
Development, Implementation and

Quantification of an Ad-hoc Routing

Protocol for Mobile Handheld Terminals

Nicholas Joseph Dearham

BScEng (Electronic)

Submitted in fulfillment of the academic requirements for the

Degree of Master of Science in Electronic Engineering in

the School of Electrical, Electronic and Computer

Engineering at the University of Natal, Durban, South Africa

September 25, 2003

Abstract

An ad-hoc network is a collection of mobile nodes (wireless communication devices) that

transmit data over systems that do not require any centralized control, such as that found in

cellular networks. This makes ad-hoc networks suitable for military type applications, since

there is no need for an established backbone infrastructure and hence no single-point-of-failure.

However, other uses of ad-hoc systems include search and rescue missions, law enforcement

operations, commercial and educational communication of laptop (and other handheld device)

data, as well as in the transmission of environmental sensor information.

The mobile ad-hoc concept brings many design challenges. The dynamic freedom of movement

from mobile nodes causes random, sometimes rapidly time changing topologies, which are

inappropriate for use through traditional wired protocols. In addition, wireless networks

generally contain greater bandwidth, processing and power constraints than their wired

counterparts, since they are implemented on embedded mobile, handheld devices. Thus, a

different approach is needed in the wireless network domain. This has resulted in wireless

routing protocols employing adaptive, multi-hop, distributed methodologies in which each node

additionally acts as a router for each of its neighbouring nodes, in order to achieve a large

degree of network connectivity.

However, due to the broadcast nature of wireless transmissions, ad-hoc systems contain a point­

to-multipoint communication architecture, making it well suited to multi-path traffic. One such

application is in multicasting, which sends data from one source to two (or more) destinations.

But, due to the shared characteristics of the communication channel, such traffic may cause

multiple contentions and collisions to occur, which will degrade the efficiency and performance
of a protocol. .

This dissertation examines these different design tradeoffs through the use of a freely available

simulation package, known as NS-2 (Network Simulator - version 2). In addition, a novel

routing protocol, known as LAMP (Location Aided Multicasting Protocol), is developed to

handle time-bounded audio information, which is employed in a network that consists of sixteen
commercial handheld devices.

LAMP utilizes a destination-sequenced, next-hop routing table to forward multicast data. Since

mobility causes neighbouring nodes to continually change, next-hop links need to be

periodically updated. But, between each update period, a next-hop link may become broken.

Thus, if a packet is required to be routed, for which its' next-hop link is unknown, LAMP

reverts to a localized location aided flood to find a path to that destination. However, since

flooding causes network congestion, it is only employed when its' table forwarding scheme
fails.

Results have shown that LAMP ' improves packet delivery ratios by up to 5% over exisiting

flood-limiting schemes: Furthermore, LAMP has been shown to be comparable to leading

schemes, even when employed to route data to a single source-destination pair.

1

Preface

The research work presented in this dissertation was performed by Mr Nicholas Joseph

Dearham, under the supervision of Mr. Stephen A. McDonald, at the University of Natal 's

school of Electrical, Electronic and Computer Engineering. This work has been conducted over

the period February 2002 to September 2003, through the generous sponsorship of Armscor.

I thereby declare that the entire dissertation, unless otherwise indicated, is the author' s work and

has not been submitted in part, or in whole, to any other University for degree purposes.

Signed:

Name:

Date:

As the candidate's supervisor I have approved this thesis for submission.

Signed:

Name:

Date:

11

Acknowledgements

Firstly, I'd like to thank my supervisor, Stephen McDonald, for all the patience, guidance,

honesty, support, and trust you have shown towards me, over the past twenty months. Your

interest and involvement in the project has been a great motivational drive in success that was

accomplished, especially when stumbling blocks arose. I, therefore, thank you for the giving of

your time and for always making your office available for discussion.

Secondly, I'd like to thank Armscor for their financial generosity, since, without this backing, a

project of this nature could simply not exist. In particular, I'd like to thank all their personnel for

their criticism and personal interest, as this allowed me to see things from both the academic

and corporate perspectives, which aided in the construction of simple (but complete) problem

scenanos.

Next, I'd like to thank my family and friends for their patience and understanding. To my Dad,

thanks for proof reading each page (even though you probably had no idea of what you read).

To my Mom, thanks for all the times I took over your dinning room table, and to my brother, for

all your advice on C++ debugging techniques. Then to Ed, Tahmid, Yunis, Yusuf, Dirk, Niven

and Adrian, thanks for all the laughs and smiles, which made each long day at varsity

worthwhile. And to Brett, AI, Andy, Ryan and Noel, thanks for your long-tetm friendship and

may this continue on through the remainder of our lives.

Then to my Bible-study group, Gill, Adrian, Dirk, Trev and Claire, thanks for all your prayers,

debates and challenging insights. These have grown me and open my eyes to truth that can be

only found through diligent 'study of the most awesome book in the world, the Bible. May our

group continue to make an impact in the lives of all whom we meet.

Lastly, thanks to my Lord and Savior, Jesus Christ. Without you, there would be no reason to

live. You bring victory over death and are the only means to eternal salvation. I cannot begin to

thank you for all you have done. From the time I took my first breath to today, you have always

been the one and only person who has carried me and comforted me, during every second on my

being, preventing me from ever being able to count your abundant blessing. I, hereby, dedicate
this dissertation to you.

111

Publications

This work has been published and presented at the following conferences:

• N. J. Dearham, T. Quazi, and S. A. McDonald, "A Comparative Assessment of Ad-Hoc

Routing Protocols," in proc. South African Telecommunication, Networks and

Applications Conference (SATNAC), 2002.

• N. J. Dearham and S. A. McDonald, "A Location Aided Multicasting Protocol (LAMP)

for Sparse Ad-hoc Networks," in proc. South African Telecommunication, Networks

and Applications Conference (SATNAC) , 2003.

• N. J. Dearham and S. A. McDonald, "A Handheld Implementation of a Location Aided

Multicasting Protocol (LAMP)," in proc. Military Information and Communications

Symposium of South Africa (MICSSA) , 2003. <Accepted for Publication>.

IV

Table of Contents

Abstract ~
Preface : 11

Acknowledgements ~ii
Publications IV

Table of Contents :~
Abbreviations and Acronyms Vl11

t~:! ~~i~::~·:::::::::::::::::::::: ::: ::::::::::::::::::: :: :::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::: :: :::::::::::::~~~~
Conventions Used ; .. XVl

1 Introduction 1
1.1 The Characteristics of an Ad-hoc Network : 1
1.2 The Positional Communication System (PCS) 3
1.3 Other Applications for Ad-hoc Networks 4
1.4 Contributions 5
1.5 Dissertation Outline 5

2 A Survey of Routing Protocols for Ad-hoc Networks ; ... 7
2.1 Introduction 7
2.2 Unicast Protocols 7

2.2.1 Location Based Protocols 7
2.2.1.1 Greedy Forwarding Protocols 8

2.2.1.1.1 MFR (Most Forward within transmission Radius) 9
2.2.1.1.2 GPSR (Greedy Perimeter Stateless Routing) 9

2.2.1.2 Direction Limited Flooding Protocols 11
2.2.1.2.1 DREAM (Distance Routing Effect Algorithm for Mobility) 11
2.2.1.2.2 LAR (Location Aided Routing) .. 12

2.2.2 Topology based Protocols .. 13
2.2.2.1 Table-Driven (Proactive) Routing Protocols 13

2.2.2.1.1 DSDV (Destination-Sequenced Distance-Vector) 14
2.2.2.1.2 CGSR (Clusterhead-Gateway Switch Routing) 15
2.2.2.1.3 WRP (Wireless Routing Protocol) ... 16
2.2.2.1.4 GSR (Global State Routing) 16
2.2.2.1.5 FSR (Fisheye State Routing) 17
2.2.2.1.6 HSR (Hierarchal State Routing) ... 17

2.2.2.2 Source-Initiated (Reactive) Routing Protocols ... 18
2.2.2.2.1 AODV (Ad-hoc On-demand Distance-Vector) 19
2.2.2.2.2 DSR (Dynamic Source Routing) .. 20
2.2.2.2 .. 3 LMR (Lightweight Mobile Routing) .. 21
2.2.2.2.4 TORA (Temporary Ordered Routing Algorithm) 22
2.2.2.2.5 ABR (Associativity-Based Routing) .. 22
2.2.2.2.6 SSA (Signal Stability-Based Adaptive Routing) 23
2.2.2.2.7 LOTAR (Location Trace Aided Routing) .. 23

2.2.2.3 Hybrid Topology Based Protocols .. 25
2.2.2.3.1 ZRP (Zone Routing Protocol) .. 25

2.3 Multicast Protocols .. 26
2.3.1 Group-based Multicasts .. 27

2.3.1.1 ODMRP (On Demand Multicast Routing Protocol) 27
2.3.1 .2 LBM (Location-Based Multicast) : 28

2.3.2 Source-based Multicasts ... 29
2.3.2.1 DVMRP (Distance Vector Multicast Routing Protocol) :..:~: 29

v

2.3.2.2 ABAM (Associativity-Based Ad hoc Multicast) 32
2.3.3 Core-based Multicasts 33

2.3 .3.1 MAODV (Multicast Adhoc On-demand Distance Vector) 34
2.3.3.2 AMRoute (Adhoc Multicast Routing) 36
2.3.3.3 AMRIS (Ad hoc Multicast Routing utilizing Increasing id-numberS) 37

2.3.4 Mesh-based Multicasts 38
2.3.4.1 CAMP (Core Assisted Mesh Protocol) 38

2.3.5 Flooding-based Multicasts 40
2.3.5.1 Blind Flooding 40
2.3.5.2 Probability-based Floods 41

2.3.5.2.1 The Probabilistic Scheme 41
2.3.5.3 Area-based Floods 42

2.3.5.3.1 The Counter-Based Scheme42
2.3.5.3.2 The Distance-Based Scheme 43
2.3.5.3.3 The Location-Based Scheme : 43

2.3.5.4 Neighbour-Knowledge Floods 44
2.3.5.4.1 Flooding with Self-Pruning 44
2.3.5.4.2 SBA (Scalable Broadcast Algorithm) 44
2.3.5.4.3 MPR (Multipoint Relays) 45
2.3.5.4.4 AHBP (Ad Hoc Broadcast Protocol) 45

2.4 Conclusion 46

3 The Physical Environment 48
3.1 Introduction 48
3.2 The Mobile Handheld Devices 48
3.3 The Selection of the Operating System49
3.4 Linux and its' Networking History 51
3.5 The Linux Networking ModeL 52

3.5.1 The Bit Way Service 54
3.5.1.1 The Back-off Timer 55
3.5.1.2 Virtual Carrier-Sensing : 56
3.5.1.3 Physical Carrier-Sensing 57

3.5.2 The Bearer Service ... 57
3.5.3 The Middleware Service 59
3.5.4 The Application Service ... 60

3.6 The Linux Networking Protocol Stack 60
3.6.1 The Reception of a Packet within the Linux Kernel .. 61
3.6.2 The Transmission of a packet within the Linux Kernel 61

3.7 The Netfilter Framework ... 61
3.8 Conclusion ... 64

4 The Simulated Environment ... 65
4.1 Introduction 65
4.2 The Network Simulator 65
4.3 The History ofNS ... 65
4.4 The Components ofNS 66

4.4.1 The Architecture of the Network Simulator 66
4.4.1.1 The C++ Objects 67

4.4.1.1.1 The Wired Models 67
4.4.1.1.2 The Wireless Models 69

4.4.1.2 The Shadowing Process 72
4.4.2 The Pre-Processing Phase 73
4.4.3 The Post-Processing Phase 74

4.5 Limitations ofNS-2 : 75
4.6 Conclusion -:: 77

VI

5 LAMP - Location Aided Multicasting Protocol 78
5.1 Introduction ·· ··· ··· ··· ················ 78
5.2 The LAMP Protocol ... · ·· .· 80

5.2.1 The Routing and Packet Tables 84
5.2.2 The Multicast Next-hop Forwarding Scheme .. 86
5.2.3 The Location Aided Forwarding Scheme 89
5.2A The Protocol Update Mechanism of LAMP ... 90

5.3 The Simulation Setup 91
5.4 Results and Discussion .. 94

5 A.l Case Study One - Traffic Congestion .. 95
5A.2 Case Study Two - Mobility Effects 98
5A.3 Case Study Three - Combined Trials 104
5AA Case Study Four - LAMP's Unicast Ability 107

5.5 Conclusion 110

6 Implementation Status 111
6.1 Introduction ... 111
6.2 The Interaction of the Developed Modules 111
6.3 The Elementary Routing Tests ~ 115

6.3.1 The Outdoor Tests 116
6.3.2 The Indoor Test 117

6.4 Conclusion 118

7 Conclusion 119
7.1 Dissertation Summery 119
7.2 Future Work 121

7.2.1 Scalability : 121
7.2.2 Congestion 121
7.2.3 Implementation 121

Appendix A - Tracing Through the Linux IP Stack 123
1.1 Reception of a Packet 123

LLI Reception from the NIC to the IP Packet Handler ... 123
LLIT From the IP Packet Handler to the UDP Packet Handler 125
LLm From the UDP Packet Handler to Userland Reception 126
LLIV Blocked Sockets 127

1.11 Transmission of a Packet ... 129
LILI Transmission from Userland to the UDP Packet Handler. 129
LILIT From the UDP Packet handler to the IP Packet Handler 130
LII.III From the IP Packet Handler to the Network Driver ... 131
LIT.IV From the Network Driver to Transmission .. 132

References 134

Vll ·

ABAM

ABR

ACK

AHBP

AMRIS

AMRoute

AODV

API

ARP

ARPA

ARPANET

ASCII

BRG

BSD

CAMP

CBR

CBT

CCA

CGSR

CMOS

CMU

CPU

CSMAlCA

CSMAlCD

CTS

CW

DAG

DARPA

DCF

DNAT

DoD

DREAM

DRP

DSDV

Abbreviations and Acronyms

Associativity-Based Ad hoc Multicast

Associativity-Based Routing

Acknowledgment

Ad Hoc Broadcast Protocol

Ad hoc Multicast Routing protocol utilizing Increasing id-numberS

Ad hoc Multicast Routing

Ad hoc On-demand Distance Vector

Application Programming Interface

Address Resolution Protocol

Advanced Research Project Agency

Advanced Research Projects Agency Network

American Standard Code for Information Interchange

Broadcast Relay Gateway .

Berkeley System Distribution

Core Assisted Mesh Protocol

Constant Bit-Rate

Core Based Tree

Clear Channel Assessment

Clusterhead-Gateway Switch Routing

Complementary Metal Oxide Semiconductor

Carnegie Mellon University

Central Processing Unit

Carrier Sense Multiple Access with Collision Avoidance

Carrier Sense Multiple Access with Collision Detect

Clear To Send

Contention Window

Directed Acyclic Graph

The department of Defences' Advanced Research Project Agency

Distributed Coordination Function

Destination Network Address Translation

Department of Defense

Distance Routing Effect Algorithm for Mobility

Dynamic Routing Protocol

Destination-Sequenced Distance Vector

viii

DSR

DSSS

DVMRP

EAC

FGMP

FHSS

Fm
FIFO

FSP

FSR

FTP

GDI

GE

GG

GPS

GPSR

GSR

GUI

HP

HSR

lANA

ICMP

IEEE

lEFT

IFQ

IGMP

IMP

INET

IP

lSI

ISM

ISO

ISP

JVM

LAMP

LAN

LAR

Dynamic State Routing

Direct Sequence Spread Spectrum

Distance Vector Multicast Routing Protocol

Expected Additional Coverage

Forwarding Group Multicast Protocol

Frequency Hop Spread Spectrum

Forward Information Base

First In First Out

Flooding with Self-Pruning

Fisheye State Routing

File Transfer Protocol

Graphics Device Interface

General Electric

Gabriel Graph

Global Positional System

Greedy Perimeter Stateless Routing

Global State Routing

Graphical User Interface

Hewlett-Packard

Hierarchal State Routing

Internet Assigned Numbers Authority

Internet Control Message Protocol

Institute of Electrical and Electronic Engineers

Internet Engineering Task Force

Interface Queue

Internet Group Management Protocol

Interface Message Processor

Internet

Internet Protocol

Information Science Institute

Industrial, Scientific and Medical

International Organization for Standardization

Internet Service Provider

Java Virtual Machine

Location Aided Multicast Protocol

Local Area Network

Location Aided Routing

IX

LBL

LBM

LCD

LMR

LOTAR

MAC

MANET

MAODV

MFR

MIT

MOSPF

MPR

MRL

MRU

MDSDV

MULTICS

NAM

NAT

NAV

NEST

NIC

NMEA

NRC

NS

ODMRP

ODN

OS

OSI

OSPF

OTcl

PARC

PC

PCMCIA

PCS

PDA

PHYIF

PIM-DM

Ernest Orlando Lawrence Berkeley National Laboratory

Location-Based Multicast

Liquid Crystal Display

Lightweight Mobile Routing

Location Trace Aided Routing

Medium Access Controller

Mobile Ad-hoc Network

Multicast Ad hoc On-demand Distance Vector

Most Forward within transmission Radius

Massachusetts Institute for Technology

Multicast Open Shortest Path First

Multi-Point Relays

Message Retransmission List

Multicast Routing Update

Multicast Destination-Sequenced Distance Vector

Multiplexed Operating and Computing System

Network Animator

Network Address Translation

Network Allocation Vector

NetWork Simulation Test-bed

Network Interface Card

National Marine Electronics Association

National Research Council

Network Simulator

On-Demand Multicast Routing Protocol

Open Data Network

Operating System

Open System Interconnect

Open Shortest Path First

Object-orientated Terminal Command Language

Palo Alto Research Center

Personal Computer

Personal Computer Memory Card International Association

Positional Communication System

Personal Digital Assistants

Physical Interface

Protocol Independent Multicast - Dense Mode

x

PIM-SM

QoS

REAL

RFC

RIP

RISC

RNG

ROM

RP

RPF

RSA

RTOS

RTS

SBA

SDRAM

SMP

SNAT

SPA

SPT

SRI

SRP

SSA

TCP

TFT

TORA

TSA

TTL

UCB

UCLA

UDP

UNICS

USB

USC

VINT

WAN

WRP

ZRP

Protocol Independent Multicast - Sparse Mode

Quality of Service

Realistic And Large

Request For Comment

Routing Information Protocol

Reduced Instruction Set Computer

Relative Neighborhood Graph

Read Only Memory

Rendezvous Point

Reverse Path Forwarding

Route Selection Algorithm

Real-Time Operating System

Request To Send

Scalable Broadcast Algorithm

Synchronous Dynamic Random Access Memory

Symmetric Multi-Processors

Source Network Address Translation

Self-Positioning Algorithm

Shortest-Path Tree

Stanford Research Institute

Static Routing Protocol

Signal Stability-based Adaptive routing

Transmission Control Protocol

Thin Film Transistor

Temporary Ordered Routing Algorithm

Tree Selection Algorithm

Time-To-Live

University of California at Berkeley

University of California Los Angeles

User Datagram Protocol

Uniplexed Information and Computing System

Universal Serial Bus

University of Southern California

Virtual InterNetwork Testbed

Wide Area Network

Wireless Routing Protocol

Zone Routing Protocol

Xl

List of Tables

Table 1: Showing the constituent fields ofa routing table entry in LAMP 84
Table 2: Showing the constituent field of a packet table entry in LAMP 85
Table 3: Showing the constituent fields of the LAMP header. .. 86
Table 4: Showing the packet structure given to the Network Interface Card for transmission ... 88
Table 5: Showing the constituent fields of an acknowledgement packet in LAMP 88
Table 6: Showing the structure of an update entry packet in LAMP .. 91
Table 7: ShoWing the simulation parameters used to evaluate LAMP's performance 92
Table 8: Showing selected trial points that were used to evaluate protocols during case study 3 .

... ~ 94
Table 9: Showing the format of the GPGGA NMEA string [122] 113

Xll

List of Figures .

Figure 1: Showing an ad-hoc network consisting ofthree neighbouring nodes 1
Figure 2: Showing the situation in which nodes 1 & 2 are out of transmission range of each

other but are able to communicate via the common neighbouring node 3 1
Figure 3: Showing a typical tactical radio 3
Figure 4: Showing how an ad-hoc network can form part ofthe military's existing tactical

network ... 3
Figure 5: Showing the GUI features available to a typical mobile host.4
Figure 6: Showing the classification of location based schemes .. 8
Figure 7: Showing the greedy-forwarding protocols described within this sub-section 8
Figure 8: Showing a situation in which the greedy forwarding methodology fails 9
Figure 9: Showing the traversal of a packet using the perimeter forwarding methodology 10
Figure 10: Showing the RNG criteria 10
Figure 11: Showing the GG criteria .. 10
Figure 12: Showing the direction limitedflooding protocols described within this sub-section. 11
Figure 13: Showing how "direction" is determined in DREAM ... 12
Figure 14: Showing the expected and request zones, using the first algorithm ofLAR 12
Figure 15: Showing the classification of topology-based routing schemes 13
Figure 16: Showing the table-driven protocols described within this sub-section 14
Figure 17: Showing how broken links are interpreted in the routing table of the DSDV protocol.

... 15
Figure 18: Showing the hierarchical definitions of CGSR 15
Figure 19: Showing graphically the WRP information that would be stored in the link cost and

distance tables of node 1 (the source node) .. 16
Figure 20: Showing the scope ofFSR, with node 1 as the source node 17
Figure 21: Showing how HSR uses the Clusterhead selection algorithm to form a hierarchical

(physical) partitioning scheme .. 18
Figure 22: Showing the source-initiated prqtocols described within this sub-section 19
Figure 23: Showing the two stage route discovery mechanism of AODV 20
Figure 24: Showing the route discovery mechanism of DSR .. 20
Figure 25: Showing how LMR modifies AODV to bring directivity into its links 21
Figure 26: Showing the DAG established in TORA ... 22
Figure 27: Showing the hybrid topology based protocol described within this sub-section 25
Figure 28: Showing the definitions of intraZones and interZones in ZRP 25
Figure 29: Showing the classification of ad-hoc multicast protocols .. 27
Figure 30: Showing the first scheme ofLBM, in which a Forwarding Zone is explicitly defined .

.... ; 28
Figure 31: Showing the second scheme ofLBM, in which a Forwarding Zone is implicitly

defmed .. 29
Figure 32(a): Showing the topology of the ad-hoc network used to illustrate the broadcast-and-

prune method employed in DVMRP .. 30
Figure 33(a): Showing the initially established source-tree 32
Figure 34(a): Showing the initially established tree .. 34
Figure 35: Showing the concept of tunneling 36
Figure 36(a): Showing a situation in which multicast traffic is being received on a sub-optimal

mesh .. 39
Figure 37: Showing how m=10 nodes can be reached after n=3 re-transmissions 40
Figure 38: Showing the hidden terminal problem, in which nodes 1 and 2 sense the channel to

be free and thus transmit data simultaneously, only to cause a collision to occur at node 3 .
... · .. ·· .. 41

Figure 3?= Sho,:ing how the additional area gained by node 1 (the white region) decreases, as
nelghbourmg nodes re-transmit the broadcast data ~ 42

Xlll

Figure 40: Showing how the distance between two nodes is proportional to the additional area
gained, as indicated by the shaded area of node 243

Figure 41: Showing the iP AQ sub-system48
Figure 42: Showing the features of the 3870 iPAQ PDA from HP [84]. 49
Figure 43: Showing how data flows between two host communication devices, using the seven

layered stack ofthe OSI model developed by ISO 52
Figure 44: Showing the encapsulation process, in which the header and data fields from one

layer form the "data" of the layer below it. 53
Figure 45: Showing how data flows between two host communication devices, using the four

layered stack of the ODN model developed by the NRC. 54
Figure 46: Showing how CW increases, with each unsuccessful retry [102]. 55
Figure 47: Showing the back-off mechanism of two nodes a and b, using the IEEE 802.11(b)

MAC protocol. 56
Figure 48: Showing the virtual carrier-sensing mechanism used for unicasted traffic [102] 57
Figure 49: Showing the virtual carrier-sensing mechanism used for multicasted traffic [102] ... 57
Figure 50: Showing the IP protocol header [38] 58
Figure 51: Showing the difference between a word-limited processor and a non-word-limited

processor : 59
Figure 52: Showing the UDP protocol header [105]. 60
Figure 53: Showing the pseudo (jake) header [105]. 60
Figure 54: Showing the encapsulation process used within the Linux kerneL 60
Figure 55: Showing the position of the five IPv4 netfilter hooks, found within the Linux kernel.

.. 62
Figure 56: Showing the queuing mechanism used by netfilter 63
Figure 57: Showing the NS model used to represent a wired node [115]. 67
Figure 58: Showing the NS model used to represent a wired link [115]. 68
Figure 59: Showing the MobileNode model used to represent a wireless node in NS [115]. 69
Figure 60: Showing the SRNode model used in NS [115]. 70
Figure 61: Showing how a grid can be used to decrease the computational complexity ofNS .. 71
Figure 62:" Showing the object hierarchy used to create a DSDV routing agent in NS 72
Figure 63(a): Showing how node S transmits a packet simultaneously, to three destination nodes

D1, D2 & D3 80
Figure 64(a): Showing the distance and time entries S has for the destination D, in order to

demonstrate the flooding capability of LAMP 82
Figure 65: Showing the packet structure given to the protocol stack from the application layer.

... ... 86
Figure 66: Showing the packet structure developed by the routing daemon 86
Figure 67: Showing the modified packet structure developed by the routing daemon 89
Figure 68: Showing the protocol update packet structure of LAMP ... 90
Figure 69: Showing the faction of application data packets that were successfully delivered

(packet delivery ratio) as a function of the transmission rate ... 95
Figure 70: Showing (a) the maximum and (b) average delay that an application data packet

experienced, when sent over a stationary set of nodes at varying transmission rates 95
Figure 71: Showing (a) the total number of protocol specific (acknowledgement + routing

update) packets sent as a function of the transmission rate and (b) its corresponding size
(in bytes) 96

Figure 72: Showing (a) the total amount of bytes sent in a routed packet (excluding that which
constituted user data) and (b) the resultant sum of the protocol specific and routing
overhead graphs .. 97

Figure 73: Showing the faction of application data packets successfully delivered as a function
of pause time, where a pause time of zero represents constant mobility 98

Figure 74: Showing packet delivery ratio vs. node mobility speed, at a transmission rate of (a)
26.986 packets per second and (b) 40.649 packets per second ... 98

Figure 75: Showing the sensitivity of the delivery ratio to the update interval for (a) MDSDV
and (b) LAMP (at a trans~ssion rate of 40.649 packets per second) -:-...... 99

xiv

Figure 76: Showing the maximum delay vs. node speed of a packet, when sent at a transmission
rate of (a) 26.986 packets per second and (b) 40.649 packets per second 100

Figure 77: Showing the average delay vs. node speed of a packet, when sent at a transmission
rate of (a) 26.986 packets per second and (b) 40.649 packets per second 100

Figure 78: Showing the average packet delay vs. node speed ofMDSDV, for various packet
update intervals (all taken at a transmission rate of 40.649 packets per second) 101

Figure 79: Showing (a) the maximum and (b) average delay that an application data packet
experienced, when transmitted at various update intervals (and a transmission rate of
40.649 packets per second) .. 101

Figure 80: Showing the total number of protocol specific bytes sent as a function node speed,
for a transmission rate of (a) 26.986 packets per second and (b) 40.649 packets per second .
... 102

Figure 81: Showing routing overhead vs. node speed at a transmission rate of (a) 26.986 packets
per second and (b) 40.649 packets per second .. 102

Figure 82: Showing the total induced overhead (in bytes) as a function of node speed, at a
transmission rate of (a) 26.986 packets per second and (b) 40.649 packets per second ... 102

Figure 83: Showing the total overhead of (a) MDSDV and (b) LAMP, at various update
intervals (for a transmission rate of 40.649 packets per second) 103

Figure 84: Showing the contribution that (a) the protocol update and (b) forwarding mechanisms
(ofMDSDV) had on the total induced overhead (for a transmission rate of 40.649 packets
per second) 104

Figure 85: Showing the contribution that (a) the protocol update and (b) forwarding mechanisms
(of LAMP) had on the total induced overhead (fC?r a transmission rate of 40.649 packets
per second) 104

Figure 86: Showing the packet delivery ratio of various multicast algorithms, under varying
trials .. 104

Figure 87: Showing (a) the maximum and (b) average delay that an application data packet
experienced, as the severity of the network environment is increased 105

Figure 88: Showing (a) the total number of protocol specific packets sent as a function of
various network conditions and (b) its corresponding size (in bytes) 106

Figure 89: Showing (a) the total routing overhead induced by each scheme and (b) the resultant
graph when the protocol specific and routing overhead metrics were summed 106

Figure 90: Showing the packet delivery ratio vs. node mobility speed for various unicast
algorithms, at a transmission rate of 40.649 packets per second 107

Figure 91: Showing (a) the maximum and (b) average delay of various unicast algorithms, as the
speed of node was increased from one to eight meters per second 108

Figure 92: Showing (a) the total number of protocol specific packets transmitted as a function of
node mobility and (b) its corresponding size (in bytes), for various unicast protocols 108

Figure 93: Showing (a) the amount of bytes sent in a routed packet and (b) the total overhead
produced by each unicast scheme 109

Figure 94: Showing the shared memory interaction of the GUI application and the LAMP
routing protocol. ... 111

Figure 95: Showing the shared memory interaction of the all three application processes 112
Figure 96: Showing the interaction of all participating modules ~ 114
Figure 97: Showing the components on the voice application .. 115
Figure 98: Showing the position of the isolated node, within the School of Electrical, Electronic

. and Computer Engineering building ... 117
FIgure ~9: Showing three double-linked socket buffer structures, each containing header

pomters to the corresponding data section of the packet. ... 124

xv

Conventions Used

The following conventions were used within this dissertation.

