
Handling the Problems and Opportunities Posed by
Multiple On-Chip Memory Controllers ∗

Manu Awasthi, David Nellans, Kshitij Sudan,
Rajeev Balasubramonian, Al Davis

School of Computing, University of Utah

{manua, dnellans, kshitij, rajeev, ald} @cs.utah.edu

ABSTRACT

Modern processors such as Tilera’s Tile64, Intel’s Nehalem,
and AMD’s Opteron are migrating memory controllers (MCs)
on-chip, while maintaining a large, flat memory address space.
This trend to utilize multiple MCs will likely continue and
a core or socket will consequently need to route memory re-
quests to the appropriate MC via an inter- or intra-socket
interconnect fabric similar to AMD’s HyperTransport

�

, or
Intel’s Quick-Path Interconnect

�

. Such systems are there-
fore subject to non-uniform memory access (NUMA) laten-
cies because of the time spent traveling to remote MCs.
Each MC will act as the gateway to a particular piece of
the physical memory. Data placement will therefore become
increasingly critical in minimizing memory access latencies.

To date, no prior work has examined the effects of data
placement among multiple MCs in such systems. Future
chip-multiprocessors are likely to comprise multiple MCs
and an even larger number of cores. This trend will in-
crease the memory access latency variation in these systems.
Proper allocation of workload data to the appropriate MC
will be important in reducing the latency of memory service
requests. The allocation strategy will need to be aware of
queuing delays, on-chip latencies, and row-buffer hit-rates
for each MC. In this paper, we propose dynamic mech-
anisms that take these factors into account when placing
data in appropriate slices of the physical memory. We in-
troduce adaptive first-touch page placement, and dynamic
page-migration mechanisms to reduce DRAM access delays
for multi-MC systems. These policies yield average perfor-
mance improvements of 17% for adaptive first-touch page-
placement, and 35% for a dynamic page-migration policy.

∗This work was supported in parts by NSF grants CCF-
0430063, CCF-0811249, CCF-0916436, NSF CAREER
award CCF-0545959, SRC grant 1847.001, Intel, HP, and
the University of Utah.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

Categories and Subject Descriptors

B.3.1 [Memory Structures]: Semiconductor Memories–
DRAM; B.3.2 [Memory Structures]: Design Styles–Shared
Memory

General Terms

Design, Performance, Experimentation

Keywords

DRAM Management, Data Placement, Memory Controller
Design

1. INTRODUCTION
Modern microprocessors increasingly integrate the mem-

ory controller (MC) on-chip in order to reduce main memory
access latency. Memory pressure will increase with increas-
ing core-counts per socket and a single MC will quickly be-
come a bottleneck. In order to avoid this problem, modern
multi-core processors (chip multiprocessors, CMPs) have be-
gun to integrate multiple MCs per socket [46, 50, 55]. Simi-
larly, multi-socket motherboards provide connections to mul-
tiple MCs via off-chip interconnects such as AMD’s Hyper-
Transport

�

(HT) and Intel’s Quick Path Interconnect
�

(QPI).
In both architectures, a core may access any DRAM location
by routing its request to the appropriate MC. Multi-core ac-
cess to a large physical memory space partitioned over mul-
tiple MC’s is likely to continue and exploiting MC locality
will be critical to aggregate system performance.

Recent efforts [5, 34, 51, 55] have incorporated multiple MCs
in their designs, but there is little evidence on how data
placement should be managed and how a particular place-
ment policy will affect main memory access latencies. In
addressing this problem, we note that simply allocating an
application’s thread data to the closest MC may not be op-
timal since it does not take into account queuing delays,
row-buffer conflicts, etc. In particular, we focus on place-
ment strategies which incorporate: (i) the communication
distance and latency between the core and the MC, (ii) queu-
ing delay at the MC, and (iii) DRAM access latency which is
heavily influenced by row-buffer hit rates. We show that im-
proper management of these factors can cause a significant
degradation of performance.

To our knowledge, this is the first attempt at intelligent
data placement in a multi-MC platform. We note however
the similarities in previous efforts to optimize data place-

ment in last-level shared NUCA caches [6, 10–13, 19, 21, 32,
43, 49, 56]. However, the key difference is that caches tend
to be capacity limited, while DRAM access delays are gov-
erned primarily by other issues such as long queuing delays
and row buffer hit rates. To the best of our knowledge, there
are only a handful of papers that explore challenges faced
in the context of multiple on-chip MCs. Abts et al. [5] ex-
plore the physical layout of multiple on-chip MCs to reduce
contention in the on-chip interconnect. The optimal lay-
out makes the performance of memory-bound applications
predictable, regardless of which core they are scheduled on.
Kim et al. [26] propose a new scheduling policy in the con-
text of multiple MCs which requires minimal coordination
between MCs. However both of these proposals do not con-
sider how data should be distributed in a NUMA setting
while taking into account the complex interactions of row-
buffer hit rates, queuing delays, on-chip network traffic, etc.
Our work takes these DRAM-specific phenomena into ac-
count and explores both first-touch page placement and dy-
namic page-migration to reduce access delays. We show av-
erage performance improvements of 17% with an adaptive
first-touch page-coloring policy, and 35% with a dynamic
page-migration policy.

The paper is organized as follows. We provide background
and motivational discussion in Section 2. Section 3 details
the adaptive first-touch and dynamic migration policies and
Section 4 provides quantitative comparison of the proposed
policies. We discuss related work in Section 5 and conclude
in Section 6.

2. BACKGROUND AND MOTIVATIONAL

RESULTS

2.1 DRAM Basics
For JEDEC based DRAM, each MC controls one or more

dual in-line memory modules (DIMMs) via a bus-based chan-
nel comprising a 64-bit datapath, a 17-bit row/column ad-
dresspath, and an 8-bit command/control-path [37]. The
DIMM consists of 8 or 9 DRAM chips, depending on the
error correction strategy, and data is typically N -bit inter-
leaved across these chips; N is typically 1, 4, 8, or 16 indicat-
ing the portion of the 64-bit datapath that will be supplied
by each DRAM chip. DRAM chips are logically organized
into banks and DIMMs may support one or more ranks. The
bank and rank organization supports increased access par-
allelism since DRAM device access latency is significantly
longer than the rate at which DRAM channel commands
can be issued.

Commodity DRAMs are very cost sensitive and have been
optimized to minimize the cost/bit. Therefore, an orthogo-
nal 2-part addressing scheme is utilized where row and col-
umn addresses are multiplexed on the 17-bit address chan-
nel. The MC first generates the row address that causes an
entire row of the target bank to be read into a row-buffer.
A subsequent column address selects the portion of the row
buffer to be read or written. Each row-buffer access reads
out 4 or 8 kB of data. DRAM sub-array reads are destruc-
tive but modern DRAMs restore the sub-array contents on
a read by over-driving the sense amps. However if there is
a write to the row-buffer, then the row-buffer must be writ-
ten to the sub-arrays prior to an access to a different row in
the same bank. Most MCs employ some variation of a row-

buffer management policy, with the open-page policy being
the most favored one. The open-page policy maintains the
row-buffer contents until the MC schedules a request for a
different row in that same bank. A request to a different row
is called a “row-buffer conflict”. If an application exhibits lo-
cality, subsequent requests will be serviced by a “row-buffer
hit” to the currently active row-buffer. Row-buffer hits are
much faster to service than row-buffer conflicts.

