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Abstract. We discuss several models of learning object representations...

1 Introduction

The image of an object depends on many imaging factors such as lighting condi-

tions, viewpoint, articulation and geometric deformations of the object, albedo

of the object, and whether it is partially occluded by other objects. It is therefore

necessary to design object representions which capture all the image variations

caused by these factors. Such representations can then be used for object detec-

tion and recognition.

We believe that realistic representions of objects will require models which

can synthesize the image of an object for all possible values of the imaging factors.

Such an approach has long been advocated by people inuenced by Bayesian

probability theory [8]. This approach has some similarities to \appearance based

models" [23] but, as we will argue in the next section, there are some important

di�erences.4

We propose to learn these representations from examples. Learning from ex-

amples allows us the possibility of representing objects which are too complicated

for current modelling systems. If statistical techniques are used this allows us to

concentrate on the important characteristics of the data and ignore unimportant

details. For example, aspect graphs [18] give an elegant way of characterizing the

di�erent views of objects. But for many objects, they are di�cult to calculate

and hard to use. By contrast, the statistical methods used in [23] are able to

recognize certain objects from di�erent viewpoints using simpler techniques. It

seems therefore, that some of the complexities of the aspect graph representation

are unnecessary, at least for some classes of objects.

We argue that it is important to model the variations of all the factors af-

fecting the image independently and explicitly. This will allow the object repre-

sentations to be more general, suitable for more complicated objects, and more

easy to generalize to new instances. For example, the appearance based match-

ing algorithm of Murase and Nayar [23] is highly successful within its choosen

domain of simple rigid objects but its avoidance of geometric and reectance

4 Alternative approaches, such as extracting invariant features, [22] may only be ap-

plicable to limited classes of objects such as industrial parts.



models means that it could be fooled by simply repainting one of the learned

objects. The new (repainted) object would then have to be learnt again, requir-

ing a costly training procedure. Similar problems would arise if the object is

allowed to deform geometrically.

Modelling variations explicitly also makes it easy to incorporate prior knowl-

edge about the object class into the learning procedure. If the object class is

known, and explicit models are used, then far less training data will be needed.

It appears that humans can make use of this type of class speci�c knowledge

in order to generalize rapidly from one instance of an object [21]. In related

work, we are exploring whether our models can account for these and other

psychophysical experiments.

In this paper, therefore, we will describe methods for learning the geometry

and reectance functions of objects from one of more images of the object. We

assume �xed pose but vary the lighting conditions5. For this paper we assume

Lambertian reectance functions with non-constant albedo, but we are currently

generalizing our work to other types of relectance models.

We describe mechanisms for learning the shape, reectance, and albedo of

an object with or without the use of class speci�c knowledge. In particular, we

make use of the surface integrability constraint and discover a close relation

between the bas relief ambiguity and integrability. We illustrate the usefulness

of our representions by synthesizing images. In related work, Belhumeur and

Kriegman [2] characterize the set of images that can be generated by using

Lambertian models, of the type we learn here, and give further examples of

image synthesis.

Our approach makes use of singular value decomposition (SVD) which has

previous been applied to the related problem of photometric stereo by Hayakawa

[13]. For Lambertian sources with a single illuminant, SVD allows one to estimate

shape, albedo, and lighting conditions up to an unknown 3� 3 constant matrix,

which we call the A matrix. We observe that the technique described in [13]

only determines A up to an unknown rotation matrix which is assumed equal to

the identity matrix. We prove that this assumption is valid for certain types of

stimuli but will be incorrect for others. However, we demonstrate that a variety of

general purpose and/or class speci�c assumptions, including surface integrability,

can be used to determine the A matrix uniquely. Moreover, it can be shown [2]

that the set of allowable images of the object (from �xed viewpoint) can be

determined without knowing A.

2 Appearance Based Models and Image Synthesis

To set our work in context, it is important to describe how it relates to other

work on image synthesis and the inuential work on appearance based models

[23].

Appearance based models (ABM's) of objects are learned by applying princi-

pal component analysis (PCA) to a representative dataset of images of an object.

5 An extension to variable pose is described in Epstein and Yuille (in preparation).



For certain classes of objects, this produces a low-dimensional suspace which cap-

tures most of the variance of the dataset. The object can then be represented

by a manifold de�ned in this low-dimensional space. The position of the image

on this manifold will depend on the lighting and viewpoint conditions. An input

image, or subpart of an image, can be matched to the appearence manifold and

hence recognized. This approach is extremely successful within speci�c domains.

It is interesting to contrast ABM's with image synthesis models of the type

that we use in this paper. Our approach requires specifying a representation for

the object and an imaging model. The representation model should be exible

enough to deal with all the variations described previously { due to lighting,

articulation, geometric deformations, etc. The imaging model enables us to syn-

thesize an image of the object. The representation and imagingmodels are learnt

by statistical techniques from samples of the data.

Synthesis models and ABM's are similar in two important respects. Firstly,

unlike many (most) current object recognition systems, they do not �rst extract

sparse features, such as edges, from the image (see [9]). However, the word \ap-

pearance" in ABM's is slightly misleading because the ABM's only model the

appearance of the object within the low dimensional subspace. They ignore all

image variations that project outside this subspace. The synthesis models, by

contrast, generate all possible image variations. Secondly, both synthesis mod-

els and ABM's are statistical with their models being generated by the data.

