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ABSTRACT  
 
Cyber Red Teaming (CRT) is an important exercise to conduct for Defence agencies 
built on large technological infrastructures. Their size and relative importance may 
make them high priority targets for criminal organizations, issue-motivated groups 
and even foreign governments that are increasingly capable and willing to use 
technology for intelligence gathering. However, identifying a viable attack can be a 
time-consuming process for human analysts, and so Automated Planners are being 
considered as a viable method of discovering possible attack paths for CRT.  
 
This report surveys the current state-of-the-art planning techniques, tools and 
frameworks, their performance at international competitions, and by comparing their 
performance against the operational requirements and limitations of CRT problems, 
recommend the most suitable ones for trialling.  
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Automated Cyber Red Teaming   
 
 

Executive Summary  
 
Cyber Red Teaming (CRT) is a common activity performed within large organisations 
to assess how susceptible their infrastructure, business processes and staff are to 
attacks from cyber-enabled adversaries. CRT involves drafting attack plans that could 
succeed on the current state of the organisation, optional attack execution/simulation, 
and impact analysis. The results are then used to develop mitigation strategies and 
countermeasures. As the attack plan drafting step can be a time-consuming process, 
the use of Automated Planners, Artificial Intelligence algorithms that generate 
problem-specific plans, is suggested to help reduce the cost of the overall exercise. 
 
There are 3 major categories of Automated Planners: state-space planners, planning 
graph planners and hierarchical task network-based planners. State-space planning is 
in essence classical path-finding algorithms like breadth first search and A*, with 
added heuristics for more informed exploration. Planning graph planners converts a 
planning problem into planning graphs: data structure that compactly represents all 
“possible futures” for a given problem in stepped layers, and explores this graph to 
identify the earliest layer where a goal satisfying state is found. Hierarchical task 
network techniques use expert-designed plan templates to constrain the search to 
viable strategies, and focuses on searching for multiple plans within that range. 
 
Other planning approaches exist, but they are not competitive with the three already 
mentioned in terms of efficiency and success.  Additional techniques can also be 
applied on top of the basic planning algorithms, such as use of machine learning to 
guide the planning and factoring in uncertainty.  
 
Using the benchmarking results from the International Planning Competition, we 
identified that algorithms and tools that use planning graphs are currently best suited 
to the Defence Cyber context, as they scale better computationally for larger scenarios 
and generating longer attack plans within reasonable time. 
 
In particular, Portfolio-based Planning (PbP), a parallel computing framework which 
utilises a library of planning techniques and learns suitable portfolio configurations for 
each problem, has proven to be a promising off-the-shelf tool for planning. We 
conclude that future CRT exercises should consider trialling PbP. 
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Glossary 
AI: Artificial Intelligence 

CRT: Cyber Red Teaming 

DDoS: Distributed Denial of Service  
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FD: Fast Downward 
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1. Introduction  

Cyber Red Teaming (CRT) is an important exercise to conduct for Defence agencies built 
on large technological infrastructures [1]. Their size and relative importance may make 
them high priority targets for criminal organizations, issue-motivated groups and even 
foreign governments that are increasingly capable and willing to use technology for 
intelligence gathering.  
 
Stated simply, CRT exercises determine the vulnerabilities that affect one’s cyber system 
by searching for viable attack plans1, and examining its effect on the system. It is a labour-
intensive exercise as it typically involves specialist human analysts and operators to draft 
attack plans. Due to the dynamic nature of cyber environments, some findings from these 
exercises can quickly become invalid, which means they should be conducted frequently. 
Automation of the exercise would allow an organization to discover potential 
vulnerabilities more cost effectively, which in turn will permit more resources to be 
allocated towards mitigation and countermeasures. 
 
This technical note introduces options available for automating CRT, specifically through 
the application of automated planning techniques. It is intended to provoke thoughts for 
people wanting to use automated planners for CRT. Readers of this note are expected to 
have some background in computer science, and exposure to general artificial intelligence 
concepts [2] will be beneficial. Familiarity with automated planning is not necessary. 
 
The rest of the paper is organized as follows: we discuss what the CRT problem is, and 
provide guiding principles for modelling CRT scenarios into planning problems. We then 
introduce what automated planning is, discuss several modern approaches, and consider 
the applicability of automated planning to CRT problems. Finally, we recommend several 
state-of-the-art planning tools for trial and, more generally, when it is suitable to use 
automated planners in support of CRT exercises based on the current requirements. 
 
Details of the implementation and complexity analysis of various planning algorithms, 
tools and frameworks will not be discussed here. It is best to consider this note as a pointer 
to other literature that may be more relevant in specific cases for which an extensive set of 
references is included (see Appendix A). 
  

                                                      
1 For the purposes of this literature review, an attack plan is defined as a sequence of actions which, 
if taken by a person and/or a computer, could harm the target organization. 
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2. Cyber Red Teaming 

CRT is a term often used interchangeably, though sometimes inaccurately, with 
penetration testing and vulnerability assessment. While CRT is an exercise in finding 
possible vectors for attack, penetration testing is an exercise in actually attacking the 
system. Vulnerability assessment on the other hand is about analysing software and 
exposing coding flaws which can be exploited.  
 
Vulnerability assessment is conceptually similar to CRT but studies mostly individual 
software. It lacks the broader view of the system as a whole, focusing more on code flaws 
and less on system configuration and business processes [3]. And while the outcome of 
penetration testing has the same practical implications on a system as CRT, the attack 
vectors are very narrow and often doesn’t say much about the system overall.  
 
This section discusses modelling of an adversary’s characteristics and behaviours (red 
teaming), modelling cyber infrastructure from a systemic perspective, attack plan 
construction via simulation, and the issues related to conducting CRT. This will help show 
how CRT involves aspects of both penetration testing and vulnerability assessment, but is 
able to draft attack plans that utilise multiple vulnerabilities across the system rather than 
isolated ones. 
 
 
2.1 The World Model 

In CRT terms, the overall system that is being red-teamed is commonly referred to as the 
World Model [4] [5]. This naming captures the idea that cyber systems are large, complex 
digital ecosystems with many intelligent entities sharing and consuming resources. It also 
alludes to the practice of modelling and simulating attacks in a test environment as 
opposed to running the exercise in a live, production environment. For our purposes, we 
divide the World Model into two parts: the adversary and the environment they target. 
 
 
The Adversary 
 
Not all adversaries are equal. Each adversary has a specific set of Tactics, Techniques and 
Procedures (TTPs); some are more resourceful and better resourced than others. Others 
may have very specific objectives when attacking an organization. Below is a non-
exhaustive set of questions regarding an adversary one could and should ask in 
constructing a Red Teaming agent that represents them: 
 

• The adversary’s target: who or what are they after? What access do they have into 
various parts of the system? 

