
Static Prediction of Heap Space Usage for
First-Order Functional Programs(Extended Version)

Martin Hofmann Steffen Jost

LMU München, Institut für Informatik
Oettingenstraße 67, 80538 München, Germany�
mhofmann, jost

	
@informatik.uni-muenchen.de

ABSTRACTWe show how to eÆ
iently obtain linear a priori bounds onthe heap spa
e
onsumption of �rst-order fun
tional pro-grams.The analysis takes spa
e reuse by expli
it deallo
ation intoa

ount and also furnishes an upper bound on the heap us-age in the presen
e of garbage
olle
tion. It
overs a widevariety of examples in
luding, for instan
e, the familiar sort-ing algorithms for lists, in
luding qui
ksort.The analysis relies on a type system with resour
e anno-tations. Linear programming (LP) is used to automati
allyinfer derivations in this enri
hed type system.We also show that integral solutions to the linear pro-grams derived
orrespond to programs that
an be evaluatedwithout any operating system support for memory manage-ment. The parti
ular integer linear programs arising in thisway are shown to be feasibly solvable under mild assump-tions.
Categories and Subject DescriptorsF.3.2 [Logi
s and Meanings of Programs℄: Seman-ti
s of Programming Languages|Program analysis; D.1.1[Programming Te
hniques℄: Appli
ative (fun
tional)programming; D.3.3 [Programming Languages℄: Lan-guage Constru
ts and Features|Dynami
 storage manage-ment
General TermsLanguages, Theory, Reliability, Performan
e.
KeywordsFun
tional Programming, Resour
es, Heap, Garbage Colle
-tion, Program Analysis.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00.

1. INTRODUCTIONThis paper addresses the following problem. Given a fun
-tional program
ontaining a fun
tion f of type, say, L(B)!L(B), i.e., turning lists of booleans into lists of booleans �nda fun
tion � su
h that the the
omputation f(w) requiresno more than �(w) additional heap
ells.In this generality, the problem admits the following trivialsolution: We
an instrument the
ode for f by a
ounterthat is augmented ea
h time we require allo
ation of a heap
ell. The fun
tion � is then the fun
tion
omputed by thisinstrumented
ode followed by a proje
tion that dis
ards theoutput and only keeps the value of the
ounter.Even if we require that � depend only on the length of theinput w and not w itself, we
ould for a given input length lrun the instrumented
ode on all boolean lists of length l andtake the maximum. We still have a
omputable fun
tionthat bounds the heap spa
e required by the
omputationof f .This trivial solution su�ers from two
aws. First, eval-uating � requires as many resour
es as evaluating f itself.Moreover, even though the
ode for �
onstitutes a math-emati
al des
ription of the bounding fun
tion �, it is in aform that allows one to say very little about its global be-haviour. Both
aws are una

eptable in a s
enario whereindependently veri�able
erti�
ates on resour
e usage of mo-bile
ode are desired [14, 1℄.What one would rather expe
t in this situation is a state-ment of the form: running f on an input of length n willrequire no more than b(n) heap
ells where b(n) is an expres-sion like 3n+7 or 2:5n3+4n2 or 21:5n. It is only from su
h anexpression that one
an glean immediate information aboutthe expe
ted behavior of the
ode to be run.In this paper we des
ribe a method for automati
ally ob-taining linear bounds on the heap spa
e usage of fun
tionalprograms. Of
ourse, it is unde
idable whether a given pro-gram admits su
h a linear bound, so we must a

ept
ertainrestri
tions. We
laim, however, that the restri
tions wemake are quite natural and moreover, our analysis is prov-ably eÆ
ient in this
ase.An important limitation of our work is that only �rst-order programs are
onsidered. This means that a programis a mutual re
ursive de�nition of �rst-order top level fun
-tions. While perhaps being against the
redo of fun
tionalprogramming it o�ers us surprising bene�ts and moreovermany uses of higher-order fun
tions are a
tually a de�ni-Extended version, for WWW only { De
ember 31, 2002

tional extension of �rst-order fun
tional programming: inprin
iple one
an eliminate them by
ode dupli
ation. We
omment on this and on the diÆ
ulties en
ountered withfully general higher-order fun
tions later in Se
tion 11.
1.1 Overview of resultsWe assume an operational semanti
s that maintains a free-list whi
h is redu
ed whenever a
onstru
tor fun
tion like
ons is evaluated. On the other hand, we assume that
er-tain pattern mat
hes returns the mat
hed
ell to the freelistwhi
h a

ordingly in
reases in the bran
hes of the mat
h. Ifwe try to evaluate a
onstru
tor under an insuÆ
iently largefreelist the evaluation gets stu
k.We then devise an annotation of typing derivations withnonnegative rational values whi
h allows for predi
tion ofthe freelist size required to evaluate the program. For in-stan
e, if we derive x : L(L(B; 1) ; 2) ; 3 ` e : L(B; 4) ; 5then this signi�es that if we evaluate e in a situation whi
hbinds x to a list [l1; : : : ; lm℄ then a freelist of size at least3+ 2m+1Pijlij suÆ
es to prevent evaluation from gettingstu
k. If the evaluation terminates with a result l then thefreelist will have size 5 + 4jlj. Here j�j denotes the length ofa list.We note two
ru
ial features: First, the size estimate forthe freelist left after evaluation is given as a fun
tion ofthe result type rather than the input. Se
ond, estimatesdo not just depend on the overall size of arguments butmay atta
h di�erent weight to various parts of the data.In the example the length of the input list
ounts twi
e,whereas the lengths of the
omponent lists only
ount on
e.We �nd that these features allow for a surprisingly smooth
ompositional formulation of the annotations.Given a
on
rete program P we then set up a \skeleton"of an annotated derivation whi
h
ontains variables in pla
eof a
tual annotations. The various side
onditions in ourrules then take the form of linear inequalities between thesevariables. We thus obtain a linear program L(P) whose solu-tions are in one-to-one
orresponden
e to valid annotations.As is well-known su
h solutions
an be eÆ
iently
omputed.We also show that integral solutions to the L(P) are in1-1
orresponden
e to enri
hed versions of P in the pro-gramming language LFPL [8℄ whi
h bypasses memory man-agement by expli
itly passing around memory
ells as part ofthe data. Programs in LFPL largely behave like imperativeprograms that modify heap-allo
ated data in-pla
e ratherthan
laiming fresh memory for results of
omputations andreturning unused memory. In this way, our inferen
e
analso be viewed as type inferen
e for LFPL.It must be said, though, that not all possible LFPL pro-grams arise as re
onstru
tions from solutions of the
on-straint system. The problem of re
onstru
ting arbitraryLFPL programs is
onsidered in more detail in [11℄.While obtaining integral solutions to linear programs isin general NP hard, we prove that in several important andnatural sub-
ases of our setting they
an be obtained eÆ-
iently.We emphasize that our fun
tional programs are not ne
-essarily required to be linearly typed. Indeed, we have a
ontra
tion rule
orresponding to aliasing that allows us toidentify two variables provided we split the resour
e anno-tations a

ordingly.

For example, if we have x:L(B; 3) ; y:L(B; 6) ; 5 ` e : C; 6then the
ontra
tion rule allows us to derive z:L(B; 9) ; 5 ` e :C; 6. Operationally, x; y point to a shared memory region.If we use this
ontra
tion rule then validity of our analysisrelies on the following semanti

ondition: if at any point inthe evaluation of a program a heap
ell is deallo
ated in adestru
tive pattern mat
h then this
ell must not be a

es-sible from the variables o

urring in the remaining programfragment. We speak of benign sharing in this
ase. A viola-tion of the property is
alled malignant sharing.Noti
e that if a program exhibits malignant sharing then itwill not ne
essarily
rash due to null pointer a

ess be
auseit might not a
tually follow the path to the dangling refer-en
e even though this is possible. One may thus
omparebenign sharing to the property ensured by garbage
olle
-tion.We formalise benign sharing on the level of the operationalsemanti
s as a judgment S; � ` e ;bs v; �0 whi
h assertsthat in sta
k S and heap � the evaluation of e results invalue v and new heap �0 and, moreover, all sharing duringthat evaluation is benign.For parti
ular programs we may be able to assert benignsharing by inspe
tion or logi
al reasoning. More interest-ingly, we would like to guarantee it by some stati
 typesystem. We already know that linear typing, i.e., the ab-sen
e of
ontra
tion, provides su
h a guarantee; we
onje
-ture that the more general read-only type systems and anal-yses des
ribed in [2, 12, 15, 18℄ all are able to provide su
h aguarantee as well, by suitably restri
ting but not altogetherex
luding the
ontra
tion rule.The important point here is that the semanti
 formalisa-tion of benign sharing makes no referen
e to resour
e an-notations so that dis
harging the extra assumption made isorthogonal to the work des
ribed in this paper.We also mention that, of
ourse, we
an re
ursively de�ne
loning fun
tions in the stri
tly linear fragment, for instan
e
lone : L(B; 2)! L(B; 0)
L(B; 0). The two
opies returnedare not aliased but one of them is
onstru
ted using freshheap spa
e.Notation: The set of natural numbers denoted N isassumed to
ontain zero. We let Q+ denote the set of non-negative rational numbers.If f is a �nite fun
tion we write f nx for f� (dom f nfxg),that is, the restri
tion of f to its domain less the element x.We write f [x7!v℄ to denote the �nite fun
tion that maps xto v and a
ts like f otherwise.FV(e) denotes the set of free variables o

urring withinthe term e. The substitution of a free variable v by t interm e is denoted by e[t=v℄.If l denotes a list, then jlj denotes the length of the list.Equivalently, jlj is the number of nodes of l in a ma
hinerepresentation.A
knowledgements: Part of this resear
h was
arriedout within the EU proje
t IST-2001-33149 \Mobile Resour
eGuarantees". We also a
knowledge �nan
ial support by theDeuts
he Fors
hungsgemeins
haft (DFG).
2. FUNCTIONAL LANGUAGEWe de�ne a �rst-order typed fun
tional language LF as fol-lows.zero-order types: A ::= 1 j B j L(A) j A
A j A+A�rst-order types: F ::= (A; : : : ; A)! AExtended version, for WWW only { De
ember 31, 2002

