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Many biochemical reaction networks are inherently multiscale in time and in

the counts of participating molecular species. A standard technique to treat

different time scales in the stochastic kinetics framework is averaging or

quasi-steady-state analysis: it is assumed that the fast dynamics reaches its

equilibrium (stationary) distribution on a time scale where the slowly vary-

ing molecular counts are unlikely to have changed. We derive analytic

equilibrium distributions for various simple biochemical systems, such as

enzymatic reactions and gene regulation models. These can be directly

inserted into simulations of the slow time-scale dynamics. They also provide

insight into the stimulus–response of these systems. An important model for

which we derive the analytic equilibrium distribution is the binding of dimer

transcription factors (TFs) that first have to form from monomers. This gene

regulation mechanism is compared to the cases of the binding of simple

monomer TFs to one gene or to multiple copies of a gene, and to the

cases of the cooperative binding of two or multiple TFs to a gene. The results

apply equally to ligands binding to enzyme molecules.
1. Introduction
The model reduction of multiscale biochemical systems is a step of fundamental

importance towards the system-level understanding of gene regulation or of

various signalling pathways. Often reaction pathways consist of many inter-

mediate reactive species that themselves are not of interest in a high-level

interpretation of dynamic behaviour. Stripping these off to create a skeleton

model is the goal of model reduction.

The field is heavily influenced by the chemical engineering and control

engineering literature. The first methods were developed for deterministic

ordinary differential equation (ODE) models, often for applications in the pet-

rochemical industry. For the reaction rate ODE, there are many chemical

systems where an approximating lower dimensional ODE model can be derived

by time-scale separation techniques, such as the quasi-steady-state (QSS) assump-
tion (QSSA) and quasi-equilibrium assumption (e.g. Michaelis–Menten kinetics or

the bacteriophage l lysis–lysogeny pathway [1]), or other methods (e.g.

balanced truncation, lumping of variables). Subsequently, such techniques

found extensive use in the mathematical biology community.

Recently, stochastic analogues of methods for deterministic systems are being

developed. The QSS approximation and the quasi-equilibrium approximation are

such examples, which have already been applied to the standard discrete Markov

jump process model [2–5], and directly to its stochastic differential equation (SDE)

approximation, the chemical Langevin equation (CLE) [6,7]. Applications to speed
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up Gillespie’s stochastic simulation algorithm (SSA) [8] gave the

slow-scale SSA [9] and the nested SSA [10]. The differences

between the two approaches were discussed by both sets of

authors [11,12]. Further contributions by the Petzold group

include [13,14], and an analysis of the legitimacy of the

Michaelis–Menten approximation in the stochastic setting

[15]. Dong et al. [16] proposed reading out a reduced reaction

system for the stochastic model from the model reduction of

the corresponding deterministic reaction rate equation.

A sophisticated, general, flexible, although laborious tech-

nique to reduce multiscale stochastic models of chemical

reaction systems was developed by Ball et al. [17]. Their start-

ing point, the discrete-state Markov jump process, was

written with a stochastic equation formalism in terms of inde-

pendent Poisson processes for each reaction channel. In order

to exploit the natural separation of the abundances of reacting

species and time scales, scaling constants were introduced for

each molecular species, each reaction channel and time. With

the fine control of all these scaling parameters, the authors

could approximate the different variables and reaction chan-

nels with diffusion approximations (SDEs) or continuous

deterministic processes (integral equations), depending on

the inherent scaling properties of the system. However, they

could not provide rules for the appropriate choice of scaling

constants, which is a great hindrance to the application of

this model reduction technique. This shortcoming was

addressed in [18].

Model reduction by the averaging method for the CLE

was discussed in [7]. The authors compute the quasi-

stationary distribution of the fast variables of the system

given the slow ones from the Fokker–Planck equation

(Kolmogorov forwards equation). The slow variables for the

reaction intensity functions in the CLE are computed as

averages with respect to this distribution.

In the derivation of the CLE [19], passing to a continuous

limit in each variable uniformly is an approach of limited val-

idity. Kang et al. [20] addressed the question of how to most

accurately represent fluctuations in stochastic models of mul-

tiscale chemical systems with normally distributed noise.

While this is very similar to the work of Sotiropoulos et al.
[7], one important difference is that here the starting model

is the discrete-state Markov process, as opposed to the CLE,

as in [7]. The approach by Kang et al. is more careful and it

does not need a restrictive assumption of Sotiropoulos and

co-workers, the linear independence of the fast and the

slow stoichiometric subspaces.

Pahlajani et al. [21] used singular perturbation on another

SDE model of chemical kinetics, the linear noise approxi-

mation of Van Kampen, in order to eliminate chemical

species with fast characteristic time scales and to obtain

reduced models.

Berglund & Gentz [22,23] studied singular perturbation

for general SDEs with both slow and fast dynamics. In the

case when the corresponding deterministic system admits

an asymptotically stable slow manifold, they prove that the

paths of the SDE are concentrated close to this manifold

and give upper and lower bounds for the probability of

leaving this neighbourhood.

The focus of this study is equilibrium distributions (also

known as stationary or invariant distributions) in biochemi-

cal reaction networks. Equilibrium distributions receive less

attention in molecular systems biology, analogously to the

steady states of ODE models, since interesting dynamic
behaviour happens outside of equilibrium, by definition.

Equilibrium distributions have been observed to provide

less information than transient measurements for network

identification in metabolic networks [24] and for parameter

identification in gene expression [25]. An exception to this

trend has been metabolic control analysis, which is interested

in optimizing flows in steady state [26], but its modelling fra-

mework tends to be the deterministic reaction rate equation.

This is partially due to historical reasons, partially due to

metabolites being present in a cell in greater quantities than

constituents of the gene expression machinery, hence intrinsic

noise is a lesser concern.

This study emphasizes that accurately describing the

equilibrium distribution is an indispensable step in the endea-

vour to understand multiscale reaction systems. It is this

observation that justifies our interest in the subject.

First, our basic notions and Markov process modelling fra-

mework will be presented. Afterwards, the connection

between the fast and the slow time scales by averaging or

QSSA will be briefly discussed. These will be followed by

the main contribution of this study, an extensive collection of

biochemical systems for which the equilibrium distributions

can be analytically computed. Additionally, this will lead to

a comparison of different gene regulatory mechanisms.

For applications, it is most beneficial to create a catalo-

gue of systems where one can look up equilibrium

distributions. The classification will not be driven by the

biological role of the biochemical systems. Instead, we ask

what the Markov process state space topologies are for

which we can express the equilibrium distribution in a

meaningful way. We present these Markov processes if we

can equip them with an interpretation as a biologically

significant reaction network.

In the literature, the approaches of Levine & Hwa [24] and

Bintu et al. [27] are most similar to ours. Levine & Hwa [24]

focused on typical motifs of metabolic pathways: linear and

unidirectional pathways, and extensions with additional

structure, such as reversible reactions, dilution, negative feed-

back from end-product to the first reaction, or branching

either in a diverging or in a converging fashion. Bintu et al.
[27] catalogued a wide range of transcription regulatory sys-

tems: single and dual activators and repressors, systems of

helper and regulatory molecules. Using concepts of thermo-

dynamics, they expressed equilibrium distributions in terms

of the Boltzmann distribution. While their method is readily

applicable to configurations to which ours is not yet, our

purely kinetic approach has the advantage that it uses reac-

tion rates and rate constants (as opposed to binding

energies), and therefore it can be integrated with dynamical

simulation algorithms easily.

We do not review here the wide variety of results for two-

stage gene expression models (the transcription of DNA to

mRNA followed by translation to protein), only mention

that important contributions include [28–31]. Williams and

co-workers [32] derived the joint equilibrium distribution of

protein species processed or degraded by a shared enzyme

(or by multiple copies thereof).

Our principal technical contribution is a calculation for

§4.6 that applies complex analysis (saddle-point integration)

to product-form equilibrium distributions (§4.5). This tech-

nique is relevant in situations where a marginal of a

product-form equilibrium distribution must be computed in

a system with conservation.

http://rsif.royalsocietypublishing.org/
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2. Preliminaries
We assume that a number of chemical substances S1, . . . , Sn

undergo reactions through reaction channels R1, . . . , Rm

inside a cell, modelled as a well-stirred solution of fixed

volume and temperature. It is implicit in the assumption

that an exhaustive list of the reactive molecular species and

their interactions is available. The reactions are of the form

a1S1 þ � � � þ anSn�!
k

b1S1 þ � � � þ bnSn,

where a1, . . . , an, b1, . . . , bn [ N (non-negative integers)

and not all zero, and k [ ]0,1[ is a reaction rate constant,
whose role will become clear shortly. If the above reaction

is Rj and we let a ¼ (a1, . . ., an)T and b ¼ (b1, . . . ,bn)T, then

the stoichiometric matrix n [ Zn�m of the reaction system has

jth column nj ¼ b 2 a.

