
CHAPTER NINETEEN 
 

Assessing Spatial Similarity in 
Geographic Databases 

 
Alia I. Abdelmoty and Baher A. El-Geresy 

 
 
 
 19.1 INTRODUCTION 
 
One of the main functions of spatial information systems such as GIS is the unification 
and integration of different data sets and making them available for coherent 
manipulation and analysis by different applications.  Integrating data in spatial 
information systems involves the integration of diverse types of information drawn from 
a variety of sources requiring effective matching of similar entities in these data sets and 
information consistency across data sets.  Typically, spatial information can be provided 
in different forms by a number of sources.  Data sources in GIS can include maps, field 
surveys, photogrammetry and remote sensing.  Data sets may be collected at different 
scales or resolutions at different times.  They may be collected in incompatible ways and 
may vary in reliability.  Some details may be missing or undefined.  Incompatibilities 
between different data sets can include incompatibilities between the spatial entities for 
which data are recorded, including differences in dimension, shape and positional 
accuracy. 

For example, it may be required that a schematic representation of a certain 
region in space be stored in a GIS besides a more faithful representation (a schematic 
representation can be useful as an interactive tourist map).  The two data sets are 
different.  Many objects may be omitted from the schematic representation.  The 
positional accuracy of the objects may not be maintained.  However, both data sets hold 
the same relative position and orientation for the common subset of objects they hold. 
A pre-requisite for the effective use and manipulation of several diverse spatial data sets 
is the understanding of the contents of the data sets and how they compare to each other. 
In this paper, a systematic approach is proposed for studying spatial similarity of 
geographic data sets.  The approach involves the following steps: 
 
• Analysing the different aspects of equivalence between the data sets.  A range of 

spatial equivalence classes are identified which can be checked in isolation. 
• Studying measures of spatial equivalence which can be applied to every class.  

Different levels of equivalence are proposed, namely, total, partial, conditional and 
inconsistent.  Data sets can then be ranked as being consistent in which class to 
which level.  This provides the flexibility for two data sets to be integrated without 
necessarily being totally consistent in every aspect. 

• Developing methods for checking and representing explicitly the different 
equivalence classes and levels in the spatial database. 



• Explicit representation of ambiguity or uncertainty resulting from the inconsistency 
of the data sets studied. 

A qualitative representation scheme is proposed where the spatial content of the data sets 
is encoded.  A simple scheme is first presented for handling topological information 
which is then extended for handling both topological and orientation information. 
The use of a common representation scheme for different sets allows for the direct 
(qualitative) comparison of those sets and for the detection of any (qualitative) 
inconsistencies among them.  This approach can, in some cases, alleviate the need for the 
expensive, error-prone, operation of transformation of data sets from one form to another 
(e.g. from raster to vector) which is the process commonly used for comparing spatial 
data sets.  Automatic spatial reasoning techniques can be incorporated for the derivation 
of spatial relationships which are not explicitly represented. 

The rest of this paper is structured as follows.  Section 2 gives an overview of related 
work.  In section three the different aspects of spatial equivalence are identified and 
classified between object-based and relation-based types.  Section 4 presents a simple 
approach to the explicit representation of topological equivalence which is also extended 
to handle orientation equivalence.  Conclusions are given in section 5. 
 
 
19.2 RELATED WORK 

 
Methods for checking consistency in spatial databases have been limited to checking 
topological  consistency of pairs of spatial objects and not to whole map scenes 
(Kuijpers, 1995, 1997, Egenhofer and Sharma 1992, Egenhofer et al, 1994). 
In (Egenhofer and Sharma, 1992), consistency networks were used to check the 
consistency of a spatial scene containing regions with holes.  In (Tryfona, 1997), 
consistency of topological relations between multiple representations of objects, 
specifically between parts and aggregate representations, is given.  Approaches to the 
qualitative representation of images or maps can be classified into two categories.  In the 
first category, spatial relations are studied and defined between pairs of objects, e.g. 
defining relationships between two simple regions or two linear objects, etc.  In the 
second category, approaches attempt to describe continuous spaces by describing sets of 
objects and relationships in these spaces.   

In the first category, several methods were proposed, namely, the work of Cohn 
et al (1993a, 1993b, 1996) and the work of Egenhofer et al (1990, 1993a, 1993b) and Jen 
and Boursier (1994).  The set of topological relations between two spatial objects, e.g. 
convex regions, are first defined.  Then those are used to define relationships between 
more complex objects such as regions with holes.  In (Egenhofer and Sharma, 1992), 
eight topological relations between simple regions were used to represent composite and 
non-composite fields using a method similar to consistency networks.   