The MC typically has a queue of pending requests and
schedules the next request while dealing with timing con-
straints, bank constraints, and priorities. A widely adopted
scheduling policy is FR-FCFS (First Ready - First Come
First Serve) [45] that prioritizes requests to open rows and
breaks ties based on age. In modern architectures with mul-
tiple MCs, each MC has a dedicated channel to the DIMMs
it controls.

2.2 Current/Future Trends
Several commercial designs have not only moved the MC

on chip, but have also integrated multiple MCs on a single
multi-core die. For example, Intel’s Nehalem processor [50]
shown in Figure 1(a) integrates four cores and 1 MC with
three channels to DDR3 memory. Multiple Nehalem pro-
cessors in a multi-socket machine are connected via a QPI
interconnect fabric. Any core is allowed to access any loca-
tion of the physical memory, either via its own local MC or
via the QPI to a remote processor’s MC. The latency for re-
mote memory access, which requires traversal over the QPI
interconnect, is 1.5x the latency for a local memory access
(NUMA factor). This change is a result of on-die MCs: in
earlier multi-socket machines, memory access was central-
ized via off-chip MCs integrated on the Northbridge. This
was then connected via a shared bus to the DIMMs. Similar
to Intel’s Nehalem architecture, AMD’s quad-core Opteron
integrates two 72-bit channels to a DDR2 main memory
subsystem using one MC [46]. The Tile64 processor [55]
incorporates four on-chip MCs that are shared among 64
cores/tiles. A specialized on-chip network allows all the tiles
to access any of the MCs, although placement details are not
publicly available. The Corona architecture from HP [51] is
a futuristic view of a tightly coupled nanophotonic NUMA
system comprising 64 4-core clusters, where each cluster is
associated with a local MC.

It is evident that as we increase the number of cores on-
chip, the number of MCs on-chip must also be increased to
efficiently feed the cores. However, the ITRS roadmap [23]
expects almost a negligible increase in the number of pins
over the next 10 years, while Moore’s Law dictates at least
a 16x increase in the number of cores. Clearly the number
of MCs cannot scale linearly with the number of cores. If it
did, the number of pins per MC would reduce dramatically,
causing all transfers to be heavily pipelined leading to long
latencies and heavy contention, as shown in Section 4. The
realistic expectation is that future many-core chips will ac-
commodate a moderate number of memory controllers, with
each MC servicing requests from a subset of cores. This is
reflected in the layout that we assume for the rest of this
paper, as shown in Figure 1(b). Sixteen cores share four
MCs that are uniformly distributed at the edge of the chip.
Given that on-chip wire delays are important constraints,
this layout helps reduce MC to I/O pin or core distance.

(a) The logical organization of a multi-socket
Nehalem.

(b) The 16-core 4-MC model assumed in this study.

Figure 1: Platforms with multiple memory controllers.

2.3 Motivational Data
This paper focuses on the problem of efficient data place-

ment at OS page granularity, across multiple physical mem-
ory slices. The related problem of data placement across
multiple last-level cache banks has received much atten-
tion in recent years, with approaches such as cooperative
caching [10], page spilling [13], and their derivatives [6, 11,
12, 19, 21, 32, 43, 49, 56] being the most commonly known ex-
amples. There has been little prior work on OS-based page
coloring to place pages in different DIMMs or banks to pro-
mote either DIMM- or bank-level parallelism (Zhang et al. [57]
proposed to employ a hardware mechanism within the mem-
ory controller to promote bank-level parallelism). The DRAM
problem has not received as much attention because there
is a common misconception that most design considerations
for memory controller policy are dwarfed by the long latency
for DRAM chip access. We argue that this is not the case.

As mentioned before, the NUMA factor in a modern sys-
tem can be as high as 1.5 [50]. This is because of the high
cost of traversal on the off-chip QPI/HT network as well as
the on-chip network. As core count scales up, wires emerge
as bottlenecks. As complex on-chip routed networks are
adopted, one can expect tens of cycles of delay to send re-
quests across the length of the chip [17, 55] which further
increases the NUMA disparity.

Pin count restrictions prevent the MC count from increas-
ing linearly with the number of cores, while maintaining a
constant channel count/width per MC. Hence, the number
of cores serviced by each MC will continue to rise, leading
to non-trivial contention and long queuing delays. Many
recent studies [22, 31, 40, 41, 58] have identified MC queu-
ing delays as a major bottleneck and have proposed novel
mechanisms to improve scheduling policies. To verify these
claims, we carried out experiments for the configuration pa-
rameters described in Section 4 for a 16 core system with 1

Figure 2: Relative Queuing Delays for 1 and 16

threads, single MC, 16 cores

on-chip MC. Each application was run with a single thread
and then again with 16 threads, with one thread pinned
on every core. Figure 2 shows the average queuing delays
experienced by both the configurations; the 16 thread con-
figuration is normalized against the single thread case of the
workload. The average queuing delay across 16-threads as
compared to a run with just one thread is higher by an order
of magnitude, sometimes being as high as 16x (Bodytrack).
For some applications, the average number of cycles spent
by a request buffered in the MC queues can be as high as
280 CPU cycles for the 16-thread case. This constitutes a
significant fraction of the average time to service a mem-
ory request (530 cycles), and hence makes a strong case for
considering queuing delays in optimizing data placement.

It is also important to maximize row-buffer hit-rates. Not

Figure 3: Row-Buffer Hit Rates, Dual-Socket,

Quad-Core Opteron

accounting for system overheads, for our choice of simulation
parameters, row-buffer hits can return data in 25 DRAM cy-
cles, while row-buffer conflicts require at least 75 DRAM cy-
cles for a DDR3-1333 memory and a 3.0 GHz CPU. Figure 3
shows row-buffer hit-rates for a variety of applications when
running in 1-, 4-, and 8-thread modes. These measurements
were made using hardware performance counters [1] on a
dual-socket, quad-core AMD Opteron 2344HE system with
16 2-GB DIMMs. These results exhibit the variation in row-
buffer hit-rates among applications. More importantly, with
increased thread counts, we observe that hit-rates decrease
substantially due to row-buffer conflicts. We conclude that
proper allocation of data in multi-MC systems can have a
non-trivial impact on row-buffer hit rates and hence perfor-
mance.

The three most important observations that we make from
the above discussion are: (i) the NUMA factor is likely to
increase; (ii) more threads per MC leads to high contention,
raising the importance of system overheads such as queuing
delays; (iii) increased interleaving of memory accesses from
different threads leads to reduced row-buffer hit rates. It is
imperative to be cognizant of all three factors when allocat-
ing data to an MC’s physical memory slice.

