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a b s t r a c t

Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet.
Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple
reinforcement learning agents are installed on a set of routers and learn to throttle or rate-limit traffic
towards a victim server. It has been demonstrated to perform well against DDoS attacks in small-scale
network topologies. The focus of this paper is to tackle the scalability challenge. Scalability is one of the
most important aspects of a defence system since a non-scalable defence mechanism will never be
considered, let alone adopted, for wide deployment by a company or organisation. In this paper we
introduce Coordinated Team Learning (CTL) which is a novel design to the original Multiagent Router
Throttling approach. One of the novel characteristics of our approach is that it provides a decentralised
coordinated response to the DDoS problem. It incorporates several mechanisms, namely, hierarchical
team-based communication, task decomposition and team rewards and its scalability is successfully
demonstrated in experiments involving up to 100 reinforcement learning agents. We compare our
proposed approach against a baseline and a popular state-of-the-art router throttling technique from the
network security literature and we show that our approach significantly outperforms both of them in a
series of scenarios with increasingly sophisticated attack dynamics. Furthermore, we show that our
approach is more resilient and adaptable than the existing throttling approaches.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most serious threats in the current Internet is posed
by distributed denial of service (DDoS) attacks, which target the
availability of a system (Douligeris and Mitrokotsa, 2004). A DDoS
attack is a highly coordinated attack where the attacker takes
under his control a large number of hosts, called the botnet
(network of bots), which start bombarding the target when they
are instructed to do so. Such an attack is designed to exhaust a
server's resources or congest a network's infrastructure, and
therefore renders the victim incapable of providing services to
its legitimate users or customers.

The Arbor Network's worldwide security survey (Anstee et al.,
2013) conducted among more than 290 companies and organisa-
tions reveals that 50% of the participants see 1–10 DDoS attacks
per month, while 12% experience more than 100. The average size
of a DDoS attack is 1.77 Gbps while larger incidents are observed
in the range 2–10 Gbps (Kerner, 2013). 62% of the attacks are
currently less than 1 Gbps. The average cost to defend against a

DDoS attack was $2.5 million. Beyond the financial loss caused by
DDoS attacks, victims also suffer from loss to their reputation
which results in customer or user dissatisfaction and loss of trust.

To tackle the distributed nature of these attacks, a distributed
and coordinated defence mechanism is required, where many
defensive nodes, across different locations cooperate in order to
stop or reduce the flood. Yau et al. (2005) is a popular approach to
defend against DDoS attacks, where the victim server sends
throttle signals to a set of upstream routers to rate-limit traffic
towards it. Similar techniques to throttling are implemented by
network operators (Douligeris and Mitrokotsa, 2004).

Malialis and Kudenko (2013) is a novel throttling approach
where multiple reinforcement learning agents are installed on the
set of upstream routers and learn to throttle or rate-limit traffic
towards the victim server. The approach has been demonstrated to
perform well against DDoS attacks in small-scale network topol-
ogies, but suffers from the “curse of dimensionality” (Sutton and
Barto, 1998) when scaling-up. The main focus of this paper is
scalability and we propose a novel design that resolves this
problem. Our contributions in this paper are the following.

There is an extensive literature regarding the application of
machine learning to intrusion detection, specifically anomaly
detection where no action is performed beyond triggering an
intrusion alarm when an anomalous event is detected. Our work
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investigates the applicability of multiagent systems and machine
learning to intrusion response. In this paper we are interested in
distributed rate-limiting approaches to defend against DDoS
attacks.

We introduce the Coordinated Team Learning (CTL) approach,
which is a novel approach to the original Multiagent Router
Throttling. The proposed approach combines several mechanisms,
namely, hierarchical team-based communication, task decomposi-
tion and team rewards and its scalability is demonstrated in
experiments involving up to 100 reinforcement learning agents.
It is also empirically demonstrated that the performance of our
approach remains unaffected by the addition of new teams of
learning agents in the system. The CTL approach can be useful in
other related multiagent domains for example congestion pro-
blems such as air traffic management and traffic light control.

One of the novel characteristics of our approach is its decen-
tralised architecture and response to the DDoS threat. We compare
our approach against a baseline and a popular state-of-the-art
throttling technique from the network security literature (Yau
et al., 2005). These approaches provide a distributed response but
are victim-initiated, that is, the throttle signals are centrally
generated from the victim server. Our proposed approach is more
resilient since it does not have a single point of control.

Lastly, our proposed approach provides an automated and
effective response against the highly complex and multi-
dimensional DDoS threat. We evaluate our approach in a series
of scenarios with increasingly sophisticated attack dynamics and
show that the CTL approach outperforms both the baseline and the
popular throttling techniques. Furthermore, the network environ-
ment is highly dynamic and our approach is highly responsive to
the attackers’ dynamics thus providing flexible behaviours over
frequent environmental changes.

The organisation of the paper is as follows. Section 2 presents
the necessary background material on reinforcement learning and
DDoS attacks. We discuss the related work in Section 3 focussing
on intrusion response and distributed rate-limiting mechanisms.
Our proposed Multiagent Router Throttling approach and its
design details are described in Section 4. The experimental setup
is provided in Section 5 and experiments involving offline and
online learning are presented in Sections 6 and 7 respectively. We
conclude in Section 8 where we discuss the advantages and
deployments issues of our proposed approach, and present direc-
tions for future work.

2. Background

2.1. Reinforcement learning

Reinforcement learning is a paradigm in which an active
decision-making agent interacts with its environment and learns
from reinforcement, that is, a numeric feedback in the form of
reward or punishment (Sutton and Barto, 1998). The feedback
received is used to improve the agent's actions. The problem of
solving a reinforcement learning task is to find a policy (i.e. a
mapping from states to actions) which maximises the accumu-
lated reward.

When the environment dynamics (such as the reward function)
are available, this task can be solved using dynamic programming
(Sutton and Barto, 1998). In most real-world domains, the envir-
onment dynamics are not available and therefore the assumption
of perfect problem domain knowledge makes dynamic program-
ming to be of limited practicality.

The concept of an iterative approach constitutes the backbone of
the majority of reinforcement learning algorithms. These algorit-
hms apply the so-called temporal-difference updates to propagate

information about values of states, V(s), or state-action, Q ðs; aÞ,
pairs. These updates are based on the difference of the two
temporally different estimates of a particular state or state-action
value. The SARSA algorithm is such a method (Sutton and Barto,
1998). After each real transition, ðs; aÞ-ðs0; rÞ, in the environment, it
updates state-action values by the formula:

Q ðs; aÞ’Q ðs; aÞþα½rþγQ ðs0; a0Þ�Q ðs; aÞ� ð1Þ
where α is the rate of learning and γ is the discount factor. It
modifies the value of taking action a in state s, when after executing
this action the environment returned reward r, moved to a new
state s0, and action a0 was chosen in state s0.

The exploration–exploitation trade-off constitutes a critical issue
in the design of a reinforcement learning agent. It aims to offer a
balance between the exploitation of the agent's knowledge and the
exploration through which the agent's knowledge is enriched. A
common method of doing so is ϵ-greedy, where the agent behaves
greedily most of the time, but with a probability ϵ it selects an
action randomly. To get the best of both exploration and exploita-
tion, it is advised to reduce ϵ over time (Sutton and Barto, 1998).

Applications of reinforcement learning to multiagent systems
typically take one of two approaches; multiple individual learners
or joint action learners (Claus and Boutilier, 1998). The former is
the deployment of multiple agents each using a single-agent
reinforcement learning algorithm. The latter is a group of multia-
gent specific algorithms designed to consider the existence of
other agents; in this setting an agent observes the actions of the
other agents or each agent communicates its action to the others.