Italics

CAPITAL

FUNCTION

<field>

()

[]

Iitalics indicates a specific definition or connotation. For instance, a group is
defined to be a multicast group, in which a single IP address is used to
represent a particular set of recipients.

Capital letters indicate an abbreviation or a name taken from a particular
reference.

A Courier New font represents a function call within the Linux kernel.

Pointed braces signify a particular field name, from a given table.

Round braces signify additional text or information.

Square braces indicate a specific reference.

XVl

Introduction

1.1 The Characteristics of an Ad-hoc Network
An ad-hoc network is a set of mobile devices! that are able to communicate without the need for

base-stations (or any other pre-deployed infrastructure). As each node is fitted with a packet

radio, ad-hoc systems are able to form active wireless peer-to-peer connections (Figure I) to any

host that falls within their transmission range and hence do not suffer from a single point of

failure.

Node Node

Node

Figure 1: Showing an ad-hoc network consisting of three neighbouring nodes.

But, since packet radios have a limited transmission range, nodes are unable to reach any other

node that is not an immediate neighbour. Therefore, to communicate to nodes outside this range,

a host requires a neighbouring node to forward data on its ' behalf, until the intended host is

reached (as illustrated in Figure 2). This process is known as mUlti-hopping and forms the basis

of ad-hoc routing.

Figure 2: Showing the situation in which nodes 1 & 2 are out of transmission range of each
other, but are able to communicate via the common neighbouring node 3.

In addition, mobile users are free to roam dynamically. Since this permits random time changing

topologies to occur, each peer-to-peer connection is required to be altered "on the fly". Thus, the

multi-hop sequence used by a host needs to be adaptive. However, although neighbouring nodes

may adjust their peer-to-peer connections dynamically, this information needs to be distributed

to all nodes within the network, or else these nodes will "view" the current network topology

differently from others further away. As this will lead to routing errors, protocols for ad-hoc

1 Node that the words "mobile device", "host" and "node" are used interchangeably to mean a wireless
handheld device. - .

1

Chapter 1 Introduction

networks need to employ multi-hop schemes that are both adaptive and distributed [1], so that

each node may act as a router for each of its neighbours, providing a large degree of network

connectivity.

Nevertheless, there are other factors that bear consideration in an ad-hoc network. One of these

is the variable capacity of the wireless links. Although links are specified with a fixed upper

transmission rate, their actual throughput is affected by the number of nodes that surround it.

This is because each neighbouring node is required to share the same channd, which allows the

possibility that a node will receive a transmission from two different neighbours,

simultaneously, causing a packet collision to occur. Thus, to minimize this likelihood,

transmitters delay the initial transmission of a packet for a random amount of time, resulting in

periods where no data is communicated. This results from what is known as the multi-access

problem, and causes wireless links to attain capacities that are significantly lower than their

wired counterparts.

Other factors include energy or power. While wired systems rely on continuous, non-exhaustive

power supplies, wireless systems are generally equipped with batteries for energy consumption.

Therefore, protocols are required to be energy efficient in addition to the other characteristics

mentioned above. Since this causes a multi-variable problem to occur, routing strategies are

non-trivial.

To complicate things further, this dissertation focuses on the problem of sending application

data to many destinations simultaneously. While numerous protocols have been successfully

developed to send data from one source node to one destination, few have managed to send data

to multiple destinations (known as multicasting) efficiently. This arises from the fact the NIC

(Network Interface Card) will only process packets that match its unique MAC (Medium

Access Controller) address or an address known as the MAC broadcast address. Thus, for a

selected set of neighbouring nodes to receive a packet, the underlying MAC protocol would
need to interact with the appropriate routing scheme to determine the required MAC addresses

for each successive hop. As such an interaction has not been implemented in current

commercially available wireless products (at the time of this writing), only two options exist for
a routing protocol developer:

1. Data can be addressed to a single neighbouring node (known as unicasting), or
2. Data can be sent to all nodes that fall within a host's transmission range (known as

broadcasting).

Since both of these strategies do not require the MAC layer to individually address multiple

next-hop destinations, the MAC has no way of determining whether multiple (more than one)

hosts have received a particular transmission correctly. Thus, for multicast and broadcast data
sequences, acknowledgement procedures are ignored by the MAC layer, rendering it unreliable,
unless governed by the underlying routing scheme.

Therefore, the aim of this dissertation is to develop a wireless routing protocol that can send

data to multiple destinations efficiently and yet meet all the above mentioned characteristics of
an ad-hoc network.

2
A channel is a te~ used to ~escribe the propagation of radio waves through the air medium, and
hence may be subjected to fading, noise and multi-u,ser interference. . - ..

2

Chapter 1 Introduction

1.2 The Positional Communication System (PCS)

Before presenting details of existing ad-hoc protocols, mention should be made of its '

application. The idea behind this project is to use mobile devices for ground cover personnel, so

that each is equipped with the latest audio and visual information of members within their cell.

To this end, sixteen wireless nodes were coupled together over an ad-hoc network, of which one

node was fitted with a tactical radio (such as illustrated in Figure 3).

Figure 3: Showing a typical tactical radio.

The tactical radio contains a long-range (low frequency) transmitter that allows data to be

received through the military's existing radio network. This permits multiple ad-hoc cells to be

connected together, allowing infantry to be closely monitored and coordinated from distant

command stations, in order to achieve maximum effectiveness. Note that this dissertation is

concerned with the communication aspects of the ad-hoc network only (i.e. the mobile devices

contained within the dashed ring of Figure 4).
-":;';d~" - - - - - - ,;; - -_

,,';: .,,~~-.. ~F .. Ad-hoc ~""""
, Network 0 '" I. ~ 7 \

,.- VHF
Radio Access ' . Ad·hoc A"'"'-~-~-_Q~~g~--~'

Nodes 0-3 Network 0
PSTN, E1fT1 ' 'D'S] HF ~ ~ 0 0 0 .

ATM "'....oj~ NTe3twClioCalrk ' ~.......,." VH~ Ethernet X,25, etc.

Ethernet

Access
Hub

S'----T---'
Local PC Local Laptop '"

Om Terminal Data TemUnal ~. ___

gJl
Local PC Locoi Laptop

Dab Terminal Daln Terminal

Tactical
Network
Access

Hub

Ethernet

Figure 4: Showing how an ad-hoc network can form part of the military's existing tactical
network.

This system became known as the Positional Communication System (PCS), since each node in
the ad-hoc network was able to view location information of all users within the network. This

was accomplished through the use of GPS (Global Positional System) units, which were serially

connected to each mobile device via the NMEA (National Marine Electronics Association)

standard. Once the location of a user is known, this information is passed to both neighbouring

nodes and a GUI (Graphical User Interface). This way, a host is able to view their location
relative to others, allowing a "radar" like vision of all surroundi~g . nodes (as depictectin Figure

3

Chapter 1 Introduction

5, below). In addition, the GUI was fitted with waypoint placement facilities, which permitted

missions to be easily coordinated, updated and illustrated, as required.

tl5m

100m c-o Ztll$

+1t----::==_ Concentric circles give distance
snm from centre of screen .---

<:>4-------ll--- Current user position
ICl'i<lt

The names and relative L--------J"®
positions of two hosts within

_.
the current cell

Zoom bar ------.,

Figure 5: Showing the GUI features available to a typical mobile host.

1.3 Other Applications for Ad-hoc Networks

In addition to military uses, ad-hoc networks may be used for the following:

• Search and rescue missions - where existing wireless infrastructures are disabled,
destroyed or have not been deployed yet. An example of this is in cellular systems.

Because cell phones rely on base-stations, they become disconnected (and hence

inoperable) when these structures fail due to power blackouts or physical damage (or the

remote nature of the location). Hence, in such situations where time is critical, ad-hoc

networks offer a suitable communication alternative, which can be established with a

minimal amount of supporting infrastructure.

• Sensor networks - which scatter a large number of nodes throughout a particular
environment for the purpose of gathering information such a pressure, temperature, wind

bearing, etc. Since ad-hoc networks allow such systems to be deployed quickly and easily,

a great deal of research activity is being conducted to make wireless communication
protocols both scalable and energy efficIent.

• Rooftop networks - where small radios are being coupled to residential houses, for the
purposes of providing Internet services to household PC's. However, for more information
in this regard, see [2] .

•

•

Vehicular networks - which attach ad-hoc systems to motor vehicles in order to produce
applications such as traffic congestion monitoring, inter-vehicle chat and police radar
detection [3].

Private networks - where people may temporarily gather in order to share data via laptop

or other wearable devices. Examples of this include seminars, conferences, lectures,
tutorials or any other situation in which information is required to be temporarily
distributed to a group of people.

4

Chapter 1 Introduction

1.4 Contributions

In this dissertation, a novel wireless routing protocol is developed that is able to send data to

multiple ad-hoc hosts simultaneously. Previous schemes make use of multicast groups (defined

in Chapter 2), which prevent a source from sending data to a particular set of nodes directly.

Although this is an advantage in wired architectures (such as the Internet), it is undesirable in

sparse wireless networks where the cost of maintaining spanning trees becomes intolerable.

This is especially true for handheld devices that contain limited memory, battery and processing

power. Thus, instead of maintaining spanning trees explicitly, a solution was proposed that

made use of an underlying unicast protocol to identify all next-hop hosts for a particular packet.

This way, the cost of maintaining the spanning tree was lowered to that of the unicast protocol,

allowing both (unicast and multicast) schemes to be based on a common algorithm. Sinc~

embedded operating systems are becoming more attractive alternatives to dedicated hardware,

code commonality is desirable for efficiency.

However, due to the presence of mobility, links through multiple next-hop routers may become

temporarily broken (until the unicast protocol is able to refresh each established link). During

this period, a localized flood is employed to forward data to all surrounding hosts, in order to

find an alternate route around the broken destination path. Results have shown that routing data

in this manner causes a greater percentage of packets to be delivered to their intended

destination than compared to existing spanning tree and blind-flooding methodologies.

In addition, this dissertation gives a detailed explanation of the calls that are involved to send

(and receive) packets using the Linux 2.4.18 kernel. Previously, documentation only dealt with

the 2.0.34 operating system [4]. While there are many websites that provide information with

regard to the changes since version 2.0.34, these are geared mainly to one aspect of the kernel

and thus were very limited in their descriptions (often leading to many gaps, which could only

be resolved through extensive kernel code deciphering). Since such an overview proved

valuable to implementation of the proposed algorithm, it is expected that this information will

be placed in the public domain, so other research groups may benefit from this endeavor.

However, giving core details of kernel code is not the function of this dissertation and therefore
it has been placed in Appendix A, for reference purposes only.

1.5 Dissertation Outline

Chapter 2 begins this dissertation by providing a survey of the literature that is available for
wireless ad-hoc routing. Here currently published protocols are briefly discussed, with the aim

of giving the reader a "feel" for the type of solutions that have been . developed prior to this

writing. To this end, both unicast and multicast protocols are explored separately, with each
offering tradeoffs to the multi-variable ad-hoc problem. Thus, in essence, this chapter provides

all the foundational work, from which the newly proposed algorithm (detailed in Chapter 5) was
built.

Chapter 3 details the physical devices and its' operating system, since this knowledge is crucial
to the implementation of the protocol developed in Chapter 5. Chapter 3 starts by defining the

layers that reside both above and below that of the routing code, followed by an explanation of

how these layers are used to send (and receive) packets over the operating systems'

infr~structure. Once this has been established, this chapter ends by showing how packets may be

manlpulated, so that the newly proposed protocol can be incorporated into the existing OS
framework.

5

Chapter 1 Introduction

Chapter 4 describes the artificial simulation environment. Although it is the physical

environment that matters, simulation provides a platform on which ideas may be constructed,

evaluated and compared. Thus, it is here where the academic processes to formulate new routing

schemes occur. ·Hence, this chapter aims to give an overview of one such environment, mown

as NS-2 (Network Simulator - version 2), which was employed throughout Chapter 5. Here, NS-

2's models, languages and limitations are discussed, giving the reader a full understanding of

the assumptions and conditions that was adopted to compare various routing schemes together.

Chapter 5 depicts the details of the newly proposed protocol, mown as LAMP (Location Aided

Multicast Protocol). This chapter forms the core of this dissertation and thus is used to motivate,

evaluate and illustrate all aspects of LAMP's inception. In this regard, four case studies are

undertaken to compare LAMP's multicast and unicast capabilities against other leading

schemes. Thus, from these results one is able to observe both the advantages and disadvantages

of LAMP, and hence evaluate its suitability to the PCS.

Chapter 6 provides an implementation status of LAMP. In this regard, the interactions of the

developed modules are described; followed by details of each validation test performed.

Finally, Chapter 7 concludes by highlighting the main aspects of each proceeding chapter, after

which directions are given towards future work.

6

A Survey of Routing Protocols for Ad-hocN etworks

2.1 Introduction

Routing is the process of detennining a communication path for a data packet from a source

node to a destination node. This may be done either explicitly or implicitly, depending on the

scheme employed. In addition, data may not always be intended for a single destination, but

rather multiple destinations. Hence, the field of routing has been subdivided into two main

protocol methodologies:

1. Unicast - where data is forwarded to single source-destination pairs, and
2. Multicast - where data is delivered to multiple destinations.

This chapter explores both, but primarily focuses on those schemes that have been specifically

developed to deal with the problems that occur in wireless ad-hoc communication

environments. Note that the protocols presented herein were selected from those methodologies

that were commonly found amongst the literature surveyed and hence represent the basis of all

known schemes. Thus, it was from this foundation that the construction of the novel protocol of

Chapter 5 could take place.

2.2 Unicast Protocols

Unicast routing provides a means for data to be transmitted from a source node to a single

destination. On traditional wired jnterfaces, this has been achieved through the use of distance

vector and link-state algorithms, such as Bellman-Ford [5, 6] and Dijkstra [6]. However, these

protocols were developed in an environment that is conceptually different to that of ad-hoc

networks, where topology changes occur often and resources are limited. Studies [5 , 7] have

shown that traditional wired protocols produce a considerable amount of overhead during

protocol update messaging and are unable to converge to a route rapidly during link changes,
motivating the need for more efficient routing approaches.

Literature[5, 8-10] on ad-hoc routing schemes have separated these approaches into two distinct

categories, namely those that are location based and those are topology based. Section 2.2.1

details location based protocols, while section 2.2.2 looks at topology based schemes.

2.2.1 Location Based Protocols

Location based protocols make use of positional information to aid routing decisions. This
information may be obtained from ' GPS [11], SPA (Self-Positioning Algorithm) [12] ,

triangulation or proximity methods [13]. However, in addition to acquiring ones' position, a
technique is needed to periodically distribute this information to neighbouring nodes. This

process is known as a location service and may vary, depending on the amount of nodes

selected to store this positional information and the amount of nodes to which they each store
[10]. For instance:

•
•

•
•

Some nodes may be used to maintain positional information of only a few other nodes [14],
Some nodes may be used to maintain positional information of all other nodes (not
employed),

All nodes may be used to maintain positional information of only a few other nodes [15] ,
All nodes may be used to maintain positional information of all other nodes [16] . _.

7

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

The choice of service depends on the amount of overhead that can be tolerated and the speed

(and accuracy) at which this information can be obtained. For instance, the first and third

categories save storage overhead, since the position of only a few nodes are maintained.

However, when a packet is intended for a node that does not form part of this maintained group,

an additional scheme is required to retrieve location information for this unknown host, often

resulting in larger transmission overheads and even packet delays. On the other hand, the last

category maintains the position of all nodes, resulting in a larger initial overhead. But, since the

position of all nodes is known, no additional scheme is required, causing a saving in

transmission overhead and delay.

Nevertheless, once a location service has been established, routing is performed purely from the

position of the required destination and location of forwarding neighbours. Since this negates

the need for lirik management procedures (as found in topology based schemes), routing tables

are not required, making these protocol semi-stateless. Furthermore, location based schemes

have the natural ability to forward packets all nodes located within a certain geographical area,
known as geocasting (see section 2.3.1.2).

In this dissertation, two main types of location based protocols are discussed. These schemes

differ in the way in which packets are forwarded and are classified as either greedy forwarding

or direction limitedflooding methodologies, as indicated in Figure 6.

Location Based
Protocols

Greedy Direction Limited
Forwarding Flooding

Figure 6: Showing the classification of location basedschemes.

2.2.1.1 Greedy Forwarding Protocols

Greedy forwarding protocols send data to the neighbouring node that is the closest to the

destination, with respect its location. Thus, greedy protocols conceptually forward data over the

shortest hop path, without the need for routing tables. However, as will be shown, greedy
forwarding techniques do not always ensure a path will be found to the destination node even . ,
when such a path exists. A comparative study of these schemes may be found in [10].

The greedy forwarding protocols discussed in this section are depicted in Figure 7.

J Greedy Forwarding ~
MFR GPSR

(Most Forward within transmission Radius) (Greedy Perimeter Stateless Routing)

Figure 7: Showing the greedy-forwarding protocols described within this sub-section.

8

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

2.2.1.1.1 MFR (Most Forward within transmission Radius)

MFR, described in [17], is a near stateless protocol, since data is routed on a per-packet basis,

through the use of next-hop locations only.

The MFR protocol assumes that each node is aware of the locations of all nodes that are within

its ' transmission range and the location of the intended destination, which will be gathered by

some location service. Routing is then preformed in a greedy fashion, in which a packet is

forwarded to the closest neighbouring node (to the destination), after each successive hop.

However, this strategy fails when a local maximum is experienced, in which all neighbouring

nodes are deemed further (to the destination) than the transmitting node. An example of this is

depicted in Figure 8, in which the bottom two nodes are deemed further from the destination

(with respect to the local maximum node); causing the packet to be dropped when in fact a

solution to the destination node should have been found .

..
I
I
I
\
\
\
\
\
\

\
\

\
\ .. , ;

('
I "'-'""--';; __ -J

\

Legend:

o Node with Local Maximum
6. Destination Node
o Intennediate Nodes

Links
Transmission Ranges
The distance from Local
Maxima to the Destination
Node

Figure 8: Showing a situation in which the greedy forwarding methodology fails.

To limit this problem, MFR modifies its algorithm to allow the least backward node to be

selected, if no forward nodes exist, causing the next closest node to the destination (other than

itself) to route the packet. However, this may result in routing loops being formed [10], in

addition to local maxima. Nevertheless, compared to the previous strategy, the modification

does allow further solutions to be found, one of which being Figure 8.

Other similar forwarding schemes have been proposed [18-20], but since all these schemes

transmit a packet in the forward direction, with respect to the destination's position, they all
suffer from the same local maximum dilemma.

2.2.1.1.2 GPSR (Greedy Perimeter Stateless Routing)

Like MFR, GPSR [21] is also a stateless routing protocol that forwards packets in a greedy

manner. However, unlike MFR, GPSR reverts to perimeter forwarding when packets experience

local maxima, returning to the greedy forwarding strategy once the packet is received by a node
which is deemed closer to the destination, with respect to the node that previously contained the
local maximum.

The perimeter forwarding strategy makes use of the right-hand rule to route packets around

local maxima, and works as follows: A packet is sent along the next link that is found to be

counter-clockwise about the transmitting node, with respect to the link pierced by the line

formed between the local maximum node and the destination. An illustration of this is given in

Figure 9. Here the packet is sent along link e, since it is the first counter-clockwise link (from

the pierced link c), when viewe~ from node 3. Similarly, the packet is forwarded along links i
. .

9

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

and}, when viewed from nodes 4 and 6, respectively. However, before the right-hand rule can

be applied, the packet is required to be sent along the first counter-clockwise link (link b), with

respect to the direction formed by the local maximum node and the destination.

Legend:

6 Destination Node
o Node with Local Maximwn
o Intermediate Nodes
- Links
... Link on which the Packet is

Forwarded

Figure 9: Showing the traversal of a packet using the perimeter forwarding methodology.

Nevertheless, for the right-hand rule to function correctly, no links are allowed to cross each

other within the region under consideration [21]. But, since ad-hoc network configurations

generally do contain intersecting links, heuristics are required to overcome these obstructions.

Two such heuristics are the RNG (Relative Neighborhood Graph) [22] and GG (Gabriel Graph)

[23] algorithms. The GPSR protocol may make use of either algorithm, although the RNG is

preferred, since less intersecting links are produced. However, both algorithms require

additional criteria to ensure that the resultant graph is not partitioned in any way.

Figure 10: Showing the RNG criteria. Figure 11: Showing the GG criteria.

The RNG formula works as follows: A link only exists between two nodes A and B, if no other

nodes are found within the region formed by the intersection of two circles with radii equal to
the distance between A and B (the gray region of Figure 10).

It has been shown from literature [22] that the RNG algorithm is a sub-set of the GG algorithm
and thus is less strict in its approach. It works as follows: A link only exists between to nodes A

and B, if no other nodes are found within the region formed by a circle with a diameter equal to
the distance between A and B (the gray region of Figure 11).

In static topologies, GPSR has been shown [21] to achieve 100% packet delivery success, when

a path to the destination exists. However, since an up-to-date location service cannot be

accomplished when random node movement is present, uncertainties in the position of

neighbouring nodes cause GPSR to achieve a packet delivery success rate of over 97%.

10

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

2.2.1.2 Direction Limited Flooding Protocols

As its name implies, direction limited flooding protocols . flood data to destination nodes.

However, these schemes try to reduce the amount of overhead produced by restricting the

number of forwarding nodes, where the restriction criterion is based on the direction of

neighbours. A comparative study of these schemes may be found in [24].

The direction limitedflooding protocols discussed in this section are indicated in Figure 12.

I Direction Limited Flooding 11
- -

I
DREAM I LAR II

(Distance Routing. Effect Algorithm for Mobility) (Location Aided Routing) II
Figure 12: Showing the direction limited flooding protocols described within this sub-section.

2.2.1.2.1 DREAM (Distance Routing Effect Algorithm for Mobility)

DREAM, given in [16], portrays a protocol that can be used when the mobility rate of nodes is

high, rendering topology-based schemes inappropriate.

The DREAM protocol explicitly defines the way its' location service should be implemented. It

uses a novel technique, which regularly floods location updates according to both the mobility

rate of a node and what is termed the distance effect.

The distance effect is described in [16] as follows: "The greater the distance separating two

nodes, the slower they appear to be moving with respect to each other" . Thus nodes further

away, require location updates less frequently than closer nodes. This is known as the location

service's spatial resolution. The same effect was noted in FSR (described later in section
2.2.2.1.5).

However, the temporal resolution of the location service can also be adjusted. This becomes

apparent when one considers the mobility rate of nodes. The faster a node moves, the more

frequent the node is required to transmit its position. Since this frequency is coupled to the

nodes' periodic update interval, the faster a node moves, the shorter it sets its' location update

period. Thus, positional information is only conveyed when needed, reSUlting in better use of
the location service.

DREAM's packet forwarding strategy works as follows: When a node (A) wishes to send data
(D) to a particular destination node (B), it will acquire the position of B (through the location

service described previously) and forward the packet to all neighbouring nodes that are deemed

to be in the direction of B. Since the position of nodes is not accurate, this direction is
determined by drawing two tangential lines from node A to the circle formed by what is termed

the expected zone (described below). An illustration of this is given in Figure 13. Ifno nodes are

found within the required direction, a recovery procedure has to be initiated. However, the

details of this mechanism are not described within the DREAM protocol specification. Once

neighbouring nodes receive D, they re-transmit it to other neighbouring nodes (deemed to be
within the direction of B), until D is received by B.

The expected zone is the region within which the destination node is expected to be contained,

given certain additional information, such as its' average speed, its' bearmg and the time since

the location of the destination node was last known. Thus, generally, this zone i-s a circle

11

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

centered at the destination (see Figure 13), with a radius equal to the time elapsed since the last

update multiplied by the destinations ' average speed.

Expected Zone

Figure 13: Showing how "direction" is determined in DREAM.

DREAM results in a packet delivery ratio of 80% and above, depending on the amount · of

congestion present [16]. Since DREAM is also classified as a flooding technique, it offers 25%-

250% less routing latencies compared to reactive protocols, such as AODV and DSR (detailed

in section 2.2.2.2).

2.2.1.2.2 LAR (Location Aided Routing)

LAR, explained in [25], provides a way of limiting the search area when seeking a route from

source to destination. Instead of flooding the whole network for a possible route, the source

sends a route request to its neighbours, which is only forwarded if its' neighbour is positioned in

what is termed a request zone.

Request zones are zones that include areas over-and-above the destinations' expected zone. One

would think that the expected zone and the requested zone would be the same, but due to

uncertainties and the likelihood that there may be no nodes contained within the expected zone
(including the source node), the request zone is usually made larger than the expected zone. This
is shown in Figure 14.

'I
I Expected

ZQne

Legend:
o Nodes not involved in the routing

• Source node

.. Destination node

) Intermediate node

Figure 14: Showing the expectedand request zones, using the first algorithm of LAR.

LAR proposes two different algorithms to determine the request zone. The first of these is the

smallest rectangle that encloses both the source node and the expected zone (as depicted in

Figure 14), while the second does not rely on geometry, but uses the following scheme: A node

12

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

receiving data from its neighbour only forwards the packet if its' location is deemed closer (or

equal) to the destination than the previous node, or else the packet is dropped.

However, both, these algorithms contain undesirable properties. The first algorithm suffers from

the fact that there is no guarantee that a path will be found, which consists solely of the nodes

that are contained within the defined rectangle [25]. This means that if a path is not found within

a specified time interval, the source node will be required to issue a new route request that

contains an expanded request zone, until a path is found (assuming that the destination node is

not partitioned from the network in some way). This of course leads to larger routing latencies

and message overhead.

The same problem exists for the second algorithm, since the nodes closer to the destination may

not always be the nodes that contain a route to that destination (see Figure 8). However, this can

be resolved if one keeps track of both time and distance metrics, so that a node can also forward

data if it has a better global time to the destination, since this is similar to saying that a node

must route data along the shortest hop path [26] .

2.2.2 Topology based Protocols
Topology based protocols make use of link information to transfer data. This category can be

divided further into table-driven (proactive), source-initiated (reactive) and hybrid schemes. A

diagram showing this division is given in Figure 15, below.

Topology Based Protocols

Table-driven Hybrid Source-initiated

Figure 15: Showing the classification of !Op%gy-basedrouting schemes.

2.2.2.1 Table-Driven (Proactive) Routing Protocols

Table-driven protocols are protocols that require a node to maintain up-to-date routing

knowledge (tables), concerning the link status of other nodes within the network. This causes

table-driven protocols to contain very little delay with regards to route searches, since next-hop

information is readily available from within the nodes' locally established routing table.

However, in order to establish up-to-date tables, periodic update messaging is required. Since

the speed of the node usually corresponds to the rate that this information is required to be

maintained, the period update interval may need to be altered inversely proportional to speed

(such as done in DREAM) or as soon as a link failure is detected (or both). Hence, proactive
schemes suffer from large overheads, which result from continual protocol updates, causing
scarce resources, such as channel bandwidth and battery power to consumed. The proactive
routing protocols discussed in this section are indicated in Figure 16.

13

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Table-driven

WRP HSR

CGSR 1 FSR

DSD V (Destination-Sequenced Distance-Vector)
CGSR (Clusterhead-Gateway Switch Routing)
WRP (Wireless Routing Protocol)

GSR (Global State Routing)
FSR (Fisheye State Routing)
HSR (Hierarchal State Routing)

Figure 16: Showing the table-driven protocols described within this sub-section.

2.2.2.1.1 DSDV (Destination-Sequenced Distance-Vector)

The DSDV protocol described in [27] is a modified version the distributed Bellman-Ford

Algorithm [5, 6] that was used successfully in many dynamic packet switched networks [9].

The Bellman-Ford method provided a means of calculating the shortest paths from any source to

any destination pair, given that the metrics (distance-vectors) to each link are known. However,

it is subject to routing loops [5 , 8]. Routing loops are a phenomenon associated with networks

whereby packets are forwarded in a circular motion throughout the network, without ever

reaching the destination, due to insufficient routing information being provided to nodes when

links fail. DSDV overcame this problem by including destination-sequenced numbers.

In DSDV, each node is required to transmit a local sequence number, which is periodically

increased by two and transmitted along with any other routing update messaging to all

neighbouring nodes. On reception of these update messages, the neighbouring nodes use the

following algorithm to determine whether to ignore the update or whether to make the necessary
changes to its routing table:

If the sequence number of the received update message entry is greater than that currently present
within that nodes' locally established routing table,

Then replace that routing table entry with the received update entry,

Else
If

Then
Else

the sequence numbers match, but the update message entry contains a lower (better) metric
(hop count) than that found within the routing table,
replace that routing table entry with the received update entry,
ignore this update entry.

Move to the next entry within the update message, until all entries have been examined.

If the algorithm above results in any change to the routing table of a node, then these changes

are considered to be update message entries relevant for neighbouring nodes and therefore will

be transmitted on the nodes next periodic update interval, resulting in a propagation of the
routing information throughout the network.

14

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Routing Table of node 7:
Routing Table of node 4:

Dest. Node Next hop # of hops Seq. #

1 5 2 12
2 6 2 36

Dest. Node Next hop # of hops Seq.#!

1 . 3 00 11 !
2 3 00

37 I
3 3 00 57 ,

3 5 2 56
4 4 0 28

4 3 00 27 I 5 3 00 83
5 5 1 82 6 3 00 53 i
6 6 1 52 7 7 0 44
7 5 00 45

Figure 17: Showing how broken links are interpreted in the routing table of the DSDV protocol.

