
PaaS-independent Provisioning and Management of
Applications in the Cloud

Mohamed Sellami, Sami Yangui, Mohamed Mohamed and Samir Tata

Computer Science Departement

Institut Mines-Telecom, Telecom SudParis, CNRS UMR Samovar, Evry, France

Email: Firstname.Lastname@telecom-sudparis.eu

Abstract—The study we have conducted of existing cloud
platforms shows that their operating requires the use of specific
and proprietary APIs. This PaaS providers’ policy is hampering
the interactions between different clouds. If appropriate solutions
are not considered, this issue would for instance slow down
the democratization of clouds federation and cooperation. In
this paper, we propose (i) a unified description model that
allows the representation of applications independently of the
targeted PaaS for their hosting and (ii) a generic PaaS application
provisioning and management API (called COAPS API). Our
proposed solution applies the separation of concerns principle
by separating the provisioning and the management API from
the defined description model. We motivate our solution with real
use case scenarios and an implementation to show its feasibility.

Keywords-Application model; Environment model; PaaS; Pro-
visioning; Management; REST API

I. INTRODUCTION

Cloud Computing is a new supplement, consumption, and

delivery model for IT services based on Internet protocols.

More and more companies are adopting the new economic

model offered by cloud computing. For instance, in a Mckin-

sey Quarterly survey [1] conducted in 2010 on 332 companies,

75% believe that the use of cloud computing could drive

value at their companies. Among these companies, 68% says

that they are currently adopting the cloud to set up electronic

collaboration and 82% are planning to do it in the 18 coming

months. In this new world of business, electronic cooperation,

collaboration and/or federation are inevitable.

Cloud computing offers innovative solutions and services

to companies. In this paper, we focus on the Platform-as-

a-Service (PaaS) layer and more particularly on application

provisioning and management. To allow cloud cooperation and

federation, each company’s cloud must be able to seamlessly

interact with different and heterogeneous PaaS (e.g. Cloud

Foundry1, Openshift2, etc.). However, our study on existing

cloud platforms (see Section VI) shows that their handling

requires the use of specific and proprietary APIs. For example,

to interact with the Force.com PaaS Apex REST API is

provided [2], Cloud Foundry is delivered with a proprietary

API (i.e. the Cloud Foundry core REST API), etc. Each

existing PaaS exposes a different interface and no standardized

1http://www.cloudfoundry.com/
2https://openshift.redhat.com

(or generic) API is offered for PaaS consumers. Thereby, the

actual PaaS Provider’s policy makes a seamless interaction

with their PaaS very difficult, if not impossible.

In this paper, we provide a PaaS-independent solution for

PaaS application provisioning and management. We define

a model, called the PaaS Resources and Applications De-

scription Model, for the description of PaaS applications

independently from their targeted PaaS. We also propose a

generic API, called COAPS API, that allows human and/or

software agents to provision and manage PaaS applications.

This API provides an abstraction layer for existing PaaS

allowing PaaS application provisioning in a unified manner.

By using our description model to describe PaaS applications,

and the COAPS API as a middleware with available PaaS

offers, application providers can easily switch from one PaaS

to another.

The remainder of this paper is organized as follows. In

Section II, we present two realistic use cases for our PaaS

application provisioning and management solution as motivat-

ing cases for our work. In Section III, we propose a model to

describe PaaS resources and applications. Section IV presents

our generic cloud application provisioning and management

API (i.e. COAPS API). We discuss related work and show

contributions of our solution in Section VI, before discussing

our results and presenting directions for future work in Sec-

tion VII.

II. USE CASES AND MOTIVATION

To show the use and utility of our cloud Application pro-

visioning and management solution in realistic situations, we

present in this section two real use cases: the CompatibleOne

cloud broker project3 and the EASI-CLOUDS project4.