Here B is the type of Booleans, L(A) is the type of listswith entries from A, sum and produ
t are denoted by +;
.Finally, 1 is a singleton type. We
an also in
lude labelledtrees, but refrain from doing so to save spa
e. However, oneof our examples uses trees.Sin
e we are interested in memory
onsumption, we de�neat this point a fun
tion SIZE : LF-type! N for later use:SIZE (1) = SIZE (B) = SIZE (L(A)) = 1SIZE (A
 C) = SIZE (A) + SIZE (C)SIZE (A+ C) = 1 +max�SIZE (A) ; SIZE (C)�The values
hoosen in this de�nition should �t the intendedma
hine model, but are abitrary otherwise. We will exploita di�erent (
onstant)
hoi
e in se
tion 5.The terms of LF are given by the following grammar:e ::= � j tt j ffj xj f(x1; : : : ; xn)j let x=e1 in e2j if x then et else efj x1
 x2j mat
h x with x1
 x2) e2j inl(x) j inr(x)j mat
h x with j inl(y)) el j inr(y)) erj nilj
ons(x1; x2)j mat
h x with jnil) e1 j
ons(x1; x2)) e2j mat
h0 x with j nil) e1 j
ons(x1; x2)) e2In ea
h of the following typing rules, let � denote a LFsignature mapping a �nite set of fun
tion identi�ers to LF�rst-order types, � be a LF typing
ontext mapping a �niteset of identi�ers to LF zero-order types.We use �1;�2 to denote the union of
ontexts �1 and �2,provided dom(�1)\ dom(�2) = ;. If this notation o

urs ina typing rule then disjointness is an impli
it side
ondition.Letters e; ea; eb; : : : represent arbitrary LF terms a

ord-ing to the given grammar, and A;B;C denote arbitrary LFzero-order types. � `� �:1 (LF:Const Unit)
 a boolean
onstant� `�
:B (LF:Const Bool)x 2 dom(�)� `� x:�(x) (LF:Var)�(f) = (A1; : : : ; Ap) �! C�; x1:A1; : : : ; xp:Ap `� f(x1; : : : ; xp):C (LF:Fun)�1 `� e1:A �2; x:A `� e2:C�1;�2 `� let x=e1 in e2:C (LF:Let)� `� et:C � `� ef :C�; x:B `� if x then et else ef :C (LF:If)

�; x1:A1; x2:A2 `� x1
 x2:A1
A2 (LF:Pair)�; x1:A1; x2:A2 `� e:C�; x:A1
A2 `� mat
h x with x1
 x2) e:C(LF:Pair-Elim)�; x:A `� inl(x):A+B (LF:Inl)�; x:B `� inr(x):A+B (LF:Inr)�; y:A `� e1:C �; y:B `� e2:C�; x:A+B `� mat
h x with j inl(y)) e1 j inr(y)) e2:C(LF:Sum-Elim)� `� nil:L(A) (LF:Nil)�; xh:A; xt:L(A) `�
ons(xh; xt):L(A) (LF:Cons)� `� e1:C �; xh:A; xt:L(A) `� e2:C�; x:L(A) `� mat
h x with jnil) e1 j
ons(xh; xt)) e2:C(LF:List-Elim)�; x:A; y:A `� e:C�; z:A `� e[z=x; z=y℄:C (LF:Share)The LF typing rule for mat
h0 , LF:List-Elim', is identi
alto the one for mat
h, LF:List-Elim. The di�eren
e lies inthe intended operational semanti
s: while mat
h deallo
atesthe lo
ation mat
hed against, it is preserved by mat
h0 forsubsequent use. Thus mat
h0 shall stand for `read-only a
-
ess'. A

ordingly, the rules for resour
e inferen
e will alsobe di�erent for the two
onstru
ts.We also point out that the typing rules are formulated ina linear style. That is, multiple o

urren
es of a variablesare expli
itly introdu
ed via the rule LF:Share.An LF program P
onsists of a signature � and a
ol-le
tion of terms ef for ea
h f 2 dom(�) su
h that forall f 2 dom(�) one has y1:A1; : : : ; yk:Ak `� ef :C when�(f) = (A1; : : : ; Ak) �! C. In
on
rete examples we indi-
ate the asso
iation of de�ning terms with fun
tion symbolsby writing down equations of the form f(y1; : : : ; yk) = ef .We usually
onsider a �xed but arbitrary program Pthroughout the following.We denote by LFlin the fragment of LF whi
h neither
ontains the term
onstru
tor mat
h0 nor the typing rulesLF:Share, LF:List-Elim'. Note that LFlin is an aÆne lin-ear fun
tional language.
2.1 ExamplesThroughout the examples, the type A is any �xed (but arbi-trary) LF-type. In an implemented version of LF one wouldpresumably want to allow type variables and possibly evenpolymorphi
 quanti�
ation over these.Extended version, for WWW only { De
ember 31, 2002

Example 1. The following example de�nes a fun
tion thatreverses the order of the elements in a list of booleans.reverse : (L(A)) �! L(A)rev aux : (L(A) ; L(A)) �! L(A)reverse(l) = rev aux(l; nil)rev aux(l; a

) = mat
h l withjnil) a

j
ons(h; t)) rev aux(t;
ons(h; a

))We furthermore de�ne reverse0 and rev aux0 similarly, justrepla
ing mat
h by mat
h0 .Example 2. The next example
orresponds to the well-known insertion sort algorithm:sort : (L(A))! L(A)ins : (A; L(A))! L(A)leq : (A
A)! B
 (A
A)ins(n; l) = mat
h l withj nil)
ons(n; nil)j
ons(h; t))mat
h leq(n; h) with b
 �n0
 h0�)if b then
ons(n0;
ons(h0; t))else
ons(h0; ins(n0; t))sort(l) = mat
h l with j nil) nilj
ons(h; t)) ins(h; sort(t))To simplify notation we have used some synta
ti
 sugar inthese examples: notably we allow nesting of terms whi
h ex-pands into nested let-
onstru
ts and also allow nested pat-terns as in line 4 of ins whi
h expand into a sequen
e ofnested mat
hes.Here we assume the
omparison fun
tion leq to return itsarguments so that this example makes sense in the fragmentLFlin.We
on
lude by two somewhat
ontrived examples whi
hrequire allo
ation of fresh memory.Example 3. The fun
tion
lone doubles its input:
lone : (L(B))! L(B)
 L(B)
lone(l) = mat
h l with jnil) nil
 nil j
ons(h; t))mat
h
lone(t) with t1
 t2)if h then
ons(tt; t1)

ons(tt; t2)else
ons(ff; t1)

ons(ff; t2)Example 4. The fun
tion tos repla
es ea
h third elementof a list by a value depending on its two prede
essors, so itdoes not
hange the length of the list, but this implemen-tation of tos is
omposed of two auxiliary fun
tions, whi
hdo
hange the length of the list in between. Namely, se
deletes every third element whereas tpo inserts a new ele-ment in every third position.The signi�
an
e of the type B
 B as opposed to B or an

unspe
i�ed type will be explained in Se
tion 7.tos : (L(B
 B)) �! L(B
 B)se
 : (L(B
 B)) �! L(B
 B)tpo : (L(B
 B)) �! L(B
 B)tos(l) = tpo(se
(l))se
(l) = mat
h l withjnil) nilj
ons(h1; t1)) mat
h t1 withjnil)
ons(h1; nil)j
ons(h2; t2)) mat
h t2 withj nil)
ons�h1;
ons(h2; nil)�j
ons(h3; t3))
ons�h1;
ons(h2; se
(t3))�tpo(l) = mat
h l withjnil) nilj
ons(h1; t1)) mat
h t1 withjnil)
ons(h1; nil)j
ons(h2; t2))
ons�h1;
ons�h2;
ons(h1; tpo(t2))��
3. OPERATIONAL SEMANTICSWe use a freelist
ontaining available heap
ells. We treatthis freelist simply as an integer value giving the number offree words.Issues of alignment are assumed to be dealt with by an ap-propriate defragmentation routine to be laun
hed whenevera request for t aligned words
annot be met although thefreelist has size larger or equal than t. Admittedly, defrag-mentation is
ostly to implement. If desired, we
an avoidfragmentation by assuming that all allo
ated blo
ks are ofthe same size. See also the remark on garbage
olle
tion atthe end of this se
tion.Let Lo
 be a set of lo
ations whi
h model memory ad-dresses on a heap abstra
ted over possible renaming thatmay be
ome ne
essary upon defragmentation. We use ` torange over elements of Lo
. Next we de�ne a set of val-ues Val, ranged over by v whi
h o

ur as values of programvariables, results, and values bound to lo
ations in a heap.v ::=
 j ` j NULL j (v; v) j inl(v) j inr(v)A value is either a boolean
onstant
, a lo
ation `, a nullvalue NULL, a pair of values (v; v) or a value marked witheither inl or inr. O

asionally we use a short hand notationfor tuples, e.g. we write (v; v; v) instead of (v; (v; v)).We assume that the LF type derivation is impli
itly a
-
essible (e.g. by adding a pointer to a type to ea
h value asis done in Java), hen
e we allow ourselves to extend the sizefun
tion to SIZE : Val! N. The idea is that value v o

upiesSIZE (v) words when stored in the heap. We are aware thatthis is not rigorous, however, the redu
tion on notational
lutter outweighs the formal disadvantages by far.A sta
k S:Var * Val is a �nite partial mapping from vari-ables to values, and a heap �:Lo
 * Val is a �nite partialmapping from lo
ations to values. Evaluation of an expres-sion e takes pla
e with respe
t to a given sta
k and heap,and yields a value and a possibly updated heap. Moreover,Extended version, for WWW only { De
ember 31, 2002

the size of the freelist may shrink or grow upon evaluation.Thus we have a relation of the formm;S; � ` e; v; �0;m0expressing that the evaluation of e under sta
k S and heap� su

eeds in the presen
e of a freelist of size m and resultsin value v. As a side e�e
t the heap is modi�ed to �0 andthe size of the freelist be
omes m0. The values m and m0are arbitrary natural numbers.The sta
k is extended with additional variable bindingswhenever we enter a new s
ope, inside subterms in thepremises of the evaluation rules. When we evaluate a fun
-tion body we use a sta
k whi
h only mentions the a
tualparameters, intuitively preventing a

ess beyond the sta
kframe. Noti
e that the sta
k may
ontain pointers into theheap (i.e., lo
ations), but there are no pointers going fromthe heap into the sta
k.The operational semanti
s is given with respe
t to a �xedsignature and program.m;S; � ` �; NULL; �;m (;�:Unit Const)m;S; � `
;
; �;m (;�:Bool Const)m;S; � ` x; S(x); �;m (;�:Var)S(x1) = v1 � � � S(xn) = vnm; [y1 7!v1; : : : ; yn 7!vn℄; � ` ef ; v; �0; m0the yi are the symboli
 arguments of efm;S; � ` f(x1; : : : ; xn); v; �0; m0 (;�:Fun)m;S; � ` e1 ; v1; �0;m0m0; S[x7!v1℄; �0 ` e2 ; v; �0;m0m;S; � ` let x=e1 in e2 ; v; �0;m0 (;�:Let)S(x) = tt m;S; � ` et ; v; �0; m0m;S; � ` if x then et else ef ; v; �0;m0 (;�:If-t)S(x) = ff m;S; � ` ef ; v; �0;m0m;S; � ` if x then et else ef ; v; �0;m0 (;�:If-f)m;S; � ` x1
 x2 ; �S(x1); S(x2)�; �;m (;�:Pair)S(x) = (v1; v2) m;S[x1 7!v1℄[x2 7!v2℄; � ` e; v; �0;m0m;S; � ` mat
h x with (x1
 x2)) e ; v; �0; m0(;�:Mat
h-Pair)S(x) = vm; S; � ` inl(x); inl(v); �;m (;�:Inl)S(x) = vm; S; � ` inr(x); inr(v); �;m (;�:Inr)S(x) = inl(v0) m;S[y 7!v0℄ ` e1 ; v; �0;m0mat
h x with j inl(y)) e1j inr(y)) e2 ; v; �0;m0(;�:Mat
h-Inl)

