
Knowledge-based Verification of Service
Compositions – an SMT Approach

Sven Walther and Heike Wehrheim
Department of Computer Science

University of Paderborn, Germany

{swalther,wehrheim}@mail.upb.de

Abstract—In the Semantic (Web) Services area, services are
considered black boxes with a semantic description of their
interfaces as to allow for precise service selection and configura-
tion. The semantic description is usually grounded on domain-
specific concepts as modeled in ontologies. This accounts to types
used in service signatures, but also to predicates occurring in
preconditions and effects of services. Ontologies, in particular
those enhanced with rules, capture the knowledge of domain
experts on properties of and relations between domain concepts.

In this paper, we present a verification technique for service
compositions which makes use of this domain knowledge. We
consider a service composition to be an assembly of services
of which we just know signatures, preconditions, and effects.
We aim at proving that a composition satisfies a (user-defined)
requirement, specified in terms of guaranteed preconditions and
required postconditions. As an underlying verification engine we
use an SMT solver. To take advantage of the domain knowledge
(and often, to enable verification at all), the knowledge is fed
into the solver in the form of sorts, uninterpreted functions and
in particular assertions as to enhance the solver’s reasoning
capabilities. Thereby, we allow for deductions within a domain
previously unknown to the solver. We exemplify our technique
on a case study from the area of water network optimization
software.

I. INTRODUCTION

The concept of service-oriented architectures (SOA) advocates
methods and principles for designing applications on the
basis of interoperable services, and by this encourages the
development of small reusable software services. To allow for
precise service selection and configuration, such services are
not only described by signature-based APIs but have richer
interfaces including protocol and functionality descriptions,
i.e., preconditions and effects. This principle in particular
manifests itself in the Semantic Web Services initiative [1].
The terms and concepts on which such interface descriptions
are based are defined in ontologies. Ontologies formalize
domain specific knowledge of fundamental concepts and their
relations. In particular, ontologies combined with rules (like
OWL with SWRL [2]) allow to describe properties of the
concepts within the domain which are not expressible with
ontologies alone. Thus, a rule enhanced ontology can be used
to capture even complex domain knowledge.

While there is a large amount of research on using ontolo-
gies for service selection and matching (like [3], [4], [5]), or
for reasoning about ontologies themselves (e.g., consistency
checking, querying, or integration [6]), this is not the case for
service composition verification. In this paper, we deal with
the latter. We assume to be given a composition of services,

SMT
solver

domain
knowledge

consists
of

verification
conditions

uses

uses

Service
specification

Service
composition

Composition
requirements

Ontology
+ rules

Fig. 1. Overview of our approach

each with an ontology-based interface specification. Apart
from interfaces, nothing is known about the services (black-
box view). In a SOA context, this is a quite likely scenario:
providers sell their services but not the code itself. In fact, a
service might not even run on the consumer side, but could
either completely stay on the provider machine or run in the
cloud. Furthermore, the requirements on an assembled service
composition are specific to the domain; instead of proving
general safety or reachability properties alone (as state-of-the-
art software verification tools do), consumers expect the ver-
ification to prove domain-specific requirements. We leverage
this by grounding service specifications on ontologies.

As an example, we introduce our case study “water sup-
ply network optimization”. Software services in this domain
handle different tasks of analyzing and optimizing existing
municipal water supply networks. Single services designed for
different sub-tasks can be assembled into a composition. This
concerns services like (a) compacting the size (and layout)
of network models, (b) generating mathematical optimization
problems from networks, (c) solving optimization problems,
and (d) applying optimal solutions to networks. As the behav-
ior of these services is specified in terms of interfaces only,
this is a black-box view and for the analysis we can therefore
only assume that services adhere to their specification.

Every water network has specific hydraulic characteristics,
as well as other properties like cost of operation. A typical
domain specific requirement on a composition of some op-
timization services is that an optimized network (produced
by the composition) has the same hydraulic characteristics
as the original input network, but better (e.g., lower) cost of
operation.

Our approach to the verification of such service compo-

2013 International Conference on Engineering of Complex Computer Systems

978-0-7695-5007-7/13 $26.00 © 2013 IEEE

DOI 10.1109/ICECCS.2013.14

24

sition is based on the use of an SMT solver (satisfiability
modulo theories solver [7]) as reasoning engine. Basically,
our technique feeds three types of inputs (domain knowledge,
service interface specifications, and assembly) into the SMT
solver in different forms (see Fig. 1). These inputs, combined
with the user’s requirements specification, are encoded as
first-order logic formulae. As we want to show that the
requirements always hold, some of the formulae are negated,
and the negation is required to be unsatisfiable (that is, no
counterexample can be found). In that case, the composition
meets the requirements. More specifically, we start with an
ontology of the domain which models – beside the standard
concepts and their relations – additional rules about the domain
by first-order logic. The predicates therein are the relations
in the ontology. Providers of services use the ontology to
specify a service’s signature and its preconditions and effects.
Consumers use the ontology to specify requirements of a
service composition. For verification, we use the concepts of
the ontology as types for the solver (in our case Z3 [8]),
relations as uninterpreted functions, and rules as constraints on
the interpretation of these functions. The rules are thus being
used for deduction together with the decidable theories of
the solver (e.g., linear arithmetic). The creation of verification
conditions for a given service composition and requirements
follows ideas of Hoare-style proofs [9]. In our example we
verify an application consisting of an assembly of services in
a loop by using loop invariants and termination functions. It
turns out that the verification requires the additional domain
knowledge for a successful reasoning: the knowledge of human
domain experts (e.g. about hydraulic properties of different
forms of networks) needs to be provided to the solver.