• The adversary’s offensive capabilities: this includes their TTPs, computational 
resources and domain knowledge. 

• The adversary’s restrictions: limited time windows for attacking, anonymity, 
visibility of the network etc. 
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• The adversary’s behaviour patterns: have they attacked before? Previous attack 
patterns and targets may be indicative of future ones. 

 
Accurately representing an adversary in a CRT exercise will make the proposed attack 
plans more relevant, and also affect the usefulness and reliability of the results when used 
to assess the actual system.  
 
 
The Target Environment 
 
A real computer network for an organization such as the US Department of Defence is 
generally very large, dynamic and complex [6] . Accurately modelling and simulating such 
a network for the purposes of CRT is the responsibility of the exercise creator, and may 
require applying abstractions or assumptions. Below are some guiding questions in 
support of building a problem-specific World Model: 
 

• What entities are there in the World Model? This may include computers, users, 
software, routers, encrypted storage, network policies and more. 

• What are the relationships between entities? Examples include “User A has an 
account on Computer B” and “Computer X has Software Y installed”. 

• What are the World’s dynamics? Some system behaviour occurs independently 
from the adversary’s actions. 

• Which parts of the World are relevant? It is better to have concise system 
representation that pertains to the adversary’s target to reduce unnecessary 
exploration [7]. 

• Which parts of the World are visible? Not all aspects of the system, even those 
that are relevant, may be visible to an adversary, even from another part of the 
system. 
 

 
2.2 Attack Plan Generation 

After describing a World Model, attack plans can then be drafted in accordance with an 
adversary’s TTP set through simulated execution of the plan on the model. Each attack 
plan may include general coverage activities such as port scanning and IP ranging, or 
targeted actions such as sending a spear phishing email. Some attacks may also depend on 
specific responses from the target machine or user. Through simulation, damage 
assessment and mitigation planning based on the attack effects can be estimated. 
 
There are often numerous possible attack plans conceived during a CRT exercise. The red 
team (exercise runners playing the role of an adversary) chooses which of these attacks to 
attempt first using one or more of the following factors: 
 

• Concerns-based: prioritise attacks that are most concerning (to the organisation) 
• Success-based: prioritise attacks that are most likely to succeed 
• Cost-based: prioritise attacks that consume the least resources 
• Impact-based: prioritise attacks that are most damaging if successful 
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• Opportunity-based: prioritise attacks that are relevant to certain situations 
• Verification-based: prioritise attacks that have been dealt with before. This may be 

to verify that the protections/countermeasures already put in place are working as 
expected. 

 
The level of plan abstraction is another consideration when preparing for a CRT exercise. 
If the exercise is only a thought experiment, a plan describing attack patterns may suffice, 
whereas an executable attack plan will require step-by-step details. Regardless, selecting 
the most suitable approach will help ensure that the red teaming exercises conducted 
meets the priorities of the organization they are conducted for. 
 
 
2.3 Issues and Challenges 

Planning and conducting a CRT exercise may face a variety of practical challenges, some 
of which cannot be remedied and may require changes to the exercise: 
 

• Limited Resources: the time and computational cost to conduct certain exercises 
may be infeasible, such as the data-mining needed to conduct spear phishing, 
simulating a DDoS attack etc. 

• Asymmetric Threat: adversaries may have TTPs that are beyond an organization’s 
own capabilities, thus limiting its ability to detect or defend such attacks. 

• Reactivity: As some forms of cyber-attacks occur and are completed in a matter of 
milliseconds, the situation assessment may need to be done in near real-time, 
online, continuously, within the production environment, and with no human-in-
the-loop. This means the CRT exercise will have to employ computationally fast 
techniques which may entail loss of precision, if such techniques exist at all. 

• Model Complexity: As computer network size grows, so does its complexity [8]. 
Because of this, modelling a large computer network realistically may prove to be a 
difficult or even impossible undertaking. 

• Model Incompleteness: Having no known vulnerabilities doesn’t mean there are 
no vulnerabilities. Modelling an adversary requires detailed and current 
intelligence on them, which may not always be available. In such cases CRT is only 
a best effort to replicate the real threat or the real environment. 

 
These are challenges that limit what conclusions can be made from CRT exercises, and it is 
the objective of continued research and technology improvement to improve efficiency 
and automation of operating under practical limitations. 
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3. Automated Planning 

Automated planning is a branch of Artificial Intelligence (AI) that is concerned with 
generation of plans [9]. The planner is tasked with answering one question: given a set of 
possible actions, an initial state, and some goals, can a sequence of these actions be found 
such that their execution will transition the system from the initial state into a goal state? 
 
Automated planners are most popularly used in logistics [10] [11], scheduling [12], 
robotics [13] and computer game engines [14]. Most automated planners are general 
purpose and can be used to solve planning problems in a variety of domains [15]. 
However, the performance of different planning tools and techniques can vary depending 
on the planning problem itself [16]. 
 
The remainder of this section discusses these characteristics with respect to CRT, and how 
modern planning techniques can be used to solve CRT problems. Nau [9] provides more 
details regarding related theory and technique implementation. 
 
 
3.1 The Planning Problem 

A planning problem has an initial state of a system, and by performing a sequence of 
actions, a goal state can be reached. Each planning problem is encoded for a specific 
domain (e.g. airport logistics), which may have specific types of objects (e.g. flights) and 
propositions (e.g. passenger P is checked in on flight QF123) not present in other domains. 
Some planning techniques are able to leverage specific traits of specific domains. 
 
The Stanford Research Institute Problem Solver (STRIPS) semantics [17]  and the Planning 
Domain Description Language (PDDL) [18] are the two most popular input languages for 
defining the problem state as well as the available library of actions. STRIPS has been 
around for much longer than PDDL, and is more prevalent in current industrial planning 
tools, while PDDL is newer, and was created primarily for benchmarking purposes. 
 
In both planning languages, a state is represented by a discrete set of observable, first-class 
entities, referred to as objects2. Facts about these objects are referred to as the 
propositions3. Examples of objects in CRT include host machines, users, software, websites 
and services, and a proposition may be something like “user X has an admin account on 
host machine Y”.  
 
An action is defined by the following: 
 

• Preconditions: the propositions that must be true in order to perform this action 
• Add Effects: objects and propositions that are introduced into the state by taking 

this action 

                                                      
2 Some literature on planning also uses the term “instances” 
3 The term “predicates” is sometimes used as well 
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• Delete Effects: objects and prepositions that are removed from the state by taking 
this action 

• Costs: non-boolean, qualitative values of the state affected by this action. 
 
