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Abstract
This paper describes a segmentation algorithm designed to separate bone
from soft tissue in magnetic resonance (MR) images developed for computer-
assisted surgery of the spine. The algorithm was applied to MR images of the
spine of healthy volunteers. Registration experiments were carried out on a
physical model of a spine generated from computed tomography (CT) data of
a surgical patient. Segmented CT, manually segmented MR and MR images
segmented using the developed algorithm were compared. The algorithm
performed well at segmenting bone from soft tissue on images taken of healthy
volunteers. Registration experiments showed similar results between the CT
and MR data. The MR data, which were manually segmented, performed
worse on visual verification experiments than both the CT and semi-automatic
segmented data. The algorithm developed performs well at segmenting bone
from soft tissue in MR images of the spine as measured using registration
experiments.

1. Introduction

The use of computer-assisted surgery (CAS) for pedicle screw insertion in the lumbar spine has
improved screw placement in vivo (Laine et al 1997, Schwarzenbach et al 1997, Merloz et al
1998, Amiot et al 2000). By registering pre-operative computed tomography (CT) images
to the patient’s frame of reference in the operating theatre, positions and projections of
instruments trajectories can be seen in real time during the operation. A move away from
CT to magnetic resonance (MR) for diagnostic imaging of spinal disorders has prompted
development of MR images, which can be used with CAS (Martel et al 1998, Hoad et al
2000, 2001). These images have been shown to be geometrically accurate (Martel et al 1998,
Hoad et al 2000) and produce good tissue contrast between the bone and surrounding soft
tissue of the spine (Hoad et al 2001). These are two important qualities needed in the images
for CAS to be successful.

Many of the systems developed for CAS of the spine use surface registration to obtain
the transformation between the image and patient’s frame of reference (Amiot et al 1995,
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Nolte et al 1995, Merloz et al 1997). This produces reliable registration and is not dependent
on how well the surgeon can identify a set of pre-defined anatomical landmarks as in paired-
point matching. A three-dimensional (3D) model of the bone surface must be generated from
the pre-operative images for surface registration to be used. Digitized surface points from
physical space are registered to the computer generated surface from the images. Using CT
images, this surface can be generated by selecting an image intensity threshold level, which
separates the signal of bone from that of soft tissue. For MR images the problem is more
difficult. Heterogeneous signal intensities in tissues, poor signal to noise ratios (SNR) and
non-uniform signal intensities make the problem of bone segmentation complex. Although
manual segmentation of the MR data using a ‘live wire’ technique (Barrett et al 1997) has
been carried out successfully (Hoad et al 2001), the technique is not suitable for CAS as the
process is extremely time consuming and user dependent.

Segmenting MR images into different tissue types has been studied extensively
(Bezdek et al 1993, Clarke et al 1993, 1995, Manousakas et al 1998, Martel et al 1999). Much
of this work has concentrated on segmenting brain tissue into its various components, grey
matter, white matter, csf etc (Brandt et al 1994, Lemieux et al 1999, Calmon et al 2000). The
use of more than one dataset with different tissue contrast has made multi-spectral approaches
to this problem an area of intense research (Vannier et al 1985, Choi et al 1991, Hall et al
1992, Liang 1993, Mitchell et al 1994). The segmentation problem for MR CAS images is a
single contrast one. Only one dataset is available to manipulate. Techniques for this kind of
segmentation include edge detection, boundary tracing, thresholding, seed growing, template
models and morphological filtering (Sonka et al 1993, Clarke et al 1995). These techniques
applied individually have many limitations (Clarke et al 1995), however when optimized for
specific parts of the segmentation process and combined into a single algorithm, the results can
be excellent (Kapur et al 1996, Lemieux et al 1999). This type of approach is needed for the
problem of segmenting the bone from soft tissue in CAS MR images of the spine, as the image
contrast and quality do not allow for a single technique, other than manual segmentation, to
be used successfully.