Multiple individual learners assume any other agents to be a
part of the environment and so, as the others simultaneously
learn, the environment appears to be dynamic as the probability of
transition when taking action a in state s changes over time. To
overcome the appearance of a dynamic environment, joint action
learners were developed that extend their value function to
consider for each state the value of each possible combination of
actions by all agents. The consideration of the joint action causes
an exponential increase in the number of values that must be
calculated with each additional agent added to the system. There-
fore, as we are interested in scalability and minimal communica-
tion between agents, this work focusses on multiple individual
learners and not joint action learners.

2.2. Distributed denial of service (DDoS) attacks

To reduce the impact of scalability and deal with large and
continuous state and action spaces, function approximation is
used to reduce an agent's exploration (Sutton and Barto, 1998).
Tile coding is one of the most common techniques which parti-
tions the state space into a number of tilings and tiles where state
feature values are grouped into.

A DDoS attack is a highly coordinated attack; the strategy
behind it is described by the agent–handler model (Douligeris and
Mitrokotsa, 2004) as shown in Fig. 1. The model consists of four
elements, the attacker, handlers, agents and victim. The handler
(or master) and the agent (or slave or zombie or daemons) are
hosts compromised by the attacker, which constitute the botnet.
Specifically, the attacker installs a malicious software called Trojan
on vulnerable hosts to compromise them, thus being able to
communicate with and control them. The attacker communicates
with the handlers, which in turn control the agents in order to
launch a DDoS attack.

The basic agent–handler model can be extended by removing
the handlers layer and allowing communication between the
attacker and agents via Internet Relay Chat (IRC) channels. A more
recent extension occurs at the architectural level, where the
centralised control is replaced by a peer-to-peer architecture.
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Moreover, an attacker can use IP spoofing, that is, hiding his true
identity by placing a fake source address in the IP packet's source
address. These extensions make the DDoS problem orders of
magnitude harder to tackle because they offer limited botnet
exposure, a high degree of anonymity and they provide robust
connectivity. The DDoS threat is challenging for many reasons
(Mirkovic and Reiher, 2004), including the following:

� Distributed traffic: The traffic flows originate from agent
machines spread all over the Internet, in which they all
aggregate at the victim.

� Large volume: The large volume of the aggregated traffic is
unlikely to be stopped by a single defence point near the victim.

� Large number of agents: The number of compromised agent
machines is large, thus making an automated response a
necessary requirement.

� Similarity to legitimate packets: DDoS packets appear to be
similar to legitimate ones, since the victim damage is caused
by the total volume and not packet contents. A defence system
cannot make an accurate decision based on a packet-by-packet
basis. It requires to keep some statistical data in order to
correlate packets and detect anomalies, for example, “all traffic
directed towards a specific destination address”.

� Difficult to traceback: It is difficult to discover even the agent mac-
hines, let alone the actual attackers, firstly because of the agent–
handler model's architecture, and secondly because of IP spoofing.

It is evident that to combat the distributed nature of these
attacks, a distributed and coordinated defence mechanism is
necessary where many defensive nodes, across different locations
cooperate in order to stop or reduce the flood.

2.3. DDoS defence taxonomy

In Fig. 2 we present a taxonomy of DDoS defence approaches
based on Mirkovic's and Reiher's (Mirkovic and Reiher, 2004)
taxonomy. Defence mechanisms are classified into three high-level
categories, namely, intrusion prevention, intrusion detection and
intrusion response.

Preventive mechanisms attempt to eliminate the possibility of
an attack happening, or help the victim tolerate the attack without
affecting its legitimate users. Management mechanisms are about
keeping your system's state in such a way that the possibility of
being compromised (and thus taking part in an attack) or becoming
a victim is minimised. Filtering mechanisms drop network packets
according to specific rules or criteria. Resource accounting mechan-
isms regulate a user's access to resources according to his privileges
or behaviour. Resource multiplication mechanisms provide a very

large amount of resources to enable the victim to tolerate the
attack.

Preventive mechanisms are important and essential, but they
are not perfect. Furthermore, “it's often cheaper to prevent some
of the attacks and detect the rest than it is to try to prevent
everything” (Anderson, 2008). Intrusion detection monitors the
log files and network traffic and triggers an intrusion alarm if a
suspicious event is detected. Misuse (or signature-based) detec-
tion aims at identifying already known attacks by monitoring the
traffic for signatures i.e. known characteristics of attacks. The
disadvantage of this approach is that it cannot uncover novel or
mutated intrusions. Anomaly detection aims at uncovering novel
or mutated attacks by attempting to define the normal network
behaviour; if an activity deviates from the normal profile, it is
marked as intrusive. The disadvantage of this approach is that it
usually suffers from a high rate of false positives and negatives.
Anomaly detection typically makes use of statistical or machine
learning techniques.

Response mechanisms aim at mitigating the DDoS impact on
the victim, while keeping collateral damage levels to a minimum.
Collateral damage occurs when legitimate traffic is punished along
with the attack traffic. Traceback mechanisms aim at identifying
the agent machines responsible for the attack. Reconfiguration
mechanisms alter the topology of the network in order to add
more resources or isolate the attack traffic. Changing the IP
address of the victim server constitutes another type of DDoS
response, which is related to the concept of moving target defence.
Rate limiting mechanisms drop some fraction of the suspicious
network traffic. These mechanisms are typically used when the
detection mechanism cannot precisely characterise the attack
traffic i.e. when attack signatures cannot be derived.

The next section describes representative defence mechanisms
from each category and discusses related work.

3. Defence mechanisms and related work

3.1. Intrusion prevention

Management mechanisms include keeping your system up-to-
date by applying security patches, disabling unused services and
disabling amplifiers1 (Douligeris and Mitrokotsa, 2004).

Another popular mechanism is the ingress filtering (Ferguson,
2000) which monitors and blocks harmful inbound traffic to enter

Fig. 1. The agent–handler model.

Fig. 2. DDoS defence taxonomy.

1 In an amplification attack, the attacker exploits the broadcasting feature of an
amplification (or reflector) device such as a router or a server. Specifically, the
attacker sends to a number of amplifiers spoofed IP packets with the source
address set to the victim's. These amplifiers will reply to the victim, thus causing a
DDoS flood.
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a network, for example dropping a packet whose IP address does
not belong to a known domain prefix. Similarly egress filtering
(Brenton, 2007) monitors and blocks harmful outbound traffic, for
example blocking a spoofed IP packet from leaving the network. A
limitation of an ingress/egress firewall is its susceptibility to
flooding or brute-force DDoS attacks.

Route-based distributed packet filtering (Park and Lee, 2001) is
a technique aiming to stop spoofed IP packets based on route
information. Interestingly, the approach is very effective in partial
deployment; about 18% of Internet's autonomous systems. The
drawback of this approach is that filters require to know the
network topology, and assuming they do, they also need to update
it since the topology changes over time.

A popular resource accounting mechanism is the Secure Over-
lay Services (SOS) architecture (Keromytis et al., 2002); an overlay
network is a set of nodes which communicate with one another
atop of the underlying network. SOS allows communication with a
server only with confirmed users. The user's packets need to be
authenticated and authorised by SOS, before they are allowed to
flow through the overlay to the server. Effectively, the overlay
hides the server's location and drops illegitimate traffic. A limita-
tion is that packets are routed through a series of overlay nodes
which introduces a latency which is far from minimal.

Another limitation of SOS is that only pre-authorised users can
access the server. In general, providing access only to pre-authorised
users has the following limitations (Iyengar et al., 2010). Firstly, it may
deter clients from using the service. Secondly, it may not be feasible to
create a list of all users authorised to use a service. For example, this is
the case for open e-commerce websites like eBay or Amazon. Lastly, it
is difficult to ensure that authorised users will indeed behave benignly.