The remaining paper is structured as follows. The next sec-
tion introduces our running example, as well as an overview on
ontologies, service specifications, and requirements. Section III
introduces rules as an extension to ontologies, and section IV
explains our approach of translating the specification into a
SAT/SMT problem. The last section presents related work and
concludes.

II. BACKGROUND

We start by introducing our example domain and giving an
overview of the basic concepts we use in our approach. Our
example comes from the domain of operative planning of water
supply networks, but our approach is more general: the sce-
nario we envision1 is that of a consumer stating requirements
about a desired application, a configuration process proposing
different possible compositions of small services based on the
services’ signature only, and the verification process validating
these compositions against the requirements of the consumer.
Here, the mutual basis is that services are small, specified
as black boxes, and combined to a larger composition that
has to meet some requirements. The validation part of such a
composition is the topic of this paper.

After introducing our example domain, this section gives
a basic introduction to ontologies as the core of the semantic
web. Then we present service specifications, service composi-
tions, and requirements.

1See the Collaborative Research Centre 901 – On-The-Fly Computing,
http://sfb901.uni-paderborn.de.

Aggregate

water net
original

water net
reduced

Formalize Solve

water net
optimized

Apply

math solution

math
problem

Fig. 2. Abstract workflow of optimizing water supply networks

A. Example Domain

In the domain of operative planning of (drinking) water
networks, an important task is to analyze and optimize water
networks towards a specific goal, e.g., operation cost mini-
mization, pump switching, or replacement of network elements
(like tanks). Sound mathematical models for water networks
become very complex, and are based on nonlinear program-
ming (NLP), or even nonlinear mixed-integer programming
(MINLP). Therefore, a common step in computing a network
optimization is to simplify the network model. The complexity
of a model is reduced by aggregating certain network struc-
tures into simpler ones (examples below). The resulting model
has to be hydraulically equivalent to the input model, but due to
its reduced complexity the goal of computing an optimization
problem becomes feasible for NLP or MINLP solvers2 [10].

The reduction of network models is the first step to solve
the optimization problem. The overall workflow of a network’s
optimization consists of four main steps: (a) aggregate a
network model to reduce its complexity and size, (b) formalize
the network model and the specific optimization goal as a
mathematical problem, (c) use an off-the-shelf solver to solve
this problem, and (d) apply the mathematical solution to the
network model. Fig. 2 depicts this workflow. Every service
as specified using preconditions and effects. The aggregation
part itself can be seen as another service composition. To
demonstrate our own verification approach, we focus on this
part, as it will contain a loop, which requires additional proof
strategies (Section IV).

B. Ontologies

Ontologies provide means to formalize knowledge of a spe-
cific domain. Here, the domain is water supply networks.
An ontology acts as a parameter for the various steps of
our approach, namely for providers specifying their services,
consumers stating requirements, and finally the verification.

Domain knowledge is separated into the main parts of
concepts and roles (or relations) between them. Besides a
graphical representation, as used in this paper, a description-
logics- or first-order-logic-style representation is also com-
mon ([11]). Concepts (or classes) of an ontology denote sets
of individuals that share some common features, while roles
are used to describe properties of individuals of a concept.

2For a list of off-the-shelf solvers, see http://www.gams.com/solvers.

25

Bool

Int

Node

Edge

hasChains

hasParallelPipes

hydEquiv

has

Net

has size

distance

refinedBy

to

from

fulfills Optimization
Goal

Distance
Hydraulic

Fig. 3. Simplified version of a water supply network domain ontology

Fig. 4. A node chain (above) and five parallel pipes (below)

Concepts are typically mapped to types that are used in
operation signatures of service descriptions.

Fig. 3 shows an extract of our example domain ontology.
It includes the concepts Net (which describes networks in
general), and OptimizationGoal (which describes in which way
a network shall be changed). RefinedBy is a role, relating a net
to another one if there is some sort of structural refinement
between them. The hasChains and hasParallelPipes roles
(also related to a net’s structure) describe properties that map
individuals of the concept Net to individuals of the basic type
Bool.

While relations in ontologies are always binary, it is
possible to model n-ary relations as binary ones by treating
a specific n-ary relation as a new concept: for our example
we assume that two water networks have a specific hydraulic
distance, which we consider to be an integer value. As we
want to relate three parameters (two nets and a number), we
consider hydraulic distance as a separate concept which has
roles from and to to the compared nets, and distance as a data
property of the basic type Int (integer).

We refrain from giving a complete ontology for water sup-
ply network optimization here. The depicted concepts and roles
are the ones needed to demonstrate our approach. Ontologies
are typically formalized using the Web Ontology Language
(OWL, [12]).