3. PROPOSED MECHANISMS
We are interested in developing a general approach to min-

imize memory access latencies for a system that has many
cores, multiple MCs, with varying interconnect latencies be-
tween cores and MCs. For this study, we assume a 16-core
processor with four MCs, as shown in Figure 1(b). Each MC
handles a distinct subset of the aggregate physical address
space. Memory requests (L2 misses) are routed to the ap-
propriate MC based on the physical memory address. The
L2 is shared by all cores, and physically distributed among
the 16 tiles in a tiled S-NUCA layout [25, 56]. Since the as-
signment of data pages to an MC’s physical memory slice
is affected by the mapping of virtual addresses to physical
DRAM frames by the OS, we propose two schemes that man-

age/modify this mapping to be aware of the DIMMs directly
connected to an MC.

When a new virtual OS page is brought into physical
memory, it must be assigned to a DIMM associated with
some MC and a particular DRAM channel. Proper assign-
ment will minimize access latency to that page and not sig-
nificantly degrade accesses to other pages assigned in the
same DIMM. Ultimately, DRAM access latency is strongly
governed by the following factors: i) the distance between
the requesting core and the MC, ii) the interconnection net-
work load on that path, iii) the average queuing delay at
the MC, iv) the amount of bank and rank contention at the
targeted DIMM, and v) the row-buffer hit-rate for the ap-
plication. We therefore need estimates of how each of these
factors will be impacted by assigning a page to an MC. Pro-
files generated beforehand can help in page assignment, but
this is almost never practical. We therefore focus on policies
that rely on run-time estimation of application behavior.

We describe two schemes to reduce memory access delays:
adaptive first-touch placement of pages, and dynamic migra-
tion of data among DIMMs at OS page granularity. The first
scheme is based on DRAM frame allocation by the OS while
being aware of factors like MC load (queuing delays, row-
buffer hit-rates and bank contention), and on-chip distance
between the core the thread is executing on and the MC
that will service requests to this frame. We propose modifi-
cations to the OS’ memory allocator algorithm so that it is
aware of these factors in order to create improved virtual-
to-physical mappings when a page-fault occurs. The second
scheme aims at dynamically migrating data at run-time to
reduce access delays. This migration of data occurs during
spare cycles in the background, and we propose mechanisms
to prevent stalls at the CPU while data migration takes
place.

3.1 Adaptive First-Touch (AFT) Page Place-
ment Policy

In the common case, threads/tasks1 will be assigned to
cores rather arbitrarily based on program completion times
and task queues maintained by the OS for each core. The
OS’ task scheduling algorithm could be modified to be aware
of multiple-MCs and leverage profile based aggregated MC
metrics to schedule tasks to cores. Such an approach is likely
more complex than simply managing how a thread’s working
set gets organized across MCs. Besides, clever task schedul-
ing must rely on pre-computed profiles that are sometimes
inaccurate and closely tied to the behavior of co-scheduled
applications. For these reasons, we believe that our adaptive
first-touch approach, that is based on run-time statistics,
can out-perform a heuristic-based schedule using application
profiles.

In our adaptive first-touch approach for page allocation,
when a thread starts executing on some core, each new page
it touches causes a page fault. At this time, the virtual page
is assigned to a DRAM frame (physical page) such that it is
serviced by an MC that minimizes an objective cost function.
The hope is that most pages of a thread will be mapped to
the nearest MC, with a few pages being spilled to other
nearby MCs, if necessary. The following cost function is

1We use threads and tasks interchangebly in the following
discussion, unless otherwise specified.

computed for each new page and for each MC j:

costj = α × loadj + β × rowhitsj + λ × distancej

where loadj is the average queuing delay at MC j, rowhitsj

is the average rate of row-buffer hits seen by MC j, and
distancej is the distance between the core requesting the
memory page and the MC, in terms of number of hops
that need to be traversed. The role of load and distance is
straightforward; the row buffer hit rate is considered because
the assumption is that the new page will be less disruptive to
other accesses if it resides in a DIMM with an already high
row buffer miss rate. The relative importance of each factor
is determined by the weights α, β, and λ. After estimating
the cost function for each MC, the new page is assigned to
the MC that minimizes the cost function. In essence, this
is done by mapping the virtual page to a physical page in
the slice of memory address space being controlled by the
chosen MC j. Since allocation of new DRAM frames on a
page-fault is on the critical path, we maintain a small his-
tory of the past few (5) runs of this cost function for each
thread. If two consecutive page faults for a thread happen
within 5000 CPU cycles of each other, the maximally recur-
ring MC from the history is automatically chosen for the
new page as well. Once the appropriate MC is selected, a
DRAM frame managed by this MC is allocated by the OS
to service the page-fault.

3.2 Dynamic Page Migration Policy
While adaptive first-touch can allocate new pages effi-

ciently, for long-running programs that stop touching new
pages, we need a facility to react to changing program phases
or changes in the environment. We propose a dynamic data
migration scheme that tries to correct this. The dynamic mi-
gration policy starts out as the AFT policy described above.
During the course of the program execution, if an imbal-
ance is detected in how MCs are being accessed, it may be
necessary to migrate pages from a heavily loaded MC to a
lightly loaded one. If we see a substantial difference between
the highest-loaded and other MCs, we choose to migrate N

pages from the highest loaded MC to another one. Deci-
sions are made every epoch, where an epoch is a fixed time
interval.

The above problem comprises of two parts - (i) finding
which MC is loaded and needs to shed load (the donor MC),
and (ii) deciding the MC that will receive the pages shed by
the donor (recipient MC). For our experiments, we assume
if an MC experiences a drop of 10% or more in row-buffer
hit rates from the last epoch, it is categorized as a donor
MC2. When finding a recipient MC, care has to be taken
that the incoming pages do not disrupt the locality being
experienced at the recipient. As a first approximation, we
choose the MC which (i) is physically proximal to the donor
MC, and (ii) has the lowest number of page-conflicts in the
last epoch. Hence for each MC k in the recipient pool, we
calculate

costk = Λ × distancek + Γ × page conflictsk

The MC with least value for the above cost is selected as
the recipient MC. Once this is done, N least recently used
pages at the donor MC are selected for migration.

2This value can be made programmable to suit a particular
workload’s needs. After extensive exploration, we found that
10% works well across all workloads that we considered.

It is perhaps possible to be more selective regarding the
choice of pages and the choice of new MC, but we resort
to this simple low-overhead policy. Even when the dynamic
migration policy kicks in, new incoming pages’ MCs are de-
cided by the AFT cost function. Pages that have been mi-
grated once are not considered for re-migration for the next
two epochs.

To maintain correctness, certain steps need to be taken
for all pages that are being migrated:

1. TLB Update: TLBs in all cores have to be informed
of the change in the page’s physical address. Before
a page is physically migrated, the corresponding TLB
entries have to be invalidated.

