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ABSTRACTWe show how to eÆiently obtain linear a priori bounds onthe heap spae onsumption of �rst-order funtional pro-grams.The analysis takes spae reuse by expliit dealloation intoaount and also furnishes an upper bound on the heap us-age in the presene of garbage olletion. It overs a widevariety of examples inluding, for instane, the familiar sort-ing algorithms for lists, inluding quiksort.The analysis relies on a type system with resoure anno-tations. Linear programming (LP) is used to automatiallyinfer derivations in this enrihed type system.We also show that integral solutions to the linear pro-grams derived orrespond to programs that an be evaluatedwithout any operating system support for memory manage-ment. The partiular integer linear programs arising in thisway are shown to be feasibly solvable under mild assump-tions.
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1. INTRODUCTIONThis paper addresses the following problem. Given a fun-tional program ontaining a funtion f of type, say, L(B)!L(B), i.e., turning lists of booleans into lists of booleans �nda funtion � suh that the the omputation f(w) requiresno more than �(w) additional heap ells.In this generality, the problem admits the following trivialsolution: We an instrument the ode for f by a ounterthat is augmented eah time we require alloation of a heapell. The funtion � is then the funtion omputed by thisinstrumented ode followed by a projetion that disards theoutput and only keeps the value of the ounter.Even if we require that � depend only on the length of theinput w and not w itself, we ould for a given input length lrun the instrumented ode on all boolean lists of length l andtake the maximum. We still have a omputable funtionthat bounds the heap spae required by the omputationof f .This trivial solution su�ers from two aws. First, eval-uating � requires as many resoures as evaluating f itself.Moreover, even though the ode for � onstitutes a math-ematial desription of the bounding funtion �, it is in aform that allows one to say very little about its global be-haviour. Both aws are unaeptable in a senario whereindependently veri�able erti�ates on resoure usage of mo-bile ode are desired [14, 1℄.What one would rather expet in this situation is a state-ment of the form: running f on an input of length n willrequire no more than b(n) heap ells where b(n) is an expres-sion like 3n+7 or 2:5n3+4n2 or 21:5n. It is only from suh anexpression that one an glean immediate information aboutthe expeted behavior of the ode to be run.In this paper we desribe a method for automatially ob-taining linear bounds on the heap spae usage of funtionalprograms. Of ourse, it is undeidable whether a given pro-gram admits suh a linear bound, so we must aept ertainrestritions. We laim, however, that the restritions wemake are quite natural and moreover, our analysis is prov-ably eÆient in this ase.An important limitation of our work is that only �rst-order programs are onsidered. This means that a programis a mutual reursive de�nition of �rst-order top level fun-tions. While perhaps being against the redo of funtionalprogramming it o�ers us surprising bene�ts and moreovermany uses of higher-order funtions are atually a de�ni-Extended version, for WWW only { Deember 31, 2002



tional extension of �rst-order funtional programming: inpriniple one an eliminate them by ode dupliation. Weomment on this and on the diÆulties enountered withfully general higher-order funtions later in Setion 11.
1.1 Overview of resultsWe assume an operational semantis that maintains a free-list whih is redued whenever a onstrutor funtion likeons is evaluated. On the other hand, we assume that er-tain pattern mathes returns the mathed ell to the freelistwhih aordingly inreases in the branhes of the math. Ifwe try to evaluate a onstrutor under an insuÆiently largefreelist the evaluation gets stuk.We then devise an annotation of typing derivations withnonnegative rational values whih allows for predition ofthe freelist size required to evaluate the program. For in-stane, if we derive x : L(L(B; 1) ; 2) ; 3 ` e : L(B; 4) ; 5then this signi�es that if we evaluate e in a situation whihbinds x to a list [l1; : : : ; lm℄ then a freelist of size at least3+ 2m+1Pijlij suÆes to prevent evaluation from gettingstuk. If the evaluation terminates with a result l then thefreelist will have size 5 + 4jlj. Here j�j denotes the length ofa list.We note two ruial features: First, the size estimate forthe freelist left after evaluation is given as a funtion ofthe result type rather than the input. Seond, estimatesdo not just depend on the overall size of arguments butmay attah di�erent weight to various parts of the data.In the example the length of the input list ounts twie,whereas the lengths of the omponent lists only ount one.We �nd that these features allow for a surprisingly smoothompositional formulation of the annotations.Given a onrete program P we then set up a \skeleton"of an annotated derivation whih ontains variables in plaeof atual annotations. The various side onditions in ourrules then take the form of linear inequalities between thesevariables. We thus obtain a linear program L(P ) whose solu-tions are in one-to-one orrespondene to valid annotations.As is well-known suh solutions an be eÆiently omputed.We also show that integral solutions to the L(P ) are in1-1 orrespondene to enrihed versions of P in the pro-gramming language LFPL [8℄ whih bypasses memory man-agement by expliitly passing around memory ells as part ofthe data. Programs in LFPL largely behave like imperativeprograms that modify heap-alloated data in-plae ratherthan laiming fresh memory for results of omputations andreturning unused memory. In this way, our inferene analso be viewed as type inferene for LFPL.It must be said, though, that not all possible LFPL pro-grams arise as reonstrutions from solutions of the on-straint system. The problem of reonstruting arbitraryLFPL programs is onsidered in more detail in [11℄.While obtaining integral solutions to linear programs isin general NP hard, we prove that in several important andnatural sub-ases of our setting they an be obtained eÆ-iently.We emphasize that our funtional programs are not ne-essarily required to be linearly typed. Indeed, we have aontration rule orresponding to aliasing that allows us toidentify two variables provided we split the resoure anno-tations aordingly.

For example, if we have x:L(B; 3) ; y:L(B; 6) ; 5 ` e : C; 6then the ontration rule allows us to derive z:L(B; 9) ; 5 ` e :C; 6. Operationally, x; y point to a shared memory region.If we use this ontration rule then validity of our analysisrelies on the following semanti ondition: if at any point inthe evaluation of a program a heap ell is dealloated in adestrutive pattern math then this ell must not be aes-sible from the variables ourring in the remaining programfragment. We speak of benign sharing in this ase. A viola-tion of the property is alled malignant sharing.Notie that if a program exhibits malignant sharing then itwill not neessarily rash due to null pointer aess beauseit might not atually follow the path to the dangling refer-ene even though this is possible. One may thus omparebenign sharing to the property ensured by garbage olle-tion.We formalise benign sharing on the level of the operationalsemantis as a judgment S; � ` e ;bs v; �0 whih assertsthat in stak S and heap � the evaluation of e results invalue v and new heap �0 and, moreover, all sharing duringthat evaluation is benign.For partiular programs we may be able to assert benignsharing by inspetion or logial reasoning. More interest-ingly, we would like to guarantee it by some stati typesystem. We already know that linear typing, i.e., the ab-sene of ontration, provides suh a guarantee; we onje-ture that the more general read-only type systems and anal-yses desribed in [2, 12, 15, 18℄ all are able to provide suh aguarantee as well, by suitably restriting but not altogetherexluding the ontration rule.The important point here is that the semanti formalisa-tion of benign sharing makes no referene to resoure an-notations so that disharging the extra assumption made isorthogonal to the work desribed in this paper.We also mention that, of ourse, we an reursively de�neloning funtions in the stritly linear fragment, for instanelone : L(B; 2)! L(B; 0)
L(B; 0). The two opies returnedare not aliased but one of them is onstruted using freshheap spae.Notation: The set of natural numbers denoted N isassumed to ontain zero. We let Q+ denote the set of non-negative rational numbers.If f is a �nite funtion we write f nx for f� ( dom f nfxg),that is, the restrition of f to its domain less the element x.We write f [x7!v℄ to denote the �nite funtion that maps xto v and ats like f otherwise.FV(e) denotes the set of free variables ourring withinthe term e. The substitution of a free variable v by t interm e is denoted by e[t=v℄.If l denotes a list, then jlj denotes the length of the list.Equivalently, jlj is the number of nodes of l in a mahinerepresentation.Aknowledgements: Part of this researh was arriedout within the EU projet IST-2001-33149 \Mobile ResoureGuarantees". We also aknowledge �nanial support by theDeutshe Forshungsgemeinshaft (DFG).
2. FUNCTIONAL LANGUAGEWe de�ne a �rst-order typed funtional language LF as fol-lows.zero-order types: A ::= 1 j B j L(A) j A
A j A+A�rst-order types: F ::= (A; : : : ; A)! AExtended version, for WWW only { Deember 31, 2002



Here B is the type of Booleans, L(A) is the type of listswith entries from A, sum and produt are denoted by +;
.Finally, 1 is a singleton type. We an also inlude labelledtrees, but refrain from doing so to save spae. However, oneof our examples uses trees.Sine we are interested in memory onsumption, we de�neat this point a funtion SIZE : LF-type! N for later use:SIZE (1) = SIZE (B) = SIZE (L(A)) = 1SIZE (A
 C) = SIZE (A) + SIZE (C)SIZE (A+ C) = 1 +max�SIZE (A) ; SIZE (C)�The values hoosen in this de�nition should �t the intendedmahine model, but are abitrary otherwise. We will exploita di�erent (onstant) hoie in setion 5.The terms of LF are given by the following grammar:e ::= � j tt j ffj xj f(x1; : : : ; xn)j let x=e1 in e2j if x then et else efj x1 
 x2j math x with x1 
 x2 ) e2j inl(x) j inr(x)j math x with j inl(y)) el j inr(y)) erj nilj ons(x1; x2)j math x with jnil) e1 j ons(x1; x2)) e2j math0 x with j nil) e1 j ons(x1; x2)) e2In eah of the following typing rules, let � denote a LFsignature mapping a �nite set of funtion identi�ers to LF�rst-order types, � be a LF typing ontext mapping a �niteset of identi�ers to LF zero-order types.We use �1;�2 to denote the union of ontexts �1 and �2,provided dom(�1)\ dom(�2) = ;. If this notation ours ina typing rule then disjointness is an impliit side ondition.Letters e; ea; eb; : : : represent arbitrary LF terms aord-ing to the given grammar, and A;B;C denote arbitrary LFzero-order types. � `� �:1 (LF:Const Unit) a boolean onstant� `� :B (LF:Const Bool)x 2 dom(�)� `� x:�(x) (LF:Var)�(f) = (A1; : : : ; Ap) �! C�; x1:A1; : : : ; xp:Ap `� f(x1; : : : ; xp):C (LF:Fun)�1 `� e1:A �2; x:A `� e2:C�1;�2 `� let x=e1 in e2:C (LF:Let)� `� et:C � `� ef :C�; x:B `� if x then et else ef :C (LF:If)