S(x) = inr(v0) m;S[y 7!v0℄ ` e2 ; v; �0;m0mat
h x with j inl(y)) e1j inr(y)) e2 ; v; �0; m0(;�:Mat
h-Inr)m;S; � ` nil; NULL; �;m (;�:Nil)v = �S(xh); S(xt)� ` 62 dom(�)m+ SIZE (v) ; S; � `
ons(xh; xt); `; �[7̀!v℄;m(;�:Cons)S(x) = NULL m;S; � ` e1 ; v; �0;m0m;S; � ` mat
h x with jnil) e1j
ons(xh; xt)) e2 ; v; �0; m0(;�:Mat
h-Nil)S(x) = ` �(`) = (vh; vt) m0 = m+ SIZE (�(`))m0; S[xh 7!vh℄[xt 7!vt℄; � n ` ` e2 ; v; �0;m0m;S; � ` mat
h x with jnil) e1j
ons(xh; xt)) e2 ; v; �0; m0(;�:Mat
h-Cons)S(x) = NULL m;S; � ` e1 ; v; �0;m0m;S; � ` mat
h0 x with jnil) e1j
ons(xh; xt)) e2 ; v; �0; m0(;�:Mat
h'-Nil)S(x) = ` �(`) = (vh; vt)m;S[xh 7!vh℄[xt 7!vt℄; � ` e2 ; v; �0;m0m;S; � ` mat
h0 x with jnil) e1j
ons(xh; xt)) e2 ; v; �0; m0(;�:Mat
h'-Cons)The only rules that deserve an explanation are the onespertaining to the mat
h
onstru
ts for lists. It is assumedthat the mat
h
onstru
t immediately deallo
ates the nodemat
hed against, whereas it is preserved in a mat
h0
on-stru
t. A

ordingly the freelist grows in the bran
hes of amat
h whereas it stays the same in a mat
h0 . At this point,the programmer de
ides whi
h one to use. It is
on
eiv-able that this de
ision
an be automated in su
h a way thatthe best possible resour
e behaviour is obtained. This is,however, left for future resear
h.Note that given m;S; �; e it need not be the
ase thatthere exist v; �0;m0 with m;S; � ` e ; v; �0;m0 for one ofthe following reasons:� Non-termination (this manifests itself as an in�niteba
kwards appli
ation of rule ;�:Fun)� Wrong elements in sta
k or heap, e.g. a Boolean whereeither NULL or a pair is expe
ted.� InsuÆ
iently large freelist, e.g. m = 0; e =
ons(1; nil).We
hoose to a

ept nontermination and rely on a standardtyping dis
ipline to deal with wrong elements. The main
ontribution here is to devise stati
 methods that ensureabsen
e of insuÆ
iently large freelists.We remark at this point that the judgementm;S; � ` e;v; �0;m0 admits the following alternative interpretation. Ifwe evaluate e using a garbage
olle
tor whi
h
olle
ts afterevery pattern mat
h then the heap size during the evaluationwill not ex
eed the initial heap size by more than m.Extended version, for WWW only { De
ember 31, 2002

3.1 Operational semantics without freelistIn order to be able to formally state
orre
tness of the stati
analysis we are going to des
ribe, it is
onvenient to in-trodu
e an auxiliary operational semanti
s whi
h does notrely on freelists. To this end, we introdu
e a judgmentS; � ` e ; v; �0 whi
h intuitively reads as \in sta
k S andheap � expression e evaluates to result v and leaves heap�0". The rules de�ning this judgment are like the ones thatde�ne the instrumented judgment m;S; � ` e ; v; �0;m0but without all referen
e to freelist sizes. For example, wehave the rulev = �S(xh); S(xt)� ` 62 dom(�)S; � `
ons(xh; xt); `; �[7̀!v℄ (;:Cons)We
an understand this judgment as formalizing evaluationin a C-like environment where spa
e is allo
ated whenevera
ons-
ell is formed and deallo
ated whenever we mat
hagainst a
ons-
ell.In earlier work [8, 2℄ it was shown that under a lineartyping dis
ipline, in parti
ular in LFlin, this judgment rep-resents the intended fun
tional semanti
s. In this paper, wewill rely on the essen
e of these earlier results and do notspeak about fun
tional semanti
s at all. More pre
isely, wewill establish a result of the following kind.Corre
tness property. If � `� e:A in LF and ourstati
 analysis derives a minimum freelist size n then when-ever S; � ` e; v; �0 without malignant sharing then for allm � n there exists m0 su
h that m;S; � ` e; v; �0;m0.
3.2 Formalisation of benign sharingWe de�ne a variant of the operational semanti
s:S; � ` e;bs v; �0whi
h di�ers from the original operational semanti
s in thatit prohibits malignant sharing in the sense des
ribed in theIntrodu
tion.The auxiliary fun
tion R : heap � Val �! P(Lo
) is de-�ned as follows:R(�;
) = ; R(�;NULL) = ;R(�; (v1; v2)) = R(�; v1) [R(�; v2) R(�; inl(v)) = R(�; v)R(�; `) = f`g [R(�; �(`)) R(�; inr(v)) = R(�; v)We set R(�; �(`)) := ; when ` 62 dom(�). We extend R tosta
ks by: R(�; S) := [x2domSR��; S(x)�Intuitively, R(�; S) is the set of lo
ations a

essible from S.The judgment S; � ` e ;bs v; �0 is now indu
tively de-�ned by the rules for the ordinary (resour
e-free) operationalsemanti
s ex
ept for the rules ;:Let and ;:Mat
h-Conswhi
h are repla
ed by the following ones. The rules
on
ern-ing mat
h0 are not altered.S; � ` e1 ;bs v1; �0S[x7!v1℄; �0 ` e2 ;bs v; �0��R(�; S0) = �0�R(�; S0) S0 = S�FV(e2)S; � ` let x=e1 in e2 ;bs v; �0 (;bs:Let)

S(x) = ` �(`) = (vh; vt)` 62 R��; S[xh 7!vh℄[xt 7!vt℄�FV(e2)�S[xh 7!vh℄[xt 7!vt℄; � n ` ` e2 ;bs v; �0S; � ` mat
h x with j nil) e1 j
ons(xh; xt)) e2 ;bs v; �0(;bs:Mat
h-Cons)Sin
e these rules have strengthened pre
onditions
om-pared to their
ounterparts we
learly haveLemma 1. �; S ` e;bs v; �0 =) �; S ` e; v; �0Let us
onsider short program fragments illustrating malig-nant sharing: let x=reverse(y) in y, where reverse is de-�ned as in Example 1. The fun
tion reverse reverses the listy destru
tively, hen
e the rule;bs:Let is not appli
able, asy is
ontained in the rea
hable region and
hanges after eval-uation of reverse(y). Note that the rule ;:Let would gothrough. If the fragment would
all reverse0 instead, whi
hprodu
es a reversed
opy via the use of mat
h0 instead ofmat
h, the program fragment above would be a

eptable.However, the di�eren
e would be revealed in the di�erentresour
e
onsumption as will be shown in Se
tion 4.1.Now
onsider the fragment let x=y in x++ y, where thein�x ++ denotes list
on
atenation (see de�nition in Exam-ple 7). Here the rule;bs:Let would be appli
able, but failssin
e x++ y
annot be evaluated, unless S(y) = NULL. Thereason is that the evaluation of x++ y deallo
ates x, but thelo
ations rea
hable from x
an also be rea
hed via y, hen
ethe pre
ondition added to;bs:Mat
h-Cons is violated. Of
ourse, we
ould de�ne a
opying version of \append" us-ing mat
h0 . Note that our semanti
s does not
ater for inpla
e update. We
an either
reate a new
ell or deallo-
ate a
ell, but never
hange the
ontents of an existing
ell.This pre
ludes, in parti
ular, the
reation of
ir
ular datastru
tures.The annotated version ;bs� is formulated similarly, theresour
e related
onstraints do not
hange.
4. LF WITH RESOURCE ANNOTATIONSIn this se
tion we introdu
e resour
e annotations for LFwhi
h will allow us to predi
t the amount of heap spa
eneeded to evaluate a program. This predi
tion will be alinear expression involving the sizes of the arguments.We
all this annotated version LF�. A

ordingly, the lin-early typed fragment not
ontaining the rule LF�:Share andthe mat
h0 -term
onstru
tors will be
alled LFlin� .The term grammar for LF� is identi
al to the one given forLF. The types of LF� are given by the following grammar:pure zero-order: P ::= 1 j B j P
 P j R+R j L(R)ri
h zero-order: R ::= (P; k) (for k 2 Q+)�rst-order: F ::= (P; : : : ; P; k)! R (for k 2 Q+)The underlying LF-type of an LF�-type is de�ned by j�j :LF�-type! LF-typej1j = 1 jL(A)j = L(jAj)jBj = B jA
 Cj = jAj
 jCjj(A; n)j = A jA+ Cj = jAj+ jCjj(A1; : : : ; Ap; n)! Cj = (jA1j; : : : ; jApj)! jCjFurthermore we de�ne SIZE : LF�-type ! N bySIZE (A) := SIZE (jAj), thus SIZE (A) does not depend onthe annotations
ontained in A.Extended version, for WWW only { De
ember 31, 2002

Let � be an LF� signature mapping a �nite set of fun
-tion identi�ers to LF� �rst-order types, � be an LF� typing
ontext mapping a �nite set of identi�ers to LF� pure zero-order types, and let n; n0 be positive rationals. An LF� typ-ing judgment �; n `� e:A; n0 then reads \under signature �,in typing
ontext � and with n memory resour
es available,the LF� term e has type A with n0 unused resour
es leftover". In ea
h of the following typing rules, let furthermoreA;B;C denote arbitrary LF� zero-order types and n; k; p,possibly de
orated, denote arbitrary values in Q+ .n � n0�; n `� �:1; n0 (LF�:Const Unit)n � n0
 a boolean
onstant�; n `�
:B; n0 (LF�:Const Bool)x 2 dom(�) n � n0�; n `� x:�(x); n0 (LF�:Var)�(f) = (A1; : : : ; Ap; k) �! (C; k0)n � k n� k + k0 � n0�; x1:A1; : : : ; xp:Ap; n `� f(x1; : : : ; xp):C; n0 (LF�:Fun)�1; n `� e1:A;n0 �2; x:A; n0 `� e2:C; n0�1;�2; n `� let x=e1 in e2:C; n0 (LF�:Let)�; n `� et:A; n0 �; n `� ef :A; n0�; x:B; n `� if x then et else ef :A; n0 (LF�:If)n � n0�; x1:A1; x2:A2; n `� x1
 x2:A1
A2; n0 (LF�:Pair)�; x1:A1; x2:A2; n `� e:C; n0�; x:A1
A2; n `� mat
h x with x1
 x2) e:C; n0(LF�:Pair-Elim)n � kl + n0�; x:A;n `� inl(x):(A; kl) + (B; kr); n0 (LF�:Inl)n � kr + n0�; x:B; n `� inr(x):(A; kl) + (B; kr); n0 (LF�:Inr)�; y:A; n+ kl `� e1:C; n0 �; y:B; n+ kr `� e2:C; n0�; x:(A; kl) + (B; kr); n `� mat
h x with j inl(y)) e1j inr(y)) e2:C; n0(LF�:Sum-Elim)n � n0�; n `� nil:L(A; k) ; n0 (LF�:Nil)n � SIZE (A
 L(A; k)) + k + n0�; xh:A; xt:L(A; k) ; n `�
ons(xh; xt):L(A; k) ; n0(LF�:Cons)

