
CATEGORICAL SEMANTICS OF
PARALLEL PROGRAM DESIGN(*)

Jos� Luiz Fiadeiro Tom Maibaum
Department of Informatics Department of Computing

Faculty of Sciences, University of Lisbon Imperial College of Science, Technology and Medicine
Campo Grande, 1700 Lisboa 180 Queen's Gate, London SW7 2BZ

PORTUGAL UNITED KINGDOM
llf@di.fc.ul.pt tsem@doc.ic.ac.uk

AbstractÐ We formalise, using Category Theory, modularisation techniques for parallel and
distributed systems based on the notion of superposition, showing that parallel program design
obeys the "universal laws" formulated by J.Goguen for General Systems Theory, as well as other
algebraic properties of modularity formulated for Specification Theory. The resulting categorical
formalisation unifies the different notions of superposition that have been proposed in the
literature and clarifies their algebraic properties with respect to modularisation. It also suggests
ways of extending or revising existing languages in order to provide higher levels of reusability,
modularity and incrementality in system design.

1 Introduction
The role of Category Theory in supporting the definition of 'scientific laws' of system
modularisation and composition has been recognised since the early 70s when J.Goguen
proposed the use of categorical techniques in General Systems Theory for unifying a
variety of notions of system behaviour, including that of physical components, and their
composition techniques [Goguen 71, 73, Goguen and Ginali 78]. Similar principles have
been used to formalise process models for concurrent systems [Sassone et al 93] such as
transition systems, synchronisation trees, event structures, etc. Based on similar
categorical models, modularisation principles like those typical of object-oriented
programming have been formalised [Ehrich et al 91, Costa et al 92, Goguen 92]. Through
institutions [Goguen and Burstall 92], the theories of a logic have been shown to constitute
a category whose morphisms correspond to property preserving translations between
their languages; several modularisation techniques for specifications have been
developed on the basis of this categorical formalisation [Sannella and Tarlecki 88,
Veloso and Maibaum 95].

In this paper, we show that the unification of modularisation principles provided by
Category Theory applies not only to mathematical models of program behaviour and
their logical specifications, but also to parallel program design languages based on the
notion of superposition [Boug� and Francez 88, Chandy and Misra 88, Kurki-Suonio and
J�rvinen 89, Francez and Forman 90b, Katz 93]. Superposition was proposed as a means
of supporting a layered approach to systems design by which we are allowed to build on
already developed components (drawing on the services they provide) by "augmenting"
them (by, say, extending their state space and/or their actions/control activity) while

(*) This work was partially supported by the Esprit BRA 8319 (MODELAGE), the HCM Scientific Network
CHRX-CT92-0054 (MEDICIS), and the PRAXIS XXI contract 2/2.1/MAT/46/94 (ESCOLA).

Ð 2 Ð

preserving their properties. In mathematics, preservation of structure is usually
formalised in terms of (homo)morphisms between the objects concerned. This is why we
decided to formalise superposition in terms of morphisms of programs.

Based on this formalisation, we show which algebraic properties of superposition justify
the assertion that parallel program design languages such as IP (Interacting Processes)
[Francez and Forman 90a] and UNITY [Chandy and Misra 88] can support a modular
approach to program development, allowing software in general to be built from basic
building blocks that can be extended and interconnected. We further show how the
proposed categorical formalisation can contribute to an increased reusability of
programs and incrementality in the design process.

Having these goals in mind, the remainder of the paper is structured as follows.

Section 2 defines the syntax and semantics of COMMUNITY Ð the language that we will
use to illustrate the categorical formalisation of parallel program design. The
differences between COMMUNITY and IP and UNITY were all motivated by categorical
principles as explained in the other sections.

In section 3, we show how superposition in the sense of UNITY, i.e. as a transformation
between programs, can be captured through the morphisms of a category of COMMUNITY
programs. We show how different notions of superposition give rise to different
categories and that the notion of spectative superposition satisfies an important property
from the point of view of modularisation: it is model-expansive.

In section 4, we show how, through universal constructions in the category of
COMMUNITY programs, we can formalise parallel composition of programs, thus
capturing the sense in which IP defines superposition. Hence, it emerges from the
categorical formalisation that both uses of the notion of superposition can be unified in a
strong algebraic sense.

Finally, in section 5, we put this formalisation to work in addressing the configuration of
complex systems. We argue that diagrams in the category of COMMUNITY programs
capture configurations of complex systems, and show how COMMUNITY supports
incremental design. The notion of superposing a regulator over a base program defined
in [Francez and Forman 90b] is formalised in this setting, and so is the superposition of
observers or monitors [Katz 93] over base programs. Based on the algebraic properties of
spectative superposition, namely the fact that pushouts preserve spectative morphisms, we
show how the two configuration techniques support modularity in the development
process.

The paper relies only on elementary notions of Category Theory, all of which can be
found in any textbook, e.g. [Barr and Wells 90].

2 A parallel program design language
The language that we chose to illustrate the categorical formalisation of parallel
program design, COMMUNITY, is in the style of UNITY [Chandy and Misra 88] and
combines elements from IP [Francez and Forman 90a] for a richer model of system
interconnection and superposition.

Ð 3 Ð

2.1 The language
A COMMUNITY program P has the following structure:

P ≡ data Σ
read R
var V
init I
do []

g∈Γ
 ÊÊg:Ê[B(g) → Ê ||

a∈ D(g)
 Êa:=F(g,a)]

where

¥ Σ represents the data types that the program uses; if we intend to use COMMUNITY to
actually develop programs in a given environment, then Σ represents the data
types available in that environment and, hence, is fixed for every program (and is
thus omitted); however, to support more abstract levels of program design, it may be
helpful to work with specifications of these data types, in which case Σ can be given
through a signature (S,Ω) in the usual algebraic sense [Ehrig and Mahr 85], i.e. S
is a set (of sort symbols) and Ω is an S*×S-indexed family (of function symbols),
together with a set of (first-order) axioms over (S,Ω) defining the properties of the
operations;

¥ R is the set of external attributes, i.e. the attributes that the program needs to read
from its environment (open attributes in the sense of IP);

¥ V is the set of local attributes (the program "variables");
¥ We denote by A the union (assumed disjoint) of R and V Ð the set of attributes of the

program; attributes are typed Ð every attribute a∈ A has an associated sort s; As
will denote the set of attributes of sort s; the distinction between the two classes of
attributes is necessary to formalise superposition, namely forms of program
interconnection that result from superposing regulators over base programs Ð a
regulator can read the attributes of the base program but cannot update them.

¥ Γ is the set of action names; each action name has an associated command
(multiple assignment) that it performs atomically, and can act as a rendez-vous
point for program synchronisation;

¥ I is a condition on the attributes Ð the initialisation condition;
¥ for every action g∈Γ , B(g) is a condition on the attributes Ð the guard of the action;
¥ for every action g∈Γ , D(g)⊆ V is the set of attributes that action g can change; we

also denote by D(a), where a∈ V, the set of actions that can change a;
¥ for every action g∈Γ and local attribute a∈ D(g), F(g,a) is an expression that has the

same type as a.

Formally,

Definition 2.1: A program signature is a quadruple (Σ,V,R,Γ) where
¥ Σ is a data signature in the algebraic sense [Ehrig and Mahr 85];
¥ V and R are S-indexed families of sets.
¥ Γ is a 2V-indexed family of sets.

All these sets of symbols are assumed to be finite and mutually disjoint. ❚

For simplicity, we shall assume that the data types are fixed and omit the data clause from
programs. We shall also use the notation (Α,Γ), where Α =V⊕ R, or (Α =V⊕ R,Γ), for
program signatures.

Attributes are used as atoms in the definition of terms:

Ð 4 Ð

Definition 2.2: Given a signature θ=(Α,Γ), the language of terms is defined as follows:
for every sort s∈ S,

tsÊÊ::=ÊÊaÊÊ|ÊÊcÊÊ|ÊÊf(t1s1,É,tnsn)

for a∈Α s, c∈Ω <>,s, and f∈Ω <s1,É,sn>,s;

The language of propositions is defined as follows:

φÊÊ::=ÊÊ(t1s=st2s)ÊÊ|ÊÊ(φ1⊃φ 2)ÊÊ|ÊÊ(φ1∧φ 2)ÊÊ|ÊÊ(Âφ) ❚

For simplicity, every boolean term b will be used as an abbreviation of the proposition
(b=true). Terms and propositions are used to define programs.

Definition 2.3: Given a signature (Α=V⊕ R,Γ), and a subset V'⊆ V, a V'-command F maps
every attribute a∈ V's to a term F(a) of sort s. ❚

Commands model multiple assignments. The term F(a) denotes the value that is
assigned to a. If V' is empty (which is the case, for instance, of some communication
channels), the only available command is the empty one: skip.