The state of the reaction system is described by the state

vector X(t) ¼ (X1(t), . . . , Xn(t))T [ Nn whose ith coordinate

Xi(t) gives the count of molecules Si in the solution at time

t. Associated to each reaction Rj, there is a so-called propensity
(or intensity) function aj : Nn ! [0,1[. For the purposes of this

study, we restrict ourselves to at most bimolecular (at most

second-order) reactions (
P

iai � 2). We also stipulate that

the propensity functions satisfy the law of mass action.

Under these conditions, the left-hand side of any reaction is

one of four types: ;, Si, Si þ S‘ (i = ‘), 2Si. The correspond-

ing propensity functions are X 7! k, X 7! kXi, X 7! kXiX‘,

X 7! kXi(Xi � 1), respectively, with the appropriate reaction

rate constants k.

With these tools, a continuous-time Markov process can

be defined on the state space Nn. This is the standard stochas-

tic process model of chemical reaction kinetics, which even

today still does not seem to have an established name but

is known by its Kolmogorov forwards equation, the chemical
master equation [33], or by its standard simulation method, the

SSA [8]. The transition rule of the Markov process is that in

any state X, for each j [ {1, . . . , m}, transitions corresponding

to reaction Rj occur at rate aj(X ). A transition by reaction Rh

changes state X to X þ nh. Equivalently, if at time t0 the state

is X(t0), then to each reaction channel Rj there is an associated

independent, exponentially distributed random waiting time

with parameter aj(X(t0)). The shortest of these waiting times

specifies the reaction that occurs, say Rh with waiting time

t. Then the state of the Markov process is X(t0) for times

in [t0, t0 þ t[, and X(t0 þ t) ¼ X(t0) þ nh. The update step is

repeated with fresh independent exponential waiting times,

first with parameters aj(X(t0 þ t)) for each j, then with the

propensity functions evaluated at subsequent states of

the process.

The time evolution of the probability mass function of this

process is given by the chemical master equation [33]. For

each element of the state space X [ Nn, the probability of

the process being in X at time t, conditioned on that it was

in X0 [ Nn at some time t0 � t, is

@

@t
Pr(X, t jX0, t0) ¼�

Xm

j¼1

aj(X)Pr(X, t jX0, t0)

þ
Xm

j¼1

aj(X � nj)Pr(X � nj, t jX0, t0):

We simplify the notation by dropping the dependence on the

initial state. Instead of writing out the ODE for each state X,
we can fix an enumeration of all states (X1, X2,. . .) and write

the equation in matrix form. For the vector of probabilities

P(t) ¼ (Pr(X1, t), Pr(X2, t),. . .),

_P(t) ¼ QP(t), (2:1)

where the rate matrix Q satisfies

Qrs ¼
aj(Xs), if for some j, Xr � nj ¼ Xs,
�
Pm

j¼1 aj(Xr), if r ¼ s,
0, otherwise:

8<:
A distribution ep is an equilibrium (or stationary or invariant)
distribution, if Qep ¼ 0.

Although the complete state space Nn is countably infi-

nite, most of our examples have finite state spaces. (The

only exception has state space N, which is, however, naturally

enumerated.) The reason is that often conservation relations

partition the state space into stoichiometric compatibility

classes. Conservation laws are in correspondence with

left nullvectors of n, because they are nothing but linear

combinations of different species’ counts that are preserved

in all reactions. In such a case, the state space of the

Markov process consists of disjoint classes that are pairwise

inaccessible from one another. (Feinberg discussed this in

the case of ODEs [34]. The case of discrete jumps on a dis-

crete-state space is more involved because congruence

classes—remainders—come into play.) Stationarity of a dis-

tribution can be determined on these classes separately.

Any convex combination (mixture) of the equilibrium distri-

butions of the separate classes is an equilibrium for the

whole state space. In many cases, such as in most of our

examples, these classes are finite, thus the probability vectors

and rate matrices we study are finite-sized as well.

In applications where the set of accessible states is infinite,

by omitting infinitely many states of low probability, a trun-

cation of the set of accessible states to a finite set is possible at

a cost of a small error in the probability vector with an

explicit error bound [35].

We remark that finding an equilibrium distribution is

the same as finding a right nullvector to Q. In linear algebra,

this is an easy problem in the finite case that can be

solved with Gaussian elimination. However, our aim is to

exploit the structure of the rate matrix in order to find infor-

mative formulae for these distributions, and for this

reason we do not content ourselves with algorithmic linear

algebraic solutions.
3. Connecting fast and slow time scales
In this section, it is shown how the ability to explicitly com-

pute equilibrium distributions is used in the study of

biochemical reaction systems with multiple time scales. The

approximation of multiscale reaction systems with reduced

models is not a completely solved problem. At present,

there is no solution to questions like what the most accurate

representation of an n-variable stochastic reaction system

with ~n , n variables is, or how many variables are needed

to achieve a required accuracy.

Unsurprisingly, many early results are inferred from (and

in some cases only apply to) toy models and are based on heur-

istics. We highlight two challenges to an exhaustive solution.

First, many studies treat systems with two time scales, whereas

applications often have more than two time scales. Second, it is

http://rsif.royalsocietypublishing.org/
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sometimes not individual species, but their linear combinations

that have clearly separated fast and slow dynamics.

A case in point is this example [10]

S1
�! �
k1

k2

S2
�! �
k3

k4

S3
�! �
k5

k6

S4,

a network we equip with k1 ¼ k2 � k5 ¼ k6 � k3 ¼ k4. It is

immediate that the network possesses three time scales.

With an initial state of (1000, 0, 0, 0)T, the dynamics is clear:

initially S1 molecules transform into S2 molecules, and this

mixture of S1 and S2 loses mass that turns into S3, and

then into a mixture of S3 and S4. Each species is a participant

in reactions that belong to the fast or the medium time scales.

Still, the linear combinations S1 þ S2 and S3 þ S4 only

change on the slow time scale. It is manifest in this example

that important dynamics might happen on a slow time scale

even though none of the individual species is a slowly chan-

ging species. Therefore, it is necessary to consider linear

combinations of species in addition to individual species

when disentangling multiscale dynamics.

An intuitive exposition of the QSS analysis method is

found in [3]. However, owing to the cited challenges, the

method in its completeness is mathematically technical and

is thoroughly detailed in [18, §§4.2 and 6]. Here, we outline

only the basic principle, without elaborating the conditions

under which the QSSA holds. We also ignore the above

presented challenges.

In the ideal setting, the chemical system has two well-

separated time scales. The rapidly changing variables are

assumed to behave like a Markov process under fixed

values of the slowly changing variables, to have stable, ergo-

dic dynamics, and consequently, to converge to a unique

equilibrium distribution. The time-scale separation should

be so great that the slow variables can be assumed to stay lar-

gely unchanged in the time it takes the fast variables to reach

their unique equilibrium.

The effect of the rapidly changing species on the slow

time scale is through this equilibrium distribution. That is,

in the slow time scale, one uses the expectation of the slow-

scale propensities under the equilibrium distribution of the

fast-changing variables conditioned on the actual value of

the slow variables.

Consider an example of regulated gene expression where

a single gene is regulated by a rapidly binding and unbinding

transcription factor (TF). Of interest is the dynamics of

mRNA transcription intensity a(eX), as a function of the

reduced state vector of slow variables eX, to be inserted into

the model of the slow time scale. According to the preceding,eX might include constant or slowly varying linear combi-

nations of fast species. Let G denote the gene in the free

form and G� in the gene–TF complex form. It is assumed

that the total number of genes is one, and that the total

number of TFs (one of which might be bound) is constant

on the fast time scale. Let PrQSS denote the QSS distribution

of the gene and TF system, so that PrQSS(G j eX) is the prob-

ability under the QSS distribution of the gene being free

given the slowly changing variables, and PrQSS(G� j eX) is the

probability of the gene being in the complex form. Let the

transcription propensity for the free (unbound) form au and

for the gene–TF complex (bound) form ab be given. Then,

under the QSSA, according to the law of total expectation,
the effective mRNA expression rate is

a(eX) ¼ auPrQSS(G j eX)þ abPrQSS(G� j eX):

Whether the TF is an activator or a repressor is irrelevant, its

effect is encoded in the relative magnitudes of au and ab.