A. CompatibleOne

As a first use case for our solution, we present in this section

the work done in the CompatibleOne project. CompatibleOne

is an open source project which provides, among others, a

platform (i.e. ACCORDS) for the description of and inter-

operability between different cloud resources provisioned by

heterogeneous cloud service providers [3]. The ACCORDS

3http://www.compatibleone.org
4http://easi-clouds.eu/

2013 IEEE Sixth International Conference on Cloud Computing

978-0-7695-5028-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CLOUD.2013.105

693

Fig. 1. COAPS demo presented in the CompatibleOne final review

platform authorizes application developers to choose the run-

times and frameworks of their choice to deploy their applica-

tions. The developers are not supposed to consider proprietary

characteristics related to a specific PaaS (e.g. Google App

Engine5, Cloud Foundry, etc.). To ensure this interoperability

requirement, the initial specifications and implementations

of our solution (i.e. the PaaS resources and application de-

scription model and the COAPS API) were proposed. De-

scribing applications using a generic model and using a

unified API for their provisioning enabled us to meet the

interoperability challenge. The related CompatibleOne module

(COAPS6 specifications and implementations) is available at

http://gitorious.ow2.org/ow2-compatibleone/coaps.

As a proof of concept for the COAPS module, the demon-

stration illustrated in Fig. 1 was presented at the project’s final

review. This demonstration shows how the interoperability of

the ACCORDS platform is ensured through our solution. We

provisioned two different PaaS instances, a Cloud Foundry

instance and an Openshift instance, with a same application

(XWiki Enterprise7) using the same application descriptor

(according to our model) and the same actions (defined in our

API). XWiki Enterprise is a light and powerful development

platform that allows users to customize the wiki to their

specific needs (e.g. sharing documents, monitoring project

progress, etc.). For our demonstration, the XWiki company

provided us with a ”Cloudified” version of the application. To

provision the Cloud Foundry instance or the Openshift instance

5https://developers.google.com/appengine/
6COmpatible Application Platform Service
7http://enterprise.xwiki.org/xwiki/bin/view/Main/WebHome

with the XWiki Enterprise application, the ACCORDS plat-

form performs the same sequence of COAPS API operation

calls to create the hosting environment of the application,

upload its source archives and start it.

B. EASI-CLOUDS

EASI-CLOUDS stands for Extendable Architecture and

Service Infrastructure for Cloud-Aware Software. This project

aims to offer novel and beneficial solutions for both cloud

consumers and providers. The major expected outcome is an

open-source cloud platform, the EASI-CLOUDS platform (see

Fig. 2), ”that can be instantiated to set up an application
type-specific cloud (e.g., e-learning, HPC-on-demand, storage
marketplace) for a private, public, or hybrid usage, and
implementing a given level of security, privacy and QoS”[4].

An EASI-CLOUDS platform must also provide the required

facilities for intra-cloud cooperation and federation.

In this project, one of our objectives is to provide the

required facilities promoting EASI-CLOUDS platforms fed-

eration. Our PaaS-independent application provisioning and

management solution can be used in this context to en-

able application provisioning/management (i) between EASI-

CLOUDS platforms of a same federation and also (ii) with

other commercial PaaS (see Fig 2). Currently, our solution is

used in two different PaaS application delivery scenarios:

• A cloud application provider connects to an EASI-

CLOUDS platform federation, to deploy its already cre-

ated application on PaaS. In this scenario, the generic

interface provided by the COAPS API, part of the REST

APIs circle in Fig. 2, allows an EASI-CLOUDS platform

694

Fig. 2. Conceptual diagram of the EASI-CLOUDS platform [5]

to seamlessly interact with different and heterogeneous

PaaS, including other EASI-CLOUDS platforms, to de-

ploy the application.

• A cloud application provider connects to an EASI-

CLOUDS platform, to create and deploy an application

on PaaS. In this case, the provider uses an IDE-as-a-

Service [6] provided by the EASI-CLOUDS platform

to develop and deploy its application. In this context,

EASI-CLOUDS partners from the Tampere University

of Technology are currently extending their web-based

collaborative real-time editor for software development

(CoRED) [7] to integrate cloud application provisioning

and management functionalities. This extension will be

ensured by using our Application description model and

the COAPS API.

III. PAAS RESOURCES AND APPLICATIONS DESCRIPTION

In order to provision and manage applications on a PaaS

through our COAPS API, one has to provide the application’s

deployable (source archives) and the corresponding application

manifest. By application manifest, we mean an application

descriptor detailing the application properties, requirements

and its hosting environment (See Fig. 3).