Definition 2.4: A program is a pair (θ,∆) where θ is a signature (Α,Γ) and ∆, the body of the
program, is a triple (I,F,B) where

¥ I is a θ-proposition (constraining the initial values of the attributes);
¥ F assigns to every action g∈Γ a D(g)-command;
¥ B assigns to every action g∈Γ a θ-proposition (its guard). ❚

It is easy to recognise in this definition the basic features of parallel programs, namely
guarded simultaneous assignments: each action g defines the guarded command

[B(g) Ê→ Ê ||
a∈ D(g)

 ÊÊa:=F(g,a)]

There are, however, some distinguishing features of COMMUNITY that should be
discussed: the typing and the naming of actions.

Each domain D(g) consists of the attributes to which action g can make assignments. We
shall also work with the dual notion, i.e. we define for every attribute a∈ V the set of the
actions that can assign to a Ð D(a)={g∈Γ Ê|Êa∈ D(g)}. There is a difference between the fact
that an attribute a is not in the domain of action g and the fact that g performs the
assignment a:=a. The difference between these two situations is important from the point
of view of concurrency within programs and will be further discussed and illustrated
later on. But, anticipating the definition of the semantics of programs, the idea is that
actions are allowed to occur concurrently (i.e. as part of the same event), e.g. actions that
come from two program components that were put together in parallel. Hence, an action
presents only a partial view of the transformation that is performed by a (global) event,
namely it is concerned with only a subset of the attributes of the program. The
assignment of specific domains to actions is, thus, a means of controlling the
interference between different program components.

The separation between action names (i.e. the set Γ) and the guarded commands they
execute (as given by F and B) is important for the definition of superposition and also to
support interaction in the sense of IP. For the reader who is familiar with IP, we may state
that action names act as interaction names, i.e. they establish synchronisation
("rendez-vous") points for processes. However, COMMUNITY differs from IP in that
every action is a potential point of interaction. Indeed, interaction names in
COMMUNITY are not global as in IP: interaction is established outside the programs, at
"system configuration time", by identifying action names belonging to different
component programs. Program interconnection will be discussed in the next section.

Ð 5 Ð

An example of a program is the following:

Pr ≡ read x:int
var a:int; d:bool
init d=false ∧ a=0
do tÊ:Ê[Âd∧ x=a → d := true]ÊÊ[]ÊÊrÊ:Ê[Âd∧ x≠a → a := x]

Intuitively, this program is capable of successively reading (action r) the value of the
external attribute x, stopping (action t) whenever it consecutively reads the same value or
the first value it reads is 0.

2.2 Its semantics
In order to define the intended semantic structures for a program, we need a model for the
abstract data type specification. As usual, such a model is given by a Σ-algebra U, i.e. a
set sU is assigned to each sort symbol s∈ S, and a (total) function fU:Ês1U ×...×snU → sU to
each function symbol f∈Ω <s1,É,sn>,s.

The semantic interpretation of programs is given in terms of transition systems:

Definition 2.5: A transition system (W,w0,E,→) consists of
¥ a non-empty set W (of states, or possible worlds);
¥ w0∈ W (the initial state);
¥ a non-empty set E (of events);
¥ a E-indexed set of partial functions → on W (state transition performed by each

event).

A θ−interpretation structure for a signature θÊ=Ê(Α=V⊕ R,Γ) is a triple (T,A,G) where:
¥ T is a transition system (W,w0,E,→):
¥ A is an S-indexed family of maps As: Αs → (W → sU);
¥ G: Γ → 2E. ❚

That is to say, A interprets attribute symbols as functions that return the value that each
attribute takes in each state, and G interprets the action symbols as sets of events Ð the set
of the events during which the action occurs.

Notice that more than one action can take place during an event. Hence the execution
model of COMMUNITY is more general than the one used for IP and UNITY. This feature is
important in order to account for the independent behaviour of different components in
non-strict interleaving execution models. It also accounts for the synchronisation of
actions, i.e. for characterising action symbols as interaction names in the sense of IP.
We shall often use G to denote its dual E→2Γ, i.e. G(e) will denote the set of actions that
occur during event e.

On the other hand, it is possible for no action to take place during an event. Such events
correspond to environment steps, i.e. to steps performed by the other components in the
system. Indeed, interpretation structures are intended to capture the behaviour of a
program in the context of a system of which it is a component (open semantics). Hence,
worlds are not identified with program states, i.e. with the values of the program
attributes (V). The inclusion of such environment steps is essential for a compositional
semantics of program configuration and interconnection, as put forward in [Barringer
and Kuiper 84] in the context of the temporal specification of concurrent programs.

Ð 6 Ð

Because environment steps are taken into account, state encapsulation techniques, like
those typical of object-oriented design, can be formalised through particular classes of
interpretation structures.

Definition 2.6: A θ−interpretation structure (T,A,G) for a signature θÊ=Ê(Α=V⊕ R,Γ) is
called a locus iff, for every a∈ V and w,w'∈ W, if w→e w' and e∉ G(g) for any g∈ D(a), then
A(a)(w')=A(a)(w). ❚

That is, a locus is an interpretation structure in which the values of the program
variables remain unchanged during events in which no action occurs that contains them
in their domain. That is, given an attribute a and action g such that g∉ D(a), an
occurrence of g will not change a unless it occurs during an event in which an action
h∈ D(a) also occurs.

Given that worlds are global, transitions between worlds also occur at the level of the
system and may imply the participation of more than one program. Hence, for instance,
the fact that R-attributes can only be read cannot be modelled through the following
constraint: if w→e w' with e∈ G(g) for some g∈Γ then, for every a∈ R, A(a)(w)=A(a)(w').
Indeed, it may happen that the transition e is a rendez-vous (synchronisation) point that
involves the execution of an action of the component that contains a as a program
variable. The restriction of non-assignment to R-attributes is only enforced in the
definition of programs. This aspect can only be fully appreciated in the next section when
program interconnection is discussed. For this reason, the semantics of action symbols
as interconnection names will also be discussed in the next section.

Definition 2.7: Given a signature θ=(Α,Γ) and a θ−interpretation structure S=(T,A,G), the
semantics of terms (for every sort s, term t of sort s and w∈ W, œt“S(w)∈ sU is the value
taken by t in the world w) and propositions is defined as follows:

¥ if a∈Α s,œa“S(w) = A(a)(w)
¥ if c∈Ω <>,s, œc“S(w) = cU
¥ if f∈Ω <s1,É,sn>,s, œf(t1,É,tn)“S(w) = fU (œt1“

S(w),É,œtn“
S(w))

¥ (S,w) ‚ (t1=st2) iff œt1“
S(w)=œt2“

S(w)
¥ (S,w) ‚ (φ1⊃φ 2) iff (S,w) ‚ φ1 implies (S,w) ‚ φ2
¥ (S,w) ‚ (Âφ) iff (S,w) /‚ φ ❚

Definition 2.8: A θ-proposition φ is true in a θ-interpretation structure S, written S‚φ, iff
(S,w)Ê‚ φ at every state w. A proposition φ is valid, written ‚φ, iff it is true in every
interpretation structure. ❚

We can now define when an interpretation structure is a model of a program.

Definition 2.9: Given a program (θ,∆) where θ=(Α=V⊕ R,Γ) and ∆=(I,F,B), a model of
(θ,∆) is an interpretation structure S=(T,A,G) for θ, such that:

¥ (S,w0) ‚ I
¥ for every g∈Γ , a∈ D(g), e∈ G(g) and w,w'∈ W st w→e w', A(a)(w')=œF(g,a)“S(w).
¥ for every w∈ W and g∈Γ , if e∈ G(g) and w→e w' for some w'∈ W then (S,w) ‚ B(g).

A model is said to be a locus if it is a locus as an interpretation structure.

A model S is said to be polite iff for every w∈ W and g∈Γ , (S,w) ‚ B(g) implies that there is
e∈ G(g) and w'∈ W such that w→e w'. ❚

That is to say, a model of a program is an interpretation structure for its signature that
enforces the assignments, only permits actions to occur when their guards are true, and
for which the initial state satisfies the initialisation constraint.

Ð 7 Ð

Loci, as already explained, correspond to models of program behaviour in which
encapsulation of local attributes is enforced.

A model is polite if actions are allowed to effect transitions in every world in which their
guard is satisfied. This notion generalises the notion of fairness as used in parallel
program design.