�; n `� e1:C; n0�; xh:A; xt:L(A; k) ; n+ SIZE (A
 L(A; k)) + k `� e2:C; n0�; x:L(A; k) ; n `� mat
h x with j nil) e1j
ons(xh; xt)) e2:C; n0(LF�:List-Elim)�; n `� e1:C; n0�; xh:A;xt:L(A; k) ; n+ k `� e2:C; n0�; x:L(A; k) ; n `� mat
h0 x with j nil) e1j
ons(xh; xt)) e2:C; n0(LF�:List-Elim')�; x:A1; y:A2; n `� e:C; n0�; z:A1 �A2; n `� e[z=x; z=y℄:C; n0 (LF�:Share)where A1 �A2 is de�ned as follows when jA1j = jA2j:1� 1 = 1 B� B = B(A; k1)� (C; k2) =�A� C; k1 + k2�(A1
 C1)� (A2
 C2) = (A1 �A2)
 (C1 �C2)(A1 + C1)� (A2 + C2) = A1 �A2 + C1 � C2L(A)� L(C) = L(A� C)A

ordingly an LF� program P is a pair,
onsisting of asignature � and a
olle
tion of terms ef for ea
h f 2 dom(�)su
h that8f 2 dom(�) :�(f) = (A1; : : : ; Ap; k) �! (C; k0) =)y1:A1; : : : ; yp:Ap; k `� ef :C; k0We observe that the following type rule is admissible:�; n `� e:A; n0 n0 � n0 + k�; n+ k `� e:A; n0 (LF�:Waste)In other words a typing judgment remains valid if we in-
rease the minimum freelist size required and/or de
reasethe lower bound on the remaining freelist size after the
om-putation. Furthermore both values may be in
reased pro-portionally, i.e. additional resour
es
an be handed over.If P is an LF� program, then jP j denotes the underlyingLF program:Lemma 2. �; n LF�`� e:C; n0 =) j�j LF̀j�j e:jCjProof. Trivial, as ea
h LF typing rule is a weakened formof its
orresponding LF� typing rule.
4.1 ExamplesWe revisit the Examples presented in 2.1. Sin
e the termlanguages of LF and LF� are identi
al, we just give theproper LF� signatures here. Again, A denotes a �xed pureLF�-type; let a 2 Q+ be �xed (but arbitrary) as well.Example 1.reverse : (L(A; a) ; 0) �! (L(A; a) ; 0)rev aux : (L(A; a) ; L(A; a) ; 0) �! (L(A;a) ; 0)Extended version, for WWW only { De
ember 31, 2002

While reverse reverses its input at no additional resour
e
osts, reverse0
opies its argument so that it
an be reused.For a0 = a+ SIZE (A
 L(A)) = a+ SIZE (A) + 1 we obtainthe typingreverse0 : (L(A;a0) ; 0) �! (L(A;a) ; 0)rev aux0 : (L(A;a0) ; L(A; a) ; 0) �! (L(A;a) ; 0)In the expli
it
ase A = B and a = 0 (hen
e a0 = 2), wesee that reverse
an be
omputed without any additionalresour
es, while reverse0
onsumes 2n previously unused
ells if run on an input list of length n (whi
h itself alreadyo

upies 2n
ells, as ea
h node o

upies 2
ells a

ording toSIZE (B
 L(B; 0)) = 2 as de�ned in se
tion 2).Example 2. Let again a0 = a+ SIZE (A) + 1.sort : (L(A;a) ; 0) �! (L(A; a) ; 0)ins : (A; L(A; a) ; a0) �! (L(A;a) ; 0)leq : (A
A; 0) �! (B
 (A
A) ; 0)Example 3.
lone : (L(B; 2) ; 0) �! (L(B; 0)
 L(B; 0) ; 0)Example 4.tos : (L(B
 B; 0) ; 3) �! (L(B
 B; 0) ; 0)se
 : (L(B
 B; 0) ; 3) �! �L�B
 B; 32� ; 0�tpo : �L�B
 B; 32� ; 0� �! (L(B
 B; 0) ; 0)The intuition behind the fra
tional annotations will be ex-plained in Se
tion 7.
5. TRANSLATION TO LFPLIn [8℄ we have introdu
ed a linear fun
tional language that
an be translated into C without dynami
 memory allo
a-tion, i.e., without using the system
alls mallo
() and free().This was a
hieved by introdu
ing an abstra
t type �standing for memory lo
ations big enough to hold any stru
-ture node o

urring in a parti
ular program. Elements ofthis abstra
t type may be passed around as data, in par-ti
ular they
an arise as input, output, and
omponents ofstru
tures. Constru
tors of re
ursive types take an extraargument of type �, e.g.,
ons : (�; A;L(A))! L(A). In thetranslation to C the spa
e pointed to by this extra argumentis used to store the newly
reate stru
ture node. Conversely,in a pattern mat
h we gain a

ess to an element of type �when mat
hing against a re
ursive
onstru
tor su
h as
ons.We will explain how LFlin�
an be used to infer LFPL-typingsfor LFlin-programs.Sin
e LFPL handles resour
es as elements of type � werestri
t to integral annotations. For this purpose let LFN;lin�denote the fragment of LFlin� where all annotations are re-stri
ted to nonnegative integers.Furthermore, we temporarily rede�ne SIZE (A) to be 1for all types A. This
orresponds to the assumption madein LFPL that all stru
ture nodes are stored in heap portionsof equal size.

Types in LFN;lin�
an then be translated to LFPL-types bymapping ea
h annotation n to an n-fold produ
t of type�, for instan
e, the type (A; L(A; 1) ; 2) ! (L(A; 1) ; 0) ismapped to (A; L(A
 �) ;�
 �)! (L(A
 �)).The translation of terms follows the stru
ture of a deriva-tion in LFN;lin� ; we omit the (essentially obvious) details.This is useful sin
e the resulting C-programs
an be ex-e
uted without overhead su
h as freelists, defragmentation,or garbage
olle
tion whi
h makes them suitable in resour
e-restri
ted environments.
6. LF� AND SPACE-AWARE SEMANTICSIn this se
tion we will prove a
orresponden
e between fullLF� and the spa
e-aware operational semanti
s from Se
-tion 3.We must formalize that a given sta
k and heap �t a
ertaintyping
ontext: � ` NULL:1 (Unit)� `
:B (Bool)� ` v:A1 � ` w:A2� ` (v; w):A1
A2 (Pair)� ` v:A� ` inl(v):A+B (Inl)� ` v:B� ` inr(v):A+B (Inr)� ` NULL:L(A) (List-Nil)� n ` ` �(`):A
 L(A)� ` `:L(A) (List-Node)We extend to
ontexts by8xi 2 dom(�): � ` S(xi):�(xi)� ` S:� (Context)Note that if x =2 dom(�) then � ` S:� is equivalent to� ` (S; x:A):�, i.e. unused junk in the sta
k does not matter.Furthermore we extend to LF�by� ` S:A� , � ` S:jA�jwhere A� is an LF� type and similarly for
ontexts.Lemma 3. Let �; � be heaps. If � ` v:A and 8` 2 R(�; v):�(`) = �(`) then � ` v:ANote that the intended equality is strong as usual through-out this work, i.e. if �(`) is unde�ned then �(`) must beunde�ned as well.Proof. The Proof follows by rule-indu
tion on thederivation of � ` v:A:Unit Obviously � ` NULL:1, sin
e the statement holds re-gardless of the heap
on�guration.The proof for the rules Bool and List-Nil follow sim-ilarly.Extended version, for WWW only { De
ember 31, 2002

Pair By the indu
tion hypothesis we have � ` v:A1 and� ` w:A2, therefore � ` (v;w):A1
 A2 by Pair asrequired.Inl Follows immediately from the indu
tion hypothesis ap-plied to � ` v:A. Sin
e R(�; inl(v)) = R(�; v) by De�-nition, R(�; inl(v)) = R(�; inl(v)) follows by the indu
-tion hypothesis as well.The proof for the rule Inr follows similarly.List-Node Let �̂ := � n ` and �̂ := � n `. By de�nition�̂ ` �(`):A
 L(A). Thus appli
ation of the indu
tionhypothesis yields �̂ ` �(`):A
 L(A) and therefore �̂ `�(`):A
 L(A) and, �nally, � ` `:L(A) by List-Nodeagain.Lemma 4. If � `� e:A and � ` S:��FV(e) and S; � `e;bs v; �0 then �0 ` v:A.Proof. By rule-indu
tion on the operational semanti
s:;bs:Var From � ` x:A and � ` S:�� fxg follows � `S(x):A. By de�nition S; � ` x ;bs S(x); �, hen
ethe
laim is true.;bs:Fun By the premise of ;bs:Fun we know[y1 7!S(x1); : : : ; yn 7!S(xn)℄; � ` ef ;bs v; �0 andalso y1:A1; : : : ; yn:An ` ef :A by the property of validLF programs. From � ` S:��FV(ef) we dedu
e � `[y1 7!S(x1); : : : ; yn 7!S(xn)℄:fy1:A1; : : : ; yn:Ang�FV(ef),hen
e the indu
tion hypothesis dire
tly yields theresult.;bs:Let From the premise of ;bs:Let,��R(�; S�FV(e2)) = �0�R(�; S�FV(e2)), we de-du
e by Lemma 3 that �0 ` S:�2�FV(e2).By the indu
tion hypothesis we obtain �0 ` v1:A,then
e �0 ` S[x 7! v1℄:(�2; x:A)�FV(e2). The de-sired result is then obtained from the appli
ation ofthe indu
tion hypothesis on the evaluation of e2.;bs:Cons By the de�nition of rule LF:Cons we have� = (�0; xh:A; xt:L(A)) hen
e by our assumptions� ` S(xh):A and � ` S(xt):L(A). By the premises of;bs:Cons then follows �[` 7! (S(xh); S(xt))℄ ` `:L(A)as required.;bs:Mat
h-Cons From � ` S:��FV(e), the premises of;bs:Mat
h-Cons, and Lemma 3 we dedu
e � n ` `S[xh 7! vh℄[xt 7! vt℄:(�; xh:A; xt:L(A)) hen
e the re-sult follows dire
tly from the indu
tion hypothesis.We de�ne � : heap� Val� LF-type �! Q+ by�(�; v; 1) = �(�;
;B) = 0�(�; (v1; v2); A
B) = �(�; v1; A) + �(�; v2; B)�(�; inl(v); (A; k) + (B; l)) = k +�(�; v; A)�(�; inr(v); (A; k) + (B; l)) = l+�(�; v; B)�(�;NULL; L(A; k)) = 0�(�; `; L(A; k)) = k +�(�; �(`); A
 L(A; k))and furthermore�(�; S;�) := Xx2dom����; S(x);�(x)�

The amount of additional heap spa
e needed to evalu-ate a fun
tion f : (A1; : : : ; Ap; k) ! (B; k0) depends onthe size of the input to f. If � ` S:fx1:A1; : : : ; xp:Apg,the amount of additional heap spa
e required to
omputef is k + �(�; S; fx1:A1; : : : ; xk:Akg). The remaining un-used heap spa
e is k0 + �(�0; v; B), provided that S; � `f(x1; : : : ; xk);bs v; �0.In parti
ular, if f : (L(B; a) ; b) ! (L(B;
) ; d) then evalu-ating f(w) takes at most ajwj + b extra spa
e to evaluate,where jwj is the length of w. If we evaluate f(w) given afreelist of size ajwj + b + k (where k � 0) then after theevaluation the freelist will have size at least
jf(w)j+ d+ k.Lemma 5. If ��R(�; v) = �0�R(�; v) then �(�; v; A) =�(�0; v; A).Proof. By indu
tion on the de�nition of �.Lemma 6. For all �; S;A1; A2, it holds that �(�; v; A1 �A2) = �(�; v; A1)+�(�; v; A2) provided that �(�; v; A1�A2)is de�ned.Proof. Follows dire
tly from the de�nitions.Theorem 1. Let P be a valid LF� program with signa-ture �. For all LF� terms e su
h that �; n `� e:A; n0 andwhenever S; � ` e;bs v; �0 and � ` S : (��FV(e)) then forall q 2 Q+ and for all m 2 N su
h that m � n+�(�; S;�)+qthere exists m0 2 N satisfying m0 � n0+�(�0; v; A)+ q su
hthat m;S; � ` e;bs� v; �0;m0.Proof. The proof is by indu
tion on the lengths of thederivations of S; � ` e;bs v; �0 and �; n `� e:A; n0 orderedlexi
ographi
ally with the derivation of the evaluation tak-ing priority over the typing derivation.LF�:Share Assume the last step in the derivation of �; n `�e:A; n0 was made by the use of LF�:Share. Hen
e � =�0; z:A1�A2, e = e0[xnz; ynz℄ and �0; x:A1; y:A2; n `�e0:A;n0.By � ` S : (��FV(e)) we have � ` S(z) : A1�A2. Wemay assume that z 2 FV(e) for otherwise the appli
a-tion of LF�:Share has no e�e
t and
ould be omitted.Let S0 := (S n z)[x7!S(z); y 7!S(z)℄. It is then obviousthat � ` S0 : �(�0; x:A1; y:A2)�FV(e0)�.Furthermore if S; � ` e ;bs v; �0 then S0; � ` e0 ;bsv; �0 by a derivation of the same length (and stru
ture),sin
e both new variables refer to the same value as theold variable before. The same holds for the annotatedstatements.By Lemma 6 we have n + �(�; S;�) + q � n +�(�; S0; (�0; x:A1; y:A2)) + q hen
e the indu
tion hy-pothesis yields the desired m0.;bs:Var The rule ;bs� :Var requires m = m0, hen
e itsuÆ
es to show that n + �(�; S;�) + q � n0 +�(�; S(x);�(x)) + q, whi
h follows immediately asn � n0 by the premise of LF�:Var and �(�; S;�) ��(�; S(x);�(x)) by de�nition, sin
e x 2 dom� followsagain by the premise of LF�:Var.;bs:Fun Let e = f(y1; : : : ; yp). For the sake of simpli
-ity we ignore the renaming of the fun
tion
alls argu-ments into the fun
tions symboli
 arguments namesand assume those names to be equal. Hen
e let D :=Extended version, for WWW only { De
ember 31, 2002

[y1 7!v1; : : : ; yp 7!vp℄ � S a

ording to the premises of;bs:Fun.Assume �(f) = (A1; : : : ; Ap; k)! (C; k0), hen
e � :=y1:A1; : : : ; yp:Ap � � and n � k as well as n�k+k0 �n0 by the premises of LF�:Fun.Sin
e P is a valid LF� program we have �; k `�ef:C; k0. Obviously we also have � ` D : �. Form � n+�(�; S;�) + q � k+�(�;D;�)+ (n� k+ q)we apply the indu
tion hypothesis to the premise of;bs:Fun and obtain m;D; � ` ef ;bs� v; �0; m0 withm0 � k0 + �(�0; v; C) + (n � k + q) = (n � k + k0) +�(�0; v; C) + q � n0 +�(�0; v; C) + q as required.;bs:Let Let q0 := �(�; S;�2) + q and m � n +�(�; S; (�1;�2)) + q = n + �(�; S;�1) + q0 hen
e ap-plying the indu
tion hypothesis to S; � ` e1 ;bs v0; �0yields m0 � n0 +�(�0; v0; A) + q0.Let S0 := S�FV(e2) = dom�2. By ��R(�; S0) =�0�R(�; S0) a

ording to the premises of ;bs:Let,we obtain �(�; S;�2) = �(�0; S;�2) by Lemma 5.Thus m0 � n0 + �(�0; v0; A) + �(�0; S;�2) + q =n0 + �(�0; S[x7!v0℄;�2; x:A) + q. Then
e the indu
-tion hypothesis applied to S[x7!v0℄; �0 ` e2 ;bs v; �0yields m0 � n0 +�(�0; v; C) + q as required.The indu
tion hypothesis was appli
able in both
asesby the premises of LF�:Let and in the latter
ase addi-tionally by �0 ` S[x7!v0℄:f�2; x:Ag whi
h follows viaLemma 4 from �0 ` [x7!v0℄:A and via Lemma 3 from� ` S;�2.;bs:Cons A

ording to ;bs� :Cons we have m = m0 +SIZE (v), where v = �S(xh); S(xt)�, hen
e we mustshow that n + �(�; S;�) + q � SIZE (v) � n0 +�(�[7̀!v℄; `;L(A; k)) + q holds.By the premise of LF�:Cons we dedu
e n�SIZE (v) �n0 + k + SIZE (A
 L(A; k))� SIZE (v) = n0 + k wherethe equality follows sin
e fxh:A; xt:L(A; k)g � � and� ` S:�.Again by fxh:A; xt:L(A; k)g � � and the premisesof ;bs:Cons we observe �(�; S;�) � �(�; v; A
L(A; k)) = �(�[7̀!v℄; `; L(A; k)) � k whi
h
ompletesthe
laim (as k
an
els out).;bs:Mat
h-Cons Let S0 := S[xh 7!vh℄[xt 7!vt℄ and �0 :=� nx[fxh:A;xt:L(A; k)g. From � ` S : ��FV(e) thenfollows � n ` ` S0 : �0�FV(e2) as ` 62 R(�; S0�FV(e2))a

ording to a premise of ;bs:Mat
h-Cons.The appli
ation of the indu
tion hypothesis tom0; S0; � n ` ` e2 ;bs� v; �0; m0 then yields thedesired m0, provided that n + �(�; S;�) + q �n + SIZE (A
 L(A; k)) + k + �(� n `; S0;�0) + q �SIZE (�(`)) = n + k + �(� n `; S0;�0) + q sin
e m =m0�SIZE (�(`)) and SIZE (A
 L(A; k)) = SIZE (�(`))by the premise of ;bs� :Mat
h-Cons.By the premises of;bs:Mat
h-Cons we have S(x) =` and �(`) = (vh; vt) = �S0(xh); S0(xt)�. Hen
e�(�; S;�) = �(�; `; x) + �(�; S n x;� n x) = k +�(�; �S0(xh); S0(xt)�; A
L(A; k))+�(�; S nx;�nx) =k+�(� n `; �S0(xh); S0(xt)�; A
L(A; k))+�(� n `; S nx;� n x) = k + �(� n `; S0;�0) where the penultimateequation follows again by ` 62 R(�; S0�FV(e2)).

Corollary 1. If P is a valid LF� program
ontaining afun
tion symbolf : �L(B; n1) ; : : : ; L(B; nk) ;m� �! �L�B; n0� ;m0�then the fun
tion
all f(l1; : : : ; lk) evaluates properly to a listl0, provided that there are at least m+Pki=1 nijlij free mem-ory
ells available, where jlij denotes the number of nodes oflist li. After the evaluation there are at least m0 + n0jl0j free
ells available.
7. INFERENCE OF ANNOTATIONSRe
all that a linear program (LP) is a pair (V;C) where Vis a set of variables and C is a set of inequalities of the forma1x1 + : : : anxn � b where the xi are variables from V andthe ai and b are rational numbers.In addition, one may spe
ify an obje
tive fun
tion whi
his a term of the form
1x1 + � � � +
nxn where the xi arefrom V and the
i are rational numbers. In this
ase, onede�nes an optimal solution to be a solution that minimizesthe value of the obje
tive fun
tion.Our aim in this se
tion is the following. Given an LFprogram P we want to dis
over whether there exists an LF�program P 0 su
h that jP 0j = P . To this end, we noti
ethat the stru
ture of any LF�-derivation is determined byits underlying LF-derivation.This means that if we are given an LF-derivation of someprogram P all that needs to be done in order to obtain a
orresponding LF�-derivation is to �nd the numeri
al val-ues arising in type annotations in su
h a way that all thenumeri
al side
onditions are satis�ed.To dis
over these annotations, we assign to a given LF-program P (assumed to be equipped with a typing deriva-tion) an LP L(P) with the property that solutions to L(P)are in 1-1
orresponden
e with LF� programs P 0 su
h thatjP 0j = P . The LP L(P) is the pair (V;C) where V
on-tains one spe
i�
 variable for every o

urren
e of a numeri-
al value in a possible LF�typing derivation.The set C
olle
ts all the inequalities arising as side
ondi-tions in su
h a derivation. This in
ludes in parti
ular equal-ity
onstraints that are impli
it in that types are sometimesrequired to be equal, e.g. in rule LF�:Var. Note that anequality
onstraint may be en
oded as a pair of inequality
onstraints. Furthermore we add the
onstraints that allo

urring variables are nonnegative, as all LF�-type anno-tations are nonnegative.As an illustrative example, we
onsider a program P that
ontains a single fun
tion symbol rev aux : (L(A) ; L(A))!L(A) with the de�ning expression as given in Example 1.We have the LF typing derivation shown in Figure 1.In order to form L(P) we
onsider an \indeterminate"LF�-derivation as in Figure 2. It is
lear that any LF�-derivation mat
hing the LF-derivation of P arises as an in-stantiation of the derivation in Figure 2 satisfying the
on-straints given in Figure 3. Of
ourse, we
an readily elimi-nate all simple equality
onstraints given in Figure 3 leaving
 = n2 � SIZE (A)� 1� b1 n3 �
n2 � SIZE (A) + 1 + b2 + n3 n3 �
+ d � d
 � dExtended version, for WWW only { De
ember 31, 2002