Some resource accounting mechanisms include challenge-
based or “proof-of-work” approaches such as cryptographic puz-
zles. In Chang Feng and Kaiser (2012), a website's URL (HTML) tag
is updated to include a cryptographic puzzle. More malicious
clients are presented with more difficult puzzles based on histor-
ical data and the current server load. When a client's browser finds
such a protected link it runs a server provided script (using
JavaScript), to provide a solution to the puzzle. Depending on the
solution, the client is assigned a priority level and service is
provided accordingly. A limitation of this approach is that it cannot
handle brute-force DDoS attacks.

Resource accounting mechanisms also include quality of ser-
vice (QoS) regulation. In Iyengar et al. (2010), a client first contacts
a challenge server to obtain a puzzle. Upon successful solution it
receives an initial trust token. Trust tokens encode the QoS level
the client is eligible to receive from the protected server. A client's
token is included in all the future requests to the server. A client
that presents a valid token will be served at the priority level
encoded in the token. The server updates the client's priority level
based on its recent requests and the amount of server resources
they have consumed. A limitation of this approach is that it cannot
handle brute-force DDoS attacks.

The typical resource multiplication approach is load balancing
(Mirkovic and Reiher, 2004). These mechanisms raise the bar on
how many machines need to be compromised for an effective
DDoS attack, but they are very expensive. So far these mechanisms
have been proved sufficient for those who can afford the cost
(Mirkovic and Reiher, 2004). However, there are continuing
worries that gigantic DDoS attacks originating from monster
botnets will occur in the future (Anderson, 2008).

3.2. Intrusion detection

Snort (Roesch et al., 1999) is a well-known system which uses
misuse detection. Anomaly detection typically makes use of
statistical or machine learning techniques.

Servin and Kudenko (2008) propose a distributed RL approach
in order to detect flooding DDoS attacks. Agents are organised in a
hierarchy and a sender agent (lower hierarchical level) learns
semantic-less communication signals which represent the “sum-
mary” of its local state observations. The recipient agent (higher
hierarchical level) also needs to learn how to interpret these
semantic-less signals. Finally, the root of the hierarchy learns
whether or not an intrusion alarm should be triggered.

Xu et al. (2007) state that information sharing such as combin-
ing local information or decisions among agents can improve
detection accuracy but it can be costly. The authors use distributed
reinforcement learning in order to optimise communication costs
of information exchange among agents, by learning when to
broadcast information to other agents. Other examples include
Jung et al. (2002), Hussain et al (2003), Mirkovic et al. (2002), and
Marquardt et al. (2013).

3.3. Intrusion response

Probabilistic Packet Marking (PPM) (Savage et al., 2000) is a
popular traceback technique, where upstream routers probabilis-
tically mark IP packets so the attack route can be reconstructed.
Traceback can be very expensive though and it is virtually
impossible to trace due to the large number of attack paths
(Papadopoulos et al., 2003). It is also questionable whether it is
useful to spend large amounts of resources to traceback and
identify individual zombies when the actual attackers continue
to operate unnoticed and uninhibited (Papadopoulos et al., 2003).

Replication techniques constitute a sub-category of reconfi-
guration mechanisms. XenoService (Yan et al., 2000) is such a
mechanism where a number of ISPs install Xenoservers that offer
web hosting services. A website is monitored and if reduction in
the quality of service is experienced due to a surge in demand, the
website is replicated to other Xenoservers. The attacker needs to
attack all replication points in order to deny access to the
legitimate users.

Replication techniques have the following limitations
(Keromytis et al., 2002). They are not suitable in cases where
information needs to be frequently updated (especially during an
attack) or it is dynamic by nature (e.g. live audio or video stream).
In case of sensitive information security being a major concern,
engineering a solution that replicates sensitive information with-
out any “leaks” is challenging.

The typical moving target approach is that the name of a
service is stable but its IP address is not (Shue et al., 2012).
Therefore, any traffic that knows the currently valid IP address is
granted access to the server while the rest is discarded. A client is
required to periodically query the DNS server to obtain the server's
IP address. One of the criticisms of this approach is that advanced
DDoS attack tools can include a DNS tracing function to track the IP
address changes (Geng and Whinston, 2000).

Mittal et al. (2012) introduce Mirage which tackles this issue.
Mirage requires all clients that wish to access a server to first solve
a cryptographic puzzle using JavaScript. Specifically, when a client
makes a DNS lookup request, it is directed to a puzzle server to
retrieve a puzzle, for which the solution is the server's current IP
address. Upstream routers filter traffic that is destined to all
inactive IP destinations.

Mirage however does not come without its limitations. Mirage
needs to ensure that the distribution of puzzles is not subject to
DDoS attacks. To address this issue, replication techniques (described
earlier) have been suggested (Mittal et al., 2012). Furthermore, the
acquisition of valid IP addresses depends on the computational
power of the DDoS machines (botnet). Therefore, distributed rate-
limiting on upstream routers for the active IP destinations is required
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to further reduce the power of the attackers and to ensure a fair
treatment to the legitimate users.

Moreover, the new IP address is assigned for all client sessions
on a relatively long time period. These approaches in general
require the system administrators to make a series of changes in
the DNS entries and routing table entries so that traffic is directed
to the new IP address (Geng and Whinston, 2000). The suggested
time period for Mirage is 5 min (Mittal et al., 2012).

IP Fast Hopping (Krylov and Kravtsov, 2015; Krylov and
Ponomarev, 2012) improves over Mirage and allows the server's
IP address to change much faster. To access a protected server, the
client must first be tested for legitimacy on an authorisation
server. If successful, the client is re-directed to a special server
called IP Hopper Manager, which is responsible for enhanced
secured sessions. An enhanced secure session is a communication
session between a client and a server which is protected by IP Fast
Hopping. This allows the IP address of the server to change every
millisecond for a client–server communication session.

However, IP Fast Hopping has its risks as well. On contrary to
Mirage, it requires the clients to install a special software (IP
Hopper Core). Similar to Mirage, the system needs to ensure that
the authorisation server and the IP Hopper Manager are not
subject to DDoS attacks. Furthermore, like Mirage, the security of
the approach depends on the space of IP addresses. If the IP pool is
small and/or the botnet is large, the DDoS machines can start
bombarding each IP address. In such a case, the victim's ISP (or
several ISPs) can rate-limit or filter traffic to mitigate the effec-
tiveness of the DDoS attack.

Our proposed multiagent reinforcement learning-based solu-
tion, which learns distributed rate-limits, can work in cooperation
with IP Fast Hopping and related approaches to complement
each other.

3.3.1. Distributed rate-limiting
This section describes work closely related to ours, focussing on

distributed, cooperative rate-limiting mechanisms. These mechan-
isms are typically used when the detection mechanism cannot
precisely characterise the attack traffic i.e. when attack signatures
cannot be derived.

One of the first and most influential work in the field is the
Aggregate-based Congestion Control (ACC) and Pushback mechan-
isms by Mahajan et al. (2002). The authors view the DDoS attacks
as a router congestion problem. The aggregate is defined as the
traffic that is directed towards a specific destination address i.e.
the victim (note that source addresses cannot be trusted because
hosts can spoof traffic, disobey congestion signals, etc.). A local
ACC agent is installed on the victim's router which monitors the
drop history. If the drop history deviates from the normal,2 the
local ACC reduces the throughput of the aggregate by calculating
and setting a rate-limit.