This classification of models reflects the existence of different levels of semantics for a
program (taken as a set of models), depending on which subset of the set of its models is
considered. In section 3, we shall see that these different semantics are associated with
different notions of superposition (program morphism) that have been used in the
literature, namely those used in [Boug� and Francez 88, Chandy and Misra 88, Kurki-
Suonio and J�rvinen 89, Francez and Forman 90b, Katz 93]. This means that there is no
"absolute" notion of semantics for programs Ð it is always relative to the use one makes
of programs. This corresponds to the categorical way of capturing the "meaning" of
objects through the relationships (morphisms) that can be defined between them.

2.3 Equivalence between models
In order to explain the algebraic properties of the design techniques to be discussed in
later sections, namely superposition, we need a notion of equivalence between models.
The proposed notion is similar to the notion of bisimulations used in concurrency theory
(e.g. [de Nicola 87]) and so called zig-zags between Kripke structures (e.g. [van Benthem
84]).

Definition 2.10: Given a signature θ=(Α,Γ), two interpretation structures S and S' are said
to be equivalent (S ~S') iff there exist relations R⊆ W×W' and T⊆ E×E' such that:

1. dom(R)=W and img(R)=W';
2. w0 R w0';
3. if w1→e w2 and w1Rw'1, then there is e'∈ E' and w'2∈ W' st eTe', w2Rw'2, w'1→e' w'2;

if w'1→e' w'2 and w1Rw'1, then there is e∈ E and w2∈ W st eTe', w2Rw'2, w1→e w2;
4. if wRw' then A(a)(w)=A'(a)(w'), for every a∈ A;
5. if eTe' then G(e)=G'(e'). ❚

Lemma 2.11: Given two equivalent interpretation structures S and S' and two states w and
w' such that wRw', œt“S(w)=œt“S'(w') for every term t and, for every proposition φ, (S,w)
‚ φ iff (S',w') ‚ φ. ❚

Proposition 2.12: Two equivalent interpretation structures S and S' are models of the
same programs. Moreover, given any program P, S is a locus iff S' is a locus, and S is
polite iff S' is polite. ❚

3 Program morphisms and superposition
The concept of superposition (or superimposition) has been proposed and used as a
structuring mechanism for the design of parallel programs and distributed systems [e.g.
Boug� and Francez 88, Chandy and Misra 88, Kurki-Suonio and J�rvinen 89, Francez
and Forman 90b, Katz 93]. As used in UNITY, it can be viewed as a transformation on
programs through the extension of their state space and/or their control activity while
preserving their properties. As motivated in the introduction, structure preserving
transformations are usually formalised in terms of (homo)morphisms between the

Ð 8 Ð

objects concerned, thus justifying the formalisation of superposition in terms of
morphisms of programs.

3.1 Signature morphisms
Having defined programs over signatures, we first define signature morphisms as a
means of relating the "syntax" of two programs:

Definition/Proposition 3.1: A signature morphism σ from a signature θ1=(Α1=V1⊕ R1,Γ1)
to θ2=(Α2=V2⊕ R2,Γ2) consists of a pair (σα:Α1→Α2, σγ:Γ1→Γ2) of (total) functions such
that σα(V1)⊆ V2 and, for every action g∈Γ , σα(D1(g))⊆ D2(σγ(g)). Program signatures and
their morphisms constitute a category SIG. ❚

Morphisms are intended to capture the relationship that exists between a program
(system) and its parts (components). Hence, a signature morphism maps attributes of a
program to attributes of the system of which it is a component, and the same for actions.
Because the system "contains" the component, attributes of the component program
cannot be read-attributes of the system, thus justifying the restriction σα(V1)⊆ V2. No
restriction is put on R1 because read-attributes of the component program can be attributes
of another component program for the same system and, hence, elements of V2. The
restriction over action domains just means that the type of each action is preserved by the
morphism. Notice that more attributes may be included in the domain of an action via a
morphism. This is intuitive because, within a system, an action of a component may be
shared with other components and, hence, have a larger domain.

For simplicity, we shall omit the indexes α and γ when referring to the components of a
morphism.

Signature morphisms provide us with the means for relating a program with its
superpositions. However, superposition is more than just a relationship between
signatures, i.e. more than "syntax". To capture its semantics, we need a way of relating
the models of the two programs as well as the terms and propositions that are used to build
them.

Signature morphisms define translations between the languages associated with each
signature in the obvious way:

Definition 3.2: Given a signature morphism σ: θ1 → θ2,
σ(t) Ê::=ÊÊσ(a)ÊÊ|ÊÊcÊÊ|ÊÊf(σ(t1),É,σ(tn))
σ(φ) Ê::=ÊÊ(σ(t1)=σ(t2))ÊÊ|ÊÊ(σ(φ1)⊃σ (φ2))ÊÊ|ÊÊ(σ(φ1)∧σ (φ2))ÊÊ|ÊÊÂσ(φ) ❚

Definition 3.3: Given a signature morphism σ: θ1 → θ2 and a θ2-interpretation structure
S=(T,A,G), its σ-reduct, S|σ, is the θ1-interpretation structure (T ,A|σ,G|σ) where A|σ(a)
= A(σ(a)), and G|σ(g) = G(σ(g)). ❚

That is, we take the same transition system and interpret attribute and action symbols in
the same way as their images under σ. Reducts provide us with the means for relating the
behaviour of a program with that of the superposed one. The following proposition
establishes that properties of reducts are characterised by translation of properties:

Proposition 3.4: Given a θ1-proposition φ and a θ2-interpretation structure S=(W,A,G), we
have for every w∈ W: (S,w) ‚ σ(φ) iff (S|σ,w) ‚ φ. ❚

Readers familiar with institutions [Goguen and Burstall 92] will have recognised in this
proposition the "satisfaction condition". Although the formalism that we work with in

Ð 9 Ð

this paper is not an institution (stricto sensu), we shall make use of many of the
categorical techniques that have been popularised by institutions.

3.2 Program morphisms
With this armory in hand, we can start analysing relationships between the features of
two programs related by a signature morphism in order to identify what properties are
necessary for morphisms to capture superposition.

There are several notions of superposition in the literature [Boug� and Francez 88,
Chandy and Misra 88, Kurki-Suonio and J�rvinen 89, Francez and Forman 90b, Katz
93], corresponding to different meanings of "preservation of the underlying program".
We consider, in the first instance, the simplest form of superposition: invasive
superposition in the sense of [Francez and Forman 90b].

Viewed as a transformation (which is the view captured by morphisms), invasive
superposition requires that the functionality of the base program be preserved in terms of
the assignments performed on its variables, but it allows for the guards of its actions to be
strengthened. This characterisation leads to the following definition of an invasive
superposition morphism:

Definition 3.5: An invasive superposition morphism σ: (θ1,∆1)→(θ2,∆2) is a signature
morphism σ: θ1→θ2 such that

1. For every g1∈Γ 1 and a1∈ D1(g1), ‚θ2 B2(σ(g1)) ⊃ σ(F1(g1,a1))=F2(σ(g1),σ(a1)).
2. ‚θ2 (I2 ⊃ σ(I1)).
3. For every g1∈Γ 1, ‚θ2 (B2(σ(g1)) ⊃ σ(B1(g1))). ❚

Requirements 1 and 2 correspond to the preservation of the functionality of the base
program: (1) the effects of the instructions are preserved and (2) so are the initialisation
conditions. Requirement 3 allows guards to be strengthened but not to be weakened. With
these requirements, it is indeed trivial to prove:

Proposition 3.6: Let σ: (θ1,∆1)→(θ2,∆2) be an invasive superposition morphism. Then, the
reduct of every model of (θ2,∆2) is also a model of (θ1,∆1). ❚

However, it is easy to see that the reduct of loci of (θ2,∆2) are not necessarily loci for
(θ1,∆1). Indeed, there is nothing to prevent "old attributes", i.e. translations of attributes
of θ1, to be changed by "new actions", i.e. actions of θ2 that are not in the image of σ.
Superposition morphisms that preserve locality are called regulative:

Definition 3.7: A regulative superposition morphism σ: (θ1,∆1)→(θ2,∆2) is an invasive
superposition morphism that satisfies, for every a1∈ V1, D2(σ(a1))⊆σ (D1(a1)). ❚

The additional requirement corresponds to the locality condition: new actions cannot be
added to the domains of attributes of the source program. Together with the fact that
signature morphisms preserve the domains of actions, it implies that the domains of the
attributes remain the same up to translation, i.e. D2(σ(a1))=σ(D1(a1)) for every a1∈ V1.
This condition implies the following property:

Proposition 3.8: Let σ: (θ1,∆1)→(θ2,∆2) be a regulative superposition morphism. Then, the
reduct of every locus of (θ2,∆2) is also a locus of (θ1,∆1). ❚

As an example of a regulative superposition morphism, consider the following programs
where ϕ,ψ:int,int→int are operations of the underlying data type:

Ð 10 Ð

Pb ≡ var a,b:int Ps ≡ var a,b,ao:int; d:bool
init a>0∧ b>0 init a>0 ∧ b>0 ∧ d=false ∧ ao=0
do fÊ:Ê[true → a := ϕ(a,b)] do frÊ:Ê[Âd ∧ ao≠a → a := ϕ(a,b) || ao := a]
Ê[] gÊ:Ê[true → b := ψ(a,b)] Ê[] gÊ:Ê[true → b := ψ(a,b)]

Ê[] tÊ:Ê[Âd ∧ ao=a → d := true]

All the conditions in definitions 3.6 and 3.7 are satisfied by the mapping <aúa, búb,
fúfr, gúg> meaning that ∆s is a regulative superposition of ∆b. Notice that, according
to this definition, it is possible for the "old" actions to assign to "new" (superposed)
variables. For instance, fr, the image of f, assigns to the new attribute ao. However, the
new actions, like t, cannot assign to the old attributes, like a. Moreover, the guard of an
old action, like f, can be strenghtened.