2. Cache Invalidations : The cache lines belonging to
the migrated pages have to be invalidated across all
cores. Since the cache is S-NUCA, only one location
has to be looked up for each cache line. When invali-
dating the lines, copies in L1 must also be invalidated.
The L2 copy typically maintains a directory to keep
track of these L1 lines. Any dirty lines being inval-
idated have to be written back to memory prior to
migration.

Both of these steps are potentially costly in terms of both
power and performance. The key is to reduce this cost as
much as possible and to understand when the benefits of
migration will save more than the cost of migration.

The writeback for dirty cache lines is required when a
migration moves pages in DRAM. Instead of immediately
flushing the dirty lines, we propose a delayed write-back
scheme. Instead of immediately invalidating TLB entries,
this is deferred until the entire page has been copied. Any
read requests from the CPU for the old address are still
serviced from the old location. Once the actual DRAM copy
associated with migration is complete, the TLB entries are
invalidated, dirty lines in the cache are flushed and written
back at the new memory address, and the page is added to
the free-page list. This method of delaying TLB shootdowns
is referred to as lazy-copying in later sections.

3.2.1 Discussion

Employing the proposed policies incurs some system-level
(hardware and OS) overheads, which we enumerate in this
section. The hardware (MC) needs to maintain counters to
keep track of per-workload delay and access counts. Most of
the modern processors already come with counters for mea-
suring memory system events (Row-Hits/Misses/Conflicts) [1].
In order to calculate the value of the cost function, a peri-
odic system-level daemon has to read the values from these
hardware counters. Currently, the only parameter that can-
not be directly measured is load or queuing delay. However,
performance monitoring tools can measure average memory
latency trivially. Based on DRAM device specifications and
measured memory system hits/ misses/ conflicts, we can
measure average time spent accessing the devices. The dif-
ference between the measured memory latency and the time
spent accessing devices can provide an accurate estimate of
load. We expect that future systems can easily include hard-
ware counters to directly measure load.

Also, copying pages in memory requires a trap into the
OS to update page-tables. Since none of these operations
are on the critical path, they do not lead to performance

degradation. However, to demonstrate the impact of simple
mechanisms where the cost of invalidating the current TLB
entry is incurred with every page migration (resulting in a
TLB miss at the next access and an ensuing page-walk), we
include these costs in our experiments. We also include the
cost of packetizing the page data to be copied and sent over
the on-chip network in our experiments. Thus, we account
for all performance degrading features of the most simplified
scheme that implements the above policy.

4. RESULTS
The full system simulations are built upon the Virtutech

Simics [35] platform. Out-of-order and cache timings are
simulated using Simics’ ooo-micro-arch and g-cache mod-
ules respectively. The DRAM memory sub-system is mod-
eled in detail using a modified version of Simics’ trans-staller
module. It closely follows the model described by Gries
in [4]. The memory controller (modeled in trans-staller)
keeps track of each DIMM and open rows in each bank. It
schedules the requests based on open-page and closed-page
policies. The details pertaining to the simulated system are
shown in Table 1. Other major components of Gries’ model
that we adopted for our platform are: the bus model, DIMM
and device models, and overlapped processing of commands
by the memory controller. Overlapped processing allows
simultaneous processing of access requests on the memory
bus, while receiving further requests from the CPU. This
allows hiding activation and pre-charge latency using the
pipelined interface of DRAM devices. We model the CPU
to allow non-blocking load/store execution to support over-
lapped processing. Our MC scheduler implements an FR-
FCFS scheduling policy and an open-page row-buffer man-
agement policy.

DRAM address mapping parameters for our platform were
adopted from the DRAMSim framework [54]. We imple-
mented basic SDRAM mapping, as found in user-upgradeable
memory systems, (similar to Intel 845G chipsets’ DDR SDRAM
mapping [3]). Some platform specific implementation sug-
gestions were taken from the VASA framework [53]. Our
DRAM energy consumption model is built as a set of coun-
ters that keep track of each of the commands issued to
the DRAM. Each pre-charge, activation, CAS, write-back
to DRAM cells etc. are recorded and total energy consumed
reported using energy parameters derived from a modified
version of CACTI [39]. Since pin-bandwidth is limited (and
will be in the future), we assume a constant bandwidth from
the chip to the DRAM sub-system. In case of multiple
MCs, bandwidth is equally divided among all controllers by
reducing the burst-size. We study a diverse set of work-
loads including PARSEC [7] (with sim-large working set),
SPECjbb2005 (with number of warehouses equal to num-
ber of cores) and Stream benchmark (number of threads
equal to number of cores). For all experiments involving dy-
namic page migration, we migrate 10 pages (N , section 3)
from each MC3, per epoch, which is assumed to be 5 million
cycles. We (pessimitically) assume the cost of each TLB
entry invalidation to be 5000 cycles. We warm-up caches
for 25 million instructions and then collect statistics for the
next 500 million instructions. The weights of the cost func-

3Empirical evidence suggested that moving more than 10
pages at a time significantly increased the associated over-
heads, hence decreasing the effectiveness of page migrations.

tion were determined after an extensive design space explo-
ration4. The L2 cache size was scaled down to resemble
an MPKI (misses per thousand instructions) of 10.6, which
was measured on the real system desribed in Section 2.3 for
PARSEC and commercial workloads.

4.1 Metrics for Comparison
For comparing the effectiveness of the proposed schemes,

we use the total system throughput defined as
P

i
(IPCi

shared/IPCi
alone) where IPCi

shared is the IPC of
program i in a multi-core setting with one or more shared
MCs. IPCi

alone is the IPC of program i on a stand-alone
single-core system with one memory controller.

We also report queueing delays which refer to the time
spent by a memory request at the memory controller waiting
to get scheduled plus the cycles spent waiting to get control
of DRAM channel(s). This metric also includes additional
stall cycles accrued traversing the on-chip network.

4.2 Multiple Memory Controllers
First we study the effect of multiple MCs on the overall

system performance (Figure 4). We divide the total physical
address space equally among all MCs, with each MC servic-
ing an equal slice of the total memory address space. All
MCs for these experiments are assumed to be located along
chip periphery (Figure 1(b)). The baseline is assumed to be
the case where OS’ page allocation routine tries to allocate
the new page at the nearest (physically proximal) MC. If no
free pages are available at that MC, the next nearest one is
chosen.

For a fixed number of cores, additional memory controllers
improve performance up to a given point (4 controllers for
16 cores), after which the law of diminishing returns starts
to kick in. On an average across all workloads, as compared
to a single MC, 4 MCs help reduce the overall queuing de-
lay by 65% and improve row buffer hits by 55%, resulting
in an overall throughput gain of 41.2%. Adding more than
4 MCs to the system still helps overall system throughput
for most workloads, but for others, the benefits are minimal
because (i) naive assignment of threads to MCs increases in-
terference and conflicts, and (ii) more MCs lead to decreased
memory channel widths per MC, increasing the time taken
to transfer data per request and adding to overall queuing
delay. Combined, both these factors eventually end up hurt-
ing performance. For example, for an eight MC configura-
tion, ferret experiences increased conflicts at MC numbers
2 and 6, with the row buffer hit rates going down by 15.8%,
increasing the average queuing delay by 20.2%. This further
strengthens our initial assumption that naively adding more
MCs doesn’t solve the problem and makes a strong case for
intelligently managing data across a small number of MCs.
Hence, for all the experiments in the following sections, we
use a 4 MC configuration.