Here, the complete state vector has three coordinates in

addition to the mRNA count and possibly other variables: it

contains the number of free genes, the number of gene–TF com-

plexes and the number of free TFs. These three variables are fast.

However, owing to the conservation relation for the total

number of genes and owing to the slowly varying nature of

the total number of TFs (assumed constant on the fast scale),

only one of these three is independent and two are dependent

variables on the fast scale. On the slow scale, this independent

variable is assumed to be in equilibrium. Hence, the slow vari-

able eX is dependent only on the total TF number, it does not

differentiate between free and bound TFs. While the average

transcription intensity a(eX) is dependent on the total TF

number, au and ab are not, and the dependence is purely

through the equilibrium binding probability.

We note that in contrast to the QSSA (the approach we

adopt), the quasi-equilibrium assumption stipulates that each

pair of fast reversible reactions is balanced, that is, they are

in detailed balance (cf. §4.1.1), a requisite of thermodynamic

equilibrium. The quasi-equilibrium assumption is more restric-

tive than the QSSA, since formally, it often imposes conditions

on reaction rate constants, and effectively, it rules out prob-

ability and mass flows on cycles of the state space. The fast

dynamics converge to an equilibrium distribution under gen-

eral conditions, but there is often no reason to expect that

detailed balance will hold in the equilibrium.

To apply the QSSA in stochastic simulation, the starting

point can be [9,10]. While Cao et al. [9] carefully demonstrated

how to check that the time-scale separation assumption holds,

understandably no general method was given as to how to com-

pute the expectation of the slow-scale propensities. The authors

proposed to compute this, when nothing else succeeds,

by approximations, e.g. with a normal distribution or by

moment closure. E et al. [10] proposed to simulate independent

realizations of the fast dynamics and to compute the effective

reaction propensities as a numerical average. The latter is a gen-

eral but computationally more intensive method, and

unfortunately it has no chance of being exact. A third method

[36] entails the simulation of the fast dynamics until equilibrium

is approximately reached (to be determined by a test for

approximate detailed balance), and this is followed by the

random sampling of values for the fast variables to be used to

randomly sample a slow reaction. With the current paper, we

try to address the central, averaging problem by giving exact

equilibrium distributions and thereby exact expectations of

the slow-scale propensities for as many systems as possible.

In the electronic supplementary material, the embedding of

an analytic equilibrium distribution into stochastic simulation

is demonstrated using the above example.
4. Fast dynamics with quasi-steady-state
assumption
We turn to the discussion of biochemical motifs where the

equilibrium distribution can be computed analytically.

Throughout the paper, all the reactions in the examples are

http://rsif.royalsocietypublishing.org/
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fast. Other, slow reactions (possibly on multiple slower time

scales) are omitted and are not subject of our interest. In each

example, due to the ergodicity of the processes concerned,

restricted to the communicating classes of the state spaces,

the equilibrium distribution is unique. Where there are mul-

tiple communicating classes, the equilibrium distribution is a

mixture of the equilibrium distributions on the individual

communicating classes.

The success of these calculations hinges on a tractable state

space, not on the form of the propensities. Neither the kinetics

needs to be mass action, nor the reactions at most bimolecular.

A crucial observation is that exact calculation can be possible

even when the propensities are nonlinear. This is remarkable

since, generally, even one nonlinear propensity function

turns the transient time evolution of moments non-computable

(the moment equations are not a finite set of ODEs in that case,

see [37]). In our examples, the state spaces are simple, in most

cases finite. In the finite cases certainly, the full chemical

master equation (2.1) can be propagated, at least numerically.

From that, even the time evolution of the moments is available.

If the state space is infinite and some propensities are non-

linear, taking expectations first and then passing to infinity

with time is possible through approximative moment closure

methods [38,39].

4.1. Path-like state space
The first examples correspond to state spaces arranged along

a line, with states naturally indexed by N or f0, 1,. . ., Ng.
Transitions from a general state i [ N (i � 1) are only allowed

to neighbours i+ 1, and from i ¼ 0 only to 1. In the finite

case, from i ¼ N, a transition is only allowed to N 2 1.

4.1.1. Infinite path
Consider the so-called birth–death process, where individuals

are added to the system at rate kb and are removed with

intensity proportional to the number of individuals present,

with proportionality constant kd. This is a model for the con-

stitutive production and mutually independent degradation

of a chemical species, e.g. an mRNA or a protein:

;�!kb P P�!kd ;:

It is well known that the equilibrium distribution is the

Poisson distribution with parameter kb/kd,

pi ¼
(kb/kd)i

i!
e�kb=kd (i [ N):

This is verified by writing out the right-hand side of the

chemical master equation, first for i ¼ 0

kd1� p1 � kb � p0 ¼ kd �
kb

kd
e�kb=kd � kb � e�kb=kd ¼ 0,

and for a general i � 1,

kbpi�1 þ kd(iþ 1)piþ1 � (kb þ kdi)pi

¼ kb
(kb/kd)i�1

(i� 1)!
þ kd(iþ 1)

(kb/kd)iþ1

(iþ 1)!

 

�(kb þ kdi)
(kb/kd)i

i!

!
e�kb=kd

¼ ki
b/ki�1

d

(i� 1)!
þ
kiþ1

b /ki
d

i!
�
kiþ1

b /ki
d

i!
� ki

b/ki�1
d

(i� 1)!

 !
e�kb=kd ¼ 0:
In fact, in this case of a linearly ordered state space, in

equilibrium the stronger detailed balance condition must

hold for any two neighbouring states

kdi� pi ¼ kb � pi�1:

The Poisson distribution results as a consequence of this

condition, and so does the equilibrium distribution of the

finite-length path.
4.1.2. Finite path
Let us have states indexed by f0, 1,. . ., Ng, and transition

rates

pi from i to iþ 1 (i [ {0, 1, . . . , N � 1})

and

qi from i to i� 1 (i [ {1, 2, . . . , N}):

The detailed balance condition qi þ 1piþ1 ¼ pipi, first with i ¼
0, yields p1 ¼ p0p0/q1. The equilibrium distribution (p0,

p1,. . ., pN)T can be computed inductively in terms of p0 as

(cf. [40])

pi ¼ p0

Yi�1

k¼0

pk

qkþ1
,

where p0 is determined by the normalization
PN

i¼0 pi ¼ 1.

The evaluation of this N þ 1-term sum may require numerical

computation, which can be accelerated by a method

suggested by Horner’s scheme for polynomial evaluation

1

p0
¼1þ

XN

i¼1

Yi�1

k¼0

pk

qkþ1

¼1þ p0

q1
1þ p1

q2
1þ p2

q3
. . . 1þ pN�2

qN�1
1þ pN�1

qN

� �� �
. . .

� �� �� �
:

We demonstrate the applicability of this simple state

space structure through three examples: isomerization,

binding and dissociation of TFs to multiple copies of a gene

and protein dimerization. This subclassification is also

mathematically motivated: the order of reactions involved

is different.

Isomerization. With two first-order reactions, one can

model the isomerization of a molecule that has two stable

states (e.g. conformational states) or the random opening

and closing of an ion channel. Let the two states be denoted

by S1 and S2,

S1
�! �
k�

kþ

S2, (4:1)

and the total molecule count X1 þ X2 by N. Let i be a short-

hand for X1, the number of S1 molecules, varying

in f0, 1,. . ., Ng. Then pi ¼ kþ (N 2 i) and qi ¼ k2i. The detai-

led balance condition for i � N 2 1 reads k2 (i þ 1)piþ1 ¼

kþ (N 2 i)pi. It is known that the solution is the binomial

distribution with parameters N and kþ/(k2 þ kþ)

pi ¼ Pr(X1 ¼ i) ¼ N
i

� �
ki
þk

N�i
�

(k� þ kþ)N (i [ {0, 1, . . . , N}):

We verify this in the electronic supplementary material.

Note that this is also a coarse model for the Goldbeter–

Koshland switch [41], which is a system of covalent

modifications facilitated by two converter enzymes, such as
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a phosphorylation–dephosphorylation system. If the two

enzymes are present in fixed numbers XE1 and XE2 , then

this model applies with reaction rates k� ¼ k1XE1
and

kþ ¼ k2XE2
for some k1, k2.