�; x1:A1; x2:A2 `� x1 
 x2:A1 
A2 (LF:Pair)�; x1:A1; x2:A2 `� e:C�; x:A1 
A2 `� math x with x1 
 x2 ) e:C(LF:Pair-Elim)�; x:A `� inl(x):A+B (LF:Inl)�; x:B `� inr(x):A+B (LF:Inr)�; y:A `� e1:C �; y:B `� e2:C�; x:A+B `� math x with j inl(y)) e1 j inr(y)) e2:C(LF:Sum-Elim)� `� nil:L(A) (LF:Nil)�; xh:A; xt:L(A) `� ons(xh; xt):L(A) (LF:Cons)� `� e1:C �; xh:A; xt:L(A) `� e2:C�; x:L(A) `� math x with jnil) e1 j ons(xh; xt)) e2:C(LF:List-Elim)�; x:A; y:A `� e:C�; z:A `� e[z=x; z=y℄:C (LF:Share)The LF typing rule for math0 , LF:List-Elim', is identialto the one for math, LF:List-Elim. The di�erene lies inthe intended operational semantis: while math dealloatesthe loation mathed against, it is preserved by math0 forsubsequent use. Thus math0 shall stand for `read-only a-ess'. Aordingly, the rules for resoure inferene will alsobe di�erent for the two onstruts.We also point out that the typing rules are formulated ina linear style. That is, multiple ourrenes of a variablesare expliitly introdued via the rule LF:Share.An LF program P onsists of a signature � and a ol-letion of terms ef for eah f 2 dom(�) suh that forall f 2 dom(�) one has y1:A1; : : : ; yk:Ak `� ef :C when�(f) = (A1; : : : ; Ak) �! C. In onrete examples we indi-ate the assoiation of de�ning terms with funtion symbolsby writing down equations of the form f(y1; : : : ; yk) = ef .We usually onsider a �xed but arbitrary program Pthroughout the following.We denote by LFlin the fragment of LF whih neitherontains the term onstrutor math0 nor the typing rulesLF:Share, LF:List-Elim'. Note that LFlin is an aÆne lin-ear funtional language.
2.1 ExamplesThroughout the examples, the type A is any �xed (but arbi-trary) LF-type. In an implemented version of LF one wouldpresumably want to allow type variables and possibly evenpolymorphi quanti�ation over these.Extended version, for WWW only { Deember 31, 2002



Example 1. The following example de�nes a funtion thatreverses the order of the elements in a list of booleans.reverse : (L(A)) �! L(A)rev aux : (L(A) ; L(A)) �! L(A)reverse(l) = rev aux(l; nil)rev aux(l; a) = math l withjnil) aj ons(h; t)) rev aux(t; ons(h; a))We furthermore de�ne reverse0 and rev aux0 similarly, justreplaing math by math0 .Example 2. The next example orresponds to the well-known insertion sort algorithm:sort : (L(A))! L(A)ins : (A; L(A))! L(A)leq : (A
A)! B
 (A
A)ins(n; l) = math l withj nil) ons(n; nil)j ons(h; t))math leq(n; h) with b
 �n0 
 h0�)if b then ons(n0; ons(h0; t))else ons(h0; ins(n0; t))sort(l) = math l with j nil) nilj ons(h; t)) ins(h; sort(t))To simplify notation we have used some syntati sugar inthese examples: notably we allow nesting of terms whih ex-pands into nested let-onstruts and also allow nested pat-terns as in line 4 of ins whih expand into a sequene ofnested mathes.Here we assume the omparison funtion leq to return itsarguments so that this example makes sense in the fragmentLFlin.We onlude by two somewhat ontrived examples whihrequire alloation of fresh memory.Example 3. The funtion lone doubles its input:lone : (L(B))! L(B)
 L(B)lone(l) = math l with jnil) nil
 nil j ons(h; t))math lone(t) with t1 
 t2 )if h then ons(tt; t1)
 ons(tt; t2)else ons(ff; t1)
 ons(ff; t2)Example 4. The funtion tos replaes eah third elementof a list by a value depending on its two predeessors, so itdoes not hange the length of the list, but this implemen-tation of tos is omposed of two auxiliary funtions, whihdo hange the length of the list in between. Namely, sedeletes every third element whereas tpo inserts a new ele-ment in every third position.The signi�ane of the type B
 B as opposed to B or an

unspei�ed type will be explained in Setion 7.tos : (L(B
 B)) �! L(B
 B)se : (L(B
 B)) �! L(B
 B)tpo : (L(B
 B)) �! L(B
 B)tos(l) = tpo(se(l))se(l) = math l withjnil) nilj ons(h1; t1)) math t1 withjnil) ons(h1; nil)j ons(h2; t2)) math t2 withj nil) ons�h1; ons(h2; nil)�j ons(h3; t3)) ons�h1; ons(h2; se(t3))�tpo(l) = math l withjnil) nilj ons(h1; t1)) math t1 withjnil) ons(h1; nil)j ons(h2; t2))ons�h1; ons�h2; ons(h1; tpo(t2))��
3. OPERATIONAL SEMANTICSWe use a freelist ontaining available heap ells. We treatthis freelist simply as an integer value giving the number offree words.Issues of alignment are assumed to be dealt with by an ap-propriate defragmentation routine to be launhed whenevera request for t aligned words annot be met although thefreelist has size larger or equal than t. Admittedly, defrag-mentation is ostly to implement. If desired, we an avoidfragmentation by assuming that all alloated bloks are ofthe same size. See also the remark on garbage olletion atthe end of this setion.Let Lo be a set of loations whih model memory ad-dresses on a heap abstrated over possible renaming thatmay beome neessary upon defragmentation. We use ` torange over elements of Lo. Next we de�ne a set of val-ues Val, ranged over by v whih our as values of programvariables, results, and values bound to loations in a heap.v ::=  j ` j NULL j (v; v) j inl(v) j inr(v)A value is either a boolean onstant , a loation `, a nullvalue NULL, a pair of values (v; v) or a value marked witheither inl or inr. Oasionally we use a short hand notationfor tuples, e.g. we write (v; v; v) instead of (v; (v; v)).We assume that the LF type derivation is impliitly a-essible (e.g. by adding a pointer to a type to eah value asis done in Java), hene we allow ourselves to extend the sizefuntion to SIZE : Val! N. The idea is that value v oupiesSIZE (v) words when stored in the heap. We are aware thatthis is not rigorous, however, the redution on notationallutter outweighs the formal disadvantages by far.A stak S:Var * Val is a �nite partial mapping from vari-ables to values, and a heap �:Lo * Val is a �nite partialmapping from loations to values. Evaluation of an expres-sion e takes plae with respet to a given stak and heap,and yields a value and a possibly updated heap. Moreover,Extended version, for WWW only { Deember 31, 2002



the size of the freelist may shrink or grow upon evaluation.Thus we have a relation of the formm;S; � ` e; v; �0;m0expressing that the evaluation of e under stak S and heap� sueeds in the presene of a freelist of size m and resultsin value v. As a side e�et the heap is modi�ed to �0 andthe size of the freelist beomes m0. The values m and m0are arbitrary natural numbers.The stak is extended with additional variable bindingswhenever we enter a new sope, inside subterms in thepremises of the evaluation rules. When we evaluate a fun-tion body we use a stak whih only mentions the atualparameters, intuitively preventing aess beyond the stakframe. Notie that the stak may ontain pointers into theheap (i.e., loations), but there are no pointers going fromthe heap into the stak.The operational semantis is given with respet to a �xedsignature and program.m;S; � ` �; NULL; �;m (;�:Unit Const)m;S; � ` ; ; �;m (;�:Bool Const)m;S; � ` x; S(x); �;m (;�:Var)S(x1) = v1 � � � S(xn) = vnm; [y1 7!v1; : : : ; yn 7!vn℄; � ` ef ; v; �0; m0the yi are the symboli arguments of efm;S; � ` f(x1; : : : ; xn); v; �0; m0 (;�:Fun)m;S; � ` e1 ; v1; �0;m0m0; S[x7!v1℄; �0 ` e2 ; v; �0;m0m;S; � ` let x=e1 in e2 ; v; �0;m0 (;�:Let)S(x) = tt m;S; � ` et ; v; �0; m0m;S; � ` if x then et else ef ; v; �0;m0 (;�:If-t)S(x) = ff m;S; � ` ef ; v; �0;m0m;S; � ` if x then et else ef ; v; �0;m0 (;�:If-f)m;S; � ` x1 
 x2 ; �S(x1); S(x2)�; �;m (;�:Pair)S(x) = (v1; v2) m;S[x1 7!v1℄[x2 7!v2℄; � ` e; v; �0;m0m;S; � ` math x with (x1 
 x2)) e ; v; �0; m0(;�:Math-Pair)S(x) = vm; S; � ` inl(x); inl(v); �;m (;�:Inl)S(x) = vm; S; � ` inr(x); inr(v); �;m (;�:Inr)S(x) = inl(v0) m;S[y 7!v0℄ ` e1 ; v; �0;m0math x with j inl(y)) e1j inr(y)) e2 ; v; �0;m0(;�:Math-Inl)