It is easy to see that, for regulative superposition morphisms (and, naturally, for invasive
ones), the reduct of a polite model of (θ2,∆2) is not necessarily polite for (θ1,∆1). If,
however, guards are not allowed to be strengthened, it is trivial to prove that reducts
preserve politeness. Such superposition morphisms are called spectative in [Francez and
Forman 90b]. They also correspond to the notion of superposition used in UNITY [Chandy
and Misra 88].

Definition 3.9: A spectative superposition morphism σ: (θ1,∆1)→(θ2,∆2) is a regulative
superposition morphism such that:

1. σ is injective over attributes and actions.
2. For every proposition φ in the language of θ1, if ‚θ2 (I2 ⊃ σ(φ)) then ‚θ1 (I1 ⊃ φ).
3. For every g1∈Γ 1, ‚θ2 (σ(B1(g1)) ⊃ B2(σ(g1))). ❚

Condition 3 now requires that guards remain unchanged and condition 2 requires that
the strenghtening of the initial condition be conservative, i.e. it cannot put further
constraints on the initial values of the attributes of θ1. Injectivity of σ means that no
confusion is introduced among attributes nor among actions.

Definition 3.10: Invasive, regulative and spectative superposition morphisms define
categories which we shall denote by INV, REG and SPE, respectively. ❚

These three categories just differ on the morphisms. It is, however, the morphisms that
characterise the structural properties of a category, meaning that the different notions of
superposition have different algebraic properties.

For instance, we can prove a fundamental property of spectative superposition: it is
model-expansive. This property means that spectative superposition does not change the
base program, i.e., through σ, the base program is extended without affecting its
underlying behaviour.

Proposition 3.11: Let σ: (θ1,∆1)→(θ2,∆2) be a spectative superposition morphism. Then,
for every model S of (θ1,∆1) there is a model S' of (θ2,∆2) such that S~S'|σ. ❚

Model-expansive transformations have been identified as playing a very important role
in modularity [Maibaum et al 85, Bergstra et al 90, Diaconescu et al 91]. We shall see in
section 5.3 how this property suggests the definition of the notion of superposing an
observer (or monitor [Katz 93]) on a base program, and how it can be used to characterise
the notion of "derived attribute" or "auxiliary variable" as used in databases and
programming languages.

Ð 11 Ð

4 Parallel composition
One of the advantages of working in the proposed categorical framework is that
mechanisms for building complex systems out of components can be formalised through
universal constructs. A general principle is given by J.Goguen in his work on General
Systems Theory [Goguen 71, 73, Goguen and Ginali 78]: "given a category of widgets, the
operation of putting a system of widgets together to form a super-widget corresponds to
taking a colimit of the diagram of widgets that shows how to interconnect them".

In this section, we investigate the applicability of these principles to parallel program
design based on superposition. Our purpose is to show that the use of superposition as a
program composition operator in the sense of [Francez and Forman 90b], i.e. as a special
kind of concurrent composition operation, can be formalised according to these
categorical principles.

Notice that, except where explicitly mentioned otherwise, regulative superposition will be
used throughout the section and the adjective regulative will be dropped.

4.1 Disjoint parallel composition
In order to explain how colimits of program diagrams work and how they correspond to
the activity of putting together a complex system out of its components and
interconnections, we start by analysing the simple case of putting together two
components without interconnecting them, and analyse interconnections in the
following subsection.

Coproducts are the categorical construction that explains how two components can be put
together in a system without any interconnection between them. Given two programs P1
and P2, it consists of finding the minimal program P1||P2 that is a superposition of both
P1 and P2. Technically, the coproduct of P1 and P2 consists of a third program P1||P2 and
two morphisms ι i: Pi→P1||P2 (i=1,2) such that, given any other program P and morphisms
σi:Pi→P, there is one and only one morphism κ: P1||P2 → P such that ι i;κ=σi. Minimality
is expressed by the requirement on the existence and uniqueness of κ.

As an example, consider the two following programs:

Pb ≡ var a, bÊ:Êint Pr ≡ read xÊ:Êint
init a>0Ê∧ Êb>0 var aÊ:Êint; dÊ:Êbool
do fÊ:Ê[true → a := ϕ(a,b)] init d=false ∧ a=0
Ê[] gÊ:Ê[true → b := ψ(a,b)] do tÊ:Ê[Âd ∧ x=a → d := true]

Ê[] rÊ:Ê[Âd ∧ x≠a → a := x]

The coproduct of these two programs returns the following program:

Pb || PrÊ≡ read xÊ:Êint
var a, b, aoÊ:Êint;ÊÊdÊ:Êbool
init a>0 ∧ b>0 ∧ d=false ∧ ao=0
do fÊ:Ê[true → a := ϕ(a,b)]
Ê[] gÊ:Ê[true → b := ψ(a,b)]
Ê[] tÊ:Ê[Âd ∧ x=ao → d := true]
Ê[] rÊ:Ê[Âd ∧ x≠ao → ao := x]

together with the morphisms ιb: Pb → Pb||Pr and ι r: Pr → Pb||Pr given by <aúa, búb,
fúf, gúg> and <xúx, aúao, dúd, rúr, tút>, respectively.

Notice that the attribute a of Pr was renamed. Indeed, because coproducts model parallel
composition without interaction, any unintended interference must be removed by

Ð 12 Ð

renaming the features whose names were used in both programs. This renaming is part
of the coproduct construction, i.e. is enforced by the construct. That is why the coproduct
comes with two morphisms connecting the components to their parallel composition: they
keep track of the original names. Indeed, universal constructions in Category Theory
enforce the principle that any interconnection between objects must be explicitly
declared. (In the next subsection, we will show how to specify interconnections between
programs.)

From the methodological point of view, this technical aspect of COMMUNITY, motivated by
categorical principles, distinguishes it from other languages which, like IP and UNITY,
rely on global naming to interconnect programs. Such approaches do not promote reuse
as much as COMMUNITY because they rely on some "engineering omniscience" that does
not enforce any separation between the activities of programming components and
interconnecting them. Locality of names is intrinsic to Category Theory and it forces
interconnections to be explicitly established outside the programs. Hence, the categorical
framework is much more apt to support the complete separation between the structural
language that describes the software architecture and the language in which the
components are themselves programmed or specified, as advocated in configuration
languages like those of the CONIC-family [Magee et al 89].

It is also interesting to point out that in languages which, like UNITY, adopt global
naming, methodological restrictions have to be introduced extralogically, as in the
Restricted Union rule [Chandy and Misra 88] Ð "a command r may be added to the
underlying program provided that r does not assign to the underlying variables". Such
principles are internalised (made logical) in our formalism through the universal
properties of the categorical constructs.

Coproducts of programs (as all colimits of program diagrams) are computed by first
determining the coproduct of the underlying signatures. Program signatures as defined
in the previous sections are based on sets and functions between sets, for which coproducts
compute disjoint unions [Barr and Wells 90].

Proposition 4.1: The category SIG of program signatures admits coproducts. The
coproduct of two signatures θ1=(Α1=V1⊕ R1,Γ1) and θ2=(Α2=V2⊕ R2,Γ2) is given by the
signature θ1||θ2=(A=V⊕ R,Γ) and morphisms ι1 and ι2 where <A,ι1α ,ι2α> is the disjoint
union of A1 and A2, and <Γ ,ι 1γ,ι 2γ> is the disjoint union of Γ 1 and Γ 2. Because
morphisms map local attributes to local attributes, V=ι 1(V1)∪ ι 2(V2). Because the
domains of actions are preserved, D(ι i(gi))=ι i(Di(gi)) for every gi∈Γ i, i=1,2. ❚

The resulting signature is obtained up to isomorphism. Indeed, there is not a unique way
of renaming the features of the two signatures in order to avoid clashes. From the
categorical point of view, any such renaming is suitable. That is why, as already pointed
out, the coproduct of two objects returns not only an object but also two morphisms. These
morphisms keep track of the renamings: in the example above, they trace a back to the
attribute a of Pb and the attribute ao back to the attribute a of Pr. From an engineering
point of view, this process can be systematised and automated.