However, if any node detects a link failure while trying to send data to a particular destination,

then that node is required to increase the sequence number of that destination by one and

immediately transmit this information to neighbouring nodes (known as a triggered update).

Since the destination is required to send even numbered sequence numbers (due to increasing

its' sequence number by two each time), odd numbered sequence numbers are interpreted as

being unattainable destinations. This is clearly shown in the last two columns of node 7's

routing table, given in Figure 17, where infinitely symbols are used to indicate broken links.

Since destination nodes are ·able to increase their sequence number by two, broken links are

quickly superseded by the partiCUlar destination concerned, resulting in consistent routing tables

throughout the network.

2.2.2.1.2 CGSR (Clusterhead-Gateway Switch Routing)

CGSR [28] uses a hierarchical routing scheme [29] that closely models the concepts of the
existing Internet infrastructure.

Hierarchical techniques require the use of a cluster head selection algorithm [30-33] to nominate

clusterheads, through which all data of that cluster is routed. Once the clusterheads have been

nominated, gateway nodes are then selected on the basis that they join two clusterheads
together, as shown in Figure 18.

Legend:
An internal node

..... A Clusterhead node
- A Gateway node

Figure 18: Showing the hierarchical definitions of CGSR.

Since the clusterhead selection process results in additional overhead [34], it is only instigated
when absolutely necessary. In CGSR, this occurs when a node moves out of range of any of the
currently selected clusterheads or when two clusterheads become neighbours. Once the node

hierarchy has been established, packets may be routed according to an underlying unicasting

scheme, which is modified in some way to send data via clusterheads and gateways instead of

t~ough other next-hop neighbours. This results in the underlying protocol becoming scalable,

SInce less state information is required to be stored at each node. To this end, DSDV is
employed as CGSR's underlying routing scheme.

15

Chapter 2 A Survey of Routing Protocols for Au-hoc Networks

2.2.2.1.3 WRP (Wireless Routing Protocol)

WRP, developed in [35], is a modified version of the Dijkstra Algorithm described in [6],

except that it makes use of four tables to route the data with loop freedom [8] , resulting in large

memory consumptions.

The first of these is a link cost table that keeps track of the metrics (cost) of each established

link, where a metric may give an indication of the delay, hop-distance or congestion (or some

complex combination) of the link from one node to another. This table is then used to calculate

the cheapest cost to each node, forming a distance table. The combination of these two tables

allows a spanning tree of the network to be produced (shown in Figure 19), from which a

routing table can be constructed. Thus, WRP uses its link cost and distance tables to establish a

full topological map of the network, before establishing a routing path, allowing multiple paths

to a destination to be remembered. This is conceptually different from DSDV, where the routing

table is established without knowledge of the topology of the network, allowing single next-hop

routes to be known only.

Source
Node 0

Legend:
- Link costs
..".. Shortest link cost from

source node to any other
node in the network

Figure 19: Showing graphically the WRP information that would be stored in the link costand
distance tables of node 1 (the source node).

In addition to using the three tables mentioned above, WRP makes use of message

retransmission list (MRL) to determine which update messages should be retransmitted and

which neighbouring nodes should acknowledge the retransmission. Depending on the outcome

of the MRL, link costs can be altered, allowing the distance and routing tables to be maintained.

In WRP, nodes learn about the existence of neighbouring links by listening in on transmissions.

Hence, any node not involved in the transmission of data is expected to send out hello packets to
ensure connectivity.

2.2.2.1.4 GSR (Global State Routing)

GSR [29, 36] is similar to WRP, in that is maintains a full topological map of the network at

each node, using a link-state routing algorithm. The main difference between the traditional
link-state routing algorithms and GSR is that instead of flooding the whole network with

topology information when the topology changes, GSR makes use of periodic sequence­

numbered updates (similar to DSDV) to keep its link-state tables up-to-date. Like WRP, once

the link-state tables are updated, shortest paths can be calculated to all destinations and routing
tables constructed.

The main disadvantages of GSR are that the periodic updates cause large latencies in
establishing correct routing tables, due to the propagation period of the update messages

throughout the network, and that these periodic updates result in large bandwidth consumption
[29]. '

16

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

2.2.2.1.5 FSR (Fisheye State Routing)

FSR, described in [29], originates from a graphical technique known as Fisheye [37], whereby

high pixel detail levels are captured about certain focal points, but which decrease as the

distance from the focal point increases. In much the same manner, FSR performs routing, except

that instead of pixel detail levels decreasing with increased distance, accurate maintenance of

routing information is used instead, with central nodes replacing focal points. Thus, packets that

are being transmitted to a particular destination receive more accurate information about where

the destination is, as the packets progresses closer and closer to the final destination.

,
i
!

(j)
\
\

\ ,
\

I Legend:

xtf Nodes zero hops away

Nodes one hop away

[0 Nodes two hops away

Figure 20: Showing the scope of FSR, with node 1 as the source node

This technique, shown in Figure 20 above, is achieved by varying the update messaging periods

of a particular node according to the number of hops the other nodes of the network are away

from it. For example, neighbouring nodes are informed of changes more often than nodes

further away. Hence, more bandwidth can be utilized for the routing of actual useful data

instead of being consumed by routing updates, since FSR uses GSR as it underlying routing

protocol.

2.2.2.1.6 HSR (Hierarchal State Routing)

HSR, also described in [29], is based largely on the concepts of IP [38] and was developed to

overcome some of the drawbacks of CGSR, since CGSR uses physical partitioning (partitioning

based on location or position) only, while HSR uses both physical and logical partitioning

(partitioning based on certain properties, for example members of the same company, family or
cell).

HSR uses hierarchical link states, as opposed to distance vectors, to route data and hence

address a node from the upper most level to the bottom most level, where each level is

determined through an iterative use of one of the cluster head selection algorithms of CGSR.

This process is shown in Figure 21, over the page. Note that selected cluster heads of the

previous iteration are used for tb,e next level of abstraction, until only one cluster head (the
upper most level) remains.

17

Chapter 2

Level 2

Level I

Level 0 .

A Survey of Routing Protocols for Ad-hoc Networks

\
\
\

) I Legend:

I
An internal node

! - A Clusterhead node
! I ! - A virtual node

A Gateway node

) A cluster

Figure 21: Showing how HSR uses the Clusterhead selection algorithm to form a hierarchical
(physical) partitioning scheme.

The beauty of HSR is, however, not in its hierarchical (physical) partitioning scheme, but rather

in its adoption of a logical partitioning scheme. This is achieved by placing nodes into logical

groups, within which a leader is selected, known as the horne agent. The duty of horne agents is

to maintain their group and to report its group (subnet) address to the upper most level. Nodes

not chosen as horne agents are then required to periodically give the horne agent their

hierarchical address, which is determined through the physical partitioning scheme described

previously.

Hence, a node wishing to communicate with another node, need only mow that nodes logical

address. Once it has obtained this address, it simply applies the groups' subnet (obtained from

the upper most level) and forwards the packet to the obtained horne agent. The horne agent then

re-routes this packet to the desired node, through its hierarchical link-state table. Once the

source and destination nodes have learnt the hierarchical addresses of one another, they are able

to send the required packets directly, by-passing the horne agent.

2.2.2.2 Source-Initiated (Reactive) Routing Protocols

Source-initiated protocols were devised to limit the amount of neighbouring information stored

at each node. This was achieved through the use of routes, as apposed to next-hop tables. A

route (or path) to a destination requires significantly less data storage than up-to-date next-hop

tables, since knowledge of next-hop neighbours are only needed when they supply a route.

Thus, once a route is no longer required, knowledge of this neighbour may "be erased, unless the

18

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

neighbouring node is currently supplying another route. Hence, an optimal use of memory is

employed, which allows reactive schemes to be used in large networks.

However, in order to establish a route not currently in progress, a route discovery mechanism is

required. This requires the source node to flood route requests to all network nodes, until the

destination replies with a routing path. During this process, routers monitor the request/reply

exchange, allowing them to learn about a route for the required transmission. Since the

exchange mechanism requires finite time, source-initiated algorithms generally suffer from

larger network delays compared to proactive schemes. However, since there is no maintenance

of nodes not involved in routing, reactive schemes allow nodes to sleep, reducing both the

overhead and the amount of power consumed.

The reactive routing protocols discussed in this section are indicated in Figure 22.

Source-initiated

AODV DSR LOTAR

AODV (Ad-hoc On-demand Distance-Vector) ABR (Associativity-Based Routing)
DSR (Dynamic Source Routing) SSA (Signal Stability-based Adaptive routing)
LMR (Lightweight Mobile Routing) LOTAR (Location Trace Aided Routing)
TORA (Temporary Ordered Routing Algorithm)

Figure 22: Showing the source-initiated protocols described within this sub-section.

2.2.2.2.1 AODV (Ad-hoc On-demand Distance-Vector)

AODV, explained in [39], builds on the DSDV algorithm [8] to make it connection (circuit)

orientated and hence requires the establishment of a path from source to destination, before any
routing can take place.

AODV establishes a path using a two-stage process. The first stage involves the establishment

of a reverse path, whereby the source node, wishing to send data to a particular destination,

broadcasts a route request to each of its immediate neighbours. These nodes receive the request

and make a note of the predecessor node, before re-broadcasting the request on to their
neighbours. This process continues, until the destination node receives the request, initiating the

second stage of the path discovery. Since each node along the path from source to destination
has recorded which node sent it the request, a path from the destination node to the source can

be established. The task of the destination node is to simply reply along this path (usually from

the first request it receives), so th;tt each node can reverse the direction of the established path,
causing a forward path to be constructed from source to destination. Any node that does not

receive the reply after a certain amount of time may assume it is not involved in the transfer and

thus may discard the path. Since no reply was received from the destination, nodes 2, 3 & 5
discard the path in Figure 23.

19

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Source
Node

Legend:
Set the "next hop" to

... that of the predecessor
node only

7 Destination
Node

Source
Node

Figure 23: Showing the two stage route discovery mechanism of AODV

Destination
Node

When a path becomes invalid, due to movement of nodes, the node that detected the broken link

is required to inform the source, which simply erases the old path and searches for a new one.

This process is known as route maintenance.

2.2.2.2.2 DSR (Dynamic Source Routing)

DSR, given in [40], is similar to AODV, except that it makes use of route caches that hold

knowledge of all predecessor nodes, as opposed to AODV, which only keeps track of the

previous hop. This is shown in Figure 24, below.

Source
Node

' '2) 1-2

~~ 1-;;(5) ,"1-3-5
<:: 1 .,: '- .' '<,

(1 ~f 3 J/ 'J) Destination
,,~ :,..;' 1-4-6 \; 7 J' Node

'~"' 1-4 ~/ .
\ 4). .. ~ ,, --(
",..# ' - , 6)

" ... ,p

A ., ' \

~ :)
(5),,

Source 1)..... '\ .
Node " - ,{ ~,.) 7 '

1-4-6-7 " ~ /

~ -- / 4~ ,/ 1-4-6-7
\ 6)

1-4-6-7 "'- ./

Figure 24: Showing the route discovery mechanism of DSR

Destination
Node

Before a node initiates a route discovery request, it consults its' cache to determine if an un­

expired route exists. If the node finds the route in question, it simply uses this route; else the

node reverts to a route discovery mechanism, which requires each node to append its address to

the request before forwarding it (as shown in Figure 24). Prior to doing so, however, DSR

additionally requires each node to consult its cache to determine whether the destination node
can be obtained through an existing path. If not, then the intermediate node will simply forward
the request on towards its' neighbours; else DSR allows this node to reply back to the source in
one of the following manners:

• If the intermediate node contains a route in its cache that leads back to the source, it must
use this reply path instead,

• Else, the intermediate node must reply back to the source along the partially established
path, constructed during the source request,

• Else, the intermediate node must perform its own route discovery, with the destination of
the request being that of the source.

If the above process still causes the request to reach the destination node, the first request

received is used as the reply path. Note that the core difference between DSR and AODV is that'

DSR does not make use of a routing table to determine a next-hop neighbour. Instead, DSR

20

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

embeds the whole forwarding path in each packet, at the source. This way, routers need only

lookup the next-hop from inside the packet. However, if this strategy fails due to a broken link,

then DSR consults its cache memory to resolve the forwarding host. A study was conducted by

Das et al [41] to compare AODV against DSR. The results of this study showed DSR

performing above AODV (in terms of load, packet delivery and route choice) when few nodes

were used and the congestion was kept low. However, when these conditions were increased,

AODV was shown to perform better than DSR, since DSR was unable to remove redundant

entries from its cache memory, causing it to select obsolete routes.

2.2.2.2.3 LMR (Lightweight Mobile Routing)

LMR, described in [42], differs from other source-initiated routing protocols in that it assigns

values to the links of its neighbours, through a neighbour link-state table. These values can be

one of five different possibilities - namely unassigned, upstream, downstream, downstream­

blocked, unassigned-waiting and awaiting-broadcast.

Source
Node

, ' f 2 '
(2 \ ~ : ',\. "

~ ,"")Y "'. '-" (

(1 <~" t*:r 5 ',~ Source (1 ._: / A \ ~ \ ~ ~
~ r 4 3 i { 7 \, Destination Node \ v - \. 3 j (7 J Destination

~,'- ~,,/' Node ' \ .~f -:1 \, Node

(4 ~ I' ' ' The route reply causes node (4 ~ _. . .-
"",,' -, 6 6tobemarkedasa .;;. i/ ~ 6 '\

" ~ , downstream node, with'-- \'" .;
regards to node 4,

Figure 25: Showing how LMR modifies AODV to bring directivity into its links.

The route discovery request of LMR is similar to AODV, except that when the reply is returned

from the destination node, all the intermediate nodes are marked as downstream links, as shown

in Figure 25. This process forms what is known as a Directed Acyclic Graph (DAG), causing

multiple routes to be established to a destination. This increases reliability, since alternate paths

exists when the currently chosen path becomes invalid. The choice of which path to use can be

determined through the use of a path cost metric or simply using the first (and thus possibly the
shortest) path received by the source.

When a broken link is detected in LMR, the node that detected the broken link is required to do

one of two things depending on whether it contains any upstream nodes. If it does, it is required

to send out a link failure broadc<l:St, which allows neighbouring nodes to mark the link to this

node as undirected (unassigned) an<;l allow them to look for an alternate route; else the node is
required to issue its' own route request, in the hope of finding a new path.

To prevent routing loops, link-state values of downstream-blocked, unassigned-waiting and

awaiting-broadcast are used in specific situations, which are well documented in [42]. Also, any

disconnected node that requires a route to a particular destination is required to periodically

broadcast route requests, as in the route discovery request phase, until network reconnection
occurs.

21

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

2.2.2.2.4 TORA (Temporary Ordered Routing Algorithm)
TORA [43] is used in a highly adaptive, dynamic environment and is based on the concepts of

link reversal [44] and LMR [42], where nodes keep track of the link states of their neighbours.

During the route discovery and maintenance phases, TORA establishes a sequence of directed

links from the source to the destination node, as given previously in Figure 25. From these link

directions, each node is then able to be assigned a logical height metric, based on the hop-count

from the destination node (the base node). Hence, when data is transferred it flows from the

node with the greatest height metric (the source) to the node with the lowest (the destination), as

shown in Figure 26.

Legend: o Source node

• Destination node

o Intermediate node

Height metric

-+- Direction

Figure 26: Showing the DAG established in TORA

When a link fails, all the link directions from the broken link to the source are reversed, until

that path is completely erased. Since TORA makes use of link-states, multiple paths are

established to the destination and so, hopefully, when a particular path is erased, data may still

be routed through one of the remaining paths. Given that the height metric of a node has a

temporal dependency (due to the mobility of nodes), TORA assumes that all nodes have

synchronized clocks, through the use of some external source, such as the satellite time from a

GPS.

A study was performed by [45] in which DSDV, AODV, DSR and TORA were compared

against one another. There, TORA was shown to induce the most amount of routing overhead,

due to the establishment of its' DAG. In addition, TORA delivered fewer packets to the

intended destination node, since temporary routing loops occurred when the direction (and thus

the height) of each link was dynamically altered. But, since TORA was able to remember

multiple routes, it was able to route data with less routing latency than the other schemes
compared, especially during high node mobility conditions. .

2.2.2.2.5 ABR (Associativity-Based Routing)

ABR, given in [46], is unique with regards to the metric it employs. Instead of using hop-count,
ABR uses degree of association stability.

In ABR, each node periodically generates a beacon to signify its existence, which, when

received by neighbOuring nodes, causes an increase in the association entry, with respect to

itself and the beacon node. Thus, association stability is defined to be the connection stability of

one node with respect to another, in-terms-of time and space [8]. The association tables reset

(with respect to the two nodes in question) when one node moves out of proximity of its

22

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

neighbour. Thus, the objective of ABR is to discover stable neighbouring nodes, which will act

as routers for the mobile network, ensuring that control messaging can be kept to a minimum.

Route discovery broadcasts in ABR are similar to AODV, except that each intermediate node

additionally appends its association table (with respect to its neighbours) to the request. The

destination node, on reception of the request, selects the route with the most stability, based on

the associations of all the links, and replies back to the source along this chosen path.

Route maintenance involves partial route discovery, invalid route erasure, valid route updates

and new route discovery, depending on which node moves. If the source node moves, new route

discovery takes place. If the destination moves, the immediate upstream node erases its route

and sends a partial request for the destination. If the destination receives the partial request, it

replies with the best partial route, or else the immediate upstream node times-out and the

process backtracks to the next upstream node. If the backtracking occurs for more than halve the

hop-count of the previous valid route, then the route discovery process begins all over again.

Route deletion (or erasure) is used when the route is no longer needed. It involves broadcasting

a route delete message to all nodes, since the source may be unaware of any changes that were

made to the current valid route, during backtracking.

2.2.2.2.6 SSA (Signal Stability-Based Adaptive Routing)

SSA, explained in [47], selects routes based on signal strength and node stability. SSA is

basically the combination of tWo cooperating protocols - namely DRP (Dynamic Routing

Protocol) and SRP (Static Routing Protocol). All transmissions are passed first to DRP, which
then passes control to SRP.

DRP is responsible for maintaining the signal strength table and for building the routing table.

The signal strength table is built by marking neighbouring links as either weak or strong, which
is obtained periodically from the signal strength of neighbouring beacons.

SRP looks at the routing table to determine where to send the received packet next. If the

destination is not in the routing table, a route-search process is initiated to find the route.

Route discovery requests of SSA, are similar to ABR, except that the request is only propagated

through the network if the received link is marked as being strong. In SSA, however, the

destination node chooses the first route-search packet received as the route for the data transfer,
since this route is likely to contain the least hop-count and be the less congested. If the reply
does not reach the source after a specified amount of time, the source is able change a field (the

PREF field) in the route discovery request, to indicate that any link will do, thus allowing weak

links to be considered within the route-search process. Hence, SSA tries to route the majority of
its packets over strong links first, before reverting to weaker (less stable) links.

When a link fails in SSA, nodes are required to send an error message back to the source, which
clears all links previously associated with the route and initiates a new route-search.

2.2.2.2.7 LOT AR (Location Trace Aided Routing)

LOT AR, developed in [26], is based on LAR, except that it provides an efficient way to get and

maintain the location information of each node. LOTAR assumes that each node knows its own

speed, location and global time, such that these parameters can be periodically transmitted as a

location service to neighbOuring, nodes, allowing all nodes within the network to locate each

23

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

other. In addition to maintaining location tables, nodes are required to hold next-hop routing

tables, but only if they are actively involved in routing. Hence, LOT AR is a reactive protocol

that makes uses of positional information to find routes and thus forms a hybrid between

topology and location based schemes.

Route query messaging of LOTAR is similar to the first algorithm proposed in LAR, except that

route requests are only forwarded if the receiving node falls within the request zone or it

contains a newer global time to the destination node. In addition, nodes update the request zone

and the global time properties of the query, before it is forwarded to neighbouring nodes, thus

predicting the expected region of the destination node more accurately, after each successive

hop.

When routes become invalid, instead of initiating another route discovery query from source to

destination, LOT AR elects a sponsor node to find an alternate path. The sponsor node is the

node that contains the latest global time to the destination node, with respect to the path from

source node to the node where the link breakage occurred, and thus should be the node that is

closest to the destination along this partially connected route. Hence, the sponsor node is the

node that is more likely to find the destination (through route discovery) with minimal amount

of modification to the original route.

Besides route discovery and maintenance, LOT AR also provides prediction of the likelihood of

the route becoming broken, through the use of a pessimistic lifetime equation (Equation 1),

which is only triggered at that node when it is involved in routing. If this equation produces a

value that is smaller than some minimum threshold value, then a handoff flow mechanism is

activated. The handoff flow mechanism tries to fmd at least one node that is located somewhere

between the two nodes that may become broken, i.e. a node with a transmission range big

enough to reach both of these nodes (whose link is about to be disconnected). If such a node

exists, the lifetime equation is calculated for each side of this newly selected node and the

minimum value selected. If this ~nimum happens to be greater than the threshold, then the

handoff through this node occurs. If the handoff is not established within a certain amount of
time, the source is required to re-discover a new route from itself to the destination node.

Lift
. R-L

z etzme = ---
Vi +Vj

(1)
Where:

R is the transmission range
L is the distance between nodes i and j
Vx is the velocity of node x.

However, the incorporation of an extra node (the handoff node) into the routing path may lead

to un-optimized routing, when the original handoff path established is no longer needed. Thus,

LOT AR uses an additional mechanism to undo the original handoff, when the pessimistic
lifetime equation produces a value that is sufficiently large.

24

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

2.2.2.3 Hybrid Topology Based Protocols

Hybrid protocols collectively combine the advantages of both proactive and reactive schemes,

in order to achieve greater efficiencies. This is achieved by using proactive algorithms for

neighbouring (local) transmissions and reactive algorithms for global transmissions. Hence up­

to-date information is kept for closer nodes only, while current routes are kept for destinations

further away. Thus, these schemes trade a bit of overhead for reasonable delays. However, like

all topology based algorithms, these protocols require the number of topological changes to be

smaller than a certain rate, since links need a finite time to be maintained, either periodically or

through some route maintenance scheme.

The only hybrid protocol commonly found in literature is ZRP, as indicated in Figure 27.

I Hybrid

I

ZRP
(Zone Routing Protocol)

Figure 27: Showing the hybridtopology based protocol described within this sub-section.

2.2.2.3.1 ZRP (Zone Routing Protocol)

ZRP, given in [48], incorporates intraZone routing for nodes that fall within a certain zone and

interZone routing for the nodes that fall outside this zone. A zone is defined to be the nodes that

fall within a certain distance (in number of hops) from a particular node. Thus, a zone radius of

two means that all nodes that are two (or less) hops away, form part of that particular nodes

zone. Peripheral nodes are then defined to be nodes that are exactly the zone radius away.

These definitions can be found in Figure 28~

InterZone
routing /

f (,4)

(7)41'
'\ j "-,

9 J

IntraZone
routing Legend:

.. Peripheral nodes

Source node

O· Other nodes

Figure 28: Showing the definitions of intraZones and interZones in ZRP.

IntraZone routing is not defmed by ZRP and can be incorporated by many different routing

protocols, such as DSDV, AODV, OSPF [49], RIP [50], etc., in-fact different zones may even

be allocated with different routing protocols, as only the ID and the distance (in hops) of each
node within the zone is required to be known.

InterZone routing, on the other hand, is specified by ZRP. When a source wishes to send data to

a destination node, it first determines whether that node falls within its zon~. If it does, then the

routing path is known (through the intraZone routing protocol) and thus no further overhead is

25

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

required. If, however, it does not, then ZRP broadcasts a route request to all its peripheral

nodes, adding its node to the request. This same algorithm is then employed to the peripheral

nodes, which contain their own zone radius and hence other peripheral nodes, until the

destination node is found. Care must be taken to ensure that route requests do not loop back into

zones already queried, thereby causing a greater overhead than flooding [48]. Once the

destination is located, a reply is sent back through all the intermediate peripheral nodes, thus

establishing a path back to the source.

When route failures occur, the node that detected the broken link is required to send a route

failure notification back to the source. The source can then decide to either search for a new

route or attempt to partially fix the broken route, by issuing a request to find the missing node.

2.3 Multicast Protocols

Multicasting is a technique that is used to forward data to multiple destination hosts,

simultaneously. Since this is the focus of this dissertation, this section describes those schemes

that were applicable to the ad-hoc domain. However, before such an endeavor is undertaken,

mention needs to be made of why traditional wired protocols were deemed inappropriate.

Traditional wired multicast protocols are based on concept of groups, where each group

contains a collection of receivers. Since multiple receivers may join or leave a particular group

dynamically through the use of IGMP (Internet Group Management Protocol) [51], a single IP

multicast address is used to identify the group, allowing multicast sources to be unaware of the

individual IP addresses of the receivers. IP multicast addresses are allocated by the lANA

(Internet Assigned Numbers Authority) and fall in the range 224.0.0.0 to 239.255.255.255,

some of which are never used outside the autonomous system (AS) (see [52]). However, a

mechanism is still required by routers to identify the path to individual receivers from the

allocated IP multicast address. This is achieved through use of spanning tree algorithms. Two

main types of wired spanning trees exist - source trees and shared trees.

Examples of source-based trees include DVMRP (Distance Vector Multicast Routing Protocol)

[53] and PIM-DM (protocol Independent Multicast - Dense Mode) [54]. Both these schemes

use broadcast-and-prune [55] and reverse path forwarding (RPF) [56] techniques to establish

shortest-path trees (SPT's), routed from every source node to every multicast group member.

Unfortunately, these techniques require the first multicast packet to be broadcasted throughout

the whole network, causing a waste of bandwidth and the potential for broadcast storms (see

section 2.3.5.1). Hence, MOSPF (Multicast Open Shortest Path First) [57] was developed to

extend these protocols with link-state and group membership information, eliminating the need

for flooding. However, even with these improvements, source trees produce a lot of control

overhead and are unable to adapt rapidly to topological changes, which is a criteria that is
crucial to the context of ad-hoc networks [58].

Shared trees, on the other hand, use a single designated node to construct the spanning tree.

This node is called the core node or rendezvous point (RP), through which all multicast traffic is

forwarded. In shared trees, receivers are required to send join requests to the core, allowing

non-core routers to connect to the first router found to be part of the delivery tree. However,

since multicast sources are required to send unicast packets to the core, they need not be part of

the tree. Examples of shared trees are CBT (Core Based Tree) [59] and PIM-SM (protocol

Independent Multicast - Sparse Mode) [60]. Shared trees contain less overhead compared to

26

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

source trees, but use paths that may not be optimal, resulting in additional delay. Furthermore,

trees of this nature require both the core node and the spanning tree to adapt to topology

changes rapidly, or else a reduction in throughput is experienced [58].

Thus, the traditional wired multicast algorithms discussed above, cannot be directly applied to

the ad-hoc context, since it demands protocols that are adaptive, yet incur little overhead, to due

its' limited resources. Hence, new schemes were required. Literature [58, 61] classifies these

schemes into five categories - namely group-based, source-based, core-based, mesh-based or

flooding-based - depending on the delivery structure employed. Figure 29 shows an illustration

of this classification.

Group-based Source-based

Ad·hoc Multicast
Protocols

Core-based Mesh-based

Figure 29: Showing the classification of ad-hoc multicast protocols.

2.3.1 Group-based Multicasts

.Flooding-based

Group-based protocols rely on a group of nodes, rather than a tree, to deliver multicast data.

This group, known as a forwarding group, allo~s fewer states to be maintained at each

intermediate node, since there is no need for maintenance of a tree, only procedures to ensure

that the forwarding group is able to reach each multicast member. Hence, overhead is kept at a

minimum. In addition, group-based protocols allow multicast data to be sent over forwarding

nodes only, which may make use of multiple redundant paths. Examples of these schemes

include the ODMRP (On-Demand Multicast Routing Protocol) and LBM (Location-Based

Multicast).

2.3.1.1 ODMRP (On Demand Multicast Routing Protocol)

ODMRP, defined in [62], is a flooding-based multicast protocol. However, instead of flooding

data to all nodes within the mobile network, ODMRP only floods multicast packets within the

forwarding group, which is maintained through the use of periodic control messages. The

concept of a forwarding group was first introduced in FGMP (Forwarding Group Multicast

Protocol) [63] and consists of a subset of nodes which are specially designated to forward

multicast data to all group members. Hence, procedures are required to ensure that at least one

path exists from the multicast source to every multicast destination. These procedures involve

the advertisement of multicast sow-ces and the periodic broadcasting of a join-table by multicast
receivers.

Advertisement of multicast sources begins when a node contains data intended for a particular

group. Sources advertise themselves by flooding ajoin-request to all nodes within the network.

On the reception of the join-request, nodes record the address of the previous-hop node,

allowing a path to be remembered back to each advertised source. If nodes wish to receive data

from the advertised source, it is additionally required to broadcast ajoin-table, which consists of

a list of known sources and their respective previous-hop addresses. When join-table messages

are received by neighbouring nodes, they look for their address within the previous-hop list and,

if found, broadcast a new join-table message (rooted at each neighbour) to their neighbours,

until the join-table is received by each multicast source. Hence, a forwarding _group is

27

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

established and consists of all intermediate nodes that re-broadcasted the join-table message.

Since multicast receivers are required to periodically transmit their join-table, the forwarding

group is continually refreshed. Thus, nodes may remove themselves from the forwarding group,

if a join-table message is not heard within a particular time interval. For a more detailed

description of the join-table process, see [62].