As part of our work, we defined description models for

both application and environment. These models are detailed

respectively in Sections III-A and III-B. Then, to better explain

these models, we present and comment in Section III-C

��������	�

��������	
���

���
���
���

��������	
���

����

��	�	

�

Fig. 3. Application manifest model.

the XWiki application manifest corresponding to our XWiki

illustrative example introduced in Section II-A.

A. Application description model

The diagram illustrated in Fig. 4 represents the various

entities that compose an application.

���
���
���

��������	
���

���
���
����	�����

��������	
���

�������������

���
���
����	��������
���	

��������	
���

�������������

���	������

���
���
����	�
����
	

��������	
���

����
��
�
������	
���

�����
������	
���

����
�
���������������	
���

���	�

�

���	�
�

��	�����������

�

����

Fig. 4. Application description model.

The application entity is characterized by a unique name
and has a set of applicationVersion entities. Each applica-
tionVersion can be instantiated into applicationVersionInstance
entities. Based on this, one can define as many running ap-

plication instances as needed. Each one of these instances has

its own memory and disk attributes. These attributes describes

nonfunctional requirements of applicationVersionInstance en-

tities. Furthermore, to each application, a set of application-
Deployable entities are associated. The applicationDeployable
entity’s content-type can be a artifact or a configuration file.

The location attribute contains their URL. The multitenancy-
level attribute indicates the degree of the application tenancy

to apply by the PaaS once the application is deployed.

B. Environment description model

The diagram illustrated in Fig. 5 represents the various

entities that compose an environment. By environment, we

mean all platform components/resources needed to host and

execute the application to deploy.

Each environment is characterized by a unique name and

is instantiated from an environmentTemplate entity. Each envi-
ronmentTemplate is described by a name, a memory value and

a disk capacity. Memory and disk attributes are used to fix the

695

��������	�

��������	
���

��������	�
�	��
�
	

��������	
���

�������������

���	������

��������	�
���	

����
��
�
������	
���

��������	
���

����	����������

������������	
���

��������	�
����

��������	
���

�	����
���	
���

��������	�
������
	�

��������	
���

���������	
���

�

����	�	
	����

�
�������

���� �

��������	�
�	
�
��� ��������	�
���������
���

�

����	�	
	����

�

����	�	
	����

�
����	�	
	����

�
����	�	
	����

Fig. 5. Environment description model.

environment elasticity limit managed by the PaaS. In addition

to that, the environmentTemplate is built from a set of entities:

• EnvironmentNode components: They represent platform

resources associated to the environmentTemplate. They

can take different content-type values in accordance with

our OCCI PaaS resources extension defined in a previous

work [8]. The possible values are:

– container which are engine resources to host and run

services (e.g. Apache Tomcat),

– database which are storage resources for applications

processing persistent data (e.g. MySQL),

– router which are resources that provide protocols,

messages format transformation and routing (e.g.

Apache/JK).

• EnvironmentRelation components: They define relations

between EnvironmentNode components,

• EnvironmentConfiguration: a set of actions/scripts nec-

essary for the configuration and execution of requested

environmentNode and environmentRelation resources.

Concrete entities associated to EnvironmentRelation and

EnvironmentConfiguration components are respectively Envi-
ronmentLink and EnvironmentVariable. EnvironmentLink com-

ponents allow expressing bindings between allocated Envi-
ronmentNodes (e.g. a database binding between database and

container nodes). EnvironmentVariable components allow the

specification of a set of variables necessary for the configura-

tion and execution of requested EnvironmentNode components

(e.g. an environment variable to configure a container node).

This description model is extensible and can follow the

evolution of PaaS features. Indeed, one can add, if needed,

new entities related to EnvironmentRelation and Environment-
Configuration components. Besides, any application and/or

environment description in accordance to this model will be

transferred through our API to the PaaS which interpret it

according to its features and capabilities.