C. Services and Service Compositions

The ontology is the basis for specifying single services (or
better, their interfaces) out of which complex aggregations can
be formed. In the domain of network optimization there are for
instance several aggregation services available, among others
two services called RemoveChains and RemoveParallelPipes.
Both change the structure (or layout) of a net. Sequences of
nodes are called chains, and multiple pipes (edges) linking
the same nodes directly are called parallel pipes (Fig. 4). The
two services eliminate chains and parallel pipes, respectively,
from a net. Fig. 5 shows a simple example net, where chains
(node sequences) and parallel pipes are repeatedly replaced by
simple pipes (edges).

Fig. 5. Repeatedly removing chains and parallel pipes from a water network
graph. Chains (nodes with two edges) and parallel pipes (parallel edges) are
marked gray

Controller
RemoveParallelPipes

RemoveChains

Aggregate

Fig. 6. Service composition containing two aggregation services (Re-
moveChains, RemoveParallelPipes)

We assume services like RemoveChains to be specified by
interfaces that contain operation signatures. An operation
signature contains a name, and names and types of input
and output parameters. Following the semantic (web) service
approach, we also require preconditions and effects for each
signature.

For sake of readability, we assume that every service
has exactly one operation (named uniquely), and we give
specifications using an abstract notation instead of OWL.
Preconditions and effects are given in first-order logic notation.
The following table lists the specification of two aggregation
services, as potentially supplied by a provider.

Service: RemoveChains
input: i: Net
output: o: Net
pre: hasChains(i)

effect: hydEquiv(i, o) ∧ size(o) < size(i)

∧ refinedBy(i, o) ∧ ¬hasChains(o)
Service: RemoveParallelPipes
input: i: Net
output: o: Net
pre: hasParallelPipes(i)

effect: hydEquiv(i, o) ∧ size(o) < size(i)

∧ refinedBy(i, o)∧¬hasParallelPipes(o)

A configuration process might combine the services Re-
moveChains and RemoveParallelPipes into a service compo-
sition Aggregate. In our setting, service compositions will be
given by a structure diagram (Fig. 6) combined with an activity
diagram (Fig. 7) to specify the control flow. Every composition
has a coordinating service (named Controller) which calls the
other services as specified in the activity diagram. We assume
that the composition Aggregate from Fig. 6 is itself used

26

hasChains
OR hasPP hasChains hasPP

RemoveChains RemovePP

[false]

[true]

[true] [true]

[false] [false]

Fig. 7. Activity diagram of the Aggregate composition (joining diamonds
omitted for brevity)

WNOptimizer

Controller Aggregate

Formalize

Solve

Apply

Fig. 8. Service composition containing several services to handle the
optimization workflow

by a composition WNOptimizer, which handles the complete
optimization process (Fig. 8).

In general, activity diagrams contain a start and stop state.
We use a simple box with a service name to indicate the
call to a service. Conditions (diamonds) are used to describe
alternative control flows or loops. In our activity diagram the
services RemoveChains and RemoveParallelPipes are conti-
nously called as long as the loop condition c = hasChains ∨
hasParallelPipes holds. As the effect of RemoveParallelPipes
does not guarantee anything concerning chains, it is possible
that new chains are introduced. This is indeed the case: Fig. 5
shows a network that initially contains chains, but no parallel
pipes. Removing the chains (by replacing the node with a new
pipe) introduces parallel pipes. Replacing parallel pipes with
a single pipe, may introduce a new chain. Therefore repeated
calls to the services are needed for achieving a chain- and
parallel-pipe-free network at the end.

D. Requirements

To request a composition, the consumer formulates require-
ments by (again) giving a signature (consisting of input and
output parameter names and types) as well as preconditions
and effects, which represent the requested composition. Pre-
conditions describe the valid input to the composition, and
effects describe the required output. We use first-order logic
formulae (based on concepts and/or roles of the domain
ontology) to formalize preconditions and effects.

In the domain of water network optimization, a consumer
would typically require to get compositions which are able to
compute an optimized water net given some input net. Thus the
requested composition will get an input net and has to return
an output net. The requirements will however differ in their
optimization goals: some consumers might want to have a net
with operation costs below a threshold, or a net not having
tanks that are not fully utilized. Most of the time there is in

addition a requirement stating that input and output net must
have the same or similar hydraulic characteristics. Different
requirements necessitate different compositions. The purpose
of our technique is to check whether a given composition
adheres to some given requirements.