S(x) = inr(v0) m;S[y 7!v0℄ ` e2 ; v; �0;m0math x with j inl(y)) e1j inr(y)) e2 ; v; �0; m0(;�:Math-Inr)m;S; � ` nil; NULL; �;m (;�:Nil)v = �S(xh); S(xt)� ` 62 dom(�)m+ SIZE (v) ; S; � ` ons(xh; xt); `; �[ 7̀!v℄;m(;�:Cons)S(x) = NULL m;S; � ` e1 ; v; �0;m0m;S; � ` math x with jnil) e1j ons(xh; xt)) e2 ; v; �0; m0(;�:Math-Nil)S(x) = ` �(`) = (vh; vt) m0 = m+ SIZE (�(`))m0; S[xh 7!vh℄[xt 7!vt℄; � n ` ` e2 ; v; �0;m0m;S; � ` math x with jnil) e1j ons(xh; xt)) e2 ; v; �0; m0(;�:Math-Cons)S(x) = NULL m;S; � ` e1 ; v; �0;m0m;S; � ` math0 x with jnil) e1j ons(xh; xt)) e2 ; v; �0; m0(;�:Math'-Nil)S(x) = ` �(`) = (vh; vt)m;S[xh 7!vh℄[xt 7!vt℄; � ` e2 ; v; �0;m0m;S; � ` math0 x with jnil) e1j ons(xh; xt)) e2 ; v; �0; m0(;�:Math'-Cons)The only rules that deserve an explanation are the onespertaining to the math onstruts for lists. It is assumedthat the math onstrut immediately dealloates the nodemathed against, whereas it is preserved in a math0 on-strut. Aordingly the freelist grows in the branhes of amath whereas it stays the same in a math0 . At this point,the programmer deides whih one to use. It is oneiv-able that this deision an be automated in suh a way thatthe best possible resoure behaviour is obtained. This is,however, left for future researh.Note that given m;S; �; e it need not be the ase thatthere exist v; �0;m0 with m;S; � ` e ; v; �0;m0 for one ofthe following reasons:� Non-termination (this manifests itself as an in�nitebakwards appliation of rule ;�:Fun)� Wrong elements in stak or heap, e.g. a Boolean whereeither NULL or a pair is expeted.� InsuÆiently large freelist, e.g. m = 0; e = ons(1; nil).We hoose to aept nontermination and rely on a standardtyping disipline to deal with wrong elements. The mainontribution here is to devise stati methods that ensureabsene of insuÆiently large freelists.We remark at this point that the judgementm;S; � ` e;v; �0;m0 admits the following alternative interpretation. Ifwe evaluate e using a garbage olletor whih ollets afterevery pattern math then the heap size during the evaluationwill not exeed the initial heap size by more than m.Extended version, for WWW only { Deember 31, 2002



3.1 Operational semantics without freelistIn order to be able to formally state orretness of the statianalysis we are going to desribe, it is onvenient to in-trodue an auxiliary operational semantis whih does notrely on freelists. To this end, we introdue a judgmentS; � ` e ; v; �0 whih intuitively reads as \in stak S andheap � expression e evaluates to result v and leaves heap�0". The rules de�ning this judgment are like the ones thatde�ne the instrumented judgment m;S; � ` e ; v; �0;m0but without all referene to freelist sizes. For example, wehave the rulev = �S(xh); S(xt)� ` 62 dom(�)S; � ` ons(xh; xt); `; �[ 7̀!v℄ (;:Cons)We an understand this judgment as formalizing evaluationin a C-like environment where spae is alloated whenevera ons-ell is formed and dealloated whenever we mathagainst a ons-ell.In earlier work [8, 2℄ it was shown that under a lineartyping disipline, in partiular in LFlin, this judgment rep-resents the intended funtional semantis. In this paper, wewill rely on the essene of these earlier results and do notspeak about funtional semantis at all. More preisely, wewill establish a result of the following kind.Corretness property. If � `� e:A in LF and ourstati analysis derives a minimum freelist size n then when-ever S; � ` e; v; �0 without malignant sharing then for allm � n there exists m0 suh that m;S; � ` e; v; �0;m0.
3.2 Formalisation of benign sharingWe de�ne a variant of the operational semantis:S; � ` e;bs v; �0whih di�ers from the original operational semantis in thatit prohibits malignant sharing in the sense desribed in theIntrodution.The auxiliary funtion R : heap � Val �! P(Lo) is de-�ned as follows:R(�; ) = ; R(�;NULL) = ;R(�; (v1; v2)) = R(�; v1) [R(�; v2) R(�; inl(v)) = R(�; v)R(�; `) = f`g [ R(�; �(`)) R(�; inr(v)) = R(�; v)We set R(�; �(`)) := ; when ` 62 dom(�). We extend R tostaks by: R(�; S) := [x2domSR��; S(x)�Intuitively, R(�; S) is the set of loations aessible from S.The judgment S; � ` e ;bs v; �0 is now indutively de-�ned by the rules for the ordinary (resoure-free) operationalsemantis exept for the rules ;:Let and ;:Math-Conswhih are replaed by the following ones. The rules onern-ing math0 are not altered.S; � ` e1 ;bs v1; �0S[x7!v1℄; �0 ` e2 ;bs v; �0��R(�; S0) = �0�R(�; S0) S0 = S�FV(e2)S; � ` let x=e1 in e2 ;bs v; �0 (;bs:Let)

S(x) = ` �(`) = (vh; vt)` 62 R��; S[xh 7!vh℄[xt 7!vt℄�FV(e2)�S[xh 7!vh℄[xt 7!vt℄; � n ` ` e2 ;bs v; �0S; � ` math x with j nil) e1 j ons(xh; xt)) e2 ;bs v; �0(;bs:Math-Cons)Sine these rules have strengthened preonditions om-pared to their ounterparts we learly haveLemma 1. �; S ` e;bs v; �0 =) �; S ` e; v; �0Let us onsider short program fragments illustrating malig-nant sharing: let x=reverse(y) in y, where reverse is de-�ned as in Example 1. The funtion reverse reverses the listy destrutively, hene the rule;bs:Let is not appliable, asy is ontained in the reahable region and hanges after eval-uation of reverse(y). Note that the rule ;:Let would gothrough. If the fragment would all reverse0 instead, whihprodues a reversed opy via the use of math0 instead ofmath, the program fragment above would be aeptable.However, the di�erene would be revealed in the di�erentresoure onsumption as will be shown in Setion 4.1.Now onsider the fragment let x=y in x++ y, where thein�x ++ denotes list onatenation (see de�nition in Exam-ple 7). Here the rule;bs:Let would be appliable, but failssine x++ y annot be evaluated, unless S(y) = NULL. Thereason is that the evaluation of x++ y dealloates x, but theloations reahable from x an also be reahed via y, henethe preondition added to;bs:Math-Cons is violated. Ofourse, we ould de�ne a opying version of \append" us-ing math0 . Note that our semantis does not ater for inplae update. We an either reate a new ell or deallo-ate a ell, but never hange the ontents of an existing ell.This preludes, in partiular, the reation of irular datastrutures.The annotated version ;bs� is formulated similarly, theresoure related onstraints do not hange.
4. LF WITH RESOURCE ANNOTATIONSIn this setion we introdue resoure annotations for LFwhih will allow us to predit the amount of heap spaeneeded to evaluate a program. This predition will be alinear expression involving the sizes of the arguments.We all this annotated version LF�. Aordingly, the lin-early typed fragment not ontaining the rule LF�:Share andthe math0 -term onstrutors will be alled LFlin� .The term grammar for LF� is idential to the one given forLF. The types of LF� are given by the following grammar:pure zero-order: P ::= 1 j B j P 
 P j R+R j L(R)rih zero-order: R ::= (P; k) (for k 2 Q+ )�rst-order: F ::= (P; : : : ; P; k)! R (for k 2 Q+)The underlying LF-type of an LF�-type is de�ned by j�j :LF�-type! LF-typej1j = 1 jL(A)j = L(jAj)jBj = B jA
 Cj = jAj 
 jCjj(A; n)j = A jA+ Cj = jAj+ jCjj(A1; : : : ; Ap; n)! Cj = (jA1j; : : : ; jApj)! jCjFurthermore we de�ne SIZE : LF�-type ! N bySIZE (A) := SIZE (jAj), thus SIZE (A) does not depend onthe annotations ontained in A.Extended version, for WWW only { Deember 31, 2002



