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Abstract

A geostatistical framework for joint spatiotemporal modeling of atmospheric pollution is presented. The spatiotem-
poral distribution of concentration levels is modeled as a joint realization of a collection of spatially correlated time
series. Parametric temporal trend models, associated with long-term pollution variability are established from concentra-
tion pro"les at monitoring stations. Such parameters, e.g., amplitude of seasonal variation, are then regionalized in space
for determining trend models at any unmonitored location. The resulting spatiotemporal residual "eld, associated with
short-term pollution variability, is also modeled as a collection of spatially correlated residual time series. Stochastic
conditional simulation is proposed for generating alternative realizations of the concentration spatiotemporal distribu-
tion, which identify concentration measurements available at monitoring stations. Simulated realizations also reproduce
the histogram of the sample data, and a model of their spatiotemporal correlation. Such alternative concentration "elds
can be used for risk analysis studies. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Atmospheric pollution levels exhibit complex spa-
tiotemporal variability over a wide range of spatial and
temporal scales with adverse e!ects on the environment.
Often, spatiotemporal variability cannot be accurately
represented via physically based (mechanistic) models,
e.g., mathematical models of di!usion and transport of
pollutants, due to insu$cient knowledge of input para-
meters. Studying space}time patterns of atmospheric pol-
lution and modeling associated uncertainty is therefore
important for understanding the origin and e!ects of
atmospheric pollution on terrestrial ecosystems (NRC,
1986).
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Stochastic models provide a framework for routing
uncertainty into predictions, and are being increasingly
used for analyzing atmospheric pollution levels. Christakos
(1992) discusses in detail the use of such models in spatio-
temporal analysis; a recent review of geostatistical space}
time models can be found in Kyriakidis and Journel
(1999). Early approaches to space}time modeling treated
time simply as an additional dimension, and traditional
geostatistical techniques were applied to the (2D#1)
space}time domain (Eynon and Switzer, 1983). Temporal
variability was modeled as an additive component speci-
"c to the time direction, e.g., zonal anisotropy (Bilonick,
1985), or as a multiplicative component through separ-
able spatiotemporal covariance models (Christakos,
1992). Mixture models involving both zonal and separ-
able components of variability were also considered (Bi-
lonick, 1988; Haas, 1995). The framework of intrinsic
random functions of order K, originally proposed in
a purely spatial context (Matheron, 1973) was modi"ed
to incorporate a temporal trend by Seguret (1989), and
was later adopted in a joint space}time setting by
Rouhani and Hall (1989), and Christakos (1992); a recent
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application in the context of sulpfate deposition can be
found in Vyas and Christakos (1997).
Time, however, is not just an additional dimension.

There are fundamental di!erences between time and
space, such as the non-reversibility of time and the lack of
notion of past}present}future in space (Rouhani and
Myers, 1990). Approaches involving vectors of time series
exploit the typically better-informed time domain, but
are limited to predictions at the monitoring station loca-
tions (Rouhani and Wackernagel, 1990; Rouhani et al.,
1992). Such limitation hinders all important procedures
of spatiotemporal mapping. Recently, time-series ap-
proaches have been generalized to a continuous spatial
domain (Oehlert, 1993), andmaps of process levels can be
constructed recursively using Kalman "ltering (Huang
and Cressie, 1996; Wikle and Cressie, 1997).
In this paper, stochastic simulation, i.e., the procedure

of generating alternative concentration realizations over
the space}time domain of interest (Journel, 1989) is pro-
posed for assessing joint space}time uncertainty. Such
simulated concentration realizations reproduce a given
spatiotemporal covariance model, and identify measured
concentration values at monitoring stations (conditional
simulation). Joint spatiotemporal uncertainty is charac-
terized by the probability that concentration levels at
a set of locations in space over several time instants be
jointly greater than a speci"ed threshold (Haas, 1998). In
atmospheric pollution, stochastic simulation can be used
to quantify uncertainty associated with a path, along
which aerosol values, for example, jointly exceed a regu-
latory threshold. This task calls for multiple representa-
tions of the spatiotemporal process in order to determine
how often that path of connected high values appears as
existing.
A methodology for stochastic spatiotemporal model-