TF binding. One second-order reaction of heterogeneous

reactants and one first-order reaction suffice to model the

regulation by TF binding of multiple copies of a gene (e.g.

of a plasmid-borne bacterial gene). Let T denote the TF, G
and G� the free gene and the gene–TF complex, respectively.

The total copy number of genes (G and G� molecules) is N,

and T is the total number of TFs (T and G� molecules). For

simplicity, we require N � T, but our derivation also gives

the complementary case by interchanging the roles of the

gene and the TF. The reaction system is

Gþ T �! �
kb

ku

G�:

Let the state i [ {0, 1, . . . , N} be the number of G�, so that pi ¼

kb(N 2 i)(T 2 i) and qi ¼ kui. The detailed balance condition

for i � N 2 1 is now ku(i þ 1)piþ1 ¼ kb(N 2 i)(T 2 i)pi. With

induction, we can establish the equilibrium distribution up to

normalization as

pi ¼ p0
kb

ku

� �i 1

i!
N(N� 1) . . . (N� iþ 1)T(T� 1) . . . (T� iþ 1)

¼ p0
kb

ku

� �i 1

i!
N!

(N� i)!
T!

(T� i)!
(i [ {0, 1, . . . , N}):

9>>>>=>>>>;
(4:2)

This scheme was used with a substrate and an enzyme in

the place of, respectively, the TF and the gene to derive

Michaelis and Menten’s revered result in the stochastic setting

[24]. We make the obvious remark that this is valid only if the

catalysed reaction is slow and can be assumed to not be part

of the fast time scale, as it does change the substrate and the

enzyme counts.

Dimerization. Protein dimerization and dissociation is a

biochemical system with one second-order reaction of homo-

geneous reactants and one first-order reaction. The state i will

be the number of dimers D, which we want to perform a

random walk on state space f0, 1,. . ., Ng. This requires that

the total number of monomers, which is the number of free

monomers M plus twice the number of dimers D, is 2N or

2N þ 1. The reactions are given by

2M�! �
kb

ku

D: (4:3)

The transition rates are pi ¼ kb(2N 2 2i)(2N 2 2i 2 1) in

the even case ( pi ¼ kb(2N þ 1 2 2i)(2N 2 2i) in the odd

case) and qi ¼ kui. The detailed balance equations are for

i � N 2 1,

ku(iþ 1)piþ1 ¼ kb(2N � 2i)(2N � 2i� 1)pi

(ku(i þ 1)pi þ 1 ¼ kb(2N þ 1 2 2i)(2N 2 2i)pi, respectively).

This gives the unnormalized equilibrium distribution for

i [ {0, 1, . . . , N} as

pi ¼ p0
kb

ku

� �i (2N)!

(2N � 2i)! i!
in the even case

and

pi ¼ p0
kb

ku

� �i (2N þ 1)!

(2N þ 1� 2i)! i!
in the odd case:
These replicate findings in [3, p. 5008] once their notations

(N, j, kf, kb) are relabelled with (2N, i, 2kb, ku) in the even

case (with (2N þ 1, i, 2kb, ku) in the odd case); findings in

[42, p. 1417] with (2N, i, kb, ku) in the even case ((2N þ 1, i,
kb, ku) in the odd case) in the places of (n, i, cþ, c2); and find-

ings in [18, p. 560] once we replace their (z1 þ 2z2, z2, k9, k10)

with (2N, i, kb, ku) in the even case (with (2N þ 1, i, kb, ku) in

the odd case).
4.1.3. Two-state path
The general finite path case (§4.1.2) specializes to two states

(N ¼ 1) in a straightforward manner and gives the Bernoulli

distribution as its equilibrium distribution. Indeed,

(p0, p1) ¼ p0, p0
p0

q1

� �
¼ q1

p0 þ q1
,

p0

p0 þ q1

� �
is obviously the unique solution.

For instance, the gene regulation model with only one

gene present gives

(Pr(gene unbound), Pr(gene bound)) ¼ (p0, p1)

¼ ku

kbT þ ku
,

kbT
kbT þ ku

� �
, (4:4)

where one can recognize a Hill function with Hill coefficient 1.
4.1.4. Three-state path
Another variation on the gene regulation models is a

single gene that has two non-overlapping TF-binding sites

(TFBS) such that a unique order in which the two TFBSs

can be occupied by identical TFs is specified. Then the

reaction system is

Gþ T �! �
k0

k�1

G� G� þ T �! �
k1

k�2

G��:

With general reaction rate constants, we allow for the modelling

of cooperative binding. The transition rates are

( p0, p1, q1, q2) ¼ (k0T, k1(T � 1), k�1, k�2):

From the general result for finite-length paths, the

equilibrium distribution is

p0

p1

p2

0@ 1A¼ 1

k0k1T2þ (k0k�2� k0k1)Tþ k�1k�2

k�1k�2

k0k�2T
k0k1T(T� 1)

0@ 1A:
(4:5)

By evaluating p0p0/q1 and p0p0p1/(q1q2), one gets p1 and p2,

as required.

Such a configuration might arise when the recruitment of

the TF is facilitated by the preceding binding of one of H
helper molecules. Then we have a reaction system

GþH�! �
k0

k�1

G� G� þ T �! �
k1

k�2

G��:

The transition rates are

( p0, p1, q1, q2) ¼ (k0H, k1T, k�1, k�2),

and the equilibrium distribution is

p0

p1

p2

0@ 1A ¼ 1

k0k1HT þ k0k�2H þ k�1k�2

k�1k�2

k0k�2H
k0k1HT

0@ 1A:
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The equilibrium distribution for a four-state path model of

a gene with three TFBSs was derived in [43]. The authors

studied additional systems with the thermodynamic approach

mentioned in our Introduction in connection with the study of

Bintu et al. [27]. These systems are variants of a configuration

where a gene has a number of non-identical TFBSs, one type

is of interest, others are not. Two types of TFs bind to these,

the first type to the TFBSs of interest with a so-called specific

binding rate, and with a non-specific binding rate to the

others. The second type of TFs binds all TFBSs with the non-

specific binding rate. Maienschein-Cline et al. [44] used linear

noise expansion to study equilibrium distributions in cases

where n TFs, alternatively, n-mers bind to a gene (n � 1).

4.2. Circular state space
Consider a state space where the chain of states f1, 2,. . ., Ng
closes into a circle and the transition rates are

pi from i to iþ 1 (i [ {1, 2, . . . , N � 1}),

pN from N to 1,

q1 from 1 to N
and qi from i to i� 1 (i [ {2, 3, . . . , N}):

The equilibrium distribution of such Markov processes can be

computed using

pi ¼ C
XN

k¼1

Yk�1

j¼1

qiþj

YN�1

j¼k

piþj,

where C is a normalization constant, and for i . N, pi and qi

should be interpreted as pi2N and qi2N, respectively [45].

This formula for general Markov processes with a circular

state space can be applied to important classes of biochemical

systems. To make this point, we offer an example that is a

variant of the three-state path, namely, a single gene with

two non-overlapping TFBSs, where the identical TF mol-

ecules can bind to the TFBSs in any order. In terms of

chemical reactions, this means

Gþ T �! �
k0

k�1

G� G� þ T �! �
k1

k�2

G��

Gþ T �! �
~k0

~k�1

G� G� þ T �! �
~k1

~k�2

G��:

There are four states (G, G�, G��, G�), corresponding to the

form in which the gene is found. If the total number of TFs

is T, then the transition rates are given by p ¼ ( k0 T,

k1(T � 1), ~k�2, ~k�1 ) and q ¼ ( ~k0 T, k�1, k�2, ~k1 (T � 1)). The

theorem gives the following equilibrium distribution for a

four-state cycle:

p1 ¼ C( p2 p3 p4 þ q2 p3 p4 þ q2q3 p4 þ q2q3q4),

p2 ¼ C( p3 p4 p1 þ q3 p4 p1 þ q3q4 p1 þ q3q4q1),

p3 ¼ C( p4 p1 p2 þ q4 p1 p2 þ q4q1 p2 þ q4q1q2)

and p4 ¼ C( p1 p2 p3 þ q1 p2 p3 þ q1q2 p3 þ q1q2q3):

9>>>=>>>; (4:6)

Before substitution, for simplicity, we assume k0 ¼ ~k0,

k1 ¼ ~k1, k�1 ¼ ~k�1 and k�2 ¼ ~k�2. The model still enables

cooperative binding as it is not ruled out that k0 and k1, or

k21 and k22, are different. The previous formulae for the

general case specialize to

p; ¼ C0k�1k�2,

p� ¼ p� ¼ C0k0k�2T
and p�� ¼ C0k0k1T(T � 1),
with C’ ¼ 2C(k21 þ k1(T 2 1)). Thus, the solution is

p;

p�

p��
p�

0BBB@
1CCCA¼ 1

k0k1T2þ (2k0k�2�k0k1)Tþk�1k�2

k�1k�2

k0k�2T
k0k1T(T�1)

k0k�2T

0BBB@
1CCCA:

(4:7)

We verify these results in the electronic supplementary

material.