LF:Vary:L(A) ` y : L(A) LF:Consy:L(A) ; h:A `
ons(h; y) : L(A) �(rev aux) = (L(A) ; L(A))! L(A) LF:Funt:L(A) ; r:L(A) ` rev aux(t; r) : L(A) LF:Lety:L(A) ; h:A; t:L(A) ` let r=
ons(h; y) in rev aux(t; r) : L(A) LF:List-Elimx:L(A) ; y:L(A) ` mat
h x with jnil) y j
ons(h; t)) let r=
ons(h; y) in rev aux(t; r) : L(A)Figure 1: Derivation of P in LFLF�:Vary:L(A; a1) ; n1 `y : L(A; a2) ;m1 LF�:Consy:L(A; a3) ; h:A; n2 `
ons(h; y) : L(A; a4) ;m2 LF�:Funt:L(A; a5) ; r:L(A;a6) ; n3 `rev aux(t; r) : L(A; a7) ;m3 LF�:Lety:L(A; a8) ; h:A; t:L(A; a9) ; n4 `let r=
ons(h; y) in rev aux(t; r) : L(A; a10) ; m4 LF�:List-Elimx:L(A; a11) ; y:L(A; a12) ; n5 `mat
h x with jnil) y j
ons(h; t)) let r=
ons(h; y) in rev aux(t; r) : L(A; a13) ;m5where rev aux : (L(A; b1) ; L(A; b2) ;
)! (L(A; b3) ; d). As an indeterminated LF�-type, A may
ontain further parameters.Figure 2: Indeterminate derivation of P in LF�.a1 = a2; n1 � m1 LF�:Vara3 = a4; n2 � SIZE (A) + 1 + a3 +m2 LF�:Consa5 = b1; a6 = b2; a7 = b3; n3 �
; n3 �
+ d � m3 LF�:Funa8 = a3; a9 = a5; a4 = a6; a10 = a7;n4 = n2;m2 = n3;m3 = m4 LF�:Leta12 = a1; a12 = a8; a11 = a9; a13 = a2; a13 = a10;n5 = n1;m5 = m1; n5 = n4 � SIZE (A)� 1� a11;m5 = m4 LF�:List-Elim
 = n5; d = m5; b1 = a11; b2 = a12; b3 = a13 Valid programa1; : : : ; a13; b1; : : : ; b3;
; d; n1; : : : ; n5;m1; : : :m5 � 0 NonnegativityThere may be further trivial
onstraints arising from the indeterminates in A.Figure 3: Constraints of LF�-derivation in Figure 2plus the nonnegativity
onstraints. Sin
e we are only inter-ested in the values of variables o

urring within �rst-ordertypes, we eliminate n2; n3 here in this example for a betterunderstanding of the set of solutions and obtain:
 � d � 0 b1 � b2 = b3 � 0An optimal solution with respe
t to the sum of all variablesis then given by
 = d = b1 = b2 = b3 = 0. Hen
e thetyping rev aux : (L(A; 0) ; L(A; 0) ; 0) ! (L(A; 0) ; 0)
an bederived in LF�, whi
h signi�es that rev aux
an be evaluatedwithout any extra heap spa
e.These equations may also be regarded as the \most gen-eral LF�-type" of rev aux, e.g. by b1 � b2 = b3 we eas-ily see that rev aux may also operate on lists
ontainingan arbitrary amount of extra heap spa
e, hen
e rev aux :(L(A; 7) ; L(A; 7) ; 0) ! (L(A; 7) ; 0)
ould be derived if ne
-essary by using rev aux in a more
ompli
ated program
on-text.The program from Example 4 portrays the usefulness ofrational solutions. For the sake of simpli
ity we unify somevariables whi
h are obviously equated. We therefore assumethe following enri
hed indeterminate signature:tos : (L(B
 B; l1) ; x1)! (L(B
 B; l3) ; x3)se
 : (L(B
 B; l1) ; x1)! (L(B
 B; l2) ; x2)tpo : (L(B
 B; l2) ; x2)! (L(B
 B; l3) ; x3)

After simpli�
ation and elimination of all variables noto

urring within the signature we are left with the followinginequalities:x1 � x2x1 � �(3 + l1) + (3 + l2) + x2x1 � �2(3 + l1) + 2(3 + l2) + x2x1 � �3(3 + l1) + 2(3 + l2) + x1 � x2 + x2x2 � x3x2 � �(3 + l2) + (3 + l3) + x3x2 � �2(3 + l2) + 3(3 + l3) + x2 � x3 + x3plus nonnegativity
onstraints. A sensible solution to theseinequalities istos : (L(B
 B; 0) ; 3)! (L(B
 B; 0) ; 0)se
 : (L(B
 B; 0) ; 3)! (L�B
 B; 32� ; 0)tpo : (L�B
 B; 32� ; 0)! (L(B
 B; 0) ; 0)This solution
an be found by an automati
 solver for linear
onstraints if the obje
tive fun
tion punishes annotations
ontained deeply within nested lists more than those o

ur-ring on toplevel, whi
h is usually a sensible thing to do.However,
hoosing the proper obje
tive fun
tion might de-pend on parti
ular
ir
umstan
es and is dis
ussed in moredetail in [11℄.Extended version, for WWW only { De
ember 31, 2002

Suppose we want to apply tos to the list l stored at ` in theheap � having length jlj = n. This list o

upies 3n heap
ells(a

ording to the de�nition of SIZE (�) in se
tion 2, we need3
ells per node: a pair of booleans and one pointer; alsosee rule ;�:Cons). A

ording to the type of tos, 0n + 3extra heap
ells are required for evaluation (the additionallyreserved heap spa
e for l, whi
h is �(�; `; L(B
 B; 0)) = 0plus 3 expli
itly reserved
ells). This amounts to 3n+3 heap
ells in total.Now we �rst apply se
 to l and
all the resulting heap�0 Sin
e se
 destroys every third element of the list,jse
(l)j = � 23n�. Cal
ulating the memory resour
es again,now a

ording to the result type of se
 yields: 3(� 23n�) +�(�0; `; L�B
 B; 23 �) = 3(� 23n�) + 32 � 23n� � 3n + 3. Thememory
ells freed by deleting list nodes of the input listallow an in
rease of additionally reserved heap spa
e for theoutput list: Ea
h deleted node frees three
ells; as there areat least 2 remaining nodes per deleted node, the additionalreserved heap spa
e per node is 32 .The inequality shows a possible memory leak of at mostthree
ells in the
ase that l has length divisible by three.This is due to the fa
t that se
 needs 3 additional
ells toensure the type L�B
 B; 32 � in the
ase that l has lengthn = 3i+2 for some i 2 N. If the length is divisible by three,these extra resour
es are not needed, thus wasted.We noti
e that the toplevel fun
tion tos also exhibits a\resour
e leak" sin
e the three additional units required to
all never show up in the result regardless of the length ofthe input. We remark that \deforestation", i.e., eliminationof the intermediate result of the
all to se

ould over
omethis. Whether this is an instan
e of a general pattern we
annot say at this point.While it should be
lear that fra
tional annotations de-s
ribe the
orre
t asymptoti
 behaviour one may wonderwhether there might be problems with
on
rete inputs sin
e,for example, allo
ating 32
ells is not possible.Consider a list l of length two, thus o

upying 6
ells inview of SIZE (B
 B
 L(�)) = 3. Applying se
 to l returnsan identi
al version of l and be
ause of the annotation 32signals the availability of 3 = 2 � 32
ells thus returning thethree extra
ells requested by se
 in this
ase.But now suppose that we mat
h against this list; the ruleLF�:List-Elim then indi
ates the availability of 32 + 3
ellsin the
ons-bran
h. Of these, we
an only use 4 immediatelyfor storing operations on the heap. However, if we mat
hagain against the remaining part we gain a

ess to the entire9 = 6 + 3
ells. Re
all that SIZE (A) 2 N.
8. INFERENCE FOR LFN;lin�In this se
tion we
onsider the problem of inferring deriva-tions in the fragment LFN;lin� from Se
tion 5 whi
h removesthe sharing rule and restri
ts resour
e annotations to natu-ral numbers. Clearly, su
h derivations for a given programP are in 1-1
orresponden
e to integral solutions of L(P).As is well-known �nding integral solutions of arbitraryLPs, let alone optimal ones, is an NP-hard problem.However, we show that in a
ertain simpli�ed sub
ase we
an eÆ
iently �nd integral solutions to L(P) that are opti-mal with respe
t to any obje
tive fun
tion
 whose
oeÆ-
ients are all nonnegative. As we want to minimize resour
e
onsumption, this is a sensible assumption on the obje
tivefun
tion in the simpli�ed sub
ase. Moreover, we show that

in the general
ase �nding integral solutions is again feasiblewhereas �nding optimal solutions is NP-hard.
8.1 Inferring toplevel annotationsSuppose that we are only interested in solutions where allvariables that o

ur within zero-order (sub-)types are zeroas well as the variables o

urring to the right hand side of�rst-order types.In parti
ular, we are looking at signatures of the form(A1; : : : ; A`; n)! (B; 0) where the Ai and B are LF�-typeswith all annotations equal to zero.Inspe
tion of the typing rules then shows that after simpli-�
ation of equality
onstraints the remaining system
onsistsentirely of
onstraints of the formx0 � a1x1 + a2x2 + � � �+ a`x` + bwhere the xi are not ne
essarily distin
t variables, the ai arenonnegative integer
oeÆ
ients, and b is an arbitrary inte-ger
onstant. The only typing rules whi
h might produ
einequalities not of this form are LF�:Fun, LF�:Sum-Elim,LF�:List-Elim, but we know that here the problemati
 neg-ative variables (i.e. those o

urring positively on the lefthand side of the � or negatively on the right hand side) areall zero by the assumption made in the simpli�ed
ase. We
all su
h a
onstraint almost positive.Theorem 2. Let (fx1; : : : ; xdg; C) be an LP where C
onsists entirely of almost positive
onstraints. Let
1; : : : ;
d 2 N. The optimal integral solution of this LPwith respe
t to the obje
tive fun
tion
1x1 + : : :
dxd
an befound in polynomial time.To prove this one shows that the optimal rational solutionis ne
essarily integral.Proof. Let x̂ 2 Qd be the optimal (not ne
essarily inte-gral) solution of the given LP.By the property that all
onstraints are almost positivewe
laim that already x̂ 2 Zd holds. For v in Q de�nebv
 = maxf
2Z j
 � vg. Let xi � a1x1 + � � �+ adxd + b beone of the
onstraints. Now,bx̂i
 � ba1x̂1 + � � �+ adx̂d + b
 � a1 bx̂1
+ � � �+ ad bx̂d
+ bThe �rst inequality follows sin
e x̂ is a valid solution,whereas the se
ond inequality follows from the fa
t that theai are positive and the de�nition of trun
ation.Sin
e all the
oeÆ
ients of the obje
tive fun
tion are pos-itive, we dedu
e x̂ = bx̂
 sin
e otherwise bx̂
 would be abetter solution than x̂.For an example we
onsider the LP arising from Exam-ple 2. In the enri
hed signature there are only three variablesremaining in the simpli�ed
ase:sort : (L(A; 0) ; xs)! (L(A; 0) ; 0)ins : (A; L(A; 0) ; xi)! (L(A; 0) ; 0)leq : (A
A;xl)! (B
 (A
A) ; 0)We do not give a
on
rete implementation of leq here andjust assume that a
all to leq does not require any resour
es.Therefore we immediately set xl := 0 throughout this exam-ple. The a
tual value of SIZE (A) is unimportant.Extended version, for WWW only { De
ember 31, 2002