Many different approaches have been taken to the assessment of segmentation accuracy.
The traditional approach is to compare the segmentation carried out using a new technique
with a gold standard, typically manual segmentation carried out by experts. This approach is
unsatisfactory in this study for two reasons. Manual segmentation of the MR images is very
subjective making it a poor gold standard and a comparison of two segmented images on a
pixel by pixel basis is unlikely to provide information about whether the segmented images
are fit for their intended purpose, i.e. surface registration. The standard approach to assessing
the accuracy of surface-based registration between physical space and image space using CAS
systems is to implant fiducial markers into a physical phantom, which is then scanned using
CT (Herring et al 1998, Bachler et al 2001). Surface points on the phantom are digitized using
the CAS system and the bone surface is extracted from the CT data using simple thresholding.
Surface-based registration is used to generate a coordinate transform function (CTF) that
minimizes the distance between the digitized surface points and the bone surface generated
from the image data. The position of the fiducial markers in physical space is determined
using a tracking device and the position of the markers in the CT image is calculated after
transformation using the CTF. The difference between the positions after registration is used to
calculate the registration accuracy. This approach works well for CT images as the properties
of the images obtained from a plastic phantom are not significantly different to those of patient
images. In MRI this is not the case as there is a complex relationship between tissue type and
image contrast, and even a cadaver spine has a very different appearance to a spine in vivo
(Martel et al 1998). In order to overcome this problem, we have scanned a patient first and
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then constructed a phantom from the image data, rather than constructing the phantom first
and then scanning it.

The aim of the work presented in this paper was to develop a bone segmentation algorithm
to be used on MR images for CAS that would be quicker and less user dependent than manual
segmentation. The accuracy of the algorithm was tested using registration experiments and
compared to manually segmented MRI data and CT thresholded data.

2. Materials and methods

2.1. MR imaging

Imaging was carried out on a 1.5 T Magnetom Vision scanner (Siemens, Erlangen, Germany).
A 3D double echo FISP sequence was used. All images were acquired using a six-element
phased-array spine coil with three consecutive elements active. The imaging parameters were
as follows: echo times were 2.5 ms and 4.9 ms, repetition time was 7.3 ms, voxel size was
1 × 1 × 1 mm3 with a matrix size of 256 × 192 × 96. The slice direction was sagittal, with the
frequency direction, head to foot and phase, anterior to posterior. A selective radiofrequency
excitation pulse with flip angle 5◦ was used for all studies. The pixel bandwidth was set at
651 Hz and the number of acquisitions was four. A regional saturation band was placed across
the anterior of the body to reduce motion artefacts from breathing. Images were filtered for
noise using a wavelet filtering technique (Donoho 1995) and corrected for non-uniform signal
intensities using the low-pass filtering technique of Tofts et al (1994).

The tissue contrast from the sequence was T1 weighted with the timing of the two echoes
coinciding with the lipid and water signals precessing out of phase and in phase, respectively.
This phase difference is due to a chemical shift of 3.5 ppm between the Larmor frequencies of
the hydrogen atoms in water and lipid. The contrast resulting from these different echo times
was as follows.

There was good contrast between the vertebral bodies and inter-vertebral discs in the
images from the first echo (figure 1(a)). However the edges of the posterior structures were
not well defined in these images.

The images from the second echo showed clear definition of the posterior structures
(figure 1(b)). However there was less contrast between the vertebral bodies and inter-vertebral
discs.

To achieve good contrast between all the bone and soft tissue, the two images were
combined. This method is described briefly here, for more details see Hoad et al (2001). The
images were combined using the statistical variance of a 3 × 3 × 3 region for each pixel of the
first-echo data. Any pixels with high variance signal above a threshold level, V1, were replaced
(in the original data) with the matching pixels from the second-echo data. The high variance
data appeared mainly around the edges of the posterior structures (figure 1(c)). By substituting
these data for the corresponding data from the second echo, which were of relatively constant
signal intensity, the definition of the posterior structures was improved. The threshold level,
V1, was set interactively by the user. The level was set such that the posterior surfaces of the
bones of the spine were clearly defined, whilst maintaining relatively constant signal intensity
in the bone marrow (see figure 1(d)).