4.3 Adaptive First-Touch and Dynamic Migra-
tion Policies

Figure 5 compares the average throughput improvement
of adaptive first-touch and dynamic-migration policies over
the baseline. On an average, over all the workloads, adap-
tive first-touch and dynamic page-migration perform 17.1%
and 34.8% better than the baseline, respectively. Part of

4We report results for the best performing case.

ISA UltraSPARC III ISA CMP size and Core Freq. 16-core, 3 GHz
L1 I-cache 32KB/2-way, 1-cycle L1 D-cache 32KB/2-way, 1-cycle

L2 Cache (shared) 2 MB/8-way, 3-cycle/bank access L1/L2 Cache line size 64 Bytes
Hop Access time 2 cycles Router Overhead 3 cycles

(Vertical and Horizontal) Page Size 4 KB
Processor frequency 3 GHz On-Chip Network frequency 3 GHz

On-chip network width 64 bits Coherence Protocol MESI
DRAM Parameters

DRAM Device Parameters Micron MT47H64M8 DDR3-1333 Timing parameters [4],
tCL=tRCD=tRP =(10-10-10 @ 800 MHz)

4 banks/device, 16384 rows/bank, 512 columns/row, 32 bits/column, 8-bit output/device
DIMM Configuration 8 Non-ECC un-buffered DIMMs, 1 rank/DIMM, 64 bit channel, 8 devices/DIMM

DIMM-level Row-Buffer Size 32 bits/column × 512 columns/row × 8 devices/DIMM = 8 KB/DIMM
Active row-buffers per DIMM 4 (each bank in a device maintains a row-buffer)

Total DRAM Capacity 512 MBit/device × 8 devices/DIMM × 8 DIMMs = 4 GB
Burst length 8 (for 1 MC, reduces proportionally for each new MC)

Values of Cost Function Constants
α, β, λ, Λ, Γ 10, 20, 100, 100, 100

Table 1: Simulator parameters.

a. Number of Controllers vs. Throughput b. Number of Controllers vs Avg. Queue Lengths

Figure 4: Impact of Multiple Memory Controllers

this improvement comes from the intelligent mapping of
pages to improve row-buffer hit rates, which are improved by
16.6% and 22.7% respectively for first-touch and dynamic-
migration policies. The last cluster in Figure 5(b) (STD-
DEV) shows the standard deviation of individual MC row-
buffer hits for the three policies. In essence, a higher value
of this statistic implies that one (or more) MC(s) in the sys-
tem is (are) experiencing more conflicts than others, hence
providing a measure of load across MCs. As compared to
the baseline, Adaptive first-touch and dynamic-migration
schemes reduce the standard deviation by 48.2% and 60.9%
respectively, hence fairly distributing the system DRAM ac-
cess load across MCs. Increase in row-buffer hit-rates has a
direct impact on queuing delays, since a row-buffer hit costs
less than a row-buffer miss or conflict, allowing the memory
system to be freed sooner to service other pending requests.

Figure 6 shows the breakdown of total memory latency
as a combination of four factors (i) queuing delay (ii) net-
work delay - the extra delay incurred for travelling to a “re-
mote” MC, (iii) device access time, which includes the la-
tency reading(writing) data from(to) the DRAM devices and
(iv) data transfer delay. For the baseline, a majority of the
total DRAM access stall time (52.6%) is spent waiting in the
queue and accessing DRAM devices (28%). Since the base-
line configuration tries to map a group of physically proxi-

mal cores onto an MC, the network delay contribution to the
total DRAM access time is comparatively smaller (13.1%).
The adaptive policies change the dynamics of this distribu-
tion. Since some pages are now mapped to “remote” MCs,
the total network delay contribution to the average memory
latency goes up (to 22.1% and 33.5% for adaptive first-touch
and dynamic page migration schemes respectively). Because
of increased row-buffer hit rates, the device access time con-
tribution goes down for the proposed policies, (down by 1.2
and 7.1% respectively for adaptive first-touch and dynamic
migration respectively), as compared to baseline. As a re-
sult, the overall average latency for a DRAM access goes
down from 530 cycles to 325 and 258 cpu cycles for adaptive
first-touch and dynamic migration policies, respectively.

4.4 Adaptive Policy Overheads
Table 2 presents the overheads associated with the dynamic-

migration policy. Applications which experience a higher
percentage of shared-page migration (fluidanimate, stream-
cluster and ferret) tend to have higher overheads. Compared
to baseline, the three aforementioned applications see an av-
erage of 15.6% increase in network traffic as compared an
average 4.4% increase between the rest. Because of higher
costs of shared-page migration, these applications also have
a higher number of cacheline invalidations and writebacks.

a. Relative throughput b. Row Buffer Hits

Figure 5: Adaptive First-Touch and Dynamic-Migration Policies vs Baseline

a. DRAM Access breakdown (Percentage) b. DRAM Access breakdown (Cycles)

Figure 6: DRAM Access Breakdown

Applications with a high number of total migrated pages,
but a small percentage of shared ones benefit a lot from
the lazy-copying scheme described in section 3.1. As com-
pared to a dynamic page migration policy without lazy page-
copying, a dynamic page migration policy with lazy page-
copying performs 8.1% better on average, across all bench-
marks.

4.5 Sensitivity Analysis
We perform experiments to characterize performance sen-

sitivity of workloads to individual terms in the cost function.
To do so, in our dynamic migration policy, we change the
cost function to use only one factor at a time and compare
the performance with the configuration using the actual cost
functions described in Section 3. Figure 7(a) presents the
results of this experiment. We notice that all workloads are
very sensitive to average MC load and row-buffer hit rates.
With just row-buffer hit rates as the deciding factor for se-
lecting MCs in the cost function, a performance drop of 29%
is observed. For dynamic migration policy, we also charac-
terize the sensitivity to the cost of migration(Migration bar
in Figure 7(a)). Cost of migration is defined as the amount
of data to be copied times the distance it has to be copied
over, translating as the increased on-chip network traffic for

data (page) migration. In Figure 7(a), for Migration ex-
periments, decisions are made to migrate pages to the MC
with the lowest cost of migration as the only deciding factor.
Most workloads are less sensitive to distance and migration;
notable exceptions being the ones with higher number of
shared pages (ferret, streamcluster, fluidanimate). These
workloads show a 13.1, 15.7 and 14.9% drop in performance
as compared to the configuration with original cost function
as the basis of decision making.