In the second category, the main approaches proposed defines spatial scenes 
using symbolic arrays and minimum bounding rectangles (Papadias, 1994, Chang et al, 
1987, Glasgow, 1990).  However, it is recognised that approximating objects by their 
minimum bounding rectangles may produce misleading results.  In a different approach, 
Lundell (1996) used graphical illustrations to represent the adjacency  between composite 
and non-composite physical fields.  Composite fields are represented by drawing 
connected lines between the different representations of data layers or themes.  The 
representation of change is depicted through a sequence of diagrams.  A computational 



model for this method is however not directly envisaged.  Glasgow and Papadias (1995) 
showed how a symbolic array can represent whole map scenes schematically. 
 
 
19.3 ASPECTS OF SPATIAL EQUIVALENCE 
 
In checking the similarity of two geographic data sets which relate to the same  
area in space, two consecutive steps are needed,  
1. Object matching: where corresponding objects in both sets are identified using some 

equivalence tests.  The result of this procedure is the identification of which objects 
in both sets can be considered to be the same, for example, matching two sets of land 
parcels in an old and up to date map or matching two road networks in maps with 
different scales, etc.  Note that those objects could differ with regard both to 
positional information and geometric structure. 

2. Spatial Equivalence representation: where the explicit representation of the 
relationship between the data sets is needed to allow for the intelligent manipulation 
of both sets by the system and to project to the user a clear view of the nature of the 
data used.  

The equivalence of two representations of a spatial object can be studied from three 
points of view: relative to fixed frame of reference, relative to the principal object 
studied, or, with reference to relationships with other objects in the data sets.  Thus 
spatial equivalence can be studied using an absolute frame of reference, an object-based 
frame of reference and a relation-based frame of reference.  Three classes of spatial 
equivalence can therefore be identified as follows.  
 
Positional Equivalence   
 
Objects are represented by the specific coordinates describing their spatial extents.  
Under this reference, two objects from two different data sets match only if their 
representative sets of coordinates match exactly and two data sets can be considered as 
locationally consistent if any position (x,y,z) corresponds to the same object in both sets.  
 
19.3.2 Object-Based Equivalence Classes 
 
A spatial data set consists of the spatial properties of a set of objects in a defined space.  
These properties include a description of spatial extent, from which the dimension and 
the shape of the object can be derived.  An object in the data set can be composite, i.e. 
consisting of, or containing other objects.  Object-based consistency can be classified 
using the above properties.  Two spatial data sets can be said to be object-based 
consistent of a certain  class if for each object in both sets this consistency is achieved.   
 
1. Object Existence Equivalence: 
Two data sets are existentially equivalent if all the object classes and instances in one 
data set exist in the other data set.  
 
2. Object Dimension Equivalence:  
Two data sets are equivalent with reference to object dimension, if every object in one set 
has the same spatial dimension as that of the corresponding object in the other set.  



3. Object Shape Equivalence: 
Equivalence based on object shape can be as flexible as needed.  On a strict level object 
shapes can be defined using equations of the curve or set of curves defining its boundary.  
On a less precise level object shapes can approximate well-known geometric shapes, for 
example a circle, a square, a T shape, zig-zag, etc.  Two data sets are said to be 
equivalent with reference to object shape if  every object in the set can be described as 
shape equivalent to the corresponding object in the other set.  
 
4. Object Size Equivalence: 
Several measures of size exist including, length of boundaries, areas and volumes of 
shapes.  Two data sets may be considered as equivalent with reference to object size if 
every object in one set has a similar size to the corresponding object in the other set.  
  
5. Spatial Detail Equivalence:   
Objects in the data sets may be composite, i.e. containing other objects or made up of 
several connected or non-connected objects.  Two data sets can be considered to be 
equivalent with reference to object detail if corresponding composite objects in both sets 
can be considered to be equivalent.  
An example of object-based equivalence is shown in figure 19.1. 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.1 Non-consistent data sets with regerence to object dimension. 
 