The last two gene regulation models also suit enzyme–

substrate complex formation with an enzyme that has two

active sites. The same condition about time-scale separation

and the non-occurrence of the catalysed reaction applies as

for the Michaelis–Menten-type reaction (§4.1.2, TF binding).

Hypercube, special case. We can generalize the indepen-

dent binding and unbinding of two TFs to a single gene to

the case of the independent binding and unbinding of TFs

to N binding sites of one gene. The state space is now an

N-dimensional hypercube (instead of the square for N ¼ 2)

and can be indexed by 0 – 1 vectors of length N. Let there

be T TFs in the system and we assume N � T. Let G�i

(i [ {0, 1, . . . , N}) mean the entirety of the
N
i

� �
forms of

the gene with i TFs bound. We derive the equilibrium distri-

bution for these compounded states. The compounded states

form a path-like state space with N þ 1 states, no longer a

hypercube. Between the compounded states transitions can

be represented by reactions

G�i þ T �! �
kb(N�i)

ku(iþ1)
G�(iþ1):

The forwards transition rate from G�i is pi ¼ kb(N 2 i)(T 2 i)
(the binding rate for any one TF times the number of

sites where it can bind times the number of free TFs). The

backwards rate from G�i is qi ¼ kui (the rate for unbinding

times the number of occupied sites). One can recognize an

already discussed reaction network hidden in this: the case

of N genes independently binding one TF each. Thus, the

equilibrium distribution is given by equation (4.2).

A generalization to occupancy-dependent reaction rate

constants (to allow for cooperative binding) is also

straightforward with pi ¼ ki(N 2 i)(T 2 i) and qi ¼ k2ii.

4.3. State space glued together from two graphs
at one vertex

The next example is not a specific state space but a method to

build more complex state spaces from well-understood ones.

Assume that we have two continuous-time Markov processes

on finite state spaces similar to those that have been

presented so far. Let one process have states indexed by

f1, 2,. . ., rg and known equilibrium distribution p1, while

the other process has states f1, 2,. . ., sg and known

equilibrium distribution p2.

One can get a new Markov process on the union of the

two-state spaces by identifying state r of the first process

and state 1 of the second process and keeping all transition

rates unchanged that have been part of either chain. There

is a transition defined between two states in the new process

if and only if they originally belonged to the same state space

and there was a transition between them in the respective

original process. We claim that the new Markov process
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possesses the equilibrium distribution

pi ¼
Cp1

i p
2
1, if i [ {1, 2, . . . , r� 1},

Cp1
rp

2
1, if i ¼ r,

Cp1
rp

2
i�rþ1, if i [ {rþ 1, rþ 2, . . . , rþ s� 1},

8<:
where states that belonged to the first process retained their

original indices, states from the second process had their indi-

ces increased by r 2 1 and C ¼ (p1
r þ p2

1 � p1
rp

2
1)�1. We verify

this claim in the electronic supplementary material. Note that

the second case could have been omitted as it is a special case

of both the first and the third cases.

The combination of previous results paves the way to

computing the equilibrium distribution in a reaction network

whose state space consists of paths and cycles glued together.

Gluing must always happen at one state at a time. For

instance, cycles may only arise by adding the entire cycle in

one step. It is possible to compute the equilibrium distri-

bution when the two-state spaces are glued at two states

simultaneously, but the procedure is complicated [46].

To demonstrate gluing in practice, we consider a gene

with three non-overlapping TFBSs, one of which has the

unique capacity to bind the first TF, the other two are not con-

strained in which order they bind the second and third TFs:

Gþ T �! �
kb

ku

�G �Gþ T �! �
k0

k�1

�G� �G� þ T �! �
k1

k�2

�G��

�Gþ T �! �
~k0

~k�1

�G� �G� þ T �! �
~k1

~k�2

�G��:

The combinatorial structure dictates that we glue this state

space from a two-state state space (G, �G) and a four-state cir-

cular state space ( �G, �G�, �G��, �G�). Here, as before, the total

number of TFs is T, and we assume k0 ¼ ~k0, k1 ¼ ~k1,

k�1 ¼ ~k�1 and k�2 ¼ ~k�2. From previous results, it follows

that the equilibrium distributions for the two separate

processes are

;p
1

�p
1

 !
¼ 1

kbT þ ku

ku

kbT

� �
and

�(p
2);

�(p
2)
�

�(p
2)��

�(p
2)�

0BBB@
1CCCA ¼ C

k�1k�2

k0k�2(T � 1)

k0k1(T � 1)(T � 2)

k0k�2(T � 1)

0BBB@
1CCCA,

with C ¼ (k0k1T2 þ (2k0k�2 � 3k0k1)T þ k�1k�2 þ 2k0k1 �
2k0k�2)�1. The equilibrium for the glued state space is

;p

�p

�p
�

�p
�
�

�p�

0BBBB@
1CCCCA ¼ C0

kuk�1k�2

kbk�1k�2T
kbk0k�2T(T � 1)

kbk0k1T(T � 1)(T � 2)
kbk0k�2T(T � 1)

0BBBB@
1CCCCA,

where

C0 ¼ C� 1

kbT þ ku

� kbT
kbT þ ku

þ Ck�1k�2 �
kbT

kbT þ ku
Ck�1k�2

� ��1

,

or C’ can be expressed as the inverted sum of the five entries of

the column vector.

A second example is best depicted by the mirror image

of the previous state space. Here, two of the three non-
overlapping TFBSs can bind the first two TFs in any order

before the third TFBS binds the last TF:

Gþ T �! �
k0

k�1

G� G� þ T �! �
k1

k�2

G�� G�� þ T �! �
kb

ku

�G��:

Gþ T �! �
~k0

~k�1

G� G� þ T �! �
~k1

~k�2

G��

This network is discussed in the electronic supplementary

material.

These two glued state spaces immediately lend them-

selves to applications where the binding of two TFs is

preceded by the binding of a helper molecule, or where the

binding of a single TF necessitates the previous recruitment

of two helper molecules.
4.4. Kirchhoff ’s theorem or the Markov chain tree
theorem

In addition to directly solving Qep ¼ 0, there is another

general method to compute the equilibrium distribution of a

continuous-time Markov process, which goes back to Kirchhoff

[47]. A good exposition with background references is provided

in [48], but the method had previously been developed

elsewhere [49–51].

Consider the state space diagram as a directed graph G.

Whenever there is a transition (a directed edge) between two

states, ensure that the transition in the opposite direction is

also part of the graph, if necessary by including a zero intensity

directed edge. For the moment, let us replace each pair of

directed edges with a single undirected edge. We assume that

this graph G0 is connected. If this were not the case, then the

argument would be applied to each component separately

and the equilibrium distribution would arise as the mixture of

the equilibriums on each component. Now consider all

spanning trees of the connected, undirected graph G0.
For any state i of the state space and any spanning tree T

of G0, the i-directed spanning tree T i is defined by picking all

the directed edges of the directed graph G that correspond to

the edges of T and in addition point towards i. This is a

unique definition as a tree does not contain cycles. The

claim is the following. The weight associated to state i in

the equilibrium distribution is proportional to the sum over

all i-directed spanning trees T i of products of all transition

intensities on the directed edges of T i. The proportionality

constant is computed so that it normalizes the probability

vector to one.

As a case study, it is easy to derive equation (4.6) for four-

state cycles from Kirchhoff’s result. Note that generally many

of the intensities might be zero, hence many products will

vanish in the sum. Whether this method is practically appli-

cable in any particular system is dependent on the

topological structure of the state space, and especially on

whether it is easy to enlist all spanning trees.
4.5. Complex-balanced networks
A result, which has its roots in queuing theory and specifi-

cally is associated with Jackson networks, provides the

equilibrium distribution of a large set of chemical reaction

networks [52,53]. These networks are the complex-balanced

ones, namely those whose deterministic, ODE model

possesses a complex-balanced steady state.
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It is necessary to introduce some of the terminology of

chemical reaction network theory for this part. For more

details throughout this section, see [34,54] in addition to [52].