C. Example: the XWiki application manifest

In this section, we provide an example of an application

description manifest. We consider the XWiki application ex-

ample (See Fig. 1) and provide its manifest in Listing. 1. This

manifest describes the XWiki application (Listing. 1, line 4-

11) and its hosting environment (line 12-24). The name of

the XWiki application (line 4) and the label of the version

to deploy (line 6) are specified. Content-type of XWiki 1.0

deployable is a Web application archive (line 7). There is a

set of XWiki instances to run on the targeted PaaS (line 8-9):

XWikiInstance1 is defined as the default instance (line 8).

All these instances have to be hosted and executed in a

Java Web environment (line 12) instantiated from JavaEn-
vTemplate (line 13-23). The link between the application

and its environment is expressed in the environment attribute

of the application element (line 4). The defined template

JavaEnvTemplate is composed of two PaaS resource nodes:

An Apache Tomcat as Web container (line 15) to host the

XWiki application and a MySQL database instance (line 16)

for storing persistent data. A script to set a binding between

these resources is also specified (line 18). In addition to that,

an environment variable required by the container is provided

(line 21).

IV. OVERVIEW OF THE COAPS API

The COAPS API is based on the Representational State

Transfer (REST) architecture which is an architectural style

for building distributed systems. It provides a simple and

powerful model for organizing complex applications into

simple resources [9]. The REST architectural style is based

on resources associated to unique identifiers (e.g. URI). The

interactions with these resources are based on a standardized

communication protocol (e.g. HTTP).

COAPS API handles application and environment resources

which are described in accordance to our defined description

models (See Section III). It exposes a set of generic and REST-

ful HTTP operations (i.e. GET, POST, PUT and DELETE) for

cloud applications management and provisioning. We organize

these operations into two categories: application management

operations and environment management operations. By ap-

plication we mean any computer software or program that

can be hosted and executed by a PaaS. The source archives

of the application is provided by the COAPS API human or

software agent. By environment we mean the set of required

software components needed by an application: i.e. runtimes

(e.g. java 6, java 7, etc.), frameworks/containers (e.g. Spring,

Tomcat, etc.), services (e.g. databases, messaging, etc.), etc. In

the following, we present the different environment and appli-

cation management operations offered by our API respectively

in Section IV-A and IV-B.

A. The Environment Management Resource

A resource based representation of the proposed environ-

ment management operations is provided in Fig. 6. Each box

represents an environment resource (or sub-resource), the title

text (e.g. /environment, /environment/envId, etc.)

696

1 <?xml v e r s i o n ="1.0" e n c o d i n g ="UTF8"?>
2 <m a n i f e s t name="XWikiApplicationManifest" xmlns="http://www.compatibleone.fr/schemes/paasmanifest.xsd">
3 <d e s c r i p t i o n>Th i s m a n i f e s t d e s c r i b e s The XWiki S e r v l e t .< / d e s c r i p t i o n>
4 <a p p l i c a t i o n name="XWikiApplication" e n v i r o n e m e n t ="JavaWebEnv">
5 <d e s c r i p t i o n>XWiki a p p l i c a t i o n d e s c r i p t i o n .< / d e s c r i p t i o n>
6 <a p p l i c a t i o n v e r s i o n name="version1.0" l a b e l ="1.0">
7 <d e p l o y a b l e name="XWiki.war" c o n t e n t t y p e ="artifact" l o c a t i o n ="Folder/URL" m u l t i t e n a n c y l e v e l ="

Shared" />
8 <a p p l i c a t i o n v e r s i o n i n s t a n c e name="XWikiInstance1" i n i t i a l s t a t e ="1" d e f a u l t i n s t a n c e ="true"

memory="256" d i s k ="1" />
9 <a p p l i c a t i o n v e r s i o n i n s t a n c e name="XWikiInstance2" i n i t i a l s t a t e ="1" d e f a u l t i n s t a n c e ="false"