Now we derive the LP as usual, inserting 0 whenever a newnumeri
al value is needed within an LF� zero-order type orin the right-hand side of a �rst-order type.After simplifying we are left with four almost positive
on-straints: xi � SIZE (A) + 1 xs � 0xi � 2xi � (SIZE (A) + 1) xi � 0hen
e xs = 0 and xi = SIZE (A) + 1 would be the optimalsolution for any obje
tive fun
tion
1xs +
2xi with
1;
2 �0. Many more programs fall under the simpli�ed sub
ase.This in
ludes the qui
ksort example in Se
tion 9 and all theLFPL-examples
ontained in [8℄.We remark that setting the annotations
ontained in typesand in result positions to �xed values other than zero alsoleads to almost positive LPs.
8.2 Efficient solutions for the general caseLet us
all an LP almost
oni
al if all inequalities are of oneof the following two forms:a1x1 + � � �+ a`x` � 0 x � bwhere ai 2 Z and b 2 N.In this
ase, the set of rational solutions is
losed undermultipli
ation with s
alars � � 1. Therefore, we
an obtainan integer solution from a rational solution by multiplyingwith the least
ommon denominator.We now show that for any LFlin-program P the LP L(P)
an be transformed into an almost
oni
al one by performinga substitution of variables. Solving the resulting system andsubstituting ba
k then yields a solution of L(P).We observe that the only pla
es where
onstants di�erentfrom zero are introdu
ed into
onstraints is via SIZE (�) inthe rules LF�:Cons, LF�:List-Elim.The nonzero
onstants of the form SIZE (A) always o

urtogether with the variable measuring the resour
e
ontent ofthe
orresponding list type. More pre
isely, for ea
h variablek arising from an (indeterminate) type L(A; k) we introdu
ethe substitution ~k = k + SIZE (A
 L(A; k)). Intuitively,~k measures the total resour
e requirement asso
iated witha parti
ular node of the data stru
ture in question. We
laim that after performing these substitutions the resultingsystem is almost
oni
al.All the abovementioned inhomogeneous
onstraints aris-ing from rules LF�:Cons, LF�:Tree-Elim, be
ome homoge-neous after the substitution. The nonnegativity
onstraintsk � 0 be
ome ~k � SIZE (A) whi
h �ts the se
ond kind ofinequalities in an almost
oni
al LP.Finally, we must
onsider equality
onstraints arising frommat
hing LF�-types. In view of the existing LF-derivationwe know that only those LF�-types with equal underly-ing LF-type will ever be mat
hed against ea
h other. ButSIZE (A) and hen
e the substitutions we perform dependonly on underlying LF-types. Thus, an equation of the fromk1 = k2 be
omes ~k1 = ~k2 after the substitution. Of
ourse,this is equivalent to ~k1 � ~k2 � 0, ~k2 � ~k1 � 0.We have thus shown the following:Theorem 3. Let P be a valid LFlin-program then thereexists an almost
oni
al ILP (V;C) and a nonnegative in-teger ve
tor
 su
h that the solution set of L(P) is equal tofx�
 j x solves Cg.

We remark that this result does not hold in the presen
e ofrules LF�:Share and LF�:List-Elim'.Corollary 2. There exists a polynomial time algorithmthat given a valid LFlin-program P determines a solution ofL(P) if one exists and reports failure otherwise.Re
onsidering Example 4 with this method yields:tos : (L(B
 B; 3) ; 6)! (L(B
 B; 3) ; 0)se
 : (L(B
 B; 3) ; 6)! (L(B
 B; 6) ; 0)tpo : (L(B
 B; 6) ; 0)! (L(B
 B; 3) ; 0)We note that this integral solution requires additional re-sour
es three times the length of the input list, whi
h are�nally left over after
omputation, whereas the fra
tionalsolution shows that these are unne
essary as
an also beseen by merging the de�nitions of tpo and se
 into spe
i�
optimized linear fun
tional
ode for tos.Although there are other integral solutions for this ex-ample, the presented solution is (under
ertain aspe
ts) thebest integral solution. However we
annot guarantee this.While �nding a solution to an almost
oni
al LP is feasible,�nding an optimal solution is not:Theorem 4. For every instan
e � of 3SAT with m vari-ables we
an �nd an almost
oni
al LP and an obje
tivefun
tion so that a solution of obje
tive value � n exists i�� is satis�able.Proof. Let � = (u11 _ u12 _ u13) ^ � � � ^ (un1 _ un2 _un3) with ea
h uij representing a literal and assume that �
ontains m distin
t boolean variables vk.Constru
t the
orresponding ILP as follows:1. First we introdu
e the variable z and the
onstraintz � 1.2. For ea
h of the m distin
t variables vk in � we in-trodu
e the integer variables xk and �xk and the
on-straints xk � 0, �xk � 0 and xk + �xk � z � 0.3. For ea
h
lause ui1 _ ui2 _ ui3 we introdu
ethe
onstraint w1 + w2 + w3 � z � 0 wherewj := (xk j uij = vk�xk j uij = :vk .The
onstru
ted LP is obviously almost positive. As theobje
tive fun
tion we
hoose Pmk=1 xk + �xk. Obviously thebest value of the obje
tive fun
tion we may expe
t is m,sin
e from the
onstraints in 1 and 2 follows xk + �xk � 1.From the
onstraints
onstru
ted by 3 we dedu
e that anyoptimal solution (ẑ; x̂) with valuem gives rise to a su

essfulvaluation � of �:�(vk) := (true j x̂k = 1 ^�̂xk = 0false j x̂k = 0 ^�̂xk = 1and vi
e versa.Moreover, it was shown in [11℄ that su
h ILPs may indeedarise from inferen
e problems. Hen
e we have:Corollary 3. Let P be a valid LF program. Finding anoptimal solution of I(P) with respe
t to a given, arbitraryobje
tive fun
tion is an NP-hard task.Extended version, for WWW only { De
ember 31, 2002

9. EXAMPLESIn this se
tion we
olle
t several illustrative examples.Example 5. We demonstrate that the Qui
ksort algo-rithm falls within the simpli�ed sub
ase presented in Se
-tion 8.1: qsort : (L(A; 0) ; 0) �! L(A; 0)split by : (A; L(A; 0) ; 0) �! L(A; 0)
 L(A; 0)in�x � : (A
A; 0)! (B; 0)qsort(l) = mat
h l withj nil) nilj
ons(h; t))mat
h split by(h; t) with u
 l)qsort(u)++
ons(h; nil)++ qsort(l)split by(p; l) = mat
h l withj nil) nil
 nilj
ons(h; t))mat
h split by(p; t) with u
 l)if h � p then
ons(h; u)
 lelse u

ons(h; l)Please note that the standard fun
tional implementation ofqui
ksort, using a �ltering fun
tion twi
e with mutually ex-
lusive �lter
onditions instead of split by, has no validLF�-derivation. Calling the �lter twi
e requires the dupli-
ation of the input list, while the type information is notenough to dedu
e that the �lter
uts down ea
h
opy so thatthe sum of the lengths of ea
h list is equal to the originallist.The sharing of heap-allo
ated data stru
tures may sim-ulate a dupli
ation in some situations, but this of
ourserestri
ts the use to read-only a

ess (ex
ept for the last a
-
ess) in order to prevent malignant sharing.The following two examples show a sensible use of sharingand hen
e rely on rule LF�:Share; their evaluation exhibitsno malignant sharing on all possible inputs so that Theo-rem 1 applies.Example 6. For
al
ulating the length of a list it is
on-venient to assume a type representing a �nite part of thenatural numbers and the presen
e of the usual arithmeti
fun
tions, e.g. N := B
32.length : (L(A; 0) ; 0)! (N; 0)length(l) = mat
h0 l withj nil) 0j
ons(h; t)) 1 + length(t)Example 7. While the length of a list
ould still be
om-puted in LFlin� without destroying the list (length might im-mediately rebuild the input list and return it together withthe value for the length) at the
ost of in
onvenient pro-gramming, the following example exhibits proper sharing ofheap-allo
ated data stru
tures.This example uses a type T(A) of binary trees whoseinternal nodes are labelled with A; leaves are unlabelledand represented by NULL. Its annotated version is T(A; k).We have �(�;NULL;T(A; k)) = 0 and �(�; `;T(A; k)) =k +�(�; �(`); A
 T(A; k)
 T(A; k)). Thus, the amount of

resour
e asso
iated with su
h a tree is k times the numberof its internal nodes.pathlist : (T(A; 1) ; 2)! (L(L(A; 0) ; 0) ; 0)patha

 : (T(A; 1) ; L(A; 0) ; 2)! (L(L(A; 0) ; 0) ; 0)in�x++ : (L(C; q) ; L(C; q) ; 0)! (L(C; q) ; 0)As we referred to ++ a few times, we present here a generi
version. For this example it suÆ
es to set C = L(A; 0) andq := 0.pathlist(t) = patha

(t;nil)patha

(t;
) = mat
h t withj leaf)
ons(
; nil)jnode(a; l; r)) let x=
ons(a;
) inpatha

�l; x�++ patha

�r; x�++(l; r) = mat
h l withjnil) rj
ons(h; t))
ons(h; t++ r)The fun
tion pathlist turns a tree into a list of lists oftype A. The sublists
ontain the labels of the internal nodesalong the path from ea
h leaf to the root.The nodes of the sublists (one for ea
h leaf) are aliasedamong ea
h other, thereby mimi
 the exa
t stru
ture of theformer tree within the heap, saving an exponential amountof spa
e. However, this stru
ture should only be used forread-only purposes, as destroying any of the element listsleads to malignant sharing.
10. RELATED WORKApproa
hes based on abstra
t interpretation and symboli
evaluation [7, 13, 4, 20, 5, 6℄ go in the dire
tion of the naiveapproa
h mentioned in the Introdu
tion. The stru
ture ofthe inferred resour
e bound mat
hes the stru
ture of theprogram. Where the program
ontains a while loop or a re-
ursion the bounding fun
tion will do so as well. This is notmeant to diminish the value of those works: To begin theabstra
t interpretation removes useless
omputation so that
omputing the bound � will in general be easier than run-ning f itself. This
an greatly simplify pro�ling and testing.Furthermore, in many
ases the re
urren
es reminis
ent ofiteration
onstru
ts in the original
ode
an be solved usingvarious methods from
omputer algebra.What distinguishes our approa
h from these is that theresulting linear bounds on
e established are trivial to evalu-ate for
on
rete input lengths, that they are independentlyveri�able and that the algorithm for their intention is prov-ably su

essful and eÆ
ient in a well-delineated subset ofprograms whi
h
omprises most textbook examples of fun
-tional programming su
h as reversal, qui
ksort, insertionsort, heap sort, Hu�man
odes, tree traversal, et
. Indeed,Unnikrishnan et al. [20℄ report performan
e problems withmedium-sized inputs and re
ommend to �t an algebrai
 ex-pression into a value table obtained from small inputs. Thisis a