In our example, the aggregation service can be seen as a
composition as well, consisting of two services RemoveChains
and RemoveParallelPipes (Fig. 6). Here, the requirement might
be as follows: the input consists of a net containing chains, or
parallel pipes, or both (precondition), and the output is required
to not contain any chains or parallel pipes anymore (effect). To
simulate an allowed error margin, the output net is furthermore
required to have a hydraulic distance to the input of less than 5.
As an abbreviation, we use the notation

HydDistance(n1, n2) < x

to specify a hydraulic distance of less than x between nets n1

and n2. These requirements can be formalized in the following
way:

Requirements (for aggregation services)

input: i: Net
output: o: Net
pre: hasChains(i) ∨ hasParallelPipes(i)

effect: HydDistance(i, o) < 5 ∧ refinedBy(i, o)

∧¬hasChains(o)∧¬hasParallelPipes(o)

Now, we have specified (domain specific) requirements for an
aggregation service composition, and we are given a candidate
composition. The task is now to show that the candidate com-
position fulfills these requirements using all of our available
domain knowledge. The reader may have already noticed that
different predicates are used to formulate the effects of the
services and the requirements (and this will frequently be the
case as consumer and producer will not be the same person):
while the services guarantee hydraulic equivalence (using the
predicate hydEquiv), the requirements ask for a maximum
hydraulic distance of 5. While domain experts will easily see
the connections between these two predicates, our ontology
does not contain this information yet (and consequently our
reasoning technique cannot use it). In fact, normal ontologies
do not provide flexible means to relate such predicates. The
next section introduces rules to enable formalizing additional
knowledge which is not expressible with ontologies alone.

III. ONTOLOGIES WITH RULES

The last remark already shows that we are not yet at the end
of specifying domain knowledge. The two aggregation services
guarantee the output net to be hydraulically equivalent to the
input net, and the user requires a maximum hydraulic distance
of 5. The fact that hydraulic equivalence implies a hydraulic
distance of zero (which is clear to domain experts) is not
yet formalized. To utilize this knowledge for reasoning, we
need ways of specifying all sorts of constraints for our domain
concepts and roles, in particular by relating different roles.

Using only ontology languages, it is not always possible to
formalize all types of constraints. Languages like the Resource
Description Framework (RDF, [13]) only support concepts

27

and (binary) roles between them. RDF Schema [14] adds
predefined roles which enable a reasoner to derive additional
knowledge (in terms of assertions, that have been known only
implicitly), but there is no way to create complex relations
between roles. The direct semantics of OWL 2 is (roughly)
compatible to the description logic SROIQ [15], [11], and
therefore provide additional concept constructors similar to
set-theoretic operations. It also provides predefined statements
to add information about roles, like constraining cardinalities,
inversion, transitivity, symmetry, or functionality. Our running
example includes the following properties (stating only those
used in reasoning):

Properties (employed in reasoning)

isRefinedBy reflexive, transitive, anti-symmetric

hydEquiv reflexive, transitive, symmetric

However, while OWL enables us to formalize such predefined
characteristics, this is not sufficient. It is, for instance, possible
to create concept expressions based on intersection or union,
but nothing similar is possible for roles. Therefore additional
means to formalize rules are needed [16]. Rules in general
relate atoms and predicates. They consist of an antecedent A
and a consequent C and are written as an implication

A → C.

A rule that contains a conjunction as a consequent can be
split into different rules with one predicate as a consequent
for each. A rule which has no antecedent is a fact, as the
consequent has to hold all the time. Applied to our running
example, rules allow us to add further information. We want to
state that hydraulic equivalence results in a hydraulic difference
of 0, and vice versa (here i, o are nets and implicitly universally
quantified). We furthermore need to state that nets have a
minimum size of 0:

Rules (employed in reasoning)

hydEquiv(i, o) ⇒ HydDistance(i, o) = 0

HydDistance(i, o) = 0 ⇒ hydEquiv(i, o)

size(n) ≥ 0

Now, we have introduced all necessary domain knowledge,
formalized by an ontology and rules, and its use to specify
requirements and services. While there are several languages
to specify services, compositions, and requirements (like
PCM [17], UML [18], WSDL [19]), our verification approach
outlined in the next section does not depend on the exact
languages used for specification. Whether or not a specific
language is suitable, depends on its expressiveness.

IV. VERIFICATION VIA SMT SOLVING

The ontology with its properties and rules formalize the
domain knowledge consisting of concepts, roles between them,
and additional constraints. The types used in services and
requirements specifications stem from the same ontology.3

3This is in fact not strictly necessary; one could use ontology matching and
consistency techniques to allow for different ontologies [20].

1 (declare−sort Net)
2 (declare−fun hasChains (Net) Bool)
3 (declare−fun hasParallelPipes (Net) Bool)
4 (declare−fun size (Net) Int)
5

6 ; All networks have at least size zero
7 (assert
8 (forall ((n Net))
9 (≥ (size n) 0))

10)
11

12 ; Hydraulic equivalence and distance of zero are the same
13 (assert
14 (forall ((g Net) (h Net))
15 (⇒ (hydEquiv g h)
16 (= (HydDistance g h) 0)
17))
18)
19 (assert
20 (forall ((g Net) (h Net))
21 (⇒ (= (HydDistance g h) 0)
22 (hydEquiv g h)
23))
24)

Fig. 9. Translation of (part of) the rules

Together with the service composition model this is the input
for the verification procedure. The verification consists of three
steps: first, the concepts of the ontology have to be translated
into input for the SMT solver. This is only done once for
every ontology. Second, we need to create a first order formula
describing the service composition’s behavior. And finally, we
need to derive verification conditions for the correctness check
of the service compositions with respect to the consumer’s
requirements. The last two steps need to be carried out for
every pair of requirements and service composition which is
to be verified.

