work directions 143

find interesting insights after a short introduction. However, this preliminary study was limited
in various ways. Firstly, the participants in this study, mostly students of MSc or PhD level, were
a different audience than we targeted in our final system, namely business users. Secondly, we
used a dataset on education and income of US people, which could serve as business cases for
a decision system. However, we had no corresponding business use case and DM that would
make some kind of decision based on this data. These problems have led to the construction of
a scenario containing both realistic data and a DM in the context of the car insurance industry.
Using two scenarios based on a car insurance use case, we have shown how a business analyst
can combine the insight he gets by using the DEL with his own knowledge to find opportunities
for improvement. Based on the insights he gains and his own experience he understands how
the model must be changed to make it more effective for a specific population of business cases.
Therefore, we have shown that the DEL provides a solution for the research questions related
to these issues (Q6 and Q7). Additionally, these scenarios where presented to architects and
product managers at IBM to verify that these where sufficiently realistic and that our approach
solves an open field problem. At the time of writing, we are in the initial phase of setting up an
actual field study with a customer to further verify our approach and to get feedback on how to
improve the DEL.

8.2 Limitations and future work directions

A DMS provides a wealth of data, and the solution we provide is just a start in exploring this
data. Additionally, there are similarities to be found with data outside the domain of DMSs. In
this section we provide some directions for future research that where triggered by our work on
DMSs.

8.2.1 DMS specific refinements

Our approach mainly exploits two kinds of data: the business cases (instances of the domain
model) and execution traces. However, both the domain model and the decision logic also have
structure which we do not exploit in the DEL. In CHAPTER 4, we have been using treemaps to
visualize the structure of both the domain model and the decision logic, but merely in a static
way. Combining static structure visualization with the dynamic execution data could give an
even deeper insight in how the dynamics interplays with the modeled knowledge. Although
this might not be of direct interest for the business analyst, this direction of research might help
decision service integrators to identify runtime performance bottlenecks.

Moreover, over time data is gathered which is not modeled in the DM but is of tremendous
help in understanding the dynamics of the DM. Examples of such data are events collected from
the following system dynamics:

• A decision service decides that a person is eligible for a loan, however the person becomes
a defaulter after a certain amount of time.

• A decision service does not mark certain credit card transactions as fraudulent, however
investigation points out that in fact they were.

• A decision service marks an insurance claim as invalid, however after investigation it turns
out that it was a valid claim.

Being able to model such external data and take it in account when analyzing the aggregated
effects of a DM would bring large value in many applications of DMSs. When these kind of cases
can be included in the analysis, it becomes easier to find where the decision logic is imprecise.

144 8. Conclusion

Additional challenges arise when such data are included. First of all, it might not always be
straightforward to link such data to the individual decisions. For example, the total amount
paid for fraudulent claims over a certain time period, cannot be linked to individual decisions.
The question then becomes how such aggregated data, can be incorporated in the analysis in such
way that it still provides useful information in the process of understanding the problem at hand.
Secondly, the data are likely to be imprecise or incomplete, e.g. some fraudulent transactions
might go undetected. These kinds of uncertainties should be taken into account in a way that
prevents business analysts from drawing false conclusions.

8.2.2 Visualization refinements

The research of this thesis was performed in a commercial context, therefore we discuss some
considerations with respect to making this research into a product or part of a product. In this
thesis we focused on a particular problem, relating correlated values of the business case and
decision data to the decision logic. Normally, this process takes place in a larger context that we
more or less neglected. Therefore care should be taken in two areas: issues related to the design
of our tool and integration of the tool in the wider context of decision management.

There are many smaller and larger improvements to our tool that could be thought of that
would improve its ease of use. First of all, the choice for using Voronoi might not have been the
best choice, as we have seen in informal discussions that people tend to start reasoning about
the boundaries of a cell. Another graphical metaphor might be easier to explain and reduce the
tendency to reason about graphical issues that have no particular meaning. Secondly, due to
label overlap and the fact that clusters of values in the decision map are of more interest than
individual values, an automated default setting for the merge slider would be helpful. One
approach to this problem would be to choose a merge distance which more or less divides the
space in equally sized cells. Thirdly, the decision map is based on the variables that are selected
in the DataSpace tree (Fig. 6.4). In this thesis it was assumed that these variables are selected
manually, however there might be means to make an automated initial selection. Making an
automated selection could be based on static analysis of the decision logic by selecting only the
variables which are tested against in a certain DM. Another approach could be to perform MCA
on all variables and select the firstX% that explain most of the variance, whereX is chosen based
on some heuristic. Finally, we took the variables as starting point of our analysis, while another
approach could be to start at the rules. That is, given a certain rule or a set of rules, perform the
analysis on all decisions that have triggered these rules.

With respect to placing our work in the broader context of decision management, some thought
on the work flow is required. What kind of events trigger the exploratory analysis that we sup-
port? Sometimes the trigger is technically related to the DMS, such as a changing Key Perfor-
mance Indicator (KPI) which is measured by the DMS. In these cases, thought should be given
to how such an artifact influences the initial values of the exploration process, in order to focus
the exploration immediately on the relevant areas. Another work flow related issue that we have
not discussed is the process of turning insight into change of the DM. Further research should
point out if the exploration process can be used to generate recommendations to the user on
which parts of a DM should change. A difficult issue here is that such suggestions might involve
knowledge that is not explicitly modeled.

The projections view is based on the MCA dimensionality reduction technique. However, not
all attributes are categorical and, as we have seen in CHAPTER 6, we had to drop the observation
projection due to the large amount of observations. Therefore, other dimensionality reduction
techniques could be used as basis for the projections view. This would also require work on im-
proving the work flow, as most techniques require many settings, and therefore complicate the
analysis process.

8.2. Limitations and future work directions 145

In various ways uncertainty plays a role and we have not addressed the issue of uncertainty
at all. Firstly, there is uncertainty in the projection. Are two projected points (either observations
or attributes) close together because they are similar in the original data or is the proximity an
unwanted side-effect of the dimensionality reduction technique? A second source of uncertainty
is caused by multiple versions of the same DM. When a new version of a DM is put into pro-
duction, it is normally first tested with a test set of business cases for which the outcomes of the
old model are known. The new version might result in different outcomes, some of them may be
expected others unexpected. There may be also decisions that result in the same outcome, while
the outcome should have been different with the new model. Thus, the outcomes of the new
model have a certain level of uncertainty. Further research should be carried out to find methods
for visualizing these kinds of uncertainty. Besides the uncertainty in the outcomes of the new
model, there is also difference in the correlation of the old and the new model. This brings up the
question on how to visualize the difference of two almost similar datasets. One approach might
be to extend our projections view, for example by overlaying the MCA results of the old dataset in
the projections view of the new dataset MCA results and connecting corresponding attribute-value
points with lines. Long lines will than indicate a large shift in the projections view and short lines
small shifts. Another interesting problem related to this would be the differences in clusters in
the projections view for various merge distances.

8.2.3 Collaborative analysis and knowledge engineering.

One of the important aims of DMSs is to bring the knowledge of various domains, such as law,
risk analysis and marketing, under one hood. Therefore, it can be expected that people from these
domains need to be involved when analyzing the functioning of a DMS. To this extent a fruitful
research direction would be extending our system with and assessing the effectiveness of various
collaboration techniques. A useful starting point for this direction can be found in the work of
Heer and Agrawala [220, 221] who provide numerous design considerations for collaborative
visual analysis. This research should also include modeling how a certain analysis trajectory
lead to a certain change of the DM or why a particular change was not made.

8.2.4 Time analysis

The exact moment in time when a decision is made by a DMS is generally speaking not very
interesting because the decision could be made as part of a batch processing session. However,
many DMs contain fields that represent date or time. This is not generally true for each DM,
because it depends on the business context and the type of decision that is being made by the
DM. Therefore a fully generic solution might not be possible. Still, it would be interesting to
see how the decision map can be extended to provide insight not just in the related concepts
of a DM, but also how these correlations change over time. Means should be found to analyze
the decisions with different level of time aggregations that are common in the specific business
context such as week, month, quarter and year. Not only the evolution over time is interesting,
but also the difference of correlation between two time batches (e.g. this year versus last year).
Another approach would be to combine time series analysis to find bursts of events (see e.g.
[222, 223, 224]), with the decision map.

8.2.5 Relational attributes

This mix of multivariate data and relational data can be found in many contexts. A data entity has
besides multiple property attributes, also relational attributes. In many cases, relational attributes
and properties can be considered as equivalent. However, there are relation attributes which we

146 8. Conclusion

cannot translate to properties. For example, lets take the relation of salary being a consequence
of age and ethnicity. Salary is not a direct function of the two, but varies when age and ethnicity
vary. Consequently, statistical methods for properties cannot be used for relational attributes.
Additionally, relational types cannot be aggregated, e.g. what does it mean when three entities
have relation type subclass and one entity has relation type function? Therefore, when a dataset
has both a multivariate character and relational attributes, we need new methods and techniques
have to be devised to aggregate properties with relational attributes in a meaningful way.

8.3 Closing remarks

Decision management systems are applied in a wide range of industries, among which health
care, commerce, insurance, finance and transportation. These systems make millions and mil-
lions of decisions each day, impacting the life of millions of people and impacting economies at
a large scale. At this scale, individual decisions have little or no impact, that is, one fraudulent
transaction going undetected, one likely defaulter getting a loan or one customer getting a lower
price than expected will have little or no impact on the business performance. It are the aggre-
gated results of many decisions which lead to financial risk or missed opportunities. Therefore,
the focus of the responsibility moves from the effects of individual decisions to the aggregated
effects of thousands or millions of decisions. This shifted focus makes the development of new
tools, which help gaining insight in the models behind and functioning of automated decisions,
invaluable and necessary. With this thesis we hope to have made first steps in building a bridge
between the visual analytics community, which has the knowledge and expertise to design and
build such tools, and the industry.

List of own publications

It wouldn’t happen... There hasn’t been one
publication by a monkey.

The Ricky Gervais Show, KARL PILKINGTON

Papers

• B. Broeksema and A.C. Telea. “Visual support for porting large code bases”, In proceed-
ings of 6th IEEE International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT), 2011, pp. 1—8, 29-30 Sept. 2011

• T. Baudel and B. Broeksema. “Capturing the Design Space of Sequential Space-Filling Lay-
outs”, In IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp.
2593—2602, Dec. 2012.

• B. Broeksema, A. C. Telea and T. Baudel. “Visual Analysis of Multidimensional Categorical
Datasets”, In Computer Graphics Forum, vol 32, pp. 158—169, Oct. 2013.

• B. Broeksema, T. Baudel, A. C. Telea and P. Crisafuli. “Decision Exploration Lab: A visual
analytics solution for Decision Management”, In IEEE Transactions on Visualization and
Computer Graphics, vol 19, no. 12, pp. 1972—1981, Dec. 2013.

Posters

• T. Baudel and B. Broeksema. A generic algorithm for sequential, rectangular, space filling
layouts. In Extended abstract and poster presentation, VisWeek 2011, October 2011.

• B. Broeksema and A.C. Telea. PortAssist: Visual analysis for porting large code bases. In
Extended abstract and poster presentation, VisWeek 2011, October 2011.

Patents

• Focus-change invariance in a graphical display, US 20130127870 A1, T. Baudel and B. Broek-
sema

• Data plot processing, US patent, accepted, being processed, T. Baudel and B. Broeksema

Curriculum Vitae

Bertjan Broeksema is born on the 10th of April in Enschede, the Netherlands. He retrieved his
bachelor degree in Computing Science from the Hanze University of Applied Sciences in Gronin-
gen, where he studied from 2003 to 2007. Afterward, he studied from 2007 to 2010 at the Uni-
versity of Groningen, where he obtained his master degree in Computing science. As part of his
master program he did a minor in philosophy. During his studies he has been an active contrib-
utor to the open source KDE 1 project, where he among other things developed an interest for
software maintenance. As such, he got in contact with KDAB 2 where he did his master intern-
ship on the topic of automated porting and where he worked as an software engineer afterward.

The work of his master thesis resulted in an article at the VISSOFT workshop. It was recog-
nized that this topic had some overlap with problems at IBM relating to Decision Management
Systems. Therefore, he started a PhD in November 2010 at IBM France on the topic of Visual
Analytics for the support of such systems. Under supervision of A. C. Telea, T. Baudel and G.
Melançon, he developed various InfoVis/VA techniques. His work was presented at the InfoVis
and VAST conferences and in the Computer Graphics Forum journal. Some of these techniques
where combined in an integrated system for the exploration of decision data. This system was
developed in close co-operation with domain experts and evaluated with realistic use case sce-
narios.

In November 2013 he started working at the Centre de Recherche Public Gabriel Lippmann
as a full-time researcher on Visual Analytics. His current research interests include space-filling
layouts, visualization and analysis techniques for categorical data and VA for data streams and
time series.

1http://www.kde.org
2http://www.kdab.com

Appendix A

User Evaluation of the MCAView visual analysis tool

This section contains a detailed report of the user evaluation that was held at the university
of Groningen. The evaluation was conducted by A.C. Telea who compiled the results into

this report.