A complex is any of the formal sums found on either side of

a reaction. We refer to §2, where a1S1 þ � � � þ anSn and

b1S1 þ � � � þ bnSn were presented as general complexes.

These can be identified with the corresponding species vectors,

(a1, . . . ,an)T and (b1, . . . ,bn)T, which we also call complexes.

For a specific reaction network, analogously to the stoi-

chiometric matrix n ¼ [n1. . . nm], we introduce the matrices

a ¼ [a1 . . .am] [ Nn�m and b ¼ [b1 . . .bm] [ Nn�m for

the reactant and product sides, respectively. Here, aj ¼

(a1j,. . .,anj)
T and bj ¼ (b1j,. . .,bnj)

T now refer to column vec-

tors whose entries are the reactants and products of

reaction Rj, and nj ¼ bj 2 aj.

Under the law of mass action, consider the reaction rate

equation

_c ¼
Xm

j¼1

kj

Yn

i¼1

caij

i

 !
nj, (4:8)

where c is the vector of species’ concentrations. A steady state
of this ODE is a point c [ [0,1[n, where _c ¼ 0. We call

a deterministic, mass-action chemical reaction network

complex balanced, if it satisfies a more stringent condition:

it admits a strictly positive c [ ]0,1[n for which for every

complex z of the reaction networkX
{j j in Rj a¼z }

kj

Yn

i¼1

caij

i ¼
X

{j j in Rj b¼z }

kj

Yn

i¼1

caij

i :

The sum on the left-hand side is over reactions for which z is a

reactant complex, on the right-hand side over reactions for

which z is a product complex. The equality expresses that

each complex z is generated at the same rate as it is consumed.

We mentioned in §2 that conservation relations confine the

state of the Markov process to stoichiometric compatibility

classes and the equilibrium distribution can be determined

on these classes separately. This also holds for the ODE

model: equation (4.8) shows that the state can only evolve in

directions that are contained in Im n. Equivalently, when the

stoichiometric matrix n admits a left nullvector, this nullvector

encodes a conserved quantity and the state space is partitioned

into non-communicating compatibility classes according to the

value of the conserved quantity. These compatibility classes

are parallel affine hyperplanes that are orthogonal to the null-

vector (or the intersections thereof, in the case of multiple

linearly independent nullvectors).

It is the case that when a complex-balanced steady state

exists, in fact there is exactly one in each stoichiometric com-

patibility class (and there are no other strictly positive steady

states but these complex-balanced ones) [52, theorem 3.2]. We

now state the result for complex-balanced networks.

Theorem 4.1 (Anderson et al. [52]). Assume that the chemical
reaction network has a complex-balanced steady state c [ ]0,1[n.
Then the Markov process model equipped with the intensities out-
lined in §2 has an equilibrium distribution that consists of the
product of Poisson distributions: for each X [ Nn,

p(X) ¼
Yn

i¼1

cXi
i

Xi!
e�ci : (4:9)

If the state space Nn is irreducible, then equation (4.9) is the unique
equilibrium distribution. If it is not irreducible, then for each
compatibility class G , Nn, the equilibrium distribution on G is,
for each X [ G,

pG(X) ¼MG

Yn

i¼1

cXi
i

Xi!
, (4:10)

with normalizing constant MG.

Some guidance in interpretation will be beneficial. First, if

there are different stoichiometric compatibility classes, to

evaluate equation (4.10), the complex-balanced steady-state

c can be freely chosen from any compatibility class. As long

as for each X the same c is used, the so computed equilibrium

distribution is independent of the choice of c. One can choose

the steady state that makes the calculation the simplest, irre-

spective of the multiplicity of the molecules in the stochastic

model. In other words, c is allowed to be from a compatibility

class that is different to G in the stochastic model. c does not

even need to be integer.

Second, in the irreducible case, the coordinates are indepen-

dent random variables. Levine & Hwa [24] focused on this case

and speculated about its biological role. However, in the

non-irreducible case, independence of variables no longer holds.

The theorem is more general than is presented here: there

is no need to restrict the reactant side to at most two interacting

molecules in the stochastic mass-action case, and intensities

more general than stochastic mass action are also admissible.

The deficiency zero theorem, Feinberg, Horn and Jackson’s

celebrated result of chemical reaction network theory, gives

easily verifiable sufficient conditions for the existence of a

complex-balanced steady state. Some further notions need

to be introduced.

There is a unique directed graph associated to each

chemical reaction network whose nodes are the complexes

and in which there is a directed edge for each reaction chan-

nel from its reactant to its product complex. Each connected

component of this graph is termed a linkage class. The net-

work is called weakly reversible, if the linkage classes are

strongly connected, which means that whenever there is a

directed path from some a to an a0, there is also a directed

path from a0 to a. Finally, the deficiency of a reaction network

is a non-negative integer, given by the number of its com-

plexes (the number of nodes in the graph) minus the

number of its linkage classes, minus the dimension of the

stoichiometric subspace (dim Im n).

Among other things, the deficiency zero theorem claims

that if a chemical reaction network follows the dynamics

(4.8), is weakly reversible, and has deficiency zero, then

(regardless of the positive values of the rate constants k)

there exists a strictly positive, complex-balanced steady state

in each stoichiometric compatibility class. The corollary of

this theorem is that the product-form equilibrium distribution

formula can be applied in networks that are deficiency zero

and weakly reversible.

The isomerization model (4.1) was used in [52] as a demon-

strative example for both the deficiency zero theorem and the

result. The isomerization model also exposes that independence

does not follow from a product-form equilibrium distribution.

Other case studies of [52] include first-order reaction networks

and certain enzymatic reactions. Zhang [55] used this result for

a filament polymerization model.

The dimerization model (4.3) also satisfies the conditions

of the deficiency zero theorem. The resulting product-form

http://rsif.royalsocietypublishing.org/
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Figure 1. State space and transitions in the gene regulation mechanism with
dimer TFs.
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equilibrium distribution is equivalent to the originally pre-

sented distribution. The example in §4.6 with dimer TFs is

another application of this corollary.

4.6. Ladder-shaped state space
By a ladder-shaped state space, we mean a state space that can

be indexed by N� {0, 1} or f0, 1, 2,. . ., Ng � f0, 1g (N [ N):

two parallel sides connected by edges at equally spaced

intervals, perpendicularly to the parallel sides (cf. figure 1).

Peccoud & Ycart [56] considered a randomly activating

and deactivating gene and the resulting mRNA or protein

production and degradation

G�! �
ka

ki

G0
G0 �!kb G0 þ P

P�!kd ;:

9=; (4:11)

Hornos et al. [57] studied the expression of a self-repressing

gene

Gþ T �! �
kb

ku

G� T�!kd ;

G�!k0 Gþ T G� �!k1 G� þ T

(k0 . k1). Grima et al. [58] corrected an oversight of that

paper, which, incidentally, added diagonal transitions to

the ladder. Visco et al. [59] and Vandecan & Blossey [60]

studied three further similar systems.

Starting with [56], the standard technique to treat ladder-

shaped state spaces has been to introduce two generating

functions,

G0(t, z) ¼
X1
i¼0

Pr((i, 0), t)zi and G1(t, z) ¼
X1
i¼0

Pr((i, 1), t)zi,

where G0 is for the states with inactive gene, and G1 is for the

active gene. By multiplying by zi the chemical master

equations for @/@tPr((i, 0), t) and @/@tPr((i, 1), t), and by sum-

ming for all i, a system of two partial differential equations

(PDEs) for the two generating functions is derived. These

can be solved, with a computer algebra system, to retrieve

the time evolution of G0(t, z) þ G1(t, z), and the mean protein

copy number and variance. The two analogous generating

functions of the equilibrium distribution give a system of

two first-order ODEs, which can be solved in terms of the

confluent hypergeometric function. The model (4.11) has

been used to interpret experimental observations in Chinese

hamster ovary cells [61]. The work by Iyer-Biswas et al. [62]

extended the theoretical results and studied how variations

in ka and ki influence transcript distribution.

Our focus will be on a gene regulation model with dimer

TFs (figure 1)

2M�! �
k1

k�1

D GþD�! �
kb

ku

G�:
The approach we take avoids the established technique

because in this finite state space, the generating functions

are polynomials, and as there is no possibility to create a

dimer when the dimer count is already maximal, there is a

term missing from the right-hand sides of the PDEs needed

to express everything directly in terms of the differentials.

This term, which corresponds to the probability of maximal

dimer count, can be reintroduced in terms of the derivative

of the generating function of order maximal dimer count.