At the level of programs, coproducts work like the union operator of UNITY applied to the
programs after their signatures have been translated by the signature morphisms, i.e.
after all conflicts have been removed:

Proposition 4.2: REG admits coproducts. A coproduct of two programs P1=(θ1,∆1) and
P2=(θ2,∆2) is given by the program P1||P2=(θ1||θ2,∆) and morphisms ι1 and ι2 obtained as
follows:

Ð θ1||θ2, ι1 and ι2 are a coproduct of θ1 and θ2.

Ð 13 Ð

ι b

µ
Pb

C rP

Pb rP||
C

Pb rP||

µb

µ r

σb

σr

ι r

Ð ∆=(I,F,B) is computed as follows:
¥ I is ι1(I1)∧ι 2(I2)
¥ for every gi∈Γ i and ai∈ Di(gi), F(ι i(gi),ι i(ai))=ι i(Fi(gi,ai)), (i=1,2)
¥ B(ι i(gi))=ι i(Bi(gi)) for every gi∈Γ i (i=1,2) ❚

4.2 Parallel composition with interaction
As illustrated above, coproducts allow us to put together systems of components that run
side by side with no interference between them. However, most systems we can think of
are put together by interconnecting components. The categorical mechanisms
responsible for parallel composition with interconnections are pushouts.

In order to illustrate these mechanisms, consider the programs Pb and Pr again. Instead
of juxtaposing them, we are now interested in interconnecting them in the following
way: Pr is to read the attribute a from Pb, and the actions f and r are to be synchronised so
that the attribute a of Pr denotes the previous value of the attribute a of Pb.

In other words, we want to identify the attributes x and a of Pb||Pr as well as the actions f
and r. This identification can be expressed through a (configuration) diagram

C ≡ read cÊ:Êint
do sÊ:Ê[skip]

σb:Ê

Ê

aÊ úÊc

ÊÊÊÊÊÊÊfÊ

úÊs

σr:ÊcÊúÊx

ÊÊÊÊÊÊsÊúÊr

Pb ≡ var a, bÊ:Êint Pr ≡ read xÊ:Êint
init a>0Ê∧ Êb>0 var aÊ:Êint; dÊ:Êbool
do fÊ:Ê[true → a := ϕ(a,b)] init d=false ∧ a=0
Ê[] gÊ:Ê[true → b := ψ(a,b)] do tÊ:Ê[Âd ∧ a=x → d := true]

Ê[] rÊ:Ê[Âd ∧ a≠x → a := x]

The object C and the two morphisms act as a communication channel between Pb and Pr:
the action s of C establishes a rendez-vous (synchronisation) point and the morphisms σr
and σb identify the actions of Pr and Pb that participate in this point of interaction. The
same applies to attributes: the two morphisms are used to bind the external attribute x of Pr
with the local attribute a of Pb.

The program that we are looking for,
PbÊ||CÊPr, can be characterised as providing
the minimal superposition µ b:
PbÊ→ÊPbÊ||CÊPr and µr: PrÊ→ÊPbÊ||CÊPr of Pb
and Pr such that σ b;µ b=σ r;µ r. This
equation expresses the required
interconnection: because µb(σb(c)) (i.e.
µb(a)) must be equal to µr(σr(c)) (i.e. µr(x)),
x and a must be made equal in PbÊ||CÊPr
(and mutatis mutandis for f and r which
are identified via s). The triple
<Pb||CPr,µb,µr> is called the pushout of σb
and σr.

The resulting program and morphisms are related to the coproduct computed in the
previous section by a morphism (coequaliser) µ: PbÊ||ÊPr → PbÊ||CÊPr such that µb=ιb;µ and

Ð 14 Ð

µr=ι r;µ. This morphism computes quotients for the equivalence relations defined by the
pairs of actions and attributes identified through the channel C and the morphisms σb
and σr. The equivalence classes provide us with the required synchronisation sets,
namely {f,r}, and attribute bindings, namely {a,x}. That is to say, µ imposes the required
interconnections on top of the disjoint parallel composition. As expected, the unintended
interference that results from name clashes is removed as seen before.

The program PbÊ||CÊPr computed by the pushout of the diagram above is, up to isomorphism,
the program Ps given in section 3.2:

Ps ≡ var a, b, aoÊ:Êint;ÊÊdÊ:Êbool
init a>0 ∧ b>0 ∧ d=false ∧ ao=0
do frÊ:Ê[Âd ∧ ao≠a→ a := ϕ(a,b) || ao := a]
Ê[] gÊ:Ê[true → b := ψ(a,b)]
Ê[] tÊ:Ê[Âd ∧ ao=a → d := true]

The morphisms returned by the pushout are <aúa, búb, fúfr, gúg>: Pb → Ps and
<xúa, aúao, dúd, rúfr, tút>: Pr → Ps.

The synchronisation set {f,r} is represented in this program through the joint action fr.
Notice that its guard is given by the conjunction of the translations of the guards of b and r
and that it performs the multiple assignment that consists of the local assignments of b
and r. The binding of the attributes results in the attribute a.

With generality, we can prove:

Proposition 4.3: REG admits pushouts. A pushout of two morphisms σ1: (θ,∆)→(θ1,∆1)
and σ2:Ê(θ,∆)→ (θ2,∆2) is given by the program (θ1«θθ2,∆ ') and morphisms µ1:
(θ1,∆1)→(θ1«θθ2,∆') and µ2:(θ2,∆2)→(θ1«θθ2,∆') obtained as follows:

Ð θ1«θθ2, µ1 and µ2 are a pushout of σ1 and σ2 as signature morphisms. Because
signatures are pairs of sets, pushouts of signatures compute amalgamated sums, i.e.
θ1«θθ2=(A',Γ ') where A' is the amalgamated sum of A1 and A2 relative to A, and Γ ' is
the amalgamated sum of Γ1 and Γ2 relative to Γ. The morphisms σ1 and σ2 perform the
amalgamation. Because morphisms map local attributes to local attributes,
V'=µ1(V1)∪µ 2(V2). Because domains of attributes are preserved, D'(µi(ai))=µi(Di(ai))
for every ai∈ Vi, i=1,2.

Ð ∆'=(I',F',B') is computed as follows; let µ:(θ1«θ2)→(θ1«θθ2) be the morphism given
by the coequaliser;
¥ I' is µ1(I1)∧µ 2(I2)
¥ F'(µ(g),µ(a))=µj(Fj(gj,aj)) for some aj∈ Dj(gj), µ(g)=µj(gj), µ(a)=µj(aj), i,j=1 or 2.
¥ for i=1,2, B'(µi(gi)) =

∧ {µj(Bj(gj)) | µi(gi)=µj(gj), j=1, 2}ÊÊ ∧
∧ {µi(Fi(gi,ai))=µj(Fj(gj,aj)) | ai∈ Di(gi), aj∈ Dj(gj), µi(gi)=µj(gj), µi(ai)=µj(aj), j=1, 2}❚

The effects of a pushout can be summarised as follows:

¥ attributes are bound as specified by the attributes of the middle program (channel)
and morphisms; in particular, and as illustrated, read attributes of one of the
components can be bound with local attributes of the other component Ð the
resulting attribute is local to the parallel composition;

¥ actions are synchronised according to the rendez-vous points established by the
actions of the middle program (channel) and morphisms; the resulting joint
actions have the following properties:
Ð their domain is the union of the domains of the joined actions;
Ð they perform the parallel composition of the assignments of the joined actions;

Ð 15 Ð

Ð if the interconnecting morphisms are injective (which is usually the case), they
are guarded by the conjunction of the guards of the joined actions; otherwise
they have to reflect the interference between assignments that is generated
locally (see discussion below);

¥ the initialisation condition of the resulting program is given by the conjunction of
the initialisation conditions of the component programs.

Notice that the choice of an arbitrary pair <gj,aj> in the equivalence classes of gÊand a for
the definition of F'(µ(g),µ(a)) is allowed because the resulting program is obtained only
up to isomorphism.