memory="128" d i s k ="1" />
10 < / a p p l i c a t i o n v e r s i o n>
11 < / a p p l i c a t i o n>
12 <e n v i r o n m e n t name="JavaWebEnv" t e m p l a t e ="JavaEnvTemplate">
13 <e n v i r o n m e n t t e m p l a t e name="JavaEnvTemplate" memory="2048" d i s k ="2">
14 <d e s c r i p t i o n>Tomca tSe rve rEnv i ronmen tTempla t e .< / d e s c r i p t i o n>
15 <env i ronmen t node c o n t e n t t y p e ="container" name="tomcat" v e r s i o n ="6.0.36" p r o v i d e r ="CF" />
16 <env i ronmen t node c o n t e n t t y p e ="database" name="mysql" v e r s i o n ="4.2" p r o v i d e r ="OS" />
17 <e n v i r o n m e n t r e l a t i o n>
18 <e n v i r o n m e n t l i n k name="dbBinding" s c r i p t ="bind.sh" />
19 < / e n v i r o n m e n t r e l a t i o n>
20 <e n v i r o n m e n t c o n f i g u r a t i o n>
21 <e n v i r o n m e n t v a r i a b l e name="CATALINA_HOME" v a l u e ="$catalina_home" />
22 < / e n v i r o n m e n t c o n f i g u r a t i o n>
23 < / e n v i r o n m e n t t e m p l a t e>
24 < / e n v i r o n m e n t>
25 < / m a n i f e s t>

Listing 1. XWiki application manifest

represents the resource identifier and the body text lists the of-

fered operations by this resource (e.g. FindEnvironments,

CreateEnvironment, etc.) and its associated REST meth-

ods (e.g. GET, POST, etc.).

Fig. 6. The COAPS API environment management operations

In our specifications, we consider the basic operations

for an application’s environment creation and management.

The environment management resource offers the following

operations:

• Create Environment: creates a new environment using

the environment element of the application manifest (see

Section III). The operation returns, among others, an

environment ID.

• Update Environment: updates an existing environment.

An environment ID must be provided and the updates

must be specified in a new application manifest.

• Destroy/Describe Environment: destroys/describes an en-

vironment given its ID.

• Find Environments: lists all available environments.

• Get Deployed Applications: lists all deployed applications

in an environment given its ID.

• Get information: lists the runtimes, frameworks and ser-

vices supported by the targeted PaaS.

B. The Application Management Resource

As for the environment management resource, we consider

the basic operations for an application provisioning and man-

agement. Our application management resource is represented

in Fig. 7.

The application management resource offers the following

operations:

• Create Application: creates a new application using the

application element of the application manifest (see

Section III). The operation returns, among others, an

application ID.

• Deploy Application: deploys an application identified

by its ID on an existing environment identified by its

environment ID.

• Start/Stop/Restart/Un-deploy/Destroy Application:

starts/stops/restarts/un-deploys/destroys a deployed

application given its ID.

• Update Application: updates an existing application. The

application ID must be provided and the updates have to

be specified in a new application manifest.

• Describe Application: returns an application description

given its ID.

• Find Applications: lists the available applications.

697

Fig. 7. The COAPS API application management operations

• Destroy Applications: destroys all existing applications.

The full version of the COAPS API specification is available

at: http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS.

V. IMPLEMENTATION

Currently, we provide two implementations of our API:

a Cloud Foundry implementation (CF-PaaS API) and an

Openshift implementation (OS-PaaS API). Both implemen-

tations are developped in Java and provided as RESTful8

Web applications. We also developed a generic Web client

(see Fig. 8) for application provisioning and management on

PaaS with an implementation of our API. The Web client

acts as an access point for the API implementations and

allows a user to call the environment/application management

operations (see Section IV). Through this client, we show

that our API allows a seamless (i.e. using (1) the same
application/environment manifests and (2) the same actions)

PaaS application provisioning.

We recall our XWiki provisioning example (see Sec-

tion II-A) to illustrate how our solution works in practice. To

deploy the XWiki application, we start by creating its manifest,

written in XML, according to our PaaS application description

model. The used XWiki application description manifest is

provided in Listing 1. We recall that this description is inde-

pendent from the targeted PaaS (in our case Cloud Foundry)

and can be used to provision another PaaS with the same

XWiki application.

This manifest and the application’s deployable (a WAR

file in this example) are the only inputs required by the

8In our implementations we use the Jersey JAX-RS (JSR 311) implemen-
tation.