2.2. Segmentation algorithm

The MR images after processing have low signal intensity in the bone and relatively high
signal intensity in the surrounding soft tissue. The problems with segmenting these data are
numerous; the anterior edge of the vertebral body is very poorly defined because of poor
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Figure 1. Examples of a typical sagittal slice MR image from the FISP sequence including
processed data. (a) echo 1, (b) echo 2, (c) statistical variance data for slice and (d) resulting
combined data showing good overall contrast between bone (dark) and surrounding soft tissue
(light).

SNR in that region, bone signal intensity is not uniform in the thin spinous process regions
and the shape of the bone changes rapidly from slice to slice. This means that very simple
segmentation techniques of thesholding or edge detection do not work well on these data.
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Figure 2. Single sagittal slice through data showing various stages of the algorithm for
segmentation of vertebral bodies. (a) Mask of thresholded data, (b) data after elliptical column
defined and (c) segmented vertebral bodies after holes filled using morphological filtering.

We have developed a segmentation algorithm that combines thresholded region growing with
morphological filtering and masking using set shapes. It can be split into three sections;
segmentation of the vertebral bodies, segmentation of the posterior structures and manual
corrections.

2.2.1. Segmentation of the vertebral bodies. The contrast between the anterior surfaces of
the vertebrae and the surrounding soft tissue is poor, making it impossible to separate the bone
and soft tissue using a simple threshold (figure 2(a)). Since the anterior surface is not used
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Figure 3. (a) Sagittal image showing axial slice position and (b) axial images showing the four
positions drawn manually on the image (crosses) and the subsequently calculated ellipse. The
ellipse shape must closely follow the anterior edge of the vertebral body for a good segmentation
outcome; however, the fit to the posterior edge is not important.

for surface matching during surgery, it is possible to approximate this boundary. 1–2 ellipses
were defined for each vertebral level in the axial plane. These ellipses were defined by four
manually selected points and were aligned with the anterior edge of the body as closely as
possible. The posterior edge of the vertebra was not matched carefully but was fully included
in the ellipse. An example is given in figure 3. Interpolation was then used to produce a stack
of ellipses enclosing a 3D volume, M1, which included the entire vertebral body and disc area
of the spine. A threshold T1 was then applied to all the pixels within the mask M1 to create a
new mask M2, i.e.

M2(x, y, z) =
{

1 · M1(x, y, z) S(x, y, z) � T1

0 otherwise
(1)

where S is the signal intensity from the processed images (figure 2(b)). The threshold level
T1 was set such that most of the bone was included (especially in the posterior structures),
however the amount of noise included was minimized. A morphological closing filter with a
cubic 3 × 3 × 3 kernel was applied to M2 in order to fill any holes (figure 2(c)).

2.2.2. Segmentation of the posterior structures. An initial mask M3 was generated by
removing the vertebral body region from a thresholded dataset, i.e.

M3(x, y, z) =
{

1 · (1 − M1(x, y, z)) S(x, y, z) � T1

0 otherwise
. (2)

All positive pixel values in M3, lying between a third of the distance from the posterior
edge of the ellipse in the axial plane and the anterior edge of the image region were set to
zero. The resulting region M3 is shown in figure 4(a). To generate automatic seed points for
region growing, a morphological open filter with a cubic 5 × 5 × 5 kernel was applied to
M3. Application of the filter resulted in seed points close to the facet joints of the posterior
structures and also in the noise layer outside the body (figure 4(b)). Seed points lying within
the noise region were automatically removed (figure 4(c)). Seeded region growing was then
carried out for all the remaining seed points and this defined the posterior structures in the
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Figure 4. Single sagittal slice through data showing various stages of the algorithm for
segmentation of posterior structures. (a) Thresholded data with vertebral body data removed.
(b) Seed point generation using morphological open filter. (c) Seed points left after removal
of noise region. (d) Data after region growing from seed points. (e) Data after holes filled by
morphological closing filter. (f) Segmented data from vertebral bodies and posterior structures
together.
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mask M3 (figure 4(d)). A morphological closing filter, with cubic 3 × 3 × 3 kernel was used
to remove any holes (figure 4(e)). Finally, masks M2 and M3 were added together to create
the final segmented dataset, M4. Any holes between datasets M2 and M3 were filled in M4