The simplification induced by injective morphisms needs more justification:

Proposition 4.4: Consider a pushout diagram as above. If σ1 and σ2 are injective then
1. µ1 and µ2 are also injective;
2. for every gi∈Γ i, if µ j(gj)=µ i(gi) for gj∈Γ j, j≠i, B'(µ i(gi))=µ i(Bi(gi))∧µ j(Bj(gj));

otherwise, B'(µi(gi))=µi(Bi(gi)). ❚

This property and the simplification that it induces on pushouts are not surprising
because, if the interconnections are established only across components, then the
encapsulation mechanism of regulative superposition prevents interference between the
assignments of shared actions over shared attributes.

What is, perhaps, more surprising is the use of non-injective morphisms in pushouts!
Methodologically speaking, such situations arise when one forces synchronisation
within a component by interconnecting two of its actions to the same action of the other
component. If we think of circuits, this can be achieved by "bridging" two ports of the
same component (which, of course, may end up producing a short circuit if we are not
careful!). This is the case of the following configuration diagram:

P ≡ do f:Ê[skip]Ê [] ÊgÊ:Ê[skip]

fÊ úÊf

gÊ úÊg

fÊúÊh

gÊúÊh

P1 ≡ var aÊ:Êint P2 ≡ do hÊ:Ê[skip]
do fÊ:Ê[true → a := 1Ða]
Ê[] gÊ:Ê[true → a := a+1]

The resulting program is, up to isomorphism:

P' ≡ var aÊ:Êint
do fghÊ:Ê[a=0 → a := 1]

Indeed, because the interconnection sychronises f with h and g with h, f and g are also
synchronised, implying that the guard of the joint action must guarantee that the
assignments are compatible, i.e. it is given by (1Ða)=(a+1) which is equivalent to (a=0).
Notice the danger of "short circuit" should the terms that f and g assign to a be
"incompatible", i.e. not identifiable. Such cases do not imply that there is no resulting
program (pushouts always exist), but rather that the joint action is never enabled.

Because the "typical" use of pushouts in system configuration is made for injective
morphisms, we shall call a diagram P1Ê←σ1 ÊPÊ→σ2 ÊP2 standard if both σ1 and σ2 are
injective.

Ð 16 Ð

5 Configuration of complex systems
The previous section defined the universal constructions over programs from a
mathematical point of view. In this section, we shall investigate the methodological
implications of the proposed categorical approach from the point of view of typical
constructions in parallel and distributed program design.

5.1 Superposing regulators over base programs
The previous sections showed how the categorical formalisation of superposition captures
both its use as a transformation between programs as in UNITY (morphism) and a
generalised parallel composition operator in the sense of IP. In fact, the example
developed in section 4.2 illustrates how pushouts can characterise the operation of
superposing a regulator over a (closed) program. Adapting from [Francez and Forman
90b], we can define these concepts as follows:

Definition 5.1: A program (θ,P) where θ=(Α =V⊕ R,Γ) is said to be closed if R=¯. A
program that is not closed is said to be open. ❚

Definition 5.2: A diagram (θ1,∆1)←µ1 (θ,∆)→µ2 (θ2,∆2) defines (θ1,∆1) as a regulator for
(θ2,∆2) iff

¥ (θ1,∆1) is open;
¥ (θ2,∆2) is closed;
¥ every read (open) attribute of θ1 is in the image of µ1 (i.e. is connected to an

attribute of θ2 through the communication channel). ❚

Notice that, in the example above, Pb is "closed" in the sense of IP, i.e. it has no read
(open) attributes. On the other hand, Pr is "open" and the way it is interconnected with Pb
makes it a regulator for Pb: its only read-attribute is connected to Pb through the channel.

This is, in fact, an adaptation of an example used in [Francez and Forman 90b]. By
reading a, the regulator detects a pair of values of a and b such that a=ϕ(a,b). When this
pair is detected, and because f and r are now synchronised, the base program can no
longer assign to a. Indeed, according to the properties of pushouts, the guard of the joint
action is given by the conjunction of the synchronised actions.

This is just an example of how the categorical techniques can provide semantics for the
configuration of complex systems. Indeed, the diagrams over which we compute pushouts
can be seen as specifying the configuration of the intended system in terms of its
components and their interconnections. Although we have concentrated on the simple
case of two components, configuration diagrams can be much more complex, allowing a
system to be built from several components interconnected in many different ways.

For instance, we might like to superpose another regulator over Pb to detect a state in
which b=ψ(a,b). The situation is entirely symmetrical to the previous one. So, it should be
possible to use another instance of the same regulator Pr and of the same channel C but
using morphisms that connect the channel to b and g instead of a and f as before.

In the categorical approach, creating another instance of a program is simply achieved
by adding another node to the configuration diagram and labelling it with the same
program. Programs behave as types and nodes of the diagram as instances, very much
in the same sense that in a programming language we may declare several variables of
the same type. Hence, the configuration diagram that we are looking for is the following:

Ð 17 Ð

C

b rr

c
s

ú
ú

a
f

c
s
ú

ú

b
g

c
s
ú

ú

x
r

C

PPP

c
s

ú

x
r

ú

The generalisation of the pushout operation to complex diagrams like this one is called a
colimit and a category that admits (finite) colimits is said to be (finitely) cocomplete.
Actually, colimits can be computed through a sequence of pushouts. For instance, in the
diagram above, we can compute the first pushout as before:

C

b rr

c
s

ú
ú

a
f

c
s
ú

ú

b
g

c
s
ú

ú

x
r

s

C

P

PPP

c
s

ú

x
r

ú

Indeed, we might have interconnected the second regulator directly over the previous
superposition Ps to obtain the same result: the order in which the pushouts are performed
is not relevant. In fact, it is better to identify the system with its configuration diagram
(as suggested in [Goguen 71, 73]) and identify the evolution of the structure of the system
with that of its configuration diagram. Hence, in this sense, the categorical approach
supports incremental design.

The second pushout can now be computed:

C

b rr

c
s

ú
ú

a
f

c
s
ú

ú

b
g

c
s
ú

ú

x
r

s

s'

C

P

P

PPP

c
s

ú

x
r

ú

The program Ps' is the result of the double superposition. It is isomorphic to:

Ð 18 Ð

varÊÊa, b, ao, boÊ:Êint;
ad, bdÊ:Êbool

initÊÊa>0 ∧ b>0 ∧ ad=false ∧ bd=false ∧ ao=0 ∧ bo=0
do frÊ:Ê[Âad ∧ ao≠a → a := ϕ(a,b) || ao := a]
Ê[] grÊ:Ê[Âbd ∧ bo≠b → b := ψ(a,b) || bo := b]
Ê[] ftÊ:Ê[Âad ∧ ao=a → ad := true]
Ê[] gtÊ:Ê[Âbd ∧ bo=b → bd := true]

This program now detects both situations in which b=ψ(a,b) and situations in which
a=ϕ(a,b). However, it does not necessarily detect a situation in which both a=ϕ(a,b) and
b=ψ(a,b). In order to achieve that, we need to synchronise ft and gt, i.e. the actions that
detect the local fixpoints. This can be done by adding another communication channel to
the configuration diagram below, where C' ≡ doÊÊh:[skip]:

C

rP C' rP

C

bP

c
s

ú

x
r ú

c
s
ú

ú

b
g

c
s
ú

ú

x
r

c
s

ú
ú

a
f

ú

ht h tú

The colimit of the configuration diagram provides a program isomorphic to:

varÊÊa, b, ao, boÊ:Êint;
ad, bdÊ:Êbool

initÊÊa>0 ∧ b>0 ∧ ad=false ∧ bd=false ∧ ao=0 ∧ bo=0
do frÊ:Ê[Âad ∧ ao≠a→ a := ϕ(a,b) || ao := a]
Ê[] grÊ:Ê[Âbd ∧ bo≠b → b := ψ(a,b) || bo := b]
Ê[] stopÊ:Ê[Âad ∧ ao=a ∧ Âbd ∧ bo=b → ad := true || bd := true]

This program now terminates when it detects a situation in which (a,b)=(ϕ(a,b),ψ(a,b)).

The following results states that these operations can be performed over any finite
configuration diagram:

Proposition 5.3: REG is finitely cocomplete. ❚

5.2 Design principles enforced by categories
Summarising, REG supports an incremental program design discipline by allowing us
to interconnect programs to form complex systems. It also supports a discipline of reuse
in the sense that programs can be developed independently and interconnected at system
configuration time. The use of local names, as opposed to the usual approach of a global
name space, is essential to support such a degree of reusability and incrementality. The
resulting systems are also structured because they are connected to their components (to
their configuration diagram) through the colimit morphisms.

This ability to characterise the structure of objects in terms of relationships (morphisms)
with other objects and to define operations of composition that preserve that structure is
one of the reasons that make the categorical framework so useful for formalising
disciplines of decomposition and organisation of systems into components. That is,

Ð 19 Ð

choosing a particular notion of morphism, we define a way of establishing relationships
between objects and, hence, of structuring our world according to the components that
these relationships allow us to identify.