 
Interdependency between Equivalence Classes  
Other classes of object-based equivalence may exist.  The above set of classes are 
possibly the most important from a general point of view.  Note that the above classes 
may not be mutually exclusive.  In particular, the positional consistency implies every 
other type of consistency and is by default the strictest measure of spatial equivalence.  
Shape and size imply dimension and all equivalence classes imply existence equivalence. 
Shape equivalence may imply spatial detail consistency if the object is composed of non-
connected sets, etc.  Also, it is assumed that a certain degree of inaccuracy can be 
acceptable in the measurement of some of the properties, for example, size and shape.  
However, this depends on the applications intended for these data sets.  Note, that non-
spatial equivalence is assumed here.  Measuring non-spatial equivalence is part of the 
overall problem and is not discussed in this paper. 
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19.3.3 Relation-Based Equivalence Classes 
 
The third type of consistency measures is based on the spatial relationships between 
objects in the data sets considered.  Three classes of equivalence can be classified 
according to the types of spatial relationships (Abdelmoty and Williams, 1994, 
Abdelmoty and El-Geresy, 1994).  
1. Topological Equivalence:  
Two data sets can be regarded as topologically consistent if the set of topological 
relationships derived from one set are the same as those derived from the other.  
For example, the two sets in figure 19.2 are not topologically consistent.  
 
 
 
 
 
 
 
 
 

Figure 19.2 Topological inconsistency.   (a) Object B crosses object C.  (b) Object B 
is disjoint from C. 

 
  
2. Direction or Orientation Equivalence: 
Two data sets can be regarded as directionally consistent if the relative direction 
relationship in one set is the same as the other set.  
  
3. Relative Size Equivalence:  
Two data sets can be regarded as consistent with reference to relative size relationships if 
the qualitative size relations of larger and smaller are maintained between corresponding 
sets of objects in the two sets.  
 
19.3.4 Different Levels of Spatial Consistency 
 
Two spatial data sets can be consistent in more than one class of those defined above. 
For example, the data sets can be topologically and dimensionally equivalent, or 
consistent with reference to dimension, detail and category, etc.  As noted earlier some 
consistencies do assume others.  For example, topological equivalence may assume 
spatial detail.  Up till now, the discussion is based on one level of consistency, namely, 
when all objects in the data sets conform to the consistency class studied.  In reality, this 
is not always the case.  Ranking the level of consistency for the different classes 
identified is important as it would provide the user of the GDB an initial measure of the 
nature of the data sets in his use.  Further processing of this ranking would be used to 
identify how the data sets compare and which parts of the data sets are consistent, i.e. the 
nature of such consistency.  Let S1 and S2 represent the set of knowledge present in two 
data sets.  This knowledge consists of all the different types of information that can be 
derived from every data set.  It can be classified according to the object-based and 
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relation-based classes.  Let S1i and  S2i represent the subsets of the set of knowledge S1 
and S2 respectively, which belong to a certain class i, e.g. shape properties or directional 
or topological relationships, etc.  Four different levels of consistency can be identified. 
 
A. Total Consistency 
Two data sets $S_{1}$ and $S_{2}$ can be said to be totally consistent with  
reference to a certain consistency class $i$, if $ {S_{1}}_i \cap {S_{2}}_i = {S_{1}}_i 
\vee {S_{2}}_i$, i.e. ${S_{1}}_i = {S_{2}}_i$.  In this case a query to the GIS 
involving only properties of class $i$ shall return identical results if posed to either 
$S_{1}$ or $S_{2}$.  
B. Partial Consistency 
Two data sets $S_{1}$ and $S_{2}$ can be said to be partially consistent with  
reference to a certain consistency class $i$, if $ {S_{1}}_i \cap {S_{2}}_i = C_i$ and 
$C_i \subset {S_{1}}_i \wedge C_i \subset {S_{2}}_i$.  In this case only part of class 
$i$ knowledge is consistent in the two sets.  If the two data sets are to be used together, 
then it is important to know which subsets of the different classes of knowledge can be 
manipulated interchangeably between sets. 
C. Conditional Consistency  
Two data sets $S_{1}$ and $S_{2}$ are said to be conditionally consistent with 
reference to a certain consistency class $i$, if there exists a set of functions $F$ which 
when applied to ${S_{1}}_i$ makes it totally consistent with ${S_{2}}_i$, i.e. 
${S_{2}}_i = F({S_{1}}_i)$.  This can also represent the case where ${S_{1}}_i$ is 
consistent with ${S_{2}}_i$ but ${S_{2}}_i$ is not consistent with ${S_{1}}_i$, i.e.  
(${S_{1}}_i \cap {S_{2}}_i = {S_{1}}_i) \wedge ({S_{1}}_i \subset {S_{2}}_i$), (an 
asymmetric consistency). 