In terms of CRT, the planning problem is to draft an attack plan. All entities and 
relationships within the World Model, including where the adversary sits on the network, 
would form the initial state of the system. The goal state will contain the changes to the 
World Model that meets the adversary’s objective. The actions are the adversary’s TTPs. 
 
 
3.2 Planning Domain Characteristics 

Not all planning problems are the same. Planning the drive to work and planning a 
winning chess strategy not only requires different sets of actions, but the environments in 
which the problems reside are also different. It is important to understand these 
differences, as specific techniques may be more suited to specific domains. 
 
According to Nau [9] and Russell [2], a planning domain is characterised by the following: 
 

• Observability: a system is fully observable if every object and preposition of its 
current state is known to the planner. Otherwise it is considered only partially 
observable. In CRT, this observability relates to the visibility of a network 
environment from the perspective of the adversary. 

• Determinism: are the effects of agent actions on the state predictable? 
• Dynamics: does the state of the system change independent of agent action/plan 

execution? 
• Temporality: does the time taken to complete actions matter? 
• Granularity: are action decisions, effects and costs discrete or continuous values?  

 
In some instances, there may also be problem-specific requirements: 
 

• Library: what actions are available to the planner for a particular scenario? 
• Optimality: do we want lowest cost plan (optimal) or just any valid plan 

(satisficing)? 
• Ordering: are we generating totally ordered or partially ordered plans? Partially 

ordered plans allow for contingencies where actions are non-deterministic, or 
where the system is dynamic. 

• Preferences: costs associated with a plan may be relevant, which affect the actions 
we prefer. 

• Extended goals and constraints: are there certain states we don’t want to pass 
through during plan execution? In other words, do we need to ensure parts of the 
system are unaffected by our attack? 

• Performance: does the planning need to be done in real-time or is doing it offline 
acceptable? 

 
It is critical to select a planning technique suitable to the planning problem’s domain, but 
care should also be taken to avoid over-estimating these requirements. For instance, the 
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computational effort required to guarantee that a plan is optimal can exceed the effort to 
reach a sub-optimal alternative by several orders of magnitude [19]. If the optimal plan is 
not required, we don’t need to select an algorithm with such a capability, as it may conflict 
with other requirements such as reactivity for real-time, operational use. 
 
The most common type of domain tested in academia is a planning domain that is fully 
observable, deterministic and has a static system [20]. This is referred to as the classical 
planning problem. There is a view within the automated planning community that, with 
some model-mapping work, the currently more efficient and reliable classical planning 
techniques can be used to solve non-classical planning problems [21], but in many real-
world domains performing such a mapping is hard. As such, some level of abstraction is 
needed when using these planners in practice. 
 
 
3.3 State of the art Automated Planning 

Historically, most planning techniques and algorithms were designed with the computing 
power of their time as a feasibility constraint [22]. As such they were seldom scalable 
solutions, and found little audience outside of academia. This is until DARPA ran a special 
workshop in 1990 [23], which pushed researchers away from worrying about computing 
power, and more towards developing scalable techniques and real-world applications. 
 
CRT exercises are typically large scale, dynamic planning problems in partially observable 
environments [24] [25], which make many of the older planners unsuitable as they don’t 
take advantage of the increased computational power available today. 
 
This section explores a variety of approaches that are used by modern automated planning 
tools. The goal is to convey a basic understanding of the approaches and their associated 
strengths and weaknesses. Appendix A contains a table comparing implementations of the 
various planning techniques, and can be used as a catalogue for exploring planning tools 
beyond the ones recommended in this report. 
 
 
3.3.1 State-Space Planning 

State-Space Planners [9] model the planning problem as a directed graph where nodes 
represent possible states the system can be in, and arcs/edges are the actions that move 
the system from one state to another. Once the graph is constructed, it becomes a path-
finding problem to generate the plan. Existing AI graph search algorithms such as Iterative 
Deepening A* Search [26]  can be leveraged for this step of the planning. The final plan is 
represented by the path between the initial state node and the goal state node. Figure 1 
shows part of a state-space graph. 
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Figure 1 - Example of one expansion step of the State-Space for a block stacking problem. 

 
The state-space planning approach is simple and has been shown to be very effective in 
planning for many domains [9]. As such, it is one of the most popular and enduring 
techniques for real-world planning problems. Many implementations of general purpose 
state-space planners exist [27] [28], and solutions engineered towards specific problem 
domains have also been developed [29] [10]. 
 
State-space planners are most effective for problems with fully observable, deterministic 
environments, and handle preferences and constraints well during plan generation [15]. 
Most have the option of providing completeness and optimality guarantees, and can be 
highly engineered by using domain-specific heuristics to guide the search. State-space 
graphs scale poorly for problems in dynamic systems and non-deterministic world models 
due to state-space explosion inherent in the branching factor, which is dependent on the 
number of valid actions, parameters and objects at any given step. 
 
The majority of the current research in state-space planning is focused on pruning the 
search space for planning under uncertainty [30] [31] [32], and leveraging the relatively 
new concept of Delete-Free Heuristics (DFH) [33] [34]. When calculating the heuristic 
value in a DFH, the planner pretends that actions have no delete effects during the 
expansion phase. This speeds up the initial search, and deletions can be applied later for 
plan validity check. 
 
Many state-space planners use DFH, but Katz and Hoffman points out in [35] that this 
form of relaxation actually slows the search when planning in an environment with non-
replenishable resources. This may be a problem for CRT, as actions may involve disabling 
of network nodes or services as part of a larger or longer attack, which means use of DFH 
may not be recommended. 
 
 
3.3.2 Planning Graphs 

Planning Graphs are data structures that capture both the set of possible and impossible 
states a system can be in by keeping track of mutexes: pairs of observations that cannot be 
true at the same time [36]. For instance, an airline system can be in a state where two of its 
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planes are in the same airport, but it cannot be in a state where one plane is in two 
different airports at the same time.  
 
Structured as a directed, layered graph, nodes in a Planning Graph are either an action or 
propositional node, belonging to an action or propositional layer respectively. The graph 
grows from the initial state, and expands into the next layer based on the action library. 
 
The action layer represents the full set of possible actions that could be taken at a given 
step, while the propositional layer represents the set of states the system could be in after 
any of those actions are taken. Arcs represent either the action-effect or precondition-
action relationships between action and propositional nodes.  
 