(figure 4(f)).

2.2.3. Manual corrections. Some preliminary experiments,carried out on healthy volunteers,
indicated that the thin spinous process region of the vertebra was not always well defined by the
segmentation algorithm. The tip of this structure was missed sometimes and a final, manual,
correction to this was needed to complete the segmentation. This manual correction was only
applied to a few slices for each vertebra, when the main algorithm failed to completely define
the spinous process region.

2.3. Assessment of segmentation accuracy

The aim of segmenting the images is to obtain an accurate 3D model of the spine surface
which can then be used to register image space to physical space during surgery. Any method
used to measure segmentation accuracy should therefore reflect how well this task is carried
out. For this reason we have chosen to assess how well the segmented MR images can be
registered to a physical phantom using a commercially available CAS system (Medivision,
Stratec Medical Limited, Welwyn Garden City, UK). This system uses an Optotrak system
(Northern Digital,Canada) and is described in more detail elsewhere (Nolte et al 1995). We
have used the surface-based registration algorithm (Bachler et al 2001) provided by the system
software. A physical model of the spine was constructed from CT data. A patient already
scheduled for CAS of the spine was scanned using both CT and MRI on the same day. The
thresholded CT scan was then used to generate a 3D computer model of the spine. This was
used to build a physical model using the rapid prototyping technique of stereolithography. The
model was made out of a photosensitive resin. The physical model covered the regions L4 to
S1 and was used as a phantom for the following experiments.

2.3.1. Visual assessment of registration. During surgery the quality of the registration is
assessed visually. As the instrument is moved around the surgical field the computer displays
three orthogonal images centred on the tip of the instrument. The registration is verified by
checking that when the tip of the instrument is touching the surface, the centre of the three
image planes also corresponds to a bony surface. Twelve points were marked on the physical
model to use as verification points (see figure 5). Points were assessed as ‘good’ if the cross-
hairs marking the centre of the image were touching bone and ‘bad’ if they were either outside
or inside the bone. A poor registration was classed as one that had four or more ‘bad’ points
out of the 12 checked. A set of 30 experiments was carried out with 25 different surface points
digitized for each experiment. In each experiment, the surface registration was carried out
for the CT data, the MRI data segmented manually using a live wire technique (Barrett et al
1997) and the MRI data segmented using the technique described in this paper. Verification
was carried out after each registration and the number of poor points for each segmentation
type was recorded.

2.3.2. Comparison with CT. The second method for determining registration accuracy
assumes that the CT registration can be used as a gold standard. Both the segmented MRI
data and the segmented CT data were registered to the phantom using the same set of digitized
points. CTFMRI and CTFCT are the CTFs mapping the MRI and CT data into physical
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Figure 5. Picture of the physical spine model showing verification points (black dots) on L5. The
model covers regions L4 to S1.