Since join-request messages are flooded throughout the network, multiple paths may be

established to each multicast receiver. Hence, when links are broken due to mobility, alternate

paths become available, ensuring data is still forwarded to receivers between refresh intervals.

In addition, ODMRP can also operate as a very efficient unicast protocol, allowing

implementations to use ODMRP for both unicasts and multi casts purposes.

2.3.1.2 LBM (Location-Based Multicast)

LBM [64] differs from the other multicast protocols in that it delivers multicast data to all nodes

that fall within a specified region, known as the multicast region. Hence, LBM is a geo-casting

protocol which makes use of location information to determine the multicast region and, hence,

theforwarding group.

Like LAR, LBM makes use of a request zone to determine its forwarding group. However, in

LBM, the request zone does not encompass the expected zone, but rather the intended multicast

region. The multicast region is a region specified by each multicast source and is identified

through the use of a rectangular box, which is recognized by four positional coordinates found

within each data packet. Hence, forwarding nodes are determined in one of two ways. The first

of these is through the use of a second rectangular box, which encompasses both the source

node and the multicast region (Figure 30), while the second method allows all nodes closer to

the multicast region (with respect to the source node) to forward multicast data (Figure 31).

Multicast Region

Forwarding Zone

Figure 30: Showing the first scheme of LBM, in which a Forwarding Zone is explicitly defined.

28

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Multicast Region

Figure 31: Showing the second scheme of LBM, in which a Forwarding Zone is implicitly
defined.

However, since LBM makes use of the same two forwarding algorithms found in LAR, it

inherits the same problems described in section 2.2.1.2.2.

2.3.2 Source-based Multicasts

Source-based multi casts require trees to be constructed and maintained for each source node

within each group. Thus, protocols of this type forward data along the most efficient path from

the source node to each multicast receiver, where efficiency is based on some metric, such as

delay, load, battery life or shortest number of hops. It has been shown [65] that finding the total

minimum cost for a spanning tree is NP-complete (i.e. order[n]P), thus SPT's are generally

accepted as a reasonable alternative. However, since these protocols require considerable

overhead to maintain several efficient multicast trees, they are generally not employed in ad-hoc

networks where link breakages occur regularly. Nevertheless, examples of source-based ad-hoc

multicast protocols include DVMRP (Distance Vector Multicast Routing Protocol) and ABAM
(Associativity-Based Ad hoc Multicast).

2.3.2.1 DVMRP (Distance Vector Multicast Routing Protocol)

[66] presented three extensions to DVMRP, to limit the overhead produced by its wired

counterpart. These extensions enabled DVMRP to be employed into an ad-hoc environment and
included:

• Wireless leaf-node detection,
• Dynamic grafting and pruning,
• And duplication avoidance.

However, before these extensions can be discussed, an understanding of the original DVMRP is
required.

In DVMRP, SPT construction requires multicast traffic to be initially flooded throughout the

network domain, through the use of the RPF algorithm. When the flood reaches a leaf node (a

node consisting of no downstream neighbours), the leaf node is required to check the IP

multicast address of the flooded data to determine whether it is a non-member of the established

group. If this is found to be the case, the leaf node may stop further transmissions for this group,

by sending a prune message to its upstream neighbour. When a prune message is received by an

29

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

intermediate non-member node, it is required to wait to see if all its' downstream links get

pruned off, and, if so, may also send a prune message to its upstream neighbour. Once the prune

process has completed, the SPT is established. An illustration of this process is given in Figure

32.

Figure 32(a): Showing the topology of the ad-hoc network used to illustrate the broadcast-and­
prune method employed in DVMRP.

Figure 32(b): Showing the initial flood of the multicast traffic, known as the broadcast stage.

Figure 32(c): Showing how the flooded traffic resulted in the formation of a tree rooted at the
source node. Note that the tree extends to all leave nodes, irrespective of their group status.

30

Chapter 2 . A Survey of Routing Protocols for Ad-hoc Networks

Figure 32(d): Showing how non-member leaf nodes inform upstream members to stop
forwarding multicast traffic, known as the prune stage.

Figure 32(e): Showing the resultant SPT.

The above process works well when receivers do not dynamically join or leave a group. To

account for this, DVMRP employs periodic timers on its member routers, which flood multicast

traffic to all neighbours once the timer expires. Thus, a latency occurs when a receiver wishes to

join a new group, since it will have to wait until the next flooding period.

Additional problems occur in mobile wireless networks. The first of these arises from the fact

that leaf node detection is difficult to achieve when neighbouring nodes dynamically change in

the presence of mobility. Two schemes to resolve this issue were proposed by [66]. One is to

exchange routing tables among neighbouring nodes, while the other requires the use of

acknowledgements to determine the presence of neighbours .

. Another issue arises from the fact that in a highly mobile environment node movement may

occur quicker than what the RPF algorithm can maintain. Hence, instead of using RPF, [66]
proposed to use packet duplication as a means of controlling the flooding process. Thus, packets

are only forwarded to neighbouring nodes if they are found to be unique.

Lastly, [66] extended DVMRP with the use of dynamic pruning and grafting. Grafting provides

a means for a new member to join a group without waiting for the flooding period. [66] used

this concept to maintain the SPT during node movement, by keeping track of upstream nodes.

As soon as a node detects a new upstream neighbour with a shorter hop path to the source, it is

required to send a prune message to the current upstream node and graft message to the new
neighbour, causing DVMRP to adapt faster to topology changes.

However, even with these enhancements, many people question DVMRP's application to ad­
hoc networks [58], due the amount of overhead it produces.

31

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

2.3.2.2 ABAM (Associativity-Based Ad hoc Multicast)

ABAM, explained in [67], is a source-based protocol that considers the stability of routes within

the tree, since stable routes (routes containing few link breakages) require little maintenance and

thus may offer reduced overhead. Hence, ABAM builds on the concepts of ABR for use within

the context of multicasting.

In ABAM, trees are constructed through the use of a three-phase process. The first phase is

initiated when source nodes wish to send multicast data to a particular group. It requires the

source node to flood MBQ (Multicast Broadcast Query) packets to all nodes within the network.

When a node wishes to receive data from the multicast source, it executes a route selection

algorithm (RSA) to find the best route back to the source. This criterion is determined by

looking at the quality-ofservice (QoS) and stability metrics contained ~thin the MBQ packet.

Once a route is found, the receiver is required to reply with a MBQ-REPLY, triggering the

second phase. When the source node receives all the MBQ-REPLY messages, it applies a tree

selection algorithm (TSA) to find routes common to each receiver. Since each route received

was selected to be the best, the task of the TSA is to find the best combined spanning-tree. Once

the multicast tree is established, the final phase is instigated through the transmission of a MC­

SETUP packet. The MC-SETUP packet contains the full delivery path of the tree, which is sent

to all intended recipients, allowing all participating nodes to update their multicast routing

tables.

The above process works well when nodes do not dynamically join or leave a group. ABAM

accounts for this by allowing new multicast members to broadcast a L-JOIN (Local Join)

packet. When group members receive the broadcast, they are obligated to return with a JOIN­

REPLY message. Since the new member may receive multiple JOIN-REPLY messages, it is

required to select the best route, using the RSA. Once this choice has been made the new . ,
member is expected to send a L-JOIN-CONF packet over the selected route, indicating its
choice.

Receivers, wishing to leave a multicast group, are expected to send a L-LEAVE (Local Leave)

packet to its upstream node. Each upstream node will then delete the receiving node from its

multicast routing table, until the L-LEAVE packet reaches either a branching node (a node which

contained two or more downstream neighbours, with respect to the spanning tree) or another
receiver. An illustration of this is given in Figure 33.

Figure 33(a): Showing the initially established source-tree.

32

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Figure 33(b): Showing how a L-Leave packet is propagated to a branching node, causing a
group member to be removed from the tree.

Figure 33(c): Showing the resultant source-tree.

ABAM also accounts for mobility, by initiating different tree reconstruction mechanisms,

depending on whether the source, receiver or other tree nodes moved and whether these

movements occurred concurrently or not. Essentially, ABAM tries to localize reconfigurations,

so as to disturb as little of the tree as possible. Nevertheless, since the each spanning tree is

rooted at each source of each multicast group, there are still situations where are-establishment

of the whole spanning tree is required. For a detailed description of each reconstruction scheme,

see [67].

Toh et al [67] showed ABAM to deliver approximately 15% more packets (to their intended

destination) than ODMRP at low mobility rates and with significantly less control overhead.

But, as the mobility rate was increased, ODMRP and ABAM have been shown to deliver
equally, with ABAM containing less control overhead than ODMRP.

2.3.3 Core-based Multicasts

Core-based trees were developed to limit the amount of overhead produced by source-based

protocols. They achieved this by reducing the number of trees employed - using a single shared

tree for each multicast group, which is constructed and maintained by a selected RP. RP's are

responsible for distributing multicast packets to all group members. However, this distribution

may be different, depending on whether uni-directional or bi-directional trees are employed. If a

uni-directional tree is constructed, all multicast data is forwarded to the RP; else multicast

packets may enter at any point within the tree. Thus, bi-directional trees offer greater

efficiencies than uni-directional trees, since fewer re-transmissions are required to forward data
to all group members [58].

33

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

However, due to the RP being the most crucial component in the operation the shared tree,

core-based schemes suffer from a single point of failure. In addition, core-based schemes cause

traffic congestion at shared links and result in the forwarding of multicast data over suboptimal

paths, since data is forced along the shared tree [58] . Nevertheless, examples of core-based

multicasts include: MAODV (Multicast Adhoc On-demand Distance Vector), AMRoute

(Adhoc Multicast Routing) and AMRIS (Ad hoc Multicast Routing protocol utilizing

Increasing id-numberS).

2.3.3.1 MAODV (Multicast Adhoc On-demand Distance Vector)

MAODV [68] is a multicast version of the unicast AODV protocol (section 2.2.2.2.1) and hence

may be used for both unicast and multicast traffic.

In AODV, any destination involved in routing is required to periodically broadcast a sequence

number (similar to DSDV) to ensure route freshness [58]. Similarly, MAODV broadcasts a

multicast group sequence number to ensure the freshness of the shared tree, except this task is

done by the chosen RP and not by each multicast destination.

MAODV selects RP's based on the criteria that this node be the first node wishing to transmit

multicast data to a particular group. Thereafter, new member nodes are required to graft to the

RP, by joining to the best available member p.ode. MAODV makes this selection by

broadcasting ajoin request to the desired multicast group. Once the request reaches a member

node, a reply is sent back, indicating the group sequence number and hop distance. The task of

the awaiting member is to then examine these returned fields and send an activation packet back

along the path which is determined to be both the shortest and freshest. Once the activation

packet reaches the intended member node, the new member node is attached to the shared tree

and thus will be forwarded with subsequent multicast traffic destined for that group. An
illustration of this process is given in Figure 34.

Figure 34(a): Showing the initially established tree.

34

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Figure 34(b): Showing how a join request is flooded to all tree members.

Figure 34(c): Showing how multiple replies may be sent back to the joining node.

Figure 34(d): Showing the resultant shared tree, once an activation packet has grafted the
joining node to an existing group member.

When a leaf member node decides to quit the multicast group, it is required to send a prune

message to its neighbouring upstream"group member, causing the upstream member to flush its'

multicast routing table, with respect to the leaf node. However, if, in doing so, the upstream

member becomes a leaf node, it may apply the same method to its neighbouring upstream

member, causing the shared tree to be dynamically pruned.

In the presence of mobility, the shared tree may become segmented. Hence, MAODV requires

nodes to initiate a join request when they become disconnected. If no reply is received,

however, the node may assume that a network partition has occurred and hence elect itself as

the RP. Unfortunately, this mechanism may result in mUltiple RP's being present when the

network becomes re-connected. However, since multicast group sequence numbers are

broadcasted, a RP will realize that another RP exists, and thus will request to join with to the RP
containing the freshest tree.

35

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Nevertheless, comparisons [69, 70] have shown MAODV to contain a poor delivery ratio,

offering up to 75% less packets when compared to ODMRP. Mohan et al [70] notes this to be

the result ofthe fragileness in the constructed shared tree, whilst in.the presence of mobility.

2.3.3.2 AMRoute (Adhoc Multicast Routing)

AMRoute, described in [71], is a bi-directional shared tree based scheme that makes use of its '

underlying unicasting protocol to tunnel multicast traffic.

Tunneling originated from the wired IP multicast implementation of the wide-area-network

(WAN), known as the MBone [72]. Initially, problems arose in the deployment of multicast

traffic for the Internet, since all established routers would need to be upgraded to support

multicast capabilities. However, a mechanism, known as tunneling, was employed to counter

this limitation. Tunneling allows a multicast packet to be encapsulated in a unicast datagram,

before being ·transmitted from one multicast network to another, eliminating the need for

multicast-enabled routers to be employed along the way. An illustration of this process is shown

in Figure 35.

• Multicast Packet

Multicast Packet
(jiJ Encapsulated in a

Unicast Packet

•

Figure 35: Showing the concept of tunneling.

AMRoute makes use of tunneling to communicate multicast traffic between group members,

thus permitting nodes which are not interested in multicast traffic to remove all multicasting

procedures. Also, since unicast packets are utilized in the forwarding of both multicast and

unicast traffic, AMRoute relies solely on the underlying unicast protocol to ensuring

connectivity amongst group member nodes. Hence, AMRoute's performance is dependant on

the ability of the unicasting protocol employed.

In AMRoute, all group members are required to flood Join-Reqs to establi~h the shared tree.

Once the Join-Reqs reaches another member node of the same group, the receiving member is

required to mark the sender as a group neighbour and reply with a Join-Ack, allowing the sender

to be aware of the receiver. Through this exchange process, all multicast senders and receivers

are able to determine each other and the shared tree can be constructed. Thus, in AMRoute, the

only members who constitute a particular group are the multicast senders and receivers
themselves.

The tree construct phase is initiated and maintained through the periodic transmission of Tree­

Create packets to all group neighbours. On reception of these packets, group members are

required to forward them to other group neighbours, but only if unique; else a Tree-Create-Nak

is sent back to the forwarding member. When a Tree-Create-Nak is received, the forwarding

member node will realize that an alternate path exists and thus will not mark that member as a

36

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

downstream group neighbour. However, since knowledge of neighbouring group members is

not erased, this link may be used on the next Tree-Create transmission period. Thus, tlrrough

this mechanism, a single shared tree will be periodically established to all group members. Note

that this method is conceptually different to usual core-based trees, since there are no

designated RP's. However, since a single tree is used to forward data to all multicast members,

AMRoute is still classified as a core-based scheme.

When nodes wish to remove themselves from a specific group, they are simply required to

transmit a Join-Nak packet to all neighbouring group members and discard any data forwarded

to them by the group. On reception of the Join-Nak packet, neighbouring group members will

erase all knowledge of that neighbour, but will not attempt to fix the broken tree that may result,

since it will be re-established automatically on the next Tree-Create transmission period.

A survey conducted by [61], has shown AMRoute to deliver poorly, due to the presence of both

temporary routing loops and "critical" uni-directional links, which result from the directional

nature of the shared tree. In addition, [61] showed AMRoute's performance to be very sensitive

to both traffic load and mobility.

2.3.3.3 AMRIS (Ad hoc Multicast Routing protocol utilizing Increasing id­
numberS)

AMRIS, explained in [73], is a shared tree protocol that makes use of increasing ID numbers to
direct the flow of multicast data.

To establish direction into the shared tree, AMRIS requires one of the multicast sources (known

as the Sid) to broadcast a NEW-SESSION packet. This packet contains, among other things, the

multicast session ID, the nodes membership status (which indicates whether the node is

interested in receiving multicast data from the session) and the node's msm-id (multicast session

membership ID). Upon receiving the NEW-SESSION packet, each node is required to record the

membership status of their neighbouring node for that particular session in a Neighbour-Status

table and re-broadcast the NEW-SESSION packet with a newly calculated msm-id. This

calculated msm-id is required to be larger (but not consecutive) than that received by the

previous-hop neighbour, allowing msm-id's to increase as it radiates outwards from the Sid.

This reason for doing so will soon become clear, but essentially it allows a logical height to be

assigned to each node, as done in TORA (section 2.2.2.2.4), except that, in AMRIS, the height

is rooted at the Sid and not at the destination. Once the session has been established, each node
is required to broadcast beacon messages, which allow neighbouring nodes to periodically
update their Neighbour-Status table.

When a node wishes to join a multicast session, it is required to look in its' Neighbour-Status

table for a possible neighbouring node that contains a smaller msm-id, since this node will be a
possible parent to the Sid. Once such a node is found, a Join-Req packet is unicasted to it. If the

node receiving the Join-Req packet is already a member of the multicast session, it is required

update its' Neighbour-Status table and reply with a Join-Ack packet; otherwise, it is required to

forward the Join-Req packet to its' potential parent node, until a multicasting session member is

found. If, however, the original node does not receive a reply within a certain time interval, it is

required to issue an expanding ring search (a broadcast which is only flooded to n next-hop

neighbours, where n is increased each time) to find a session member. Once the broadcast
packet is received by a session ~ember, it is required to reply with a Join-Ack packet, which is

37

Chapter 2 , A Survey of Routing Protocols for Ad-hoc Networks

transmitted along the reverse path back to the joining node. However, since many replies may

have been returned, no multicasting packets will be forwarded to the joining node, until it sends

a Join-Con! packet back to the chosen session member.

Since the Neighbour-Status table is periodically broadcasted, neighbours are able to detect when

they become partitioned from the shared tree. When this happens, the disconnected neighbours

are required to re-join the tree through the joining mechanism described above. However, since

a finite time exists before the node becomes reconnected to the shared tree, many packets may

be dropped to both the disconnected receiver and its dependencies. Thus, simulations conducted

by [61] show AMRIS to deliver less packets compared to other mesh-based protocols (described

next). In addition, [61] showed AMRIS to deliver only 60% of its ' packets (to all intended

recipients) when nodes were kept stationary. Lee et al [61] suggested this to be the result of

collisions which occurred from the relatively small periodic time interval set by the AMRIS

protocol, which is used for the broadcasting of the Neighbour-Status table.

2.3.4 Mesh-based Multicasts

Mesh-based protocols were developed to provide mUltiple multicasts paths to group members,

instead of a single path, as discussed in previous schemes. The reason for do so becomes

apparent when one considers the likelihood of link breakages in the presence of mobility. If

multiple paths are established and one of these paths becomes invalid, data will still be sent

along the remaining paths. This of course leads to extra overhead, since data is unnecessarily

duplicated along all established paths, but does allow data to be received by the group in the

presence of frequent link breakages, such as found in highly mobile ad-hoc environments. Also,

since multiple paths exist, mesh-based protocols result in the mesh (multi-connected spanning

tree) being repaired less often, reducing any overhead experienced during reconstruction. An
example of this is the Core Assisted Mesh Protocol (CAMP).

2.3.4.1 CAMP (Core Assisted Mesh Protocol)

CAMP [74] requires both the multicast source and destination group members to join to the

mesh, which is established through the use of one or more designated RP's. Nodes join to the

mesh in one of two ways. The first of these is to check if any neighbouring nodes are already

part of the mesh. If so, then all that is needed is a simple join request/reply exchange, or else

nodes are required to send join requests to one of the designated RP's, through the use of its
'underlying unicast protocol. However, if this RP cannot be found, an expanding ring search is

employed to fmd at least one group member node. Once the request reaches either the RP or the

group member, a. reply is returned, causing a multicast path to be established back to the

requesting node. Since, multiple join options exist, mesh protocols do not suffer from a single

point of failure. In addition, CAMP requires each designated RP to send explicit join messages
to each other, ensuring connectivity.

In CAMP, nodes are also required to maintain an anchor table. This table is used to determine

which neighbouring nodes depend on it, with respect to the forwarding of multicast data. Thus,

whenever membership information alters, a MRU (Multicast Routing Update) needs to be

transmitted amongst neighbouring nodes to ensure integrity. The MRU contains a list of all

awaiting anchors, as well as, any newly discovered sources. When a node wishes to leave a

particular multicast group, it is required broadcast a quit notification, allowing neighbouring

nodes to adjust their anchor table. However, if, after adjusting the anchor table there are still
, . . ,

38

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

nodes depending on the quitting node, multicast data will still be forwarded to this node and will

only cease when all dependencies have be removed. Hence,. the objective of the anchor table is

to ensure routers are not prematurely removed from a multicast group, which may result in loss

of multicast data.

Since CAMP makes use of a mesh, when links become broken, a valid route is expected to still

exist. However, if one does not, the disconnected multicast receiver is required to re-join the

mesh, using the join mechanism described earlier. In addition, multicast receivers need to

periodically ensure that the established mesh contains the shortest hop path between itself and

every other multicast source. Receivers are able to determine this by comparing the shortest-hop

information (obtained from the underlying unicast protocol) to that found within the nodes '

message cache. The message cache is a buffer of memory that is used to store a list of recently

received data packets. Hence, the performance of CAMP relies on the -ability of the unicasting

protocol employed. When a mismatch in the path length occurs, receivers are required to send

one of two types of join messages, depending on whether the neighbouring node is already

multicast member or not. If the neighbouring node is already a multicast member, a heartbeat is -

sent; else a push join is transmitted. Like the ordinary join process, these join messages simply

add an extra path to the receiver. An example of the push join mechanism is given in Figure 36

below.

Figure 36(a) : Showing a situation in which multicast traffic is being received on a sub-optimal
mesh.

Figure 36(b): Showing a push-join message being sent by a multicast member in order to
include the shortest path into the established mesh. '

Figure 36(c): Showing the resultant mesh that now includes the shortest path to aU group
members (T). _

39

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Simulations performed by Garcia-Luna-Aceves et al [74] have shown CAMP to outperform

wired source-based multicasts, such as DVMRP and PIM-DM. Since CAMP contains multiple

alternate paths, CAMP has also been shown to perform better than tree-based protocols. In

addition, [74] proves CAMP to scale better than ODMRP, when the number of group members

is increased.

2.3.5 Flooding-based Multicasts

Flooding-based multicasts simply broadcast multicast data to all nodes within the network.

These protocols are usually employed in highly mobile environments, where previous schemes

are inadequate [75], due to the production of large protocol overheads and poor data delivery

ratios. Hence, new algorithms were devised to counter these deficiencies. Literature [76, 77] on

flooding-based protocols has classified these schemes in four main families - namely blind

flooding, probability-based floods, area-based floods and neighbour-knowledge floods.

2.3.5.1 Blind Flooding

Blind flooding is by far the simplest of these schemes. It requires all newly received data to be

re-broadcasted to neighbouring nodes. Thus, a network consisting of m nodes will experience m

re-transmissions. However, since all m nodes may be reached after n re-transmissions (Figure

37), m-n redundant transmissions occur, resulting in poor bandwidth utilization and a waste of

unnecessary battery power, especially as the density of the network is increased (see [77]).

Figure 37: Showing how m=1 0 nodes can be reached after n=3 re-transmissions.

In addition, flooding schemes suffer from the hidden terminal problem [78]. The occurs when

two out-of-range nodes wish to send data to a common receiving node, since both transmitters
will evaluate the channel to be free and thus cause a collision to occur at the receiver. An

illustration of this is given in Figure 38, below. One may think that such occurrences should
happen for all modes of communication and not just for broadcasted traffic. Although this may

be true, mechanisms have been developed to reserve the channel for unicast transmission (see
"virtual carrier sensing" in section 3.5.1.2), causing less collisions to occur in this mode.

40

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

Figure 38: Showing the hidden terminal problem, in which nodes 1 and 2 sense the channel to
be free and thus transmit data simultaneously, only to cause a collision to occur at node 3.

However, reservation of the channel for multicasting and broadcasting purposes is non-trivial,

since it is dependent on both the number of next-hop neighbours available, as well as, the

underlying routing protocol employed. Hence, reservation for broadcasting is not performed by

the IEEE 802.l1(b) MAC specification (used herein, see Chapter 3), resulting in the presence of

many unnecessary contentions and collisions, known as the broadcast storm problem [76].

Hence, more sophisticated methods are required to reduce this redundancy.

2.3.5.2 Probability-based Floods

Probability-based protocols are similar to blind flooding schemes, except that they only re­

broadcast a packet with a probability equal to some value. An example of such a method is the

Probabilistic scheme.

2.3.5.2.1 The Probabilistic Scheme

The Probabilistic scheme, defined in [76], simply re-broadcasts a packet with a hard-coded

probability of x . If x is set to one, a blind flood is performed; otherwise a node has a probability

of I-x of not receiving the packet from its' immediate previous-hop neighbour. However, the

actual probability of a node receiving a broadcast is proportional to the number of neighbouring

nodes which surround it. This can be easily seen by the following example:

If node a has two neighbours, each of which may broadcast data with a probability of x, then the
probability that a will receive the packet is:

x + (1-x)x = 2x - x2

However, if a had three neighbours, then the probability would have been:

x + (1 - x)x + (1 - (x + (1 - x)x»x = 3x - 3x2 + x3

Leading to a probability increase of x - 2X2 + x3
, with the addition of a single neighbouring

node.

Hence, probability-based protocols are usually employed in dense networks, where nodes may

contain many neighbours, thus reducing the amount of redundancy that would have resulted had

a blind flooding scheme been utilized. Since there is a reduction in the amount of re-broadcasted
data, less congestion is also experienced, resulting in a higher network throughput.

However, since probability schemes cannot guarantee that nodes will receive the broadcasted

data, they are unreliable. This is especially true for the nodes that surround the edge of network,

since they contain fewer neighbouring nodes and hence obtain a lower probability of receiving

41

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

data. Suggestions have been made by [77] to employ an adaptive scheme, whereby the
probability is based on the number of neighbouring nodes that are present. Unfortunately, to­

date no results have been found with this modification included.

2.3.5.3 Area-based Floods

Area-based flooding make use of thresholds to determine whether or not to re-broadcast a

packet, which is derived from an equation known as the EAC (Expected Additional Coverage)

[76]. The EAC basically gives a node an indication as to the amount of additional area that

would be covered through the re-transmission of the packet. If this area is found to be above a

preset value, the packet is re-transmitted, or else it is dropped. Hence, a packet is only re­

transmitted if it going to traverse a certain amount of additional radio coverage.

Examples of such protocols include the Counter-Based, Distance-Based and Location-Based

schemes.

2.3.5.3.1 The Counter-Based Scheme

The Counter-Based scheme [76] counts the number of times a particular packet is heard from

its' neighbours and, depending on the value of this counter, makes a decision on whether the

packet should be re-broadcast or whether it should be dropped. The basis for doing so is derived

from the fact that the additional area covered by a nodes' transmission radius decreases as the

number of re-transmissions from neighbouring nodes increases (see Figure 39). Ni et al [76]

showed, through simulation, that, after hearing the same packet four times, the EAC of a node is

below 0.05%.

Figure 39: Showing how the additional area gained by node 1 (the white region) decreases, as
neighbouring nodes re-transmit the broadcast data.

Williams et al [77] suggested two practical ways for the implementation of the Counter-Based

scheme. The first of these is to simply pass the packet to the MAC layer, where it would be

buffered in an interface queue. A packet would then remain in this queue until all prior packets

have been sent and the channel becomes clear again for it to be transmitted. Thus, during this

time period, neighbouring nodes may re-broadcast the same awaiting packets. Hence, every

time such a broadcast is heard, a count is kept, and, if the counter reaches above a particular

value, the packet is removed from the interface queue, preventing it from being transmitted.

The second method involves delaying the packet for a random amount of time, prior to sending

it to the MAC layer for transmission. During this time, a count is kept of neighbouring

42

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

transmissions for that particular packet, and, if above a particular value, the packet is discarded,

preventing it from being sent to the MAC.

However, since the Counter-Based scheme uses thresholds, it is 'unreliable. Nevertheless, the

Counter-Based scheme is superior to the Probabilistic scheme, since it "listens in" on

transmissions and hence is able to adapt automatically to the number of neighbouring nodes

which surround a node.

2.3.5.3.2 The Distance-Based Scheme

The Distance-Based scheme, given in [76], examines the distance of each neighbouring node. If

all distances are below a threshold value, the packet is dropped, or else it is re-broadcasted.

Hence, the Distance-Based scheme considers whether the additional area covered by a
transmission is above some threshold value, since this area is proportional to distance, as

indicated in Figure 40.

o

Figure 40: Showing how the distance between two nodes is proportional to the additional area
gained, as indicated by the shaded area of node 2.

[77] suggested using the same two implementation methods that was employed for the Counter­

Based scheme, except, instead of counting each packet, the distance of each neighbour is

sampled, just prior to a packets' transmission. Hence, if this sample is determined to be above

the defined threshold, the packet is transmitted; otherwise it is dropped.

However, since the Distance-Based scheme only determines the additional area that would be

gained and not whether all nodes are able to be reached, it too is unreliable.

2.3.5.3.3 The Location-Based Scheme

The Location-Based scheme, developed in [76], is similar to the Distance-Based scheme,

expected that it uses a more accurate mechanism to determine the EAC.

In the Location-Based scheme, each transmitted packet is expected to contain the location of the
node which re-transmitted the packet. Upon receiving the packet, neighbouring nodes calculate

the actual additional area that would be covered, if the packet were to be transmitted by the

receiving node. If this value is determined to be above a certain threshold, it is sent for

transmission, through the use of one the two methods described previously. Since both these

methods cause the packet to be delayed, duplicate packets may be received from other

neighbouring nodes. When this happens, the actual additional area is re-calculated. If this

calculation causes the additional area to drop below the predefmed threshold, the packet is

dropped; otherwise the packet is kept untouched, until it is finally transmitted.