ing of atmospheric pollution is developed in this work.
Observed concentration levels in space and time are
modeled as a joint realization of a collection of
space-indexed time series, one for each spatial location.
Time-series model parameters are spatially varying, thus
capturing space}time interactions. Uncertainty regard-
ing concentration levels at unsampled locations is
modeled simultaneously in space and time through
stochastic simulation. In Section 2, the modeling frame-
work of spatial time series is presented, and in Section 3,
the implications of the proposed methodology for
modeling atmospheric pollution, and spatiotemporal
phenomena in general, are brie#y discussed.

2. A spatial time-series framework

Chemical deposition levels often exhibit clearly
interpretable patterns of temporal variability. Seasonal
and annual patterns in acid deposition, for example,
can be linked to precipitation patterns or seasonality

of emissions. In addition, deposition levels are typically
measured at spatially coarse monitoring networks during
long periods of time. This results into time-rich/
space-poor data sets composed of a few tens of stations,
each with long time series. It thus makes sense to
"rst capitalize on the time domain, establishing paramet-
ric temporal trend models which account for clearly
interpretable patterns of temporal variability, and then
study any dependence of these model parameters in
space.
In the proposed methodology, the spatiotemporal pro-

cess of interest is modeled as a collection of spatially
correlated time series, �Z(u, t), t3¹�, one per location
u3D; here u"(x, y) denotes the 2D spatial coordinate
vector, D denotes the study area, and ¹ the time span of
interest. That spatiotemporal process is decomposed
into

Z(u, t)"M(u, t)#R(u, t) ∀u3D ∀t3¹, (1)

where M(u, t) is a stochastic space}time component
modeling some `averagea smooth variability of the spa-
tiotemporal process Z(u, t), and R(u, t) is a stationary
residual component, independent ofM(u, t), modeling the
higher frequency #uctuations around that trend in both
space and time.
The trend component typically models long-term tem-

poral patterns, such as process variability attributed to
climatic factors. Other components of variability, e.g.,
those linked to local weather patterns, are typically ac-
counted for by the stochastic residual process. It should
be stressed that the dichotomy of relation (1) is a (subjec-
tive) modeling decision: there is no `truea temporal trend
component, since there are no trend data. All trends are
models resulting from the speci"c algorithm used to
determine them, hence, all trend values instead of being
estimated values are actually algorithm-speci"c model
outcomes. The resulting residual component is thus
a collective term for all components of variability that are
not included in the trend model (ThieH baux, 1997).
Temporal pro"les of chemical deposition are not sta-

tionary in space, i.e., they vary from one location to
another, especially over large (continental) scales. Sulfate
deposition in Scandinavia, for example, does not exhibit
the same pattern of temporal variability as that in south-
ern Europe, mainly due to the in#uence of local emission
patterns and climatic factors. In addition, spatially vary-
ing weather conditions lead to di!erent patterns of tem-
poral variability in regions nearby the ocean and in
orographically isolated areas. It is therefore critical to
consider spatially non-stationary patterns of temporal
variability in the modeling procedure.
In this paper, local parametric models for the temporal

trend and residual concentration are "rst established at
the monitoring stations. The spatial distribution of each
parameter is then characterized probabilistically via
a random function (RF) or random "eld model, i.e.,
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a collection of spatially correlated random variables
(RVs). These parameter RFs are in turn speci"ed by their
statistics, e.g., histograms and variograms. Such statistics
are also parametrized: the variogram of each parameter
RF, for example, is parametrized in terms of its range and
sill value; these latter parameters are termed hyper-
parameters in the Bayesian literature (Gelman et al.,
1995). The "nal objective is to determine the posterior
distribution, i.e., a model of uncertainty given all avail-
able information, of the unknown parameter values de-
"ning the temporal trend and residual components at
any unmonitored location. In lieu of analytical deriva-
tions or numerical integrations typically performed
in Bayesian analysis, conditional simulation is adopted
for arriving at such posterior parameter distributions.
Similar approaches include the family of hierarchical
Bayesian models, see for example Wikle and Cressie
(1997). The additional inference e!ort incurred from con-
sidering spatially varying parameters is compensated by
a more realistic representation of the spatiotemporal
process variability.