A.1 Preliminaries

14 people were selected to evaluate the tool. 4 were PhD students. 7 were MSc students. 3 were
BSc students in their final year before MSc. All were CS students (male). All had a minimal (1-2
years) exposure to interactive Infovis tools (mostly, in the form of table lenses, scatterplots, and
bundled graphs). All were familiar with tabular data with numerical and categorical data. How-
ever, except 2 of the PhD students, none was familiar with MDS, MCA, or parallel coordinates.
The 2 PhDs mentioned were only familiar with MDS at a general level (dimensionality reduction
principles). None of the students was experienced with insurance data. All were volunteers, not
paid or rewarded in other ways for their work in the evaluation.

A.2 Way of working

The students completed the following steps:

A.2.1 Introduction

During this step, a staff member (co-author of the paper) held a presentation session with all
students. In this session, he presented the main idea:

We are given a table containing a dataset with numerical and categorical attributes. We would
like to answer several questions using a visual tool. Your role is to use the tool to answer the
questions, document/explain your findings, and document any other observations on the tool
(good/bad features, how much you used each feature, proposals for improvement).

A high-level explanation of the end purpose of such analyses was given: We have a car insur-
ance dataset. Insurance agents want to find patterns (groups of people sharing some common
characteristics). Based on such patterns, they ultimately want to tune their insurance policies
to maximize revenues and minimize risks. The purpose of this explanation was to make users
aware of the added-value of the proposed tool/technique in an actual application domain.

This step took about 10 minutes.

A.2.2 Data presentation

During this step, the presenter loaded the raw tabular data in the tool and executed two binning
scenarios (with 3, respectively 4 bins). The students were told that binning is not part of their fur-
ther assignment, and were instructed to note down the binning settings so they can reuse them.
The resulting binned table was scrolled (by the presenter on a laptop connected to a beamer).

152 A. User Evaluation of the MCAView visual analysis tool

The presented commented to make the participants familiar with the columns, attribute names,
and attribute values. This also gave a rough idea of the complexity and size of the raw data.

To check that the participants understood the table, a few questions were asked to the public,
e.g. How many values has attribute daytimeRunningLights? Where can you see this? What
means quote: 620..929? The students answered the questions quickly (under 1 minute), and
showed they do understand the data. One attribute (DUI) was left unexplained, and the par-
ticipants were told that this one is not important. Also, the participants were told that they do
not need to know by heart all US state names (50 values).

This step took about 15-20 minutes.

A.2.3 Visualization presentation

During this step, the presenter explained all four views of the tool, in this order: dimensions
view, projections view, observations plot, and merge/filter options. For each view, the following
points were explained:

• color mapping: what do colors mean

• structure of the view: tree, scatterplot, diagram, and what these mean

• interaction options (click and brush)

• link to the other views (either by color mapping or selection)

The main part of the explanation covered the interpretation of elements in the views along
the following lines:

• dimensions view: colors = attribute identities; tree = values of some category;

• projection view: colors = attribute identities; Close plotted points for values from different
attributes imply that observations tend to select these values together. Close plotted points
for different values of the same attribute imply that observations selecting either of these
values are similar with respect to the other attributes. Meaning of Voronoi cells = closest
points to a given site;

• observation plot: colors = values of a selected attribute; Two observations plotted close to
each other imply that they have similar attribute values or, for categorical data, that they
share several attribute values (since two categorical values can either be equal or different);

• projection view and observation plot: the x,y axes do not mean something obvious (like a
given attribute). Only relative positions (distances) do mean something;

• barchart legends: length of a bar equals the variance of that attribute on a respective axis. In
other words, big bars are attributes which are well explained along an axis (or not explained
on any of the axes, for big bars in the error plot).

The explanations were supported by simple examples (brush/select item, explain what hap-
pens in the visualization) demonstrated publicly with the tool to the audience.

This step took roughly 20 minutes.

A.3. Assignment 153

A.2.4 Assignment

After the training, an assignment was distributed to the students (see Sec. 3). The participants
were told to read the assignment, and that they have to execute it during a separate session over
a few days. The participants could use, on their own laptops, a binary of the tool compiled for
Microsoft Windows or a binary for Mac OS X, out of the box (i.e., with zero installation effort).
Both the binary and dataset were distributed to the participants.

The overall training was concluded by a Q&A section (5 minutes), where the participants
could ask any clarification questions. Globally, all participants said that they believe they under-
stand the purpose of the tool and assignment.

A.2.5 Experience sharing

After executing the assignment, which took 2 hours, all participants met the organizer again
(separately, that is, not as a group). This took roughly 20 minutes per participant. Each par-
ticipant explained the results, and commented freely on various findings. Some participants
brought their laptops to show the results or snapshots of the tool usage. The organizer noted the
feedback, but refrained from judging (aloud) the findings, in order not to bias the participants
exposition. The aggregated feedback is presented next in Sec. 4.

A.3 Assignment

You are given a dataset containing car insurance quotes for various people living in the US. The
structure of the data has been explained previously. Using MCAView, the tool presented to you
earlier, complete the following tasks and answer the respective questions, in the order specified
below.

Q1: Attributes and their values

Start the tool, load the data, and select the projections view. Using the earlier explanations, try to
find a meaning for groups of cells in the plot to the right, left, top, bottom, and center. For each
group such identified:

• describe the perceived meaning of the group (what kind of people share such attributes?)
in one sentence; if you do not find any specific meaning for such a group, explain why.
Answer: plain text

• Which techniques did you use? Mark them by perceived utility and ease of use (very high,
high, low, very low, not used):

– color linking

– brushing and selection

– barchart legends

– merging/filtering

Answer: multiple-choice table

Hints:

154 A. User Evaluation of the MCAView visual analysis tool

• recall that, in the projection view, close plotted points for values from different attributes
imply that observations tend to select these values together. Close plotted points for dif-
ferent values of the same attribute imply that observations select either of these values and
are similar with respect to the other attributes.

• brushing cells reveals more information on a given attribute value

• colors are explained in the dimensions view

• you can use the merge/filter view to simplify the projections view

Q2: Explaining the axes

Start the tool, load the data, and select the attribute plot view. Next, try to find an explanation, in
terms of attributes, for the x and y axes. Answer the following questions

• what is the perceived meaning of the x axis? What kind of people do we have in the cells
to the left, and to the right? Answer: plain text

• what is the perceived meaning of the y axis? What kind of people do we have in the cells
to the top, and to the bottom? Answer: plain text

• how sure are you about the interpretation? Explain why. Answer: plain text

• which techniques did you use? Mark them by perceived utility and ease of use (very high,
high, low, very low, not used):

– color linking

– brushing and selection

– barchart legends

– merging/filtering

Answer: multiple-choice table

Hints:

• recall the meaning of barchart legends: length of a bar equals the variance of that attribute
on a respective axis. Big bars are attributes which are well explained along an axis (or not
explained on any of the axes, for big bars in the error legend).

• you can use merging and filtering to eliminate attribute values which you consider irrele-
vant

• one axis may require several attributes to explain

Q3: Understanding observation clusters

Start the tool, load the data, and select the observation plot view. You see a scatterplot of the
observations (people). Answer the following questions:

• do you see any clusters (groups of close points which share some characteristics, and are
reasonably well separated from other groups of points)? If so, explain the clusters you see
in 1-2 sentences: What kinds of points are in each cluster? Answer: plain text

A.4. Results 155

• which techniques did you use? Mark them by perceived utility and ease of use (very high,
high, low, very low, not used):

– color linking

– brushing and selection

– barchart legends

– merging/filtering

Answer: multiple-choice table

Hints:

• you can color observations by the value of one categorical attribute; attributes can be se-
lected either directly from the dimensions view or using the barchart legends

• observations are plotted in the same space as attributes (revisit answers to Q1, Q2)

• there may be several ways in which you identify clusters in the data; try to find the most
clear-cut separation (clustering), with clearly delimited clusters, and little overlap between
clusters

A.3.1 Q4: General questions

• how much time did you spend on the whole assignment? Answer: number

• rank the tools functions in terms of utility and ease of use (very high, high, low, very low,
not used)

– dimensions view

– attributes plot

– observations plot

– color linking

– merging / filtering

– x and y barcharts

– error barchart

– tooltips and selection

Answer: multiple choice table

• which suggestions for improvement or other remarks do you have? Answer: free discus-
sion (20 minutes)

A.4 Results

Of all 14 participants, 13 completed the full assignment. One BSc participant dropped off (appar-
ently, not enough motivated/interested).

Below we show the aggregate results of Q1..Q4. Note that feedback was given in various
ways (on paper, orally, by means of snapshots and tool live demos).

156 A. User Evaluation of the MCAView visual analysis tool

A.4.1 Q1

Describe the perceived meaning of the group:
8 of 13 found the right group of expensive vehicles as an outlier. They described it in vari-

ous terms (expensive vehicles; high-end cars; limos) or simply by listing the attributes of these
vehicles.

7 of 13 found the left group of lower-end vehicles. They described it in terms such as (family
cars; cheap cars) or by listing the attributes of the vehicles.

8 of 13 found the top group of older people. They described it as (family people; older people;
working people).

5 of 13 found the bottom group of younger people. They described it as (students; young
people), with no extra qualification.

7 of 13 characterized the central group as the average people. 6 of 13 could not find any
salient characteristic of this group (i.e., they did not reason that this group has to be the average
people since the peripheral groups are outliers).

2 of 13 found the group of close cells related to the numAccidents attribute (3 greenish cells).
The given interpretations were people that tend to have accidents share some [unknown] pattern
and people that have one accident will have more next (this is, in my view, a wrong interpretation
of the data).

Which techniques did you use? Mark them by perceived utility

• color linking: 7 (very high); 4 (high); 2 (low);

• brushing and selection 10 (very high); 3 (high)

• barchart legends 10 (not used); 2 (low); 1 (very low)

• merging/filtering 2 (high); 6 (low); 3 (very low); 2 (not used)

Notes

Overall, it is interesting to see that the majority of participants succeeded in finding the cell
groups pointed into the assignment description and describe these in roughly similar terms to
our own description (explained in Sec. 5.2). This supports the claim that the visual presentation
used does not offer too much space for ambiguity.

A deeper evaluation would have relaxed the problem statement, e.g., not indicate that one
has to explain groups of outlier cells (top, bottom, right, left) and average cells (center), but
simply ask which are the groups of strongly-correlated cells, and what these mean. We did not
conduct this more ambitious test here, as our intention was more defensive, i.e. first evaluate if,
using the same dataset and tool, other people could replicate our findings. Such a more involved
evaluation is planned, now that we have initial feedback that helps us into fine-tuning both the
tool and evaluation procedure.

A.4.2 Q2

What is the perceived meaning of the x axis? What kind of people do we have to the left, and
to the right?

9 of 13 found that the x axis somehow relates to the social position of persons (wealthy vs poor;
entrepreneurs vs family people; rich vs non-rich). One person labeled the observations to the
right as conservative people (because they have the daytime running lights on, and they tend to
have more expensive vehicles). He also noticed that the presence of antilock brakes seems to be

A.4. Results 157

correlated with daytime running lights. The other 3 participants did not find a salient meaning
of the x axis. 1

What is the perceived meaning of the y axis? What kind of people do we have to the left, and
to the right?

8 of 13 found that the y axis somehow relates to family (married vs non-maried; older vs younger;
studying vs not studying). Two persons said that they revisited their answers to Q1 after they
had to complete Q2, since Q2 helped them (indirectly) to finding clusters at the top and at the
bottom. 3 participants did not find a salient meaning for the y axis.

How sure are you about the interpretation? Explain why.

8 of 13 said that they are reasonably sure of their interpretation of the axes because they used dif-
ferent methods to arrive at their conclusion (brushing, color linking, displaying the observations
colored by the value of an attribute). Of these 5 said that, after initial brushing and color linking,
they started looking at the barcharts, to locate big bars for the x or y axes, and then tried to give a
meaning to the axes based on the semantics of these bars. Only 3 participants said that they also
considered the error barchart when interpreting the x and y barcharts.

2 of 13 said that they think their interpretation is correct, but are not sure (I think this is the
meaning of the x/y axes, but I have no further hints as to whether this is correct; at least this is
the most plausible meaning for me). The reasons for confusion stated here were the many state
cells which apparently create noise in the data. Both persons also said that they thought that
there are some specific state-related semantics (people in state X do Y) which they should use,
but not being familiar with the US, they got blocked on this thinking path.

3 participants did not find a salient meaning for the axes, as noted earlier. Among reasons for
this they noted also the confusion created by the state cells (what does it mean if I see all these
state cells here?)

Which techniques did you use? Mark them by perceived utility (very high, high, low, very
low, not used):

• color linking: 6 (very high); 5 (high); 2 (low).