Since the EAC is continuously re-calculated using the position of each node, the Location­

Based schemes is very computationally expensive, but results in an improved estiniate of the

43

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

additional area covered. Hence, the Location-Based protocol is by far the most superior area­

based protocol developed (see [76]), but, since it makes use of a threshold value, it is also

unreliable.

2.3.5.4 Neighbour-Knowledge Floods

Neighbour-know/edge floods keep track of the state of neighbouring nodes to broadcast data

more effectively to all nodes within the network. Thus, these protocols are as reliable as blind

floods, but are more computationally expensive. However, since redundancy is kept to a

minimum, neighbour-knowledge techniques are far more efficient than blind flooding.

Examples of these techniques include Flooding with Self-Pruning, the Scalable Broadcast

Algorithm, Multipoint Relays and the Ad Hoc Broadcast protocol.

2.3.5.4.1 Flooding with Self-Pruning

Flooding with Self-Pruning, given in [79], (known hereafter as FSP) requires each node to keep

knowledge of its ' I-hop neighbours, which is achieved through the use of periodic hello

messages.

When a packet is broadcasted in FSP, the transmitting node is required to include a list of all its '

I-hop neighbours within the header of the packet. Once this packet is received, nodes are

required to mark-off (prune) all neighbours that have been included in this list. If there are any

neighbours that still exist after the prune, the packet is re-broadcasted; else the packet is

determined to be redundant and hence will be dropped.

However, since FSP assumes perfectly circular transmissions, it cannot account for collisions,

which may cause a set of neighbours to be marked as having received the packet, when in fact

they have not. This is especially true in regions where obstacles like trees, buildings, motor
vehicles, etc. may interfere with transmission patterns.

2.3.5.4.2 SBA (Scalable Broadcast Algorithm)

SBA [80] is similar to FSP, except that it is aware of neighbours within a 2-hop radius.

Like FSP, neighbour knowledge is achieved through the use of hello packets. However, in this

case a hello packet is required to contain a list of all known neighbouring nodes, instead of just

the ID of the sending node. Thus, when the packet is received by neighbouring nodes, a two hop
topology can be determined for each neighbour.

When a broadcasted packet is received, a node is required to examine its' established two-hop
table to determine which neighbours should have all received the packet. If, after examining the

table, there are still neighbours outstanding, the node that received the packet is required to re­

broadcast it; else the packet is simply dropped. However, instead of simply re-broadcasting the
packet out, a node is required to delay the broadcast for a random amount of time, where the
upper limit of the random number is selected to be:

44

Chapter 2 , A Survey of Routing Protocols for Ad-hoc Networks

(2)

Where:
dN max - is the maximum number of neighbouring nodes a node contained,
dN - is the number of neighbours a node currently contains,

Hence, nodes with more neighbours will generally re-broadcast a packet quicker than nodes

containing fewer neighbouring nodes, thus prevent as much redundant packets as possible. If a

duplicate packet is received from another neighbour during the delay period, a node is required

to re-examine its two-hop table to determine if all nodes have now been covered. If this is the

case, the packet is simply dropped; otherwise the packet is allowed to continue, until it

eventually expires, causing it tO,be sent to the MAC layer for re-broadcasting.

Results conducted by [77] show SBA to be far more efficient than blind floods, probability­

based floods and area-based floods. However, Williams et al [77] did show SBA's performance

to be highly dependant on the accuracy of the 2-hop information contained within its' table. In

addition, SBA, like FSP, assumes perfect transmissions, rendering it unreliable in environments

where obstacles may cause interference.

2.3.5.4.3 MPR (Multipoint Relays)

Like SBA, MPR [81] makes use of two-hop neighbour information to flood data to all nodes

within the network. However, instead of scheduling the broadcasted data, MPR explicitly

selects the next-hop neighbours that are required to cover all 2-hop neighbouring nodes. Thus,

only the chosen nodes, known as multipoint relays, are allowed to re-broadcast data.

In MPR, multipoint relays are chosen through the use of the following algorithm:

• First select next-hop neighbours that contain neighbours which can only be reached by the
next-hop neighbour in question and make them multipoint relays.

• Then, for all remaining neighbours, select those which cover the most number of
neighbours that are not covered yet and make them multipoint relays.

• Finally, repeat the previous step, until all nodes have been covered.

Once the multipoint relays have been chosen, nodes are required to send hello packets to
neighbouring nodes, inforrnmg them of the selection. Thus, when data arrives, nodes are

required to look-up whether they are a multipoint relay for a particular transfer. If they are, they
are required to re-broadcast the packet, or else the packet is simply dropped.

However, since MPR also gathers its 2-hop information from hello messages, it too suffers from
the same problems described in SBA.

2.3.5.4.4 AHBP (Ad Hoc Broadcast Protocol)

AHBP, described in [82], is similar to MPR in that it selects next-hop neighbours to re­

broadcast data. In fact, ABP adopts the same algorithm to choose these nodes, but calls them

Broadcast Relay Gateways (BRG's). However, the difference between AHBP and MPR is the
way in which BRG's are informed.

45

Chapter 2 A Survey of Routing Protocols for Ad-hoc Networks

In AHBP, BRG's are informed on a per-packet basis. Thus, each selected BRG is required to be

appended to the broadcasted data. On reception of the packet, neighbouring nodes are required
to look in the header to determine whether they are a BRG or not. If not, the packet is simply

dropped; otherwise these neighbouring nodes are required to re-apply the multipoint relay

algorithm to determine the next set ofBRG's, which is appended to the re-broadcasted packet.

Thus, AHBP is more computationally expensive than MPR, but allows up-to-date information

(regarding neighbouring nodes) to be used in the calculation of the BRG set, at each successive

hop. In addition, AHBP is able to account for neighbours which have already been covered by

the received packet, allowing them to be excluded in the calculation of the next BRG set, thus

improving redundancy. Also, if mobility causes a node to receive a packet for a next-hop

neighbour for whom it did not expect, it is required to automatically assume BRG status and

thus re-broadcast the packet. However, once the hello message reaches the confused node, it

will be informed of the altered topology and hence will be able to account for the new
neighbouring node on the next packet arrival.

A survey conducted by [77] showed AHBP to perform better than SBA in semi-static and

highly congested environments, but not in highly mobile scenarios. This is because AHBP is

unable to recover from situations which result when a chosen BRG moves out of range of the

transmitting node, causing the selected BRG set to fail (with regards to covering all expected

next-hop neighbours). However, since no BRG's are selected in SBA, it does not experience
this shortcoming.

2.4 Conclusion

Current unicast ad-hoc networking protocols are able to determine a path to a destination

through either proactive next-hop tables or reactive routes. While, reactive schemes are required

to search the entire network space for a -route before a single packet can be sent, proactive

protocols are simply required to lookup the address of the neighbouring node that will aid in the

forward progression of a packet to a particular destination. This is because the next-hop table of

proactive schemes are continuously updated, allowing routing information to be readily

available. Hence, proactive methodologies are capable of forward data faster, since a routing
path to every destination is defmed implicitly.

The same is true for location based protocols. Here, forwarding decisions are established
through the position of neighbouring nodes, which are detennined by some location service.

But, unlike the proactive schemes, location based protocols should never be used in isolation.

This is because results have shown that routing in this manner causes large protocol overheads
to result, and the potential for broadcast storms. However, if location information is used

correctly, papers have shown that the overall performance of a protocol can be improved [21,
25,83].

Nevertheless, reactive protocols have been shown to route packets more efficiently than their

proactive counterparts. The main reason for this is due to the on-demand strategy employed by

the reactive schemes, which incurs protocol overhead on an "as needed" basis. Since this brings

scalability into a protocol, reactive schemes supersede proactive schemes in that they are able to
be deployed in networks that consist of a large number of nodes.

When looking at multicasting, however, a different outcome was found. Nfulticasting relies on
the use of a group address, which defines a particular set of logically connected destination

46

Chapter 2 A Survey ~fRouting Protocols for Ad-hoc Networks

nodes through the use of a single !D. Since the wired IP infrastructure could only support one

destination address at a time, grQup addresses solved the problem of having to address multiple

receivers simultaneously. In addition, group addresses also allowed multicast sources and

receivers to be independent of each other, which permitted nodes to dynamically connect and

disconnect from a group without affecting the delivery of data to other group members .

However, in order for such a forwarding system to operate correctly, some kind of spanning

tree was necessary.

Spanning trees give routers the ability of mowing how to forward multicast data. But, since

these trees are required to be up-to-date, some kind of table-driven scheme is generally required,

although schemes try to establish and maintain the tree using triggered events, thus, bring an on­

demand "feel" to multicasting. Nevertheless, groups require the use of large transmission and

storage overheads, which, in the presence of mobility, were unable to deliver an acceptable

number of packets to all multicast members. Since bandwidth and other resources were being

consumed with little befit, alternate solutions were required for multicasting in mobile ad-hoc

environments.

One field that developers explored was flooding. Previously, flooding was done only through

the blind-flooding technique. However, this scheme produced many unnecessary re­

transmissions, which lead to the development of various flood-limiting methodologies.

Although these strategies provided a simple means for data to be sent all nodes of a network,

they can only be employed in large networks. This is because flood-limiting protocols will

approach that of blind-flooding, as the number of nodes in a network is reduced. Williams et al

[77] showed that the distinction between a large and small network (for flooding purposes) was

approximately 20 nodes. Thus, if a network contained 20 nodes or less, blind-flooding should be

used instead of any of the other flood-limiting techniques, as very little performance would be

gained at the expense of additional storage and processing costs (needed by each flood-limiting
scheme).

Therefore, in a network that consist of 20 nodes or less, little research has been conducted to

forwarded multicast data over structures that do not require the use of spanning trees. Since

such a solution was necessary for the operation of the PCS (section 1.2), a novel routing

technique called LAMP3 was developed to overcome this limitation.

This scheme used a modified version of the DSDV protocol to identify neighbouring nodes that
were deemed suitable for the forwarding of multicast data. But, since mobility may cause

neighbouring links to become temporarily invalid, a location based scheme (adopted from

LOT AR implementation of LAR) was used to fmd an alternate route around each broken link.

This way, a localized flood was employed only during link failures, thus, ensuring congestion

was kept to a minimum. However, for more information on why these schemes were selected,
refer to Chapter 5.

Thus, since the selected protocols were derived from three different research areas (proactive,

reactive and location based schemes), this survey needed presentation of each. In addition, as

this dissertation was concerned with the details of multicasting, these schemes were given to

show why current schemes were deemed inapplicable to the requirements of the PCS.

3
Location Aided Multicasting Protocol.

11'7

The Physical Environment

3.1 Introduction

This chapter describes the physical devices and the selected operating system that was used

to implement the proposed routing scheme. The rationale for the inclusion of this chapter lies in

the fact that extensive research was required to understand how packets were being processed at

each layer of the operating system. This understanding was necessary in order to define the

requirements needed by the ad-hoc routing algorithm. Hence, this chapter provides a level of

detail sufficient to allow the reader to assess the complexities associated with the different

services that can be found within each layer. Once this understanding has been attained the

details relating to the manipulation of this framework to incorporate the newly proposed

protocol can be provided.

3.2 The Mobile Handheld Devices

To provide the necessary processing power for each node within the PCS, sixteen commercially

available HP (Hewlett-Packard) 3870 iPAQ PDA's were purchased. These devices came

standard with the following "off-the-shelf' features [84] :

• 240 x 320 pixel (5.7 x 7.7 em) 16K (65,536) color touch-sensitive reflective TFT LCD,
• 206 MHz Intel StrongARM SA-lllO 32-bit RISC processor,
• 64 MB SDRAM with an additional 32 MB Flash ROM,
• 1400 mAh Lithium Polymer rechargeable battery,
• Compaq Expansion Pack System that allows Type II PCMCIA cards to be connected,
• Numerous supported interfaces that include a microphone, a speaker, a 5-way joystick, a

handwriting recognition system, a software keyboard and a seriallUSB slave port,
• Integrated Bluetooth TM technology, .
• Microsoft® Pocket PC 2002 operating system.

An illustration of the 3870 iPAQ PDA, with all its' features, is depicted in Figure 42 (over the
page).

~ Headset with
Microphone

PCMCIA

17
LAN card

iPAQ

1
4 x Serial

MUltiplexer

1
IlL

I.
GPS Tactical CMOS
Unit Radio Camera

Figure 41: Showing the iPAQ SUb-system.

However, in addition to these features, all PDA's

were fitted with wireless Cisco Aironet 350

PCMCIA LAN cards, a headset and a 4-way serial
multiplexer (Figure 41). The wireless LAN cards

were used to give these devices the ability to

communicate with each other through the IEEE

802.11 (b) MAC protocol, while the headset

provided the necessary hardware to perform voice

communication. The multiplexer was additionally

incorporated to give each iP AQ the capability to

receive GPS information, tactical radio data and

CMOS camera images from its' on-board serial
port.

48

Chapter 3

Il:~ sur! < 1:45

'\0 ~. Ottobu24.2001
:::! 0WMI:ut.~

" , Or. To>yJor

The Physical Environment

\

' ___ 0,1

~:: No unrud _s~~

r. Udi\'e b~ II r
1 ---il-I --+-----i~

1. Power Button 9. Contacts Button
10. Record Button
11. Active Bluetooth Indicator

(Bluetooth models only)

2. Stylus
3. CharginglNotification Im:licator
4. Color Display wllntegrated Touch Panel
5. lnbox Button 12. Stereo Headphone Jack
6. iPAQ Task Manager Button 13. Microphone
7. Directional Pad 14. Ambient Ught Sensor
8. Calendar Button 15. SO Slot

16. Speaker

Figure 42: Showing the features of the 3870 iPAQ PDA from HP [84].

3.3 The Selection of the Operating System

An embedded ARM Linux kernel as (operating system) was selected as the as of choice. The

reason for doing so is due to the open source nature of ARM Linux, allowing the kernel to be
easily understood and manipulated, especially when a new routing protocol is required to be

incorporated into the existing IP (Internet Protocol) stack.

However, many people question Linux's application to embedded systems. The reason for this

is due to the amount of RAM, ROM, flash, and processing power Linux requires [85] . Although

this may be true, Linux's inclusion of a fully standards-compliant TCPIIP stack and GUI makes

it very attractive to high-end embedded systems, such as the iP AQ [85]. Previously, such high­

end devices did not exist, forcing embedded producers to adopt custom built real-time operating

systems (RTOS), aided by compact software development environments such as eCos [86],

VxWorks [87], QNX [88], and LynxOS [89]. But with decreasing memory prices and increased

processor speeds, custom built RTOS are no longer necessary, since well-known commercial

"off-the-shelf' operating systems are able to be ported to such environments. This is further

emphasized by Microsoft's development of Pocket PC, which is simply an embedded version of
the ordinary Windows operating system for the iPAQ.

49

Chapter 3 The Physical Environment

Having said this, however, many embedded Linux distributions exist. The reason for this has
been largely through HP 's (Formerly Compaq) continual support for the development of a

reference distribution of the Linux kernel for the iP AQ, lmown as hh [90]. This distribution

originally consisted as a ported version of the XFree86 implementation of the X Window

system for the StrongARM (SA llxx) processor, which was released in May 2000 [85] . In

addition to this, HP also sent free iPAQ devices to major Linux and open-source players, and
hosts a community resource website at http://www.handhelds.org, which provides handheld

developers with Web, FTP CVS and mailing-list support to all its ' open-source solutions [90].

This generated much interest within the larger global community resulting in the rapid
development of an embedded Linux solution for the iP AQ. In fact, solutions developed so

quickly that HP couldn't keep up, eventually forcing HP to replace its ' reference distribution

with that of Familiar [91].

The Familiar Project consists of a small group of developers that are dedicated to the creation of

a stable OS and supporting applications for the iPAQ. Initially, the project customized hh to

include Python and anti-aliased font packages, which could be accessed within its ' Blackbox

window manager [90]. Currently, however, this has been modified to include a user-friendly

packaging support system called i p kg , which allows packages to be loaded, updated and

upgraded as required. Collectively, these components form the Familiar Distribution, which has

now become the new hh reference distribution [90].

While the Familiar Project focuses on the development of a stable OS, at least three other

vendors have focused on the implementation of alternative GUl's. These being Century
Software, Trolltech and Transvirtual Technology [85, 90].

Century Software [92] builds on the hh distribution to equip it with a GUI, which consists of a

number of layers. At the base of this distribution lies Microwindows, a windowing environment

that contains two API's - Microwindows and Nano-X - that resembles the Windows GDI and

the X system [85] respectively. However, Century Software decided to focus on its' Nano-X

API, since it wanted to preserve X 's option of running the OS in a client-server environment.

Thus, to Nano-X, a FLTK (Full Light Toolkit) layer was added, called FLNX (Full Light Nano

X). FL TK provides all the necessary widgets that are required to interact with text boxes, push

buttons, menus, etc. [85]. Hence, Century Software allows ordinary FLTK calls to be translated

by FLNX to Nano-X calls, which in turn are converted by Microwindows to Linux frame buffer

calls. In addition, Century Software wanted to incorporate the fully standards-compliant KDE

(K Desktop Environment) 1.0 browser into its distribution, due to its ' compactness. But, KDE
required Trolltech's Qt application framework [85]. Thus, Century Software developed another
layer, lmown as the Qt compatibility layer, allowing Qt calls (made by the KDE widget) to map

to the corresponding FLTK calls. However, the performance of this layer is questionable, since
each call will be re-translated five times, before actually being processed. Nevertheless, Century

Software provides a windowing· GUl distribution that is fully FL TK and web browsing
compliant.

Like Century Software, Trolltech [93] also incorporated GUI facilities into the hh reference

distribution, which is independent of the X environment itelf. However, being the original

developers of the Qt Palmtop Environment (QPE) , Trolltech's framework is conceptually

simpler than that of Century Software. Instead of using multiple layers, Trolltech simply
translates all Qt calls directly to Linux, through its QtlEmbedded framework (a compaet version

50

Chapter 3 The Physical Environment

of Qt) [85], making it ideal for Qt applications, such as KDE. However, Trolltech's simplicity

may also be its downfall, since it is unable support as many API's as that found with Century

Software. Nevertheless, it does offer a compact GUI, with increased performance. However,

although Trolltech' s distribution is free and open, it requires a license to develop commercial

products [90].

Transvirtual Technology [94], on the other hand, takes a rather different approach. Although it

builds on the hh reference distribution, it aims is to provide the iPAQ with a Java Virtual

Machine (JVM), allowing applications to be rapidly deployed without regard to platform

considerations [85]. However, since Java requires the use of a JIT (Just-In-Time) interpreter,

many people question Java ' s applicability to an embedded operating system. Nevertheless,

being founded by the authors of Kaffe Java [95] (one of the best open-source JVM developed

for the PC), it is expected that Transvirtual Technology's distribution, called PocketLinux, will

provide long-term support to the iPAQ [85].

Nonetheless, since the above three vendors all base their distributions on the hh reference, the

Farriiliar Distribution will always be "one step ahead of the pack", causing it to be selected

above all other vendors, especially for the adoption of a new routing protocol.

3.4 Linux and its' Networking History

Networking, and the Internet, started its roots in 1962 through the U.S. Department of Defense's

(DoD) Advanced Research Project Agency (ARPA). The focus of this agency was on computer

research, initiated by "U.S.'s reaction to the then Soviet Union's launch of Sputnik in 1957"

[96]. Through the developments made by ARPA, the idea of an interconnected community was

born, leading to the creation of the ARPANET (Advanced Research Projects Agency Network)

in 1968. Initially the ARPANET consisted of IMPs (Interface Message Processors) connected at

UCLA (University of California Los Angeles) and SRI (Stanford Research Institute) [96]. Once

installed, group meetings were held to discuss technical issues surrounding the interconnection

of these cites in 1969. This group became know as the Network Working Group (NWG) [96],

which distributed meeting notes to keep members informed. These notes, known as RFC's

(Request For Comments), were made public in order . to promote an informal discussion of

issues that would normally not be found in papers. Through this openness, many fundamental

networking problems were addressed, which lead to the construction of the global Internet

found today [96].

At about the same time of ARPANET, the UNIX operating system was born. It started initially

in 1965 as the MULTICS (Multiplexed Operating and Computing System) project, to build a

dependable timesharing operating system through the collaboration of GE (General Electric),

MIT (Massachusetts Institute for Technology) and Bell Laboratories, which failed in 1969 [97].

Through the efforts of Ken Thompson, Dennis Ritchie, Doug Mcilroy, and J. F. Ossanna, Bell

Laboratories re-looked at the problem and developed a philosophy of using smaller

interconnected programs to construct the operating system, leading to the creation of UNICS

(UNiplexed Information and Computing System) [98]. Although this operating system was

designed with the intent of creating an environment in which to do future work, its name stuck,

leading to the shortened form of UNIX. Further research conducted at Bell Labs lead to many

innovations, such as the B programming language (1971), the C language (1973) and the

concept of a pipe (1972) - all of which aided the integration of applications and the production

51

Chapter 3 The Physical Environment

of network device drivers [4]. Then in 1976-77 Ken Thompson took a six-month sabbatical

from Bell Labs to teach UNIX, as a visiting computer science professor at UCB (University of

California at Berkeley) [99]. On completion of his sabbatical, students and professors of

Berkeley continued to work on UNIX, leading to the concept of sockets and the construction of

the Berkeley System Distribution (known simply as BSD Unix) in 1978. Later, AT&T

introduced the notion of streams through the creation of a "rival" Unix-based operating system

(known as System V) in 1984. However, due to shortages in RAM, high microcomputer costs

and lack of available networking specifications, much of the networking work developed in the

1960' s only became feasible to the common user in the mid-1990s [4]. This was due to many

factors [4], including the creation of Linus Torvalds ' Linux operating system (1991) and the

establishment of the GNU project (1984), which supported the distribution of free software to

the public domain. The Unix-based Linux operating system was the first fully standard­

compliant OS to feature a TCPIIP stack implementation that accompanied free source code to

anyone who wished to obtain it [4]. Through this distribution concept, many research groups

have gained hands-on "working documentation" that has been vital to the progress of protocols

within all areas of the network domain.

3.5 The Linux Networking Model

While engineers of ARPA worked on the development of the networking framework, other

organizations constructed generalized conceptual models of its ' infrastructure. One such body

was the International Organization for Standardization (ISO), which produced the Open

Systems Interconnection (OS!) model in 1984 [100], as given in Figure 43, below.

7

6

5

4

3

2

II(• Physical Flow of Data

.. -.-.. ;-. .. ---~ Logical Peer-to-Peer Connection

Applicati()fl <o(i-----------·------- ·---111. Application

Pn:sL:l1tatiof) +- --------------~ Pn:sL:l1!.ation

... _--_._------_._. __ ._ _-_ .. _--_ _--_._ .. _-_. __ ._----_. __ . __ ... _-_ ... __ . __ Ses~i(\n

One or More Routers HostB

Figure 43: Showing how data flows between two host communication devices, using the seven
layered stack of the OSI model developed by ISO.

Apart from providing a common design metalanguage [4], the OS! model introduced the
concept of layers, which was used to break the complex networking system up into smaller,

more manageable blocks. Once segmented, requirements could be established and assigned to

each block, allowing developers to focus on a particular layer independently. Hence, the aim of

the OS! model is not to specify the details of each layer, but rather its ' task, thus leaving the

implementation specifics up to the research communities at large [4]. However, in order for
each layer to work independently, a process known as encapSUlation was required.

52

Chapter 3 The Physical Environment

Encapsulation allows two peer layers (see Figure 43) to convey control information to each

other, without affecting the layer below. It achieves this through the placement of a header

(andlor trailer) [100], which is appended to the beginning (or end) of each packet, just prior to it

being passed down to the layer below it. Since each layer is independent, this lower layer will

simply treat both the header (andlor trailer) and data fields as ordinary data, ensuring that this

new data combination is delivered correctly to its peer layer. An illustration of this is given in

Figure 44, below.

User Data Application Layer

,Transport Layer

Data Network Layer

Data Data Link Layer

Figure 44: Showing the encapsulation process, in which the header and data fields from one
layer form the "data" of the layer below it. 4

Once the packet has been fully encapsulated, it is transmitted over a physical transportation

medium, which may be a set of wires, optic-fibers, or air. On the receiving end, the packet

undergoes decapsulation, which is simply the reverse of the encapsulation process. In other

words, the Data Link layer will first remove its control header information, before passing the

remaining data packet to the Networking layer. The Network layer will then read this data to

retrieve relevant fields from its' header, which are used to determine whether the packet is

destined for this machine or not. If not, the packet is re-encapsulated and sent down to the Data

Link layer, so that it may be re-transmitted on towards the next-hop node. However, if the

packet did reach its' destination, the header of the Network layer is removed and the resultant

packet given to the Transport layer. This process then continues, until the packet is fmally

received by the corresponding peer application.

However, when looking at real networking systems of today, one will notice that not all seven

layers of the OS! model are ~ver implemented. The reason for this is simply because

encapsulation of seven layers is Unnecessary, since it would produce a significant amount of

processing and control overhead. Hence, a more efficient approach is to just to combine some of

the layers within the OSI model. This is exactly what the National Research Council (NRC) did

in 1994 [101], with the development of their Open Data Network (ODN) model (Figure 45).

4 Note, however, that only four layers are represented and not all seven, as found in the OSI model. The
reason for this will become clearer, with the development of the ODN model. •

53

Chapter 3 The Physical Environment

... -_~ Physical Flow of Data

<I(~ Logical Peer-to-Peer Connection

RostA One or More Routers RostB

Figure 45: Showing how data flows between two host communication devices, using the four
layered stack of the ODN model developed by the NRC.

Apart from reducing overhead, the ODN model was developed to give a better representation of

how any network may be interconnected. This was done to help understand how all networks

function, in the hope of merging all these systems into the next generation of networks. Hence,

this model can be used to represent telephone, satellite, cellular, television, and computer

networks [6]. In particular, this model can be used to help understand the Linux networking

protocol stack. But, before doing so, a short description of each layer (or service) is necessary.

3.5.1 The Bit Way Service

The Bit Way service is responsible for transmitting individual bits over a point-to-point link [6].

Knowledge of this service is needed, so that an understanding can be gained of the transmission

difference between a unicast and broadcast packet. This is because this information becomes

pertinent in Chapter 5, where an explanation is given on why additional structures ,,(ere required

to acknowledge multicast traffic. In addition, this service explains why large latencies can be

observed in congested networks.

Generally, on computer networks, the Bit Way service is handled using Network Interface

Cards (NIC's), which are employed with a particular MAC (Medium Access Controller)

specification. In the case of this project, Cisco's wireless Aironet 350 PCMCIA PC LAN cards,

operating on the IEEE 802.1 1 (b) protocol, were used.

The IEEE 802.11(b) wireless MAC protocol [102, 103] defines a means for location­

independent devices, such as PDA's or laptops, to communicate over an unlicensed 2.4 GHz

ISM (Industrial, Scientific and Medical) radio band. On traditional wired interfaces, the IEEE
802.3 Ethernet standard [104] was developed, which used CSMAlCD (Carrier Sense Multiple

Access with Collision Detection). However, since the hidden terminal problem (section 2.3.5 .1)

makes wireless collision detection difficult, the IEEE modified its CSMAlCD mechanism to

that of CSMAlCA (Carrier Sense Multiple Access with Collision Avoidance), referred to as the
DCF (Distributed Coordination Function). The DCF is comprised of a random back-off

algorithm, virtual and physical carrier-sensing, as well as, two different transmission techniques

[102]. The sub-sections that follow look into these schemes, separately, since they become

relevant to the understanding of the broadcast storm problem [76] and why multicast protocols

need to handle acknowledgement procedures within the routing layer, in order to match a
unicast transmissions' reliability.

54

Chapter 3 The Physical Environment

3.5.1.1 The Back-off Timer

The back-off algorithm is employed to prevent collisions from occurring, once the air medium

switches from the busy to the idle state. This is because all other awaiting hosts will sense that

the transmission medium has become vacant and hence will attempt to contend for the air

channel, simultaneously. However, such contentions can be avoided if a host first waits for a

random amount oftime before it transmits. This is the task ofthe back-off timer.

The IEEE 802.11 back-off timer work as follows: When a host detects a busy to idle state

transition, it is required to wait for a period defined by Equation 3 (unless the back-off time was

previously set, in which case the wait period is set to the time remaining on the back-off timer).

Once a value for the back-off timer has been allocated, the timer will decrement by aSlotTime

for every back-off slot found to be idle [102] (see Figure 47).

Back-off Time = Random() x aSlotTime (3)

where:

• Random () is a function that returns a pseudorandom integer in the interval [0,

CW] , with CW (Contention Window) being in the range aCWmin < CW <

aCWmax. When a host first tries to contend for the channel, it sets CW equal to

aCWmin. CW is then increased to the next power of two (minus 1) each time an

unsuccessful data transmission occurs, untii aCWmax is reached, in which case CW

is no longer increased (see Figure 46). CW remains set to this higher value, until it is

reset due to a successful transmission.

•

aCWmax

...
o
E

1=

aCWmin

,
7

- ~-

o

255 255

127
-

63
r---

31
15 n i rl

I I

2 3 4 5 6

Number of Unsuccessful Retries

Figure 46: Showing how CW increases, with each unsuccessful retry [102].

aSlotTime is the minimum time it takes for the NIC to determine the state of the

wireless medium, i.e. whether the channel is idle or busy. Vendors usually set
aSlotTime to 20 micro-seconds.

~ote that as the channel becomes congested, an exponential increase in the latency of a packet

IS observed. This information becomes vital to the understanding of the maximum delay bound

of a packet during broadcasting, as will be se~n in the results of Figure 70 in Chapter 5.