The goal state is reachable when we arrive at a propositional layer where all the required 
propositions are true. Then the flow from the initial state to this layer will be the shortest 
partially-ordered plan.  
 
Planning Graphs can be examined directly to generate the plan, and are often integrated 
into state-space planners such as Hoffmann’s FastForward family [28]. Planning graphs 
are much smaller in size than equivalent state-space graphs; they only grow polynomial 
with respect to search depth. However, planning graphs are ultimately forward search 
planners [37]. As such, there is an unavoidable overhead in generating a planning graph 
for every new problem. 
 
Many state-of-the-art planners make use of planning graphs [36] [38] [39] [40] [41] [42], 
because they allow for scalable plan generation with respect to plan length and action 
library size, and they provide implicit cycle detection of search paths since each layer of 
the graph compactly represents all possibilities after n steps. These graphs can also be 
deployed for dynamic systems to generate a complete representation that includes action 
effects on all the possible worlds [27]. However, the structure can be hard to comprehend 
by human inspection for larger problems, and it remains the responsibility of the 
algorithm to understand and extract the plan. 
 
 
3.3.3 Hierarchical Task Networks 

Hierarchical Task Networks are another data structure that has been popular in applied 
automated planning [43] [16]. Unlike planning graphs, which are driven by the 
relationship between states, HTNs are driven by the relationship between actions. Instead 
of trying to reach a goal state through graph search, HTNs view the planning problem as 
trying to perform a task which can be decomposed into smaller tasks, where the subtasks 
at the atomic level are called “primitive tasks” or “operators”.  
 
A primitive task has preconditions that are satisfied by binding instances, the objects in the 
system, to them. A precondition is a predicate of the state. Primitive tasks represent the 
actions that change the system, and a valid plan is generated when all primitive tasks 
preconditions inside a task network are satisfied through valid variable bindings. Some 
HTN planners also allow non-primitive tasks to have their own preconditions, which may 
reduce the number of precondition tests at the atomic level. 
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Unlike state-space planning and planning graphs, where only the basic operators need to 
be encoded, HTNs require a domain expert to determine and encode the task structures 
which the HTN planners can then use [44]. In doing so, many dead-ends plans can be 
avoided since every plan under the HTN is valid, and the main effort becomes finding a 
set of bindings that is relevant given the initial state. The bindings do not necessarily need 
to be grounded; as long as a particular set of variable types and relationships are true in 
the initial state of the planning problem, plan validity can be inferred. 
 
Because of its efficiency compared to state-space planners, planning with HTN is by far the 
most popular technique in terms of industry application, having been used in robotics [13] 
[45], NPC scripting for computer games [14] [46], manufacturing, logistics and scheduling. 
 
The effectiveness and comprehensiveness of HTNs depend on the human encoding the 
task structures. In the case of CRT, HTNs may only be applicable for validation-based and 
success-based exercises, where the attack vectors are already established. HTNs have been 
used for CRT in a Defence context [47]. 
 
 
3.3.4 Machine Learning 

While Machine Learning theory and techniques have been around for decades, they were 
only adopted by the automated planning community in the 90s as a way to enhance or 
improve the planning process [48]. Machine learning has been applied to automated 
planning in several ways: policy learning, parameter tuning, discovering macro actions 
and portfolio construction.  
 

• Policy Learning [49] is about identifying potentially conflicting propositions (like 
mutexes from Planning Graphs), and developing problem-specific search policies 
to reduce dead ends. Planning problems that benefit from policy learning the most 
are ones whose state-space contain many dead ends that stem from a small number 
of easily reached ‘bad’ states, where simply avoiding such states will make 
planning faster and more successful. An example in the airport scheduling domain 
would be to create a policy of not having any planes airborne for more than 24 
hours consecutively, which will wear the hardware more slowly.  
 

• Parameter Tuning is optimization of the weights and invariants associated with 
search heuristics for specific problems or problem classes. For example, some 
actions might be able to satisfy sub-goals that are difficult to reach, and achieving 
those sub-goals earlier may merit heavier weightings in the cost function. This in 
turn will allow the planner to favour those actions in the plan. 
 

• Macro Action Learning [50] focuses on discovering and maintaining a library of 
useful plan structures (partial plans) that can help solve larger, harder planning 
problems in a specific domain. It is in essence automated construction of partial 
HTNs. Learning macro actions requires significant upfront training; a large sample 
of planning problems are needed to determine which partial structures are 
generally useful, and worth keeping in the macro action library. 
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• Portfolio Construction is a form of ensemble learning: the use of multiple 
algorithms to solve the current problems, and to predict future algorithm success 
for similar problems. Optimization occurs at the algorithm selection level, where 
an automated system will run one or more planners from a library of planners to 
solve a planning problem. The selection and configuration of planners depend on 
how well suited each technique is estimated to be by the system for the problem 
domain at hand. Like macro action learning, portfolio learning requires significant 
training to construct an accurate portfolio of each domain/problem set. Portfolio-
based planners can however leverage distributed computing architectures by 
scheduling different planners on different processing units to run concurrently.  
 

The main advantage of adding machine learning to automated planners is increased 
automation, reducing the work a human operator would need to do in planner 
reconfiguration, helping the planner adapt to the problems encountered in a domain at 
run time. However, machine learning carries some costs, most notably the training aspect. 
For maximum effectiveness, the training set must be representative of the planning 
problems that will be encountered. If this training is not available upfront, then the 
planner must be able to continue to learn over time.  
 
 
3.3.5 Other Approaches 

Many more planning techniques exist, however detailed discussion lies outside the scope 
of this note for a variety of reasons. Firstly, some have been superseded by one of the 
techniques discussed earlier. This is particularly true in terms of state-of-the-art 
performance, as will be shown later. Secondly, they are unsuited to the automation of CRT 
planning due to further abstractions needed to model and make these problems solvable. 
Such abstractions may render the generated attack plans meaningless or useless for 
vulnerability assessment and mitigation planning. Below is a selection of four of the more 
interesting of such techniques. 
 

• Plan-Space Planning [51] is a graph traversal approach similar to state-space 
planning. However nodes represent partial plans instead of system state, and arcs 
represent plan refinement operations such as adding or removing actions from the 
plan. The algorithm generally starts from an initial plan that contains flaws, with 
the goal being plan refinement through flaw elimination. Compared to state-space 
planners, plan-space planners are computationally inefficient, and there is no 
domain-agnostic, systematic way to construct the initial plan. 
 