• brushing and selection: 9 (very high); 2 (high); 1 (low)

• barchart legends: 1 (very high); 4 (high); 5 (low); 1 (very low); 2 (not used)

• merging/filtering: 3 (high); 6 (low); 3 (very low); 1 (not used)

Notes

Interestingly, color linking and brushing-and-selection are perceived to be roughly as useful for
Q2 as for Q1. Also, we see now more people trying to use merging/filtering than for Q1, which
can be explained as a learning effect (people get more confident with the tool and thus try the
more complex options). The strongest note, though, regards the much larger use of barcharts as
compared to Q1. This can be partially explained by the hint in the text of Q2 as to using barcharts,
and also the learning effects mentioned earlier.

1Note that most participants (9 of 13) had a Dutch background. In the Dutch culture, there is a tendency of simplifying
finance-related issues into rich and poor, e.g., labeling persons who own a larger house, car, or boat, as rich or upper class,
regardless of other reasons which may explain the ownership.

158 A. User Evaluation of the MCAView visual analysis tool

A.4.3 Q3

Do you see any clusters (groups of close points which share some characteristics)? If so, ex-
plain the clusters you see: What kinds of points are in each cluster?

10 of 13 participants answered this positively, i.e., did find clusters. 3 others said they did find
clusters, but are not sure which ones are right (i.e., are true well separated clusters). Interestingly,
no-one ended this question with not finding any clusters.

Among the clusters reported: 10 of 13 did find the student vs non-student cluster as being the
clearest one. The other 3 did find this one too, but for some reason wanted to find more complex,
less obvious, clusters further in the data. Among mentioned candidates were daytimeRunning-
Lights on-vs-off; airbagStatus (none vs all-other-options); married (false vs true); and ageInYears
(value=54..72), which was also found as a well-formed cluster. Apparently, the intention was to
find clusters which arent explained by a single attribute, but more attributes. This is explain-
able, since during the introductory presentation, it was mentioned that clusters may (need to) be
explained by more than one attribute.

• Which techniques did you use? Mark them by perceived utility (very high, high, low, very
low, not used):

• color linking: 11 (very high); 2 (high)

• brushing and selection: 4 (very low); 3 (low); 3 (high); 2 (very high); 1 (not used)

• barchart legends: 5 (very high); 5 (high); 3 (low)

• merging/filtering: 10 (not used); 3 (very low)

Notes

This task was completed well by all participants. This may be explained by the fact that find-
ing/explaining clusters in scatterplots is something the participants are somehow more familiar
with.

Interestingly, color linking was seen the clear winner technique here. This is explainable,
since coloring observations by attribute values makes it relatively clear which observations have
which value, so helps seeing clusters determined by such values.

Also, barchart legends scored very well here. The participants reported that they first tried
random clicking on some bars, or clicking on bars from left to right in the order the attributes
are listed in the dimensions view, after which they realized that selecting the longest bars is the
most efficient, since such bars are most likely to show attributes that explain clusters. They also
noticed that selecting short bars (in x,y) or long bars (in the error plot) typically creates (complete)
noise, i.e. no clusters, which made them further focusing on the long bars. 7 of 13 students noted
that they realized that they must use all the legends together. Of these, 4 said they made explicit
use of the error barcharts.

Example storyline

A nicely commented discussion was supplied by one participant (see snapshots below), as a
story-line for searching for clusters. The text reflects his notes, taken snapshots, and also face-to-
face discussion. The text is translated from Dutch (participants native language) to English.

A.4. Results 159

Figure A.1: After playing around a bit, I selected the daytimeRunningLights bar in the x plot,
since its such a long one. There seems to be a cluster of lights=on to the right, and lights=off to
the left. Wait, but I already knew this from answering Q1 and Q2. This is good, but it isnt a clear
cluster separation, so I search(ed) further.

Figure A.2: I next selected the airbagStatus attribute in the x barchart, since this one also appeared
in my analysis for Q1 as an outlier. I see now a clear(er) cluster to the left (no airbag), and a less
clear cluster to the right (airbags everywhere). This seems to correlate nicely with the previous
analysis people at the right are more conscious, drive safer, and people to the left are less safety-
interested.

A.4.4 Q4

How much time did you spend on the whole assignment?

One hour (7 of 13); between 1 and 2 hours (4 of 13); 30-40 minutes (2 of 13)

160 A. User Evaluation of the MCAView visual analysis tool

Figure A.3: I next selected the vehicleType in the x barchart. Hmm, this shows more or less noise.
There appear to be some horizontal bands but these arent related to the vehicle type (all colors
appear more or less everywhere), so people [observations] cannot be clustered based on vehicle
type. Indeed, this makes sense all kinds of people buy all kinds of cars.

Figure A.4: Apparently, theres only so much I can get from the x axis. Now I selected fullTimeStu-
dent in the y barchart (its a pretty large bar; oh and it is short in the x axis barchart). Wow, clear!
I see a cluster of students and one of non-students. Indeed, students are at the bottom, which I
knew from Q1. And now I see that people [observations] are denser in the left part of the plot,
which may make sense I recall that to the right we had richer people, and those should be less
than ordinary people.

Rank the tools functions in terms of ease of learn and use (very high, high, low, very low, not
used)

• dimensions view: very high (10 of 13); high (3 of 13)

• attributes plot: high (8 of 13); very high (2 of 13); low (2 of 13); very low (1 of 13)

• observations plot: high (7 of 13); very high (4 of 13); low (2 of 13)

• color linking: high (7 of 13); very high (5 of 13); low (1 of 13)

A.4. Results 161

Figure A.5: Now that were at the y barchart, theres a second large bar here for gender. Let me
select this one. Hm, I think I see two overlapping clusters, somehow the male are shifted a bit
more to the right could this mean that they are richer? Maybe not. In any case, it seems that there
are no clear gender-related patterns to be found here.

Figure A.6: OK, the next large bar in the y barchart is for married. Looks very much like the pattern
for the gender attribute. Yes, but there is some correlation here older people are clearly more
often married than younger ones, and students (lower cloud) are mostly not married. Indeed.
And just as for vehicleType, they seem to come as both rich and non-rich.

• merging / filtering: high (2 of 13); low (8 of 13); very low (3 of 13)

• x and y barcharts: very high (4 of 13); high (5 of 13); low (4 of 13)

• error barchart: high (3 of 13); low (8 of 13); very low (2 of 13)

• tooltips and selection: high (6 of 13); very high (4 of 13); low (3 of 13)

162 A. User Evaluation of the MCAView visual analysis tool

Figure A.7: Now for the last one: I select the third-largest bar in the y barchart, age. OK, I see two
clear clusters: young people (orange, at the bottom) and old people (red, at top). The other age
categories are fuzzier overlapping clusters in between. Not surprising. Concluding the whole
exercise: If I have to name a clear separation, or clear clusters, Id say this is the lower cloud,
containing young, studying, and unmarried people. These seem to be quite different from the
rest. There also seems to be a cluster of safety conscious, richer, people to the right, and one of
less safety conscious, average, people to the left. These are my main findings.

Which suggestions for improvement or other remarks do you have?

• The tool would be much easier (and nice) to use if it were faster!

• I could learn the barcharts quite easily. It is a nice, helpful, idea.

• The observation plot was easier to learn and use than the projections view. The explanation
of the latter could be done better, so it presents its data in some more intuitive form.

• It would be useful to somehow add labels to the barchart legends, and allow to sort them
on size. Otherwise finding those long bars takes time. Also a zooming mechanism would
be good, I want often to focus on the longest bars, and dont really care about the shortest
ones.

• It would be nice to provide some more refined mechanisms to help finding clusters faster
(something like a wizard with guided steps).

• The tool crashes sometimes when doing the merging.

• The Voronoi plot is a bit slow when it renders again (on my computer, it takes under 1
second, but having something real-time would be less disruptive)

• Overall, the tool is interesting, and fun to use. I did not think you can look at table data
in this way. Once you learn the basic mechanisms, it keeps you engaged playing with it to
find more facts about the data.

• When merging, what would be nice, is to have some smooth animation from the previous
[non-merged] state to the merged state. In this way, I could better see what changed when

A.4. Results 163

I merge. Right now, its still OK since merging works in real-time, so I can play with the
distance slider to-and-fro to see what happened, but an animation would be even faster.

• What I liked about the tool, is that I can use it with no configuration or tweaking options,
its just plug-and-play once I have a table saved in a text file. Thats easy. Maybe Ill use it on
some other tables I have.

A.4.5 Threats to validity

Actual tool usage time: Some students may have actually spent more than 2 hours on working
with the tool. This is hard to exactly measure, since, for logistical reasons, we had to distribute the
tool and dataset upfront, to make sure that all participants could install and run it with no issues
on their laptops. However, knowing our student population (from earlier user experiments of
the same kind, and from related practical assignments), this is a very low risk the students have a
strong tendency of not working more than asked for, especially if there are no incentives (bonus,
exam points) given for this work.

Questions: The questions could have been made more precise. The reason we structured
the questions as described, is that we tried to make them in line with our own findings and
experiences with the involved dataset, so we could next assess the value/validity of the produced
answers. However, some extra refinement would have helped. There is, for instance, a (subtle)
overlap between Q1 and Q2 which could have been eliminated.

Merging: We noticed that merging was used very sparingly. This could be because it was also
explained the least during the introductory session. A more involved introductory session, with
more time dedicated to this option, might have changed the results, possibly in favor of merging.

Participants: There was clearly some amount of correlation between the answers and intellec-
tual level of the students. We noticed that the smarter students (assessed by their overall grades
and performance during other activities in our study) did perform overall better, and also found
the tool better. As such, the participant population was quite mixed. Another issue involves
mixing students of three quite different levels (BSc, MSc, PhD) in the same evaluation. A better
strategy would have selected a more uniform group of people.

Scoring: The multiple choice options used to score the ease-of-use and utility of the different
techniques could have been refined further

• Split ease-of-use and utility in two separate questions (something can be easy to use, but
not useful, and conversely)

• Refine the 5-point scale into (very high, high, not high or not low, low, very low, not appli-
cable). We did not choose the neutral mid-point (not high or not low) as we tried to avoid
too many neutral answers. Still, this choice introduces a bias in the evaluation (one has to
decide if something is useful/usable or not).

Bibliography

[1] J. LeBlanc, M. O. Ward, and N. Wittels, “Exploring n-dimensional databases,”
in Proc. of the IEEE Conf. on Visualization, ser. VIS ’90, 1st. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1990, pp. 230–237. [Online]. Available:
http://dx.doi.org/10.1109/VISUAL.1990.146386

[2] J.-F. Im, M. McGuffin, and R. Leung, “Gplom: The generalized plot matrix for
visualizing multidimensional multivariate data,” IEEE Transactions on Visualization
and Computer Graphics, vol. 19, no. 12, pp. 2606–2614, 2013. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2013.160

[3] R. Amar, J. Eagan, and J. Stasko, “Low-level components of analytic activity in information
visualization,” in Proc. of the IEEE Symp. on Information Visualization, ser. InfoVis ’05, 11th,
2005, pp. 111–117. [Online]. Available: http://dx.doi.org/10.1109/INFVIS.2005.1532136

[4] J. Taylor and N. Raden, Smart Enough Systems. Prentice Hall, 2004.