Figure 6. Different regions of the spine used in the registration experiments. (a) Sagittal view and
(b) axial view. Regions are: VB—vertebral body, F—facet joint, SP—spinous process, L—laminar
region, SC—spinal canal and P—pedicle.

space, respectively. The misalignment between the CT surface and the MRI surface was then
quantified. Calculating the distance from a point on one surface to another surface is time
consuming and in order to reduce processing time a distance map was generated from the
segmented CT data by calculating the minimum distance between each pixel and the nearest
surface. This distance map was defined in CT image space and had to be generated only
once. In order to measure the misalignment between the registered CT and MR images, the
segmented MR image was transformed into CT image space by applying CTFMRI followed
by (CTFCT)−1. The misalignment was then quantified by randomly selecting points on the
transformed MRI surface and finding their average distance away from the CT surface using the
distance map. Seven regions over the surface of L5 were considered: spinous process, laminar
region, facet joints, pedicles, spinal canal, vertebral body and total surface (see figure 6). Each
small region had 100 points randomly selected. The total surface had 500 points randomly
selected.
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In order to measure the variability of the CT registration, the CTFCT that represented the
best surface registration match from the entire set of CT experiments was selected (CTF∗

CT).
The CT surface was then transformed by CTFCT followed by (CTF∗

CT)−1, and the misalignment
between the transformed surface and the original surface was calculated using the distancemap.

2.3.3. Effect of preprocessing and selection of threshold levels. To test the robustness of
the segmentation algorithm, a further verification experiment was carried out. The threshold
levels for variance, V1 (statistical variance of 3 × 3 × 3 regions in FISP first-echo data),
and image segmentation threshold level, T1, were varied between what was considered the
minimum and maximum possible values that were visually acceptable. Five values uniformly
spaced between these end points were selected. The segmentation algorithm was then applied
and a mask generated for all combinations of V1 and T1. The thin spinous process region
was manually segmented (once) and these data were added to the masks generated from the
algorithm. The 12 points defined in the initial verification experiment were then used again
to look at how well image registration had been calculated from an initial paired-point match
and subsequent 25 point surface registration. Ten different sets of surface points were used to
register each mask generated to the physical model. Registration accuracy was assessed by
the verification method described above. No comparison was made to the CT or MR manually
segmented data.

3. Results

3.1. Algorithm testing

Figure 7 shows some examples of segmented data for various healthy volunteers. The
segmentation is shown as a contour overlay on the processed data. The images show that
the segmentation algorithm works well on most areas of the bone. The facet joints and laminar
regions are segmented accurately. These regions are particularly important because surface
matching is only carried out on these two regions and the spinous process region. The spinous
process region is not segmented as well. This is predominately because it is a very thin
structure and partial volume effects make the edges unclear. After the image combination
algorithm used to process the data, the bone marrow in the spinous process has high instead
of low signal and hence is not included when the threshold level is set. As this region is small,
manually segmenting this area can be carried out, as previously described, in a short amount
of time.

3.2. Visual assessment of registration

The results of the registration experiments are given in table 1. Both the CT and MR semi-
automatic segmented data produced ‘good’ registration for all experiments carried out. The
manually segmented data failed to register on 10% of the experiments. On average, 10 of
the 12 points were verified as good for the CT and MR semi-automatic and this figure was
reduced to nine for the manually segmented MR data.

3.3. Comparison with CT

The surface distance experiments (table 2) showed that the CT experiments had smaller
registration errors than the MR experiments. Both MR segmentation techniques produced
errors of similar magnitude. The total surface registration error for the CT data was
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Figure 7. Images showing overlay of segmented data using algorithm for data from healthy
volunteers. (a)–(c) Sagittal images and (d)–(f) axial images showing good segmentation of
vertebral bodies (clear arrows), facet joints and laminar region (thin arrows). However, spinous
process region is not as well defined (arrow heads).

0.66 ± 0.17 mm, for the MR semi-automatic data the error was 1.12 ± 0.15 mm and for
the MR manual data 1.09 ± 0.13 mm.



3514 C L Hoad and A L Martel

Table 1. Comparison of registration accuracy results between segmentation techniques, using the
verification method.

CT MR–manual MR–semi-auto

Number of registrations rejected 0 3 0
from 30 experiments
Average percentage of ‘good’ 85.2% 79.4% 87.1%
points from accepted registrations
(maximum 30 experiments)

Table 2. Results of the registration accuracy distance map experiment comparing segmentation
techniques. All measurements are in mm. Results shown are mean ± standard deviation of mean.