We start with the translation of the domain knowledge cap-
tured by the ontology with rules. The SMT solver we currently
use is Z3 [8]. The basic scheme here is as follows: we use
concepts of the ontology as sorts (types) for the solver, roles as
uninterpreted functions4, and properties (like transitivity) and
rules will be assertions about the uninterpreted functions that
give constraints on their interpretation. As an example consider
the Z3 code in Fig. 9. In line 1 we declare a sort Net for
networks, and in lines 2, 3 and 4 the relations hasChains,
hasParallelPipes and size. Lines 6 to 24 capture some
of the rules about these concepts and predicates: every network
has at least size zero, and hydraulic equivalence (hydEquiv) is
the same as a hydraulic distance of zero (HydDistance). In a
similar way we translate the other concepts and rules to capture
the domain knowledge.

The second step is the translation of the service com-
position itself. We are given a structure diagram consisting
of a number of services and in particular a main service.
The main service contains a behavior description (activity
diagram) describing how the other services are being called.
In our example composition the top service has a single input

4As services are considered as black boxes, this is sufficient. Proving that
a single service adheres to its own specification is not the topic of this paper.

28

Block type Formula

(empty) i = o

call
<name>

i

o

prename(i) ⇒ effectname(i, o)

B1

B2

i

io

o

∃io : ϕB1(i, io) ∧ ϕB2(io, o)

i

o

B1 B2

c [false][true]

(c(i) ∧ ϕB1
(i, o))

∨ (¬c(i) ∧ ϕB2
(i, o))

i1

o1

B

c

o

i [true]

[false]

¬c(o) ∧ ((¬c(i) ∧ i = o)
∨ c(i) ∧ p(i, o))

Fig. 10. Translation of activity diagram elements

which is forwarded to the first called sub-service and the
services’ outputs are also simply given as input to the next
one. However, it is straightforward to extend our translation
concept to include more than one parameter. The translation is
defined by induction on the structure of the activity diagram
and is sketched in Fig. 10.

In the activity diagram the following structures are allowed
and have the following translations into first-order logic. We
always generate a formula ϕ(i, o) which has the variables i
(input) and o (output) as the only free variables. Thereby we
get a formula which describes the behavior in terms of an
input-output relationship.

Empty block
The empty block (induction start) is translated into
the formula i = o; nothing happens and thus input
equals output.

Service call
Given a service name with precondition
prename(x) and effect effectname(x, y), then the
formula for the call is

ϕcall := prename(i) ⇒ effectname(i, o)

(if the preconditions holds, the effect can be
guaranteed).

Sequence
Assuming that the formulae of two blocks B1 and
B2 are ϕB1

and ϕB2
, respectively, the formula for

the sequence is

ϕseq := ∃io : ϕB1
(i, io) ∧ ϕB2

(io, o).

Conditional
Again assuming that the formulae of two blocks
B1 and B2 are ϕB1 and ϕB2 , respectively, and the
condition is c(i), the formula for the conditional
(if-then-else) is

ϕite := (c(i) ∧ ϕB1
(i, o)) ∨ (¬c(i) ∧ ϕB2

(i, o)).

Fig. 7 shows two examples of conditional calls
within a sequence.

Loop
Assume that we are given a loop construct with
condition c(i) and loop body B with associated
formula ϕB (which is needed only to create
verification conditions, see later). The translation
here is a bit more difficult since we do not
know the exact number of loop executions. A
possible approach is to make a bounded unfolding
of the loop body for user given bounds. Here,
we use loop invariants instead (see below for
the verification condition associated to invariants).
The loop invariant is used to capture the behavior
of the entire loop (to the extent necessary for
verification). Given a loop invariant p(i, o) on the
inputs and outputs, we generate the formula

ϕloop := ¬c(o)∧(
(¬c(i)∧o = i)∨(c(i)∧p(i, o)))

(after the loop, the loop condition is false, and
either the loop condition is not true on the input
and then input equals output, or the loop is
executed (at least once) and thereby the invariant
established). Note that the loop invariant relates
inputs and outputs to/from the loop (in contrast to
normal state-based loop invariants). Fig. 7 shows
the example loop containing an complex inner
block.

This translation gives us a formula ϕact for an activity diagram
of a service composition. For our example we have the
following parts. The loop invariant is

p(i, o) := refinedBy(i, o) ∧ hydEquiv(i, o).

The invariant states that after every loop execution the output
network remains hydraulic equivalent to the input and is a
refinement of it. The resulting formula of the composition used
for Aggregate thus is:

ϕact(i, o) := ¬(hasChains(o) ∨ hasParallelPipes(o)
)

∧
((¬(hasChains(i) ∨ hasParallelPipes(i)

)

∧ (i = o)
)

∨ ((
hasChains(i) ∨ hasParallelPipes(i)

)

∧ refinedBy(i, o) ∧ hydEquiv(i, o)
))

29

Note that we do not see the services in the loop body in here
since these are covered by the loop invariant. Of course we
need to show that p is indeed an invariant (see next).