2.1. Station-specixc temporal trend models

The "rst task is to identify interpretable temporal
trend forms at each monitoring station location u� , such
as cyclicity of clear period, e.g., annual cycle, or long-term
trends linked to emission control policies. This can be
done using time or frequency domain algorithms for
signal processing (Chat"eld, 1996).
The sample concentration pro"le �z(u� , t�), i3¹�� at

each station location u� is regarded as a realization of
a random process �Z(u� , t� ), i3¹��, where ¹� is the time
span of measurements at u� . This random process
�Z(u� , t� ), i3¹�� is decomposed as

Z(u� , t�)"m(u� , t� )#R(u� , t�), t
�
3¹� , (2)

where �m(u� , t� ), t�3¹�� is a deterministic temporal
trend, and �R(u� , t� ), t�3¹�� is a stationary, zero mean,
stochastic residual process.
The deterministic trend at each station location u�3D

is modeled as the sum of (K#1) basis functions of time
f
�
(t):

m(u� , t�)"
�
�
���

b
�
(u� ) f� (t�), t

�
3¹� , (3)

where b
�
(u� ) is the coe$cient (intensity) associated with

the kth function f
�
(t
�
), with f

�
(t
�
)"1 by convention.

Each basis function f
�
(t) is independent of the spatial

location u, and should ideally have a physical interpreta-
tion pertinent to the entire study region. In other words,
f
�
(t) should correspond to some physically meaningful
component of variability, such as a known annual or
seasonal periodic component. Periodicities, especially

when physically interpretable, should be incorporated in
the deterministic trend �m(u� , t� ), t3¹�� as a Fourier
series, that is a series of sine and cosine functions (Chat-
"eld, 1996).
The (K#1) column vector of coe$cients [b�]"

[b
�
(u� ), k"0,2,K]� is modeled at each station loca-

tion u� , independently from one location to another,
using multiple regression (note that superscript � denotes
transposition). More precisely, the sample concentration
data at location u� are expressed as

[z�]"[ f ][b�]#[r�],

where [z�] is a ¹��1 column vector of observations
available at location u� , [ f ] is a ¹��(K#1) design
matrix, and [r�] is a ¹��1 column vector of residuals.
The vector of coe$cients [b�] is expressed as

a weighted linear combination of the available data [z�]
as: [b�]"[��][z�], where [��] is a (K#1)�¹� matrix
of weights assigned to each of the ¹� concentration data.
If the matrix [ f ] is full rank, i.e., its columns are linearly
independent, then the previous system has a unique
solution and the resulting vector of weights [��] is given
by the ordinary least-squares (OLS) solution as [��]"
([ f ]�[ f ])��[ f ]� (Searle, 1971).
Once the vector [b�] of (K#1) coe$cients speci"c to

each station location u� is determined, the algorithm-
speci"c temporal trend model �m(u� , t� ), t�3¹�� at that
location is given by expression (3), and the corresponding
residual series are obtained as

r(u� , t�)"z(u� , t� )!
�
�
���

b
�
(u� ) f� (t� ), i"1,2,¹� . (4)

In the proposed approach, the (K#1) station-speci"c
temporal trend coe$cients are de"ned via the algorithm
adopted for their construction; these coe$cients are
treated as precise data. Alternatively, one could use the
variance of the OLS estimator as a measure of local
random variability, which could be viewed as part of
a nugget component when inferring the spatial cross-
variograms of the coe$cient "elds (see next section). This
component could be suppressed ("ltered) via factorial
kriging (Goovaerts, 1997).
In most regional-scale applications, climatic long-term

patterns explain di!erent proportions of the process tem-
poral variability from location to location. Such a spa-
tially varying in#uence of the trend, and consequently of
the residual, component is captured by the location-
dependent variance of the residual concentration pro"les,
see Section 2.4.