The set of functions $F$ must be non-ad-hoc, i.e. predefined.  For example, the 
set of cartographic generalisation rules used to produce maps at different scales or a set of 
predefined rules used to produce a schematic from a faithful representation of a map. 
 
D. Inconsistency Level 
Two data sets $S_{1}$ and $S_{2}$ can be said to be inconsistent with 
reference to a certain consistency class $i$, if $ {S_{1}}_i \cap {S_{2}}_i = \phi$, i.e. 
they do not share any piece of knowledge from that class.  In this case a query to the GIS 
involving properties of class $i$ shall return non-identical results if posed to $S_{1}$ and 
$S_{2}$.   

In most cases the data sets studied relate to a combination of classes and levels.  
For example, two data sets can be partially consistent in terms of shape and dimension 
but are totally consistent topologically, or are conditionally consistent with respect to 
object detail as well as partially consistent topologically. 
Figure 19.3 shows the integration of different sets of knowledge which are consistent in 
different classes and levels. 
 
 
19.4 REPRESENATION OF DIFFERENT LEVELS OF CONSISTENCY FOR 
DIFFERENT CLASSES  
 
Determining the class and level of consistency between two data sets involves the 
extraction and comparison of the set of properties or relationships for that class.  



Although it is useful for the user and the system to be informed of the class and level of 
consistency in general, it may not be enough for certain application domains.  In those 
cases explicit representation of the consistent set of knowledge is needed.  A closer look 
at the different classes of consistency reveals that they are mostly qualitative measures 
(apart from location, size and shape).  Hence, the common set of spatial knowledge 
between data sets can be represented qualitatively.  A structuring mechanism can be 
envisaged which can be applied on a geographic data set to allow the explicit 
representation of some of the qualitative properties and relationships and the derivation of 
others.  Multiple spatial representations can exist for the same geographic objects.  
However, properties and relationships are always related to objects and not to their 
underlying representations.  Hence the structuring mechanism envisaged should be based 
on the geographic objects level and not on the geometrical representations.  This structure 
can then be built for any data set irrespective of its underlying form of spatial 
representation. 

Manipulation of such qualitative structure could make use of spatial reasoning 
techniques (Egenhofer, 1994, Cui, et al, 1993, El-Geresy, 1997, Hernandez, 1994).  For 
example it would be possible to store only some of the topological relationships and 
derive others using composition tables for similar and mixed types of spatial relations. 
Explicit representation of this knowledge would allow comparisons between data sets, 
seamless manipulation of existing sets, integration of new sets and consistent update of 
existing ones.  In developing the proposed structuring mechanism, several questions need 
to be answered, including, 
• What are the types of knowledge that can be represented explicitly and which can be 

derived? 
• How can the different classes of knowledge be structured?  
In this section, the representation of the class and level of topological consistency is first 
given and then extended to include orientation relationships.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.3 Integrating different data sets with different classes and levels of consistency 
to produce a common set of consistent knowledge. F1 and F2 represent sets of predefined 
functions for conditional consistency.  
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19.4.1 Representation of Topological Equivalence with Adjacency Relationships  
 
Checking topological equivalence between two geographic data sets is the process of 
checking that the same set of topological relationships between objects in one set exist for 
the corresponding objects in the other set.  This process involves the explicit extraction 
and representation of topological relationships.  Several approaches to checking the 
topological consistency of two spatial scenes have been proposed (Kuijpers et al, 1995, 
1997, Egenhofer and Sharma, 1992, Egenhofer et al, 1994).  However, they do not 
consider the issue of integrating both scenes and hence do not provide means of 
representing the common set of consistent knowledge.  In this section, a simple structure 
for storing the adjacency relationships between objects in the data sets is proposed from 
which topological relationships can be derived.  The structure can then be used to 
represent the common set of consistent knowledge between data sets as well as the 
ambiguity or uncertainty in the knowledge derived from both sets.  The structure is based 
on the following assumptions. 
 
19.4.2 Assumptions 
 
Given a space $S$ and a set of spatial entities $O_1, \cdots, O_n$ embedded in it. 
• Space $S$ is dense and infinite. 
• The spatial entities are connected.  If an entity is not connected, each of its 

components will be considered separately. 
• The entities jointly cover the whole space, i.e.$S = O_1 \cup \cdots O_n \cup S_0$, 

where $S_0$ is the complement of the entities in space $S$.  The inclusion of $S_0$ 
is necessary for two reasons: a) to avoid mis-interpretation of space topology and b) 
to provide an explicit representation of the edges of the scene (or map). 