In addition to the service composition we are given the
consumer’s requirements with precondition preReq and effect
effectReq . The last step is the generation of a number of
verification conditions. The verification conditions need to
capture three aspects: (1) the service composition guarantees
the requirements, (2) the loop invariant is actually an invariant,
and (3) the loop terminates (if we are interested in total and
not just partial correctness). For the first aspect we need to
check validity of the following implication:

∀i, o : preReq(i) ∧ ϕact(i, o) ⇒ effectReq(i, o) (VC-REQ)

In Z3 we do so by checking satisfiability of the negation of the
above formula. If this formula is unsatisfiable, validity holds,
as no counterexample was found. Taking the above formula
ϕact and our requirements this is indeed true.

The second and third type of verification conditions con-
cern loops. We have used a loop invariant to capture the
behavior of the loop, and thus we need to show that the
loop invariant is actually an invariant of the loop. The non-
standard part in our approach is the fact that loop invariants
need to talk about the input-output behavior of a loop instead
of just properties on states. To do so, we use loop invariants
of type p(i, o). We thus need to show that (a) the invariant is
established by one loop execution, and (b) once established is
preserved by further executions. Formally, we need to show
the following (where LoopBody is the loop body):

∀i, o : c(i) ∧ ϕLoopBody(i, o) ⇒ p(i, o) (VC-INV1)

∀i, k, o : p(i, k) ∧ c(k) ∧ p(k, o) ⇒ p(i, o) (VC-INV2)

VC-INV1 shows the establishment of an invariant p. VC-INV2
shows transitivity of p. From both, we can deduce that p is
preserved by further loop executions.

The final part is termination. To this we need to find a
termination function t on the variables of the loop, and show
that (a) t is decreased with every loop execution, and (b) t is
always greater than or equal to zero. In terms of formulae we
check validity of:

∀i, o, z :c(i) ∧ t(i) = z ∧ ϕLoopBody(i, o) ⇒ t(o) < z
(VC-TERM1)

∀i :t(i) ≥ 0 (VC-TERM2)

In our example, the termination function t corresponds to
size. To give an impression of how to state these verification
conditions within Z3, Fig. 11 shows the Z3 code of the
verification condition for termination.

So far, both loop invariants and termination functions
have to be found by hand. We are however confident that
template-based techniques for deriving invariants (like [21])
can be fruitfully applied in our setting. For instance, a natural

1 (define−fun LoopTermination1 () Bool
2 (forall ((i Net) (o Net) (z Int))
3 (⇒ (and (C i)
4 (= (T i) z)
5 (LoopBody i o))
6 (< (T o) z))))
7

8 (assert (not LoopTermination1))
9 (check−sat)

Fig. 11. Verifying VC-TERM1 for the loop

candidate for a loop invariant is a predicate appearing in the
effects of all services in the loop body. Once we have derived
a number of invariant candidates, we can then automatically
check their usefulness and validity with Z3.

For our example, all of the verification conditions are
satisfied. However, if we remove some of our domain know-
ledge, we will fail to prove the verification conditions. As an
example: for verifying termination (in particular VC-TERM2)
it is crucial to know that all networks have a size greater
or equal to zero. For verification of the requirements (VC-
REQ), the rules that relate hydraulic equivalence and hydraulic
similarity are necessary. If these rules are removed, Z3 will
find an interpretation of the uninterpreted functions which
makes the negated formulae satisfiable. These interpretations
(or models) can serve as counterexamples for the domain
experts: when they are no valid interpretations from the point
of view of the domain specialist, then there are additional rules
and properties needed to eliminate them.

All in all, we have thus obtained a verification procedure
for service compositions in arbitrary domains, in which the do-
main knowledge as given by an ontology is used for reasoning
within the solver. In this paper, we demonstrated our approach
on a service composition for water network aggregation, as
the control flow of this composition contains a loop. How-
ever, we applied our technique to the complete optimization
composition (which includes the aggregation composition) as
well.

V. CONCLUSION

The semantic web makes extensive use of ontologies to provide
a rich description of services. Part of this description is the
specification of preconditions and effects of a service call.
While different approaches like SWRL [2] exist to make
such specifications possible, proposals like OWL-S [22], that
integrate ontologies and Web-service specifications, are not
standardized yet. There exist approaches to use rules for
ontology reasoning [23], [24] and service matching [25], and
[26] uses ontology and rules reasoning in the context of (Web-)
service verification, but only for reasoning about correctness of
their knowledge base. The use of ontological knowledge for
verification of service compositions, based on preconditions
and effects, remains open.