2.2. Regionalizing temporal trend coezcients

Recall that temporal trend models �m(u� , t), t3¹� are
established independently at each station location u� .
The resulting temporal trend model parameter values,
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i.e., the entries of the n parameter vectors [b�], �"

1,2, n, one per location u� , are spatially correlated since
they are derived from the same process data [z�], them-
selves correlated in space and time. Spatiotemporal inter-
actions between the trend components are accounted for
by correlating in space the local trend model parameters
(b

�
-values). A similar approach was proposed by Oehlert

(1993); the methodology developed hereafter extends this
approach to a simulation context, accounting for spatial
cross-correlation between the temporal trend para-
meters.
In the proposed approach, a stochastic spatiotemporal

trend model M(u, t) is de"ned by viewing the set of
(K#1) trend coe$cients as a joint realization of a set of
(K#1) cross-correlated RFs �B

�
(u), u3D�, k"0,2,K,

i.e.

M(u, t)"
�
�
���

B
�
(u) f

�
(t), ∀u3D, ∀t3¹, (5)

where ¹ denotes the constant time span, same over the
entire domain D.
One could physically interpret the spatial correlation

between temporal trend model parameters (b
�
-values).

A model of spatial correlation for any two slope b
�
-

values, for example, could be viewed as a measure of the
in#uence of emission control policies implemented in any
two locations to the rate of decrease or increase of chem-
ical deposition at these locations. Similarly, a model of
spatial correlation between any two phase values derived
from spectral analysis at two monitoring stations could
quantify the in#uence of transport processes on peak
trend values at these stations.
In a simulation context, a joint realization of the

(K#1) coe$cient values �b���
�
(u), u3D�, k"0,2,K, de-

termines the sth realization of the spatiotemporal trend
"eld �m���(u, t), u3D, t3¹� over the space}time domain
D�¹, as

m���(u, t)"
�
�
���

b���
�
(u) f

�
(t), ∀u3D, t3¹, (6)

where the superscript (s) designates the sth simulated
realization.
Such simulation calls for modeling covariance matrix

of the vector RF �B(u), u3D�, where B(u)"[B
�
(u),

k"0,2,K]�. This allows reproduction of any cross-
correlation between b

�
-coe$cients at lag �h�"0. For

example, the negative correlation between the intercept
and the linear gradient "elds, B

�
(u) and B

�
(u), which is

inherent to any line-"tting procedure, is reproduced by
the corresponding simulated realizations.

2.3. Simulation of spatiotemporal trend

Simulation of the spatiotemporal trend reduces to in-
dependent simulation of a set of uncorrelated factors,

resulting from principal component analysis (PCA) of the
(K#1) sets of trend coe$cients. PCA amounts to trans-
forming a set of correlated variables, the b

�
-coe$cients in

this case, into uncorrelated (at �h�"0) x
�
-components

termed factors, each component being a speci"c linear
combination of the original variables (Wackernagel,
1995). Simulated realizations of the set of (K#1) uncor-
related factors X

�
(u) at location u are generated indepen-

dently one from another, and the set of (K#1) simulated
coe$cients of the temporal trend are retrieved from these
simulated values.
More speci"cally, a joint conditional realization

�b���
�
(u

�
), j"1,2,N�, k"0,2,K, of the (K#1) coe$c-

ient RFs �B
�
(u), u3D�, k"0,2,K, over N grid nodes

discretizing the domain D is generated by: (a) generating
a realization �x���

�
(u

�
), j"1,2,N�, of the (K#1) factor

RFs �X
�
(u), u3D�, k"0,2,K, independently one from

another; this realization identi"es the n�(K#1) respect-
ive sample factor data �x