However, the resulting PDE has a very high order. Instead

of probability generating functions, we use the lesser-used

product-form equilibrium distribution (theorem 4.1).

Let the total number of monomers T available to become

TFs be constant on the fast time scale. It is assumed that there

is just one copy of the gene: G þ G* ¼ 1. The variables (M, D,

G, G*)T satisfy the conservation relation T ¼M þ 2D þ 2G*.

The state space is

0, 1, 2, . . . ,
T
2

� �� �
� {0} < 1, 2, . . . ,

T
2

� �� �
� {1},

where the first coordinate is the total number of dimers (whether

free or bound), the second coordinate is the state of the gene (free

or bound), and transitions occur solely parallel to the axes. Note

that one side of this ladder is longer than the other.

It is immediate that the network is reversible, therefore

weakly reversible. It possesses four complexes, two linkage

classes, and the reactions generate a two-dimensional

stoichiometric subspace. Therefore, the deficiency zero theo-

rem applies and the complex-balanced steady state

(M̂, D̂, Ĝ, Ĝ
�

)T allows one to call on theorem 4.1.

Equation (4.10) is used due to the conservation relations.

We compute the marginal probabilities of the gene being

bound or free. The two corresponding sums over the different

dimer counts have terms both falling and increasing in the

summation index. These sums are treated as Cauchy pro-

ducts. They are estimated by Cauchy’s coefficient formula

applied to the resulting generating function, computed by

the saddle-point method [63]. While the lengthy calculations

are relegated to the electronic supplementary material

(together with a verification by numerical simulation), we

present the result here

PrT(G� ¼ 0) ¼ ku

kb
T
2 þO(T4=5)

¼ 2ku

kb
T�1 þO(T�6=5), (4:12)

while PrT(G* ¼ 1) can be computed as 1 2 PrT(G* ¼ 0).

This formula must be interpreted with due caution. First,

note that the method is not sensitive enough to capture the

dependence of PrT(G* ¼ 0) on k1 and k21. This is heuristically

explained by the fact that the steady-state number of dimers

(in the ODE) is (see the electronic supplementary material)

T
2
�

ffiffiffiffiffiffiffiffi
k�1

8k1

r ffiffiffiffi
T
p
þO(1), (4:13)

which is almost the maximum possible, T/2, corrected by a

term of order
ffiffiffiffi
T
p

that is dependent on the constants k1 and

k21 but which is absorbed by the high error terms that are

unavoidable with this method. Fundamentally, equation

(4.12) is very similar to equation (4.4) with the number of

TFs set to T/2. Second, note that the formula might well pre-

dict PrT(G* ¼ 0) . 1, depending on kb and ku, but increasing

T will always remedy this problem.

There is also a third method for similar calculations on

ladder-shaped state spaces [42,64]. It is a distant relative of

http://rsif.royalsocietypublishing.org/
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the method of §4.1.2 in that it is also iterative, but the compu-

tations are done on 2 � 2-matrices. One of the models of

Fournier et al. [42, §4] is a gene regulatory system with fast

dimerization of TFs, which was studied with a plethora of

interesting techniques. However, no asymptotic formula

like equation (4.12) was provided as the necessary iterations

were only possible with numerical calculation.
lishing.org
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5. A comparison of four gene regulatory systems
The preceding calculations enable the comparison of four

simple gene regulation mechanisms. We present in each case

the probability of the total occupation of the TFBSs of a single

gene by TFs as a function of the number of TFs present. This

response to the signal of the abundance of TFs is expressed by

rational functions in the examples. For ease of comparison,

here they will be converted to power series. With the exception

of the dimer TFs, series expansions of arbitrary precision

are achievable.

If a gene can bind one of T TFs, then from equation (4.4)

Pr(G� ¼ 1) ¼ 1� ku

kb
T�1 þ ku

kb

� �2

T�2 þO(T�3): (5:1)

If the gene can bind one of several dimer TFs formed from T
monomers, then equation (4.12) implies

Pr(G� ¼ 1) ¼ 1� ku

kb

T
2

� ��1

þO(T�6=5): (5:2)

If the gene can bind two of T TFs sequentially, then by

equation (4.5)

Pr(G�� ¼ 1)

¼ 1� k�2

k1
T�1

þ k0k
2
�2 � k0k1k�2 � k1k�1k�2

k0k
2
1

T�2 þO(T�3): (5:3)

If the gene can bind two of T TFs independently, then by

equation (4.7)

Pr(G�� ¼ 1)

¼ 1� 2k�2

k1
T�1

þ 4k0k
2
�2 � 2k0k1k�2 � k1k�1k�2

k0k
2
1

T�2

þO(T�3): (5:4)

From the comments around the indicative count of dimers

(4.13), it is not surprising that the dimer TF formula (5.2)

mimics the single monomer TF formula (5.1) with T/2 TFs

substituted in.

The similarity between formulae (5.3) and (5.4) is also

clear. It is noteworthy that the leading terms are dependent

on k1 and k22 only. The factor 2 next to k22 in equation
(5.4) has to do with the TFs being allowed to be released

independently with rate k22. Similarly, in the independent

case the free gene has twice the propensity to transition

into the intermittent state with one TF bound compared

with the sequential case. If both k0 and k22 are divided by

2 in the independent case and the probabilities for the

two intermittent states are summed, then the equilibrium

distribution becomes identical to that of the sequential case.
6. Discussion
The most immediate application of the results of this paper is

in stochastic simulation. The analytically computed exact equi-

librium distributions can immensely speed up simulation

(cf. §3). The tractability of these computations depends primar-

ily on the graph structure of the state space, whereas the type

of kinetics and the order of reactions play a lesser role.

In addition to the computational aspects, the theoretical

implications are just as exciting. The analytical formulae can

be used to study and compare regulatory elements more

robustly and reliably than with simulation. We demonstrated

this by studying the probability of the total occupation of the

TFBS of a single gene by TFs in various set-ups. This is closely

correlated to protein expression rates. The responses of different

gene regulatory systems to TF counts, in the cases when quick

gene expression response is required or when the TFs are meta-

bolically expensive, might be a design consideration for

synthetic biological applications, or a question of interest for

basic research into engineering principles in gene regulation.

Our focus has been on the asymptotic behaviour of these

probabilities as the number of TFs tends to infinity. In future

work, we plan to study the behaviour at modest TF numbers,

especially how sharp (how ‘switch-like’) the transitions are

from the largely unbound to the largely bound form of the

gene. We wish to know to what extent the tail determines

the slope in the middle. This requires a finer exploration of

the role that the rate constants play. We foresee drawing a par-

allel between these results for stochastic reaction models and

the formalism and language of the traditionally deterministic,

ODE-based Hill functions [65].
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geführt wird. Ann. Phys. Chem. 72, 497 – 508.
(doi:10.1002/andp.18471481202)

48. Schnakenberg J. 1976 Network theory of
microscopic and macroscopic behavior of master
equation systems. Rev. Mod. Phys. 48, 571 – 585.
(doi:10.1103/RevModPhys.48.571)

49. Tutte WT. 1948 The dissection of equilateral
triangles into equilateral triangles. Math. Proc.
Camb. Philos. Soc. 44, 463 – 482. (doi:10.1017/
S030500410002449X)