This makes them more robust with respect to noise which can destroy more

deterministic modelling approaches such as geometric invariants [22].

From our viewpoint, however, the ABM's are limited because they do not

represent variables like shape and lighting explicitly. It is straightforward to

adapt synthesis models to take into account geometrical deformations or to add

paint onto the surface of an object. But an ABM would have to learn all such

changes from scratch. Similar problems would also apply in the related eigenface

approach [27] where the eigenfaces combine albedo, lighting, and geometrical

changes, but represent none of them explicity. Like ABM's this approach involves

projecting the image onto a low-dimensional space and ignoring anything that

lies outside this space.

Indeed, both eigenfaces and ABM's can be considered to be feature based

methods where the features are extracted by applying linear �lters determined

by PCA. It can be argued [3] that if the goal is discrimination between objects,

rather than representation, then better linear �lters can be used based on Fisher's

linear discriminant. PCA projects into the subspace which captures most of the

variance between objects. By contrast, Fisher's linear discriminant [7] projects

into the subspace which maximizes the variation between di�erent objects. This

can be illustrated by considering applying both techniques to a set of faces in

which a small subclass of people have glasses. The PCA approach would tend

to project onto a subspace which ignores the glasses (because they appear in

two few samples to signi�cantly a�ect the variance). By contrast, Fisher's linear

discriminant would project into a subspace which included the glasses because

they would be powerful cues for distinguishing between people.



A more explicit way of modelling faces occurs in [4] where the eigenfaces are

considered to be principal components of the albedoes of faces. Two-dimensional

geometrical distortions are applied to allow for changes in viewpoint and expres-

sion. These deformations occur by warping a set of feature points, corresponding

to the facial features, and interpolating the warp over the rest of the face.

Lighting variations are also handled explicity by a related model by Hallinan

[12] which is able to recognize faces under highly variable lighting conditions

and to distinguish reliably between faces and non-faces. Lighting variations are

represented by a linear combination of lighting basis images obtained from PCA.

To model geometric changes, Hallinan [12] uses two-dimensional image warps.

Though this not an explicit model of surface geometry, it can be shown that the

spatial warps correspond to warps of the surface normal vectors of the underlying

three dimensional shape [29]. It is therefore straightforward to recompute the

surfaces from the warps. Hallinan's lighting models were the starting point for

this current work and we will return to them later in the paper.

Another model, that uses image synthesis and explicit representations is the

face recognition system reported in [1]. This face model uses three dimensional

geometry and a Lambertian imagingmodel. By using a dataface of face geometry,

obtained by laser scanning, a strong prior distribution for the shape of faces is

obtained. Using this prior the three dimensional geometry of the face can be

estimated from a single image. However, the types of geometric models used in

this system are somewhat limited and only apply to objects made of single parts,

such as faces. For objects with several articulating parts more sophisticated

geometrical models should be used, perhaps of the type described in [31].

3 The Lambertian Model and Lighting Basis Functions

Suppose we pick an object and �x its pose and articulation. Then the principle

of superposition ensures that the set of images of the object, as the lighting

varies, lies within a linear space6. How does this obervation relate to reectance

function models of image formation?

The most used reectance model is the Lambertain model [14] which is often

written as:

I(x; y) = a(x; y)n(x; y) � s � b(x; y) � s; (1)

where a(x; y) is the albedo of the object, n(x; y) is its surface normal, b(x; y) �

a(x; y)n(x; y) and s is the light source direction (the light is assumed to be at

in�nity). If this equation applies then it is clear [26],[28],[25] [20], that the space

of images of the object, as the light source direction changes, spans a three

dimensional subspace. In other words, any image of the object can be expressed

as:

I(x; y) =

3X
i=1

�ibi(x; y); (2)

6 In fact it can shown to lie within a convex cone inside this linear space [2]



for some coe�cients f�ig, where i labels the vector components. This is a linear

subspace model of image formation.

Equation (1), however, has several limitations. It ignores attached shadows

(where b(x; y)�s � 0), cast shadows, and partial shadows (where there are several

light sources and the light from some of them are shadowed). It also ignores

intereections. When these e�ects are taken into account, the dimensionality of

the image space rises enormously [2]. Moreover, the model ignores specularities

and will break down if the light source is close to the object. These limitations

mean that caution is necessary when using this model.

Alternatively, motivated by the principle of superposition, one can try to

analyze the empirical structure of the set of possible images . In a series of em-

pirical studies [11], [5] principal component analysis (PCA) was used to analyze

the space of images generated by one object at �xed pose with varying lighting

conditions. The lighting conditions were sampled evenly on the view hemisphere,

so the dataset included extreme lighting con�gurations. The experimental results

showed that 5 � 2 eigenvalues were typically enough to account for most of the

variance. For faces, the percentage of variance covered by the �rst �ve eigneval-

ues was approximately 90 %. For objects which were highly specular (such as a

helmet) or with many shadows (such as an arti�cial parrot) the percentage de-

creased. Nevertheless, the specularities and shadows, though perceptually very

saliant, contributed little to the variance. In addition, Hallinan [11] showed that

if di�erent faces were aligned geometrically, using a�ne transformations, then

the �rst �ve eigenvalues still captured approximately 90 % of the variance.