Registration method CT–CT MR–CT (manual) MR–CT (semi-auto)

Number of registration 20 20 10
experiments
Spinous process 0.77 ± 0.36 0.89 ± 0.10 1.13 ± 0.31
Laminar 0.47 ± 0.12 0.86 ± 0.23 0.77 ± 0.12
Facet joints 0.57 ± 0.17 1.11 ± 0.16 1.10 ± 0.20
Pedicles 0.60 ± 0.22 1.18 ± 0.24 1.08 ± 0.19
Spinal canal 0.42 ± 0.14 1.27 ± 0.27 1.12 ± 0.18
Vertebral body 0.74 ± 0.29 1.25 ± 0.28 1.11 ± 0.16
Total 0.66 ± 0.17 1.12 ± 0.15 1.09 ± 0.13

Table 3. Average percentage of ‘good’ points from 10 registration experiments for various T1 and
V1 levels.

T1-min T1-lower int T1-centre T1-upper int T1-max Average

V1-min 85 85 83 83 83 83.8
V1-lower int 86 83 84 83 82 83.6
V1-centre 84 86 85 84 81 84
V1-upper int 82 83 79 78 80 80.4
V1-max 76 76 78 79 76 77
Average 82.6 82.6 81.8 81.4 80.4

3.4. Effect of preprocessing and selection of threshold levels

The experiment to test the robustness of the segmentation algorithm showed that a range of
values for both T1 and V1 could produce good registration results (table 3). Variations between
visually acceptable minimum and maximum values of T1 and V1 showed little variation of
registration accuracy for the threshold level T1 but a significant drop in registration accuracy
for V1 as the maximum value was reached.

4. Discussion

The segmentation algorithm described in this paper was a three-step approach and performed
well at segmenting bone from surrounding soft tissue. The main algorithm (step 2) took
between 5 and 10 minutes to run after the vertebral bodies (step 1) had been defined with
ellipses. This meant that it was very easy to change the threshold level, T1, for the algorithm
if it was initially set incorrectly. The accuracy of the vertebral body definition does not affect
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the surface registration accuracy, just the aesthetics of the 3D model presented to the surgeon
on the CAS system. There was some inclusion of spinal cord tissue in the segmented data.
This did not affect the registration accuracy, as this surface was not used for the registration
process.

The small region of the spinous process was not segmented well on most datasets. This
region is very thin and partial volume effects make the edge definition of this region unclear.
Also the bone marrow in this small part of the spine has increased signal intensity compared
to the rest of the spine. This is a consequence of the image combination method. Signal
around the spinous process has high variance because of the rapidly changing shape of the
spinous process. Therefore, low signal intensity in the bone marrow of this region cannot
be achieved in the image combination. The spinous process region can be manually altered
(step 3) to correct for regions missed by the semi-automatic algorithm. This is necessary for
only a small number of slices (<10 normally) and can be carried out in a short amount of
time. Occasionally small strips of interface tissue between the muscle and fat of the back are
also included in the segmented data. This can be removed easily using manual techniques.
However, if left on the model, the only inaccuracies which will occur are at the points of
contact to the tip of the spinous process.

The visual verification experiment showed that there was little difference between the
registration of digitized points to CT or MR generated surfaces. The MR manual segmentation
surface resulted in good registration in only 90% of the experiments, whereas the CT and semi-
automatic MR surfaces resulted in good registration for 100% of the experiments carried out.
100% accuracy for the CT data would be expected as the model used to digitize the point in
‘physical’ space was generated from this surface data. The fact that the MR semi-automatically
segmented data performed as well as the CT data showed that the images and segmentation
algorithm described the bone surface as accurately as the CT data.

The results from the surface distance experiment showed that there was some variation
between surface alignment over different regions of L5. However as expected, one of the
smallest variations in surface alignment was in the laminar region. This is because the
digitized points are taken almost exclusively from this area and the algorithm for registration
minimizes the distances between these points and the surface. The average total error for each
modality was just larger than the in-plane pixel resolution.