In this paper, we have presented an approach to make use
of a rich semantic service description in verification. To this
end, we process the knowledge base of a specific domain and
derive types and predicates from an ontology with rules. Using
these predicates, we create first-order logic formulae and proof

30

t result
Aggregation only (as in this paper) 37 unsat
. . . without knowledge of minimal size of nets 41 sat
. . . without knowledge of hyd. property relations 43 sat
Complete optimization composition 38 unsat
. . . without knowledge of minimal size of nets 45 sat
. . . without knowledge of hyd. property relations 53 sat

Fig. 12. Results of Z3 solver runs (average of 1000 runs for each scenario)
on a common laptop (Intel i3-370M 2.4 GHz, 4 GB RAM). Time (t) in
milliseconds (rounded), based on Z3’s own statistics.

conditions based on the preconditions and effects of services
and the control flow information of a service composition.
Formalized as a satisfiability problem, we use the formulae
as input to an SMT solver, to check whether or not the
composition meets the requirements.

Up to now, we derived formulae and SMT code manually.
We used Z3 [8] as an SMT solver. Currently we are working on
an automated SMT code generation, that works on ontologies
specified with OWL and SWRL, and an extended version
of the Palladio Component Model [17] as a specification
language for services and service compositions. Solving first-
order logic satisfiability problems is undecidable in principle.
However, we think that our approach is feasible for application
to the verification of Web-service compositions. The scenario
presented in this paper (aggregation only, and aggregation
embedded into the workflow as depicted in Fig. 2) was verified
fast (Fig. 12). In this scenario, the number of services used in
a composition is yet relatively small. Future work includes the
evaluation of our verification procedure for larger examples
from different domains, as well as integration with other
semantic web-based techniques like matching.

Related work. While ontology-based reasoning is a well-
understood topic, and several specialized reasoners exist (e.g.,
FaCT++ [27]), in the first place they reason about the validity
and soundness of a given ontology. There are approaches to
address the problem of ontology reasoning with automated
theorem proving [28], [29], as well as with SAT/SMT solv-
ing [30]. Both concentrate on the soundness of ontologies,
and do not verify service compositions. There are, however,
early approaches of analyzing service compositions based on
DAML+OIL (a predecessor of OWL) using petri nets [31].
[32] uses Spin to verify Web-service interactions specified in
OWL-S. [33] also uses OWL-S to specify Web-services, but
they use user-preference based HTN planning to create com-
positions. [34] advocates service composition and verification
relying on linear programming, based on a simplified service
specification without ontologies. [35] combines Web-service
compositions (given as BPEL models) and service descriptions
(using visual contracts), but is specifically concerned with
checking that preconditions of services hold at their point
of execution in a business process. [36] verifies Web-service
compositions (specified in a CSP-style language) based on
trace inclusion (using the PAT framework [37]), but there is
no relation to ontological knowledge.

ACKNOWLEDGMENTS

We like to thank our domain experts Florian Stapel and
Corinna Hallmann for numerous discussions on water supply
networks.

This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Centre
“On-The-Fly Computing” (SFB 901).

REFERENCES

[1] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci,
K. Sycara, D. McGuinness, E. Sirin, and N. Srinivasan, “Bringing
semantics to web services with OWL-S,” World Wide Web, vol. 10,
pp. 243–277, 2007.

[2] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean, “SWRL: a Semantic Web Rule Language combin-
ing OWL and RuleML,” 2004, http://www.w3.org/Submission/2004/
SUBM-SWRL-20040521/.

[3] L. Li and I. Horrocks, “A software framework for matchmaking based
on semantic web technology,” in WWW ’03. ACM, 2003, pp. 331–339.

[4] Z. Huma, C. Gerth, G. Engels, and O. Juwig, “Towards an Automatic
Service Discovery for UML-Based Rich Service Descriptions,” in
MoDELS, 2012, pp. 709–725.

[5] M. C. Jaeger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, and
K. Geihs, “Ranked Matching for Service Descriptions Using OWL-S,”
in KiVS, 2005, pp. 91–102.

[6] K. Baclawski, M. Kokar, R. Waldinger, and P. Kogut, “Consistency
checking of semantic web ontologies,” in The Semantic Web - ISWC
2002, ser. LNCS. Springer, 2002, vol. 2342, pp. 454–459.

[7] D. Kroening and O. Strichman, “A framework for satisfiability modulo
theories,” Formal Aspects of Computing, vol. 21, pp. 485–494, 2009.

[8] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
TACAS, 2008, pp. 337–340.

[9] K. Apt, F. de Boer, and E.-R. Olderog, Verification of sequential and
concurrent programs. Springer, 2009.

[10] J. Burgschweiger, B. Gnädig, and M. Steinbach, “Nonlinear pro-
gramming techniques for operative planning in large drinking water
networks,” Open Applied Mathematics Journal, vol. 3, pp. 14–28, 2009.

[11] F. Baader, I. Horrocks, and U. Sattler, “Chapter 3 description logics,” in
Handbook of Knowledge Representation, ser. Foundations of Artificial
Intelligence, V. L. Frank van Harmelen and B. Porter, Eds. Elsevier,
2008, vol. 3, pp. 135 – 179.

[12] M. Schneider, “OWL 2 Web Ontology Language RDF-
based semantics,” W3C, W3C Recommendation, Oct. 2009,
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-
20091027/.

[13] D. Beckett, “RDF/XML syntax specification (revised),” W3C,
W3C Recommendation, Feb. 2004, http://www.w3.org/TR/2004/
REC-rdf-syntax-grammar-20040210/.