Pushback is a cooperative mechanism. The local ACC can
optionally request from adjacent upstream ACC routers to rate
limit the aggregate according to a max–min fashion, a form of
equal-share fairness, where bandwidth allocation is equally
divided among all adjacent upstream routers. An example of a
max–min fairness allocation is the following. Consider three links
with arrival rates of 2, 5 and 12 Mbit/s respectively, and the
desired rate is 10 Mbit/s. The max–min fair limits sent to each
link would be 2, 4 and 4 Mbit/s respectively. Rate limiting of the
aggregate recursively propagates upstream towards its sources in a
hierarchical fashion.

The major limitation of Pushback is that it causes collateral
damage, that is, when legitimate traffic is rate limited along with
the attack traffic. This is because the resource sharing starts at the
congested point, where the traffic is highly aggregated and
contains a lot of legitimate traffic within it.

Another popular work is the Router Throttling mechanism by
Yau et al. (2005). The authors view the DDoS attacks as a resource
management problem and they adopt a server-initiated approach.
According to Douligeris and Mitrokotsa (2004), similar techniques
to throttling are used by network operators. Router Throttling is
described as follows. When a server operates below an upper
boundary Us, it needs no protection (this includes cases of weak or
ineffective DDoS attacks). When the server experiences heavy
load, it requests from upstream routers to install a throttle on
the aggregate. In case the server load is still over the upper
boundary Us, the server asks from upstream routers to increase
the throttle. If the server load drops below a lower boundary Ls,
the server asks the upstream routers to relax the throttle. The goal
is to keep the server load within the boundaries ½Ls;Us� during a
DDoS attack. Router Throttling, unlike Pushback, is more of an
end-to-end approach initiated by the server and therefore collat-
eral damage is significantly reduced.

Yau et al. (2005) present the Baseline throttling approach in
which all upstream routers throttle traffic towards the server, by
forwarding only a fraction of it. This approach penalises all
upstream routers equally, irrespective of whether they are well
behaving or not. The authors then propose the AIMD (additive-
increase/multiplicative-decrease) throttling algorithm, which
installs a uniform leaky bucket rate at each upstream router that
achieves the level-k max–min fairness among the routers R(k).

4. Multiagent router throttling

4.1. Network model and assumptions

The network model is similar to the one used by Yau et al.
(2005). A network is a connected graph G¼ ðV ; EÞ, where V is the
set of nodes and E is the set of edges. All leaf nodes are hosts and
denoted by H. Hosts can be traffic sources and are not trusted
because they can spoof traffic, disobey congestion signals, etc. An
internal node represents a router, which forwards or drops traffic
received from its connected hosts or peer routers. The set of
routers is denoted by R, and they are assumed to be trusted, i.e. not
to be compromised. This assumption is realistic since it is much
more difficult to compromise a router than an end host or server,
because routers have a limited number of potentially exploitable
services (Keromytis et al., 2002). The set of hosts H ¼ V�R is
partitioned into the set of legitimate users and the set of attackers.
A leaf node denoted by S represents the victim server. Consider for
example the network topology shown in Fig. 3. It consists of 20
nodes, these are, the victim server denoted by S, 13 routers
denoted by Rs and R2–R13 and six end hosts denoted by H1–H6,
which are traffic sources towards the server.

A legitimate user sends packets towards the server S at a rate rl,
and an attacker at a rate ra. We assume that the attacker's rate is
significantly higher than that of a legitimate user, that is, racrl
(dropping traffic based on source addresses can be harmful
because, as mentioned, hosts cannot be trusted). This assumption
is based on the rationale that if an attacker sends at a similar rate
to a legitimate user, then the attacker must recruit a considerably
larger number of agent hosts in order to launch an attack with a
similar effect (Yau et al., 2005). A server S is assumed to be
working normally if its load rs is below a specified upper boundary
Us, that is, rsrUs (this includes cases of weak or ineffective DDoS
attacks). The rate rl of a legitimate user is significantly lower than

2 The authors distinguish between typical congestion levels (e.g. observed during
peak times) and unusual or serious congestion levels caused by DDoS attacks
(although serious congestion can occur due to other reasons as well e.g. a fiber cut).
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the upper boundary i.e. rl{Us, where Us can be determined by
observing how users normally access the server.

4.2. Basic design (MARL)

The basic MARL design is based on Malialis and Kudenko
(2013). The selection method is similar to the one used by Yau
et al. (2005). Reinforcement learning agents are installed on
locations that are determined by a positive integer k, and are
given by RðkÞDR. R(k) is defined as the set of routers that are
either k hops away from the server, or less than k hops away but
are directly attached to a host. The effectiveness of throttling
increases with an increasing value of k, provided that routers in R
(k) must belong to the same administrative domain e.g. an Internet
Service Provider (ISP) or collaborative domains.3 Consider for
example the network topology shown in Fig. 3. Learning agents
are installed on the set Rð5Þ, which consists of routers R6, R7 and
R10. Router R6 is included in the set Rð5Þ, although it is only 4 hops
away from the server, because it is directly attached to the host H1.

Recall that the aggregate is defined as the traffic that is directed
towards a specific destination address i.e. the victim (Mahajan
et al., 2002). In the basic design, each agent's state space consists
of a single state feature, which is its aggregate load. The aggregate
load is defined as the aggregate traffic arrived at the router over
the last T seconds, which is called the monitoring window. The
monitoring window should be set to be about the maximum
round trip time between the server S and the router in R(k) Yau et
al. (2005). The time step of the learning algorithm is set to be the
same as the monitoring window size.

Each router applies throttling via probabilistic packet dropping.
For example action 0.4 means that the router will drop (approxi-
mately) 40% of its aggregate traffic towards the server, thus setting
a throttle or allowing only 60% of it to reach the server. The action
is applied throughout the time step. Completely shutting off the
aggregate traffic destined to the server is prohibited, that is, the
action 1.0 (which corresponds to 100% drop probability) is not
included in the action space of any of the routers. The reason is
that the incoming traffic likely contains some legitimate traffic as
well, and therefore dropping all the incoming traffic facilitates the
task of the attacker, which is to deny server access to its legitimate
users (Mahajan et al., 2002).

Global reward: With a global or system reward function each
agent receives the same reward or punishment. The system has
two important goals, which are directly encoded in the reward

function. The first goal is to keep the server operational, that is, to
keep its load below the upper boundary Us. When this is not the
case, the system receives a punishment of �1. The second goal of
the system is to allow as much legitimate traffic as possible to
reach the server during a period of congestion. In this case, the
system receives a reward of LA ½0;1�, where L denotes the propor-
tion of the legitimate traffic that reached the server during a time
step. We consider that legitimate users are all of equal importance,
therefore there is no prioritisation between them. The global
reward function is shown in Algorithm 1.

Algorithm 1. Global (G) reward function.

if loadRouterserver4Us then
// Punishment
r¼ �1

else
// Reward in [0,1]
r¼ legitimateLoadserver=legitimateLoadtotal

end if

At this point we discuss the availability of L in the different
cases of offline and online learning. In the case of offline learning,
we can keep track of and identify the legitimate traffic. This is
because the defensive system can be trained in simulation, or in
any other controlled environment (e.g. wide-area testbed, small-
scale lab) where legitimate traffic is known a priori, and then
deployed in a realistic network where such information is not
available.

Let us now consider the case of online learning i.e. when the
system is trained directly in a realistic network. If the detection
mechanism is accurate enough to derive attack signatures (i.e.
known characteristics) then the problem can be simply solved by
filtering the attack traffic. However, we are interested in cases
where the detection mechanism cannot precisely characterise the
attack traffic i.e. when attack signatures cannot be derived.
Inevitably, in such cases L can only be estimated.