Figure 7(b) compares the effects of proposed policies for
a different physical layout of MCs. As opposed to earlier,
these configurations assume MCs being located at the cen-
ter of the chip than periphery (similar to layouts assumed
in [5]). We compare the baseline, adaptive first-touch (AFT)
and dynamic migration (DM) policies for both the layouts :
periphery and center. For almost all workloads, we find that
baseline and AFT policies are largely agnostic to choice of
MC layout. Being a data-centric scheme, dynamic migration
benefits the most from the new layout. Due to the reduc-
tion in number of hops that have to traversed while copying
data, DM-Center performs 10% better then DM-Periphery.

4.6 Effects of TLB Shootdowns
To study the performance impact of TLB shootdowns in

Benchmark Total number of Total Cacheline Page copying
Pages copied Invalidations + Overhead (Percent increase

(Shared/Un-Shared) Writebacks in network traffic)
Blackscholes 210 (53/157) 121 5.8%
Bodytrack 489 (108/381) 327 3.2%
Facesim 310 (89/221) 221 4.1%

Fluidanimate 912 (601/311) 2687 12.6%
Freqmine 589 (100/489) 831 5.2%
Swaptions 726 (58/668) 107 2.4%

Vips 998 (127/871) 218 5.6%
X264 1007 (112/895) 286 8.1%

Canneal 223 (28/195) 89 2.1%
Streamcluster 1284 (967/317) 2895 18.4%

Ferret 1688 (1098/590) 3441 15.9%
SPECjbb2005 1028 (104/924) 487 4.1%

Stream 833 (102/731) 302 3.5%

Table 2: Dynamic page migration with lazy page migration, Overhead Characteristics

a. Throughput Sensitivity to Individual Terms in Cost
function

b. Throughput Sensitivity to Physical Placement of
MCs,

Figure 7: Sensitivity Analysis, Dynamic page migration policy

Dynamic Migration scheme, we increased the cost of each
TLB shootdown from 5000 cycles (as assumed previously) to
7500, 10,000 and 20,000 cycles. Since shootdowns are fairly
uncommon, and happen only at epoch boundaries, the aver-
age degradation in performance in going from 5000 to 20,000
cycles across all applications is 6.7%. For the three appli-
cations that have significant sharing among threads (fer-
ret, streamcluster, fluidanimate), the average performance
degradation for the same jump is a little higher, at 9.1%.

4.7 Energy Analysis
We use a modified version of CACTI [39] to calculate

the energy costs of individual DRAM operations, which are
listed in Table 3. Because of the increased row-buffer hit
rates, the average DRAM energy consumption of AFT de-
creases by 14.1% as compared to baseline. For the data-
migration scheme, the additional cost of copying pages adds
to the total DRAM energy consumption. Even though row-
buffer hit rates go up, the cost of copying pages makes the
total energy consumption go up by 5.2%.

Operation Energy Consumption in nJ
RCD (ACT+RAS) 20.7

CAS 1.1
PRECHARGE 19.2
Open-Page Hit 1.1

Empty-Page Access 21.8
Page-Conflict 41.1

Table 3: Energy Consumption of DRAM Operations

for a CPU running at 3.0GHz

4.8 Results for Multi-Socket Configurations
To test the efficacy of our proposals in the context of

multi-socket configurations, we carried out experiments with
a configuration similar to one assumed in Figure 1(a). In
these experiments, we assume a 4-socket system; each socket
housing a quad-core chip, with similar configuration as as-
sumed in Table 1. Each quad-core incorporates one on-chip
MC which is responsible for a quarter of the total physical
address space. Each quad-core has similar L1s as listed in
Table 1, but the 2 MB L2 is equally divided among all sock-
ets, with each quad-core receiving 512 KB L2. The inter-

socket latencies are based on the observations in [2] (48 ns).
The baseline, as before, is assumed to be where the OS is re-
sponsible for making page placement decisions. The weights
of the cost function are also adjusted to place more weight
to distancej , when picking donor MCs.

We find that adaptive first-touch is not as effective as
the earlier, with performance benefits of 4.8% over baseline.
For the dynamic migration policy, to reduce the overheads
of data copying over higher latency inter-socket links, we
chose to migrate 5 pages at a time. Even with these opti-
mizations, the overall improvement in system throughtput
was 5.3%. We attribute this to the increased latency of
cacheline invalidations and copying data over inter-socket
links.

5. RELATED WORK
Memory Controllers: We discuss MC optimizations

here that are related to our work. Some recent papers [5,
34, 51, 55] examine multiple MCs in a multi-core setting.
Loh [34] takes advantage of plentiful inter-die bandwidth
in a 3D chip that stacks multiple DRAM dies and imple-
ments multiple MCs on-chip that can quickly access several
fine-grain banks. Vantrease et al. [51] discuss the interaction
of MCs with the on-chip network traffic and propose phys-
ical layouts for on-chip MCs to reduce network traffic and
minimize channel load. The Tile64 processor [55] employs
multiple MCs on a single chip, accessible to every core via
a specialized on-chip network. The Tile microprocessor [55]
was one of the first processors to use multiple (four) on-
chip MCs. More recently, Abts et al. [5] explore multiple
MC placement on a single chip-multiprocessor so as to min-
imize on-chip traffic and channel load. None of the above
works considers intelligently allocating data and load across
multiple MCs. Kim et al. propose ATLAS [26], a mem-
ory scheduling algorithm that improves system throughput
without requiring significant coordination between N on-
chip memory controllers.

Recent papers [40, 41] have begun to consider MC sched-
uler policies for multi-core processors, but only consider a
single MC. Since the memory controller is a shared resource,
all threads experience a slowdown when running in tandem
with other threads, relative to the case where the threads ex-
ecute in isolation. Mutlu and Moscibroda [40] observe that
the prioritization of requests to open rows can lead to long
average queuing delays for threads that tend to not access
open rows. To deal with such unfairness, they introduce a
Stall-Time Fair Memory (STFM) scheduler that estimates
the disparity and overrules the prioritization of open row ac-
cess if necessary. While this policy explicitly targets fairness
(measured as the ratio of slowdowns for the most and least
affected threads), minor throughput improvements are also
observed as a side-effect. The same authors also introduce
a Parallelism-Aware Batch Scheduler (PAR-BS) [41]. The
PAR-BS policy first breaks up the request queue into batches
based on age and services a batch entirely before moving to
the next batch (this provides a level of fairness). Within a
batch, the scheduler attempts to schedule all the requests of
a thread simultaneously (to different banks) so that their
access latencies can be overlapped. In other words, the
scheduler tries to exploit memory-level parallelism (MLP)
by looking for bank-level parallelism within a thread. The
above described bodies of work are related in that they at-

tempt to alleviate some of the same constraints as us, but
not with page placement.

Other MC related work focusing on a single MC include
the following. Lee et al. [31] design an MC scheduler that
allocates priorities between demand and prefetch requests
from the DRAM. Ipek et al. [22] build a reinforcement learn-
ing framework to optimize MC scheduler decision-making.
Lin et al. [33] design prefetch mechanisms that take ad-
vantage of idle banks/channels and spatial locality within
open rows. Zhu and Zhang [60] examine MC interference
for SMT workloads. They also propose scheduler policies to
handle multiple threads and consider different partitions of
the memory channel. Cuppu et al. [15, 16] study the vast
design space of DRAM and memory controller features for
a single core processor.