Let � be an LF� signature mapping a �nite set of fun-tion identi�ers to LF� �rst-order types, � be an LF� typingontext mapping a �nite set of identi�ers to LF� pure zero-order types, and let n; n0 be positive rationals. An LF� typ-ing judgment �; n `� e:A; n0 then reads \under signature �,in typing ontext � and with n memory resoures available,the LF� term e has type A with n0 unused resoures leftover". In eah of the following typing rules, let furthermoreA;B;C denote arbitrary LF� zero-order types and n; k; p,possibly deorated, denote arbitrary values in Q+ .n � n0�; n `� �:1; n0 (LF�:Const Unit)n � n0 a boolean onstant�; n `� :B; n0 (LF�:Const Bool)x 2 dom(�) n � n0�; n `� x:�(x); n0 (LF�:Var)�(f) = (A1; : : : ; Ap; k) �! (C; k0)n � k n� k + k0 � n0�; x1:A1; : : : ; xp:Ap; n `� f(x1; : : : ; xp):C; n0 (LF�:Fun)�1; n `� e1:A;n0 �2; x:A; n0 `� e2:C; n0�1;�2; n `� let x=e1 in e2:C; n0 (LF�:Let)�; n `� et:A; n0 �; n `� ef :A; n0�; x:B; n `� if x then et else ef :A; n0 (LF�:If)n � n0�; x1:A1; x2:A2; n `� x1 
 x2:A1 
A2; n0 (LF�:Pair)�; x1:A1; x2:A2; n `� e:C; n0�; x:A1 
A2; n `� math x with x1 
 x2 ) e:C; n0(LF�:Pair-Elim)n � kl + n0�; x:A;n `� inl(x):(A; kl) + (B; kr); n0 (LF�:Inl)n � kr + n0�; x:B; n `� inr(x):(A; kl) + (B; kr); n0 (LF�:Inr)�; y:A; n+ kl `� e1:C; n0 �; y:B; n+ kr `� e2:C; n0�; x:(A; kl) + (B; kr); n `� math x with j inl(y)) e1j inr(y)) e2:C; n0(LF�:Sum-Elim)n � n0�; n `� nil:L(A; k) ; n0 (LF�:Nil)n � SIZE (A
 L(A; k)) + k + n0�; xh:A; xt:L(A; k) ; n `� ons(xh; xt):L(A; k) ; n0(LF�:Cons)

�; n `� e1:C; n0�; xh:A; xt:L(A; k) ; n+ SIZE (A
 L(A; k)) + k `� e2:C; n0�; x:L(A; k) ; n `� math x with j nil) e1j ons(xh; xt)) e2:C; n0(LF�:List-Elim)�; n `� e1:C; n0�; xh:A;xt:L(A; k) ; n+ k `� e2:C; n0�; x:L(A; k) ; n `� math0 x with j nil) e1j ons(xh; xt)) e2:C; n0(LF�:List-Elim')�; x:A1; y:A2; n `� e:C; n0�; z:A1 �A2; n `� e[z=x; z=y℄:C; n0 (LF�:Share)where A1 �A2 is de�ned as follows when jA1j = jA2j:1� 1 = 1 B� B = B(A; k1)� (C; k2) =�A� C; k1 + k2�(A1 
 C1)� (A2 
 C2) = (A1 �A2)
 (C1 �C2)(A1 + C1)� (A2 + C2) = A1 �A2 + C1 � C2L(A)� L(C) = L(A� C)Aordingly an LF� program P is a pair, onsisting of asignature � and a olletion of terms ef for eah f 2 dom(�)suh that8f 2 dom(�) :�(f) = (A1; : : : ; Ap; k) �! (C; k0) =)y1:A1; : : : ; yp:Ap; k `� ef :C; k0We observe that the following type rule is admissible:�; n `� e:A; n0 n0 � n0 + k�; n+ k `� e:A; n0 (LF�:Waste)In other words a typing judgment remains valid if we in-rease the minimum freelist size required and/or dereasethe lower bound on the remaining freelist size after the om-putation. Furthermore both values may be inreased pro-portionally, i.e. additional resoures an be handed over.If P is an LF� program, then jP j denotes the underlyingLF program:Lemma 2. �; n LF�`� e:C; n0 =) j�j LF̀j�j e:jCjProof. Trivial, as eah LF typing rule is a weakened formof its orresponding LF� typing rule.
4.1 ExamplesWe revisit the Examples presented in 2.1. Sine the termlanguages of LF and LF� are idential, we just give theproper LF� signatures here. Again, A denotes a �xed pureLF�-type; let a 2 Q+ be �xed (but arbitrary) as well.Example 1.reverse : (L(A; a) ; 0) �! (L(A; a) ; 0)rev aux : (L(A; a) ; L(A; a) ; 0) �! (L(A;a) ; 0)Extended version, for WWW only { Deember 31, 2002



While reverse reverses its input at no additional resoureosts, reverse0 opies its argument so that it an be reused.For a0 = a+ SIZE (A
 L(A)) = a+ SIZE (A) + 1 we obtainthe typingreverse0 : (L(A;a0) ; 0) �! (L(A;a) ; 0)rev aux0 : (L(A;a0) ; L(A; a) ; 0) �! (L(A;a) ; 0)In the expliit ase A = B and a = 0 (hene a0 = 2), wesee that reverse an be omputed without any additionalresoures, while reverse0 onsumes 2n previously unusedells if run on an input list of length n (whih itself alreadyoupies 2n ells, as eah node oupies 2 ells aording toSIZE (B
 L(B; 0)) = 2 as de�ned in setion 2).Example 2. Let again a0 = a+ SIZE (A) + 1.sort : (L(A;a) ; 0) �! (L(A; a) ; 0)ins : (A; L(A; a) ; a0) �! (L(A;a) ; 0)leq : (A
A; 0) �! (B
 (A
A) ; 0)Example 3.lone : (L(B; 2) ; 0) �! (L(B; 0)
 L(B; 0) ; 0)Example 4.tos : (L(B
 B; 0) ; 3) �! (L(B
 B; 0) ; 0)se : (L(B
 B; 0) ; 3) �! �L�B
 B; 32� ; 0�tpo : �L�B
 B; 32� ; 0� �! (L(B
 B; 0) ; 0)The intuition behind the frational annotations will be ex-plained in Setion 7.
5. TRANSLATION TO LFPLIn [8℄ we have introdued a linear funtional language thatan be translated into C without dynami memory alloa-tion, i.e., without using the system alls mallo() and free().This was ahieved by introduing an abstrat type �standing for memory loations big enough to hold any stru-ture node ourring in a partiular program. Elements ofthis abstrat type may be passed around as data, in par-tiular they an arise as input, output, and omponents ofstrutures. Construtors of reursive types take an extraargument of type �, e.g., ons : (�; A;L(A))! L(A). In thetranslation to C the spae pointed to by this extra argumentis used to store the newly reate struture node. Conversely,in a pattern math we gain aess to an element of type �when mathing against a reursive onstrutor suh as ons.We will explain how LFlin� an be used to infer LFPL-typingsfor LFlin-programs.Sine LFPL handles resoures as elements of type � werestrit to integral annotations. For this purpose let LFN;lin�denote the fragment of LFlin� where all annotations are re-strited to nonnegative integers.Furthermore, we temporarily rede�ne SIZE (A) to be 1for all types A. This orresponds to the assumption madein LFPL that all struture nodes are stored in heap portionsof equal size.

Types in LFN;lin� an then be translated to LFPL-types bymapping eah annotation n to an n-fold produt of type�, for instane, the type (A; L(A; 1) ; 2) ! (L(A; 1) ; 0) ismapped to (A; L(A
 �) ;�
 �)! (L(A
 �)).The translation of terms follows the struture of a deriva-tion in LFN;lin� ; we omit the (essentially obvious) details.This is useful sine the resulting C-programs an be ex-euted without overhead suh as freelists, defragmentation,or garbage olletion whih makes them suitable in resoure-restrited environments.
6. LF� AND SPACE-AWARE SEMANTICSIn this setion we will prove a orrespondene between fullLF� and the spae-aware operational semantis from Se-tion 3.We must formalize that a given stak and heap �t a ertaintyping ontext: � ` NULL:1 (Unit)� ` :B (Bool)� ` v:A1 � ` w:A2� ` (v; w):A1 
A2 (Pair)� ` v:A� ` inl(v):A+B (Inl)� ` v:B� ` inr(v):A+B (Inr)� ` NULL:L(A) (List-Nil)� n ` ` �(`):A
 L(A)� ` `:L(A) (List-Node)We extend to ontexts by8xi 2 dom(�): � ` S(xi):�(xi)� ` S:� (Context)Note that if x =2 dom(�) then � ` S:� is equivalent to� ` (S; x:A):�, i.e. unused junk in the stak does not matter.Furthermore we extend to LF�by� ` S:A� , � ` S:jA�jwhere A� is an LF� type and similarly for ontexts.Lemma 3. Let �; � be heaps. If � ` v:A and 8` 2 R(�; v):�(`) = �(`) then � ` v:ANote that the intended equality is strong as usual through-out this work, i.e. if �(`) is unde�ned then �(`) must beunde�ned as well.Proof. The Proof follows by rule-indution on thederivation of � ` v:A:Unit Obviously � ` NULL:1, sine the statement holds re-gardless of the heap on�guration.The proof for the rules Bool and List-Nil follow sim-ilarly.Extended version, for WWW only { Deember 31, 2002