There are different ways to measure legitimate traffic, for exa-
mple by observing the behaviour or habits of customers and regular
users of the victim's services and detect deviations. Another way is
by observing the IP addresses that have been seen before; work
conducted by Jung et al. (2002) reveals that during a DDoS attack to
a website, most of the sent requests were generated by IP addresses
that did not appear before. For example for the CodeRed worm
(Moore et al., 2002) only 0.6–14% of the IP addresses appeared
before.4 Another way is by observing whether IP packets have
appeared before or after the DDoS impact, as the latter suggests that
they are likely illegitimate (Hussain et al, 2003).

4.3. Hierarchical communication (Comm)

As it is later demonstrated the basic MARL approach suffers
from the “curse of dimensionality” and fails to scale-up in large
scenarios. To scale-up we propose a number of mechanisms based
on the divide-and-conquer paradigm. Generally, the divide-and-
conquer paradigm breaks down a large problem into a number of
sub-problems which are easier to be solved. The individual
solutions to the sub-problems are then combined to provide a
solution to the original problem.

Fig. 3. Network topology showing defensive routers.

3 Collaboration between different administrative domains is desirable but the
motivation for deployment is low.

4 The CodeRed worm appeared in June 2001. The first phase of its operation was
to infect machines and turn them into zombies. More than 359,000 machines were
infected in just 14 h (Moore et al., 2002). The second phase was to launch a DDoS
attack against the White House's website.
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The first step towards scalability is to form teams of agents as
shown in Fig. 4. Dashed lines do not necessarily represent nodes
with a direct connection. Teams can either be homogeneous or
heterogeneous. The structure of the team is shown in Fig. 5. Each
team consists of its leader, an inner layer of intermediate routers,
and the throttling routers which are k hops away from the server.
Recall that the throttling routers belong to the same adminis-
trative domain e.g. an ISP. In case of collaborative domains, each
team can belong to a different administrative domain. Note that
only the throttling routers are reinforcement learning agents. The
rest of the routers are non-learning agents and we will explain
their role shortly. The number of teams and their type (homo-
geneous or heterogeneous) depends on the underlying topology
and network model.

The second step towards scalability involves communication.
Direct communication is defined as a purely communicative act in
order to transmit information (i.e. a speech act) (Matarić, 1998).
Indirect communication is concerned with the observation of other
agents' behaviour and its effects on the environment. Specifically,
communication tackles the partial observability problem, where
distributed agents cannot sense all of the relevant information
necessary to complete a cooperative task.

The domain does not permit reliance on a complex commu-
nication scheme. We propose a hierarchical uni-directional com-
munication scheme. The victim's router signals its local load
reading to the team leaders. The team leaders signal both their
local load reading and the received reading from the victim's
router to their intermediate routers. Similarly, the intermediate
routers signal their local load reading and the two received
readings to their throttling routers. This is depicted in
Figs. 4 and 5 by the uni-directional arrows. We should note that
this constitutes an indirect communication scheme because the
local load readings of the signallers, are essentially the effects of
the throttling agents’ actions. The state space of each reinforce-
ment learning agent now consists of four features. Consider for
example the router Rs and the routers R1, R2, R3 in Figs. 4 and 5
respectively. Assuming their local instantaneous traffic rates are rs,
r1, r2 and r3 respectively, the state features of router R3 are
〈rs; r1; r2; r3〉. The hierarchical communication method uses the
same global reward function as the basic approach which is
described in Section 4.2.

4.4. Independent and coordinated team learning (ITL and CTL)

The final step towards scalability is the use of task decomposi-
tion and team rewards. For task decomposition, it is now assumed
that instead of having a big DDoS problem at the victim, there are
several smaller DDoS problems where the hypothetical victims are
the team leaders.5 The hypothetical upper boundary of each leader
depends on its traffic sources (i.e. the amount of host machines).
Assuming a defence system of homogeneous teams, with respect
to their sources, the hypothetical upper boundary for each team
leader is given by Us=teams.

Moreover, agents are now provided with rewards at the team
level rather than the global level, that is, agents belonging to the
same team receive the same reward or punishment. In this section
we propose the independent team learning and coordinated team
learning approaches. Their reward functions are as follows:

Independent team reward: An agent within a team receives a
punishment of �1 if the team's load exceeds its hypothetical
upper boundary. It receives a reward of LA ½0;1�, where L denotes
the proportion of the legitimate traffic that reached the team
leader (with respect to the total legitimate of the team). The
independent team reward function of each reinforcement learning
agent is shown in Algorithm 2.

Coordinated team reward: This approach involves coordination bet-
ween the teams of agents by allowing a team's load to exceed its hyp-
othetical upper boundary as long as the victim's router load remains
below the global upper boundary. The coordinated team reward fun-
ction of each reinforcement learning agent is shown in Algorithm 3.

Algorithm 2. Independent team (IT) reward function.

if ðloadRouterleader4 ðUs=teamsÞÞ then
// Punishment
r¼ �1

else
// Reward in ½0;1�
r¼ legitimateLoadleader=legitimateLoadteam

end if

Algorithm 3. Coordinated team (CT) reward function.

if ðloadRouterleader4 ðUs=teamsÞÞ AND

Fig. 4. Team formation.

Fig. 5. Team structure.

5 An ISP backbone or core router, like a team leader or an intermediate router, is
able to handle large amounts of traffic therefore it is unlikely to become a victim
itself.
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ðloadRouterserver4UsÞ then
// Punishment
r¼ �1

else
// Reward in ½0;1�
r¼ legitimateLoadleader=legitimateLoadteam

end if

Lastly, as it is later demonstrated that the hierarchical commu-
nication functionality is beneficial to the system, therefore both of
the approaches include it.

5. Experimental setup

To conduct experiments we have developed a network emu-
lator which serves as a testbed for demonstrating the effectiveness
of our proposed approach. The emulator treats the internal model
of a network as a black box and mimics the observable behaviour
of the network by only considering inputs and outputs of the
model. It is important to note that this is adequate to demonstrate
the functionality of throttling approaches.

Our network model and experimental setup are based on Yau's
et al. (2005) work. As a convention, bandwidth and traffic rates are
measured in Mbit/s. The bottleneck link S�Rs has a limited
bandwidth of Us, which constitutes the upper boundary for the
server load. The rest of the links has an infinite bandwidth.
Legitimate users and attackers are evenly distributed, specifically
each host is independently chosen to be a legitimate user with
probability p and an attacker with probability q¼ 1�p. Parameters
p and q are set to be 0.6 and 0.4 respectively. Legitimate users and
attackers are chosen to send UDP traffic at constant rates,
randomly and uniformly drawn from the range [0, 1] and [2.5, 6]
Mbit/s respectively. We refer to an episode, as an instance of the
network model just described.

Reinforcement learning agents are installed on throttling rou-
ters. Our approach uses a linear decreasing ϵ-greedy exploration
strategy (initial ϵ values are given later for each individual
experiment) and the learning rate is set to α¼0.05. We use
function approximation, specifically Tile Coding (Sutton and
Barto, 1998), for the representation of the continuous state space
and discretise the continuous action space into ten actions: 0.0, 0.1,
…, 0.9 which correspond to 0%, 10% …, 90% traffic drop probabil-
ities (recall that action 1.0 is prohibited).