• Planning as Satisfiability (or SAT planning) [52] encodes the planning problem as 
a Boolean satisfiability problem, then solves it using stochastic local search 
algorithms. SAT planning is popular for static systems such as electronic design 
automation, but is not applicable in dynamic systems like the problems faced in 
CRT. 
 

• The Markov Decision Process (MDPs) [53] is a mathematical structure for 
representing actions in planning domains where the effects are non-deterministic. 
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The output of solving an MDP is a partial order plan containing conditional actions 
based on the observed effect from previous actions. There is current research into 
solving Partially Observable MDPs (POMDPs) for advanced applications in 
penetration testing [54], but solving MDPs has been shown to be intractable. 
 

• Model Checking [55] is similar to SAT planning, but a custom planning model is 
created in order to determine whether a valid plan exists in theory before 
attempting to generate one. Majority of planners that do not follow the 
aforementioned approaches generally fall under this category. 
 

Aside from planning techniques listed above, a wide variety of hybrid approaches exist, 
some of which are highly engineered to solve specific classes of planning problems. 
 
 
The table below summarises the techniques are best suited for particular types of planning 
problems regardless of the domain they come from.  
 

Problem trait State-space 
planners 

Planning 
Graphs HTNs Plan-space 

planners SATPlan MDPs 

Action library size Small Medium Large Medium Small Small 

Observability Full Full Full Full Full Partial 

Determinism Deterministic Deterministic Deterministic Deterministic Deterministic Probabilistic 

Dynamic states Yes Maybe No No No Yes 

Plan Optimality Any Any Any Satisficing Satisficing Satisficing 

Plan Ordering Any Any Totally 
Ordered 

Partially 
Ordered 

Totally 
Ordered 

Totally 
Ordered 

Preference 
handling Supported Supported Add-on Supported Supported Supported 

Constraint 
handling Yes Yes Yes Yes Yes No 

 
 
3.4 Benchmarking via the International Planning Competition 

While describing the various fundamental planning approaches above, a number of 
assertions were made with respect to their success rate in solving planning problems as 
well as how efficiently they did so. The quantitative comparisons were largely based on 
results from the International Planning Competitions (IPCs) [56] [57] [15] [58] [59] [60] [61] 
[62] [20] [63] [64].  
 
The IPC, which is run in conjunction with the International Conference on Automated 
Planning and Scheduling (ICAPS), has been benchmarking automated planners since 1998 
in an attempt to quantitatively measure the current state of the art. 
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Figure 2: Historical Tracks of the IPC 

 
As shown in Figure 2, a variety of competition tracks for different problem classes have 
emerged over time, but only the classical track has run for every competition. The classical 
track also consistently receives the most entries. The CRT domain contains problems that 
can belong to all these classes, but the largest subset does reside in the classical track. For 
this reason, the state-of-the-art will be more evident in this track. 
 
Figure 3 shows the success rates of classical planners by year. The best performing 
implementation of each major planning approach was chosen to represent its respective 
sub-discipline. When interpreting the graph, it is important to note that each competition 
was different. For example, running time constraints varied between 10 minutes to 2 
hours, the complexity of the problem sets changed drastically from year to year, and given 
the span of 13 years computational resources have also increased significantly.  
 
This makes it difficult to quantify exactly how much better a planner with 90% coverage is 
compared to one with 85% coverage, given that those additional 5% could be from the 
hardest problems. However the competition organisers have described the problems set 
each competition to be pushing the field’s state-of-the-art, thus consistent performance is a 
strong indicator for candidacy. For the more recent competitions, planners employing 
planning graphs appear to be the most successful in terms of problem coverage, followed 
by State-Space planners and HTN planners.  
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Figure 3 – Performance of various planning techniques based on problems solved 

 
In a separate analysis of the learning track, it was shown that machine learning does 
improve the performance of planners [65]. However significant training was needed to 
achieve the improvement, and in general the training was domain-specific. This means 
that policies, macro actions and portfolios learned for one domain/problem class could 
not be reused in another domain. Machine learning can still benefit planning for CRT in 
the long run, provided that the training set includes sufficient examples of all types of 
cyber-attacks, and supplementary training is conducted when the CRT problem evolves. 
 
The IPC benchmarks provide a strong indicator of general strength of planning 
techniques, and the test problems used are increasingly designed to mimic real problems 
faced by industry. However, there is limited participation by companies that have built 
proprietary planning software, therefore the IPC alone, and indeed the academic literature 
surveyed for this report, does not necessarily capture the complete state of the art.  
 
The IPC also favours planners that fare well across multiple domains and problem classes, 
which promotes good general purpose tools rather than specialized solutions. 
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4. Automated Cyber Red Teaming 

Now that we have discussed CRT issues as well as had an overview of automated 
planning, we discuss how best to model CRT as a planning problem and provide 
suggestions of tools and frameworks that may be suitable for automating the exercise. 
 
 
4.1 Cyber Red Teaming as a Planning Problem 

As mentioned in Section 3, automated planning has been used in computer game engines. 
Modern computer and video games often use automated planners for scripting Non-
Player Character (NPC) behaviour [14], particularly when it plays an adversarial role. It 
has been shown that NPCs using automated planners are able to make tactical and 
strategic decision with better outcomes than expert human players could [66]. 
 
This ability to simulate intelligent autonomous adversaries like the NPCs in the game 
engine means that automated planners may lend itself well to aspects of CRT since the two 
problems are very similar. Other cyber security activities including, but not limited to, 
vulnerability risk assessment and mitigation planning could also be performed with 
automated planning tools as well. However for this report, the attack plan drafting in CRT 
is the primary focus. 
 
CRT is also by nature a planning problem. The entities within the network environment 
are the objects, and the relationships between them as well as their attributes are the 
prepositions. The TTPs need to be encoded as plan actions with the appropriate 
dependencies and constraints, where the action effects reflect changes to the entities in the 
target network. 
 
 
4.2 CRT Planning Domain characterisation 

Using the list of planning problem traits from Section 3.2, here are the assumptions and 
abstractions suggested for conducting a CRT exercise. 
 
4.2.1 Observability 

Automated CRT is likely to be simpler if the domain is treated as a fully observable 
system, such that everything potentially needed for constructing attack plans is known 
and available. There are several reasons for approaching the problem this way: 
 

• If the real network is only partially observable to all entities, valid attack plans may 
exist but what is known and available to the red team may not be sufficient to 
construct them. In such cases it would still be better to assume what the red team 
partially observes is the full system, so that the more efficient classical planners can 
be used. This is acceptable as the conclusion drawn regarding viable attack options 
would be the same from an adversary’s perspective. 
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• From an efficiency perspective, removing irrelevant objects and prepositions from 
the planning process will insulate cognitive overload of the planner. If such 
inferences can be made with a good performance trade-off for planner 
performance, then do so. However, where such problem reductions are not 
possible, it is generally safer to overestimate the knowledge that an adversary has 
to construct a plan rather than underestimating it. This ensures that all possible 
attack vectors are considered at least once. 
 