[5] F. Frasincar, A. C. Telea, and G.-J. Houben, “Adapting graph visualization techniques
for the visualization of rdf data,” in Visualizing the Semantic Web, V. Geroimenko
and C. Chen, Eds. Springer London, 2006, pp. 154–171. [Online]. Available:
http://dx.doi.org/10.1007/1-84628-290-X 9

[6] R. Lu and S. Sadiq, “A survey of comparative business process modeling approaches,”
in Business Information Systems, ser. Lecture Notes in Computer Science, W. Abramowicz,
Ed. Springer Berlin Heidelberg, 2007, vol. 4439, pp. 82–94. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-72035-5 7

[7] R. Ko, S. Lee, and E. Lee, “Business process management (bpm) standards: a survey,”
Business Process Management Journal, vol. 15, pp. 744–791, 2009. [Online]. Available:
http://dx.doi.org/10.1108/14637150910987937

[8] F. Niedermann and H. Schwarz, “Deep business optimization: Making business
process optimization theory work in practice,” in Enterprise, Business-Process and
Information Systems Modeling, ser. Lecture Notes in Business Information Processing,
T. Halpin, S. Nurcan, J. Krogstie, P. Soffer, E. Proper, R. Schmidt, and I. Bider,
Eds. Springer Berlin Heidelberg, 2011, vol. 81, pp. 88–102. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21759-3 7

[9] (2013) Operational decision manager. IBM. [Online]. Available: http://
www-01.ibm.com/software/decision-management/operational-decision-management/
websphere-operational-decision-management

http://dx.doi.org/10.1109/VISUAL.1990.146386
http://dx.doi.org/10.1109/TVCG.2013.160
http://dx.doi.org/10.1109/INFVIS.2005.1532136
http://dx.doi.org/10.1007/1-84628-290-X_9
http://dx.doi.org/10.1007/978-3-540-72035-5_7
http://dx.doi.org/10.1108/14637150910987937
http://dx.doi.org/10.1007/978-3-642-21759-3_7
http://www-01.ibm.com/software/decision-management/operational-decision-management/websphere-operational-decision-management
http://www-01.ibm.com/software/decision-management/operational-decision-management/websphere-operational-decision-management
http://www-01.ibm.com/software/decision-management/operational-decision-management/websphere-operational-decision-management

166 BIBLIOGRAPHY

[10] (2013) Drools, business logic integration platform. JBoss. [Online]. Available: http:
//www.jboss.org/drools

[11] (2013) Blaze advisor business rules management. FICO. [Online]. Available: http:
//www.fico.com/en/Products/DMTools/Pages/FICO-Blaze-Advisor-System.aspx

[12] (2013) Business process model and notation. The Object Management Group. [Online].
Available: http://www.bpmn.org

[13] A. Chniti, S. Dehors, P. Albert, and J. Charlet, “Authoring business rules grounded in
owl ontologies,” in Semantic Web Rules, ser. Lecture Notes in Computer Science, M. Dean,
J. Hall, A. Rotolo, and S. Tabet, Eds. Springer Berlin Heidelberg, 2010, vol. 6403, pp.
297–304. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-16289-3 25

[14] N. Fuchs and R. Schwitter, “Specifying logic programs in controlled natural language,”
Computing Research Repository, vol. abs/cmp-lg/9507009, 1995. [Online]. Available:
http://arxiv.org/abs/cmp-lg/9507009

[15] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson,
N. F. Noy, and S. W. Tu, “The evolution of protégé: an environment for knowledge-based
systems development,” Int’l. Journal of Human-Computer Studies, vol. 58, no. 1, pp. 89–123,
2003. [Online]. Available: http://dx.doi.org/10.1016/S1071-5819(02)00127-1

[16] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen, “The protégé owl plugin:
An open development environment for semantic web applications,” in The Semantic Web,
ser. ISWC ’04, Lecture Notes in Computer Science, S. McIlraith, D. Plexousakis, and
F. Harmelen, Eds. Springer Berlin Heidelberg, 2004, vol. 3298, pp. 229–243. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-30475-3 17

[17] (2013) Protégé visualization plugins. Stanford Center Biomedical Informatics for Research.
[Online]. Available: http://protegewiki.stanford.edu/wiki/Visualization

[18] D. Holten, “Hierarchical edge bundles: Visualization of adjacency relations in hierarchical
data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 741–748,
2006. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2006.147

[19] C. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern match
problem,” Artificial Intelligence, vol. 19, no. 1, pp. 17–37, 1982. [Online]. Available:
http://dx.doi.org/10.1016/0004-3702(82)90020-0

[20] D. P. Miranker, “Treat: A better match algorithm for ai production systems; long version,”
University of Texas at Austin, Tech. Rep. AI TR87-58, 1987.

[21] D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, Eds., Mastering The Information Age
- Solving Problems with Visual Analytics. Eurographics, November 2010.

[22] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour, and Evolution of Software.
Berlin: Springer, 2007.

[23] W. S. Cleveland, Visualizing Data. Summit, New Jersey, U.S.A.: Hobart Press, 1993.

[24] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in information visualization: using
vision to think, ser. Interactive Technologies. Morgan Kaufman publ. Incorporated, 1999.

[25] C. Ware, Information Visualization: Perception for Design, ser. Interactive Technologies. El-
sevier Science, 2004.

http://www.jboss.org/drools
http://www.jboss.org/drools
http://www.fico.com/en/Products/DMTools/Pages/FICO-Blaze-Advisor-System.aspx
http://www.fico.com/en/Products/DMTools/Pages/FICO-Blaze-Advisor-System.aspx
http://www.bpmn.org
http://dx.doi.org/10.1007/978-3-642-16289-3_25
http://arxiv.org/abs/cmp-lg/9507009
http://dx.doi.org/10.1016/S1071-5819(02)00127-1
http://dx.doi.org/10.1007/978-3-540-30475-3_17
http://protegewiki.stanford.edu/wiki/Visualization
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1016/0004-3702(82)90020-0

BIBLIOGRAPHY 167

[26] C. Chen, Information Visualization: Beyond the Horizon. Springer, 2004.

[27] R. Spence, Information Visualization: Design for Interaction. Pearon/Prentice Hall, 2007.

[28] S. J. Russell, P. Norvig, J. Candy, J. Malik, and D. Edwards, Artificial intelligence: a modern
approach. Prentice Hall, 1996.

[29] (2013) Spss. IBM. [Online]. Available: http://www-01.ibm.com/software/analytics/spss/

[30] (2013) R. The R Foundation. [Online]. Available: http://www.r-project.org/

[31] (2013) Stata. StataCorp LP. [Online]. Available: http://www.stata.com

[32] (2013) Matlab. The Mathworks Inc. [Online]. Available: http://www.mathworks.com/
products/matlab/

[33] X. Wang, W. Dou, T. Butkiewicz, E. A. Bier, and W. Ribarsky, “A two-stage framework
for designing visual analytics system in organizational environments,” in Proc. of the IEEE
Conf. on Visual Analytics Science and Technology, ser. VAST ’11, 2011, pp. 251–260. [Online].
Available: http://dx.doi.org/10.1109/VAST.2011.6102463

[34] A. Savikhin, R. Maciejewski, and D. Ebert, “Applied visual analytics for economic decision-
making,” in Proc. of the IEEE Symp. on Visual Analytics Science and Technology, ser. VAST ’08,
2008, pp. 107–114. [Online]. Available: http://dx.doi.org/10.1109/VAST.2008.4677363

[35] A. Savikhin, H. C. Lam, B. Fisher, and D. Ebert, “An experimental study of financial
portfolio selection with visual analytics for decision support,” in Proc. of the Hawaii
Int’l. Conf. on System Sciences, ser. HICCS ’11, 44th, 2011, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/HICSS.2011.54

[36] S. Al-Hajj, I. Pike, B. Riecke, and B. Fisher, “Visual analytics for public health:
Supporting knowledge construction and decision-making,” in Proc. of the Hawaii Int’l.
Conf. on System Sciences, ser. HICCS ’13, 46th, 2013, pp. 2416–2423. [Online]. Available:
http://dx.doi.org/10.1109/HICSS.2013.599

[37] A. Wlodyka, R. Mlynarski, G. Ilczuk, E. Pilat, and W. Kargul, “Visualization
of decision rules - from the cardiologist’s point of view,” in Proc. of the Int’l
Conf. on Computers in Cardiology, 2008, pp. 645–648. [Online]. Available: http:
//dx.doi.org/10.1109/CIC.2008.4749124

[38] P. C. Wong, P. Whitney, and J. Thomas, “Visualizing association rules for text mining,” in
Proc. of the IEEE Symp. on Information Visualization, ser. InfoVis ’99, 5th, 1999, pp. 120–123,
152.

[39] J. Blanchard, F. Guillet, and H. Briand, “A user-driven and quality-oriented visualization
for mining association rules,” in Proc. of the IEEE Int’l. Conf. on Data Mining, ser. ICDM
’03, 3rd, 2003, pp. 493–496. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2003.
1250960

[40] M. Hahsler and S. Chelluboina, “Visualizing association rules in hierarchical groups,” in
Proc. of the Symp. on the Interface: Statistical, Machine Learning, and Visualization Algorithms,
ser. Interface ’11, 42nd. The Interface Foundation of North America, June 2011.

[41] S. Afzal, R. Maciejewski, and D. Ebert, “Visual analytics decision support environment
for epidemic modeling and response evaluation,” in Proc. of the IEEE Conf. on Visual
Analytics Science and Technology, ser. VAST ’11, 2011, pp. 191–200. [Online]. Available:
http://dx.doi.org/10.1109/VAST.2011.6102457

http://www-01.ibm.com/software/analytics/spss/
http://www.r-project.org/
http://www.stata.com
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://dx.doi.org/10.1109/VAST.2011.6102463
http://dx.doi.org/10.1109/VAST.2008.4677363
http://dx.doi.org/10.1109/HICSS.2011.54
http://dx.doi.org/10.1109/HICSS.2013.599
http://dx.doi.org/10.1109/CIC.2008.4749124
http://dx.doi.org/10.1109/CIC.2008.4749124
http://dx.doi.org/10.1109/ICDM.2003.1250960
http://dx.doi.org/10.1109/ICDM.2003.1250960
http://dx.doi.org/10.1109/VAST.2011.6102457

168 BIBLIOGRAPHY

[42] M. Migut and M. Worring, “Visual exploration of classification models for risk
assessment,” in Proc. of the IEEE Symp. on Visual Analytics Science and Technology, ser. VAST
’10, 2010, pp. 11–18. [Online]. Available: http://dx.doi.org/10.1109/VAST.2010.5652398

[43] M. Friendly, “Mosaic displays for multi-way contingency tables,” Journal of the
American Statistical Association, vol. 89, no. 425, pp. 190–200, 1994. [Online]. Available:
http://dx.doi.org/10.1080/01621459.1994.10476460

[44] D. C. Oppen, “Prettyprinting,” ACM Transactions on Programming Languages and Systems,
vol. 2, no. 4, pp. 465–483, Oct. 1980. [Online]. Available: http://doi.acm.org/10.1145/
357114.357115

[45] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27, no. 2, pp. 97–111,
1984. [Online]. Available: http://dx.doi.org/10.1093/comjnl/27.2.97

[46] ——, Literate Programming, ser. CSLI lectures notes number. Center for the Study of Lan-
guage and Information, Leland Stanford Junior University, 1992.

[47] R. M. Baecker and A. Marcus, Human factors and typography for more readable programs. New
York, NY, USA: ACM, 1989.

[48] ——, “Printing and publishing c programs,” in Software Visualization–Programming as a Mul-
timedia Experience. MIT Press, 1998, pp. 45–61.

[49] M. A. Jackson, Principles of Program Design. Orlando, FL, USA: Academic Press, Inc., 1975.

[50] H. Goldstine and J. von Neumann, Planning and Coding of Problems for an Electronic Comput-
ing Instrument, ser. Report on the mathematical and logical aspects of an electronic com-
puting instrument. Institute for Advanced Study, Princeton, N. J., 1947.

[51] I. Nassi and B. Shneiderman, “Flowchart techniques for structured programming,”
ACM SIGPLAN Notices, vol. 8, no. 8, pp. 12–26, Aug. 1973. [Online]. Available:
http://dx.doi.org/10.1145/953349.953350

[52] P. Irani and C. Ware, “Diagrams based on structural object perception,” in Proc. of the ACM
Working Conf. on Advanced Visual Interfaces, ser. AVI ’00. New York, NY, USA: ACM, 2000,
pp. 61–67. [Online]. Available: http://dx.doi.org/10.1145/345513.345254

[53] ——, “The effect of a perceptual syntax on the learnability of novel concepts,” in Proc. of
the Int’l. Conf. on Information Visualisation, ser. IV ’04, 8th, 2004, pp. 308–314.

[54] M. Lanza, R. Marinescu, and S. Ducasse, Object-Oriented Metrics in Practice. Springer, 2005.

[55] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson, and
J. Isaak, “Visualizing dynamic software system information through high-level models,”
ACM SIGPLAN Notices, vol. 33, no. 10, pp. 271–283, Oct. 1998. [Online]. Available:
http://dx.doi.org/10.1145/286942.286966

[56] T. Systä, K. Koskimies, and H. Müller, “Shimba–an environment for reverse engineering
java software systems,” Software: Practice and Experience, vol. 31, no. 4, pp. 371–394, 2001.
[Online]. Available: http://dx.doi.org/10.1002/spe.386

[57] K. Mehner, “Javis: A uml-based visualization and debugging environment for concurrent
java programs,” in Software Visualization, ser. Lecture Notes in Computer Science, S. Diehl,
Ed. Springer Berlin Heidelberg, 2002, vol. 2269, pp. 163–175. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45875-1 13

http://dx.doi.org/10.1109/VAST.2010.5652398
http://dx.doi.org/10.1080/01621459.1994.10476460
http://doi.acm.org/10.1145/357114.357115
http://doi.acm.org/10.1145/357114.357115
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1145/953349.953350
http://dx.doi.org/10.1145/345513.345254
http://dx.doi.org/10.1145/286942.286966
http://dx.doi.org/10.1002/spe.386
http://dx.doi.org/10.1007/3-540-45875-1_13

BIBLIOGRAPHY 169

[58] J. Grundy and J. Hosking, “Softarch: Tool support for integrated software architecture de-
velopment,” Int’l. Journal of Software Engineering and Knowledge Engineering, vol. 13, no. 02,
pp. 125–151, 2003. [Online]. Available: http://dx.doi.org/10.1142/S0218194003001238

[59] W. de Pauw, R. Helm, D. Kimelman, and J. Vlissides, “Visualizing the behavior of
object-oriented systems,” in Proc. of the ACM Annual Conf. on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’93, 8th. New York, NY, USA: ACM,
1993, pp. 326–337. [Online]. Available: http://dx.doi.org/10.1145/165854.165919

[60] S. Ducasse, M. Lanza, and R. Bertuli, “High-level polymetric views of condensed run-time
information,” in Proc. of the European Conf. on Software Maintenance and Reengineering, ser.
CSMR ’04, 8th, 2004, pp. 309–318.