• The spatial entities don’t overlap, i.e. $O_i \cap O_j = \phi$ for all $1 \leq i \neq j 
\leq n$. 

 
19.4.3 Capturing Topology- The Adjacency Matrix 
 
The adjacency matrix is a qualitative spatial structure which captures the adjacency 
relations between different spatial objects.  The adjacency relation (a binary symmetric 
relation) can be used for capturing the topological distribution of objects.  In figure 
19.4(a) a map is shown with five entities A, B, C, D and E.  In 19.4(b) the adjacency 
between the entities are encoded in a matrix.  The fact that two entities are adjacent is 
represented by a (1) in the matrix and by a (0) otherwise. 
For example, A is adjacent to B, C and D but not to E, and D is adjacent to all others.  
Since adjacency is a symmetric relation, the resulting matrix will be symmetric around 
the diagonal.  Hence, only half the matrix is sufficient for the representation of the space 
topology and the matrix can be collapsed to the structure in figure 19.4©.  The 
complement of the objects in question shall be considered to be infinite.  The suffix $0$ 
($S_{0}$) is used to represent this component.  As seen in the figure, the map edges are 
represented explicitly by the adjacency relations of $S_0$ (complement of objects in 
$S$).  Objects B and E do not touch any of the map edges.  



 
 
 
 
 
 
 
 
 
 
 
Figure 19.4 (a) Space containing five objects. (b) Adjacency matrix for the 
scene in (a).  (c) Half the symmetric adjacency matrix is sufficient to capture 
the scene representation.  

 
Checking Topological Equivalence 
 
The adjacency matrix can be used to check the topological equivalence of two scenes. 
Figure 19.5 shows a different data set of the same geographical area as figure 19.4 and its 
corresponding adjacency matrix.  There are two differences between the two scenes as 
can be seen from the structures.  These are: in 19.4 object A is connected to C while it is 
not in 19.5, and object E in 19.4 does not exist in 19.5.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.5 (a) Different data set for the same area in figure \ref{matrix}.  (b)
 Its corresponding adjacency matrix.  

 
The only relationship stored explicitly in the above structures is adjacency and other 
topological relationships can be derived simply.  For example, in 19.4, object E is 
adjacent only to D and hence it is topologically inside D. 
Also, the relationship for complex objects can be realised from the grouping of 
relationships between its constituting parts, and so on.  Hence, using this structure alone 
we can redraw the topological equivalences of the two scenes (obviously the exact shape 
of each object is not meant to be represented here).  The adjacency structures can be 
organised in a tree structure representing different levels of detail in the data sets. 
Also, an explicit reference to object dimension will enable a (schematic) reproduction of 
the topological equivalence of the data sets.  However, object dimension in both data sets 
need not be consistent.  



 
Representing the Common Consistent Set of Knowledge 
 
The scenes in 19.4 and 19.5 are partially topologically consistent.  The set of common 
knowledge in both data sets can be grouped in an adjacency structure as shown in figure 
19.  The structure in 19.6 is informative of the consistent topological common knowledge 
between the two data sets.  In this case, the adjacency between objects A and C is 
unknown, represented by a (-), and object E does not exist in both data sets and hence it is 
deleted from this set.  Using this structure one can recreate the common knowledge in 
both scenes with the ambiguity of the relation between A and C. 
 

 
 
 
 
 
 
 
 
Figure 19.6 The adjacency structure representing the common set of consistent 
knowledge in the structures of figures 19.4and 19.5.  

 
19.4.4 Capturing Orientation: The Matrix Map 
 
The adjacency matrix captures the topology of space under consideration.  Orientation 
relations can be added to the cells of the matrix.  Orientation relations have converses and 
therefore half the matrix is still enough to capture these relations.  The matrix can be kept 
compact by exploiting the transitive property of the relations by qualitative reasoning. 
Thus those relations shall be explicitly defined between adjacent spatial entities only. 
Other relations between non-adjacent entities can then be deduced using qualitative 
reasoning.  The convention of orientation relations is R(column,row).  For example, in 
figure 19.7, West(A,B) and South(A,C).  Different granularities of the orientation 
relations can be defined, e.g. south-west(A,D).  Consider the example in figure 19.7.  The 
following orientation relations are defined between adjacent objects. 
 