Pair By the indution hypothesis we have � ` v:A1 and� ` w:A2, therefore � ` (v;w):A1 
 A2 by Pair asrequired.Inl Follows immediately from the indution hypothesis ap-plied to � ` v:A. Sine R(�; inl(v)) = R(�; v) by De�-nition, R(�; inl(v)) = R(�; inl(v)) follows by the indu-tion hypothesis as well.The proof for the rule Inr follows similarly.List-Node Let �̂ := � n ` and �̂ := � n `. By de�nition�̂ ` �(`):A
 L(A). Thus appliation of the indutionhypothesis yields �̂ ` �(`):A
 L(A) and therefore �̂ `�(`):A 
 L(A) and, �nally, � ` `:L(A) by List-Nodeagain.Lemma 4. If � `� e:A and � ` S:��FV(e) and S; � `e;bs v; �0 then �0 ` v:A.Proof. By rule-indution on the operational semantis:;bs:Var From � ` x:A and � ` S:�� fxg follows � `S(x):A. By de�nition S; � ` x ;bs S(x); �, henethe laim is true.;bs:Fun By the premise of ;bs:Fun we know[y1 7!S(x1); : : : ; yn 7!S(xn)℄; � ` ef ;bs v; �0 andalso y1:A1; : : : ; yn:An ` ef :A by the property of validLF programs. From � ` S:��FV(ef ) we dedue � `[y1 7!S(x1); : : : ; yn 7!S(xn)℄:fy1:A1; : : : ; yn:Ang�FV(ef),hene the indution hypothesis diretly yields theresult.;bs:Let From the premise of ;bs:Let,��R(�; S�FV(e2)) = �0�R(�; S�FV(e2)), we de-due by Lemma 3 that �0 ` S:�2�FV(e2).By the indution hypothesis we obtain �0 ` v1:A,thene �0 ` S[x 7! v1℄:(�2; x:A)�FV(e2). The de-sired result is then obtained from the appliation ofthe indution hypothesis on the evaluation of e2.;bs:Cons By the de�nition of rule LF:Cons we have� = (�0; xh:A; xt:L(A)) hene by our assumptions� ` S(xh):A and � ` S(xt):L(A). By the premises of;bs:Cons then follows �[` 7! (S(xh); S(xt))℄ ` `:L(A)as required.;bs:Math-Cons From � ` S:��FV(e), the premises of;bs:Math-Cons, and Lemma 3 we dedue � n ` `S[xh 7! vh℄[xt 7! vt℄:(�; xh:A; xt:L(A)) hene the re-sult follows diretly from the indution hypothesis.We de�ne � : heap� Val� LF-type �! Q+ by�(�; v; 1) = �(�; ;B) = 0�(�; (v1; v2); A
B) = �(�; v1; A) + �(�; v2; B)�(�; inl(v); (A; k) + (B; l)) = k +�(�; v; A)�(�; inr(v); (A; k) + (B; l)) = l+�(�; v; B)�(�;NULL; L(A; k)) = 0�(�; `; L(A; k)) = k +�(�; �(`); A
 L(A; k))and furthermore�(�; S;�) := Xx2dom����; S(x);�(x)�

The amount of additional heap spae needed to evalu-ate a funtion f : (A1; : : : ; Ap; k) ! (B; k0) depends onthe size of the input to f. If � ` S:fx1:A1; : : : ; xp:Apg,the amount of additional heap spae required to omputef is k + �(�; S; fx1:A1; : : : ; xk:Akg). The remaining un-used heap spae is k0 + �(�0; v; B), provided that S; � `f(x1; : : : ; xk);bs v; �0.In partiular, if f : (L(B; a) ; b) ! (L(B; ) ; d) then evalu-ating f(w) takes at most ajwj + b extra spae to evaluate,where jwj is the length of w. If we evaluate f(w) given afreelist of size ajwj + b + k (where k � 0) then after theevaluation the freelist will have size at least jf(w)j+ d+ k.Lemma 5. If ��R(�; v) = �0�R(�; v) then �(�; v; A) =�(�0; v; A).Proof. By indution on the de�nition of �.Lemma 6. For all �; S;A1; A2, it holds that �(�; v; A1 �A2) = �(�; v; A1)+�(�; v; A2) provided that �(�; v; A1�A2)is de�ned.Proof. Follows diretly from the de�nitions.Theorem 1. Let P be a valid LF� program with signa-ture �. For all LF� terms e suh that �; n `� e:A; n0 andwhenever S; � ` e;bs v; �0 and � ` S : (��FV(e)) then forall q 2 Q+ and for all m 2 N suh that m � n+�(�; S;�)+qthere exists m0 2 N satisfying m0 � n0+�(�0; v; A)+ q suhthat m;S; � ` e;bs� v; �0;m0.Proof. The proof is by indution on the lengths of thederivations of S; � ` e;bs v; �0 and �; n `� e:A; n0 orderedlexiographially with the derivation of the evaluation tak-ing priority over the typing derivation.LF�:Share Assume the last step in the derivation of �; n `�e:A; n0 was made by the use of LF�:Share. Hene � =�0; z:A1�A2, e = e0[xnz; ynz℄ and �0; x:A1; y:A2; n `�e0:A;n0.By � ` S : (��FV(e)) we have � ` S(z) : A1�A2. Wemay assume that z 2 FV(e) for otherwise the applia-tion of LF�:Share has no e�et and ould be omitted.Let S0 := (S n z)[x7!S(z); y 7!S(z)℄. It is then obviousthat � ` S0 : �(�0; x:A1; y:A2)�FV(e0)�.Furthermore if S; � ` e ;bs v; �0 then S0; � ` e0 ;bsv; �0 by a derivation of the same length (and struture),sine both new variables refer to the same value as theold variable before. The same holds for the annotatedstatements.By Lemma 6 we have n + �(�; S;�) + q � n +�(�; S0; (�0; x:A1; y:A2)) + q hene the indution hy-pothesis yields the desired m0.;bs:Var The rule ;bs� :Var requires m = m0, hene itsuÆes to show that n + �(�; S;�) + q � n0 +�(�; S(x);�(x)) + q, whih follows immediately asn � n0 by the premise of LF�:Var and �(�; S;�) ��(�; S(x);�(x)) by de�nition, sine x 2 dom� followsagain by the premise of LF�:Var.;bs:Fun Let e = f(y1; : : : ; yp). For the sake of simpli-ity we ignore the renaming of the funtion alls argu-ments into the funtions symboli arguments namesand assume those names to be equal. Hene let D :=Extended version, for WWW only { Deember 31, 2002



[y1 7!v1; : : : ; yp 7!vp℄ � S aording to the premises of;bs:Fun.Assume �(f) = (A1; : : : ; Ap; k)! (C; k0), hene � :=y1:A1; : : : ; yp:Ap � � and n � k as well as n�k+k0 �n0 by the premises of LF�:Fun.Sine P is a valid LF� program we have �; k `�ef:C; k0. Obviously we also have � ` D : �. Form � n+�(�; S;�) + q � k+�(�;D;�)+ (n� k+ q)we apply the indution hypothesis to the premise of;bs:Fun and obtain m;D; � ` ef ;bs� v; �0; m0 withm0 � k0 + �(�0; v; C) + (n � k + q) = (n � k + k0) +�(�0; v; C) + q � n0 +�(�0; v; C) + q as required.;bs:Let Let q0 := �(�; S;�2) + q and m � n +�(�; S; (�1;�2)) + q = n + �(�; S;�1) + q0 hene ap-plying the indution hypothesis to S; � ` e1 ;bs v0; �0yields m0 � n0 +�(�0; v0; A) + q0.Let S0 := S�FV(e2) = dom�2. By ��R(�; S0) =�0�R(�; S0) aording to the premises of ;bs:Let,we obtain �(�; S;�2) = �(�0; S;�2) by Lemma 5.Thus m0 � n0 + �(�0; v0; A) + �(�0; S;�2) + q =n0 + �(�0; S[x7!v0℄;�2; x:A) + q. Thene the indu-tion hypothesis applied to S[x7!v0℄; �0 ` e2 ;bs v; �0yields m0 � n0 +�(�0; v; C) + q as required.The indution hypothesis was appliable in both asesby the premises of LF�:Let and in the latter ase addi-tionally by �0 ` S[x7!v0℄:f�2; x:Ag whih follows viaLemma 4 from �0 ` [x7!v0℄:A and via Lemma 3 from� ` S;�2.;bs:Cons Aording to ;bs� :Cons we have m = m0 +SIZE (v), where v = �S(xh); S(xt)�, hene we mustshow that n + �(�; S;�) + q � SIZE (v) � n0 +�(�[ 7̀!v℄; `;L(A; k)) + q holds.By the premise of LF�:Cons we dedue n�SIZE (v) �n0 + k + SIZE (A
 L(A; k))� SIZE (v) = n0 + k wherethe equality follows sine fxh:A; xt:L(A; k)g � � and� ` S:�.Again by fxh:A; xt:L(A; k)g � � and the premisesof ;bs:Cons we observe �(�; S;�) � �(�; v; A 
L(A; k)) = �(�[ 7̀!v℄; `; L(A; k)) � k whih ompletesthe laim (as k anels out).;bs:Math-Cons Let S0 := S[xh 7!vh℄[xt 7!vt℄ and �0 :=� nx[fxh:A;xt:L(A; k)g. From � ` S : ��FV(e) thenfollows � n ` ` S0 : �0�FV(e2) as ` 62 R(�; S0�FV(e2))aording to a premise of ;bs:Math-Cons.The appliation of the indution hypothesis tom0; S0; � n ` ` e2 ;bs� v; �0; m0 then yields thedesired m0, provided that n + �(�; S;�) + q �n + SIZE (A
 L(A; k)) + k + �(� n `; S0;�0) + q �SIZE (�(`)) = n + k + �(� n `; S0;�0) + q sine m =m0�SIZE (�(`)) and SIZE (A
 L(A; k)) = SIZE (�(`))by the premise of ;bs� :Math-Cons.By the premises of;bs:Math-Cons we have S(x) =` and �(`) = (vh; vt) = �S0(xh); S0(xt)�. Hene�(�; S;�) = �(�; `; x) + �(�; S n x;� n x) = k +�(�; �S0(xh); S0(xt)�; A
L(A; k))+�(�; S nx;�nx) =k+�(� n `; �S0(xh); S0(xt)�; A
L(A; k))+�(� n `; S nx;� n x) = k + �(� n `; S0;�0) where the penultimateequation follows again by ` 62 R(�; S0�FV(e2)).