• Real networks use technologies such as proxies and firewalls to hide its 
architecture from outsiders, which some adversaries may find difficult to 
overcome. However, if we factor in alternate reconnaissance vectors such as social 
engineering, it is best to assume an adversary can still gain full network visibility. 
 

CRT on fully observable systems not only lead to a more complete set of attack plans, but 
also decouples the planning work from the analysis of attack plan cost, risk and impact 
analysis depending on the adversary. The latter profile can then be used for a more 
efficient triage process. For these reasons, modelling the CRT exercise as a fully observable 
planning problem will suffice for the first cut. 
 
4.2.2 Determinism 

In practice, many attacks may fail or have unintended side effects. For example, a phishing 
email may not arrive at a target’s inbox due to being blocked, or the target, upon receiving 
the email, chooses not to open the attachment containing the malicious payload and 
forwards the email to their network admin. A realistic model of CRT planning is non-
deterministic, as repeat execution of the same attack plan may have different outcomes 
even if the system state remains the same. 
 
However, modelling non-determinism is problematic, as the distribution of possible 
outcomes for each type of attack is generally not known. Learning each attack’s failure rate 
is a separate and time-consuming process that blocks the main CRT exercise. It is also 
difficult due to the context sensitivity of these learned distributions, which may make a set 
of considered side effects in one setting inapplicable in another. 
 
As such, we suggest that every action the adversary takes is assumed to be deterministic 
and is always successful. This assumption allows the use of more planning techniques, as 
only MDPs are currently effective at solving non-deterministic planning problems. Also, it 
is better to have false positives than false negatives in CRT. 
 
4.2.3 State Dynamics 

A given cyber environment is likely to contain both static aspects (system architecture, 
geography etc.) and dynamic aspects (staffing arrangements, network packet flows). Even 
if every action is always successful, state-changing events independent of the attacker’s 
actions may affect the success of the rest of the attack in the new system state. For instance, 
if a user is updating a vulnerable version of the software that was intended to be an 
adversary’s target, the malicious payload may arrive after the patch has already been 
applied, thus rendering it ineffective. 
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As it is hard to model non-determinism of attack outcomes [55], it is also hard to model the 
system dynamics. Because of this, in the context of a single planning run, assuming a static 
environment is recommended. This can be either in the form of a full snapshot of the 
current system, or removing actions that depend on dynamic elements prior to planning. 
This will simplify the planning, but may include attack plans that only work in limited 
cases, and also omit ones that could have succeeded. 
 
To allow for and accommodate state dynamics in the planning process, there are several 
approaches one may consider. One is to favour plans that depend less on prepositions and 
objects that are tagged as dynamic, which can be machine learned through training or 
manually determined by a human domain expert. Another approach is to create robust 
attack plans with contingencies [67], which can be identified by frequent re-planning on 
the latest state of the system and seeing which attack vectors remains valid regardless of 
system dynamics. In both cases, it makes the planning problem larger, and the increased 
robustness of attack plans discovered may come at the cost of significantly added 
computation time. 
 
4.2.4 Time and Resource Constraints 

In the real network environment, both the adversary and their target have resource 
limitations; a small attack team with a dozen laptops will have difficulty orchestrating a 
successful Distributed Denial of Service attack on an organization like Google, but be 
sufficient to take down a small business’s website with budget hosting. Some attacks may 
also require taking advantage of certain time windows such as between the announcement 
of a new software patch, and the system administrator installing the patch on the target 
machines. Moreover, such attacks would only be possible if this window of vulnerability 
[68] and the exploit method are known and accomplishable given the attacker’s resources.  
 
For encoding the CRT exercise as a planning problem, it is recommended that these 
resource constraints are not a factor in the validity of the attacker’s plan. The quality and 
validity of attack plans under constraint can be quickly checked, archived and ranked once 
it is found. 
 
4.2.5 Optimality and Ordering 

Complex attacks that involve multiple entities in a Cyber environment can usually be 
conducted in various ways. For instance, you could attempt to steal a user’s email account 
to get at their other email-verified accounts, or you could forge and send a password reset 
email to trick the owner into providing these details on a phishing site. There may also be 
multiple attack plans that can be used to achieve the same goal, and in reality the 
resources an adversary has is limited, so they would most likely try the most cost-effective 
attacks first. 
 
For initial development, we are more concerned with attack possibility and impact than 
attack efficiency, so we do not need a planner to generate or guarantee an optimal plan. As 
long as it generates valid attack plans in reasonable time, and the plans are totally ordered, 
contingencies can be appended onto these plans if non-determinism is later introduced or 
modelled for the same problems. 
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4.2.6 Preference and Constraints 

We assume that the adversary has resource limitations, and therefore cannot conduct 
attacks beyond their means. As such, action costs also need to be modelled and factored 
into the planning process. If records of past attacks by the adversary exist, their 
preferences in how they attack are also worth providing to the planner if available. 
 
 
4.3 Candidate Tools 

We have characterised and abstracted the CRT domain as a classical planning problem. 
Based on the information from the planner capability table, as well as the IPC results from 
Section 3, planning graph planners with parameter tuning or portfolio-based learning 
appear to be the most suitable tool for CRT exercise planning and execution. 
 
Below is a list of planning tools/frameworks that use planning graphs, and either contain 
learning capabilities or can be easily extended to incorporate a learning step. They were 
selected from a larger pool of planning graph planners based on their individual 
performance in the more recent IPCs. 
 
4.3.1 LAMA 

Developed by Silvie Richter from NICTA, the LAMA system is part of the latest generation 
of heuristics-based forward searching techniques with planning graphs [69] [70]. LAMA 
identifies landmarks, states that valid plans must go through, to decompose the problem, 
and arrive at valid plans much faster than purely heuristic-driven end-to-end approaches. 
It was the best performing classical planner in both the 6th and 7th IPC, and is considered 
the state-of-the-art general purpose planner. 

 
4.3.2 FD-Autotune 

Developed by a team at University of Huddersfield [16], FD-Autotune is a machine 
learning variant and extension to Helmert’s Fast Downward algorithm [71], which uses 
parameter tuning and macro action learning to supplement a hybrid planning engine. This 
engine uses planning graphs to reduce the search space, and features automated HTN 
construction in the pre-processing stage which can make plan drafting faster than 
traditional approaches. 
 