eptable for pro�ling purposes but
ertainly not for re-sour
e
erti�
ation.In other works like [3℄ the user must provide a
onje
turedresour
e bound. The formalism
an be used to validateExtended version, for WWW only { De
ember 31, 2002

it but even for the validation user intera
tion is required.Moreover, this work only a

ounts for exe
ution time notheap spa
e.Another pie
e of well-known related work are Hughes andPareto's sized types [10℄. This system allows one to
ertifyupper bounds on the number of
onstru
tor symbols in in-du
tive data types. For example List k A is the type of Listsof type A of length at most k, and a

ordingly \append" hasthe type List k1 A! List (k2 +1) A! List (k1 + k2) A. A
omparison to the type of the append fun
tion ++ from Ex-ample 7 reveals the di�erent use of the annotations: Whilethe annotation of sized lists yields upper bounds on thelength, our annotation is a multipli
ative
onstant whi
hdoes not restri
t the length of lists of this type. The ap-proa
hes are thus quite di�erent te
hni
ally.Nevertheless, sized types
an also be used to infer spa
ebounds. The transition from size to spa
e is made via region-based memory management [19℄ whi
h however, imposes un-natural restri
tions due to the fa
t that a given data stru
-ture, e.g. a list, must reside entirely in one region. Thisprevents the analysis of
omputations in whi
h lifetimes ofdata stru
tures overlap, e.g. in the insertion sort algorithma

ording to x5.7 of [10℄. The authors spe
ulate on a possi-ble solution based on region resetting and liveness inferen
e,but this is not worked out in [10℄ nor in the later [16℄. Weemphasize that proper dynami
 memory allo
ation is notmodelled in [10℄. This is a

eptable in view of the intendedappli
ation of sized types to embedded programming, butnot|in our opinion|in a general fun
tional programming
ontext.Another possible advantage of inferring spa
e bounds di-re
tly, as we do,
ould lie in improved eÆ
ien
y: Merely
he
king sized type requires Presburger Arithmeti
 (
om-plete for doubly exponential time)
ompared to the poly-nomial time LP that we use. In this regard it would of
ourse be interesting to know the exa
t
omplexity of sizedtype
he
king; more mundanely, whether the full strengthof Presburger Arithmeti
 is really needed for this problem.The feasibility of inferen
e as opposed to
he
king is leftunanswered in [16, 10℄.Unlike [10℄ and [5℄ we do not analyse sta
k size in thispaper. We think that the linear bounds on sta
k size areoften not adequate sin
e typi
al algorithms
an either beoptimised using tail re
ursion to use
onstant sta
k or use asta
k of logarithmi
 size, e.g. divide-and-
onquer methods.Furthermore, our system naturally en
ompasses trees,lists of trees, et
., whereas sized types seem to work pri-marily for linear data stru
tures. While trees appear in theformal presentation in [16℄ none of the examples uses them;not even the type of the
onstru
tor for trees appears ex-pli
itly.On the other hand, [16℄
ontains a detailed and interestinga

ount of in�nite lists (streams). An exploration of streamsin our framework must be left to further resear
h.
11. CONCLUSIONSWe have presented an eÆ
ient and automati
 analysis ofheap usage of �rst-order fun
tional programs. While we�nd that our analysis is surprisingly versatile and a

uratethere are a number of ways in whi
h it
an be improved.Our analysis sometimes gives too modest assumptionsabout the memory available after exe
ution of a fun
tion.A typi
al example is flatten : L(L(A))! L(A) assumed to

be the natural implementation of
attening on lists of lists.Calling flatten(w) returns jwj heap spa
e. However, oursystem assigns for example the type L(L(A; 0) ; 0)! L(A; 0)hen
e not notifying the net resour
e-gain.To �x this parti
ular
ase it is tempting to introdu
e somekind of dependent typing allowing one to refer to the size orlength of the input in the
ost term of the result position.However, developing su
h a system whilst maintaining guar-antees on eÆ
ient solvability is a deli
ate matter and mustbe left for future resear
h.As it stands, the system is sometimes insuÆ
iently poly-morphi
. Namely, it
an happen that two usages of analready de�ned fun
tion require two di�erent annotations.Even if both these annotations are
ompatible with the de�-nition of f only one of them
an a
tually be assigned in LF�.Consider, for instan
e, the identity fun
tion f : L(B) !L(B) de�ned by f(x) = x. In LF� we must assign a parti
-ular type, say L(B; 5) ; 3 ! L(B; 5) ; 3. In this
ase, we arenot able to apply f to an argument of type L(B; 0).To address this problem within the framework of the givensystem we
an split a program into blo
ks of mutually de-pendent fun
tions and perform the analysis separately forea
h of the blo
ks of de�nition. When using a fun
tion foutside its blo
k of de�nition we
an
onsider the entire LPof fun
tion f's de�nition rather than a parti
ular solution.This approa
h
an be seen as a de�nitional extension if we
onsider ea
h o

urren
e of f outside its de�ning blo
k asthe usage of an identi
al
opy of f.If we also want to enable polymorphi
 re
ursion, i.e., adi�erent instantiation of
onstraint variables in every re
ur-sive
all, we must repla
e LF� with a
onstrained type sys-tem whose judgments are of the form C;�; n ` e:A; n where�; A;m; n may
ontain variables and C is a set of linear in-equalities
onstraining these. The details are left for futurework, but appear to be within the rea
h of the methodsdeveloped here.A similar issue arises with higher-order fun
tions. Simpleuse of higher-order fun
tions merely as a means for modular-ization su
h as in
ombinators like map, filter, et
.
an bea

ommodated by introdu
ing several de�nitions, one forea
h usage, possibly hidden under some appropriate syn-ta
ti
 sugar. Formally, this kind of usage of higher-orderfun
tions is the one supported by the C language: the onlyexpressions of fun
tion types are variables and
onstants.If we aim for more general fun
tion expressions likepartially-applied fun
tions and lambda expressions as infun
tional programming languages the problem of heapspa
e inferen
e be
omes mu
h more
ompli
ated as we needto monitor the size of
losures whi
h are mu
h more depen-dent on dynami
 aspe
ts. This is dis
ussed in some detailin [9℄. We do not see at this point how our work
ould beextended to
over general higher-order fun
tions, not evenlinear ones. One referee suggested to investigate Reynolds'idea of defun
tionalisation [17℄ whi
h eliminates
losures infavour of sum types. Again, we leave this to future work.
12. REFERENCES[1℄ Mobile resour
e guarantees. EU Proje
t No.IST-2001-33149, seehttp://www.d
s.ed.a
.uk/home/mrg/.[2℄ David Aspinall and Martin Hofmann. Another TypeSystem for In-Pla
e Update. In D. Le Metayer, editor,Programming Languages and Systems (Pro
.Extended version, for WWW only { De
ember 31, 2002

ESOP'02), volume Springer LNCS 2305, 2002.[3℄ K. Crary and S. Weiri
h. Resour
e bound
erti�
ation. In Pro
. 27th Symp. Prin
iples of Prog.Lang. (POPL), pages 184{198. ACM, 2000.[4℄ P. Flajolet, B. Salvy, and P. Zimmermann.Lambda-Upsilon-Omega: An assistant algorithmsanalyzer. In T. Mora, editor, Applied Algebra,Algebrai
 Algorithms and Error-Corre
ting Codes,volume 357 of Le
ture Notes in Computer S
ien
e,pages 201{212, 1989. Pro
eedings AAECC'6, Rome,July 1988.[5℄ Gustavo G�omez and Yanhong A. Liu. Automati
a

urate
ost-bound analysis for high-level languages.In Frank Mueller and Azer Bestavros, editors,Languages, Compilers, and Tools for EmbeddedSystems, ACM SIGPLAN Workshop LCTES'98,Montreal, Canada. Springer, 1998. LNCS 1474.[6℄ Gustavo G�omez and Yanhong A. Liu. Automati
time-bound analysis for a higher-order language. InPro
eedings of the 2002 ACM SIGPLAN workshop onPartial evaluation and semanti
s-based programmanipulation, pages 75{86. ACM Press, 2002.[7℄ Bernd Grobauer. Topi
s in Semanti
s-based ProgramManipulation. PhD thesis, BRICS Aarhus, 2001.[8℄ Martin Hofmann. A type system for bounded spa
eand fun
tional in-pla
e update. Nordi
 Journal ofComputing, 7(4):258{289, 2000. An extended abstra
thas appeared in Programming Languages and Systems,G. Smolka, ed., Springer LNCS, 2000.[9℄ Martin Hofmann. The strength of non size-in
reasing
omputation. 2002. Pro
. ACM Symp. on Prin
iples ofProgramming Languages (POPL), Portland, Oregon.[10℄ J. Hughes and L. Pareto. Re
ursion and dynami
 datastru
tures in bounded spa
e: towards embedded MLprogramming. In Pro
. International Conferen
e onFun
tional Programming (ACM). Paris, September'99., pages 70{81, 1999.[11℄ Ste�en Jost. Stati
 predi
tion of dynami
 spa
e usage

of linear fun
tional programs, 2002. Diploma thesis atDarmstadt University of Te
hnology, Department ofMathemati
s. Available at www.t
s.informatik.uni-muen
hen.de/~jost/da_sj_28-02-2002.ps.[12℄ Naoki Kobayashi. Quasi-linear types. In Pro
eedingsACM Prin
iples of Programming Languages, pages29{42, 1999.[13℄ H.-W. Loidl. Granularity in Large-S
ale ParallelFun
tional Programming. PhD thesis, Department ofComputing S
ien
e, University of Glasgow, 1998.[14℄ George Ne
ula. Proof-
arrying
ode. In Pro
. 24thSymp. Prin
iples of Prog. Lang. (POPL). ACM, 1997.[15℄ Martin Odersky. Observers for linear types. InB. Krieg-Br�u
kner, editor, ESOP '92: 4th EuropeanSymposium on Programming, Rennes, Fran
e,Pro
eedings, pages 390{407. Springer-Verlag, February1992. Le
ture Notes in Computer S
ien
e 582.[16℄ Lars Pareto. Types for
rash prevention. PhD thesis,Chalmers University, G�oteborg, Sweden, 2000.[17℄ John C. Reynolds. De�nitional interpreters forhigher-order programming languages. In Pro
eedingsof the 25th ACM National Conferen
e, pages 717{740,1972.[18℄ Natarajan Shankar. EÆ
iently exe
uting PVS.Te
hni
al report, Computer S
ien
e Laboratory, SRIInternational, 1999.[19℄ M. Tofte and J.-P. Talpin. Region-based memorymanagement. Information and Computation,132(2):109{176, 1997.[20℄ Leena Unnikrishnan, S
ott D. Stoller, and Yanhong A.Liu. Automati
 a

urate live memory analysis forgarbage-
olle
ted languages. In Pro
eedings of TheWorkshop on Languages, Compilers, and Tools forEmbedded Systems (LCTES 2001), June 22-23, 2001/ The Workshop on Optimization of Middleware andDistributed Systems (OM 2001), June 18, 2001,Snowbird, Utah, USA.

Extended version, for WWW only { De
ember 31, 2002