These results meant that for each object we could approximate the image

space by a linear combination of the �rst �ve eignevectors or lighting basis func-

tions. In other words an image of the object, under �xed viewpoint, could be

expressed as:

IM (x; f�ig) =

5X
i=1

�iBi(x); (3)

where the fBi(:)g are the lighting basis functions (i.e. the �rst �ve principal

components), and the f�ig are the coe�cients (which depend on the speci�c

lighting conditions).

If this number of coe�cients is set equal to three then this would be similar

to the Lambertian linear model, see equation (2). Indeed it was observed that

the �rst three lighting basis functions usually corresponded to the image lit from

in front, from the side, and from above. This is explained by our later analysis,

see section ??.

The empirical linear subspace model, see equation (3), was used by Hallinan

[12] to successfully model lighting variation. Such models are attractive but

they do have several limitations: albedo and shading information is combined

indiscriminantly and there is no explicit 3-D model. (Although, under certain

circumstances [29] it does allow recovery of the three-dimensional shape.)

For reasons described above, we would prefer a more explicit representation

based on three-dimensional shape and albedo. We argue, therefore, that the



success of the linear subspace results suggest that Lambertian models are a good

approximation to a number of real objects. Indeed, it was conjectured [5]that

the �rst three principal components of this space correspond to Lambertian

illumination of the object and higher order principal components dealt with

specularities and sharp shadows.

4 Learning the Models

Our approach consists of learning models of the objects { their surface geometry

and albedo { using variants of the Lambertian model which make it robust to

shadows and specularities. This is done with four di�erent schemes.

Suppose we have a set of images of an object illuminated by M di�erent

point light sources. We denote these light sources by fs(�) : � = 1; :::;Mg. The

resulting images are represented by fI(p; �) : � = 1; :::;M p = 1; :::; Pg where

the index p labels the pixels of the image (these pixels lie on a two dimensional

grid but it is convenient to represent them as a vector).

Our �rst scheme assumes that we have multiple images of the object7 and the

light sources are known. This is of least interest since it is a strong assumption

and corresponds to standard photometric stereo [26, 28, 14, 17], though with

nonconstant albedo. We investigated this scheme mainly to test the Lambertian

asumptions about our data. We concluded that the model is a good approxima-

tion though robust techniques are needed to reduce the inuence of shadows and

specularities.

If, however, there are multiple unknown light sources then we show that SVD

can be applied (see also [13]) to simultaneously estimate the surface geometry

and albedo up to a 3�3 linear transformation, theAmatrix. This transformation

arises due to an ambiguity in the Lambertian equation (1). This is because for

any arbitrary invertible linear transformation A:

b � s = bT s = bTAA�1s: (4)

Our second learning scheme, follows from this result and the proof in [2] that

the set of images of the object are independent of the precise value of A provided

the objects are viewed from front on. This means that it unecessary to estimate

A. Our second scheme, therefore consists merely of applying SVD to the input

data and thereby generating the light cone representation described in [2].

For our third learning scheme, we demonstrate that the A matrix can be re-

covered by using the surface integrability constraint and the assumption that we

either have an image of the object under ambient lighting, or that the sampling

set of lighting conditions allows us to generate one. We compare our assumptions

to those of [13] and prove that his method relies on an, unstated, assumption

about the dataset which will often not be valid. In addition, we describe a new

perceptual ambiguity related to the integrability constraint. This scheme results

in the full albedo and three-dimensional shape of the object.

7 Fixed pose and varying illumination.



In our fourth learning scheme, we consider the use of prior knowledge about

the class of the viewed object. We demonstrate that A can be learnt by merely

assuming that we know a prototype object of that class. Not suprising, if the

object class is known then fewer images are needed to learn the object model.

This seems to agree with current psychophysical results [21].

4.1 Learning the Models with known light source direction

Suppose we assume that the light source vectors fs(�) : � = 1; :::;Mg are known.

This is true for our dataset because the images have been gathered under con-

trolled conditions.

We can formulate estimating shape and albedo as a least squares optimization

problem:

E[b;V ] =
X
�;p

V (p; �)fI(p; �)�
X
i

bi(p)si(�)g
2 (5)

where V (p; �) is a binary indicator function whose value is 1 if point p is not in

shadow, or have a specularity, under lighting condition �, and is zero otherwise.

The arguments of the energy function { b; s; V { represent the sets fb(p) :

p = 1; :::; Pg; fs(�) : � = 1; :::;Mg, and fV (p; �) : p = 1; :::; P � = 1; :::;Mg

respectively.

We observe that the energy can be written as the sum of P independent en-

ergies Ep[b(p); fV (p; �) : � = 1; :::;Mg] =
P

� V (p; �)fI(p; �)�
P

i bi(p)si(�)g
2.

These energy functions Ep (p = 1; :::; P ) are all quadratic in b and so they can

be minimized by linear algebra provided the V are speci�ed. This allows us to

estimate the surface normal and albedo at all points p independently.