55

Chapter 3 The Physical Environment

To illustrate Equation 3, image two nodes exist (a & b), each initially containing a back-off time

interval of 15 x aSlotTime and 20 x aSlotTime, respectively. Node a will transmit its' data

first, since it is required to wait for a smaller time period than b. Hence, after 15 x

aSlotTime's, a will begin to transfer its ' data, while b will stay idle with five slots still

remaining, since it will sense the air medium as being busy during this time period. Once a has

completed its' data transfer, the channel will switch from the busy to the idle state, causing a to

randomly select a new back-off time interval. However, as b already has 5 x aSlotTime

seconds left on its' clock, it does not select a new back-off interval, causing b to transmit its'

data next, depending on the random value chosen by a. Hence, this strategy allows multiple

devices to share the same physical channel, but causes periods where no data is communicated;

resulting in lower link capacities, as described in Section 1.1. This process is shown in Figure

47, below.

I" 15 x aSlotTIme _I

Node A I I I I I I I I I I I I I I j I Data Frame

NodeB Wait

20 x aSlotTIme

newly chosen

I.. back-offtime -I

1111 11 11111
Wait

Data Frame

I"remaining-I
5 slots

Figure 47: Showing the back-off mechanism of two nodes a and b, using the IEEE 802.11 (b)
MAC protocol.

3.5.1.2 Virtual Carrier-Sensing

Virtual carrier-sensing is achieved through the use of RTS (Request To Send) and CTS (Clear

To Send) reservation frames, known collectively as the NAV (Network Allocation Vector)

[102]. RTS/CTS control frames indicate to other neighbouring hosts that the medium is to be

reserved for a duration of time, which is calculated to be the sum of the time that it takes for the

transmitting host to send a data frame and to receive an ACK (Acknowledgement). Hence, hosts

awaiting the use of the medium are informed to delay their transmission for this period of time.

However, this reservation mechanism can only be employed for unicasts, as broadcast and

multicast transmissions contain multiple next-hop destinations, resulting in multiple CTS
response frames. Since the MAC layer has no way of determining whether all the CTS frames

were received correctly (as there is . no interaction between it and the routing layer), this

reservation procedure cannot be used in multi-destination transmissions. Similarly, ACK frames
can only be used for unicasting purposes, thus reducing the reliability of broadcast and multicast

data (see Section 2.3.5.1). An illustration of the different frame structures employed for unicast
and broadcast data types are given in Figure 48 and Figure 49, respectively.

56

Chapter 3 The Physical Environment

Legend:

DIFS Distributed Inter Frame Space (128 uS)
SIFS Single Inter Frame Space (28 uS)

o aSlotTime (20 uS)

l DIFS .I I I

f------1
1 "I RTS DATA I Source

SIFS.I I SIFS l SIFSJ I

Destin ation I CTS I I 1 ACK

I D1FS

Other NAV{RTS} II / / / Back~ffTime

I NAV(CTS)
I
I

Defer Access Back-off After Defer

Figure 48: .Showing the virtual carrier-sensing mechanism used for unicasted traffic [102].

I D1FS I

Source I DATA !

Destina tion

DIFS

Other I / / / Back~ff Time

Defer Access Back-off After Defer

Figure 49: Showing the virtual carrier-sensing mechanism used for multicasted traffic [102].

Hence, in order for a multicast protocol to attain the same reliability as unicasted traffic, these

acknowledgement sequences are required to be handled within the routing layer, as was done in

Chapter 5.

3.5.1.3 Physical Carrier-Sensing

Physical carrier-sensing is accomplished through the CCA (Clear Channel Assessment)

mechanism [102]. The CCA varies depending on the transmission mode used, which may be

either FHSS (Frequency Hop Spread Spectrum) or DSSS (Direct Sequence Spread Spectrum).

But, basically, if the carrier signal is sensed above a certain energy level, the medium is

assumed to be busy, or else it is idle. Through the combination of the NAV, the CCA and the
NIC's transmitter status, the state of the medium can be determined. However, for more
information in this regard, refer to [102].

3.5.2 The Bearer Service

The Bearer service is required to handle the networking aspects of the system [6]. Hence, this

service resembles the Network layer of the OSI model. In ordinary computer networks, this is
generally handled by the Internet Protocol (IP), which is implemented within the kernel.

The main task of IP is to identify the logical source and destination addresses of the sending and

receiving hosts, respectively [38]. However, in addition to these services, IP is also used to limit

routing loops and to provide fragmentation of packets greater than 64K bytes. But, due to the

way in which the new routing algorithm was inserted into the Linux operating system (described

in Section 3.7), IP fragmentation was not permitted and hence is not discussed further. The 20-
byte header ofIP (used during the encapsulation process) is shown in Figure 50.

57

Chapter 3 The Physical Environment

Version 1 IHL I Type of Service Total Length

Identification Flags I Fragment Offset

TTL I Protocol Header Checksum

Source Address

Destination Address

Figure 50: Showing the IP protocol header [38].

The following is a brief description of the IP fields that were manipulated to incorporate LAMP:

I HL (4 b it s) -

Total Lengt h (16 bits) -

TTL (8 bits) -

Pro t ocol (8 bits) -

Header Chec ksum (1 6 bits) -

The IP-Header-Length in 32-bit words. This value
depends on whether IP options are used or not. Since
this project does not explore the use of IP options, this
value is fixed to 5, indicating 20 bytes (5 x 32-bits).

The size (in octets) of the IP header + encapsulated data.

The Tirne-To-Live. This value is used to prevent infinite
loops from occurring. It is set to the worst possible
number of hops by the source, after which it is
decremented by one at each router. If a value of zero is
found, the packet is discarded.

This field is used to indicate the recelVlng layer 4
protocol. This value is 17 for UDP and 6 for TCP.

The 16-bit one's complement of the IP header. During
checksum calculations, this field is set to zero.

Source Address (3 2 bit s) - The logical address of the sending host.

Des t inat ion Address (32 bits) - The logical address of the destination host. If this value

is set to all 1 's, then a broadcast is sent out.

However, before concluding this sub-section, a brief ~escription of how ARM Linux handles

multi-byte (more than 8 bit) fields is required.

When individual characters (single bytes) are transmitted, they are sent out in a left-to-right

fashion, starting from the top of Figure 50. This format is called network-byte-order, but is also

known as forward or big-endian orientation [4]. Here the most significant 8-bits of multi-byte

variables are placed in the lowest memory addresses. However, not all processors use multi-byte

variables in this manner, especially those based on the Intel 80x86 architecture. These, instead,

place the least significant 8-bits in the lowest memory addresses. This format is called host­

byte-order, but is also known as backward or little-endian [4]. Hence, any processor operating

in host-byte-order (such as the Intel SA llxx) will need to convert variables between these

formats, when manipulating multi-byes fields received in network-byte-order. However, Linux

provides the following four library functions to per:form these conversions automatically [4]:

h t onl () - Host- to network-byte-order conversion of a 32-bit (4 byte) variable.

hton s () - Host- to network-byte-order conversion ofa l6-bit (2 byte) variable.

n toh l () - Network- to host-byte-order conversion ofa 32-bit (4 byte) variable.

n t ohs () - Network- to host-byte-order conversion ofa 16-bit (2 byte) variable.

58

Chapter 3 The Physical Environment

In addition to byte orientation, some processors also require that multi-byte variables be aligned

to word (4 byte) boundaries [4]. One such processor is the Intel SA 11 XX, used within this
project. It prevents multi-byte variables from being manipulated at arbitrary boundaries. Hence,

de-referencing a multi-byte variable at a non-word boundary causes undesired results. This is

shown in Figure 51.

word-limited processor

non-word-limited
processor

a word boundary • •
a I b I c I d

a byte ..-.
a I b I c I d

e

e

start of word de-reference

~ (result = k,I,i,j)

I f i g I h I I k I I m i n I a I p

I f i g I h I I k I I m i n I a I p

i (result = k,l,m,n)

start of word de-reference

Figure 51: Showing the difference between a word-limited processor and a non-word-Iimited
processor.

One means of preventing such errors, is to copy each desired byte into a temporary word­
aligned memory space, before de-referencing. This way, data will always be recovered

correctly, but will result in an increased processing overhead.

3.5.3 The Middleware Service

The Middleware service is responsible for handling any other kernel tasks that may be

necessary, in order for data to be transmitted correctly [6]. In Linux, this layer constitutes the

socket and INET (Internet) mechanisms. Sockets are used to handle multiple instances of

applications, allowing the networking structures to be multiplexed among different kemel

processes, while INET protocols are employed to ensure data is received correctly. In this

project, this is handled by the User Datagram Protocol (UDP).

UDP allows datagrams (connectionless data) to be sent tolfrom multiple applications [105]. But,
UDP does not provide protection from duplication, nor does it guarantee that transmitted

datagrams will be received by the intended destination(s). If these requirements are needed, then
. either the end-to-end application will have to handle these procedures or UDP should be

replaced by TCP (Transmission Control Protocol). However, the use of TCP is not considered
for two reasons. Firstly, TCP can only provide unicast services and thus does not permit the use
of broadcasting or multicasting, which is crucial to the research conducted herein. And
secondly, evaluation of a routing protocol cannot be conducted through the use of TCP, since
TCP will improve the delivery ratio of packets (due to its reliable protocol engine), giving a
false reflection of the actual performance of the underlining routing algorithm, when viewed

from an end-to-end application perspective. The 8-byte protocol header of UDP is given in
Figure 52.

59

Chapter 3 The Physical Environment

Source Port Destination Port

Length Checksum

Figure 52: Showing the UDP protocol header [105].

The field descriptions that were manipulated to incorporate LAMP include:

Source Port - The address of the port to which the process of the sending application is

attached.

Destination Port - The 16-bitport address of the receiving application process.

Length -

Checksum -

The size (in octets) of the UDP header + the application data.

The 16-bit one's complement of the pseudo header (known also as the fake

header, see Figure 53) and user data. Note that if this value is calculated to

be zero, all 1 's are sent instead, since a zero checksum indicates that no ,

checksumming was performed by the transmitter (used mainly for

debugging purposes).

Source IP Address

Destination IP Address

Padded Zero's
Protocol field

Length field from the UDP header
from the IP header

Figure 53: Showing the pseudo (fake) header [105].

3.5.4 The Application Service

The Application service simply provides the GUI, allowing users to easily interact with each

other. Since the iPAQ contains a relatively small screen (240 x 320 pixels), GUI's need to be

designed carefully and ergonomically. The area (in Linux) where applications reside is known
as user-space or (alternately) user-land.

3.6 The Linux Networking Protocol Stack

This section describes the way packets are sent over the Linux IP stack, starting with the
receiver. Prior to doing so, however, an illustration of the Linux encapsulation process is

required. Note that Figure 54 resembles very closely to that depicted by the aDN model.

User Data Application Layer

UDP Header lNET Layer

Data IP Layer

MAC Header Data MAC Layer

Figure 54: Showing the encapsulation process used within the Linux kernel.

60

Chapter 3 The Physical Environment

3.6.1 The Reception of a Packet within the Linux Kernel

With reference to [106], when a packet is received by the NIC, the first six bytes are examined

to determine the packets' destination MAC address. If this MAC address corresponds to either

the broadcast MAC address (FF:FF:FF:FF:FF:FF) or the uniquely assigned MAC address of the

NrC, it is passed to the network driver, or else the packet is ignored and no further processing is

done to it. Since many routing layer protocols may exist on the host, it is the duty of the network
driver to determine which receiving function is responsible for handling the packet next. This is

done by analyzing the type field of the MAC header, which is generally set to IP. Assuming this

is the case; the protocol receiving function will determine where to send the packet next, by

examining the destination IP address. If this IP address happens to match that of the hosts' IP

address, the payload of the packet is sent to either the UDP or the TCP protocol receiving

functions, where it is given to the intended application through various socket dependent

handling functions; else the forwarding route of a packet is looked up in the routing table of the

host, where it is sent back down the IP stack for re-transmission. Note, however, that as the

packet travels up the IP stack, more and more information regarding it is discarded.

Furthermore, if the application does not open the correct socket type with corresponding

parameters, the received packet is dropped by the operating system.

3.6.2 The Transmission of a packet within the Linux Kernel

A host may also wish to send data to another host. Since Linux performs most I/O handling

through the basic file operations open () , read () , write () and close () [107] , the host

application begins the transmission of data by making a system call to the kernel, with the

required file descriptor. File descriptors are simply integers that associate one open "file" from

another, where a "file" may be a FIFO buffer, a network connection, a pipe, a terminal or even

an actual file open on the disk-drive [108]. Hence, the first task of the kernel is to determine the

type of "file" requested, and call the appropriate handling function. Since we wish to send data

to a network connection, this request is given to the socket transmission function, which

transfers the packet to the INET layer [109]. Depending on whether the file descriptor

corresponded to a connection (stream) or connectionless orientated socket [108], the TCP or the

UDP protocol transmitting functions are called, respectively. These protocols perform the
necessary operations to ensure that the data is given to the receiving application correctly, after

which the packet is given to the IP layer for routing. This layer fills in the source address
information and looks up the outgoing route of the packet, through the hosts' routing table.

Once a route is found, the next-hop MAC address is determined using ARP (Address Resolution
Protocol) and the packet is transferred to the NIC for transmission.

3.7 The Netfilter Framework

Paul "Rusty" Russell started a project called netfilter in 1998 [107] to provide a packet

manipulation (known as mangling) framework for the 2.3.x Linux operating system. The aim of

the framework is to allow complex packet filtering (known as firewalls) and modification

(called Network Address Translation, or simply NAT), outside of the of ordinary Berkeley

socket interface. Thus, netfilter offers a means for packets to be altered (or stopped altogether),
in addition to the ordinary functioning of the Linux IP stack.

61

Chapter 3 The Physical Environment

Previously, mangling of packets was done using the Linux's 2.2.x ipchain framework [107] ,

which was also developed by Rusty Russell. It consisted of a portion of code that resided within

the Linux operating system, as well as, a command-line utility (called ipchains) , which provided

the rules to configure a Linux firewall , allowing unwanted packets to be dropped. However, no

application programming interface (API) was developed to access the ipchain infrastructure

from user-space applications, preventing rules to be written from languages such as Tel, Java,

Perl, C or C++ [107]. Also, ipchains was not flexible, since rules could not be established on a

per-user basis nor could packets be filtered at the MAC level. In addition, Rusty Russell had

also developed another independent project, known as NAT, which was used to alter the

destination (DNAT) and/or source (SNAT) addresses of a packet [107]. NAT allowed one to

perform many interesting "tricks", since both routers and hosts could now be "fooled" into

believing packets originated from PC' s which did, or did not, exist. One main application of this

technique is in masquerading, which allowed different PC's to connect to the Internet through

the use of a single ISP (Internet Service Provider) address (see [110]). Hence, an individual

applies (and pays) for one connection, but is able to use this connection to run a small network

of PC's, simply by using NAT on both the incoming and outgoing Internet packets. However,

Rusty felt that a more flexible API was required, which incorporated both NAT and ipchains

into a single package. Hence, for these and many other reasons, he wrote netfilter [107].

Netfilter consists of protocol specific hooks, which are placed strategically within the IP stack.

To-date, hooks have been developed for IPX, IPv4 and IPv6. However, since this project deals

with IPv4, only details relating to this protocol will be considered. A conceptual illustration of
where these hooks are placed is given in Figure 55.

Hooks:

® NF JP _PRE_ROUTING

@ NF _IP _LOCAL_IN

® NFJP_FORWARD

® NF JP _POST_ROUTING

~ NF _IP _LOCAL_OUT

Application Layer User

Socket Layer

(NET Layer

Kernel

NIC

Rx Tx

Figure 55: Showing the position of the five IPv4 netfilterhooks, found within the Linux kernel.

The defmitions and responses for each hook can be found in

l inc lude / linux/ netfilter_ipv4 .h, which is located off the main Linux 2.4.x source

directory. Essentially, when a packet is received from the NIC, netfilter allows the packet to be

first ~aptured by the NF _ IP _PRE_ROUTING hook. Rules can then be applied to a packet,
allowmg a response to be generated. The responses that exist for an IPv4 packet are [107]:

62

Chapter 3 The Physical Environment

•

•
•

•

NF _DROP (which causes a packet to be dropped, thus preventing it from traversing the IP

stack any further)
NF ACCEPT (which causes a packet to continue to traverse the IP stack)
NF - STOLEN (which causes a packet to be taken over by the hook and hence will be

pro~essed without the use of the IP stack)
NF QUEUE (which causes a packet to be placed onto a protocol specific queued, so that it
may be transported in a user-space application)

Hence the NF DROP and NF ACCEPT rules provide a means for a firewall to be constructed, ,- -
while the NF _QUEUE rule allows packets to be analyzed via a background user-space

application (known as a routing daemon). An illustration of this is given in Figure 56, below.

Application Layer User

Socket Layer

INETLayer

Kernel

IP Layer

MAC Layer NIC

Rx Tx

Figure 56: Showing the queuing mechanism used by netfi/fer.

Once, the routing daemon has processed the packet, it may do one of three things to the packet

[107]:

• It may NF _DROP the packet, causing the packet to be flushed off the protocol specific
queue,

• Or it may NF _ACCEPT the packet, causing the packet to be placed back within the hook
from which it was captured;

• Or it may give the protocol specific queue a replacement packet, which is also placed back
into the hook from which the original packet originated.

Hence, NF _QUEUE allows flexibility to be introduced into netfilter, since the user-space

application is free mangle the received packet as it sees fit, before it is passed back to the Linux

IP stack for processing. Thus, it is here where NAT can take place.

However, this project used the routing daemon for a different purpose. Instead of performing

NAT, the routing daemon was used to manipulate packets based on the ad-hoc protocol

employed. To this end, the daemon was used to add, edit and remove an ad-hoc specific header,

which was employed to aid the decision making of each router.

Once a packet has passed through the NF _IP _PRE_ROUTING hook, it is examined to see

whether the packet was destined for this host. If it was, it is sent via the NF _IP _LOCAL_IN

63

Chapter 3 The Physical Environment

hook to the receiving application; otherwise the packet is given to the NF _IP _FORWARD

hook, before being routed. Routing in Linux simply means looking up the next-hop IP address

from the routing table of the local host. Once this is lmown, the packet is given to the

NF _IP _POST_ROUTING hook, where it is sent to the NIC for transmission.

If the packet was created locally, however, it is first sent through the NF_IP_LOCAL_OUT

hook. Once returned, the packet is routed and then sent via the NF _ IP _POST _ROUTING hook,

for transmission.

Even though this framework was used to manipulate packets for the purpose of developing an

ad-hoc networking infrastructure, specific details concerning the IP stack is still required, as this

will clarify exactly how packets need to be handled within the routing daemon. For example, do

the UDP and IP checksums and data lengths need to be re-adjusted after a packet is altered or do

these fields get re-calculated automatically after each hook? These questions can only be

answered by conducting a trace through the Linux IP stack, since such documentation could not

be found. Hence, this work was conducted in conjunction with the implementation and can be

found in Appendix A.

3.8 Conclusion

The iP AQ PDA from HP is a high-end embedded device that is suited to the ARM Linux

operating system. The Linux operating system is open, flexible and free, making it the perfect

environment for the incorporation of a new routing protocol.

To-date many projects are being initiated to give the Linux kernel extra features. Companies

such as Century Software, Trolltech and Transvirtual Technology, have looked to develop

embedded GUI's, while projects such as ipchains, NAT and netfilter, have explored packet

manipulation techniques for the kernel.

In particular, netfilter provides a means for ad-hoc protocols to be incorporated into the existing

Linux IP stack, via a background user-space application. Being an application, routing daemons

have access to ordinary programming libraries and hence are easy to both compile and debug. In
addition, since packets can be manipulated before the IP and UDP calling functions, ad-hoc

protocol specific headers can be add/removed without affecting the existing function calls of the

IP stack. Hence, ad-hoc "features" can be simply added to the existing Linux architecture.

However, apart from the architecture, this chapter also described the difference between a

unicast and a broadcast transmission. In a unicast transmission, virtual-carrier sensing is used to

reserve the channel for a data transfer, after which an aclmowledgement pack;et is sent to notify

the transmitter of a successful reception. On the other hand, a broadcast packet simply uses
physical sensing to detect if the channel is idle, after which the data is transmitted. Since no

aclmowledgements are used for a broadcast, the transmitter has no way of determining whether

the data was successfully received by the intended neighbouring node. Hence, in order for a

broken link to be detected (i.e. the loss of a neighbouring node, due to mobility), additional

structures are required by multicast schemes to acknowledge the reception of packets. In
addition, note that since virtual-carrier sensing is not employed, broadcast schemes suffer from

a greater probability that a collision will occur, due to the hidden terminal problem (described in

2.3.5.1). However, this discussion will re-surface in Chapter 5, where details are given on the
aclmowledgement structures that were used in LAMP.

£\4

The Simulated Environment

4.1 Introduction
Developing a network protocol requires three main steps:

1. Logic construction,
2. Logic testing, and
3. Logic implementation.

However, each of these steps may need to be repeated several times, before the final protocol

has been developed. For instance, during the testing phase, one may realize that some aspect of

the protocol is not working as expected and thus requires modification. The same is true during

implementation, except in this stage, protocol modification often occurs as a result of hardware

constraints, which were not considered (or known) during the construction and testing phases

[111].

This chapter explores just the testing phase and shows how a network simulator, known as ns-2

(Network Simulator version 2) [112], can be used to provide such facilities.

4.2 The Network Simulator

Writing a custom-built simulation environment has a few disadvantages. One such drawback is

the creation of existing protocol models, which have already been build (and validated) by

either the author or experts working in that field. Another problem transpires when results need

to be compared, since papers do not always detail every aspect of a protocol, causing different

implementations to lead to different results [45] . Thus, to address these issues, a drive to
develop a shared community-based simulation framework was initiated by the VINT (Virtual

InterNetwork Testbed) projectS, which permits all types of networking traffic to be investigated

through the use of common Pt:otocol models. VINT called this framework the Network

Simulator (NS), which is now used by approximately 10,000 users from 600 institutes (across

50 countries) (see http://www.isi.edu/nsnam/ns/ns-research.html).

NS is a freely distributed, open-source simulator that focuses on modeling network protocols

from the link-layer and above. NS is coded using the event-driven e++ language, which is

employed to handle the transmission and reception of multiple, simultaneous discrete packets.
Presently, NS is supported on UNIX (or UNIX-like) environments (such as FreeBSD, Linux,

SunOS and Solaris), as well as, on most Windows-based platforms. However, due to the open­
source nature ofNS, support is geared more to the UNIX-based platforms than to others.

4.3 The History of NS

NS was developed by LBL (Ernest Orlando Lawrence Berkeley National Laboratory) in 1995

through the support of DARPA (the department of Defense's Advanced Research Project
Agency). Initially, NS began as variant to the 1989 REAL (REalistic And Large) network
simulator [112].

A ~olla~oration between LBL, Xerox P ARC (Palo Alto Research Center), UCB (University of
Cahforma, Berkeley) & USC (University of Southern California) / lSI (Information Science Institute).

65

Chapter 4 The Simulated Environment

REAL was developed to specifically simulate a packet switched, store and forward network, so

that scheduling disciplines (such as the Fair-Queuing Gateway Algorithm, First-Corne-First

Serve and Hierarchical Round Robin) could be compared [113]. REAL was built using the

University of Columbia's NEST (NEtwork Simulation Testbt;:d) simulation toolkit, which

incorporated a centralized simulation server that could be controlled using mUltiple client

workstations [114]. However, in i995 the VINT project was formed to evolve NS into a generic

simulation platform that could be used for both network emulation and education, in addition to

research [lIZ].

Emulation allows NS to be used in conjunction with a live network, thus permitting actual

network traffic to be processed and/or generated. To-date, live packets are unable to be

interpreted by the simulator and hence may only be dropped, delayed, re-ordered, or duplicated.

However, work is still being conducted to resolve this issue [115].

Nevertheless, since the initiation of the VINT project, NS has been extended with satellite (by

the UCB Daedelus Research Group in 1997) and wireless models (by the CMU Monarch project

in 1999), making it the standard framework on which ad-hoc routing protocols are tested.

4.4 The Components of NS
NS is comprised of three main components:

• The simulator,
• The pre-processing tools, and
• The post-processing tools.

The simulator is an executable application that encompasses pre-built C++ simulation models,

which are configured through various OTcl (Object-orientated Tcl) scripts. Details describing
how these models interact with each other are given in section 4.4.1.

In addition to these elements, NS also requires the use of externally written scenario files that

describe the way nodes move, as well as, the traffic profile of each node. This is done through

various generators, which come as part of the NS distribution. Together these tasks form the
pre-processing phase, described in section 4.4.2.

Once NS has processed a particular scenario, results may be gathered and analyzed through two

output files. The first of these files allows the simulation to be viewed through a graphical

·environment known as NAM (Network AniMator), while the second provides an ASCII trace of

every packet handled by the simulator. This trace file can then be used in conjunction with tools

such as Awk, Perl, Tcl, and MATLAB to provide vital simulation statistics, which can used to

compare protocols against each other. This task is known as the post-processing phase and is
described in section 4.4.3.

4.4.1 The Architecture of the Network Simulator

NS makes use of two languages [115]:

• C++ for the pre-complied objects, and
• OT cl for the frontend.

OTcl is an objected-orientated Tc11anguage, which was written in C++ by the same authors of

NS. The reason for developing a new language for the frontend of the simulator is due to

Chapter 4 The Simulated Environment

drawbacks found in the C++ language. C++ compiles code efficiently, but, once complied,

objects are difficult to manipulate. For instance, if a variable is used to indicate the number of

packets that are required to be transmitted by each node, this variable can either be hard-coded

or passed as a parameter from the prompt. Ifhard-coded, the object will need to be re-complied

each time the variable needs to be altered. If, instead, the variable was passed as a parameter on

the prompt, then object re-compilation will not be required, but, since a simulation uses multiple

objects (each containing multiple variables), passing parameters on the prompt is undesirable.

This is the task of OTcl. Instead of passing parameters over the prompt, NS makes use of a

simple scripting language to configure objects for a particular simulation. However, to achieve

this, a process !mown as shadowing is required.

Section 4.4.1.1 describes the operation of selected pre-complied C++ obj ects, while section

4.4.1 .2 explains the shadowing process used to configure these objects.

4.4.1.1 The e++ Objects

In NS, two main types of objects exist [115]:

• Classifiers, and
• Connectors.

Classifiers are simply mUltiplexers that are used to connect many objects together, while

connectors are used to manipulate packet events. Through the combination of these two object

types, models can be constructed. Section 4.4.1.1.1 details the wired models, while the wireless

models are handled in section 4.4.1.1.2.

4.4.1.1.1 The Wired Models

By combining many classifiers and connectors together, NS is able to artificially model the

networking architecture found in many physical systems, such as Linux. An example of such a
model is shown in Figure 57.

Node: [----------------- --------- -------!
i A.....,t i i "_.' j

Agent
,

1
Link ent ~o:=.!!in.!!.t...;..i ---+i) __ ., Agent :.

j
~._. __ _ N __ _ •• _ ._ • ••• __ • ••••• __ __ •• _ ••• _ ~ •• _ • • ~.._ _ __ _ _ --: -~UM~

Figure 57: Showing the NS model used to represent a wired node [115].

A node in NS consists of two types of classifiers. The first of these is an address classifier. The

node depicted in Figure 57 contains three other downstream links. Hence, the task of the address

classifier is to examine the address of a packet to determine which link the packet is required to

be transmitted over next. If this address happens to be equal to the local address of the node, the

F.7

Chapter 4 The Simulated Environment

packet is sent to the port classifier; else the packet is sent to a neighbouring node via its

corresponding link.

The port classifier is used to connect multiple agents together. Agents are objects that are able to

manipulate packet fields in some defined way. Hence, NS uses a combination of agents to

implement the different protocols found at each layer of the ODN model (section 3.5). Some of

the pre-existing agents ofNS include TCP, UDP, FTP (File Transfer Protocol), CBR (Constant

Bit Rate) and Te1net protocols. In addition to these, a special agent, known as a routing agent, is

used to manipulate the address of the packet, allowing the address classifier (and hence the next­

hop destination of the packet) to be controlled. Additionally, agents are able to send a packet

from one layer to another by altering the port address of the packet, allowing inter-layer, as well

as, peer-to-peer communication to be simulated.

Links, on the other hand, are used to model the congestion and delay characteristics of packets.

A conceptual illustration of a link in NS is drawn in Figure 58, below.

LinJe
:+- .. . ¥ - -. -•• • -.. . . ,. '~ . .. ~ • • • < • • " .. . ' ~..,. • • ~ "" , --•••• -.- •• --. - .•• • •• • • ••••.••• • •• •.••• - .-....... -.""-.~-• • ·.",,~ · · -'·····""'····· ··,... '""" '" --·· · .. ····-······1

link

I D~~~~e H Delay H TIL H ~~:e W-.- ~~i~
. • L... - - -"'. '-. __ -"' Lo-----Jf!POint

L "" _." _ ... _ .. _ ~ ... __ " ,' ~_ M •• • ••••••• •• _ """"- . _ ~ _ _ ,.. ••••••. • •••••• ••••••••• ,_ • •••• • •• • • • •••• __ •• • ~ ••• ~ • ••• • _.j

Figure 58: Showing the NS model used to represent a wired link [115].

When a packet arrives at a link, it is placed into a queue connector. However, just prior to

queuing, the packet is written to an output trace file for statistical and debugging purposes (see

the post-processing phase given in section 4.4.3) . NS allows the use of many different queuing

disciplines, such as FIFO (known in NS as a droptail queue), Priority-based droptail, CBQ

(Class-Based Queues), RED (Random Early Detect), FQ (Fair Queues), SFQ (Stochastic Fair

Queues, and DRR (Deficit Round-Robin). If any of these schemes cause the packet to be
dropped from the queue, the packet is sent to the drop head.