Fig. 8. The COAPS API Web client

COAPS API for the application provisioning. Using our

generic Web client (see Fig. 8), the XWiki provisioning

occurs as follows: First of all, we specify the COAPS

API implementation that will be used. In this example

we adopted a Cloud Foundry implementation acting as a

middleware to a hybrid Cloud Foundry instance hosted

by our institute (i.e. Telecom SudParis). Next, we exe-

cute one by one the required environment and applica-

tion operations (listed by the Web client in a drop-down

list). To provision the XWiki application required operations

are: create Environment, create Application,

deploy Application and start Application. Fi-

nally, the application is running and accessible on the URL

returned by the start Application operation. At this

stage, our Web client can be used to manage (i.e. stop, restart,

update, etc.) the provisioned application.

Both COAPS API implementations, the Web client im-

plementation and a video illustrating the XWiki deployment

(see Section II-A) are available at the COAPS API page9.

Our generic Web client is also available on line at: http:

//star-paas-client.cloudfoundry.com/ and can be used to test

our CloudFoundry-PaaS API implementation deployed at:

http://cf-paas-api.cloudfoundry.com/. A user guide and test

resources are available in the project’s folder10.

VI. RELATED WORK AND COMPARISON

There are many attempts to provide a description model

that covers the PaaS resources (i.e. containers, runtimes,

frameworks and applications), and to offer efficient APIs to

manage them. We provide in Section VI-A an overview of

the existing approaches of PaaS resources description models.

Then, we investigate the different PaaS resources management

APIs in Section VI-B.

9http://www-inf.it-sudparis.eu/SIMBAD/tools/starPaaS/
10http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS/GenericAPI.zip

698

A. PaaS Resources Description Models

The Amazon CloudFormation [10] allows specifying the

resources needed by an application. Using this tool, an ap-

plication developer can specify that its application requires

a specific number of computing, storage and networking

resources. CloudFormation proposes to use existing sample

templates, or to create user specific templates. These templates

describe the needed resources and their dependencies. They

could be deployed and updated via a command line tool.

Topology and Orchestration Specification for Cloud Appli-

cations (TOSCA) [11] provides an XML based language to

describe PaaS applications as a set of Nodes with well defined

Relationships. The Nodes and Relationships are described in

a Service Template document. This latter, contains the details

needed to set up the environment and its artifacts. The Service

Template contains a Topology Template that describes the

Relationships between all the Nodes of the application. It

contains also, a Plan element that describes the operational

management behavior. All the needed elements for a TOSCA

application are encapsulated in a predefined archive format

called CSAR.

Cloud Application Management for Platforms (CAMP) [12]

represents PaaS as a set of Application Components related to

each others and using Platform Components via Assemblies

resources. An Assembly resource represents a running applica-

tion. In this specification, the Platform is described as a set of

Platform Components offering a list of capabilities to be used

by applications. An application is a set of Application Com-

ponents having capabilities and requirements. An Application

Component can be related to a Platform Component if this

latter has the needed capabilities that could be associated to the

requirements of the Application Component. The application

is described in a Platform Deployment Package (PDP for

short) containing all the descriptions and dependencies of

the application (i.e. manifests, deployment plan, certificates,

bundles, etc.).

In [13], authors propose to use existing approaches to

describe applications and their deployment in the cloud. They

use resource templates (as for TOSCA and CloudFormation)

representing reconfigurable entities that can be reused for

different applications. Automated deployment of the resources

associated to templates description, can be possible using

Deployment recipes (using DevOps technologies like Chef or

Puppet).

Except CloudFormation, which is a proprietary solution, all

other solutions are not used in the cloud community. They

still subjects of discussions and modifications. TOSCA and

CAMP perspectives are promising. Our proposed Platform

Application Description Model contains all the information

included in a TOSCA Service Template or in a CAMP

Assembly Template. In addition, our description model is

based on the OCCI standard. Finally, our solution is already

adapted in national and international projects (see SectionII),

that proves its usefulness and richness.