\begin{math} 
W(A,B), N(A,C), S(A,D) \wedge SW(A,D), \\ 
S(B,D), W(B,E), W(C,D),W(D,E) 
\end{math}.19.1 The matrix in figure 19.7(b) contains the orientation relations between 
adjacent objects only. 
The rest of the orientation relations can then be derived using the rules: 
\begin{math} 
W(A,B) \wedge W(B,E) \rightarrow W(A,E) \\ 
S(A,D) \wedge W(D,E) \rightarrow S(A,E) \vee SW(A,E) \vee W(A,E) \\ SW(A,D) 
\wedge W(D,E) \rightarrow W(A,E) \vee SW(A,E) \\ \end{math}  
 
                                                           
19.1 S denotes South, W denotes West, etc 



Note that more than one reasoning path exists.  For example, from the above rules we 
conclude that $S(A,E) \vee  W(A,E) \vee SW(A,E)$.  If an object is surrounded partly or 
fully by another object, such as in the case of part-whole relations, a notation is used to 
represent both relations, e.g. $IE(A,B)$ denotes the relations $Inside(A,B) \wedge 
East(A,B)$ as shown in figure 19.8.  The matrix structure is given in 19.8(b) and the 
converse relations are used if the order of objects is reversed in the matrix as in 19.8 (c).  
Whether A is totally inside B or shares its boundary can be inferred by examining the rest 
of the matrix cells for A and B.  (A is totally inside B if it is only adjacent to B, i.e. its 
corresponding row and column contain the value 1 only with object B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.7 (a) Set of adjacent regions.  (b) Corresponding adjacency matrix 
including orientation relations between adjacent regions only.  

 
 
 
 
 
 
 
 
 
 
 
Figure 19.8  (a) Representing part-whole relationships Inside(A,B) ∧ East(A,B).  (b)
 its matrix representation, (c) the matrix with the order of the objects reversed. 

 
The combined adjacency and orientation relations and the explicit edge representation 
can be denoted the Matrix Map.  A sketch map can be recreated from the matrix. 
The matrix map can be further enriched with the size relations by specifying an ordered 
set of size relations between objects.  The set D > A > B > C will capture the complete 
size relations between objects in the map. 



Example 
Consider the data sets in figure 19.9.  The difference between the two sets is only 
apparent when their matrix maps are considered.  The two data sets are totally equivalent 
topologically but partially equivalent directionally.  Note that in defining the orientation 
relations, a specific consistent frame of reference has to be adopted.  Different 
approaches exist for the representation of orientation relations (Hernandez, 1994, 
Abdelmoty and Williams, 1994).  In this example, a simple conic division of the 
orientation space is adopted. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.9  (a) and (d) Two data sets of the same geographic area.  (b) and (e) 
Their corresponding, equivalent, adjacency matrices.   (c) and (f) Their 
corresponding (different) matrix maps. 

 
19.5 CONCLUSIONS 
 
In this paper a study of the nature of equivalence between spatial data sets is presented. 
The proposed approach can be summarised as follows: 
• Equivalence of data sets is broken down into two main categories: comparison of 

basic properties of objects and relationships between those objects.  Difference 
equivalence classes were identified which can be checked in isolation. 

• For every class identified, data sets can be equivalent to a certain level or degree.  
Four levels of equivalence are proposed, namely, total, partial, conditional and 
inconsistent.  Data sets can be ranked according to those levels, for example, totally 



consistent topologically but partially consistent with reference to object dimension 
and so on. 

• Explicit representation of the different equivalent classes and levels of consistency is 
needed in the spatial database when different data sets are to be used together. 

• The common set of consistent knowledge in the data sets needs to be expressed 
explicitly.  A qualitative structure is proposed to hold different types of knowledge 
on the geographic feature or object level (as opposed to the geometric level). 

As an example, the representation of topological equivalence is presented using a simple 
structure which stores adjacency relationships.  Topological relationships can be derived 
from the structure and ambiguity in the relationships can be derived.  It was also shown 
how the structure can be extended to incorporate orientation relationships.  Further work 
needs to be done for devising representation methods for the different consistency classes 
and for their coherent integration.  The work in this paper was done in the context of an 
ongoing research project which aims at the development of methods for the modelling 
and manipulation of hybrid data sets in a GIS (Jones et al, 1996). 
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