The learning engine deployed is the automated algorithm configuration tool ParamILS 
[72] and the HAL experimentation environment [73], which profiles a particular problem 
using training examples, and optimizes parameters for various heuristic configurations 
used to guide the search. FD-Autotune also manages a library of heuristics that through 
learning, is able to automatically select the most suitable heuristic(s) for a given domain 
and problem type. FD-Autotune can optimize the planning for either planning speed 
(generate satisficing plans really fast) or plan quality (based on red team preferences). 
 
The learning aspect of FD-Autotune is likely to be robust as it uses established tools for the 
parameter tuning. Combined with the FD algorithm, it has achieved solid benchmark 
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performance at the recent IPCs when planning for speed, though the speed increase when 
optimizing for plan quality makes it comparably slower to other speed-driven planners. 
 
4.3.3 PbP2 

Developed by a team at the University of Brescia [50], the Portfolio-based Planner (PbP) is 
an ensemble learning planner. It constructs a portfolio for each domain to determine 
which planners in its library are most suitable to complete the planning. Additionally, PbP 
constructs distinct macro actions for every planner in the portfolio, allows for automated 
parameter tuning, and generates a promising configuration. 
 
The latest release of PbP (version 2) won the overall learning track of IPC-2011, and in 
terms of overall plan success, outperformed all planners in the classical track, including 
LAMA. It is however more resource-intensive due to the training component, but the 
newest stable release feature a distributed architecture, permitting concurrent scheduling 
of multiple planners for training or planning work.  
 
4.3.4 Conclusion 

With respect to CRT, LAMA appears to be the most suitable for quick deployment since it 
has the highest success rate of the classical planners, and doesn’t require training for 
operational use. FD-Autotune and PbP2 may be more valuable in the long run if 
conducting CRT is part of the organization’s business process, as continuous (offline) 
learning will improve the planner’s understanding of what attacks are most relevant to the 
organization deploying it. 
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5. Recommendations and Future Work 

This report discussed Cyber Red Teaming, what is involved with the modelling of each 
problem, attack plan generation and associated challenges. It has also introduced the 
fundamental and state-of-the-art theories and techniques in automated planning, analysed 
performance of various techniques from the IPC, and recommended the most suitable 
tools based on results as well as compatibility to the CRT problem. 
 
Our recommendation is that planning graph planners are the most suitable approach for 
CRT, especially for real-time deployment on sensitive systems due to its scalable 
performance and measured success rate. Furthermore, if CRT needs to be conducted 
frequently, planner implementations that incorporate machine learning will be even better. 
The tools we recommend for trialling are LAMA, FD-Autotune and PbP2, as they have 
been shown to perform well above their peers. 
 
From here, two steps are possible. The first would be to set up and conduct CRT on a large 
organisation’s computing environment using one of these tools, in order to verify and 
more accurately measure the benefit they bring compared to traditional hands-on 
approaches to CRT. The other step would be to identify specialized planning tools for 
organizational CRT, and study their capabilities and performance. 
 
Automated Planning is a well-established field of research, but its application on Cyber 
Red Teaming is relatively untouched, and deserves further exploration through 
collaboration between experts from both fields.  
 
Finally, the CRT problem is evolving: organizations may switch to using cloud 
infrastructure, business policies may change allowing staff to bring in unvetted (thus 
unmodelled) personal electronics into the workplace, or major incidents may change the 
level of fidelity of mitigation plans required.  
 
Therefore, on top of trialling planners for CRT, continuous monitoring of new research 
and other benchmarking results collected by academia and industry is highly 
recommended. This will help ensure the state-of-the-art is used in Automated CRT to get 
best performance and best results possible.  
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Appendix A:  Planners’ Capabilities 

All planners mentioned in or studied as part of this report are listed below, ordered 
alphabetically. Several iterations of the same planner may appear if they each offer 
significantly different capabilities. Noteworthy planners have been highlighted in green.  
 
Citation count refers to the total number of other books, papers and journal articles that 
have cited the main paper(s) describing the planner4. This provides some indication of the 
impact and influence each planner has within the academic community (ignoring time). 
 
 

Planner 

Source C
ode 

C
itation count 

Plan O
utput 

Planning Technique 

D
eterm

inism
 

O
bservability 

Preference and/or 
Q

uality-driven 
planning? 

H
andles D

ynam
ic 

States (C
ontingent 

Planning)? 

H
and-coded C

ontrol 
K

now
ledge?  

M
achine Learning 

PD
D

L C
om

pliance 

AltAlt [40]   38 SP PG D F - - - - 1.0 
APPL [74]  [75] 196 ST POMDP C P - - - - ** 

ArvandHerd [76]  9     - - - Yes 3.0 
BDDPlan [77]  26 OT MC D F - - - - 1.0 

BLACKBOX [78] 
[79] [52] 691 OT SAT D F - - - - 1.0 

C3 [80]  9 ST PG D F - - - - 3.0 
Conformant-FF 

[27] [81] 169 ST PG N P Yes Yes - - 2.1 

CPT [82]  162 OP PS D F - - - - 2.2 
DAEYAHSP [83] 

[84]  28 ST PG D F Yes - - - 3.0 

DTG [85]  13 ST PG D F Yes - - -  
Fast Downward 

[71] [71] 401 ST PG/HTN D F - - - Yes 2.2 

FCPlanner [53]  22          
FD-Autotune [16] [86] 9 ST PG/HTN D F Yes - Yes Yes 3.0 

FDP [87]  18 OT SAT/SS D F - - - - 3.0 
FD-SS [88]  17          

FF [28] [81] 1290 ST PG D F - - - - 1.0 
FF(Ha) [89]  58 ST PG D F      

FF-rePlan [90]  134 ST PG  F      
FPG [49]  60          

GAMER [39] [91] 11 OT PG D F Yes - - - 3.0 
Glutton [92]  1          

GraphPlan [36] [93] 2008 OT PG D F - - - - - 
GRT [94]  61 OT SS D F - - - - 1.0 
HSP [37]  261 ST SS D F - - - Yes 1.0 

HSP2 [37]  657 ST SS D F - - - Yes 1.0 
IxTeT [95]  219 OP HTN D F - Yes - - 2.1 

LAMA [69] [70] [96] 153  PG       2.2 

                                                      
4 using Google Scholar citation database results on 30-Jul-2013 
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Planner 

Source C
ode 

C
itation count 

Plan O
utput 

Planning Technique 

D
eterm

inism
 

O
bservability 

Preference and/or 
Q

uality-driven 
planning? 