B. PaaS Applications Provisioning APIs

To provide a generic PaaS API, we studied different ap-

proaches. We cite among others Amazon PaaS API AWS

Elastic Beanstalk [14], which allows the provisioning and

management of applications running on Amazon Cloud in-

stances. Azure Service Platform API [15] can be used to

deploy applications on Azure Cloud instances. Google App

Engine API [16] allows deploying and scaling applications on

Google infrastructures. Salesforce API [17] provide a Develop-

ment service that allows developing new services using storage

or business process engines. Red Hat API [18] enables the

management of PaaS resources (containers, storage services,

business process, etc.) and applications.

All of these APIs, allow the description of an application

and its environment in different manners. However, almost

all of these attempts are proprietary APIs. They suffer from

the vendor lock-in problem, because they just consider a

specific model of resource representation. These solutions have

many difference in resources modeling, used languages and

frameworks.

In [19], author discussed the need for a generic API that

enables cloud users to specify their requirements among

providers’ offers. Their investigations show that almost all the

APIs use similar concepts with similar properties and actions

but with different names and structures. The authors consider

that the interoperability problems arise due to different mod-

eling and notation of the same features across different cloud

providers. To handle this issue, the author considers semantic

technologies as a solution for interoperability in the cloud.

Other works are attempting to benefit from the similarities

between cloud resources representation and management to

provide a generic way to perform this management.

In [20], authors suggest that ”a common API should involve
a set of core functionalities that will meet the basic needs
of any Cloud Platform and will unify all different APIs (an
API for all APIs).” Accordingly, a common API is proposed

with a common semantics for the needed PaaS resources

and actions. This API communicates with PaaS providers via

adapters, and any new provider has to adapt his offering

following the same semantics (i.e. using the same models

and structures or providing an adapter to transform its own

representation to the common one). To deploy an application,

developers should provide an application profile that describes

the requirements of the application. A management module

builds an application deployment descriptor according to the

selected PaaS, and then, it initiates the application deployment

via a standard API (Cloud4SOA) that uses the dedicated

adapter for the selected PaaS offer.

CAMP [12], provides a restful solution to manage the life-

cycle of an application. To deploy an application, the user

needs to register the associated PDP (see Section VI-A) using

a HTTP POST request to the Platform. This request must

contain the URI of the concerned PDP. The platform creates an

Assembly Template that represents the deployed application.

To run the application, a client sends a HTTP POST request

699

to the corresponding Assembly Template. This later creates

an Assembly instance that represents the running application.

The client can update or suspend a running application by

sending the new state in a HTTP POST request. To delete an

application, the client sends a HTTP DELETE request to the

Assembly.

Inspired by the idea suggested in [20], we studied the dif-

ferent PaaS offerings to benefit from the similarities between

the existing APIs. Our COAPS API offers a generic interface

for application provisioning and management independently

from PaaS. New PaaS services could be consumed via our

API by simply providing an associated implementation. Unlike

other approaches, our API is independent from an application

description model and other description models can be used.

VII. CONCLUSION

In this paper, we presented a PaaS-independent solution for

PaaS application provisioning and management. We provide

a unified description model that allows to represent an ap-

plication and its requirements independently of the targeted

PaaS. We also defined a generic PaaS application provisioning

and management API (COAPS API). Our proposed solution

applies the separation of concerns principle by separating

the provisioning and management API from the application

description model. This choice makes both contributions, i.e.

the description model and the API self-contained and allows

their independent use. This solution is currently used in

two collaborative research projects (i.e. CompatibleOne and

EASI-CLOUDS) involving academic and industrial partners

to resolve research issues coming from real world cases.

As future work, we plan to propose a generic API for PaaS

application monitoring and management. Monitoring includes

retrieving information related to the current state of the PaaS

resources and applications, while management includes fault

tolerance, application migration or replication, and scaling up

and down running applications. Such API is indeed challeng-

ing, because it has to face the complexity of monitoring and

management tasks amplified by the heterogeneity of PaaS level

and the huge number of parameters to take into account. In

order to do that, we need to investigate the different monitoring

and management solutions in the cloud to see whether it is

possible to define a generic model that enables the retrieval

of monitoring information and the execution of management

operations.