The surfaces of the images were found in different ways for the CT and MRI datasets. The
CT data was transformed, through ‘physical space’ back to CT space and the bone threshold
level was set to define the 3D surface of the vertebra. For the MRI data, as the method for
defining the 3D surface was not as straightforward, the mask data generated from the original
segmentation process as well as the image data were transformed. This mask was displayed
as a contour edge on the image data. As the mask had been truncated through the transverse
processes and approximated in the vertebral bodies, the random points were only chosen from
edges that appeared lying along or close to the bone surface. The larger errors associated with
the MR data may be due in part to this method being more inaccurate than the CT surface
method.

Larger misalignment was seen for the spinous process region of the semi-automatic
method of MR segmentation than the manual segmentation method. This reflects the errors
seen around this region from using the segmentation algorithm to define the bone (principally
because of partial volume effects). Herring et al (1998) reported larger errors when using
surface registration points around the spinous process for CT images and postulated that
these errors were due to partial volume effects as this structure is so thin. The data in this
study also show the largest registration inaccuracy around the spinous process for the CT
images.
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The segmentation algorithm was shown to be reasonably robust as a range of visually
acceptable values of V1 and T1, the user dependent parameters in the algorithm, produced
good registration results. Varying the parameter T1 had almost no effect on the registration
accuracy. The threshold level T1 did not alter the matching surface significantly as changing
this parameter principally altered the amount of signal included in the vertebral body region,
not the posterior structures. The parameter V1 had a much larger impact on registration
accuracy, with larger values of V1 resulting in poorer registration results. The parameter V1

selects which parts of the processed data come from which echo. A large value of V1 results
in more data being included from the first echo around the posterior structures region. These
data do not produce as clean an edge for the segmented surface as a lower value of V1 and is
almost certainly the cause for the drop in registration accuracy. It would therefore be sensible
to choose a low value of V1 for all image combinations.

As stated earlier, the physical model was generated from the CT data, therefore the fact
that the surface distance experiment showed a difference of 0.66 mm in ‘registered’ to ‘actual’
surface may seem surprising. Errors from the digitization of the surface points generated
from inaccurate localization of the tip of the digitization tool would have contributed to this
discrepancy, by generating an inaccurate registration. The MR data were also prone to this
type of registration error. Other sources of error, that could affect the registration process
for the MR data, were image resolution, distortion and segmentation accuracy. The in-plane
resolution for the MR images was 1 × 1 mm2, for the CT data this was considerably smaller at
0.49 × 0.49 mm2, allowing for a more accurate representation of the surface of the bone. The
slice thickness for the CT data was 2 mm. This parameter was only 1 mm for the MR data and
this may well have contributed to the good registration achieved by the MR generated surfaces,
despite the poorer in-plane resolution. The registration accuracy experiments described here
present a combined error from all these sources.

Ultimately, during CAS of the spine, the registration accuracy will depend on all the
factors described above. The likeness of the computer generated surface of the spine to the
physical spine and the accuracy of digitization of the surface points on the exposed bone will
both influence the outcome of the registration algorithm. It is therefore important to collect
data from surgical trials of pedicle screw placement using CAS with MR images to determine
the absolute accuracy of this work.

5. Conclusions

A three-step algorithm has been described in this paper, which segments bone from soft tissue
in MR images of the spine developed for CAS. Verification experiments of registering the
segmented data to a physical model of a spine (generated by CT) showed the segmented
MR data to be equally good for registration as ‘gold standard’ CT data. The segmentation
algorithm was shown to be robust. Different user-defined threshold levels, varied between
visually acceptable limits, had very little effect on the registration outcome. Overall, the
accuracy of the registration will depend on both the similarity between actual and computer
generated surfaces, and the accuracy of the digitized points used for registration.
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