Drop heads are simply objects that are allowed to manipulate the dropped packet, before it is

written to the output file (through the drop trace connector). If, however, the queuing scheme

caused the packet to be de-queued instead, it is first traced and then sent to the transmission
delay connector.

The delay connector just multiplies the size of the packet by Ilbandwidth (of the link) to

calculate the amount of time the packet is required to be delayed. Once delayed, the packet is
given to the TTL (Time-To-Live) connector, to prevent routing loops.

The TTL connector simply reduces the TTL field of the IP header (see 3.5.2) by one, and if

found to be zero, the packet is dropped, or else it is traced (to indicate a packet reception) and

delivered to the corresponding downstream node, where it will be received by the neighbouring
address classifier.

However, in order to model congestion properly, a feedback mechanism is required to notify the

queue when it may send the next packet. This is accomplished through the use of a Boolean

flag, which is set to true, during de-queuing, and false, once the packet has been handled by the

68

Chapter 4 The Simulated Environment

delay connector. Thus, subsequent packets are blocked, while another packet is still in transient,

allowing queues to (possibly) overflow and hence experience outages.

4.4.1.1.2 The Wireless Models

The wireless models ofNS were developed by the Monarch project [45] as an extension to the

existing wired architecture. But, to do so, [45] needed to introduce new node models, which

could account for node mobility and the shared nature of radio communication. One such

example is MobileNode, given in Figure 59.

: '
:. • • ~ . _ ••••••••••• • • ••• • __ _ • ••• _ __ Ar ' ~~~ •• 0 .. o.._ ..• ~ __ _ •... -. u _ • • ~ ••• •• '---"~'-'- _ • •• , • "-- . -._ •• _ •• ••••••• ----- ••••• '

Common Radio Channel

ARP
IFQ
MAC
PHYIF

(Address Resolution Protocol)
(InterFace Queue)
(Medium Access Controller)
(pHysical InterFace)

Figure 59: Showing the MobileNode model used to represent a wireless node in NS [115].

As one can see, the basic structure of the NS node has been maintained. However, comparing

Figure 57 to Figure 59, one notices that the link model has been replaced with a number of

underlying layers (the darker shaded sections of Figure 59). In addition, the address classifier is

no longer used to forward packets to neighbouring nodes. This task has been shifted to the

routing agent, which was specified to be located on port 255. In fact, the Monarch project

developed another wireless node model, called the SRNode (Figure 60), which removes the

address classifier altogether. Since this model explicitly uses the routing agent to handle all

addressing decisions, any packet de-multipl~xed on port 255 (by the port classifier) is simply
discarded.

69

Chapter 4 The Simulated Environment

Node: ", __ _ .. , ___ ... __ . __ __ . ___ ._ ... ____ ... _., .. _ .· _H.~ _.U _____ ... _____ .. _ , .. . _., ..

Agent

Agent

........ - - --~ ... -------.. -..

Antenna and
propagation

models
~ _ ___ _ •• _ . ___ _ ~ _. __ . _ • • _ •• _ _ o.) • • _ .,. _._ ___ _ • • _ ___ • _ _ --- ----- •••••• - ••• - •• -- - --- • • -- •••••••••••••••• - - •• • •• :

Common Rad.io Channel

Figure 60: Showing the SRNode model used in NS [115].

The darker shaded objects of Figure 59 and Figure 60 model the NIC (Network Interface Card),

found in computer networking systems, such as Linux (see section 3.5.1). At the top of this

structure lies a link layer, which [45] based on the IEEE 802.2 Logic Link Controller [104].

Essentially, this layer is responsible for translating logical addresses to physical MAC

addresses, using a BSD based ARP protocol [115]. Once an appropriate physical address has

been found, the packet is placed onto an interface queue, where it is buffered for transmission.

The interface queue is mapped directly to the queue found in Figure 58 and, hence, NS allows

any queuing discipline to be employed here. However, since wireless routing protocols make

use of time-critical data (such a route-request or reply), interface queues are generally
implemented using the Priority-based droptail buffer [115], which allows routing specific data

to jump to the head of the queue. Once a packet is removed from the buffer, it is sent to the
MAC layer for transmission.

[45] implemented two different MAC protocols into NS; namely:

• The IEEE 802.1 1 (b) MAC protocol, and
• The Preamble based TDMA (Time Division Multiple Access) scheme.

The IEEE 802.11(b) MAC protocol (described in section 3.5.1) uses RTS/CTSIDATAJACK

sequences for unicasted transmissions, and only the DATA sequence for all broadcasted

communication. On the other hand, the preamble based TDMA protocol [115] uses a dedicated

time slot for each node and a preamble sequence to indicate the intended next-hop destination.

Research is currently being conducted to avoid preamble contentions and to re-use unallocated
time slots. However, since this project did not explore the use of a TDMA based system, details

70

Chapter 4 The Simulated Environment

concerning this protocol are left to the relevant literature. Nevertheless, in order for each

sequence to be transmitted, some kind of transmission technique is required by the physical

interface.

The Monarch project based the characteristics of the physical interface on the DSSS Lucent

WaveLan Card, which was used to stamp packets with transmission parameters, such as power,

wavelength, etc. These parameters were then applied to a unity-gain, omni-directional

propagation model, in order to calculate minimum power sensed at each node (connected to the

common radio channel). [45] then used this power reading to determine the effective

transmission range of a node, which also enabled him to detect packet collisions.

The propagation model used by Broch et al [45] involved a combination of the Friss-space and

Two-ray Ground attenuation models. The Friss-space model attenuates the power of a radio

transmission at l/r2 (where r is the distance between two antennas), while Two-ray Ground uses

lIr4 . [45] found that radio engineers generally use the Friss-space model for short distances and

the Two-ray Ground model for distances found to be larger than a point known as the reference

distance [115]. Typically this distance is approximately 100m (see [116]), hence, the Monarch

project simply switched between these two models, depending on the distance between the two

nodes in question.

However, applying the above calculations to each node (for every transmissi(~m) results in high

computational overhead. Hence, [45] decided to divide the area (covered by the mobile nodes

during the simulation) into a number of squares, thus forming a grid (as shown in Figure 61). By

superimposing a pre-calculated theoretical maximum transmission radius (passed as a parameter

from the OTcl environment to the physical interface at the start of the simulation) on top of this

grid, Broch et al [45] was able to quickly identify a number of squared-regions, which constitute

a particular nodes transmission range (the shaded areas of Figure 61). Thus, if any nodes were

found to be located in these regions, a copy of the packet (containing the transmission

parameters) is forwarded to them; else the packet is discarded. Hence, the number of nodes that

actually performed the relevant propagation calculations were able to be reduced, thus
increasing the computational speed ofNS.

€) ." Nodes that receive a copy of the packet

o Nodes that don't receive a copy of the packet

~ - 0
" O(0 0 \ 0 0

0 0 0
0/ 0

\ 0
o \
~

0 ~ 0
0

./

Figure 61: Showing how a grid can be used to decrease the computational complexity of NS.

71

Chapter 4 The Simulated Environment

4.4.1.2 The Shadowing Process

Shadowing provides a means for an object compiled in the C++ environment to be mapped to a

corresponding object in the interpreted OTcl environment, so that specific code (constituting

procedures and variables) can be manipulated from either environment and yet still point to the

same object instance. To accomplish this, however, each environment is required to contain an

identical object hierarchy, so that parent-child relationships of the interpreted object can be used

to create a shadow of the compiled object from the complied hierarchy [115]. For example, take

the situation (drawn in Figure 62) in which a DSDV routing agent is created within the OTcl

environment, using the OTcl command:

set ragent _ [new Age nt/DSDV)

Here, the new command creates a DSDV agent and places it into the "ragent_" class variable,

via the AgentIDSDV class constructor. However, since DSDV is inherited from the Agent class,

the DSDV constructor can only be initiated once the Agent class constructor has completed.

But, since this constructor is dependent on the Connector class (which is inherited from the

Tc10bject class), the TclObject constructor is invoked first.

aTc! Class Hierarchy C++ Class Hierarchy

AgentIDSDV

Figure 62: Showing the object hierarchy used to create a DSDV routing agent in NS.

The TclObject constructor is the constructor that is responsible for creating the AgentIDSDV

shadow object from the complied AgentIDSDV code. But, in order for the e++ DSDV Agent to

initialize correctly, it is required to undergo a multi-stage inheritance (from its complied class

hierarchy), before returning the class object to the "ragenC' variable. However, while the C++

classes are being inherited, NS allows specific C++ variables to be bounded to the OTcl
environment.

A bounded variable allows a user to manipulate its ' value from OTcI, and yet be instantly

reflected in the C++ code [115]. Hence, it is through this process that parameters can be passed

dynamically to C++ objects. But, instead of requiring the user to specify each and every

parameter to all objects, NS makes use of a default OTcl script (found in / tel / lib / ns­

defaul t. tel off the main NS directory), which passes these parameter~ automatically.

Chapter 4 The Simulated Environment

Hence, a user need only edit this default script (or overwrite these values from another startup

script) to alter object parameters.

However, binding is more than just a means to pass parameters, since it causes a C++ variable

to be mapped directly to the OTc! space. Hence, bounded variables can be monitored and/or

manipulated during any stage of the simulation [115], making it easy to debug (and understand)

protocols.

In addition to variable manipulation, shadoWing also provides a means for C++ procedures to be

invoked from OTC!, through the use of the cmd statement [115]. For example, if one wished to

print the routing table of DSDV (using the C++ member function print_table ()) at some

point during the simulation, one may type the folloWing (in OTC!):

$ragent print_table

However, since "print_table" is not a defined OTc! command, OTc! will issue a cmd function

call on the AgentIDSDV shadow object, passing it an argument vector (argv) consisting of the

following:

argv[O] - "cmd"
argv[I] - "print table".

NS automatically maps all cmd calls to an objects C++ command () member function. Hence, to

interact with OTcl, a simple check needs to be made on argv[l] to confirm that the

"print_table" argument string was received by the DSDVAgent: : command () function, before

invoking print _table () (as given below).

int DSDVAgent::command(int argc, const char*const*argv) {

if (argc == 2) {

if (strcmp(argv[l), "print table") 0) {
DSDVAgent::print_table();

return TeL_OK;

return (Agent::command(argc, argv));

Thus, shadowing provides a powerful mechanism, which allows complex C++ models to be

fully configured (and manipulated) through a simple scripting language (such as OTc!), without
the need for re-compilation. For more information see [117].

4.4.2 The Pre-Processing Phase

In addition to configuring parameters for a particular simulation scenario, NS makes use of two

external OTcl scripts to describe the mobility and traffic pattern of each wireless node. The only

self generated mobility pattern (currently) supported by NS is the random waypoint model,

while traffic may comprise ofTCP and/or CBR transfers [115]. However, note that since TCP

~ffects the performance of the underlying routing protocol (see 3.5.3), only CBR traffic (which
Incorporates the UDP mechanism) will be discussed.

71

Chapter 4 The Simulated Environment

The random way point model [40] is characterized by a parameter known as the pause time and

is based on the following principal: Each node in the simulation begins from an arbitrary

location in the simulated environment space and moves to a randomly selected destination with

a speed uniformly selected between Omls and some maximum. Once the destination point has

been reached, a node pauses for the pause time period before randomly selecting a new

destination. This process is then repeated until the end of simulation has been reached.

CBR traffic, on the other hand, involves the transmission of a bit stream at a constant rate, and

can be characterized by three parameters:

• The number of packets to be transmitted,
• The size (in bytes) of each packet, and
• The rate (in bits/second) of each transmission.

Thus, a CBR application (in NS) will transmit a packet every ((size) x 8) / rate) seconds, until

all packets have been transmitted or the simulation has terminated.

Together, these scripts form the heart of the simulation setup and can be used to evaluate the

performance of the underlying routing protocol, under many repeatable transmission scenarios.

4.4.3 The Post-Processing Phase

This phase is initiated at the conclusion of a simulation, which produces two output trace files.

These files both contain a time-stamped list of all packets transmitted for each protocol layer,
but differ in data they represent.

The first of these files is known as a NAM trace and is used as an input to the Tcl/TK. based

animation toolkit [115], which is packaged as part of the NS distribution. The animation toolkit

has been built to consume as little memory as possible (due to the amount of information that is

stored in the trace file) and hence makes use of a strict file format, which resembles the follows:

<event-type> -t <time> <more flags> .. .
<event-type> -t <time> <more flags> .. .

Where:

<event-type> indicates the type of event. In wireless simulations, events usually

occur as a result of node mobility or due to a packet being received,
dropped or sent by a particular protocol layer.

-t <time> indicates the time at which the event occurred, with each line

corresponding to a new time sequence. NAM also requires each line to

be in chronological order, so that it need only read one line at a time,
when displaying visual information.

i

In addition, the animator has the capability of displaying real world packet trace data and is able

to convert its visual information into an animated GIF or MPEG movie. However, details

regarding these abilities are beyond the scope of this thesis. Thus, for more information, consult
[115].

The second trace file gives a more detailed textual list of all the events that occurred during the

simulation. Since this file is not formatted for a particular application, this file may cQntain any

74

Chapter 4 The Simulated Environment

information and hence may be used to debug a protocol. However, apart from debugging, the

main use of this trace is to gather statistical data, which is used to assess the performance of a

particular protocol (in a particular scenario). Examples of such metrics include (based on [1]):

• The end-to-end network throughput,
• The end-to-end network delay, and
• Protocol efficiency.

End-to-end network throughput is defined as the percentage of data packets that successfully

reach their destination, while end-to-end network delay measures the amount of time that

elapsed during this period. Since these parameters differ for each transmission, statistical

indicators (such as mean and variance) are important. Together, throughput and delay metrics

provide an external measure of the data routing performance of a protocol [1] .

While, data routing performance is defined as the external measure of effectiveness, efficiency

is considered to be an internal measure [1]. This is because two routing protocols may achieve

the same level of data routing performance, and yet contain varied amounts of protocol

overhead. Hence, the efficiently may be independent to the data routing performance of a

protocol, unless the control and data traffic share the same channel, in which case excessive

control traffic would degrade the channel's capacity, causing a lower data routing performance

to be experienced. Thus, to determine the internal efficiency of a protocol, two ratios are used:

• The average number of control bits6 transmitted per data bit delivered, and
• The average number of control and data packets transmitted per data packet delivered.

The first ratio measures the protocol's efficiency in using control overhead to ' deliver data

packets, while the second measures the "useful" throughput of the network [1].

Collectively, the output trace files describe the progress of each and every packet within the

network, and thus provide a means for protocols to be compared, evaluated and validated (either
visually or statistically), under various repeatable conditions.

4.5 Limitations of NS-2

The wireless models ofNS contain three assumptions [118]:

• Transmissions are always perfectly circular and therefore are unaffected by intrusions such
as buildings, cars, trees, etc.

• All nodes move along a flat surface (x and y directions only) and thus effects resulting
from differing antenna heights (z) cannot be explored.

• The maximum velocity of a node is significantly smaller than the speed of light, since all
models do not take into account Doppler effects, etc. In addition, the propagation model
only samples the signal strength once during the packets traversal and thus may cause
unexpected receptions to result, if a nodes moves significantly during the transmission
period of a packet.

Apart from these, other issues need to be considered whilst using the simulator (or else

problems will arise later when trying to implement the developed routing protocol in the

physical environment [111]). One such problem is the use of the common header, which is

6 Not~ that control bits not only constitute the information found in control packets, but also the header
portIon of all data packets. In other words, anything that is not raw user data is control overhead and
thus should be treated as such. . - ,

75

Chapter 4 The Simulated Environment

appended to all packets for the internal operation of NS. This header contains (among other

fields) [115]:

• A unique packet ID (called a UID in NS),
• A timestamp of the packets transmission time,
• A simulated packet size,
• A receiving interface label,
• Packet type (to determine which protocol initiated the packet),
• Previous hop address,
• Next Hop Address,
• And the number of hops the packet has undergone already.

As one can see, this information is very temping to a protocol designer. However, this header is

not actually recognized as being part of a packet. This is because it is used to specify the

simulated packet size, which excludes itself. Hence, using any information from this header

simply means you are receiving some data at zero cost, since it constitutes zero bandwidth. This

of course is absurd (on practical networks) and hence protocol designers should rather duplicate

(and possibly handle) any required fields from this header to their own protocol header, instead

of simply accessing this header at will.

Other issues relating to simulators (in general) include positional information, time, and

processor differences [111]. NS operates on a different system than that of ARM Linux (used

here) and, therefore, differs substantially in processing speed, power management as well as

hard-disk memory sizes and access times. In addition, NS is able to start all nodes in the

network simultaneously, since only one system clock is used. This .means that all nodes are

always perfectly time synchronized. In reality, however, this is a very difficult task to achieve,

because even if one could synchronize the clocks of all mobile devices at the start of an

application, keeping them synchronized over long periods. of time, becomes difficult due to

clock skewing [119]. Also the time interval over which protocols function, differ from

simulation to that of the real-world. Simulations only run for a few hundred seconds, while real­

world applications run indefinitely. Hence simulations generally don't suffer from overflows in

variables. This allows protocols to adopt a smaller number of bits for header fields (and other

variables), which give better performance in terms of overhead than what is realizable in real­
word implementations.

Another issue involves the way positional information is represented in NS. NS makes use of x­
and y-coordinates, which are accurately available at all times. However, to make this

information accessible to ARM Linux, serial GPS receivers were needed. GPS coordinates are
given in degrees latitude & longitude, which (depending on the type and quality of the GPS)

contain a certain amount of error and latency. In addition, the calculation of distances between

two GPS coordinates is non-trivial due to the geoidal shape of the earth [120] and thus requires

mathematical approximations, which, combined with GPS coordinate truncations can lead to . . ,
positional errors in the order of tens of meters. Therefore, protocols that rely on such

information may experience a degradation in performance when compared to simulation [111].

Hence, great care must be taken when designing a new protocol, or else one may find oneself

iterating through many unnecessary development life-cycles, before eventually succeeding with
an optimal, yet realizable routing scheme.

7()

Chapter 4 The Simulated Environment

4.6 Conclusion

NS is an event-driven packet simulator that uses two distinct programming languages to bring

flexibility into its framework. Currently, NS supports wired, wireless and satellite models (as

well as combinations of these configurations), through the uses of many interconnected objects.

Since these objects may be accessed from both coding environments (through shadowing),

protocols can be analyzed, compared and debugged with the greatest of ease (both visually

and/or statistically).

However, like all simulators, there are limitations. This is because simulators only necessitate

the formulation, testing and comparison of a protocol under various repeatable scenarios and

hence are unable to represent the real world, no matter how accurate its' underlying protocol

models are. Thus, for true protocol verification, implementation is essential [111].

Nevertheless, simulation provides a framework where ideas can be both tested and assessed, and

thus remains crucial to the development of new protocols.

77

LAMP - Location Aided Multicasting Protocol

5.1 Introduction

Previous multicast protocols (as described in section 2.3) make use of one of two different

forwarding concepts:

• Groups, and
• Multicast regions.

Groups allow the sender and receiver members to be independent of each other, and thus permit

a host to dynamically join and/or leave a group at any stage. On the other hand, multicast

regions allow data to be flooded to all hosts that happen to be located within a specific

geographical ,area. However, both strategies suffer from the fact that a source host is unable to

determine which nodes are currently connected to a particular group (or are positioned in a

particular region) at a specific point in time (unless a request is sent out). Additionally, in

military applications, transmitted data (which may be classified) will generally be intended for a

specific set of hosts. Thus, for a real-time audio system, the distribution of data to an abstract

group (or a geographical region) is undesirable.

Nevertheless, Obraczka et al [75] feels that ad-hoc networks are well suited to multicasting,

since such systems make use of omni-directional antennas, which give it the ability to

communicate to all neighbouring nodes simultaneously. This is different to the IP world, where

the common belief is that multicast routing is built on top of the unicast framework, as the IP

infrastructure consists of hard wired point-to-point connections, instead of the point-to­

multipoint (radio) communication channels, found in ad-hoc networks. Thus, due to this

infrastructure difference, [75] argues that ad-hoc multicasting needs to be addressed differently,

and hence the use of tree forwarding (such as source-based, core-based or mesh-based)
methodologies may not necessarily be the most favorable solution. This arises from the fact that

tree algorithms require multicast state information to be stored at each node, which must be both

updated and propagated every time node mobility causes a link change to occur7
• Since most

mobile devices (such as handheld devices) contain limited capacity and processing power, the

cost of keeping this multicast state information (especially when 20 nodes or less are used) is

intolerable. Hence, with these considerations in mind, a more effective approach was desired.

Obraczka et al [75] indicated that an adaptive flooding algorithm may provide the answer.

Adaptive flooding algorithms make use of successive broadcasting, from a subset of the

networks nodes (forwarding group), to route data to multicast members. Algorithms of this kind

differ in the way in which this subset is chosen. Since each unit in the proposed network enjoys

the benefit of a GPS, the author of LAMP decided to choose this subset through the use of
location information, as defined by the second algorithm of the LAR protocol [25]. However, as

mentioned in section 2.2.1.2.2, this algorithm does not guarantee that a path will be found to a

destination (even if one exists), since forwarding data to nodes that are closer to the destination

may result in a situation in which all neighbouring nodes are deemed further than

Note that since link changes occur rarely in wired networking domains, tree based methodologies are
very suited to such environments. -

7R

Chapter 5 LAMP - Location Aided Multicast Protocol

the transmitting node. Hence, this algorithm was modified with global time properties, as

employed by the LOTAR protocol (section 2.2.2.2.7), to overcome such drawbacks.

Nevertheless, flooding every packet throughout the whole network produces a considerable

amount of congestion and contention, known as the broadcast storm problem [76). Thus, to

reduce the number of nodes which actually forward broadcasted data, flood limiting techniques

(detailed in section 2.3 .5) were developed. However, as indicated by [77], these techniques

require more than 20 nodes to be present. This is because a network with less than 20 nodes

does not contain enough neighbouring nodes to give these techniques the opportunity to excel

above blind flooding and hence causes a node to consume extra processing power with no

additional performance gain. Thus, the only feasible option remaining in sparse networks is

blind flooding (or through some localized flooding technique, such as DREAM [16] or LAR).

Therefore, to reduce the congestion of blind flooding, an alternate method was needed.

Considering that LAR requires some kind of location service to be provided (see section 2.2.1)

and the fact that the handheld device was required to display "up-to-date" position information

of all neighbouring hosts, it was decided that some form of table-driven methodology would be

appropriate. This is because table-driven algorithms forward data along a single path (from

source to destination), instead of via multiple paths, as employed by flooding, and thus are able

to reduce congestion. However, table-driven schemes suffer from scalability i~sues, since a

record (or table entry) is required to be kept for every node in the network. But, since this

system only requires the use of 16 nodes, scalability can be temporarily ignored, until a suitable

solution has been found. This fact is what triggered the development of the on-demand unicast

routing techniques from the table-driven schemes, causing AODV to be superior to DSDV

[121]. However, AODV cannot be employed where an "up-to-date" location service is required,

since such a requirement defeats its very incentive of the on-demand approach. In addition,

table-driven schemes also enjoy the benefits of minimallatency8 (when a path to a destination is

known), which is necessary when time-critical data is being handled (such as that found in audio
and video transmissions).

Comparing the various table-driven schemes together, one notices that DSDV is the most

fundamental routing strategy developed, yet it is also the most efficient. This is because both

CGSR and HSR require the use o,f a hierarchical clustering algorithm, which is triggered each

time two clusterheads become neighbours or a host becomes isolated. Thus, these schemes
induce a large amount of transmission and computational overhead to re-establish the routing

hierarchy [34]. Likewise, WRP and GSR require the use of multiple tables, which unnecessarily

consumes a large amount of memory and computational overhead. Hence, the DSDV algorithm
was selected over the others to reduce the congestion incurred through flooding, since it best

matched the constraints of the PCS system. However, the DSDV protocol is only a unicast

routing scheme and hence its' next-hop table is unable to account for multiple neighbouring

destinations. Therefore, this forwarding scheme required modification, which will be discussed

8 On-deman~ schemes require a route to be first established (through a route discovery mechanism),
before r~utmg o~ the packet can be initiated. Since this requires the source and destination pairs to
commumc~te WIth each other before a route can be found, table-driven protocols are able route
packets qUIcker than on-demand schemes. However, since the NS implementation of the DSDV
protocol queues ~ll packets (for ~hich the next-hop is unknown), the overall delay performance of the
DSDV protocol IS not necessanly better than the other on-demand methodologies. But, as will be
shown l~ter,. LAM!' employs a localized flooding technique to handle all packets for which the next-
hop destmatlOn(s) IS unknown, rendering LAMP free from such delay drawbacks. . -

79

Chapter 5 LAMP - Location Aided Multicast Protocol

in section 5.2. Nevertheless, the incorporation of a multicast next-hop forward strategy allows

the required data to be treated as a whole, instead of a separate set of unicast transmissions.

However, in the presence of mobility, next-hop links may become broken. Hence, to detect

when the next-hop table scheme fails (and hence initiate the localized flooding algorithm), a

multicast acknowledgement mechanism is required. But, since ' the IEEE 802.11(b) MAC

protocol is unable to handle such procedures (see 2.3.5.1 and 3.5.1.2), this process is required to

be handled by underlying routing protocol itself, as is done by LAMP.

The reminder of this chapter proceeds as follows: Section 5.2 begins by giving a detailed

description of LAMP and its implementation specific structures. Sections 5.3 and 5.4 then

describe the four simulation case studies that were used to illustrate and evaluate LAMP.

Finally, section 5.5 concludes by highlighting LAMP's main advantages and disadvantages.

5.2 The LAMP Protocol

LAMP makes use of an underlying destination-sequenced next-hop routing table to identify

forwarding neighbours. These neighbours are then appended to the packet, which is broadcast to

all adjacent hosts. Each of these hosts is then responsible for checking if its address appears as

one of the entries in the received next-hop list. If found, it is expected to send a unicasted

acknowledgement packet back to the previous hop and then re-generate the next-hop list for all

the destinations to which it has been assigned; else the broadcast is simply ignored. This way,

the number of destinations that a node is required to handle becomes less and less, as the packet

propagates on towards its intended recipients. This can be seen in Figure 63.

Figure 63(a) begins by indicating the topology state of the network, as well as, the destination

and next-hop lists that the source node (S) appended to its' raw data packet. Note that S obtained

the next-hop , information from the underlying unicast protocol. This packet structure is then

broadcasted to all adjacent nodes of S in Figure 63 (b), causing nodes 1, 4 and 6 to receive the

packet. However, as the next-hop list of S only addressed nodes 1 and 4, just these hosts are

required to send an acknowledgement back to S (the darkened blocks) and re-construct the next­

hop lists for the destinations they have been assigned; while node 6 simply discards the packet.

Since node 1 was only allocated DI, it discards entries pertaining to D2 and D3. Similarly, node

4 discards D 1, causing a reduction in the required header information as the packet progresses

towards the three intended destinations. This process continues in Figure 63(c) and (d), until the
,data of S is delivered to DI, 1)2 and D3.

Dest Next-hop

~1 m" 02 4 ~
03 4

Figure 63(a): Showing how node S transmits a packet simultaneously, to three destination
nodes 01, 02 & 03.

Q()

Chapter 5 LAMP - Location Aided Multicast Protocol

Dest Next-hop

1 ~~ I I D53 1
Figure 63(b): Showing nodes 1 & 4 acknowledging node S and re-constructin~ their next-hop
lists to forward the data on towards the required destinations they have t;>een assigned.

Dest Next-hop

-+~[@

Figure 63(c): Showing nodes 01, 03 & 5 replying with acknowledgement packets, while node 5
re-constructs the next-hop entry it was assigned, from its locally established routing table.

Figure 63(d): Showing node 02 replying with an acknowledgement packet back to node 59, thus
completing the sequence of events that took place in order for 01, 02 & 03 to receive S's data.

But, as explained in section 2.2.2.1, table-driven protocols rely on the use of a periodic routing

update mechanism to re-establish next-hop links in the presence of mobility. Since the protocol

update mechanism is only triggered every few seconds (or, in some schemes, as soon as a

neighbouring link has become broken, or both), there will be a period where the next-hop

forwarding scheme will fail. During this period, the DSDV protocol will cache all packets

intended for broken next-hop links, until the update mechanism has re-established a valid

9 Note that if an acknowledgement is not received by an addressed neighboring node, that node will
assume that a collision occurred and thus will re-send that packet to the unacknowledged next-hop
destination again. However, since this section aims to give only a brief overview of the LAMP
scheme, such details will be discussed later in this chapter. -

81

Chapter 5 LAMP - Location Aided Multicast Protocol

neighbour for a particular packet. However, since it was the intent that time-critical infonnation

will be transmitted by each host, it was decided that caching (of a packet) for extended periods

of time would be undesirable. In addition, the memory requirements needed to cache multiple

packets for each broken next-hop link would be intolerable, due to the limited memory

constraints of the handheld device purchased. Hence, instead of caching, a localized location

aided flooding scheme was employed to route broken packets immediately, as this ensured

acceptable real-time latency bounds. For more infonnation on the drawbacks of caching, please

refer to the comments of Figure 91 in Section 5.4.4.