ACKNOWLEDGMENT

This work was funded in part by CompatibleOne, a research

project publicly funded by French Ministry (FUI), and in part

by the ITEA 2 research project EASI-CLOUDS.

REFERENCES

[1] The Mckinsey Quarterly, “How IT is managing new demands: McKinsey
Global Survey results,” 2010.

[2] Salesforce.com. (2013) Force.com Apex Code Developer’s Guide.
http://www.salesforce.com/us/developer/docs/apexcode/salesforce
apex language reference.pdf.

[3] J.-P. Laisne, I. J. Marshall, and P. Peiravi, “Next-Generation Cloud
Management. The CompatibleOne Project,” Intel’s Journey to Cloud,
vol. 2, no. 1, pp. 15–24, 2012.

[4] A. Thiele. (2012) The EASI-CLOUDS Project Description. http://
easi-clouds.eu/2012/02/03/project-description/.

[5] EASI-CLOUDS. (2012) Project Poster. http://easi-clouds.eu/
wp-content/uploads/2012/11/EASI-CLOUDS poster 2012 v4.pdf.

[6] T. Aho, A. Ashraf, M. Englund, J. Katajamki, J. Koskinen, J. Lautamki,
A. Nieminen, I. Porres, and I. Turunen, “Designing IDE as a Service,”
Communications of Cloud Software, vol. 1, pp. 1–10, 2011.

[7] J. Lautamäki, A. Nieminen, J. Koskinen, T. Aho, T. Mikkonen, and
M. Englund, “CoRED: browser-based Collaborative Real-time Editor for
Java web applications,” in CSCW ’12 Computer Supported Cooperative
Work, Seattle, WA, USA, February 11-15, 2012. ACM, 2012, pp. 1307–
1316.

[8] S. Yangui and S. Tata, “CloudServ: PaaS resources provisioning for
service-based applications,” in The IEEE 27rd International Conference
on Advanced Information Networking and Applications, AINA 2013,
March 25-28, Barcelona, Spain, 2013.

[9] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[10] Amazon. (2013) Amazon’s CloudFormation. http://aws.amazon.com/
cloudformation/.

[11] TOSCA Technical Committe, “Topology and Orchestration Specification
for Cloud Applications,” OASIS, Tech. Rep., November 2012.

[12] M. Carlson, M. Chapman, A. Heneveld, S. Hinkelman, D. Johnston-
Watt, A. Karmarkar, T. Kunze, A. Malhotra, J. Mischkinsky, A. Otto,
V. Pandey, G. Pilz, Z. Song, and P. Yendluri, “Cloud Application
Management for Platforms,” http://www.cloudspecs.org/paas/, OASIS,
Tech. Rep., 2012.

[13] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, and S. Dustdar, “Winds
of Change: From Vendor Lock-In to the Meta Cloud,” IEEE Internet
Computing, vol. 17, no. 1, pp. 69–73, 2013.

[14] AWS Elastic Beanstalk. (2010) API Reference. http://www.wilsonmar.
com/arc%5Caws%5Cec2-dg.2009-04-04.pdf.

[15] D. Chappell, “Introducing the Azure Services Platform an Early Look
at Windows Azure, .Net Services, SQL Services, and Live Services ,”
David Chappell & Associates, 2008.

[16] Google App Engine. (2011) Developer’s Guide. http://code.google.com/
intl/el-GR/appengine/docs/.

[17] Salesforce. (2011) Web Services API Developer’s Guide. http://www.
salesforce.com/us/developer/docs/api/apex api.pdf.

[18] Red Hat. (2010) Red Hat PaaS: Bringing Open Choice &
Application Portability to the Cloud. http://www.jboss.com/pdf/
RedHatPaaSWhitepaper.pdf.

[19] N. Loutas, V. Peristeras, T. Bouras, E. Kamateri, D. Zeginis, and K. Tara-
banis, “Towards a Reference Architecture for Semantically Interoperable
Clouds,” in IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom), 30 2010-dec. 3 2010, pp. 143–150.

[20] N. Loutas, “Cloud4SOA: Requirements Analysis Report,” Cloud4SOA,
Tech. Rep., February 2011.

700