[61] A. Zaidman and S. Demeyer, “Managing trace data volume through a heuristical
clustering process based on event execution frequency,” in Proc. of the European Conf. on
Software Maintenance and Reengineering, ser. CSMR ’04, 8th, 2004, pp. 329–338. [Online].
Available: http://dx.doi.org/10.1109/CSMR.2004.1281435

[62] A. Kuhn and O. Greevy, “Exploiting the analogy between traces and signal processing,” in
Proc. of the IEEE Int’l. Conf. on Software Maintenance, ser. ICSM ’06, 22nd, 2006, pp. 320–329.

[63] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk, and A. van Deursen,
“Understanding execution traces using massive sequence and circular bundle views,” in
Proc. of the IEEE Int’l. Conf. on Program Comprehension, ser. ICPC ’07, 15th, 2007, pp. 49–58.
[Online]. Available: http://dx.doi.org/10.1109/ICPC.2007.39

[64] D. Holten, B. Cornelissen, and J. J. van Wijk, “Trace visualization using hierarchical edge
bundles and massive sequence views,” in Proc. of the IEEE Int’l. Workshop on Visualizing
Software for Understanding and Analysis, ser. VISSOFT ’07, 4th, 2007, pp. 47–54. [Online].
Available: http://dx.doi.org/10.1109/VISSOF.2007.4290699

[65] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen, and J. J. van Wijk,
“Execution trace analysis through massive sequence and circular bundle views,” Journal
of Systems and Software, vol. 81, no. 12, pp. 2252–2268, 2008, ¡ce:title¿Best papers from
the 2007 Australian Software Engineering Conf. (ASWEC 2007), Melbourne, Australia,
April 10-13, 2007¡/ce:title¿ ¡xocs:full-name¿Australian Software Engineering Conf.
2007¡/xocs:full-name¿. [Online]. Available: http://dx.doi.org/10.1016/j.jss.2008.02.068

[66] S. G. Eick, J. L. Steffen, and J. Sumner, E. E., “Seesoft-a tool for visualizing line oriented
software statistics,” IEEE Transactions on Software Engineering, vol. 18, no. 11, pp. 957–968,
1992.

[67] M. J. Baker and S. G. Eick, “Space-filling software visualization,” Journal of Visual
Languages and Computing, vol. 6, no. 2, pp. 119–133, 1995. [Online]. Available:
http://dx.doi.org/10.1006/jvlc.1995.1007

[68] (2013) Graphical interfacs for cvs. [Online]. Available: http://cvsgui.sourceforge.net/

[69] (2013) Graphical interface for subversion. [Online]. Available: http://tortoisesvn.net/

[70] (2013) Graphical interfaces for git. [Online]. Available: http://git-scm.com/downloads/
guis

[71] L. Voinea, A. C. Telea, and J. J. van Wijk, “Cvsscan: Visualization of code evolution,” in
Proc. of the ACM Symp. on Software Visualization, ser. SoftVis ’05. New York, NY, USA:
ACM, 2005, pp. 47–56. [Online]. Available: http://dx.doi.org/10.1145/1056018.1056025

http://dx.doi.org/10.1142/S0218194003001238
http://dx.doi.org/10.1145/165854.165919
http://dx.doi.org/10.1109/CSMR.2004.1281435
http://dx.doi.org/10.1109/ICPC.2007.39
http://dx.doi.org/10.1109/VISSOF.2007.4290699
http://dx.doi.org/10.1016/j.jss.2008.02.068
http://dx.doi.org/10.1006/jvlc.1995.1007
http://cvsgui.sourceforge.net/
http://tortoisesvn.net/
http://git-scm.com/downloads/guis
http://git-scm.com/downloads/guis
http://dx.doi.org/10.1145/1056018.1056025

170 BIBLIOGRAPHY

[72] Z. Liu, J. Stasko, and T. Sullivan, “Selltrend: Inter-attribute visual analysis of temporal
transaction data,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6,
pp. 1025–1032, 2009. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2009.180

[73] B. Alsallakh, E. Gröller, S. Miksch, and M. Suntinger, “Contingency wheel: Visual
analysis of large contingency tables,” in Proc. of the Int’l. Workshop on Visual
Analytics, ser. EuroVA ’11. Eurographics, 2011, pp. 53–56. [Online]. Available:
http://dx.doi.org/10.2312/PE/EuroVAST/EuroVA11/053-056

[74] C. Turkay, A. Lundervold, A. J. Lundervold, and H. Hauser, “Representative factor
generation for the interactive visual analysis of high-dimensional data,” IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2621–2630, dec. 2012. [Online].
Available: http://dx.doi.org/10.1109/TVCG.2012.256

[75] S. J. Fernstad and J. Johansson, “A task based performance evaluation of visualization
approaches for categorical data analysis,” in Proc. of the Int’l. Conf. on Information
Visualisation, ser. IV ’11, 15th. Washington, DC, USA: IEEE Computer Society Press, 2011,
pp. 80–89. [Online]. Available: http://dx.doi.org/10.1109/IV.2011.92

[76] E. R. Tufte, Envisioning Information, 4th ed. Graphics Press, 1990.

[77] J. S. Yi, Y. A. Kang, J. Stasko, and J. Jacko, “Toward a deeper understanding of
the role of interaction in information visualization,” IEEE Transactions on Visualization
and Computer Graphics, vol. 13, no. 6, pp. 1224–1231, Nov. 2007. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2007.70515

[78] J. M. Heer and B. Shneiderman, “Interactive dynamics for visual analysis,” Queue, vol. 10,
no. 2, pp. 30:30–30:55, Feb. 2012. [Online]. Available: http://dx.doi.org/10.1145/2133416.
2146416

[79] A. Kerren and F. Schreiber, “Toward the role of interaction in visual analytics,” in
Proc. of the Winter Simulation Conf., ser. WSC ’12, 2012, pp. 1–13. [Online]. Available:
http://dx.doi.org/10.1109/WSC.2012.6465208

[80] J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.

[81] J. Bertin, La graphique et le traitement graphique de l’information. Flammarion, 1977.

[82] F. van Ham, “Using multilevel call matrices in large software projects,” in Proc. of the
IEEE Symp. on Information Visualization, ser. InfoVis ’03, 9th, 2003, pp. 227–232. [Online].
Available: http://dx.doi.org/10.1109/INFVIS.2003.1249030

[83] J. Abello and F. van Ham, “Matrix zoom: A visual interface to semi-external graphs,” in
Proc. of the IEEE Symp. on Information Visualization, ser. InfoVis ’04, 10th, 2004, pp. 183–190.

[84] N. Henry, J.-D. Fekete, and M. McGuffin, “Nodetrix: a hybrid visualization of social
networks,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp.
1302–1309, 2007. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2007.70582

[85] N. Henry and J.-D. Fekete, “Matlink: Enhanced matrix visualization for analyzing
social networks,” in Human-Computer Interaction, ser. INTERACT ’07, Lecture Notes
in Computer Science, C. A. Baranauskas, P. Palanque, J. Abascal, and S. Barbosa,
Eds. Springer Berlin Heidelberg, 2007, vol. 4663, pp. 288–302. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74800-7 24

http://dx.doi.org/10.1109/TVCG.2009.180
http://dx.doi.org/10.2312/PE/EuroVAST/EuroVA11/053-056
http://dx.doi.org/10.1109/TVCG.2012.256
http://dx.doi.org/10.1109/IV.2011.92
http://dx.doi.org/10.1109/TVCG.2007.70515
http://dx.doi.org/10.1145/2133416.2146416
http://dx.doi.org/10.1145/2133416.2146416
http://dx.doi.org/10.1109/WSC.2012.6465208
http://dx.doi.org/10.1109/INFVIS.2003.1249030
http://dx.doi.org/10.1109/TVCG.2007.70582
http://dx.doi.org/10.1007/978-3-540-74800-7_24

BIBLIOGRAPHY 171

[86] R. Chang, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang, E. Suma, C. Ziemkiewicz, D. Kern,
and A. Sudjianto, “Wirevis: Visualization of categorical, time-varying data from financial
transactions,” in Proc. of the IEEE Symp. on Visual Analytics Science and Technology, ser. VAST
’07, 2007, pp. 155–162. [Online]. Available: http://dx.doi.org/10.1109/VAST.2007.4389009

[87] K. Dinkla, M. A. Westenberg, and J. J. van Wijk, “Compressed adjacency matrices:
Untangling gene regulatory networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2457–2466, 2012. [Online]. Available: http://dx.doi.org/10.
1109/TVCG.2012.208

[88] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “A comparison of the readability of graphs
using node-link and matrix-based representations,” in Proc. of the IEEE Symp. on Information
Visualization, ser. InfoVis ’04, 10th. Washington, DC, USA: IEEE Computer Society Press,
2004, pp. 17–24. [Online]. Available: http://dx.doi.org/10.1109/INFOVIS.2004.1

[89] ——, “On the readability of graphs using node-link and matrix-based representations: A
controlled experiment and statistical analysis,” Information Visualization, vol. 4, no. 2, pp.
114–135, Jul. 2005. [Online]. Available: http://dx.doi.org/10.1057/palgrave.ivs.9500092

[90] R. Rao and S. K. Card, “The table lens: Merging graphical and symbolic representations in
an interactive focus + context visualization for tabular information,” in Proc. of the ACM
SIGCHI Conf. on Human Factors in Computing Systems, ser. CHI ’94. New York, NY, USA:
ACM, 1994, pp. 318–322. [Online]. Available: http://dx.doi.org/10.1145/191666.191776

[91] P. Pirolli and R. Rao, “Table lens as a tool for making sense of data,” in Proc. of the ACM
Workshop on Advanced Visual Interfaces, ser. AVI ’96. New York, NY, USA: ACM, 1996, pp.
67–80. [Online]. Available: http://dx.doi.org/10.1145/948449.948460

[92] M. Sarkar and M. H. Brown, “Graphical fisheye views of graphs,” in Proc. of the ACM
SIGCHI Conf. on Human Factors in Computing Systems, ser. CHI ’92. New York, NY, USA:
ACM, 1992, pp. 83–91. [Online]. Available: http://dx.doi.org/10.1145/142750.142763

[93] T. Tenev and R. Rao, “Managing multiple focal levels in table lens,” in Proc. of the IEEE
Symp. on Information Visualization, ser. InfoVis ’97, 3rd, 1997, pp. 59–63. [Online]. Available:
http://dx.doi.org/10.1109/INFVIS.1997.636787

[94] A. C. Telea, “Combining extended table lens and treemap techniques for visualizing
tabular data,” in Proc. of the Joint Eurographics / IEEE VGTC Conf. on Visualization, ser.
EuroVis ’06, 8th. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2006,
pp. 51–58. [Online]. Available: http://dx.doi.org/10.2312/VisSym/EuroVis06/051-058

[95] S. K. Feiner and C. Beshers, “Worlds within worlds: Metaphors for exploring n-
dimensional virtual worlds,” in Proc. of the ACM Annual SIGGRAPH Symp. on User Interface
Software and Technology, ser. UIST ’90, 3rd. New York, NY, USA: ACM, 1990, pp. 76–83.
[Online]. Available: http://dx.doi.org/10.1145/97924.97933

[96] A. Inselberg, “Multidimensional detective,” in Proc. of the IEEE Symp. on Information
Visualization, ser. InfoVis ’97, 3rd, 1997, pp. 100–107. [Online]. Available: http:
//dx.doi.org/10.1109/INFVIS.1997.636793

[97] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner, “Interactive hierarchical
dimension ordering, spacing and filtering for exploration of high dimensional datasets,”
in Proc. of the IEEE Symp. on Information Visualization, ser. InfoVis ’03, 9th. Washington,
DC, USA: IEEE Computer Society Press, 2003, pp. 105–112. [Online]. Available:
http://dx.doi.org/10.1109/INFVIS.2003.1249015

http://dx.doi.org/10.1109/VAST.2007.4389009
http://dx.doi.org/10.1109/TVCG.2012.208
http://dx.doi.org/10.1109/TVCG.2012.208
http://dx.doi.org/10.1109/INFOVIS.2004.1
http://dx.doi.org/10.1057/palgrave.ivs.9500092
http://dx.doi.org/10.1145/191666.191776
http://dx.doi.org/10.1145/948449.948460
http://dx.doi.org/10.1145/142750.142763
http://dx.doi.org/10.1109/INFVIS.1997.636787
http://dx.doi.org/10.2312/VisSym/EuroVis06/051-058
http://dx.doi.org/10.1145/97924.97933
http://dx.doi.org/10.1109/INFVIS.1997.636793
http://dx.doi.org/10.1109/INFVIS.1997.636793
http://dx.doi.org/10.1109/INFVIS.2003.1249015

172 BIBLIOGRAPHY

[98] H. Hauser, F. Ledermann, and H. Doleisch, “Angular brushing of extended parallel
coordinates,” in Proc. of the IEEE Symp. on Information Visualization, ser. InfoVis ’02, 8th,
2002, pp. 127–130. [Online]. Available: http://dx.doi.org/10.1109/INFVIS.2002.1173157

[99] D. A. Keim and H.-P. Kriegel, “Visdb: database exploration using multidimensional
visualization,” IEEE Computer Graphics and Applications, vol. 14, no. 5, pp. 40–49, 1994.
[Online]. Available: http://dx.doi.org/10.1109/38.310723

[100] M. Friendly, “Visualizing categorical data: Data, stories, and pictures,” in Proc. of the SAS
User Group Conf., 2000.