�
(u� ), �"1,2, n�, k"0,2,K,

and (b) retrieving the simulated value b���
�
(u

�
) of the kth

coe$cient at each node u
�
as

b���
�
(u

�
)"

�
�

����

h
���
x���
�
(u

�
)s
���

#m
���

u
�
3D,

where h
���
are entries of the matrix H"Q��, with Q

being the matrix of eigenvectors associated with the cor-
relation matrix of theK#1 coe$cients, m

���
, s

���
are the

mean and standard deviation of the k�th coe$cient
values.
Any conditional simulation algorithm can be em-

ployed for generating the S realizations of each factor RF
�X

�
(u), u3D�, e.g., Gaussian or direct sequential simula-

tion (Journel, 1994; Deutsch and Journel, 1998). The
orthogonality of the principal components at lag �h�"0,
which is ensured by construction and for a multivariate
Gaussian RF implies their independence, is assumed to
extend to all other separation vectors h, i.e.,
Cov�X

�
(u),X

��
(u#h)�KC

���
(h)"0, ∀kOk�, ∀h. This

assumption is valid if the (K#1) variables are intrinsi-
cally correlated, i.e., any cross-covariance C

���
(h) is pro-

portional to a single common auto-covariance
C

�
(h)"C(h). If this is not the case, then all auto and

cross-covariance functions C
���
(h) should be jointly

modeled via the linear model of coregionalization (Jour-
nel and Huijbregts, 1978; Wackernagel, 1995).

2.4. Location-specixc temporal residual models

The spatiotemporal residual process �R(u, t), u3D,
t3¹� is modeled as a collection of spatially correlated
residual time series (TS), one for each location u3D.
Sample residual pro"les �r(u� , t� ), i"1,2,¹��, �"

1,2, n, are "rst standardized to unit variance by dividing
each residual value r(u� , t� ) at location u� by the standard
deviation s

�
(u� ) of the residual pro"le at that location.
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Such a standardization step amounts to de"ning the
residual spatiotemporal "eld

R(u, t)"S
�
(u) )RK (u, t), u3D, t3¹ (7)

with the scale RF �S
�
(u), u3D� having unit mean, and

being uncorrelated with the RF �RK (u, t), u3D, t3¹�,∀t.
The spatially varying residual variance value s�

�
(u)

at each location u quanti"es the amount of temporal
concentration variability, which is accounted for (`ex-
plaineda) by the residual component at u. A low residual
variance s�

�
(u) implies that the trend component at loca-

tion u provides a close approximation of the actual
concentration pro"le at that location. Conversely, a high
residual variance s�

�
(u) implies that most of the concen-

tration temporal variability is modeled (`absorbeda) by
the residual component.
Next, consider the following decomposition (a model)

of the TS �RK (u� , t), t3¹� into (¸#1), zero mean, inde-
pendent component TS �RK

�
(u� , t), t3¹�, l"0,2,¸, as

RK (u� , t)"
	
�
���

w
�
(u� )RK � (u� , t), �3(n) (8)

with Cov�RK
�
(u� , t), RK ��(u� , t#�)�"�

���
C

�K �
(�; �), where

�
���
is the Kronecker delta, i.e., �

���
"1 if l"l�, zero if not;

C
�K �
(�; �) denotes the covariance of the lth component TS

�RK
�
(u� , t), t3¹�, with �"t!t� being a temporal lag dis-

tance.
The covariance function C

�K
(�; �) of the standardized

residual TS �RK
�
(u� , t), t3¹� de"ned in Eq. (8) is paramet-

rized as

C
�K
(�; �(u�))"

	
�
���

p
�
(u� )C�K �

(�; q
�
(u� )),

where p
�
(u� )"(w

�
(u� ))� and q� (u� ) are the positive weight

(sill) and range of the lth basic component covariance
C

�K �
(�; �). The sill p

�
(u� ) and range q� (u� ) values quantify

the amount of temporal variability and the correlation
length associated with the lth component TS �RK