We �rst assume that there are no specularities or shadows, in other words

we set V (p; �) = 1; 8 p; �. This gives the results shown in �gures (1, 2). This is

equivalent to the photometric stereo techniques described in [26], [28], [14].

Fig. 1. The albedo and normals estimated directly assuming known light source direc-
tions and without using robust techniques to remove specularities and shadows. The

leftmost image is the albedo, the next three images are the z, x, and y components of the

surface normal respectively. Observe that the estimated albedo appears to get darker
near the boundaries of the face causing the albedo image to appear to be non-at. This

is due to failure to treat the shadows correctly.



Fig. 2. The surface computed from the normals in the previous �gure. The face appears

attened. This is because the algorithm's failure to remove shadows means that it

underestimates the albedo in shaded regions and correspondingly makes the surface
atter.

These results are reasonable but close inspection shows that the estimated

albedo becomes darker towards the boundaries of the face, see �gure (1), and the

shape of the face is attened, see �gure (2). This is because the algorithm knows

nothing about shadows and tries to model them as regions of dark albedo. This in

turn causes the shape to appear too frontoparallel. We conclude that the object

is approximately Lambertian but that it also has shadows and specularities.

We observe, however, that specularities are bright, shadows are dark, and

a point will tend to be in shadow or specular only for a limited set of lighting

directions. Thus if we histogram the intensity values at a single image point, as

it is illuminated from many directions, the brightest and darkest points will tend

to be specularities and shadows8.

Thus we can remove most of the e�ects of shadows and specularities by

plotting the histogram, see �gure (3), and set V = 0 for the bottom �1% and

top �2 %. If �1 and �2 are su�ciently large (say 30%) then we set V = 0 for

the remaining data (which we now assume is purely Lambertian).

We now minimize the Ep again using linear algebra. The results are signi�-

cantly improved, see �gures (4, 5). Observe that the albedo image in �gure (4)

appears to be much atter, suggesting that we have removed much of the e�ects

of the shadows. This is further supported by the surface plot, see �gure (5), which

is no longer foreshortened { compare with �gure (2). Thus eliminating the shad-

ows by pruning the histogram gives us signi�cantly more uniform albedoes on

the skin and a more accurately estimated shape.

Alternatively, instead of eliminating the top �2% and the bottom �1% of

fI(p; �) : � = 1; :::;Mgwe could instead eliminate all intensities below a shadow

threshold and above a specularity threshold. Or, we could do residual analysis

to check whether the intensities thrown away correspond to true shadows or

8 Ideally perfect shadows would have zero intensity, but our light sources are not true

point sources and there was some ambient light present when our database was

collected.
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Fig. 3. Histograms for two pixels on the bridge and the side of the nose, locations

shown in the left image by the two black dots. The middle image shows the histogram

for the pixel on the bridge of the nose. This pixel was never in shadow so there is no
peak in the histogram for small intensity values (corresponding to shadows). The right

image shows the histogram for the pixel on the side of the nose. This pixel was often in

shadow and so its histogram has a peak at low intensity values. Note that background
ambient illumination prevents the shadows from being perfectly dark.

Fig. 4. The albedos and normals calculated directly. Residuals at low intensity values

< 70 have been removed.

Fig. 5. Surface computed from normals above.



Fig. 6. This �gure shows the extent to which each pixel was thresholded. Pixel bright-
ness corresponds to the number of images in which the pixel was over threshold. Hence,

dark pixels were thresholded out (considered in shadow) more. Observe that points will

low albedos, such as the irises of the eyes, are overrepresented.

specularities. We can use our estimate b�(p) to predict what the intensities would

be for those cases. Those light source con�gurations for which the predictions

agree with the observed intensities are no longer assumed to be due to shadows,

or specularities, and so are used to make a second estimate of b(p). This process

can be repeated.

4.2 Light Source Direction Unknown: Using SVD to estimate

surface properties and light source directions up to a linear

transformation.

It is unrealistic to assume that the light source directions will be given. Thus

we need a method which can estimate them and the surface properties simul-

taneously. In other words, we need to minimize the energy function E[b; s] =P
�;pfI(p; �) �

P3
i=1 bi(p)si(�)g

2 as a function of b and s. Fortunately mini-

mization of this function, up a linear transform, can be done using singular

value decomposition (SVD). This has been �rst applied to photometric stereo in

[13].

Observe that the intensities fI(�; p)g can be expressed as a M �P matrix J.

Similarly we can express the surface properties fbi(p)g as a P � 3 matrix B and

the light sources fsi(�)g as a 3�M matrix S. SVD implies that we can write J

as:

J = U�VT ; (6)

where � is a diagonal matrix whose elements are the square roots of the eigen-

values of JJT (or equivalently of JTJ). The columns of U correspond to the

normalized eigenvectors of the matrix JTJ. The ordering of these columns cor-

responds to the ordering of the eigenvalues in �. Similarly, the columns of V

correspond to the eigenvectors of JJT .

If our image formation model is correct then there will only be three nonzero

eigenvalues of JJT and so � will have only three nonzero elements. We do not

expect this to be true for our dataset because of shadows, specularities, and

noise. But SVD is guaranteed to gives us the best least squares solution in any



case. Thus the biggest three eigenvalues of �, and the corresponding columns

of U and V represent the Lambertian part of the reectance function of these

objects. We de�ne the vectors ff (�) : � = 1; :::;Mg to be the �rst three columns

of U and the fe(p) : p = 1; :::; Pg to be the �rst three columns of V.