Due to the nature of the domain, the current network state has
not necessarily been entirely affected by the actions taken by the
agents at the previous time step. This is because the domain is
highly probabilistic and exhibits unpredictable behaviour for
example, at any time a DDoS attack can be initiated or stopped,
more attackers can join or withdraw during an attack, attackers
can alter their strategy which may be known or unknown to the
network operator, legitimate users can start or quit using the
victim's service, legitimate users can also alter their behaviour,
routers can fail, network paths can change etc. For this reason we
are only interested in immediate rewards, that is, the agents learn
a reactive mapping based on the current sensations. Therefore we
set the discount factor to γ¼0. Moreover, we use the popular
SARSA (Sutton and Barto, 1998) reinforcement learning algorithm;
Q-values are initialised to zero and each agent uses the following
update formula:

Q ðs; aÞ’Q ðs; aÞþα½r�Q ðs; aÞ� ð2Þ
For the purposes of our experiments we use tree network

topologies consisting of homogeneous teams of agents. Notice that
our proposed approach is not restricted to tree network topologies;

the proposed defensive architecture constitutes an overlay hierar-
chy i.e. atop of the underlying network topology. Therefore, parent–
child relationships can still be obtained even if the underlying
topology is not tree-structured.

Each team of agents contains two intermediate routers and six
throttling routers (i.e. six reinforcement learning agents, three for
each intermediate router). There are also 12 host machines
corresponding to each team. The upper boundary depends on
the topology size and is set to be equal to Us ¼Hostsþ2. For
example, for the network topology consisting of 2 teams the upper
boundary is given by Us ¼ 24þ2¼ 26.

Finally, the control parameters for the Baseline and AIMD
throttling techniques are configured based on values or range of
values recommended by their authors.

6. Offline learning experiments

Notice the two different phases for offline learning, namely,
training and evaluation. During the offline training of our system
we can keep track of and distinguish the legitimate traffic.
However, we particularly emphasise that this is not the case
during the evaluation of our system. Recall that the rationale
behind this is that the defensive system can be trained in
simulation, or in any other controlled environment (e.g. wide-
area testbed, small-scale lab), where legitimate traffic is known a
priori, and then deployed in a realistic network where such
information is not available.

6.1. Performance

The first experiment of this section aims at learning a universal
policy, that is, the “best” response for all possible instances of the
network model using the topology consisting of 30 learning agents
(5 teams). The system is trained for 100,000 episodes. At the start
of each episode a new network instance is generated i.e. we re-
choose the legitimate users, attackers and their rates according to
the model (described in Section 5).

For this particular experiment we use an initial ϵ¼0.3 and
exploration is stopped after the 80,000th episode. Each episode
runs for 1000 time steps. The system training attempts to learn a
universal policy for all network instances.

MARL, Comm, ITLþComm and CTLþComm refer to the basic
approach (Malialis and Kudenko, 2013) (described in Section 4.2),
hierarchical communication (described in Section 4.3), indepen-
dent and coordinated team learning (described in Section 4.4)
approaches respectively.

We plot the global reward at the last time step of each episode,
averaged over ten repetitions (i.e. over ten universal policies).
Training results for the four reinforcement learning-based
approaches are presented in Fig. 6. It is clear that the system
learns and improves over time until it finally converges. Because of
the probabilistic nature of the environment, different rewards will
be yielded in each episode and hence the shape of the graph.
Consider the network topology shown in Fig. 3. In the first episode
for example, there may be two attackers, let us say H1 and H3. In
the second episode there may also be two attackers, but different
ones, let us say H2 and H5. The third episode may have the same
attackers as the first one, but their sending rates are different.

We evaluate our approach against the Baseline and the popular
AIMD router throttling (Yau et al., 2005) approaches. Each rein-
forcement learning agent uses its policy learnt during the system
training. For evaluation we randomly sample 100 episodes each of
a duration of 60 time steps. Legitimate traffic is started at t¼0 and
stopped at t¼60. Attack traffic lasts for 50 time steps; it is started
at t¼5 and stopped at t¼55. All approaches use an upper
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boundary for the victim of Us ¼ 62 and the Baseline and AIMD also
use a lower boundary of Ls ¼ 56.

We evaluate our approach using different patterns of attack
dynamics. The majority of DDoS attacks use a constant-rate
mechanism where agent machines generate traffic at a steady
rate (Mirkovic and Reiher, 2004). The DDoS impact is rapid but the
large and continuous flood can be easily detected. It is also the
most cost-effective method for the attacker. The attacker can also
deploy a variable rate mechanism to delay or avoid detection and
response.

Evaluation is performed using the following five different
patterns of attack dynamics of different sophistication levels. We
emphasise that these patterns have not been previously seen by
our system during the training period. The attack dynamics are
described below (Mirkovic and Reiher, 2004):

� Constant-rate attack: The maximum rate is achieved immedi-
ately when the attack is started.

� Increasing-rate attack: The maximum rate is achieved gradually
over 25 time steps.

� Pulse attack: The attack rate oscillates between the maximum
rate and zero. The duration of the active and inactive period is
the same and represented by D. We create two different attacks
namely the high and low pulse attacks which have a period of
D¼5 and D¼2 time steps respectively.

� Group attack: Attackers are split into two groups and each
group performs simultaneously a different attack pattern. We
choose the first group to perform a constant-rate and the
second to perform a low pulse attack.

Figs. 7–11 show the average performance over the 100 episodes
for the 10 policies learnt during the system training, for the five
types of attack dynamics respectively; error bars show the
standard error around the mean. Performance is measured as
the percentage of the legitimate traffic that reached the victim
throughout an episode; the higher the value on the graph the
better. For completeness, the figures also show the percentage of
the DDoS traffic (note that the contents of the DDoS traffic do not
cause damage but the problem is caused by the aggregated
volume).

As expected, the AIMD approach outperforms the Baseline
approach in all five scenarios. Furthermore, the basic MARL
approach fails to perform well in this large-scale domain. The
Comm approach offers great benefit to the system's performance
over the basic MARL approach. Recall that the goal of an agent in
offline learning is to obtain a universal policy, that is, the “best”
response for all possible situations the network might be found in.
Hierarchical communication helps each agent to distinguish

between the different situations and therefore to learn a better
policy for similar ones.

ITLþComm and CTLþComm further improve the system per-
formance as they use task decomposition and team rewards. As

Fig. 6. Offline learning for 30 RLs.

Fig. 7. Performance for constant-rate attack (30 RLs).

Fig. 8. Performance for increasing-rate attack (30 RLs).

Fig. 9. Performance for high pulse attack (30 RLs).
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expected, CTLþComm performs better since it allows a team
leader's load to exceed its hypothetical boundary as long as the
victim router's load is below its limit.

Most importantly, CTLþComm outperforms the Baseline, AIMD
and all other learning-based approaches in all scenarios. Specifi-
cally, it outperforms the Baseline and AIMD approaches about 24–
33% and 5–17% respectively. The AIMD approach suffers the most
in the highly dynamic scenarios of high pulse, low pulse and group
attacks.

CTLþComm outperforms AIMD for the following two reasons.
Firstly because CTLþComm learns a better behaviour during the
training phase, and secondly because our proposed approach is
more adaptable and responsive to the attackers’ dynamics. These
are examined in Section 6.3.

6.2. Scalability

This series of experiments aims at examining the scalability of
each individual learning-based approach. Experiments are con-
ducted for the constant-rate attack scenario for up to 30 reinforce-
ment learning agents. As previously explained, each agent is first
trained offline to obtain a universal policy that it will later use for
evaluation.

Figs. 12–15 show the scalability results for the MARL, Comm,
ITLþComm and CTLþComm approaches respectively. It is shown
that the performance of MARL remains unaffected for up to 18
agents but severely declines in the case of 30 learning agents. The
performance of Comm improves from 6 to 12 agents but then it
starts declining when moving to the cases of 18 and 30 agents,
although the performance drop is not as severe as in the case
of MARL.