Indeed, one of the basic principles of the categorical approach [Goguen 91] is that, for every
notion of structure, there is a corresponding notion of transformation (morphism) that
preserves that structure. For instance, with respect to REG, one of the structural notions
enforced is encapsulation of local state (attributes): the fact that morphisms are required
to preserve the locality of program attributes implies that any operation on programs
defined, like colimits, in terms of universal properties of morphisms, will guarantee that
the attributes of the component programs remain local.

In this sense, we can claim that categories can be used to formalise program design
disciplines. By changing from one category to another, for instance by keeping the same
objects (programs) but changing the way we can interconnect them (morphisms), we
obtain a different paradigm.

For instance, one might wonder how the union of two programs P1 and P2 in the sense of
UNITY could be characterised in our setting. The union of P1 and P2 given by

P1 ≡ var a, b : int P2 ≡ var a, c : int
do f1Ê:Ê(p∧ p1 → a,b := 1,a+1) do f2Ê:Ê(p∧ p2 → a,c := 1,aÐ1)
[] g1Ê:Ê(Âp1 → b := 1) [] g2Ê:Ê(Âp2 → c := 1)

is

P1[]P2 ≡ var a, b, c : int
do f1Ê:Ê(p∧ p1 → a,b := 1,a+1)

[] f2Ê:Ê(p∧ p2 → a,c := 1,a-1)
[] g1Ê:Ê(Âp1 → b := 1)
[] g2Ê:Ê(Âp2 → c := 1)

Clearly, we do not have (regulative) superposition morphisms from P1 and P2 into P1[]P2.
Indeed, for instance, f2 assigns to the attributes of P1 thus violating the locality condition.
Hence, we are not able to obtain P1[]P2 from P1 and P2 in the context of REG, i.e. REG
does not provide us with the right notion of "structure" for explaining arbitrary union.
We have to switch to invasive superposition morphisms, i.e. move to the category INV.

5.3 Observers and modularity
We have already discussed the role of regulative superposition as a mechanism for
building complex systems out of components. Spectative superposition also plays a very
important role in program development. Indeed, in this section, we show how spectative
superposition morphisms satisfy algebraic properties that have been recognised as the
source of "modularity" in program development [Bergstra et al 90, Diaconescu et al 91,
Maibaum et al 85].

We have already seen in section 3.2 that spectative superposition morphisms are model
expansive. That is, by means of spectative superposition, a program can be extended
without affecting its underlying behaviour. The following proposition shows that
spectative superposition is preserved by pushouts i.e. by program composition:

Proposition 5.4: Given a standard configuration diagram (θ1,∆1)←µ1 (θ,∆)→µ2 (θ2,∆2),
i.e. µ1 and µ2 are injective, if µ1 is spectative and (θ1,∆1) →σ1 (θ',∆ ')← σ2 (θ2,∆2) is a
pushout of that diagram, σ2 is also spectative. ❚

Ð 20 Ð

From a methodological point of view, this proposition suggests how to superpose an
observer (or monitor in the sense of [Katz 93]) over a base program.

Definition 5.5: A configuration (θ1,∆1)←µ1 (θ,∆)→µ2 (θ2,∆2) defines (θ1,∆1) as an observer
of (θ2,∆2) iff

¥ µ1 is spectative;
¥ µ1 is surjective on actions;
¥ µ1 is surjective on read atributes. ❚

As a result of proposition 5.4, and of the fact that, in a pushout of sets and functions, the
morphism opposite a surjective morphism is also surjective, the system obtained by
superposing an observer over a base program returns a spectative extension of the base
program with only new program attributes. Because there are no new actions, this means
that only new ways of observing the state of the underlying program are introduced.
Because the resulting system is a spectative superposition of the base program, this means
that no new behaviour is being induced on the base program. This construction also
corresponds to what is usually known in programming as addition of "auxiliary
variables", or "derived attributes" in databases.

As an example, assume that we would like to count the number of assignments to a that is
necessary to reach the fixpoint. A program that counts the number of times an action
occurs is given by:

Po ≡ var cÊ:Êint;
init c=0
do hÊ:Ê[true → c := c+1]

Hence, all we need to do is to connect Po to Pb by synchronising incrementing c with f:

Ca ≡ do sÊ:Ê[skip]

fÊ úÊs s

Ê

úÊh

Pb ≡ var a, bÊ:Êint Po ≡ var cÊ:Êint;
init a>0Ê∧ Êb>0 init c=0
do fÊ:Ê[true → a := ϕ(a,b)] do hÊ:Ê[true → c := c+1]
Ê[] gÊ:Ê[true → b := ψ(a,b)]

The pushout of this diagram gives us the program

var a, b, cÊ:Êint;
init a>0 ∧ b>0 ∧ c=0
do fhÊ:Ê[true → a := ϕ(a,b) || c := c+1]
Ê[] gÊ:Ê[true → b := ψ(a,b)]

which is a spectative superposition of Pb. When incorporated within the given system,

C

rP C' rP

C

b
P

c
s

úx
r

ú

c
s
ú

ú

b
g

c
s
ú
ú

x
r

c

ú

a

úht h tú

a oC P
súf súh

>

súf

Ð 21 Ð

it counts the number of assignments to a necessary to reach the fixpoint, as required.

One of the main purposes of this construction is to introduce new attributes that may
account for the observations that are required by the specification of some intended
system. The ability to reuse an existing piece of software (program) to satisfy a
specification should allow for both the superposition of a regulator to tune the behaviour of
the underlying program to the behavioural requirements of the specification, and the
superposition of an observer over the regulator+program system to account for the state
observations required by the specification.

The importance of proposition 5.4 is that, given such a spectative superposition PS of a
base program PB, if PB is independently extended to PB' (e.g. as a result of superposing a
regulator) then there is a canonical spectative superposition PS' of PB' that provides for the
observations added to PB through PS.

S'PSP

B'PBP
^ ^

This property, called the modularisation property in [Maibaum et al 85, Veloso and
Maibum 95], implies that any spectative superposition of a program is reflected in a
unique way on any system of which the program is a component. Hence, it is possible to
identify a system with its configuration diagram as done before in the context of
regulative superpositions. That is to say, in the interconnection of Po as done above, the
order in which the superpositions are made, including the spectative one, is immaterial.
This means that the superposition of regulators and of monitors "commutes", i.e. both
configuration techniques can be used as part of an incremental development process. We
can superpose a monitor over a base program and later on superpose a regulator over the
same base program without affecting the "status" of the first extension as a spectative
superposition.

6 Concluding remarks
In this paper, we have shown how concepts and techniques for parallel program design
can be formalised in a categorical framework. The perceived benefits of this effort are as
follows.

First, the categorical formalisation showed how languages like UNITY and IP can be
enhanced so as to make programs more open and, thus, support a discipline of modular
and incremental system development that promotes reuse. Indeed, the idea that every
interconnection between objects has to be made explicit, forces programs to be developed
without explicit references to specific components of the system, i.e. interconnections
have to be explicitly established outside the programs. Hence, the categorical framework
is much more apt to support the explicit definition of the architecture of the intended
system as a configuration of interconnected components, a discipline that has been
advocated in the area of Distributed Systems, namely through configuration languages
like those of the CONIC-family [Magee et al 89].

Ð 22 Ð

In this respect, we should stress that categorical formalisations of other paradigms exist,
namely object-based ones, in which attributes cannot be read directly but only via actions
explicitly included in the signature [Fiadeiro and Maibaum 92], i.e. supporting local
fully private attributes. Furthermore, it is clear that programs as used in the paper are not
the right structures on which to base system design. More general design structures are
usually necessary that provide for the ability to define interfaces and hide features,
support inheritance, etc. We have shown in [Fiadeiro and Maibaum 96] how such design
structures can be formalised in the proposed categorical framework using temporal
specifications. The adaptation to the category of COMMUNITY programs should be
straightforward.

Second, it helped to clarify the nature of superposition and its role in program
development. On the one hand, we showed how the two known aspects of superposition, as
a transformation as used in UNITY and as a generalised parallel composition operator
as in IP, can be unified in a natural way: the transformation is captured by the morphism
and the operator results from the colimit construction. On the other hand, the algebraic
properties of different notions of superposition were clarified. In particular, it was shown
that spectative superposition is model expansive and that spectative morphisms are
preserved by pushouts, a property that we showed to have important methodological
consequences as already proved in other contexts [Maibaum et al 85, Bergstra et al 90,
Diaconescu et al 91]. However, more general notions of superposition exist [Back and
Sere 92, Butler 93] based on the use of invariants to relate the "new" and the "old"
features. We intend to investigate how this more general notion can be incorporated in
the categorical framework.