This assumption enables us to use SVD to solve for B and S up to a linear

transformation. The solution is:

s(�) = Pf (�); 8 �;

b(p) = Qe(p); 8 p; (7)

where P and Q are 3� 3 matrices which are constrained to satisfy PTQ = �3,

where �3 is the 3� 3 diagonal matrix containing the square roots of the biggest

three eigenvalues of JJT . There is an ambiguityP 7! AP; Q 7! A�1 TQ where

A is an arbitrary invertible matrix.

This means we can determine fsg and fbg up a linear transform. It can

be shown [2] that this is su�cient to recognize objects from front-on under

arbitrary illumination. To verify that these linear subspaces are correct we use

our knowledge of the light source directions to determine the P and Q matrices

(i.e. we use least squares to solve s(�) = Pf (�); 8 � for P.) The resulting

albedos and surface normals are shown in �gure (7). The results are similar to

those obtained by using knowledge of the light source directions directly. They

appear slightly better than the results without residuals, �gure (1), and slightly

worse than the results with residuals, �gure (4). This is explained because the

SVD approach is inherently robust to outliers.

Fig. 7. Albedo and normals calculated directly from SVD using known light source

directions to estimate the linear transformations.

4.3 Estimating the linear transformations.

We would like, however, to estimate the true geometry and albedo because this

would enable us to predict how the object changes as the viewpoint varies (and

to deal with cast shadows). The next subsection discusses ways to use additional

information can be used to determine the linear transformation and hence to

determine the surface albedo and shape.



Objects of Unknown Class Suppose we have an object of unknown class

and we wish to determine the A matrix.

One plausible assumption is that we have an estimate of the object's albedo.

This might consist of an additional image of the object taken under ambient

lighting conditions9. Alternatively we can assume that the light source directions

sample the view hemisphere and so, by taking the mean of our dataset we get

an approximation to an ambient image of the object. It should be emphasized

that this estimated albedo need only be very approximate.

We use the mean of our dataset to estimate the albedo. This means that,

using Equation (7), for each point p in the image we have a constraint on the

linear transformations:

a(p)2 = eT (p)PTPe(p); 8 p = 1; :::; P: (8)

We impose these constraints using a least squares goodness of �t criterion.

This can be solved using SVD to estimate PTP. This yields PTP = WMWT ,

where M is diagonal. We then estimate P� = M1=2W which is correct up to

rotation.

We note that Hayakawa assumes that this rotation matrix is the identity [13].

It can be shown, however, that this is not always the case. Indeed, see section 8,

it can be shown to hold if the matrices
P

p bi(p)bj(p) and
P

� si(�)sj(�) are

both diagonal. But, for example, it does not hold if
P

� si(�)sj(�) is diagonal

but
P

p bi(p)bj(p) is not. The condition that these matrices are both diagonal

can be traced to symmetry assumptions about the dataset. It is straightforward

to generate situations for which they fail. Interestingly, the conditions that these

matrices are diagonal is also precisely the condition required to ensure that

Hallinan's �rst three eigenvectors point along the axes of the cartesian coordinate

system. Hallinan also worked with data that had a high degree of symmetry

(although perfect symmetry will introduce degeneracy and so spoil this e�ect {

for example, see the ball in [5].) For more details, see section 8.

Fortunately, however, this rotation ambiguity can be cured by using the sur-

face integrability constraint, see section 5. The results shown in �gures (8,9) are

consistent with integrability.

Objects of Known Class We can use knowledge about the class of the

object to determine the linear transformations P and Q, and hence determine

the surface properties and the light sources uniquely.

To do this all we need is a b(p) vector from a prototype member of the

class. For example, we assume that we know bPr(p) for a prototype face Pr.

Then when we get the data for a new face image we will estimate its P and Q

matrices by assuming that it has the same surface properties as the prototype.

Thus we estimate P by minimizing:X
p

jbPr(p)� Pe(p)j
2
; (9)

9 Recall that the image of an object under ambient lighting conditions is given by the

albedo [14]



Fig. 8. Albedos and normals calculated from eigenvectors. We used the mean of the
dataset as an initial estimate of albedo. The matrix P

0
P is then calculated from

a
2(x) = e

0(x)P 0
Pe(x)8x. SVD on P

0
P gives P 0

P = W �M � W
0, M diagonal. We

then take, as an estimate of P , P � = sqrt(M) � U . This is correct up to rotation. In
the above results, we take the rotation matrix to be the identity and check consistency

with integrability.

Fig. 9. Surface computed from normals above.

where the e(p) are computed from the new dataset. We are minimizinga quadratic

function of P so the result, P�, can be obtained by linear algebra.

We now solve for the surface properties using:

b(p) = P�e(p); 8 p: (10)

Observe that the prototype is used merely in conjunction with the dataset to

solve for the 3�3 matrix P. Our results demonstrate that the surface properties

computed using this assumption are good.

This result has used prior knowledge about object class in the simplest pos-

sible form { a prototype model. More sophisticated class knowledge, such as a

prior probability distribution for shapes and albedoes, would lead to improved

results.