[14] R. V. Guha and D. Brickley, “RDF vocabulary description language 1.0:
RDF schema,” W3C, W3C Recommendation, Feb. 2004, http://www.
w3.org/TR/2004/REC-rdf-schema-20040210/.

[15] P. F. Patel-Schneider, B. Motik, and B. C. Grau, “OWL 2 web ontology
language direct semantics,” W3C, W3C Recommendation, Oct. 2009,
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/.

[16] E. Franconi and S. Tessaris, “Rules and queries with ontologies: A
unified logical framework,” in Principles and Practice of Semantic Web
Reasoning, ser. LNCS, H. Ohlbach and S. Schaffert, Eds. Springer,
2004, vol. 3208, pp. 50–60.

[17] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, pp. 3–22, 2009.

[18] “Unified modeling language (UML),” OMG, 2011, version 2.4.1.

[19] R. Chinnici, S. Weerawarana, J.-J. Moreau, and A. Ryman,
“Web services description language (WSDL) version 2.0 part
1: Core language,” W3C, W3C Recommendation, Jun. 2007,
http://www.w3.org/TR/2007/REC-wsdl20-20070626.

[20] N. F. Noy, “Ontology mapping,” in Handbook on Ontologies, S. Staab
and R. Studer, Eds. Springer, 2009, pp. 573–590.

[21] S. Srivastava and S. Gulwani, “Program verification using templates
over predicate abstraction,” in SIGPLAN, ser. PLDI ’09. New York:
ACM, 2009, pp. 223–234.

31

[22] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srini-
vasan, and K. Sycara, “OWL-S: Semantic markup for web services,”
2004, http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

[23] W. Drabent, T. Eiter, G. Ianni, T. Krennwallner, T. Lukasiewicz,
and J. Maluszynski, “Hybrid reasoning with rules and ontologies,” in
REWERSE, 2009, pp. 1–49.

[24] J. Baumeister, T. Kleemann, and D. Seipel, “Towards the verification
of ontologies with rules,” in FLAIRS Conference, 2007, pp. 524–529.

[25] A. B. Bener, V. Ozadali, and E. S. Ilhan, “Semantic matchmaker with
precondition and effect matching using SWRL,” Expert Syst. Appl.,
vol. 36, no. 5, pp. 9371–9377, Jul. 2009.

[26] Z. Xu and J. Wu, “Ontology reasoning and services composition
verification towards o-rgps requirement meta-model,” in ICACTE, 2010,
pp. 273–277.

[27] “FaCT++ OWL2 reasoner,” http://owl.cs.manchester.ac.uk/fact++/.

[28] I. Horrocks and A. Voronkov, “Reasoning support for expressive ontol-
ogy languages using a theorem prover,” in FoIKS. Springer, 2006, pp.
201–218.

[29] M. Schneider and G. Sutcliffe, “Reasoning in the OWL 2 full ontology
language using first-order automated theorem proving,” in Automated
Deduction – CADE-23, ser. LNCS, N. Bjørner and V. Sofronie-
Stokkermans, Eds. Springer, 2011, vol. 6803, pp. 461–475.

[30] M. Vescovi, “Exploiting SAT and SMT techniques for automated
reasoning and ontology manipulation in description logics,” Ph.D.
dissertation, University of Trento, 2011.

[31] S. Narayanan and S. McIlraith, “Simulation, verification and automated
composition of web services,” in Proceedings of the Eleventh Inter-
national World Wide Web Conference (WWW-11). ACM, 2002, pp.
77–88.

[32] A. Ankolekar, M. Paolucci, and K. Sycara, “Towards a formal verifica-
tion of OWL-S process models,” in The Semantic Web – ISWC 2005, ser.
LNCS, Y. Gil, E. Motta, V. Benjamins, and M. Musen, Eds. Springer,
2005, vol. 3729, pp. 37–51.

[33] S. Sohrabi and S. McIlraith, “Preference-based web service composi-
tion: A middle ground between execution and search,” in The Semantic
Web – ISWC 2010, ser. LNCS, P. Patel-Schneider, Y. Pan, P. Hitzler,
P. Mika, L. Zhang, J. Pan, I. Horrocks, and B. Glimm, Eds. Springer,
2010, vol. 6496, pp. 713–729.

[34] L. Cavallaro, E. D. Nitto, C. A. Furia, and M. Pradella, “A tile-based
approach for self-assembling service compositions,” in ICECCS, 2010,
pp. 43–52.

[35] G. Engels, B. Güldali, C. Soltenborn, and H. Wehrheim, “Assuring
consistency of business process models and web services using visual
contracts,” in AGTIVE, 2007, pp. 17–31.

[36] J. Sun, Y. Liu, J. S. Dong, G. Pu, and T. H. Tan, “Model-based methods
for linking web service choreography and orchestration,” in APSEC
2010, 2010, pp. 166 – 175.

[37] Y. Liu, J. Sun, and J. S. Dong, “Pat 3: An extensible architecture for
building multi-domain model checkers,” 2010 IEEE 21st International
Symposium on Software Reliability Engineering, pp. 190–199, 2011.

32