[101] ——, “Extending mosaic displays: Marginal, conditional, and partial views of categorical
data,” Journal of Computational and Graphical Statistics, vol. 8, pp. 373–395, 1999. [Online].
Available: http://dx.doi.org/10.1080/10618600.1999.10474820

[102] E. Kolatch and B. Weinstein. (2001) Cattrees: Dynamic visualization of categorical
data using treemaps. [Online]. Available: http://www.cs.umd.edu/class/spring2001/
cmsc838b/Project/Kolatch Weinstein/index.html

[103] B. Johnson and B. Shneiderman, “Tree-maps: a space-filling approach to the
visualization of hierarchical information structures,” in Proc. of the IEEE Conf.
on Visualization, ser. VIS ’91, 2nd, 1991, pp. 284–291. [Online]. Available: http:
//dx.doi.org/10.1109/VISUAL.1991.175815

[104] R. Kosara, F. Bendix, and H. Hauser, “Parallel sets: interactive exploration and visual
analysis of categorical data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 4, pp. 558–568, 2006. [Online]. Available: http://dx.doi.org/10.1109/TVCG.
2006.76

[105] T. Mihalisin, J. Timlin, and J. Schwegler, “Visualization and analysis of multi-variate data:
A technique for all fields,” in Proc. of the IEEE Conf. on Visualization, ser. VIS ’91, 2nd. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1991, pp. 171–178. [Online]. Available:
http://dx.doi.org/10.1109/VISUAL.1991.175796

[106] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: a system for query, analysis,
and visualization of multidimensional relational databases,” IEEE Transactions on
Visualization and Computer Graphics, vol. 8, no. 1, pp. 52–65, 2002. [Online]. Available:
http://dx.doi.org/10.1109/2945.981851

[107] J. D. Mackinlay, P. Hanrahan, and C. Stolte, “Show me: Automatic presentation for visual
analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp.
1137–1144, Nov. 2007. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2007.70594

[108] J. W. Emerson, W. A. Green, B. Schloerke, J. Crowley, D. Cook, H. Hofmann, and
H. Wickham, “The generalized pairs plot,” Journal of Computational and Graphical Statistics,
vol. 22, no. 1, pp. 79–91, 2013. [Online]. Available: http://dx.doi.org/10.1080/10618600.
2012.694762

[109] P. Joia, F. V. Paulovich, D. Coimbra, J. A. Cuminato, and L. G. Nonato, “Local affine
multidimensional projection,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2563–2571, 2011. [Online]. Available: http://dx.doi.org/10.1109/
TVCG.2011.220

http://dx.doi.org/10.1109/INFVIS.2002.1173157
http://dx.doi.org/10.1109/38.310723
http://dx.doi.org/10.1080/10618600.1999.10474820
http://www.cs.umd.edu/class/spring2001/cmsc838b/Project/Kolatch_Weinstein/index.html
http://www.cs.umd.edu/class/spring2001/cmsc838b/Project/Kolatch_Weinstein/index.html
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://dx.doi.org/10.1109/TVCG.2006.76
http://dx.doi.org/10.1109/TVCG.2006.76
http://dx.doi.org/10.1109/VISUAL.1991.175796
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/TVCG.2007.70594
http://dx.doi.org/10.1080/10618600.2012.694762
http://dx.doi.org/10.1080/10618600.2012.694762
http://dx.doi.org/10.1109/TVCG.2011.220
http://dx.doi.org/10.1109/TVCG.2011.220

BIBLIOGRAPHY 173

[110] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz, “Least square projection: A
fast high-precision multidimensional projection technique and its application to document
mapping,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 3, pp.
564–575, 2008. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2007.70443

[111] W. Cui, Y. Wu, S. Liu, F. Wei, M. Zhou, and H. Qu, “Context preserving dynamic word
cloud visualization,” in Proc. of the IEEE Pacific Visualization Symp., ser. PacificVis ’10, 2010,
pp. 121–128. [Online]. Available: http://dx.doi.org/10.1109/PACIFICVIS.2010.5429600

[112] C. Faloutsos and K.-I. Lin, “Fastmap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets,” ACM SIGMOD Record, vol. 24, no. 2,
pp. 163–174, may 1995. [Online]. Available: http://dx.doi.org/10.1145/568271.223812

[113] F. V. Paulovich, C. T. Silva, and L. G. Nonato, “Two-phase mapping for projecting massive
data sets,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp.
1281–1290, 2010. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2010.207

[114] J. Poco, D. M. Eler, F. V. Paulovich, and R. Minghim, “Employing 2d projections for
fast visual exploration of large fiber tracking data,” Computer Graphics Forum, vol. 31,
no. 3pt2, pp. 1075–1084, 2012. [Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.
2012.03100.x

[115] A. Cauchy, “Sur l’equation a l’aide de laquelle on determine les inegalites seculaires des
mouvements des planetes,” Oeuvres Completes (2eme serie), vol. 4, pp. 174–195, 1829.

[116] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,”
Philosophical Magazine Series 6, vol. 2, no. 11, pp. 559–572, 1901. [Online]. Available:
http://dx.doi.org/10.1080/14786440109462720

[117] H. Hotteling, “Analysis of a complex of statistical variables into principal components,”
Journal of Educational Psychology, vol. 24, no. 6, pp. 417–441, 1933. [Online]. Available:
http://dx.doi.org/10.1037/h0071325

[118] H. O. Hirschfeld, “A connection between correlation and contingency,” Mathematical Proc.
of the Cambridge Philosophical Society, vol. 31, pp. 520–524, 10 1935. [Online]. Available:
http://dx.doi.org/10.1017/S0305004100013517

[119] J. P. Benzecri and L. Bellier, L’analyse des donnees, 2nd ed. Paris, France: Dunod, 1976.

[120] K. R. Gabriel, “The biplot graphic display of matrices with application to principal
component analysis,” Biometrika, vol. 58, no. 3, pp. 453–467, 1971. [Online]. Available:
http://biomet.oxfordjournals.org/content/58/3/453

[121] M. J. Greenacre, Biplots in Practice. Fundación BBVA, 2010.

[122] J. C. Gower, S. G. Lubbe, and N. J. L. Roux, Understanding Biplots. Wiley, 2011.

[123] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000. [Online]. Available:
http://dx.doi.org/10.1126/science.290.5500.2323

[124] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for
nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.
[Online]. Available: http://dx.doi.org/10.1126/science.290.5500.2319

http://dx.doi.org/10.1109/TVCG.2007.70443
http://dx.doi.org/10.1109/PACIFICVIS.2010.5429600
http://dx.doi.org/10.1145/568271.223812
http://dx.doi.org/10.1109/TVCG.2010.207
http://dx.doi.org/10.1111/j.1467-8659.2012.03100.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03100.x
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1017/S0305004100013517
http://biomet.oxfordjournals.org/content/58/3/453
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1126/science.290.5500.2319

174 BIBLIOGRAPHY

[125] V. de Silva and J. B. Tenenbaum, “Global versus local methods in nonlinear dimensionality
reduction,” in NIPS, S. Becker, S. Thrun, and K. Obermayer, Eds. MIT Press, 2002, pp.
705–712.

[126] S. Lee and S. Choi, “Landmark {MDS} ensemble,” Pattern Recognition, vol. 42, no. 9, pp.
2045–2053, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.patcog.2008.11.039

[127] U. Brandes and C. Pich, “Eigensolver methods for progressive multidimensional scaling
of large data,” in Graph Drawing, ser. Lecture Notes in Computer Science, M. Kaufmann
and D. Wagner, Eds. Springer Berlin Heidelberg, 2007, vol. 4372, pp. 42–53. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-70904-6 6

[128] E. R. Gansner, Y. Koren, and S. North, “Graph drawing by stress majorization,” in
Graph Drawing, ser. Lecture Notes in Computer Science, J. Pach, Ed. Springer Berlin
Heidelberg, 2005, vol. 3383, pp. 239–250. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-31843-9 25

[129] J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Transactions on
Computers, vol. C-18, no. 5, pp. 401–409, 1969.

[130] M. M. Bronstein, A. M. Bronstein, R. Kimmel, and I. Yavneh, “Multigrid multidimensional
scaling,” Numerical Linear Algebra with Applications, vol. 13, pp. 149–171, 2006. [Online].
Available: http://dx.doi.org/10.1002/nla.475

[131] E. Pekalska, D. de Ridder, R. P. W. Duin, and M. A. Kraaijveld, “A new method of gener-
alizing sammon mapping with application to algorithm speed-up,” in Proc. of the Annual
Conf. of the Advanced School for Computing and Imaging, ser. ASCI ’99, 5th, vol. 99, 1999, pp.
221–228.

[132] P. A. Eades, “A heuristic for graph drawing,” in Congressus Numerantium, vol. 42, 1984, pp.
149–160.

[133] M. Chalmers, “A linear iteration time layout algorithm for visualising high-dimensional
data,” in Proc. of the IEEE Conf. on Visualization, ser. VIS ’96, 7th, 1996, pp. 127–131.
[Online]. Available: http://dx.doi.org/10.1109/VISUAL.1996.567787

[134] Y. Frishman and A. Tal, “Multi-level graph layout on the gpu,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1310–1319, 2007. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2007.70580

[135] S. Ingram, T. Munzner, and M. Olano, “Glimmer: Multilevel mds on the gpu,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 15, no. 2, pp. 249–261, 2009.

[136] F. Jourdan and G. Melançon, “Multiscale hybrid mds,” in Proc. of the Int’l. Conf. on Informa-
tion Visualisation, ser. IV ’04, 8th, 2004, pp. 388–393.

[137] E. Tejada, R. Minghim, and L. G. Nonato, “On improved projection techniques to support
visual exploration of multi-dimensional data sets,” Information Visualization, vol. 2, no. 4,
pp. 218–231, 2003. [Online]. Available: http://dx.doi.org/10.1057/palgrave.ivs.9500054

[138] A. Frank and A. Asuncion. (2010) UCI machine learning repository. [Online]. Available:
http://archive.ics.uci.edu/ml

http://dx.doi.org/10.1016/j.patcog.2008.11.039
http://dx.doi.org/10.1007/978-3-540-70904-6_6
http://dx.doi.org/10.1007/978-3-540-31843-9_25
http://dx.doi.org/10.1007/978-3-540-31843-9_25
http://dx.doi.org/10.1002/nla.475
http://dx.doi.org/10.1109/VISUAL.1996.567787
http://dx.doi.org/10.1109/TVCG.2007.70580
http://dx.doi.org/10.1057/palgrave.ivs.9500054
http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 175

[139] T. Baudel, “Browsing through an information visualization design space,” in Extended
Abstracts of the ACM SIGCHI Conf. on Human Factors in Computing Systems, ser.
CHI EA ’04. New York, NY, USA: ACM, 2004, pp. 765–766. [Online]. Available:
http://dx.doi.org/10.1145/985921.985925

[140] ——, “Visualizing business rule management system artifacts.” IBM, IBM Center for Ad-
vanced Studies, Paris, France, Tech. Rep., 2009.

[141] B. Shneiderman. (2009) Treemaps for space-constrained visualization of hierarchies.
[Online]. Available: http://www.cs.umd.edu/hcil/treemap-history/

[142] (1998) Map of the market. SmartMoney.com. [Online]. Available: http://smartmoney.
com/marketmap

[143] (2010) Superpower: Visualising the internet. BBC. [Online]. Available: http://news.bbc.
co.uk/2/hi/technology/8562801.stm

[144] (2007) Health of the car, van, suv, and truck markets. The New York Times.
[Online]. Available: http://www.nytimes.com/imagepages/2007/02/25/business/
20070225 CHRYSLER GRAPHIC.html

[145] M. Bruls, K. Huizing, and J. J. van Wijk, “Squarified treemaps,” in Data Visualization, ser.
Eurographics, W. Leeuw and R. Liere, Eds. Springer Vienna, 2000, pp. 33–42. [Online].
Available: http://dx.doi.org/10.1007/978-3-7091-6783-0 4

[146] W. Buxton, “Chunking and phrasing and the design of human-computer dialogues,” in
Proc. of the IFIP World Computer Congress. North Holland Publishers, 1986, pp. 475–480.