Memory Controllers and Page Allocation: Lebeck
et al. [30] studied the interaction of page coloring and DRAM
power characteristics. They examine how DRAM page al-
location can allow the OS to better exploit the DRAM sys-
tem’s power-saving modes. In a related paper [20], they also
examine policies to transition DRAM chips to low-power
modes based on the nature of access streams seen at the
MC. Zhang et al. [57] investigate a page-interleaving mecha-
nism that attempts to spread OS pages in DRAM such that
row-buffers are re-used and bank parallelism is encouraged
within a single MC.

Page Allocation: Page coloring and migration have been
employed in a variety of contexts. Several bodies of work
have evaluated page coloring and its impact on cache con-
flict misses [8, 18, 24, 38, 47]. Page coloring and migration
have been employed to improve proximity of computation
and data in a NUMA multi-processor [9, 14, 27–29, 52] and
in NUCA caches [6, 13, 44]. These bodies of work have typ-
ically attempted to manage capacity constraints (especially
in caches) and communication distances in large NUCA caches.
Most of the NUMA work pre-dates the papers [15, 16, 45]
that shed insight on the bottlenecks arising from memory
controller constraints. Here, we not only apply the well-
known concept of page coloring to a different domain, we
extend our policies to be cognizant of the several new con-
straints imposed by DRAM memory schedulers (row-buffer
re-use, bank parallelism, queuing delays, etc.). More re-
cently, McCurdy et al. [36] observe that NUMA-aware code
could make all the difference in most multi-threaded scien-
tific applications scaling perfectly across multiple sockets, or
not at all. They then propose a data-centric toolset based
on performance counters which helps to pin-point problem-
atic memory access, and utilize this information to improve
performance.

Task Scheduling: The problem of task scheduling onto a
myriad of resources has been well studied, although never in
the context of multiple on-chip MCs. The related bodies of
work that we borrow insight from are as follows: while the
problem formulations are similar, the constraints of mem-
ory controller scheduling are different. Snavely et al. [48]
schedule tasks from a pending task queue on to a number
of available thread contexts in an SMT processor. Zhou et
al. [59] schedule tasks on a 3D processor in an attempt to
minimize thermal emergencies. Similarly, Powell et al. [42]
attempt to minimize temperature by mapping a set of tasks
to a CMP comprised of SMT cores.

6. CONCLUSIONS
The paper presents a substantial shift in memory con-

troller design and data placement. We are headed for an era
where a large number of programs will have to share lim-
ited off-chip bandwidth resources via a moderate number of
memory controllers scattered on chip. While recent stud-
ies have examined the problem of fairness and throughput
improvements for a workload mix sharing a single memory
controller, this is the first body of work to examine data-
placement issues for a many-core processor with a moderate
number of memory controllers. We first define a method-
ology to compute an optimized assignment of a thread’s
data to memory controllers based on current system state.
We achieve efficient data placement by modifying the OS’
frame allocation algorithm and this scheme works on first
accesses to a given page. We then advance a scheme which
dynamically migrates data within the DRAM sub-system
to achieve lower memory access latencies. These dynamic
schemes adapt with current system state and allow spread-
ing a single program’s working set across multiple memory
controllers. As a result, these schemes yield improvements of
17% (when assigning pages on first touch), and 35% (when
allowing pages to be copied across memory controllers).

We believe that several other innovations are possible,
such as the consideration of additional memory scheduler
constraints (intra-thread parallelism, handling of prefetch
requests, etc.). Pages shared by multiple threads of a par-
allel application will also require optimal placement within
the set of memory controllers. Page placement to promote
bank parallelism in this context remains an open problem
as well.

7. REFERENCES
[1] Perfmon2 Project Homepage.

http://perfmon2.sourceforge.net/.

[2] Performance of the AMD Opteron LS21 for IBM
BladeCenter. ftp://ftp.software.ibm.com/eserver/
benchmarks/wp_ls21_081506.pdf.

[3] Intel 845G/845GL/845GV Chipset Datasheet: Intel
82845G/82845GL/82845GV Graphics and Memory
Controller Hub (GMCH). http://download.intel.
com/design/chipsets/datashts/29074602.pdf, 2002.

[4] Micron DDR3 SDRAM Part MT41J512M4.
http://download.micron.com/pdf/datasheets/

dram/ddr3/2Gb_DDR3_SDRAM.pdf, 2006.

[5] D. Abts, N. Jerger, J. Kim, D. Gibson, and
M. Lipasti. Achieving Predictable Performance
through Better Memory Controller in Many-Core
CMPs. In Proceedings of ISCA, 2009.

[6] M. Awasthi, K. Sudan, R. Balasubramonian, and
J. Carter. Dynamic Hardware-Assisted
Software-Controlled Page Placement to Manage
Capacity Allocation and Sharing within Large Caches.
In Proceedings of HPCA, 2009.

[7] C. Benia et al. The PARSEC Benchmark Suite:
Characterization and Architectural Implications.
Technical report, Department of Computer Science,
Princeton University, 2008.

[8] B. Bershad, B. Chen, D. Lee, and T. Romer. Avoiding
Conflict Misses Dynamically in Large Direct-Mapped
Caches. In Proceedings of ASPLOS, 1994.

[9] R. Chandra, S. Devine, B. Verghese, A. Gupta, and

M. Rosenblum. Scheduling and Page Migration for
Multiprocessor Compute Servers. In Proceedings of
ASPLOS, 1994.

[10] J. Chang and G. Sohi. Co-Operative Caching for Chip
Multiprocessors. In Proceedings of ISCA, 2006.

[11] M. Chaudhuri. PageNUCA: Selected Policies For
Page-Grain Locality Management In Large Shared
Chip-Multiprocessor Caches. In Proceedings of HPCA,
2009.

[12] Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing
Replication, Communication, and Capacity Allocation
in CMPs. In Proceedings of ISCA-32, June 2005.

[13] S. Cho and L. Jin. Managing Distributed, Shared L2
Caches through OS-Level Page Allocation. In
Proceedings of MICRO, 2006.

[14] J. Corbalan, X. Martorell, and J. Labarta. Page
Migration with Dynamic Space-Sharing Scheduling
Policies: The case of SGI 02000. International Journal
of Parallel Programming, 32(4), 2004.

[15] V. Cuppu and B. Jacob. Concurrency, Latency, or
System Overhead: Which Has the Largest Impact on
Uniprocessor DRAM-System Performance. In
Proceedings of ISCA, 2001.

[16] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A
Performance Comparison of Contemporary DRAM
Architectures. In Proceedings of ISCA, 1999.

[17] W. Dally. Report from Workshop on On- and
Off-Chip Interconnection Networks for Multicore
Systems (OCIN), 2006.
http://www.ece.ucdavis.edu/~ocin06/.