H
andles D

ynam
ic 

States (Plan 
C

ontingency)? 

H
and-coded C

ontrol 
K

now
ledge?  

M
achine Learning 

PD
D

L C
om

pliance 

LPG [97]  210 SP PG D F Yes - - - 2.1 
LPG-TD [98]  30 SP PG D F Yes - - - 2.2 

M&S [99]  24  SS        
Macro-FF [100]  100 ST PG D F - - - Yes 2.2 
Marvin [101]  60 ST PG D F - - - Yes 2.2 

MaxPlan [102]  102 O SS        
Metric-FF [38] [81] 293 ST PG D F Yes - - - 2.1 
mGPT [103]  54          
MIPS [104]  81 OT MC D F Yes - - - 2.2 

NMRDPP [105]  26 ST MDP P       
OptiPlan [106]  25 OP PG D F - - - - 2.2 
PbP [50] [107] [108] 28 OT Hybrid D F Yes - - Yes 3.0 

PbR [109]  49 ST SAT D F Yes - Yes Yes 1.0 
PGP [110] [42] 127  PG        

Plan-A [111]  9 ST SAT D F Yes - - - 3.0 
POMCP [112]  84  POMDP        
PropPlan [113]  38 OT PG D F - - - - 1.0 

Sapa [114]  159 SP SS D F Yes - - - 2.1 
SATPlan [115] 

[116]  914 OT SAT        

SGP [117]  318 SP PG C P - Yes - - 1.0 
SGPlan [118]  53 ST PG D F - - - - 2.1 

SGPlan4 [119] [120] 133 ST PG D F - - - - 2.2 
SGPlan5 [121] [122] [120] 28 ST PG D F Yes - - - 3.0 

SGPlan6 [123]  26 ST PG D F Yes - - - 3.0 
SHOP [43]  391 OT HTN D F - - Yes - - 

SHOP2 [124]  585 OT HTN D F - - Yes - - 
STAN [125]  184 ST PG D F - - - - 1.0 

Symbolic Heuristic 
Search [126]  91 ST MDP/MC C F Yes - - -  

Symbolic Perseus 
[127] [128] [129] 391 ST POMDP C P Yes - - -  

System R [130]  20 OT SS D F - - Yes - 1.0 
T0 [21] [131] 57          

TALPlanner [132]  124 ST SS D F - - - - 1.0 
TLP-GP [133]  10 ST SAT D F - - - - 3.0 
TLPlan [134]  469 OT SS D F - - - - 2.1 

TP4 [135]  164 OT SS D F Yes - - - 2.1 
UCPOP [51]  846 OP PS        

VHPOP [136]  121 OP PS D F - - - - 2.1 
Wizard [137] [138] 46          

YAHSP2-MT  [139]  7 ST SS        
 
{Plan output types: OT = Optimal, Total-Order | OP = Optimal, Partial-Order | ST = Satisficing, Total-Order | SP = 
Satisficing, Partial-Order} 
{Planning technique used: SS = State-space | PS = Plan-space | PG = Planning Graph | SAT = Planning as Satisfiability | 
HTN = Hierarchical Task Networks | MC = Model Checking | MDP = Markov Decision Process solver | POMDP = Partial 
Observable MDP solver | ML = Machine Learning | Hybrid techniques will list all planner technique that is used } 
{Determinism: D = Deterministic | P = Probabilistic | C = Conformant}  
{Observability: F = Fully Observable | P = Partially Observable} 



 

 

 
Page classification:  UNCLASSIFIED 

 
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 

 
 

DOCUMENT CONTROL DATA 1.  DLM/CAVEAT (OF DOCUMENT) 
      

2.  TITLE 
 
Automated Cyber Red Teaming     

3.  SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS 
THAT ARE LIMITED RELEASE USE (L)  NEXT TO DOCUMENT 
CLASSIFICATION) 
 
 Document  (U) 
 Title   (U) 
 Abstract    (U) 
 

4.  AUTHOR(S) 
 
Joseph Yuen  
 

5.  CORPORATE AUTHOR 
 
DSTO Defence Science and Technology Organisation 
PO Box 1500 
Edinburgh South Australia 5111 Australia 
 

6a. DSTO NUMBER 
DSTO-TN-1420 
 

6b. AR NUMBER 
AR-016-282 

6c. TYPE OF REPORT 
Technical Note 

7.  DOCUMENT  DATE 
April 2015 

8.  FILE NUMBER 
2014/1173720/1 
 

9.  TASK NUMBER 
 

10.  TASK SPONSOR 
 

11. NO. OF PAGES 
34 

12. NO. OF REFERENCES 
216 

13. DSTO Publications Repository 
 
http://dspace.dsto.defence.gov.au/dspace/    
 

14. RELEASE AUTHORITY 
 
Chief,  Cyber and Electronic Warfare Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT 
 

Approved for public release 
 
 
OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 
16. DELIBERATE ANNOUNCEMENT 
 
No Limitations 
 
17.  CITATION IN OTHER DOCUMENTS        Yes 
18. DSTO RESEARCH LIBRARY THESAURUS   
 
Automated Planning, Cyber Red Teaming, Algorithms 
 
19. ABSTRACT 
Cyber Red Teaming (CRT) is an important exercise to conduct for Defence agencies built on large technological infrastructures. Their 
size and relative importance may make them high priority targets for criminal organizations, issue-motivated groups and even foreign 
governments that are increasingly capable and willing to use technology for intelligence gathering. However identifying a viable attack 
can be a time-consuming process, and so Automated Planners are being considered as a viable method of discovering possible attack 
paths for Cyber Red Teaming. This report surveys the current state-of-the-art planning algorithms, tools and frameworks, and by 
observing its benchmark performance, recommends the most suitable ones for trialling.  
 

Page classification:  UNCLASSIFIED 
  


	ABSTRACT
	Executive Summary
	Contents
	Glossary
	1. Introduction 
	2. Cyber Red Teaming
	2.1 The World Model
	2.2 Attack Plan Generation
	2.3 Issues and Challenges

	3. Automated Planning
	3.1 The Planning Problem
	3.2 Planning Domain Characteristics
	3.3 State of the art Automated Planning
	3.4 Benchmarking via the International Planning Competition

	4. Automated Cyber Red Teaming
	4.1 Cyber Red Teaming as a Planning Problem
	4.2 CRT Planning Domain characterisation
	4.3 Candidate Tools

	5. Recommendations and Future Work
	Works Cited
	Appendix A:  Planners’ Capabilities
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