[147] N. Kong, J. M. Heer, and M. Agrawala, “Perceptual guidelines for creating rectangular
treemaps,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp.
990–998, 2010. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2010.186

[148] B. Otjacques, M. Cornil, M. Noirhomme, and F. Feltz, “Cgd – a new algorithm to optimize
space occupation in ellimaps,” in Human-Computer Interaction, ser. INTERACT ’09, Lecture
Notes in Computer Science, T. Gross, J. Gulliksen, P. Kotzé, L. Oestreicher, P. Palanque,
R. Prates, and M. Winckler, Eds., vol. 5727. Springer Berlin Heidelberg, 2009, pp. 805–818.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-03658-3 84

[149] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps for the visualization
of software metrics,” in Proc. of the ACM Symp. on Software Visualization, ser.
SoftVis ’05. New York, NY, USA: ACM, 2005, pp. 165–172. [Online]. Available:
http://dx.doi.org/10.1145/1056018.1056041

[150] J. M. Heer and M. Agrawala, “Software design patterns for information visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 853–860, 2006.
[Online]. Available: http://dx.doi.org/10.1109/TVCG.2006.178

[151] T. Baudel, “Visualisations compactes: Une approche déclarative pour la visualisation
d’information,” in Proc. of the French-speaking Conf. on Human-computer Interaction
(Conférence Francophone Sur L’Interaction Homme-Machine), ser. IHM ’02, 14th. New
York, NY, USA: ACM, 2002, pp. 161–168. [Online]. Available: http://dx.doi.org/10.1145/
777005.777027

[152] M. Friendly, “A brief history of the mosaic display,” Journal of Computational
and Graphical Statistics, vol. 11, pp. 89–107, mar 2002. [Online]. Available: http:
//dx.doi.org/10.1198/106186002317375631

http://dx.doi.org/10.1145/985921.985925
http://www.cs.umd.edu/hcil/treemap-history/
http://smartmoney.com/marketmap
http://smartmoney.com/marketmap
http://news.bbc.co.uk/2/hi/technology/8562801.stm
http://news.bbc.co.uk/2/hi/technology/8562801.stm
http://www.nytimes.com/imagepages/2007/02/25/business/20070225_CHRYSLER_GRAPHIC.html
http://www.nytimes.com/imagepages/2007/02/25/business/20070225_CHRYSLER_GRAPHIC.html
http://dx.doi.org/10.1007/978-3-7091-6783-0_4
http://dx.doi.org/10.1109/TVCG.2010.186
http://dx.doi.org/10.1007/978-3-642-03658-3_84
http://dx.doi.org/10.1145/1056018.1056041
http://dx.doi.org/10.1109/TVCG.2006.178
http://dx.doi.org/10.1145/777005.777027
http://dx.doi.org/10.1145/777005.777027
http://dx.doi.org/10.1198/106186002317375631
http://dx.doi.org/10.1198/106186002317375631

176 BIBLIOGRAPHY

[153] D. A. Keim, M. C. Hao, and U. Dayal, “Hierarchical pixel bar charts,” IEEE Transactions
on Visualization and Computer Graphics, vol. 8, no. 3, pp. 255–269, 2002. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2002.1021578

[154] M. Zizi and M. Beaudouin-Lafon, “Accessing hyperdocuments through interactive
dynamic maps,” in Proc. of the ACM European Conf. on Hypermedia Technology, ser.
ECHT ’94. New York, NY, USA: ACM, 1994, pp. 126–135. [Online]. Available:
http://dx.doi.org/10.1145/192757.192786

[155] B. B. Bederson, B. Shneiderman, and M. Wattenberg, “Ordered and quantum
treemaps: Making effective use of 2d space to display hierarchies,” ACM Transactions
on Graphics, vol. 21, no. 4, pp. 833–854, Oct. 2002. [Online]. Available: http:
//dx.doi.org/10.1145/571647.571649

[156] J. Wood and J. Dykes, “Spatially ordered treemaps,” IEEE Transactions on Visualization
and Computer Graphics, vol. 14, no. 6, pp. 1348–1355, 2008. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2008.165

[157] M. de Berg, K. Onak, and A. Sidiropoulos, “Fat polygonal partitions with applications to
visualization and embeddings,” Computing Research Repository, vol. abs/1009.1866, 2010.
[Online]. Available: http://arxiv.org/abs/1009.1866

[158] K. Onak and A. Sidiropoulos, “Circular partitions with applications to visualization
and embeddings,” in Proc. of the ACM Annual Symp. on Computational Geometry, ser.
SCG ’08, 24th. New York, NY, USA: ACM, 2008, pp. 28–37. [Online]. Available:
http://dx.doi.org/10.1145/1377676.1377683

[159] H.-J. Schulz, S. Hadlak, and H. Schumann, “The design space of implicit hierarchy
visualization: A survey,” IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 4, pp. 393–411, 2011. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2010.79

[160] R. Vliegen, J. J. van Wijk, and E.-J. van der Linden, “Visualizing business data with
generalized treemaps,” IEEE Transactions on Visualization and Computer Graphics, vol. 12,
no. 5, pp. 789–796, 2006. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2006.200

[161] E. H. Chi and J. Riedl, “An operator interaction framework for visualization systems,” in
Proc. of the IEEE Symp. on Information Visualization, ser. InfoVis ’98, 4th, 1998, pp. 63–70.
[Online]. Available: http://dx.doi.org/10.1109/INFVIS.1998.729560

[162] J. Bertin, Semiology of graphics. University of Wisconsin Press, 1983.

[163] L. Wilkinson, The Grammar of Graphics (Statistics and Computing). Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2005.

[164] H. Wickham and H. Hofmann, “Product plots,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 12, pp. 2223–2230, 2011. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2011.227

[165] A. Slingsby, J. Dykes, and J. Wood, “Configuring hierarchical layouts to address research
questions,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp.
977–984, 2009. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2009.128

[166] H.-J. Schulz, Z. Akbar, and F. Maurer, “A generative layout approach for rooted tree
drawings,” in Proc. of the IEEE Pacific Visualization Symp., ser. PacificVis ’13. IEEE, Feb.
2013, pp. 225–232. [Online]. Available: http://dx.doi.org/10.1109/PacificVis.2013.6596149

http://dx.doi.org/10.1109/TVCG.2002.1021578
http://dx.doi.org/10.1145/192757.192786
http://dx.doi.org/10.1145/571647.571649
http://dx.doi.org/10.1145/571647.571649
http://dx.doi.org/10.1109/TVCG.2008.165
http://arxiv.org/abs/1009.1866
http://dx.doi.org/10.1145/1377676.1377683
http://dx.doi.org/10.1109/TVCG.2010.79
http://dx.doi.org/10.1109/TVCG.2006.200
http://dx.doi.org/10.1109/INFVIS.1998.729560
http://dx.doi.org/10.1109/TVCG.2011.227
http://dx.doi.org/10.1109/TVCG.2009.128
http://dx.doi.org/10.1109/PacificVis.2013.6596149

BIBLIOGRAPHY 177

[167] J. Larus, “Efficient program tracing,” Computer, vol. 26, no. 5, pp. 52–61, 1993.

[168] R. Smith and B. Korel, “Slicing event traces of large software systems,” arXiv preprint
cs/0101005, 2001. [Online]. Available: http://arxiv.org/abs/cs/0101005

[169] A. Zaidman, “Scalability solutions for program comprehension through dynamic
analysis,” in Proc. of the European Conf. on Software Maintenance and Reengineering, ser.
CSMR ’06, 10th, 2006, pp. 4 pp.–330. [Online]. Available: http://dx.doi.org/10.1109/
CSMR.2006.46

[170] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van Wijk, J.-D. Fekete,
and D. Fellner, “Visual analysis of large graphs: State-of-the-art and future research
challenges,” Computer Graphics Forum, vol. 30, no. 6, pp. 1719–1749, 2011. [Online].
Available: http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x

[171] A. Chniti, P. Albert, and J. Charlet, “Mdrontology: An ontology for managing ontology
changes impacts on business rules,” in CEUR Workshop proceedings. Joint Workshop on Knowl-
edge Evolution and Ontology Dynamics. In conjunction with Int’l. Semantic Web Conf. (ISWC).,
2012.

[172] D. Reniers, L. Voinea, and A. C. Telea, “Visual exploration of program structure,
dependencies and metrics with solidsx,” in Proc. of the IEEE Int’l. Workshop on Visualizing
Software for Understanding and Analysis, ser. VISSOFT ’11, 6th, 2011, pp. 1–4. [Online].
Available: http://dx.doi.org/10.1109/VISSOF.2011.6069461

[173] B. Broeksema and A. Telea, “Visual support for porting large code bases,” in Proc. of the
IEEE Int’l. Workshop on Visualizing Software for Understanding and Analysis, ser. VISSOFT ’11,
6th, 2011, pp. 1–8. [Online]. Available: http://dx.doi.org/10.1109/VISSOF.2011.6069450

[174] T. Baudel and F. van Ham, “Rule correlation to rules input attributes according to disparate
distribution analysis,” US Patent US20 130 103 636 A1, 04 25, 2013.

[175] ——, “Contextual feedback of rules proximity based upon co-occurence history in a collab-
orative rule editing system,” US Patent US20 130 073 512 A1, 03 21, 2013.

[176] H. Abdi and D. Valentin, Encyclopedia of Measurement and Statistics. Thousand Oaks (CA),
2007, ch. Multiple Correspondence Analysis, pp. 651–657.

[177] M. Tenenhaus and F. W. Young, “An analysis and synthesis of multiple correspondence
analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for
quantifying categorical multivariate data,” Psychometrika, vol. 50, no. 1, pp. 91–119, 1985.
[Online]. Available: http://dx.doi.org/10.1007/BF02294151

[178] P. Bourdieu, La distinction: Critique sociale du jugement, ser. Collection ”Le Sens commun”.
Éditions de Minuit, jan 1979.

[179] H. Abdi and L. J. Williams, Encyclopedia of Research Design. Thousand Oaks, 2010, ch.
Correspondence Analysis, pp. 267–278.

[180] H. Abdi, Encyclopedia of Measurement and Statistics. Thousand Oaks, 2010, ch. Singular
Value Decomposition and Generalized Singular Value Decomposition, pp. 907–912.

[181] S. Johansson, M. Jern, and J. Johansson, “Interactive quantification of categorical variables
in mixed data sets,” in Proc. of the Int’l. Conf. on Information Visualisation, ser. IV ’08, 12th,
2008, pp. 3–10. [Online]. Available: http://dx.doi.org/10.1109/IV.2008.33

http://arxiv.org/abs/cs/0101005
http://dx.doi.org/10.1109/CSMR.2006.46
http://dx.doi.org/10.1109/CSMR.2006.46
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x
http://dx.doi.org/10.1109/VISSOF.2011.6069461
http://dx.doi.org/10.1109/VISSOF.2011.6069450
http://dx.doi.org/10.1007/BF02294151
http://dx.doi.org/10.1109/IV.2008.33

178 BIBLIOGRAPHY

[182] C. A. Brewer and M. Harrower. (2011) Color Brewer 2.0. http://colorbrewer2.org.

[183] A. C. Telea and J. J. van Wijk, “Visualization of Generalized Voronoi Diagrams,” in Data
Visualization, ser. Eurographics, D. Ebert, J. Favre, and R. Peikert, Eds. Springer Vienna,
2001, pp. 165–174. [Online]. Available: http://dx.doi.org/10.1007/978-3-7091-6215-6 18

[184] N. H. Riche, B. Lee, and C. Plaisant, “Understanding interactive legends: a comparative
evaluation with standard widgets,” Computer Graphics Forum, vol. 29, no. 3, pp. 1193–1202,
2010. [Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.2009.01678.x

[185] S. Oeltze, H. Doleisch, H. Hauser, P. Muigg, and B. Preim, “Interactive visual analysis of
perfusion data,” Visualization and Computer Graphics, IEEE Transactions on, vol. 13, no. 6,
pp. 1392–1399, 2007. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2007.70569

[186] B. Shneiderman, “The eyes have it: a task by data type taxonomy for information
visualizations,” in Proc. of the IEEE Symp. on Visual Languages, 1996, pp. 336–343. [Online].
Available: http://dx.doi.org/10.1109/VL.1996.545307

[187] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler, “Challenges in visual data
analysis,” in Proc. of the Int’l. Conf. on Information Visualisation, ser. IV ’06, 10th, 2006, pp.
9–16. [Online]. Available: http://dx.doi.org/10.1109/IV.2006.31

[188] G. H. Golub and C. F. van Loan, Matrix computations (3rd ed.). Baltimore, MD, USA: Johns
Hopkins University Press, 1996.

[189] E. Bertini and G. Santucci, “By chance is not enough: preserving relative density through
nonuniform sampling,” in Proc. of the Int’l. Conf. on Information Visualisation, ser. IV ’04, 8th,
2004, pp. 622–629.

[190] R. van Liere and W. de Leeuw, “Graphsplatting: visualizing graphs as continuous fields,”
IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 2, pp. 206–212, 2003.