Corollary 1. If P is a valid LF� program ontaining afuntion symbolf : �L(B; n1) ; : : : ; L(B; nk) ;m� �! �L�B; n0� ;m0�then the funtion all f(l1; : : : ; lk) evaluates properly to a listl0, provided that there are at least m+Pki=1 nijlij free mem-ory ells available, where jlij denotes the number of nodes oflist li. After the evaluation there are at least m0 + n0jl0j freeells available.
7. INFERENCE OF ANNOTATIONSReall that a linear program (LP) is a pair (V;C) where Vis a set of variables and C is a set of inequalities of the forma1x1 + : : : anxn � b where the xi are variables from V andthe ai and b are rational numbers.In addition, one may speify an objetive funtion whihis a term of the form 1x1 + � � � + nxn where the xi arefrom V and the i are rational numbers. In this ase, onede�nes an optimal solution to be a solution that minimizesthe value of the objetive funtion.Our aim in this setion is the following. Given an LFprogram P we want to disover whether there exists an LF�program P 0 suh that jP 0j = P . To this end, we notiethat the struture of any LF�-derivation is determined byits underlying LF-derivation.This means that if we are given an LF-derivation of someprogram P all that needs to be done in order to obtain aorresponding LF�-derivation is to �nd the numerial val-ues arising in type annotations in suh a way that all thenumerial side onditions are satis�ed.To disover these annotations, we assign to a given LF-program P (assumed to be equipped with a typing deriva-tion) an LP L(P ) with the property that solutions to L(P )are in 1-1 orrespondene with LF� programs P 0 suh thatjP 0j = P . The LP L(P ) is the pair (V;C) where V on-tains one spei� variable for every ourrene of a numeri-al value in a possible LF�typing derivation.The set C ollets all the inequalities arising as side ondi-tions in suh a derivation. This inludes in partiular equal-ity onstraints that are impliit in that types are sometimesrequired to be equal, e.g. in rule LF�:Var. Note that anequality onstraint may be enoded as a pair of inequalityonstraints. Furthermore we add the onstraints that allourring variables are nonnegative, as all LF�-type anno-tations are nonnegative.As an illustrative example, we onsider a program P thatontains a single funtion symbol rev aux : (L(A) ; L(A))!L(A) with the de�ning expression as given in Example 1.We have the LF typing derivation shown in Figure 1.In order to form L(P ) we onsider an \indeterminate"LF�-derivation as in Figure 2. It is lear that any LF�-derivation mathing the LF-derivation of P arises as an in-stantiation of the derivation in Figure 2 satisfying the on-straints given in Figure 3. Of ourse, we an readily elimi-nate all simple equality onstraints given in Figure 3 leaving = n2 � SIZE (A)� 1� b1 n3 � n2 � SIZE (A) + 1 + b2 + n3 n3 � + d � d � dExtended version, for WWW only { Deember 31, 2002



LF:Vary:L(A) ` y : L(A) LF:Consy:L(A) ; h:A ` ons(h; y) : L(A) �(rev aux) = (L(A) ; L(A))! L(A) LF:Funt:L(A) ; r:L(A) ` rev aux(t; r) : L(A) LF:Lety:L(A) ; h:A; t:L(A) ` let r=ons(h; y) in rev aux(t; r) : L(A) LF:List-Elimx:L(A) ; y:L(A) ` math x with jnil) y j ons(h; t)) let r=ons(h; y) in rev aux(t; r) : L(A)Figure 1: Derivation of P in LFLF�:Vary:L(A; a1) ; n1 `y : L(A; a2) ;m1 LF�:Consy:L(A; a3) ; h:A; n2 `ons(h; y) : L(A; a4) ;m2 LF�:Funt:L(A; a5) ; r:L(A;a6) ; n3 `rev aux(t; r) : L(A; a7) ;m3 LF�:Lety:L(A; a8) ; h:A; t:L(A; a9) ; n4 `let r=ons(h; y) in rev aux(t; r) : L(A; a10) ; m4 LF�:List-Elimx:L(A; a11) ; y:L(A; a12) ; n5 `math x with jnil) y j ons(h; t)) let r=ons(h; y) in rev aux(t; r) : L(A; a13) ;m5where rev aux : (L(A; b1) ; L(A; b2) ; )! (L(A; b3) ; d). As an indeterminated LF�-type, A may ontain further parameters.Figure 2: Indeterminate derivation of P in LF�.a1 = a2; n1 � m1 LF�:Vara3 = a4; n2 � SIZE (A) + 1 + a3 +m2 LF�:Consa5 = b1; a6 = b2; a7 = b3; n3 � ; n3 � + d � m3 LF�:Funa8 = a3; a9 = a5; a4 = a6; a10 = a7;n4 = n2;m2 = n3;m3 = m4 LF�:Leta12 = a1; a12 = a8; a11 = a9; a13 = a2; a13 = a10;n5 = n1;m5 = m1; n5 = n4 � SIZE (A)� 1� a11;m5 = m4 LF�:List-Elim = n5; d = m5; b1 = a11; b2 = a12; b3 = a13 Valid programa1; : : : ; a13; b1; : : : ; b3; ; d; n1; : : : ; n5;m1; : : :m5 � 0 NonnegativityThere may be further trivial onstraints arising from the indeterminates in A.Figure 3: Constraints of LF�-derivation in Figure 2plus the nonnegativity onstraints. Sine we are only inter-ested in the values of variables ourring within �rst-ordertypes, we eliminate n2; n3 here in this example for a betterunderstanding of the set of solutions and obtain: � d � 0 b1 � b2 = b3 � 0An optimal solution with respet to the sum of all variablesis then given by  = d = b1 = b2 = b3 = 0. Hene thetyping rev aux : (L(A; 0) ; L(A; 0) ; 0) ! (L(A; 0) ; 0) an bederived in LF�, whih signi�es that rev aux an be evaluatedwithout any extra heap spae.These equations may also be regarded as the \most gen-eral LF�-type" of rev aux, e.g. by b1 � b2 = b3 we eas-ily see that rev aux may also operate on lists ontainingan arbitrary amount of extra heap spae, hene rev aux :(L(A; 7) ; L(A; 7) ; 0) ! (L(A; 7) ; 0) ould be derived if ne-essary by using rev aux in a more ompliated program on-text.The program from Example 4 portrays the usefulness ofrational solutions. For the sake of simpliity we unify somevariables whih are obviously equated. We therefore assumethe following enrihed indeterminate signature:tos : (L(B
 B; l1) ; x1)! (L(B
 B; l3) ; x3)se : (L(B
 B; l1) ; x1)! (L(B
 B; l2) ; x2)tpo : (L(B
 B; l2) ; x2)! (L(B
 B; l3) ; x3)

After simpli�ation and elimination of all variables notourring within the signature we are left with the followinginequalities:x1 � x2x1 � �(3 + l1) + (3 + l2) + x2x1 � �2(3 + l1) + 2(3 + l2) + x2x1 � �3(3 + l1) + 2(3 + l2) + x1 � x2 + x2x2 � x3x2 � �(3 + l2) + (3 + l3) + x3x2 � �2(3 + l2) + 3(3 + l3) + x2 � x3 + x3plus nonnegativity onstraints. A sensible solution to theseinequalities istos : (L(B
 B; 0) ; 3)! (L(B
 B; 0) ; 0)se : (L(B
 B; 0) ; 3)! (L�B
 B; 32� ; 0)tpo : (L�B
 B; 32� ; 0)! (L(B
 B; 0) ; 0)This solution an be found by an automati solver for linearonstraints if the objetive funtion punishes annotationsontained deeply within nested lists more than those our-ring on toplevel, whih is usually a sensible thing to do.However, hoosing the proper objetive funtion might de-pend on partiular irumstanes and is disussed in moredetail in [11℄.Extended version, for WWW only { Deember 31, 2002



Suppose we want to apply tos to the list l stored at ` in theheap � having length jlj = n. This list oupies 3n heap ells(aording to the de�nition of SIZE (�) in setion 2, we need3 ells per node: a pair of booleans and one pointer; alsosee rule ;�:Cons). Aording to the type of tos, 0n + 3extra heap ells are required for evaluation (the additionallyreserved heap spae for l, whih is �(�; `; L(B
 B; 0)) = 0plus 3 expliitly reserved ells). This amounts to 3n+3 heapells in total.Now we �rst apply se to l and all the resulting heap�0 Sine se destroys every third element of the list,jse(l)j = � 23n�. Calulating the memory resoures again,now aording to the result type of se yields: 3(� 23n�) +�(�0; `; L�B
 B; 23 �) = 3(� 23n�) + 32 � 23n� � 3n + 3. Thememory ells freed by deleting list nodes of the input listallow an inrease of additionally reserved heap spae for theoutput list: Eah deleted node frees three ells; as there areat least 2 remaining nodes per deleted node, the additionalreserved heap spae per node is 32 .The inequality shows a possible memory leak of at mostthree ells in the ase that l has length divisible by three.This is due to the fat that se needs 3 additional ells toensure the type L�B
 B; 32 � in the ase that l has lengthn = 3i+2 for some i 2 N. If the length is divisible by three,these extra resoures are not needed, thus wasted.We notie that the toplevel funtion tos also exhibits a\resoure leak" sine the three additional units required toall never show up in the result regardless of the length ofthe input. We remark that \deforestation", i.e., eliminationof the intermediate result of the all to se ould overomethis. Whether this is an instane of a general pattern weannot say at this point.While it should be lear that frational annotations de-sribe the orret asymptoti behaviour one may wonderwhether there might be problems with onrete inputs sine,for example, alloating 32 ells is not possible.Consider a list l of length two, thus oupying 6 ells inview of SIZE (B
 B
 L(�)) = 3. Applying se to l returnsan idential version of l and beause of the annotation 32signals the availability of 3 = 2 � 32 ells thus returning thethree extra ells requested by se in this ase.But now suppose that we math against this list; the ruleLF�:List-Elim then indiates the availability of 32 + 3 ellsin the ons-branh. Of these, we an only use 4 immediatelyfor storing operations on the heap. However, if we mathagain against the remaining part we gain aess to the entire9 = 6 + 3 ells. Reall that SIZE (A) 2 N.
8. INFERENCE FOR LFN;lin�In this setion we onsider the problem of inferring deriva-tions in the fragment LFN;lin� from Setion 5 whih removesthe sharing rule and restrits resoure annotations to natu-ral numbers. Clearly, suh derivations for a given programP are in 1-1 orrespondene to integral solutions of L(P ).As is well-known �nding integral solutions of arbitraryLPs, let alone optimal ones, is an NP-hard problem.However, we show that in a ertain simpli�ed subase wean eÆiently �nd integral solutions to L(P ) that are opti-mal with respet to any objetive funtion  whose oeÆ-ients are all nonnegative. As we want to minimize resoureonsumption, this is a sensible assumption on the objetivefuntion in the simpli�ed subase. Moreover, we show that