Third, it showed that the modularisation and composition techniques captured by
superposition can be seen as instances of more general principles that apply not only to
programs but also to specifications and mathematical models of system behaviour,
including that of physical components. As shown in [Fiadeiro and Maibaum 95], the
proposed categorical approach provides us with a natural framework to relate not only the
different kinds of objects (programs, specifications, abstractions of behaviours, etc) that
are intrinsic to the variety of formalisms present during software development but also,
and more importantly, the structuring principles that are implied by each formalism. In
particular, by working with a category of temporal logic specifications as defined in
[Fiadeiro and Maibaum 92], we can formalise the relationship of satisfaction/realisation
between programs and specifications in functorial terms [Fiadeiro and Maibaum 95],
and distinguish between several degrees of compositionality according to the algebraic
properties that the satisfaction relation satisfies [Fiadeiro and Maibaum 95, Fiadeiro 96].

Acknlowledgments
We would like to thank our colleagues F�lix Costa and Kevin Lano for the many
discussions that we had on the topics of the paper, and the referees for many challenging
comments. Special thanks are due to Georg Reichwein with whom the formalisation of
superposition was initiated.

Ð 23 Ð

References
[Back and Kurki-Suonio 88]

R.Back and R.Kurki-Suonio, "Distributed Cooperation with Action Systems", ACM
TOPLAS 10(4), 1988, 513-554.

[Back and Sere 92]
R.Back and K.Sere, "Superposition Refinement of Parallel Algorithms", in FORTE'91,
North-Holland 1992, 475-493.

[Barr and Wells 90]
M.Barr and C.Wells, Category Theory for Computing Science, Prentice-Hall International
1990.

[Barringer and Kuiper 84]
H.Barringer and R.Kuiper, "Hierarchical Development of Concurrent Systems in a
Temporal Framework", in S.Brookes, A.Roscoe and G.Winskel (eds) Seminar on
Concurrency, LNCS 197, Springer-Verlag 1984, 35-61.

[Bergstra et al 90]
J.Bergstra, J.Heering and P.Klint, "Module Algebra", Journal of the ACM 37(2), 1990,
335-372.

[Boug� and Francez 88]
L.Boug� and N.Francez, "A Compositional Approach to Superimposition", in Proc. 15th
ACM Symposium on Principles of Programming Languages", ACM Press 1988, 240-249.

[Burstall and Goguen 77]
R.Burstall and J.Goguen, "Putting Theories together to make Specifications", in R.Reddy
(ed) Proc. Fifth International Joint Conference on Artificial Intelligence, 1977, 1045-1058.

[Butler 93]
M.Butler, "Refinement and Decomposition of Value-Passing Action Systems", in E.Best
(ed) CONCUR'93, LNCS 715, Springer-Verlag 1993, 217-232.

[ChandyÊandÊMisraÊ88]
K.Chandy and J.Misra, Parallel Program Design Ð A Foundation, Addison-Wesley 1988.

[Costa et al 92]
F.Costa, A.Sernadas, C.Sernadas and H.-D.Ehrich, "Object Interaction", in I.Havel and
V.Koubek (eds) Mathematical Foundations of Computer Science'92, LNCS 629, Springer-
Verlag 1992, 200-208.

[de Nicola 87]
R. de Nicola, "Extensional Equivalences for Transition Systems", Acta Informatica 24,
1987, 211-237.

[Diaconescu et al 91]
R.Diaconescu, J.Goguen and P.Stefaneas, "Logical Support for Modularisation", in
H.Huet and G.Plotkin (eds) Proc. 2nd BRA Logical Frameworks Workshop, Edinburgh
1991.

[Ehrich et al 91]
H.-D.Ehrich, J.Goguen and A.Sernadas, "A Categorial Theory of Objects as Observed
Processes", in J.deBakker, W.deRoever and G.Rozenberg (eds) Foundations of Object-
Oriented Languages, LNCS 489, Springer Verlag 1991, 203-228.

[EhrigÊandÊMahrÊ85]
H.Ehrig and G.Mahr, Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics, Springer-Verlag 1985.

[Fiadeiro 96]
J.Fiadeiro, "On the Emergence of Properties in Component-based Systems", in M.Wirsing
and M.Nivat (eds) Proc. AMAST'96, LNCS 1101, Springer-Verlag 1996, 421-443.

[Fiadeiro and Costa 95]
J.Fiadeiro and F.Costa, "Institutions for Behaviour Specification", in E.Astesiano,
G.Reggio and A.Tarlecki (eds) Recent Trends in Data Type Specification, LNCS 906,
Springer Verlag 1995, 271-289.

[FiadeiroÊandÊMaibaumÊ92]
J.Fiadeiro and T.Maibaum, "Temporal Theories as Modularisation Units for Concurrent
System Specification", Formal Aspects of Computing 4(3), 1992, 239-272.

[Fiadeiro and Maibaum 95]
J.Fiadeiro and T.Maibaum, "Interconnecting Formalisms: supporting modularity, reuse
and incrementality", in G.E.Kaiser (ed) Proc. 3rd Symposium on Foundations of Software
Engineering, ACM Press 1995, 72-80.

Ð 24 Ð

[Fiadeiro and Maibaum 96]
J.Fiadeiro and T.Maibaum, "Design Structures for Object-Based Systems", in S.Goldsack
and S.Kent (eds) Formal Methods in Object Technology, Sringer-Verlag, in print.

[FrancezÊandÊFormanÊ90a]
N.Francez and I.Forman, "Conflict Propagation", in IEEE Int. Conf. on Computer
Languages (ICCL'90), IEEE Press 1990, 155-168.

[FrancezÊandÊFormanÊ90b]
N.Francez and I.Forman, "Superimposition for Interacting Processes", in CONCUR'90,
LNCS 458, Springer-Verlag 1990, 230-245.

[Goguen 71]
J.Goguen, "Mathematical Representation of Hierarchically Organised Systems", in
E.Attinger (ed) Global Systems Dynamics, Krager 1971, 112-128.

[Goguen 73]
J.Goguen, "Categorical Foundations for General Systems Theory", in F.Pichler and
R.Trappl (eds) Advances in Cybernetics and Systems Research, Transcripta Books 1973,
121-130.

[GoguenÊ91]
J.Goguen, "A Categorical Manifesto", Mathematical Structures in Computer Science 1(1),
1991, 49-67.

[GoguenÊ92]
J.Goguen, "Sheaf Semantics for Concurrent Interacting Objects", Mathematical Structures
in Computer Science 2, 1992, 159-191.

[Goguen and Burstall 92]
J.Goguen and R.Burstall, "Institutions: Abstract Model Theory for Specification and
Programming", Journal of the ACM 39(1), 1992, 95-146.

[GoguenÊandÊGinaliÊ78]
J.Goguen and S.Ginali, "A Categorical Approach to General Systems Theory", in G.Klir
(ed) Applied General Systems Research, Plenum 1978, 257-270.

[Katz 93]
S.Katz, "A Superimposition Control Construct for Distributed Systems", ACM TOPLAS
15(2), 1993, 337-356.

[Kurki-Suonio and J�rvinen 89]
R.Kurki-Suonio and H.J�rvinen, "Action System Approach to the Specification and
Design of Distributed Systems", in Proc. 5th Int. Workshop on Software Specification and
Design, IEEE Press 1989, 34-40.

[Magee et al 89]
J.Magee, J.Kramer and M.Sloman, "Constructing Distributed Systems in Conic", IEEE
TOSE 15 (6), 1989, 663-675.

[Maibaum et al 85]
T.Maibaum, P.Veloso and M.Sadler, "A Theory of Abstract Data Types for Program
Development: Bridging the Gap?", in H.Ehrig, C.Floyd, M.Nivat and J.Thatcher (eds)
TAPSOFT'85, LNCS 186, 1985, 214-230.

[Sannella and Tarlecki 88]
D.Sannella and A.Tarlecki, "Building Specifications in an Arbitrary Institution",
Information and Control 76, 1988, 165-210.

[Sassone et al 93]
V.Sassone, M.Nielsen and G.Winskel, "A Classification of Models for Concurrency", in
E.Best (ed) CONCUR'93, LNCS 715, Springer-Verlag 1993, 82-96.

[van Benthem 84]
J. van Benthem, "Correspondence Theory", in D.Gabbay and F.Guenthner (eds)
Handbook of Philosophical Logic II, Reidel 1984, 167-247.

[Veloso and Maibaum 95]
P.Veloso and T.Maibaum, "On the Modularisation Theorem for Logical Specifications",
Information Processing Letters 53, 1995, 287-293.