Fig. 10. Albedos and normals calculated for a new subject using the results shown in

�gure 7 as a prototype.

5 Surface Integrability

The surface integrability constraint requires that the normal vectors are consis-

tent with a surface (for a discussion, see [15].) It puts restrictions on the set of

normals vectors but it is not su�cient to determine the surface uniquely. We

will show that for Lambertian objects with unknown albedo this leads to an

ambiguity including scaling in depth.

The unit normals n(x) = (n1(x); n2(x); n3(x)) of a surface must obey the

following surface integrability constraint to ensure that they form a consistent

surface:
@

@y

n1(x)

n3(x)
=

@

@x

n2(x)

n3(x)
: (11)

This constraint is a necessary and su�cient condition and can be derived

from the fact that any surface can be locally parameterized as z = f(x; y) with

normals of form:

n(x) =
1

frf �rf + 1g(1=2)
(f ;�1): (12)

It is straightforward to see that the vector b(x) = a(x)n(x) also satis�es the

same constraint { i.e. we can replace (n1=n3) and (n2=n3) by (b1=b3) and (b2=b3)

in the constraint equations.

Now recall that the linear algebra in the previous section determined the

b(x) up to an unknown linear transformation determined by the P matrix.

The surface integrability constraint will partially determine the P matrix. It

is straightforward to show, and to verify, that the only linear transformations

which preserve the integrability constraint are:

b1(x) 7! �b1(x) + �b3(x);

b2(x) 7! �b2(x) + �b3(x);

b3(x) 7! �b3(x): (13)

Observe that there is a constant scaling factor in this transformation which

can never be determined (a dark surface lit with a bright light is indistinguishable

from light surface lit by a dark light) so we could set � = 1 without loss of

generality.



If the A matrix is known up to a rotation ambiguity, as in section ??, then

integrability determines the remaining part of the transformation.

Moreover,- if the albedo is known to be constant, then the class of transfor-

mations are reduced to the well known convex/concave (or light up/light down)

ambiguity well known in the psychophysics literature. This is because the re-

quirement that b(x) has constant magnitude (independent of x) puts further

restrictions on the transformation.

Thus for objects with unknown albedo, we get a class of perceptual ambigui-

ties corresponding to the transformations given in equation (13). To understand

these ambiguities we let the transformed surface be represented by z = �f (x; y).

It is straightforward calculus to see that:

�f (x; y) = �f(x; y) + �x+ �y: (14)

In other words, the ambiguity consistent with the integrability constraint

consists of scaling the depth by a factor � and adding a planar surface z =

�x + �y. Interestingly, it has been reported [19], that humans appear to di�er

in their judgement of shape from shading by a scaling in the z direction. This

connection is being explored in our current work.

If we have isolated objects with nice occluding boundaries then the boundary

conditions will require that � = � = 0. If we view the object through an aperture,

so that the boundaries are invisible, then we cannot impose this requirement and

so there will be greater ambiguity.We are mainly concerned with isolated objects

so we will assume that � = � = 0 unless we specify otherwise.

Thus we see that the integrability constraints reduces the ambiguity in re-

constructing the surface but it does not eliminate it altogether. To solve the

problem uniquely we must impose additional constraints.

6 Learning an Object from a Single View

In previous sections we developed methods for learning object models assuming

that we have multiple images of the object. In practice, however, we may only

have one image of each object. Moreover, it is important to know how much we

can learn about an object from a single image.

A single image, however, gives us little information about the object. Recall

that, assuming Lambertian models, we can express the image as I(x) = b(x) � s

where b(x) and s are unknown. This equation, without additional assumptions,

is not su�cient to determine b(x) and s10. To make progress we must use knowl-

edge about the class of the object. One way to do this would be to do statistics

on the class of objects to develop a prior distribution for them[1]. Instead we

will determine techniques for learning object models making as few assumptions

as possible about the object class. Our assumptions are: (i) a prototype model,

bp(x), for the class, and (ii) symmetry assumptions about the object.

10 Current shape from shading algorithms usually assume known light source and con-

stant albedo.



For faces the symmetry assumption is valid and we can select a prototype

head from our database. It is convenient to use as a prototype one of our pre-

viously learnt models shown in �gures (8,9). The algorithm proceeds in several

stages.

Stage I. We use the prototype model to estimate the light source direction.

More precisely, we solve for:

s� = argmin
s

Z
dx jI(x)� bp(x) � sj

2
: (15)

Stage II. The symmetry assumption. We assume that the object is symmetric

across the y-axis at x = 0. This means that we can express the model as:

�
b1(x; y); b2(x; y); b3(x; y)

�
=
�
h1(x; y); h2(x; y); h3(x; y)

�
; x � 0;�

b1(x; y); b2(x; y); b3(x; y)
�
=
�
� h1(�x; y); h2(�x; y); h3(�x; y)

�
; x � 0; (16)

where
�
h1(x; y); h2(x; y); h3(x; y)

�
represents the right half of the face.

By using the image of the left and the right part of the face we can observe

s1h1(x; y) + s2h2(x; y) + s3h3(x; y) and �s1h1(x; y) + s2h2(x; y) + s3h3(x; y).