in the general ase �nding integral solutions is again feasiblewhereas �nding optimal solutions is NP-hard.
8.1 Inferring toplevel annotationsSuppose that we are only interested in solutions where allvariables that our within zero-order (sub-)types are zeroas well as the variables ourring to the right hand side of�rst-order types.In partiular, we are looking at signatures of the form(A1; : : : ; A`; n)! (B; 0) where the Ai and B are LF�-typeswith all annotations equal to zero.Inspetion of the typing rules then shows that after simpli-�ation of equality onstraints the remaining system onsistsentirely of onstraints of the formx0 � a1x1 + a2x2 + � � �+ a`x` + bwhere the xi are not neessarily distint variables, the ai arenonnegative integer oeÆients, and b is an arbitrary inte-ger onstant. The only typing rules whih might produeinequalities not of this form are LF�:Fun, LF�:Sum-Elim,LF�:List-Elim, but we know that here the problemati neg-ative variables (i.e. those ourring positively on the lefthand side of the � or negatively on the right hand side) areall zero by the assumption made in the simpli�ed ase. Weall suh a onstraint almost positive.Theorem 2. Let (fx1; : : : ; xdg; C) be an LP where Consists entirely of almost positive onstraints. Let1; : : : ; d 2 N. The optimal integral solution of this LPwith respet to the objetive funtion 1x1 + : : : dxd an befound in polynomial time.To prove this one shows that the optimal rational solutionis neessarily integral.Proof. Let x̂ 2 Qd be the optimal (not neessarily inte-gral) solution of the given LP.By the property that all onstraints are almost positivewe laim that already x̂ 2 Zd holds. For v in Q de�nebv = maxf2Z j  � vg. Let xi � a1x1 + � � �+ adxd + b beone of the onstraints. Now,bx̂i � ba1x̂1 + � � �+ adx̂d + b � a1 bx̂1+ � � �+ ad bx̂d+ bThe �rst inequality follows sine x̂ is a valid solution,whereas the seond inequality follows from the fat that theai are positive and the de�nition of trunation.Sine all the oeÆients of the objetive funtion are pos-itive, we dedue x̂ = bx̂ sine otherwise bx̂ would be abetter solution than x̂.For an example we onsider the LP arising from Exam-ple 2. In the enrihed signature there are only three variablesremaining in the simpli�ed ase:sort : (L(A; 0) ; xs)! (L(A; 0) ; 0)ins : (A; L(A; 0) ; xi)! (L(A; 0) ; 0)leq : (A
A;xl)! (B
 (A
A) ; 0)We do not give a onrete implementation of leq here andjust assume that a all to leq does not require any resoures.Therefore we immediately set xl := 0 throughout this exam-ple. The atual value of SIZE (A) is unimportant.Extended version, for WWW only { Deember 31, 2002



Now we derive the LP as usual, inserting 0 whenever a newnumerial value is needed within an LF� zero-order type orin the right-hand side of a �rst-order type.After simplifying we are left with four almost positive on-straints: xi � SIZE (A) + 1 xs � 0xi � 2xi � (SIZE (A) + 1) xi � 0hene xs = 0 and xi = SIZE (A) + 1 would be the optimalsolution for any objetive funtion 1xs + 2xi with 1; 2 �0. Many more programs fall under the simpli�ed subase.This inludes the quiksort example in Setion 9 and all theLFPL-examples ontained in [8℄.We remark that setting the annotations ontained in typesand in result positions to �xed values other than zero alsoleads to almost positive LPs.
8.2 Efficient solutions for the general caseLet us all an LP almost onial if all inequalities are of oneof the following two forms:a1x1 + � � �+ a`x` � 0 x � bwhere ai 2 Z and b 2 N.In this ase, the set of rational solutions is losed undermultipliation with salars � � 1. Therefore, we an obtainan integer solution from a rational solution by multiplyingwith the least ommon denominator.We now show that for any LFlin-program P the LP L(P )an be transformed into an almost onial one by performinga substitution of variables. Solving the resulting system andsubstituting bak then yields a solution of L(P ).We observe that the only plaes where onstants di�erentfrom zero are introdued into onstraints is via SIZE (�) inthe rules LF�:Cons, LF�:List-Elim.The nonzero onstants of the form SIZE (A) always ourtogether with the variable measuring the resoure ontent ofthe orresponding list type. More preisely, for eah variablek arising from an (indeterminate) type L(A; k) we introduethe substitution ~k = k + SIZE (A
 L(A; k)). Intuitively,~k measures the total resoure requirement assoiated witha partiular node of the data struture in question. Welaim that after performing these substitutions the resultingsystem is almost onial.All the abovementioned inhomogeneous onstraints aris-ing from rules LF�:Cons, LF�:Tree-Elim, beome homoge-neous after the substitution. The nonnegativity onstraintsk � 0 beome ~k � SIZE (A) whih �ts the seond kind ofinequalities in an almost onial LP.Finally, we must onsider equality onstraints arising frommathing LF�-types. In view of the existing LF-derivationwe know that only those LF�-types with equal underly-ing LF-type will ever be mathed against eah other. ButSIZE (A) and hene the substitutions we perform dependonly on underlying LF-types. Thus, an equation of the fromk1 = k2 beomes ~k1 = ~k2 after the substitution. Of ourse,this is equivalent to ~k1 � ~k2 � 0, ~k2 � ~k1 � 0.We have thus shown the following:Theorem 3. Let P be a valid LFlin-program then thereexists an almost onial ILP (V;C) and a nonnegative in-teger vetor  suh that the solution set of L(P ) is equal tofx�  j x solves Cg.

We remark that this result does not hold in the presene ofrules LF�:Share and LF�:List-Elim'.Corollary 2. There exists a polynomial time algorithmthat given a valid LFlin-program P determines a solution ofL(P ) if one exists and reports failure otherwise.Reonsidering Example 4 with this method yields:tos : (L(B
 B; 3) ; 6)! (L(B
 B; 3) ; 0)se : (L(B
 B; 3) ; 6)! (L(B
 B; 6) ; 0)tpo : (L(B
 B; 6) ; 0)! (L(B
 B; 3) ; 0)We note that this integral solution requires additional re-soures three times the length of the input list, whih are�nally left over after omputation, whereas the frationalsolution shows that these are unneessary as an also beseen by merging the de�nitions of tpo and se into spei�optimized linear funtional ode for tos.Although there are other integral solutions for this ex-ample, the presented solution is (under ertain aspets) thebest integral solution. However we annot guarantee this.While �nding a solution to an almost onial LP is feasible,�nding an optimal solution is not:Theorem 4. For every instane � of 3SAT with m vari-ables we an �nd an almost onial LP and an objetivefuntion so that a solution of objetive value � n exists i�� is satis�able.Proof. Let � = (u11 _ u12 _ u13) ^ � � � ^ (un1 _ un2 _un3) with eah uij representing a literal and assume that �ontains m distint boolean variables vk.Construt the orresponding ILP as follows:1. First we introdue the variable z and the onstraintz � 1.2. For eah of the m distint variables vk in � we in-trodue the integer variables xk and �xk and the on-straints xk � 0, �xk � 0 and xk + �xk � z � 0.3. For eah lause ui1 _ ui2 _ ui3 we introduethe onstraint w1 + w2 + w3 � z � 0 wherewj := (xk j uij = vk�xk j uij = :vk .The onstruted LP is obviously almost positive. As theobjetive funtion we hoose Pmk=1 xk + �xk. Obviously thebest value of the objetive funtion we may expet is m,sine from the onstraints in 1 and 2 follows xk + �xk � 1.From the onstraints onstruted by 3 we dedue that anyoptimal solution (ẑ; x̂) with valuem gives rise to a suessfulvaluation � of �:�(vk) := (true j x̂k = 1 ^�̂xk = 0false j x̂k = 0 ^�̂xk = 1and vie versa.Moreover, it was shown in [11℄ that suh ILPs may indeedarise from inferene problems. Hene we have:Corollary 3. Let P be a valid LF program. Finding anoptimal solution of I(P ) with respet to a given, arbitraryobjetive funtion is an NP-hard task.Extended version, for WWW only { Deember 31, 2002