�
(u� , t),

t3¹�. By convention, q
�
( ) )"	 is a very small range,

which corresponds to a white noise process or nugget
e!ect. These 2(¸#1) parameters comprise the station-
speci"c parameter vector �(u� )"[�p

�
(u� ), q� (u�)�, l"

0,2,¸]�.
For simplicity, all (¸#1) basic structuresC

�K �
(�; q

�
(u�))

are assumed here to be of the same type, e.g., spherical or
exponential covariance models. The number (¸#1) of
component TS �RK

�
(u� , t), t3¹� could be also made loca-

tion-speci"c; here it is assumed constant. In most practi-
cal applications, the temporal correlation of the residual
concentration pro"les can be modeled by a nugget e!ect
and an exponential structure, the latter corresponding to
a "rst-order auto-regressive process (Chat"eld, 1996).
By viewing the set of (¸#1) sill p

�
-parameters, and the

set of (¸#1) range q
�
-parameters as a joint realization of

a set of 2(¸#1) cross-correlated RFs �[P
�
(u),Q

�
(u)],

u3D�, l"0,2,¸, the standardized spatiotemporal re-
sidual "eld RK (u, t) is de"ned as

RK (u, t)"
	
�
���

�P
�
(u)RK

�
(u, t), u3D, t3¹. (9)

The location-speci"c covariance function C
�K
(�; �(u)) of

the TS �RK (u, t), t3¹� is then written as C
�K
(�; �(u))"

�	
���
p
�
(u)C

�K �
(�; q

�
(u)), with p

�
(u)"(w

�
(u))� now being

a realization of the RV P
�
(u) de"ned at location u, and

q
�
(u) is a realization of the RV Q

�
(u) de"ned at the same

location.
In practice, the n temporal covariance models

C
�K
(�; �(u�)) of the n standardized residual processes

�RK (u� , t), t3¹� are inferred independently at each station
location u� , and their parameters are regionalized in
space accounting for their spatial correlation. This entails
regionalization of the (¸#1) sill parameters �P

�
(u),

u3D�, l"0,2,¸, as well as regionalization of the ¸-
range parameters �Q

�
(u), u3D�, l"1,2,¸, which leads

to a model C
�K
(�; �H(u)) for the covariance function of the

residual TS at any unmonitored location u. Recall that
a nugget e!ect is characterized by a very small, but
constant, range q

�
( ) )"	, hence the need to regionalize

only ¸-range parameters.

2.4.1. Simulation of spatiotemporal residual
Simulation of the spatiotemporal residual amounts to

generating realizations of a series of 1D processes, the
standardized residual process �RK (u, t), t3¹� at each loca-
tion u, using the corresponding covariance model
C

�K
(�; �(u)). Any stochastic simulation algorithm can be

used for simulating these residual pro"les, e.g., sequential
simulation or simulation via Cholesky decomposition of
the covariance matrix (Deutsch and Journel, 1998).
Simulated realizations of the spatiotemporal residual
"eld RK (u, t) exhibit both temporal and spatial correla-
tion. Temporal correlation is imposed via the (location-
speci"c) temporal covariance model C

�K
(�; �*(u)). Spatial

correlation is induced via the spatial correlation of the
entries of the parameter vector �*(u), i.e., via the
covariance models C