50. King EL, Altman C. 1956 A schematic method of
deriving the rate laws for enzyme-catalyzed
reactions. J. Phys. Chem. 60, 1375 – 1378. (doi:10.
1021/j150544a010)

http://dx.doi.org/10.1063/1.1889434
http://dx.doi.org/10.1063/1.1889434
http://dx.doi.org/10.1063/1.3190327
http://dx.doi.org/10.1063/1.3027499
http://dx.doi.org/10.1063/1.3027499
http://dx.doi.org/10.1109/TCBB.2009.23
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1063/1.1824902
http://dx.doi.org/10.1063/1.2109987
http://dx.doi.org/10.1063/1.2567036
http://dx.doi.org/10.1063/1.2567071
http://dx.doi.org/10.1063/1.3072704
http://dx.doi.org/10.1063/1.3576123
http://dx.doi.org/10.1063/1.3576123
http://dx.doi.org/10.1049/iet-syb.2009.0057
http://dx.doi.org/10.1007/s10867-007-9043-2
http://dx.doi.org/10.1214/105051606000000420
http://dx.doi.org/10.1214/12-AAP841
http://dx.doi.org/10.1214/12-AAP841
http://dx.doi.org/10.1063/1.481811
http://dx.doi.org/10.1063/1.481811
http://dx.doi.org/10.1214/13-AAP934
http://dx.doi.org/10.1016/j.jtbi.2010.11.023
http://dx.doi.org/10.1016/S0022-0396(03)00020-2
http://dx.doi.org/10.1016/S0022-0396(03)00020-2
http://dx.doi.org/10.1073/pnas.0610987104
http://dx.doi.org/10.1038/msb.2009.75
http://dx.doi.org/10.1038/msb.2009.75
http://dx.doi.org/10.1016/j.gde.2005.02.006
http://dx.doi.org/10.1073/pnas.151588598
http://dx.doi.org/10.1073/pnas.151588598
http://dx.doi.org/10.1016/j.plrev.2005.03.003
http://dx.doi.org/10.1016/j.plrev.2005.03.003
http://dx.doi.org/10.1103/PhysRevLett.97.168302
http://dx.doi.org/10.1073/pnas.0803850105
http://dx.doi.org/10.1073/pnas.0803850105
http://dx.doi.org/10.1016/j.bpj.2010.09.057
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1016/0009-2509(87)80099-4
http://dx.doi.org/10.1016/0009-2509(87)80099-4
http://dx.doi.org/10.1063/1.2145882
http://dx.doi.org/10.1063/1.2046628
http://dx.doi.org/10.1063/1.2046628
http://dx.doi.org/10.1063/1.3380661
http://dx.doi.org/10.1109/CDC.2006.376994
http://dx.doi.org/10.1063/1.2408422
http://dx.doi.org/10.1016/0375-9601(74)90956-6
http://dx.doi.org/10.1073/pnas.78.11.6840
http://dx.doi.org/10.1007/s11538-009-9407-9
http://dx.doi.org/10.1007/s11538-009-9407-9
http://dx.doi.org/10.1016/j.jtbi.2008.11.026
http://dx.doi.org/10.1049/iet-syb.2009.0070
http://alexandria.tue.nl/repository/books/461817.pdf
http://alexandria.tue.nl/repository/books/461817.pdf
http://alexandria.tue.nl/repository/books/461817.pdf
http://arxiv.org/abs/1401.6400
http://arxiv.org/abs/1401.6400
http://dx.doi.org/10.1002/andp.18471481202
http://dx.doi.org/10.1103/RevModPhys.48.571
http://dx.doi.org/10.1017/S030500410002449X
http://dx.doi.org/10.1017/S030500410002449X
http://dx.doi.org/10.1021/j150544a010
http://dx.doi.org/10.1021/j150544a010
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140054

13

 on August 20, 2014rsif.royalsocietypublishing.orgDownloaded from 
51. Hill TL. 1966 Studies in irreversible
thermodynamics. IV. Diagrammatic representation of
steady state fluxes for unimolecular systems.
J. Theor. Biol. 10, 442 – 459. (doi:10.1016/0022-
5193(66)90137-8)

52. Anderson DF, Craciun G, Kurtz TG. 2010 Product-
form stationary distributions for deficiency
zero chemical reaction networks. Bull. Math.
Biol. 72, 1947 – 1970. (doi:10.1007/s11538-010-
9517-4)

53. Lubensky DK. 2010 Equilibriumlike behavior in
chemical reaction networks far from equilibrium.
Phys. Rev. E 81, 060102(R). (doi:10.1103/PhysRevE.
81.060102)

54. Feinberg M. 1979 Lectures on chemical reaction
networks. Lecture notes, University of Wisconsin,
Madison, WI, USA. (http://www.crnt.osu.edu/
LecturesOnReactionNetworks)

55. Zhang Z. 2011 A recursive method to calculate the
expected molecule numbers for a polymerization
network with a small number of subunits. J. Math.
Anal. Appl. 384, 549 – 560. (doi:10.1016/j.jmaa.
2011.06.064)

56. Peccoud J, Ycart B. 1995 Markovian modelling of
gene product synthesis. Theor. Popul. Biol. 48,
222 – 234. (doi:10.1006/tpbi.1995.1027)

57. Hornos JEM, Schultz D, Innocentini GCP, Wang J,
Walczak AM, Onuchic JN, Wolynes P. 2005 Self-
regulating gene: an exact solution. Phys. Rev. E 72,
051907. (doi:10.1103/PhysRevE.72.051907)

58. Grima R, Schmidt DR, Newman TJ. 2012 Steady-
state fluctuations of a genetic feedback loop: an
exact solution. J. Chem. Phys. 137, 035104. (doi:10.
1063/1.4736721)

59. Visco P, Allen RJ, Evans MR. 2009 Statistical physics
of a model binary genetic switch with linear
feedback. Phys. Rev. E 79, 031923. (doi:10.1103/
PhysRevE.79.031923)

60. Vandecan Y, Blossey R. 2013 Self-regulatory gene:
an exact solution for the gene gate model. Phys.
Rev. E 87, 042705. (doi:10.1103/PhysRevE.87.
042705)
61. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S.
2006 Stochastic mRNA synthesis in mammalian
cells. PLoS Biol. 4, e309. (doi:10.1371/journal.pbio.
0040309)

62. Iyer-Biswas S, Hayot F, Jayaprakash C. 2009
Stochasticity of gene products from transcriptional
pulsing. Phys. Rev. E 79, 031911. (doi:10.1103/
PhysRevE.79.031911)

63. Flajolet P, Sedgewick R. 2009 Analytic
combinatorics. Cambridge, UK: Cambridge University
Press. (http://algo.inria.fr/flajolet/Publications/book.
pdf )

64. Fournier T, Gabriel JP, Mazza C, Pasquier J, Galbete
JL, Mermod N. 2007 Steady-state expression of self-
regulated genes. Bioinformatics 23, 3185 – 3192.
(doi:10.1093/bioinformatics/btm490)

65. Gesztelyi R, Zsuga J, Kemeny-Beke A, Varga B,
Juhasz B, Tosaki A. 2012 The Hill equation and the
origin of quantitative pharmacology. Arch. Hist.
Exact Sci. 66, 427 – 438. (doi:10.1007/s00407-012-
0098-5)

http://dx.doi.org/10.1016/0022-5193(66)90137-8
http://dx.doi.org/10.1016/0022-5193(66)90137-8
http://dx.doi.org/10.1007/s11538-010-9517-4
http://dx.doi.org/10.1007/s11538-010-9517-4
http://dx.doi.org/10.1103/PhysRevE.81.060102
http://dx.doi.org/10.1103/PhysRevE.81.060102
http://www.crnt.osu.edu/LecturesOnReactionNetworks
http://www.crnt.osu.edu/LecturesOnReactionNetworks
http://www.crnt.osu.edu/LecturesOnReactionNetworks
http://dx.doi.org/10.1016/j.jmaa.2011.06.064
http://dx.doi.org/10.1016/j.jmaa.2011.06.064
http://dx.doi.org/10.1006/tpbi.1995.1027
http://dx.doi.org/10.1103/PhysRevE.72.051907
http://dx.doi.org/10.1063/1.4736721
http://dx.doi.org/10.1063/1.4736721
http://dx.doi.org/10.1103/PhysRevE.79.031923
http://dx.doi.org/10.1103/PhysRevE.79.031923
http://dx.doi.org/10.1103/PhysRevE.87.042705
http://dx.doi.org/10.1103/PhysRevE.87.042705
http://dx.doi.org/10.1371/journal.pbio.0040309
http://dx.doi.org/10.1371/journal.pbio.0040309
http://dx.doi.org/10.1103/PhysRevE.79.031911
http://dx.doi.org/10.1103/PhysRevE.79.031911
http://algo.inria.fr/flajolet/Publications/book.pdf
http://algo.inria.fr/flajolet/Publications/book.pdf
http://algo.inria.fr/flajolet/Publications/book.pdf
http://dx.doi.org/10.1093/bioinformatics/btm490
http://dx.doi.org/10.1007/s00407-012-0098-5
http://dx.doi.org/10.1007/s00407-012-0098-5
http://rsif.royalsocietypublishing.org/

	Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks
	Introduction
	Preliminaries
	Connecting fast and slow time scales
	4. Fast dynamics with quasi-steady-state assumption
	Path-like state space
	Infinite path
	Finite path
	Two-state path
	Three-state path

	Circular state space
	State space glued together from two graphs at one vertex
	Kirchhoff’s theorem or the Markov chain tree theorem
	Complex-balanced networks
	Ladder-shaped state space

	A comparison of four gene regulatory systems
	Discussion
	Acknowledgements
	Data accessibility
	Funding statement
	References