9. EXAMPLESIn this setion we ollet several illustrative examples.Example 5. We demonstrate that the Quiksort algo-rithm falls within the simpli�ed subase presented in Se-tion 8.1: qsort : (L(A; 0) ; 0) �! L(A; 0)split by : (A; L(A; 0) ; 0) �! L(A; 0)
 L(A; 0)in�x � : (A
A; 0)! (B; 0)qsort(l) = math l withj nil) nilj ons(h; t))math split by(h; t) with u
 l)qsort(u)++ ons(h; nil)++ qsort(l)split by(p; l) = math l withj nil) nil
 nilj ons(h; t))math split by(p; t) with u
 l )if h � p then ons(h; u)
 lelse u
 ons(h; l)Please note that the standard funtional implementation ofquiksort, using a �ltering funtion twie with mutually ex-lusive �lter onditions instead of split by, has no validLF�-derivation. Calling the �lter twie requires the dupli-ation of the input list, while the type information is notenough to dedue that the �lter uts down eah opy so thatthe sum of the lengths of eah list is equal to the originallist.The sharing of heap-alloated data strutures may sim-ulate a dupliation in some situations, but this of ourserestrits the use to read-only aess (exept for the last a-ess) in order to prevent malignant sharing.The following two examples show a sensible use of sharingand hene rely on rule LF�:Share; their evaluation exhibitsno malignant sharing on all possible inputs so that Theo-rem 1 applies.Example 6. For alulating the length of a list it is on-venient to assume a type representing a �nite part of thenatural numbers and the presene of the usual arithmetifuntions, e.g. N := B
32.length : (L(A; 0) ; 0)! (N; 0)length(l) = math0 l withj nil) 0j ons(h; t)) 1 + length(t)Example 7. While the length of a list ould still be om-puted in LFlin� without destroying the list (length might im-mediately rebuild the input list and return it together withthe value for the length) at the ost of inonvenient pro-gramming, the following example exhibits proper sharing ofheap-alloated data strutures.This example uses a type T(A) of binary trees whoseinternal nodes are labelled with A; leaves are unlabelledand represented by NULL. Its annotated version is T(A; k).We have �(�;NULL;T(A; k)) = 0 and �(�; `;T(A; k)) =k +�(�; �(`); A
 T(A; k)
 T(A; k)). Thus, the amount of

resoure assoiated with suh a tree is k times the numberof its internal nodes.pathlist : (T(A; 1) ; 2)! (L(L(A; 0) ; 0) ; 0)patha : (T(A; 1) ; L(A; 0) ; 2)! (L(L(A; 0) ; 0) ; 0)in�x++ : (L(C; q) ; L(C; q) ; 0)! (L(C; q) ; 0)As we referred to ++ a few times, we present here a generiversion. For this example it suÆes to set C = L(A; 0) andq := 0.pathlist(t) = patha(t;nil)patha(t; ) = math t withj leaf ) ons(; nil)jnode(a; l; r)) let x=ons(a; ) inpatha�l; x�++ patha�r; x�++(l; r) = math l withjnil) rj ons(h; t)) ons(h; t++ r)The funtion pathlist turns a tree into a list of lists oftype A. The sublists ontain the labels of the internal nodesalong the path from eah leaf to the root.The nodes of the sublists (one for eah leaf) are aliasedamong eah other, thereby mimi the exat struture of theformer tree within the heap, saving an exponential amountof spae. However, this struture should only be used forread-only purposes, as destroying any of the element listsleads to malignant sharing.
10. RELATED WORKApproahes based on abstrat interpretation and symbolievaluation [7, 13, 4, 20, 5, 6℄ go in the diretion of the naiveapproah mentioned in the Introdution. The struture ofthe inferred resoure bound mathes the struture of theprogram. Where the program ontains a while loop or a re-ursion the bounding funtion will do so as well. This is notmeant to diminish the value of those works: To begin theabstrat interpretation removes useless omputation so thatomputing the bound � will in general be easier than run-ning f itself. This an greatly simplify pro�ling and testing.Furthermore, in many ases the reurrenes reminisent ofiteration onstruts in the original ode an be solved usingvarious methods from omputer algebra.What distinguishes our approah from these is that theresulting linear bounds one established are trivial to evalu-ate for onrete input lengths, that they are independentlyveri�able and that the algorithm for their intention is prov-ably suessful and eÆient in a well-delineated subset ofprograms whih omprises most textbook examples of fun-tional programming suh as reversal, quiksort, insertionsort, heap sort, Hu�man odes, tree traversal, et. Indeed,Unnikrishnan et al. [20℄ report performane problems withmedium-sized inputs and reommend to �t an algebrai ex-pression into a value table obtained from small inputs. Thisis aeptable for pro�ling purposes but ertainly not for re-soure erti�ation.In other works like [3℄ the user must provide a onjeturedresoure bound. The formalism an be used to validateExtended version, for WWW only { Deember 31, 2002



it but even for the validation user interation is required.Moreover, this work only aounts for exeution time notheap spae.Another piee of well-known related work are Hughes andPareto's sized types [10℄. This system allows one to ertifyupper bounds on the number of onstrutor symbols in in-dutive data types. For example List k A is the type of Listsof type A of length at most k, and aordingly \append" hasthe type List k1 A! List (k2 +1) A! List (k1 + k2) A. Aomparison to the type of the append funtion ++ from Ex-ample 7 reveals the di�erent use of the annotations: Whilethe annotation of sized lists yields upper bounds on thelength, our annotation is a multipliative onstant whihdoes not restrit the length of lists of this type. The ap-proahes are thus quite di�erent tehnially.Nevertheless, sized types an also be used to infer spaebounds. The transition from size to spae is made via region-based memory management [19℄ whih however, imposes un-natural restritions due to the fat that a given data stru-ture, e.g. a list, must reside entirely in one region. Thisprevents the analysis of omputations in whih lifetimes ofdata strutures overlap, e.g. in the insertion sort algorithmaording to x5.7 of [10℄. The authors speulate on a possi-ble solution based on region resetting and liveness inferene,but this is not worked out in [10℄ nor in the later [16℄. Weemphasize that proper dynami memory alloation is notmodelled in [10℄. This is aeptable in view of the intendedappliation of sized types to embedded programming, butnot|in our opinion|in a general funtional programmingontext.Another possible advantage of inferring spae bounds di-retly, as we do, ould lie in improved eÆieny: Merelyheking sized type requires Presburger Arithmeti (om-plete for doubly exponential time) ompared to the poly-nomial time LP that we use. In this regard it would ofourse be interesting to know the exat omplexity of sizedtype heking; more mundanely, whether the full strengthof Presburger Arithmeti is really needed for this problem.The feasibility of inferene as opposed to heking is leftunanswered in [16, 10℄.Unlike [10℄ and [5℄ we do not analyse stak size in thispaper. We think that the linear bounds on stak size areoften not adequate sine typial algorithms an either beoptimised using tail reursion to use onstant stak or use astak of logarithmi size, e.g. divide-and-onquer methods.Furthermore, our system naturally enompasses trees,lists of trees, et., whereas sized types seem to work pri-marily for linear data strutures. While trees appear in theformal presentation in [16℄ none of the examples uses them;not even the type of the onstrutor for trees appears ex-pliitly.On the other hand, [16℄ ontains a detailed and interestingaount of in�nite lists (streams). An exploration of streamsin our framework must be left to further researh.
11. CONCLUSIONSWe have presented an eÆient and automati analysis ofheap usage of �rst-order funtional programs. While we�nd that our analysis is surprisingly versatile and auratethere are a number of ways in whih it an be improved.Our analysis sometimes gives too modest assumptionsabout the memory available after exeution of a funtion.A typial example is flatten : L(L(A))! L(A) assumed to

be the natural implementation of attening on lists of lists.Calling flatten(w) returns jwj heap spae. However, oursystem assigns for example the type L(L(A; 0) ; 0)! L(A; 0)hene not notifying the net resoure-gain.To �x this partiular ase it is tempting to introdue somekind of dependent typing allowing one to refer to the size orlength of the input in the ost term of the result position.However, developing suh a system whilst maintaining guar-antees on eÆient solvability is a deliate matter and mustbe left for future researh.As it stands, the system is sometimes insuÆiently poly-morphi. Namely, it an happen that two usages of analready de�ned funtion require two di�erent annotations.Even if both these annotations are ompatible with the de�-nition of f only one of them an atually be assigned in LF�.Consider, for instane, the identity funtion f : L(B) !L(B) de�ned by f(x) = x. In LF� we must assign a parti-ular type, say L(B; 5) ; 3 ! L(B; 5) ; 3. In this ase, we arenot able to apply f to an argument of type L(B; 0).To address this problem within the framework of the givensystem we an split a program into bloks of mutually de-pendent funtions and perform the analysis separately foreah of the bloks of de�nition. When using a funtion foutside its blok of de�nition we an onsider the entire LPof funtion f's de�nition rather than a partiular solution.This approah an be seen as a de�nitional extension if weonsider eah ourrene of f outside its de�ning blok asthe usage of an idential opy of f.If we also want to enable polymorphi reursion, i.e., adi�erent instantiation of onstraint variables in every reur-sive all, we must replae LF� with a onstrained type sys-tem whose judgments are of the form C;�; n ` e:A; n where�; A;m; n may ontain variables and C is a set of linear in-equalities onstraining these. The details are left for futurework, but appear to be within the reah of the methodsdeveloped here.A similar issue arises with higher-order funtions. Simpleuse of higher-order funtions merely as a means for modular-ization suh as in ombinators like map, filter, et. an beaommodated by introduing several de�nitions, one foreah usage, possibly hidden under some appropriate syn-tati sugar. Formally, this kind of usage of higher-orderfuntions is the one supported by the C language: the onlyexpressions of funtion types are variables and onstants.If we aim for more general funtion expressions likepartially-applied funtions and lambda expressions as infuntional programming languages the problem of heapspae inferene beomes muh more ompliated as we needto monitor the size of losures whih are muh more depen-dent on dynami aspets. This is disussed in some detailin [9℄. We do not see at this point how our work ould beextended to over general higher-order funtions, not evenlinear ones. One referee suggested to investigate Reynolds'idea of defuntionalisation [17℄ whih eliminates losures infavour of sum types. Again, we leave this to future work.
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