�
(h) and C

��
(h) of the sill and range

values of each component TS �RK
�
(u, t), t3¹�. A non-

conditional realization �r( ���(u, t), t3¹� of standardized
residual pro"le at any location u, however, cannot be
generated independently from a realization �r( ���(u�, t),
t3¹� at another location u�, even if the corresponding
two parameter vectors �H(u) and �H(u�) are spatially corre-
lated; the reason is that the random numbers used for
simulating the two TS (e.g., Chat"eld, 1996) at locations
u and u� should not be drawn independently at these
locations. Additional spatial correlation is induced by an
unobservable random "eld of innovations, which is spa-
tially correlated and serially uncorrelated (Wikle and
Cressie, 1997; Wilks, 1998). If sequential Gaussian
simulation, i.e., autoregression, is used for simulating
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standardized residual r( -pro"les at each unmonitored lo-
cation u, such innovation values are spatially colored and
temporally white standard normal deviates; their spatial
covariance could be identi"ed to that of the sample
standardized r( -residuals after the latter are transformed
to a Gaussian distribution.
The above innovations "eld is also used for indirectly

conditioning simulated r( -pro"les to sample residual r( -
data measured at nearby monitoring stations. When
simulating a non-conditional realization �r( ���(u, t

�
), i"

1,2,¹� of the standardized residual TS �RK (u, t), t3¹� at
location u, sample residual r( -data available at nearby
monitoring stations are not taken into account; only
previously simulated r( -values at u. Consequently, a high
simulated residual value r( ���(u, t

�
) can be generated next to

a low sample residual r( (u� , t� ) measured at the same time
instant t

�
at an adjacent station location u� . In the con-

text of sequential Gaussian simulation, indirect condi-
tioning to contemporaneous r( -data can be achieved by
conditioning innovation realizations to the normal
scores (quantiles of a Gaussian distribution) of the con-
temporaneous sample r( -data. Such a conditioning step
results into simulating high innovation values, and con-
sequently high r( -values, nearby high sample r( -data
(Kyriakidis, 1999).
Simulated realizations �z���(u, t), t3¹� of concentra-

tion pro"les are "nally built by adding the simulated
trend �m���(u, t), t3¹� and residual �r���(u, t), t3¹�
pro"les. Since the spatiotemporal trend and residual
components are assumed uncorrelated, see de"nition (1),
simulation of the trend "eld is performed independently
from that of the residual "eld. Often, concentration re-
cords �z(u� , t� ), i"1,2,¹�� at the n monitoring station
locations u� , �3(n) are not complete. In this case, the
missing values of the station pro"les are in-"lled by
stochastic simulation. The set of S alternative, equally
probable, realizations �z���(u, t), u3D, t3¹� provide a
model of uncertainty for the unknown process levels in
both space and time, which can be used for risk assess-
ment studies or for deciding on additional sampling
(Haas, 1998).

3. Discussion

A framework for stochastic spatiotemporal modeling
of atmospheric pollution has been presented in this pa-
per. Observed concentration levels are viewed as a joint
realization of a collection of spatially correlated time
series, thus capitalizing on the typically better informed
time domain. The stochastic spatiotemporal "eld is de-
composed into a stochastic trend and a stochastic resid-
ual component. Parametric temporal trend models are
established at all monitoring stations, independently
from one location to another, and their parameters are
coregionalized in space. This amounts to mapping the

task of simulating a space}time trend "eld to that of
generating realizations of a set of cross-correlated RFs
modeling the joint spatial distribution of the temporal
trend parameters. Joint conditional simulation of such
parameters ensures reproduction of important cross-cor-
relations between them. Simulated realizations of the
spatiotemporal residual component are "nally generated
via a series of TS realizations, whose parameters are
correlated in space.
The proposed methodology is a (distributed para-

meter) spatial time series framework merging modeling
approaches typically applied independently in a spatial
and temporal context; this comprehensive framework
allows a consistent modeling of spatial and temporal
variability through stochastic simulation. Concentration
pro"les obtained from mechanistic model predictions at
each location could alternatively be viewed as local trend
components (Venkatram, 1988), and the spatiotemporal
distribution of the resulting residual pro"les could then
be modeled along the lines proposed in this work. The set
of alternative concentration realizations provides
a model of uncertainty regarding the unknown concen-
tration levels in both space and time. Such an uncertainty
model could be used in a risk analysis context for study-
ing the impact of emission control policies or for design-
ing monitoring networks.
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