[18] X. Ding, D. S. Nikopoulosi, S. Jiang, and X. Zhang.
MESA: Reducing Cache Conflicts by Integrating
Static and Run-Time Methods. In Proceedings of
ISPASS, 2006.

[19] H. Dybdahl and P. Stenstrom. An Adaptive
Shared/Private NUCA Cache Partitioning Scheme for
Chip Multiprocessors. In Proceedings of HPCA, 2007.

[20] X. Fan, H. Zeng, and C. Ellis. Memory Controller
Policies for DRAM Power Management. In
Proceedings of ISLPED, 2001.

[21] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Reactive NUCA: Near-Optimal Block
Placement And Replication In Distributed Caches. In
Proceedings of ISCA, 2009.

[22] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self
Optimizing Memory Controllers: A Reinforcement
Learning Approach. In Proceedings of ISCA, 2008.

[23] ITRS. International Technology Roadmap for
Semiconductors, 2007 Edition.

[24] R. E. Kessler and M. D. Hill. Page Placement
Algorithms for Large Real-Indexed Caches. ACM
Trans. Comput. Syst., 10(4), 1992.

[25] C. Kim, D. Burger, and S. Keckler. An Adaptive,
Non-Uniform Cache Structure for Wire-Dominated
On-Chip Caches. In Proceedings of ASPLOS, 2002.

[26] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter.
ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers. In
Proceedings of HPCA, 2010.

[27] R. LaRowe and C. Ellis. Experimental Comparison of

Memory Management Policies for NUMA
Multiprocessors. Technical report, 1990.

[28] R. LaRowe and C. Ellis. Page Placement policies for
NUMA multiprocessors. J. Parallel Distrib. Comput.,
11(2), 1991.

[29] R. LaRowe, J. Wilkes, and C. Ellis. Exploiting
Operating System Support for Dynamic Page
Placement on a NUMA Shared Memory
Multiprocessor. In Proceedings of PPOPP, 1991.

[30] A. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware
Page Allocation. In Proceedings of ASPLOS, 2000.

[31] C. Lee, O. Mutlu, V. Narasiman, and Y. Patt.
Prefetch-Aware DRAM Controllers. In Proceedings of
MICRO, 2008.

[32] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining Insights into Multicore Cache
Partitioning: Bridging the Gap between Simulation
and Real Systems. In Proceedings of HPCA, 2008.

[33] W. Lin, S. Reinhardt, and D. Burger. Designing a
Modern Memory Hierarchy with Hardware
Prefetching. In Proceedings of IEEE Transactions on
Computers, 2001.

[34] G. Loh. 3D-Stacked Memory Architectures for
Multi-Core Processors. In Proceedings of ISCA, 2008.

[35] P. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A Full System
Simulation Platform. IEEE Computer, 35(2):50–58,
February 2002.

[36] C. McCurdy and J. Vetter. Memphis: Finding and
fixing numa-related performance problems on
multi-core platforms. In Proceedings of ISPASS, 2010.

[37] Micron Technology Inc. Micron DDR2 SDRAM Part
MT47H128M8HQ-25, 2007.

[38] R. Min and Y. Hu. Improving Performance of Large
Physically Indexed Caches by Decoupling Memory
Addresses from Cache Addresses. IEEE Trans.
Comput., 50(11), 2001.

[39] N. Muralimanohar, R. Balasubramonian, and
N. Jouppi. Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches with CACTI
6.0. In Proceedings of MICRO, 2007.

[40] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors. In
Proceedings of MICRO, 2007.

[41] O. Mutlu and T. Moscibroda. Parallelism-Aware
Batch Scheduling: Enhancing Both Performance and
Fairness of Shared DRAM Systems. In Proceedings of
ISCA, 2008.

[42] M. Powell, M. Gomaa, and T. Vijaykumar.
Heat-and-Run: Leveraging SMT and CMP to Manage
Power Density Through the Operating System. In
Proceedings of ASPLOS, 2004.

[43] M. K. Qureshi. Adaptive Spill-Receive for Robust
High-Performance Caching in CMPs. In Proceedings of
HPCA, 2009.

[44] N. Rafique, W. Lim, and M. Thottethodi.
Architectural Support for Operating System Driven
CMP Cache Management. In Proceedings of PACT,
2006.

[45] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and

J. Owens. Memory Access Scheduling. In Proceedings
of ISCA, 2000.

[46] V. Romanchenko. Quad-Core Opteron: Architecture
and Roadmaps.
http://www.digital-daily.com/cpu/quad core opteron.

[47] T. Sherwood, B. Calder, and J. Emer. Reducing
Cache Misses Using Hardware and Software Page
Placement. In Proceedings of SC, 1999.

[48] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic
Jobscheduling with Priorities for a Simultaneous
Multithreading Processor. In Proceedings of
SIGMETRICS, 2002.

[49] E. Speight, H. Shafi, L. Zhang, and R. Rajamony.
Adaptive Mechanisms and Policies for Managing
Cache Hierarchies in Chip Multiprocessors. In
Proceedings of ISCA, 2005.

[50] R. Swinburne. Intel Core i7 - Nehalem Architecture
Dive.
http://www.bit-tech.net/hardware/2008/11/03/intel-
core-i7-nehalem-architecture-dive/.

[51] D. Vantrease et al. Corona: System Implications of
Emerging Nanophotonic Technology. In Proceedings of
ISCA, 2008.

[52] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum.
Operating system support for improving data locality
on CC-NUMA compute servers. SIGPLAN Not.,
31(9), 1996.

[53] D. Wallin, H. Zeffer, M. Karlsson, and E. Hagersten.
VASA: A Simulator Infrastructure with Adjustable
Fidelity. In Proceedings of IASTED International
Conference on Parallel and Distributed Computing
and Systems, 2005.

[54] D. Wang et al. DRAMsim: A Memory-System
Simulator. In SIGARCH Computer Architecture News,
September 2005.

[55] D. Wentzlaff et al. On-Chip Interconnection
Architecture of the Tile Processor. In IEEE Micro,
volume 22, 2007.

[56] M. Zhang and K. Asanovic. Victim Replication:
Maximizing Capacity while Hiding Wire Delay in
Tiled Chip Multiprocessors. In Proceedings of ISCA,
2005.

[57] Z. Zhang, Z. Zhu, and X. Zhand. A
Permutation-Based Page Interleaving Scheme to
Reduce Row-Buffer Conflicts and Exploit Data
Locality. In Proceedings of MICRO, 2000.

[58] H. Zheng et al. Mini-Rank: Adaptive DRAM
Architecture For Improving Memory Power Efficiency.
In Proceedings of MICRO, 2008.

[59] X. Zhou, Y. Xu, Y. Du, Y. Zhang, and J. Yang.
Thermal Management for 3D Processor via Task
Scheduling. In Proceedings of ICPP, 2008.

[60] Z. Zhu and Z. Zhang. A Performance Comparison of
DRAM Memory System Optimizations for SMT
Processors. In Proceedings of HPCA, 2005.