Therefore, using the fact that we know s from Stage I, we know s1h1(x; y) and

s2h2(x; y) + s3h3(x; y). Thus we know two components of h(x; y). It remains to

determine the third component �s3h2(x; y)+s2h3(x; y). Of course, this requires

that neither s1 = 0 nor s2 = s3 = 0. So the lighting cannot be purely front-on

or purely from the x-direction.

Stage III. To determine the third component { �s3h2(x; y)+ s2h3(x; y) { we

make use of the integrability constraint and, if necessary, the prior model. The

integrability constraint is:

@

@x

h2(x; y)

h3(x; y)
=

@

@y

h1(x; y)

h3(x; y)
; 8x; y: (17)

Multiplying this equation by h23(x; y) and expanding it gives:

h3(x; y)
@

@x
h2(x; y)�h2(x; y)

@

@x
h3(x; y) = h3(x; y)

@

@y
h1(x; y)�h1(x; y)

@

@y
h3(x; y):

(18)

We de�ne two new vectors p2(x; y) (known) and p3(x; y) (unknown) by:

p2(x; y) =
s2h2(x; y) + s3h3(x; y)

(s22 + s23)
; p3(x; y) =

�s3h2(x; y) + s2h3(x; y)

(s22 + s23)
;

h2(x; y) = s2p2(x; y) � s3p3(x; y); h3(x; y) = s3p2(x; y) + s2p3(x; y):(19)

Then we express integrability by de�ning a function K(x; y):

K(x; y) = (s22 + s23)p3(x; y)
@p2(x; y)

@x
� (s22 + s23)p2(x; y)

@p3(x; y)

@x

�
�
s3p2(x; y) + s2p3(x; y)

�@h1(x; y)
@y

+ h1(x; y)
@
�
s3p2(x; y) + s2p3(x; y)

�
@y

;(20)



and requiring that K(x; y) = 0 8 (x; y).

Observe that this constraint is linear in the unknown variable p3(x; y) and

we have one constraint for each position (x; y). Thus there may be su�cient

information in these constraints to determine p3(x; y) uniquely, although possibly

there are some linear dependencies between the constraints which would prevent

uniqueness. It therefore seems wise to impose these constraints by least squares

{ i.e. write a quadratic cost function for p3(x; y) by summing the squares of

K(x; y) over (x; y) { and add an additional prior term. This gives an energy

function:

E[P3] =

Z
dxK2(x) + �

Z
dxfp3(x; y)�

1

(s22 + s23)

�
�s3h

p
2(x; y) + s2h

p
3(x; y)

�
g
2;

(21)

where � is a constant and h
p
2(x; y); h

p
3(x; y) are the y and z components of the

prototype model for the right half of the face.

This completes the three stages. Results are shown in �gures (11, 12,13).

Fig. 11. Left { the original input image. Center { the estimate of p3. Right { the

estimate of the albedo.

Fig. 12. Estimated b vectors of the face.



Fig. 13. Estimated normals of the face.

7 Object Synthesis

This section briey shows how to peform recognition by using our learned ob-

ject models to synthesize images. The methods used are described in [2] which

includes further examples.

We �rst learned the illumination subspace for each face in the database,

by determining b� up to the A matrix. We then presented the algorithm with

input images of the faces in the database seen under di�erent lighting condi-

tions. The algorithm estimates the best lighting conditions for generating the

input assuming a Lambertian model { this is done by �nding s� to minimizeP
x;yfI(x; y) � b�(x; y) � sg2 { and then synthesizes the image using s�. The

algorithm appeared to have no problem in estimating the correct lighting and

in synthesizing an image similar to the input, even if the input image was taken

under novel lighting conditions and included shadows and specularities, see �g-

ures (14,15,16).

Figure (14) shows some of the images used to construct the model. Fig-

ure (15) shows four of the input images to the system and �gure (16) shows the

result of using the algorithm to obtain synthesized images closest to the cor-

responding inputs. Observe that the synthesized images are similar except for

certain shadows and specularities which cannot be synthesized using a purely

Lambertian model. Although these shadows and specularities are perceptually

salient, they are small in the least squares sense and do not prevent the light

sources from being estimated accurately.

8 Mathematical Analysis of the SVD approach

We now mathematically analyze the SVD method to prove two claims we made

earlier in section 4.3. The �rst concerns Hayakawa's assumption that a speci�c

rotation ambiguity in SVD can be resolved by setting the rotation to be the

identity. The second involves the observation that Hallinan's �rst three eigen-

vectors point along the axes of the cartesian coordinate system. We will show

that these claims are closely related and depend on the symmetry of the dataset.

Let us assume that the data is generated by a true Lambertian surface. In

other words, that the input image set fI(p; �)g can be expressed as:



Fig. 14. Five of the original images used to construct the basis.

Fig. 15. Four of the input images used to test the the �tting algorithm.

Fig. 16. The synthesized images corresponding to the input images in the previous
�gure. They are found by �rst estimating the best principal light source direction and

then reconstructing the best �t. Note that estimate of the best light source direction

is found only up to an arbitrary invertible linear transformation.



I(p; �) =

3X
i=1

bi(p)si(�); (22)

where fbi(p)g and fsi(�)g are the true albedo, shape and lighting.