Lastly, it is demonstrated that the performance of both
ITLþComm and CTLþComm remains unaffected by the addition
of new teams of learning agents. This is a strong result suggesting
that the two approaches are capable of scaling to large network
topologies.

6.3. Aggregate load convergence

This series of experiments aims at shedding light on the
previous experimental results from Section 6.1 by investigating
how the aggregate load behaves during a DDoS attack. Recall from
Section 3.3.1 that the original Router Throttling approach (Base-
line, AIMD Yau et al., 2005) requires the aggregate load to
converge within the lower and upper boundaries i.e. rsA ½Ls;Us�.
Also, recall from Section 4.1 that Multiagent Router Throttling
requires to bring the aggregate load below the upper boundary i.e.

Fig. 10. Performance for low pulse attack (30 RLs).

Fig. 11. Performance for group attack (30 RLs).

Fig. 12. Scalability of MARL. Fig. 13. Scalability of Comm.
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rsrUs. To better examine this we consider the scenarios of
constant-rate, increasing-rate and high pulse attacks. At this point
we are only interested in the CTLþComm approach since it can
better scale-up (Section 6.2) and significantly outperforms the
other reinforcement learning-based approaches (Section 6.1).

Fig. 16a shows how the aggregate load varies for the constant-
rate attack scenario when the Baseline, AIMD and CTLþComm
approaches are used. There exist 30 reinforcement learning agents
that use their universal policies learnt during offline training in
Section 6.1, and values are averaged over the same 100 episodes
used earlier for evaluation purposes in Section 6.1. The upper
boundary for the victim is Us ¼ 62; the Baseline and AIMD
approaches also use a lower boundary of Ls ¼ 56. All three
approaches do what they are intended to do, that is, to bring
down the aggregate load to acceptable levels i.e. rsr62 and
rsA ½56;62� for the CTLþComm and the non-learning approaches
respectively.

Fig. 16b shows how the legitimate load varies for the constant-
rate attack scenario. This is averaged over the 100 episodes and
error bars are plotted which show the standard error around the
mean; the higher the value on the graph the better. The plots
verify the previous results from Section 6.1 i.e. that CTLþComm
outperforms AIMD.

These results shed light on why this occurs. Our proposed
approach outperforms the existing throttling approach for two

reasons. Firstly, the system behaviour learnt during offline training
is better than the “hard-wired” AIMD algorithm. Secondly, the
existing non-learning approaches require a number of oscillations
to bring the victim load to desirable levels; this will become more
apparent as we continue to more dynamic attack scenarios. In
contrast, our proposed CTLþComm is highly responsive to the
attackers’ dynamics since the system learns the router throttles
during offline training and as a result it does not require any
system oscillations.

We repeat the same experiments with the increasing-rate
DDoS scenario where similar results are obtained. Fig. 17a and b
shows how the aggregate and legitimate load varies respectively
for the increasing-rate attack scenario when the Baseline, AIMD
and CTLþComm approaches are used, averaged over the 100
episodes. Results show that all three approaches bring down the
victim router's load to acceptable levels but our proposed
approach outperforms the existing throttling approaches. As pre-
viously, this occurs because CTLþComm has learnt a better
behaviour during offline learning and also because it is highly
responsive to environmental changes.

Finally, we repeat the experiments with the highly dynamic
scenario of high pulse DDoS. Fig. 18a and b shows how the
aggregate and legitimate load respectively varies for the high
pulse attack scenario when the Baseline, AIMD and CTLþComm
approaches are used, averaged over the 100 episodes. It is evident
that the AIMD approach requires considerably more time to bring
the aggregate load within the desired boundaries, while the other
two approaches do so much quicker. Also, our reinforcement

Fig. 14. Scalability of ITLþComm.

Fig. 15. Scalability of CTLþComm.

Fig. 16. Load for constant-rate attack (30 RLs). (a) Aggregate load, (b) legitimate
load.
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learning-based approach allows more legitimate traffic than the
existing approaches.

7. Online learning experiments

Finally, we present some early results on online learning
experiments. On contrary to offline learning where the goal is to
learn a universal policy (the “best” response for all possible
situations the network might be found in), the goal of online
learning is to learn the best response for the particular situation
the network is currently found in.

Fig. 19a shows how the Baseline, AIMD and the reinforcement
learning-based approaches compare to each other in the topology
involving 30 throttling agents (5 teams) for the constant-rate
attack scenario. Reinforcement learning agents use an initial
ϵ¼0.2. Each episode runs for 10,000 time steps. At the start of
each episode a new network instance is generated i.e. we re-
choose the legitimate users, attackers and their rates according to
the model (described in Section 5). The values are averaged over
500 episodes and error bars showing the standard error around
the mean are plotted (hence the thickness of the plots). A higher
value indicates a better performance.

Hierarchical communication is again shown to be beneficial to
the system. Noteworthy is the fact that Comm requires a con-
siderably larger amount of time (about 5000 time steps) to over-
come MARL. Again, this is expected as in Comm each learning
agent has four state features, as opposed to an agent using MARL
that has one state feature.

It is also worth mentioning that although it performs better
than MARL, this improvement is not as great as it used be in the
offline learning setting. Recall that the goal of offline learning is for
an agent to learn a universal policy, that is, the “best” response for
all possible situations the network might be found in. Therefore,
the observation makes sense since in the offline learning scenario
hierarchical communication helps each agent to distinguish
between the different situations and therefore to learn a better
policy for similar ones. On the contrary the goal of online learning
is to find the best response for the particular situation the network
is currently found in.

The AIMD approach outperforms the Baseline approach as
expected. Similar to the offline learning experimental results, our
proposed CTLþComm is shown to perform very well in the online
learning scenario. Specifically, CTLþComm outperforms the Base-
line, AIMD and all other learning-based approaches. However, it
requires about 6000 time steps to overcome AIMD.

For the same experiment, we show in Fig. 19b how the aggregate
load at the victim behaves for the Baseline, AIMD and CTLþComm
approaches. All three approaches do what they are intended to do,
that is, to bring down the aggregate load to acceptable levels i.e.
rsr62 and rsA ½56;62� for the CTLþComm and the non-learning
approaches respectively. Specifically, the AIMD approach requires
10 time steps to bring down the aggregate load to acceptable levels,
while the CTLþComm approach requires about 25 time steps.

The question now is what all these figures mean in practice
about the learning speed. Since we use a network emulator and also
due to the lack of an actual ISP topology we can only provide an
estimate of the learning speed. Recall from Section 4.2 that the

Fig. 17. Load for increasing-rate attack (30 RLs). (a) Aggregate load, (b) legitimate
load.

Fig. 18. Load for high pulse attack (30 RLs). (a) Aggregate load, (b) legitimate load.
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monitoring window or time step of the throttling algorithms should
be about the maximum round trip time between the victim server S
and a router in R(k). Assuming a round trip time of 100–200 ms
means that the AIMD approach would require a few seconds to
bring the aggregate load to acceptable levels (Fig. 19b) and the same
time to reach its maximum value (Fig. 19a); this is consistent with
experiments in Yau et al. (2005). The CTLþComm approach would
require a few more seconds to bring the aggregate load below the
upper boundary (Fig. 19b) but it would require about 10–20 min to
overcome the performance of AIMD (Fig. 19a). We state that the
figures just mentioned constitute estimates in order to provide an
indication of the learning speed.

Recall from Section 4.1 that the server is assumed to be
operating normally if its load is below the upper boundary i.e.
rsrUs. Therefore, although our proposed approach requires about
10–20 min to overcome AIMD, the victim server will be opera-
tional during a DDoS attack. Taking into consideration that 88% of
DDoS attacks last for less than an hour (Anstee et al., 2013), this
constitutes a promising result. However, during this period of time
the victim can suffer from financial loss and customer or user
dissatisfaction, and for this reason, future work will focus on
improving the learning speed. The potential of online learning is
further discussed in the next section.