[191] (2013) Apache solr. The Apache Software Foundation. [Online]. Available: lucene.apache.
org/solr

[192] B. Broeksema, A. C. Telea, and T. Baudel, “Visual analysis of multi-dimensional categorical
data sets,” Computer Graphics Forum, vol. 32, no. 8, pp. 158–169, 2013. [Online]. Available:
http://dx.doi.org/10.1111/cgf.12194

[193] D. L. Post and F. A. Greene, “Color-name boundaries for equally bright stimuli on a crt:
Phase i,” SID Digest, vol. 86, pp. 70–73, 1986.

[194] C. Healey, “Choosing effective colours for data visualization,” in Proc. of the IEEE
Conf. on Visualization, ser. VIS ’96, 7th, 1996, pp. 263–270. [Online]. Available:
http://dx.doi.org/10.1109/VISUAL.1996.568118

[195] M. A. Harrower and C. A. Brewer, “Colorbrewer.org: An online tool for selecting color
schemes for maps,” Cartographic Journal, vol. 40, pp. 27–37, 2003.

[196] C. Ware and J. C. Beatty, “Using color dimensions to display data dimensions,” Human
Factors: The Journal of the Human Factors and Ergonomics Society, vol. 30, no. 2, pp. 127–142,
1988. [Online]. Available: http://dx.doi.org/10.1177/001872088803000201

[197] J.-D. Fekete and C. Plaisant, “Excentric labeling: Dynamic neighborhood labeling for
data visualization,” in Proc. of the ACM SIGCHI Conf. on Human Factors in Computing
Systems, ser. CHI ’99. New York, NY, USA: ACM, 1999, pp. 512–519. [Online]. Available:
http://dx.doi.org/10.1145/302979.303148

http://dx.doi.org/10.1007/978-3-7091-6215-6_18
http://dx.doi.org/10.1111/j.1467-8659.2009.01678.x
http://dx.doi.org/10.1109/TVCG.2007.70569
http://dx.doi.org/10.1109/VL.1996.545307
http://dx.doi.org/10.1109/IV.2006.31
lucene.apache.org/solr
lucene.apache.org/solr
http://dx.doi.org/10.1111/cgf.12194
http://dx.doi.org/10.1109/VISUAL.1996.568118
http://dx.doi.org/10.1177/001872088803000201
http://dx.doi.org/10.1145/302979.303148

BIBLIOGRAPHY 179

[198] J. Christensen, J. Marks, and S. Shieber, “An empirical study of algorithms for point-feature
label placement,” ACM Transactions on Graphics, vol. 14, no. 3, pp. 203–232, jul 1995.
[Online]. Available: http://dx.doi.org/10.1145/212332.212334

[199] K. Been, E. Daiches, and C. Yap, “Dynamic map labeling,” IEEE Transactions on
Visualization and Computer Graphics, vol. 12, no. 5, pp. 773–780, 2006. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2006.136

[200] M. Fink, J.-H. Haunert, A. Schulz, J. Spoerhase, and A. Wolff, “Algorithms for labeling
focus regions,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp.
2583–2592, 2012. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2012.193

[201] B. Shneiderman and H. Kang, “Direct annotation: a drag-and-drop strategy for labeling
photos,” in Proc. of the Int’l. Conf. on Information Visualisation, ser. IV ’00, 4th, 2000, pp.
88–95. [Online]. Available: http://dx.doi.org/10.1109/IV.2000.859742

[202] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal
of Machine Learning Research, vol. 3, pp. 1157–1182, Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944968

[203] C. Schmid, Statistical Graphics: Design Principles and Practices, ser. A Wiley-Interscience pub-
lication. John Wiley & Sons Australia, Limited, 1983.

[204] W. S. Cleveland, The elements of graphing data. Belmont, CA, USA: Wadsworth Publ. Co.,
1985.

[205] E. R. Tufte, The visual display of quantitative information. Cheshire, CT, USA: Graphics Press,
1986.

[206] S. Kosslyn, Graph Design for the Eye and Mind. Oxford University Press, USA, 2006.

[207] W. Tobler, “Thirty five years of computer cartograms,” Annals of the Association of American
Geographers, vol. 94, pp. 58–73, 2004.

[208] P. Isenberg, A. Bezerianos, P. Dragicevic, and J.-D. Fekete, “A study on dual-scale data
charts,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp.
2469–2478, 2011. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2011.160

[209] G. W. Furnas, “Generalized fisheye views,” in Proc. of the ACM SIGCHI Conf. on Human
Factors in Computing Systems, ser. CHI ’86. New York, NY, USA: ACM, 1986, pp. 16–23.
[Online]. Available: http://dx.doi.org/10.1145/22627.22342

[210] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose, “Toolglass and magic lenses:
The see-through interface,” in Proc. of the ACM Annual Conf. on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’93, 20th. New York, NY, USA: ACM, 1993, pp.
73–80. [Online]. Available: http://doi.acm.org/10.1145/166117.166126

[211] A. Martin and M. Ward, “High dimensional brushing for interactive exploration of
multivariate data,” in Proc. of the IEEE Conf. on Visualization, ser. VIS ’95, 6th, 1995, pp.
271–. [Online]. Available: http://dx.doi.org/10.1109/VISUAL.1995.485139

[212] W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” Journal
of the American Statistical Association, vol. 74, pp. 829–836, 1979. [Online]. Available:
http://dx.doi.org/10.1080/01621459.1979.10481038

[213] (2013) Dojo toolkit. The Dojo Foundation. [Online]. Available: dojotoolkit.org

http://dx.doi.org/10.1145/212332.212334
http://dx.doi.org/10.1109/TVCG.2006.136
http://dx.doi.org/10.1109/TVCG.2012.193
http://dx.doi.org/10.1109/IV.2000.859742
http://dl.acm.org/citation.cfm?id=944919.944968
http://dx.doi.org/10.1109/TVCG.2011.160
http://dx.doi.org/10.1145/22627.22342
http://doi.acm.org/10.1145/166117.166126
http://dx.doi.org/10.1109/VISUAL.1995.485139
http://dx.doi.org/10.1080/01621459.1979.10481038
dojotoolkit.org

180 BIBLIOGRAPHY

[214] M. Bostock. (2013) D3.js data-driven documents. [Online]. Available: www.d3js.org

[215] E. Barse, H. Kvarnstrom, and E. Jonsson, “Synthesizing test data for fraud detection
systems,” in Proc. of the Annual Computer Security Applications Conf., ser. ACSA ’03, 19th,
2003, pp. 384–394. [Online]. Available: http://dx.doi.org/10.1109/CSAC.2003.1254343

[216] D. R. Jeske, B. Samadi, P. J. Lin, L. Ye, S. Cox, R. Xiao, T. Younglove, M. Ly, D. Holt, and
R. Rich, “Generation of synthetic data sets for evaluating the accuracy of knowledge dis-
covery systems,” in Proc. of the ACM Int’l. Conf. on Knowledge discovery in data mining, ser.
KDD ’05, 11th. New York, NY, USA: ACM, 2005, pp. 756–762.

[217] P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske, S. Cox, C. Rendon, D. Holt, and R. Xiao,
“Development of a synthetic data set generator for building and testing information
discovery systems,” in Proc. of the Int’l. Conf. on Information Technology: New Generations,
ser. ITNG ’06, 3rd. Washington, DC, USA: IEEE Computer Society Press, 2006, pp.
707–712. [Online]. Available: http://dx.doi.org/10.1109/ITNG.2006.51

[218] K. Houkjær, K. Torp, and R. Wind, “Simple and realistic data generation,” in Proc. of the
Int’l. Conf. on Very Large Data Bases, ser. VLDB ’06, 32nd. VLDB Endowment, 2006, pp.
1243–1246. [Online]. Available: http://dl.acm.org/citation.cfm?id=1182635.1164254

[219] M. A. Whiting, W. Cowley, J. Haack, D. Love, S. Tratz, C. Varley, and K. Wiessner, “Threat
stream data generator: Creating the known unknowns for test and evaluation of visual
analytics tools,” in Proc. of the ACM AVI Workshop on BEyond Time and Errors: Novel
Evaluation Methods for Information Visualization, ser. BELIV ’06. New York, NY, USA:
ACM, 2006, pp. 1–3. [Online]. Available: http://dx.doi.org/10.1145/1168149.1168166

[220] J. Heer and M. Agrawala, “Design considerations for collaborative visual analytics,”
Information Visualization, vol. 7, no. 1, pp. 49–62, 2008. [Online]. Available: http:
//dx.doi.org/10.1057/palgrave.ivs.9500167

[221] J. M. Heer, “Supporting asynchronous collaboration for interactive visualization,” Ph.D.
dissertation, University of California at Berkeley, Berkeley, CA, USA, 2008, aAI3353319.

[222] B. Lin, W.-S. Ho, B. Kao, and C.-K. Chui, “Adaptive frequency counting over bursty data
streams,” in Proc. of the IEEE Symp. on Computational Intelligence and Data Mining, ser. CIDM
’07, 2007, pp. 516–523. [Online]. Available: http://dx.doi.org/10.1109/CIDM.2007.368918

[223] Q. He, K. Chang, and E.-P. Lim, “Using burstiness to improve clustering of topics in news
streams,” in Proc. of the IEEE Int’l. Conf. on Data Mining, ser. ICDM ’07, 7th, 2007, pp.
493–498. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2007.17

[224] Y. Li, X. Lv, and H. Wang, “A dynamic burst detection model over data streams,” in Proc.
of the Int’l. Conf. on Mechanic Automation and Control Engineering, ser. MACE ’11, 2nd, 2011,
pp. 7100–7103. [Online]. Available: http://dx.doi.org/10.1109/MACE.2011.5988686

www.d3js.org
http://dx.doi.org/10.1109/CSAC.2003.1254343
http://dx.doi.org/10.1109/ITNG.2006.51
http://dl.acm.org/citation.cfm?id=1182635.1164254
http://dx.doi.org/10.1145/1168149.1168166
http://dx.doi.org/10.1057/palgrave.ivs.9500167
http://dx.doi.org/10.1057/palgrave.ivs.9500167
http://dx.doi.org/10.1109/CIDM.2007.368918
http://dx.doi.org/10.1109/ICDM.2007.17
http://dx.doi.org/10.1109/MACE.2011.5988686

	Summary
	List of figures
	List of tables
	List of listings
	Acknowledgements
	Introduction
	Automating business decisions
	Thesis Problem and Approach
	Thesis Contributions
	Analytics contributions
	Technical contributions

	Thesis Outline

	Decision Management Systems
	Applications of DMSs
	Scenario: Car insurance request processing
	Decision Models
	Domain model
	Business logic

	Decision execution
	Modeling business activity
	Analytics requirements
	Users
	Tasks
	Data
	Relation to research questions

	Similarities and differences with program comprehension
	Summary

	Related work
	Decision Support
	Human decision-making support
	Automatic decision-making support
	Decision outcome analysis

	Program Comprehension
	Structure
	Behavior
	Evolution
	Conclusion

	Visual analytics techniques
	Visualization techniques for multivariate data
	Visualization techniques for categorical data
	Dimensionality reduction
	Conclusion

	Information Visualization for Decision Management Systems
	Treemaps
	Motivation
	Problem statement
	Related work on rectangular layouts
	Design Space
	Phrase
	Algorithm
	Layout parameters
	Structuring
	Conclusion

	Rule Execution Visualization
	Visualizing rule execution graphs
	Conclusion

	Change Impact
	Visualizing domain model change impact
	Related applications

	Conclusion

	Visual Analytics for Decision Management Systems
	Early analytic approaches
	Input attributes important for rule
	Rule co-occurrence
	Discussion

	Analyzing business case and decision data
	High dimensional categorical data
	Analyzing categorical data: Multiple Correspondence Analysis
	MCA Visualization pipeline
	Interpretation challenges
	Visualization overview
	Discussion

	Rule Triggering Analysis
	What are interesting rules?
	Generalizing the problem

	Conclusion

	Decision Exploration Lab: an exploratory environment for Decision Management Systems
	Architecture
	Verbal mode
	Querying and filtering

	Visual decision exploration
	Dimensions view
	Analyzing Categorical Data
	Decision map
	Coloring
	Interaction
	Rule trigger view

	Visualization refinements
	Labels
	Scales

	Implementation
	Conclusion

	Evaluation
	What does it take to evaluate an exploratory system for DMS
	Data generation
	Preliminary user study
	Car insurance scenario
	Story 1: Why fewer than expected people are eligible
	Story 2: Why expensive cars get low quotes

	Conclusion and further evaluation

	Conclusion
	Review of thesis contributions
	Limitations and future work directions
	DMS specific refinements
	Visualization refinements
	Collaborative analysis and knowledge engineering.
	Time analysis
	Relational attributes

	Closing remarks

	List of own publications
	Curriculum Vitae
	User Evaluation of the MCAView visual analysis tool
	Preliminaries
	Way of working
	Introduction
	Data presentation
	Visualization presentation
	Assignment
	Experience sharing

	Assignment
	Q4: General questions

	Results
	Q1
	Q2
	Q3
	Q4
	Threats to validity

	Bibliography