We can reformulate equations 6,7 in coordinate terms as:

bi(p) =
X
j

Pijej(p) 8 i; p;

si(�) =
X
j

Qijfj(�); 8 i; �; (23)

where the e and f obey the eigenvectors equations:

X
�0

f

X
p

I(p; �)I(p; �0)gfi(�
0 = �ifi(�); 8 i; �

X
p0

f

X
p

I(p; �)I(p0; �)gei(p
0 = �iei(p); 8 i; p; (24)

and the matrices P and Q are constrained to satisfy:

PTQ = D; (25)

where D is a diagonal matrix whose diagonal elements are �
1=2
1 ; �

1=2
2 ; �

1=2
3 .

We can now state the following theorems:

Theorem 1. If the light sources in the dataset are such that
P

� si(�)sj(�) =

�ij , where �ij is the Kronecker delta, then Hayakawa's rotation matrix should be

set equal to the identity if, and only if, the albedoes and shapes in the data set

satisfy
P

p bi(p)bj(p) = 0; i 6= j.

Theorem 2. The �rst three eigenvectors ei(p) : i = 1; 2; 3 point along the

axes of the cartesian coordinate system if, and only if, both
P

p bi(p)bj(p) =

0; i 6= j and
P

� si(�)sj (�) = 0; i 6= j.

Both theorems show that interesting results occur if the input data is sym-

metric. More precisely, it corresponds to assuming that the o�-diagonal terms

of
P

p bi(p)bj(p) and
P

� si(�)sj (�) vanish. This will be true if, for example,

the light source directions sample the viewing hemisphere evenly and the ob-

ject is an ellipsoid viewed head-on and with constant albedo. The o�-diagonal

terms will also be expected to vanish if the i and j components of the dataset

are statistically independent (for then, by ergodicity,
P

p bi(p)bj(p) 7!< bibj >

and
P

� si(�)sj(�) 7!< sisj >. However, there will be many datasets for which

these assumptions will be violated. That Hayakawa's assumptions and Hallinan's

observation will typically not be true.

The proofs of the theorems are long and involved. For reasons of space, we

only give the broad outlines of the proofs here and refer the reader to [30] for

more details.



Proof of Theorem 1.
P

� si(�)sj(�) = �ij implies that
P

� I(p; �)I(p
0; �) =P

i bi(p)bi(p
0). This implies that PTP =D2

, whereD was de�ned above. Hayakawa's

assumption involves setting P = D, but there are many other possible solutions

of form P = RP where R is any rotation matrix. Observe, that if R = I then

bi(p) = �
1=2
i ei(p); 8 i; p and so

P
p bi(p)bj(p) = 0 for i 6= j. Conversely, sup-

pose that
P

p bi(p)bj(p) = �i�ij; 8 i; j for some values f�ig. Then this implies

that PPT = D1, where D1 is diagonal with diagonal elements f�ig. This is

inconsistent with PTP = D2
, unless P is diagonal.

Observe, in this proof, that there is a close connection between Hayakawa's

assumption and Hallinan's conjecture. In particular, there is a clear relation

between the matrices
P

� si(�)sj(�) and
P

p bi(p)bj(p) being diagonal and the

relationship bi(p) / ei(p); 8 i; p and si(�) / fi(�); 8i; �. This motivated the

second theorem.

Proof of Theorem 2. If bi(p) = �iei(p); 8 i; p and si(�) = �
1=2
i =�ifi(�); 8i; �

then it is clear that
P

p bi(p)bj(p) and
P

� si(�)sj(�) are diagonal. Conversely,

suppose that
P

p bi(p)bj(p) = �ij�
2
i ; 8i; j and

P
� si(�)sj(�) = �ij=�

2
i ; 8i; j, for

some f�ig. Then it follows that PTD2P = D2
and QTD3Q = D2

, whereD2 and

D3 are diagonal matrices with diagonal elements f�i=�
2
ig and f�2ig respectively.

The only solutions to these equations occur if Q and P are diagonal.

9 Conclusion

This paper developed a variety of techniques for learning models of the 3D shape

and albedoes of objects. We demonstrated, using the dataset of faces constructed

in [12], that the resulting models were fairly accurate and that they could be

used to synthesize images of objects under arbitrary lighting conditions.

Our four learning schemes used di�erent amounts of knowledge about the

light source distribution and the object class. The �rst learning scheme assumed

knowledge of light source directions and was equivalent to standard photometric

stereo. The remaining three schemes used SVD to estimate light source direc-

tions, albedo, and shape up a linear transformation A. We discussed why it was

uneccessary to know A in order to construct the light cone representation [2].

We also described ways to estimate A using surface integrability and/or prior

knowledge about the object class.

While exploring surface integrability, we found an additional ambiguity in

depth estimation which might be related to experimental �ndings by Koenderink

[19]. This is being explored in current work.

We observed that surface integrability could be used to resolve an ambiguity

in the SVD approach to photometric stereo [13] and described cases in which

Hayawara's model would fail. Our work therefore has relevance to photometric

stereo.

In addition, it has been applied to allowing for lighting variations of a moving

object and hence improving tracking devices [10]. We are currently working on

other applications and attempting to generalize to other reectance functions.
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