To examine the scalability of the individual approaches in the
online learning setting we conduct the following experiments.
Fig. 20 shows the performance of the MARL approach when
applied to topologies including up to 30 reinforcement learning
agents. The values are averaged over 500 episodes and error bars
showing the standard error around the mean are plotted. As
expected, the basic design MARL fails to scale-up; the performance
declines as the number of learning agents increases.

Fig. 21 shows the behaviour of CTLþComm when scaling up to
102 reinforcement learning agents. The values are averaged over
500 episodes and error bars showing the standard error around
the mean are plotted. We obtain a very strong result from this
experiment. The approach is shown to be scalable since its
performance remains unaffected by the addition of new teams of
learning agents. Strictly speaking, it is observed that its perfor-
mance slightly improves as the number of agents increase. We
believe this occurs for two reasons. Firstly, because of the general-
isation of Tile Coding (Sutton and Barto, 1998), since we keep the
same number of tiles and tilings for all topologies. Secondly, it is
expected that as the number of agents in the system increases, the
noise created by their actions cancels out; this is known as the the
wisdom of crowds6 (Surowiecki, 2005).

8. Discussion and conclusion

8.1. Advantages

Resiliency: The original throttling approach (Baseline, AIMD Yau
et al., 2005) is victim-initiated, that is, the victim controls and
sends the throttle signals to the upstream routers. However, it is
based on the assumption that either the victim remains opera-
tional during a DDoS attack or that a helper machine is introduced

Fig. 19. Online learning for 30 RLs. (a) % Legitimate traffic reaching victim,
(b) aggregate load.

Fig. 20. Scalability of MARL.

Fig. 21. Scalability of CTLþComm.

6 The term “wisdom of crowds” supports that the aggregation of information in a
group often leads to better decisions, than a decision made by any individual (even
an expert) in the group.
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to deal with the throttle signalling (Yau et al., 2001). The first
assumption can be violated in a real-world scenario. As far as the
second assumption is concerned, the helper machine can also
become a target of the attack.

In essence, the problem may arise because the existing throt-
tling approach is victim-initiated, that is, it has a single point of
control. In other words, although it offers a distributed response, it
is still a centralised approach. Our proposed approach has a
decentralised architecture and provides a decentralised coordi-
nated response to the DDoS threat, thus eliminating the single
point of control.

Performance: The CTLþComm approach significantly outper-
forms both the Baseline and AIMD throttling approaches in a
series of increasingly sophisticated attack dynamics involving
constant-rate, increasing-rate, pulse attacks and a combination of
the aforementioned as demonstrated in Section 6.1. The learnt
decentralised behaviour performs better than the AIMD's centra-
lised “hard-wired” behaviour allowing more legitimate traffic to
reach the victim server during a DDoS attack.

Scalability: We have shown that our proposed CTLþComm
approach can significantly scale-up to large network topologies.
Specifically, it has been demonstrated that its performance
remains unaffected by the addition of new teams of learning
agents. This is demonstrated for offline learning in topologies
involving up to 30 reinforcement agents (Section 6.2) and for
online learning in topologies involving up to 102 learning agents
(Section 7).

The question now is how scalable does the defensive system
need to be. In a study conducted by Spring et al. (2002), the authors
consider 10 ISPs and estimate that the number of core (non-
customer) routers in an ISP is between 11 and 1018; notice that
these numbers refer to the total number of core routers and not the
defensive routers. The former refers to a small ISP in India while the
latter refers to a large corporate ISP in the US. It is observed that the
difference is 100 times larger than the smallest networks.

To provide an estimate of the number of defensive routers
consider a tree-structured network topology with a branching
factor of two i.e. a binary tree. The root of the tree is the customer
or victim router. A binary tree of depth four has a total number of
14 core (i.e. excluding the root) routers. Assuming the defensive
routers are found in depth four (i.e. three hops away from the root)
this gives a total number of 8 defensive routers. Similarly for a
binary tree of depth 10 this gives a total number of 1022 core
routers and 512 defensive routers. Therefore, it is expected that the
number of defensive routers will be between 8 and 512. Notice
that all the figures mentioned constitute estimates.

In fact, in practice it is expected that this number would be less
than 512. This is because it is unlikely that an ISP would
universally support the proposed functionality on all routers.
Instead, it is expected that the proposed functionality will be
supported on routers which see a substantial amount of network
traffic. This holds true for the AIMD approach as well. As long as
the majority of the DDoS traffic passes through these points our
proposed approach would still be effective.

The empirical results in the paper suggest that our proposed
approach is scalable enough to be potentially deployed in a medium-
sized ISP network. Note that the proposed approach can be useful in
other related multiagent domains for example congestion problems
such as air traffic management and traffic light control.

Convergence: The original throttling approach (Baseline, AIMD Yau
et al., 2005) can suffer from stability problems because of system
oscillations in order to settle the aggregate load to a desired level
within the lower Ls and upper Us boundaries. Performing throttling
becomes challenging as the range ½Ls;Us� becomes smaller.

Even if the system does not suffer from stability problems, it
still requires a number of oscillations which can cause an increase

in the time required for the aggregate load to settle within the
desired range. In contrast, our proposed CTLþComm is highly
responsive to the attackers' dynamics since the system learns the
router throttles during offline training and as a result it does not
require any system oscillations as demonstrated in Section 6.3.

Adaptability: Unlike non-learning approaches, one of the core
advantages of reinforcement learning is its capability for online
learning. Let us first discuss the importance of online learning.

Firstly, training our system in an offline manner requires to
have a reasonable knowledge of the network model and topology.
The same applies to the Baseline and AIMD approaches which
both require parameter tuning based on this knowledge. However,
if these are inaccurate (i.e. they do not reflect the actual ones) or
change in due course our approach would require re-training, and
the existing non-learning approaches would require parameter re-
tuning.

Secondly, learning a universal policy i.e. a policy that does well
in every possible situation that the network might be found in, is
time consuming. For example, in the experiments conducted in
Section 6.1 which involved 30 reinforcement learning agents, the
system was trained offline for 100,000 episodes in order for each
agent to be able to learn a universal policy.

Lastly, online learning could create a robust throttling mechan-
ism. The online learning capability will enable our system to adapt
and recover from unexpected situations such as router failures.

Although the main focus of this paper is on offline learning, we
have presented in Section 7 some early promising results on
online learning. The proposed CTLþComm approach is shown to
be scalable, as its performance remains unaffected by the addition
of new teams of learning agents. Furthermore, it is shown to
outperform the AIMD approach; however, it requires a consider-
able amount of time to achieve that. Online learning will be the
main focus of our future work and will investigate ways to
improve the learning speed of our approach.

8.2. Deployment issues

Team formation: For the purposes of our experiments, we have
considered a potential victim and statically formed the teams of
learning agents. Future work should investigate the potential of a
dynamic team formation mechanism.

“Meek” attackers: Similar to the original throttling AIMD (Yau
et al., 2005) approach, our system does not take into consideration
the case of “meek” attackers i.e. where an attacker's sending rate is
similar to the rate of a legitimate user. As already stated, this
requires that an attacker compromises and recruits a considerably
higher number of host machines (zombies) in order to launch an
attack of the same effect. Effectively tackling this problem would
require the enrichment of the state space of an agent, that is, to
introduce more statistical features other than the local router load.
This is necessary because in the case of “meek” attackers, the
system cannot differentiate between legitimate and attack traffic
by just taking into account router loads.
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