The localized location aided flooding scheme chosen for LAMP is the same algorithm that was

adopted by the LOTAR implementation of LAR, which includes time as one of its' routing

metrics to overcome local maxima (Section 2.2.1.2.2). Note, however, that in [26], LAR was

used to find a path more effectively from the source node to the destination node, during

LOTAR's route discovery phase, since it provided a better alternative to the blind flooding

technique employed in AODV. Thus, once a path was found, LOTAR no longer required the

services of LAR, since it could now route a packet in a table-driven manner. But, since LAR is

employed only when LAMP's table-driven scheme fails, it is used in LAMP to perfonn the

actual routing of a packet. Nevertheless, the principle is still the same.

The modified LAR algorithm works as follows: Prior to transmitting a packet, a host will
append two metrics - the distance it has to the expected zone (see section 2.2.1.2.1) and the

timeJO at which the location co-ordinates were taken for that destination. This infonnation is

then broadcast to all neighbouring nodes. If a neighbouring node has not processed this packet

before, it checks to see if it contains a better time metric for that destination and, if so, it

replaces the two metrics with updated values and re-broadcasts the packet; else a host

determines if it is deemed closer (or equal) to the expected zone than the value found in the

received distance metric. If this is found to be the case, the packet is re-broadcasted with

updated metric values (thus implementing a greedy forwarding strategy), or else it is discarded.

Hence, this process is an attempt to bring the packet closer to the destination node after each
broadcast, as depicted in Figure 64.

Figure 64(a): Showing the distance and time entries S has for the destination 0 in order to
demonstrate the flooding capability of LAMP. '

\0
Note that time is a value that is transmitted during LAMP's periodic update mechanism. But because
each node onl.Y transmit~ its: update information after a certain time period, time functions ~imilar to
hop count, as illustrated ill Flgure 64. -

Chapter 5 LAMP - Location Aided Multicast Protocol

Figure 64(a) starts by indicating the topology state of the network. Here node S wishes to send

data to D, but, due to mobility, its' next-hop link to D has become broken, preventing it from

employing the table-driven strategy discussed previously. Thus, instead of caching the packet, S

reverts to a localized location aided flood to forward data to D. S begins the flood by appending

the time and distance metrics for D to the required data packet. Note that this distance is the

worst possible line-of-sight GPS reading (in meters) that was obtained from S to the expected

zone of D (more about this later), while time represents the time that node D sent its' location

information to S (assumed to be zero, for this demonstration). This structure is then broadcast to

all adjacent nodes of Figure 64(b), which shows the time and distance values each neighbouring

node contained for node D. Applying the modified LAR algorithm to these neighbours, causes

nodes I and 3 to re-broadcast the packet, since they both contain a better distance to D, while

node 3 additionally had a better time. However, although node 4 contained an equivalent time to

D, it had a worse distance, and thus discarded the packet. Similarly, node 5 in Figure 64(c) re­

broadcasts the packet, since all other adjacent nodes had either handled the packet previously or

were discarded by the LAR algorithm. Thus, in this scenario, nodes 1, S, 3 & 5 were used to

forward data on towards D. Note that had the blind-flooding methodology been used, all nine

nodes (i.e. all nodes except D) would have re-transmitted the packet, causing bandwidth and

power resources to be unnecessarily consumed.

Dist Time

Dist TIme

GJOD
Dist Time

QIJOD

D

Figure 64(b): Showing the neighbouring time and distance metrics of S, causing nodes 1 & 3 to
re-broadcast the packet. . '

Dist Time

[ill[TI ,
---. Dist Time

~[JB

---. Dist Time

~Q9]

D

Figure 64(c): Showing the neighbouring time and distance metrics of node 3, causing node 5 to
re-broadcast the packet. .

Chapter 5 LAMP - Location Aided Multicast Protocol

As multiple destinations are required to be processed by LAMP simultaneously, some

destinations will contain valid next-hop links, while others will be broken. Hence, some entries

in a packet will be handled by the table-driven strategy, while others will be handled through

the LAR technique. However, this point will be discussed further in Section 5.2.3 . Note that

since the modified LAR algorithm makes use of extra transmissions (such as the re-transmission

of node 1 in Figure 64), it is only initiated whilst a particular route is broken. Once the periodic

routing update mechanism has managed to repair the broken route, LAMP reverts back to the

more optimal table-driven scheme. This way, congestion is kept to a minimum.

5.2.1 The Routing and Packet Tables

Since LAMP consists of two forwarding strategies, its' routing table retains information for both

schemes, as illustrated in Table 1, below.

Table 1: Showing the constituent fields of a routing table entry in LAMP.

U· d· U · d· U · d har B I nSlgne mt nSlgne mt nSlgne c 00 ean

Destination Next-hop
IP ID

Hop count
Advertise

to
destination

this entry

Where:
Unsigned int
Unsigned char
Boolean
Double

D bl ou e
X position

of
destination 12

= 4 bytes
= 1 byte
= 1 bit
= 8 bytes

D bi ou e
Y position

of
. destination

D bl 1\ ou e

Time of last
update

Comparing Table 1 to the table entry of the DSDV protocol, one will notice a similarity,

especially in the first four fields. However, one will also notice that the sequence number of the

destination is not included in Table 1, but yet LAMP is still termed a destination-sequenced

forwarding scheme. The reason for this is because the sequence number of the destination is not
stored in this table, but rather in another table, termed the packet table.

The packet table is responsible for ensuring that no transmitted data is received by a node more

than once, which is necessary when an adaptive flooding algorithm is being utilized (see section
2.3 of [77]). This table structure is given in Table 2, over the page.

11 Note that the NS simulator makes use of a double (8 bytes) to represent time, while the ARM Linux
architecture uses a signed integer (4 bytes), where each bit represents the number of seconds that has
elapsed since mid-night 1 January 1970. Hence, the size of this field is architecturally dependent.

12 The NS simulator makes use of x- and y- positions for nodes, while (in ARM Linux) this information
is replaced with latitudinal and longitudinal co-ordinates that are obtained from an externally
connected. OE~ GPS module. In addition, it was found that no further accuracy was gained by using
doub!e 's ~ Lmux and thus the latitudinal and longitudinal co-ordinates were implemented with
floating pomt values (4 bytes). -

84

Chapter 5 LAMP - Location Aided Multicast Protocol

Table 2: Showing the constituent field of a packet table entry in LAMP.

Type: Unsigned int

Source IP

Obtained from: IP header

Unsigned int

Packet sequence number

Where:
Unsigned int
Unsigned short
Double

LAMP header

= 4 bytes
= 2 bytes
= 8 bytes

Double

Time of last reception

Local host time

Hence, through Table 2, a new packet table entry will be created for every <source

IP><destination port id> pair, which uniquely identifies a packet through the <source

IP><destination port id><packet seq. no.> tripletI3
• However, when using NS, this triplet is

not required, since NS automatically attaches a global DID to all packets through its common

header (see section 4.5). But, since this facility is not avaihl.ble in the ARM Linux architecture,

a new packet identification scheme was necessary. Because the two main sources of traffic are

the routing daemon and the user application, it is expected that the maximum number of entries

contained in this table will be 16 (nodes) x 2 (ports) = 32. Hence, through the use of a maximum

of only 32 entries, duplication of packets is completely avoided. In addition, note that a <time of

last reception> field is also included. This field allows one to reset the sequence number of a

packet, if a reception was not heard from a host after PKT _EXPIRE_TIME seconds. Thus, if a

host becomes disconnected from a network for a period of time (through partitioning), that host

will still be able to communicate immediately after re-connection, regardless of its' packet
sequence number.

Hence, the combination of the two above tables permits non-duplicate data to be routed. Note

that the <advertise this entry> field allows one to keep track of what entries are required to be

re-transmitted on the next protocol update procedure, since this field indicates that new or

updated information has been placed into the routing table, and therefore provides a means for

knowing what entries are relevant for neighbouring nodes.

The remaining three fields of LAMP's routing table are used to support the location aided

flooding algorithm. Since this implementation makes use of LOTAR's modified LAR scheme,
the location information is provided with a <time of last update> field, to indicate its age.

Hence, the fields that will appear in a protocol update entry are:

• <Destination IP> ,
• <Hop count to destination> ,
• <X position of destination>,
• < Y position of destination> and
• <Time of last update>.

13 N
ote that it may make more sense to use a <source port id> field, but since forwarding through the

netfilter architecture (described in section 3.7) causes the UDP source port address to be altered at
each forwarding host, it was decided that the destination port address would be more desirable since it
remains unchanged throughout the packets traversal. Similarly, the <source IP> is also al~ered by
netfi!ter and thus the <source IP> field used here is in fact the original source IP address, which is
obtamed from the LAMP header (see section 5.2.2 for more information in this regard). -

Chapter 5 LAMP - Location Aided Multicast Protocol

However, please refer to section 5.2.4 for the details pertaining to the periodic mechanism.

5.2.2 The Multicast Next-hop Forwarding Scheme

When an application wishes to transmit data to a set of destinations, it is expected to pass a

packet through a UDP socket14 with a structure that resembles Figure 65.

f ----------------------------------:
, , , , , , , , , ,

Number of destinations

IP address I

IP address 2

IP address n

Unsigned char
Unsigned int

Figure 65: Showing the packet structure given to the protocol stack from the application layer.

This structure contains a list of IP addresses, which is pre-pended to the beginning of the user

data. Once this structure arrives at the routing daemon (or agent), it is required to look up the

next-hop destination (from its locally established routing table) for each IP address given.

Assuming (for now) that a valid next-hop destination was indeed found for eac~ address, the

routing daemon appends a second list to the original packet, which contains the next-hop

addresses, as shown in Figure 66.

~ ----------------------------------,
I Number of destinations i , _____ _____________________________ .
t IP address I -+-1:_-... : +-I""~ Next-hop lP 1 I i

: : L... Next-hoplP 2 ~1 i IP address 2

Figure 66: Showing the packet structure developed by the routing daemon.

In addition to the next-hop list, the routing daemon also adds a LAMP header, which contains

the fields given in Table 3.

Table 3: Showing the constituent fields of the LAMP header.

Where:
Unsigned int = 4 bytes

The <header marker> field is used to identify the start of the LAMP header. This is required to

ensure that a protocol header is not placed twice on a packet, since packets may arrive (from the

netfilter architecture) first through hook 4 and then through hook 5 (see Section 3.7). Hence, if

14
Note that since data is required to be broadcast to all neighboring nodes, the SO BROADCAST
fe~ture of the ~e~sockopt function is required to be enabled by the ARM Linux ~utin..,g daemon,
pnor to transnusslOn or else the UDP socket will reject the packet.

86

Chapter 5 LAMP - Location Aided Multicast Protocol

the fourth-to-Iast integer value read by a daemon equals the defined header marker, the daemon

will realize that the header is indeed in place. But, if the header marker is not read, then the

packet was locally generated and thus requires the amendment of its header. However, during

the initial testing phase of LAMP on the iP AQ, it was found that callout packets (explained later

in this section) would be rejected by the packet table, since these packets would already have

been handled by the routing daemon. Hence, the <header marker> field was also used to

indicate to the daemon that the packet was part of the callout mechanism and thus had to be

ignored by t4e packet table. Therefore, two header markers existed; one that signified a valid

LAMP packet and another which identified callout packets.

The next field defmes the sequence number of the packet. This field uniquely identifies a locally

generated packet and is written by reading the value of the packet counter, which is incremented

each time a new protocol header packet is added to a packet.

However, at first glance, the remaining two fields may seem a bit odd, since they contain

information that should be accessible from the attached IP and UDP headers. But, since we are

dealing with a unique multicast protocol, the forwarding mechanism of IP is unable to use its'

locally established IP routing tablelS to determine the next-hop IP address of a packet (as there

could be many next-hop addresses required). Hence, to forward a packet and yet avoid the

forwarding structures of IP, the routing daemon is required to DROP the original packet

(through the netfilter architecture) and create a new packet, which it transmits through its own

routing socket. However, since sockets automatically set the source and port addresses of a

packet, they overwrite the original source information. Hence, to correct this at all destination

hosts, the original source IP address is included as part of the LAMP protocol header.

Nevertheless, some people will argue that retaining this information is irrelevant, since both the

IP and UDP headers are removed from a packet when it arrives at the receiving application. But,

since the packet table of LAMP needs the <original source IP> field to prevent duplication, it

was vital that the original source IP address be maintained throughout the packets traversal.

In addition, note that the full packet size (from the IP header to LAMP header) is required to be

a multiple of four bytes (see section 3.5.2), so that the StrongARM CPU can interpret the packet

data correctly. Thus, to force this size, a few null characters were inserted, in order to round-up

the packet size to the nearest four byte boundary. But, to allow the destination routing daemon

to remove these appended null characters before passing the original data to the receiving

. application, the number of n~l1 characters added needed to be stored or re-calculated. Since we
wished to locate the <header marker> field at a specific location in the final data stream, it was

decided that the null characters would be inserted prior to the LAMP header (as shown below),

which meant that ' the LAMP header itself had to be a multiple of four bytes. However, since

extra data was being attached to the original user data (and hence altering the UDP <length>

field), the original size of UDP application data16 was stored instead of the number of null

characters. This way, the number of null characters could be re-calculated, as the routing

daemon would be aware of the original data size. It also meant that the routing daemon could be

IS Th
e local host IP table is establis~ed through user-defined subnets, which determine where a packet

16

should be routed next. However, m most cases, IP forwarding' is disabled in Linux, since host pes
generally do not handle the routing of data, as these procedures are done through hubs, routers and
gateways.

Note that the <length> field found in the UDP header includes eight l?ytes for itself (see 3.5~3).

Chapter 5 LAMP - Location Aided Multicast Protocol

doubly sure that only the raw user data size was passed to the end receiving application(s).

Hence, the final packet structure that was given to the NIC for transmission is depicted below.

Table 4: Showing the packet structure given to the Network Interface Card for transmission.

UDP
header

Destination
List

Raw user
data

LAMP
data

of null
characters LAMP header

Once Table 4 was given to the NIC, it is transmitted over the air medium using the wireless

IEEE 802.11(b) MAC protocol. However, as mentioned previously, this protocol is unable to

handle broadcast data reliably, since it is unaware of which destinations the packet is intended

for, and hence is able to determine whether all acknowledgement packets were received

correctly. Thus, instead of receiving multiple meaningless acknowledgment packets,

broadcasting with IEEE 802.11(b) MAC simply ignores the acknowledgment sequence of its

protocol engine. Similarly, the reservation (or virtual carrier sensing) mechanism is also

ignored, and hence permits the broadcast storm problem to be more prominent when

broadcasting is employed. Therefore, to reliably broadcast a packet using the IEEE 802.1 1 (b)

MAC protocol, the acknowledgement sequence is required to be handled by the routing layer

itself. However, to facilitate such a sequence, a callout queue17 was required, so that the original

packet may be re-transmitted using the modified LAR algorithm (for all unacknowledged next­

hop hosts). But to achieve such asystem, a copy of the packet needs to be placed in the callout
queue, prior to the original packet being broadcast.

Once the packet has been copied and transmitted, all neighbouring hosts are expected to search

through the given next-hop list to determine whether its own IP address is represented. If,

clearly, a host is unable to fmd its address in the list, that host may simply discard the packet, as

no further processing is required1B
• But, if its address was indeed found, that host is required to

forward the data structure, handling (through its routing table) only the destination IP addresses

it has been assigned. Hence, all other destination and next-hop entries that did not correspond to

their IP address will be pruned off, causing the destination and next-hop list to become shorter

the as the packet travels towards its' intended recipients. However, prior to forwarding the

modified packet, a host is required to send a unicast acknowledgment packet back to the
preceding host, with the structure given in Table 5.

Table 5: Showing the constituent fields of an acknowledgement packet in LAMP .

.I IP header , UDP header ", iAMP. beader ,

Note that the only data required to acknowledge a packet is the LAMP header, since it uniquely

identifies a packet transmission. This, along with the IP and UDP headers, allows the previous­

hop to remove a particular host from its callout queue. Once all the acknowledgements have

been received for a particular packet, the duplicated packet can be deleted from the callout

queue. However, if some of these acknowledgements were not received within the

CALLOUT_SCHEDULE time interval, the copied packet will be removed from the callout

17
A callout queue is a buffer that returns a packet after a certain amount of time, defined in LAMP as
the CALLOUT SCHEDULE time.

18 - •

The assumption is that there are still no broken next-hop links, as this topic will be dealt with in the
following sub-section. - .

88

Chapter 5 LAMP - Location Aided Multicast Protocol

queue and re-transmitted to all host. Since this packet will contain just the un-acknowledged

next-hop host addresses, only these will be required to re-handle the packet again. Generally,
protocols re-transmit a packet three 19 times, before assuming that the next-hop link is broken.

When, this happens the following fields of LAMP's routing table are altered:

<hop count to destination> = Set to infmit!°.
<next-hop id> = Set to invalid21

.

<time of last update> = Increased by one second.

The <time of last update> field is incremented by one, to indicate that this update supersedes

any previous updates, while the <hop count to destination><next-hop id> pair is altered to

mark that the next-hop forwarding scheme is no longer valid for this particular destination.

Once this occurs, the remaining next-hop entries in the callout queue are sent via the localized

location aided flooding scheme.

5.2.3 The Location Aided Forwarding Scheme

As mentioned previously, this scheme is only initiated when the multicast table scheme has

failed to find a valid next-hop neighbour for a particular destination in a packet. When this

occurs, the following two metrics are used to assist surrounding hosts with forwarding

decisions:

• The worst possible distance to the expected zone of the intended destination, and
• The time that the corresponding position was last recorded in LAMP's routing table.

However, if a host does not contain a table entry for a destination, then the above metrics are

recorded with their absolute22 worst possible values. These are then inserted in place of the next­

hop information, which is broadcast to all neighbouring nodes. Thus, some destination entries

will be intended for specific next-hop host, while others will be required to be handled by all.

Hence, to accommodate this flexibility, the packet structure (of the LAMP data section)

required modification, as depicted in Figure 67.

, ----------------------------------1

~~~~ ' ...... ----------_ ... ------------.. r---------.i 
~~~~r_~ , 
L-_~~~~--~;---~~~~~~~~~ i

, Destination List LAMP Data

, ,

Figure 67: Showing the modified packet structure developed by the routing daemon.

19 LAMP tries REQUEUE_LIMIT times, before initiating a location aided flood to handle all un­
aclmowledged next-hop host addresses.

20
Infinity, by definition, can never be obtained. Thus, it is represented instead by the largest value that is
able to be stored by the field in question. As this field is of type unsigned char, infmity is symbolized
by the value 255.

21 Since this project only makes use of 16 nodes, an invalid next-hop destination may be any value other
than the address of one of the other 16 nodes. However, for convenience, it is represented by the
reserved broadcast address, FF:FF:FF:FF.

22 In other words, .the va~ue of the distance metric is set to its maximum, while time is set to zero. This is
done so that nelghbo~g hosts may modify these fields with more accurate information, as the packet
progresses towards the mtende~ destination(s). -

89

Chapter 5 LAMP - Location Aided Multicast Protocol

Where a LAMP data entry consists of one of the following (depending on the scheme

employed):

The next-hop forwarding scheme

Type = 0 Unsigned char (1 byte)
Unsigned int (4 bytes)

(4 bytes)
Next-hop IP address

Not used

The location aided forwarding scheme

Unsigned char (1 byte)
Unsigned int23 (4 bytes)

Float (4 bytes)

Type = 1
Time

Distance

Therefore, when a host receives a packet which contains a type 1 data entry, it will initiate the

modified LAR algorithm (described in section 5.2) to detennine whether any benefit will be

gained by forwarding this entry. This way, the number of re-broadcasts, and thus the

transmission overhead, are both kept to a minimum. Note, however, that since this scheme is a

last resort, best effort methodology, acknowledgement packets cannot be used to guarantee

delivery.

5.2.4 The Protocol Update Mechanism of LAMP

Like the DSDV algorithm, LAMP makes use of a protocol update mechanism to maintain its

routing table. LAMP performs an update every UPDATE_INTERVAL seconds, by counting the

number of <advertise this entry> fields that are set and placing each one, in turn, into a packet

with a structure given in Figure 68.

Unsigned char (1 byte) I Number of table update entries

Unsigned int (4 bytes)

Unsigned int (4 bytes)

Float (4 bytes)

Float (4 bytes)

Unsigned char (1 byte)

,

Destination I.P address I

Time of update I

x co-ordinate 1

y co-ordinate I

Hop count 1

Destination IP address 2

Time of update 2

X co-ordinate 2
y co-ordinate 2
Hop count 2

Destination lP address n

Time of update n

x co-ordinate n

y co-ordinate n

H9P count n

Figure 68: Showing the protocol update packet structure of LAMP.

23 Time is repre.sented differently in NS and hence changes in the size (and type) of this field need to be
made, accordingly. . - .

Q()

Chapter 5 LAMP - Location Aided Multicast Protocol

Once an entry is copied into the packet, the <advertise this entry> field is cleared and the final

packet structure is broadcast to all neighbouring nodes with the headers indicated in Table 6

below.

Table 6: Showing the structure of an update entry packet in LAMP.

I IP header I UDP header I LAMP update data

On reception of Table 6, a neighbouring node examines each entry in turn, to determine whether

that entry is better (in time and hop coune4
) than the entry already contained within the routing

table. If this is found to be the case, that table entry is replaced and the <advertise this entry>

field set; else the entry is ignored. Thus, on the next protocol update interval, all altered entries

will be re-broadcast to that hosts neighbouring nodes, resulting in a propagation of table update

information. Note that a node's local position information is obtained from GPS modules, which

are updated according to the NMEA standard. However, since NMEA operates via the RS-232

serial port, it was decided that this process be handled by a separate application program. But,

this meant that this program would need to have access to the routing table of the routing

daemon. Therefore, to permit such a process, the routing table was placed into a shared memory

area, allowing both applications to coherently exploit the same memory addresses (see Section

6.2).

5.3 The Simulation Setup

When dealing with time-critical data, the two most important evaluation metrics are the average

delivery ratio and maximum end-to-end latency (explained below). But, like all engineering

problems, one generally gains something at the expense of something else. In ad-hoc routing,

this "expense" is derived from a complex combination of computational, memory and

transmission overhead. Thus, to put the above mentioned metrics into perspective, one needs to

include (at least) a transmission overhead parameter, as identified by MANET (Mobile Ad-hoc

NETworking) Working Group of the IETF (Internet Engineering Task Force) [1].

Hence, to correctly access the performance of LAMP, the following quantitative metrics were
employed:

• The average end-to-end packet delivery ratio, which is defmed as the percentage of
application data packets that successfully reach their destination,

• The average end-to-end network delay (latency), described as the average amount of time
that a packet undergoes to reach its' destination,

• The maximum end-to-end network delay (latency), identified as the greatest amount of
time a packet took to reach its destination25

, .

• The total number of bytes transmitted, excluding those that constituted user data,

24

2S

To allow routes with smaller hop-counts to supersede others, all <hop count> fields are increased by
one before a comparison is made. This way, the shortest known path is always used to an intended
host.

Maximum delay is relevant in real-time audio systems because the human ear is able to sense the
delay of a pa~ket .when end~to-end latencies exceed 250ms. Hence, any packet delayed for periods
longe~ than this W11~ automa~cally be dropped by the receiving application, causing a reduction in the
effective packet debvery ratio of a protocol. Thus, this metric allows one to determine how effective a
prot~col. ~s in keep~g its' maximum latency below 25 Oms, thereby evaluating that protocols
appbcabllity to real-time data systems. -

91

Chapter 5 LAMP - Location Aided Multicast Protocol

•

•

The total number of bytes transmitted from protocol update and acknowledgement packets,
and
The total number of bytes transmitted from routed packets, excluding those that constituted
user data26

.

However, to obtain the above metrics, certain choices needed to be made with regards to the

configuration parameters used in, the NS simulation environment (see section 4.4.1). A list of

the settings adopted is given in Table 7, below.

Table 7: Showing the simulation parameters used to evaluate LAMP's performance.

Simulation Packa2e NS version 2.1 build 9
Network Area Size 705mx 372m
Duration of Simulation 1000 seconds
User Data Size Per Packet 125 bytes
'Traffic Type Employed CBR
Interface Ou'eue Len2th 50
Node Transmission Ranle 250m
Number of Nodes constitutine the Ad-hoc Network ; 16
UoderlYioe MAC protocol IEEE 802.11 (b)

The networking area and node transmission range specifications were selected to provide a

reasonable region for nodes to travel, but yet prevented a single node from becoming isolated

(although node isolation was catered for in the LAMP scheme through the Incorporation the

<time of last reception> field found in Section 5.2.1). This was done to give each protocol the

opportunity of delivering a 100% of its' application data, since this allowed the routing ability

of a protocol to be accessed. If this had not been done, a protocol may only show a packet

delivery ratio of 70%, when in fact the remaining 30% of the packets were dropped, not due to

collisions, contentions or the inability of the protocol to find an alternate route during link

breakages, but due to isolated nodes that resulted from host mobility patterns. Thus, to eliminate

such scenarios, only mobility patterns with non-isolated nodes were selected for this evaluation.

It was found (through trial-and-error) that an 705m x 372m area allowed destinations to be upto
four hops away.

Since the PCS required the use of a real-time communication system, data traffic was arranged

to emulate an 8 kHz audio channel. In the present application (see Section 6.3), this meant a

data size of 125 bytes, which was transmitted every 0.1 seconds, using the CBR traffic generator
of NS (see Section 4.4.2). The generator was configured to randomly select the number of

source and destination hosts, based on the required packet transmission rate, which was
averaged over 30 simulations to n~gate the outcome of a particular network topology.

In this regard, each node was directed through the influence of the random way point model,

described in Section 4.4.2. But, to ensure that the effects of mobility would be inherent in the

results, this model was modified so that the speed of a node could be set between ± 10% of the

value allocated to it. Thus, a node passed with a value of 4 meters per second could travel

between 3.6 and 4.4 meters per second, and not from 0 to 4 meters per second, as defined

previously. In addition, a pause time of 1 second was used, since this ensured that a node would

not remain stationary for any meaningful amount of time, before selecting a new location point
(especially when high mobility rates were being investigated).

26 N
ote that the last two parameters are not specified by the lEFT, but were included to determine the

contribution that each protocol mechanism incurred on the total amount of bytes transmitted.

Q?

Chapter 5 LAMP - Location Aided Multicast Protocol

However, since NS based its ' physical interface on AT&T's Lucent Wavelan PCMCIA card and

not Cisco ' s Aironet 350 PCMCIA NIC (as used herein), the following parameters
27

of the

physical interface model (known as Phy /Wireles sPhy in NS) required modification:

CPThre s h 10 . 0 Capture thre shold (dB)
-

CSThresh 1 .1 973e- 10 Carrier s ens e threshold (W)
-

RXThresh 1. 296e - 10 Receive power threshol d (W)
Rb 11*le 6 Bit rate of the i nt er f ace card (bit s / s)
Pt 0 .1 00 Transmitt ed s igna l powe r (W)
f req_ 2 . 4e+ 9 Fr equency of transmission (Hz)
L 1. 0 System l oss f actor

Once these settings were entered into an OTcl configuration file (see 4.4.1.2), four case studies

were performed to investigate the routing performance of LAMP. The first study that was

conducted made use of a randomly scattered, stationary set of nodes, which were subjected to a

packet transmission rate that varied from 1 packet per second to 50 packets per second28
• The

reason a stationary network was employed was to eliminate the effects of node mobility, so that

LAMP's ability to handle congestion could be monitored independently. The protocols

compared in this study included LAMP, the modified LAR algorithm, and a multicast version of

the DSDV protocol (known throughout the reminder of this dissertation as MDSDV). Note that

due to the novel nature of this protocol, previous multicast schemes were unable to be

compared29
• Also note that the modified LAR algorithm is an improved flooding technique,

which limits the scope of a flood to a localized area. Therefore, LAR will perform better than

the blind flooding scheme, as detailed in [25] and illustrated in Figure 64. However, since one

wished to determine whether any performance was gained through the use of LAMP, it was

imperative that LAMP be subjected to the most stringent of conditions. Hence, the modified

LAR algorithm was selected over blind flooding.

In the second case study, the effects of node mobility were examined exclusively. This study

followed the same procedure as the previous study, but fixed the packet transmission rate to

26.986 packets per second30
, while the node speed was varied from 1 meter per second to 8

meters per second. Note that eight meters per second approaches that of the Olympic world

record for the 100m sprint and hence this range covereq all possible speeds that Homo sapiens
could reach (by foot).

However, since the combined effects of mobility and traffic transmission rates were more likely

to occur in reality, a third case study was conducted to determine whether any additional effects

could be observed. But, since it would be tedious to explore all possible combinations of node

speed vs. packet transmission rates, only 5 trial points were selected, as indicated in Table 8,
over the page.

27
Note that these settings were obtained from both Cisco's website

(http://www.cisco.comlwarp/public/cc/pd/witc/a03 50ap/prodlitlindex.shtml) and NS ' s independent
propagation utilities (found in the /indep-utils / propagation directory of the NS source tree).

28 50 packets per second were found to be the maximum rate that each handheld device could transmit
once the routing daemon had been implemented on the ARM Linux operating system. Note that 50
packets per second can also translate to five simultaneous 8 kHz audio channels.

29 Previous schemes re~uired ei~er m~re than 20 nodes or based themselves on the concept of group
addresses, both of which were mapphcable to the project at hand.

30 Thi
. ·s rate was selected since it was the turning point at which congestion began to playa role (see

FIgure 69). .. . -

93

Chapter 5 LAMP - Location Aided Multicast Protocol

Table 8: Showing selected trial points that were used to evaluate protocols during case study 3.

Trial t 2 3 4 5
Node Speed (m/s) 1 2 4 6 8

Packet Tx Rate (pkts/s) 0.760 13.948 26.986 40.649 48.440

Note that, in Table 8, the severity of the network is increased, with each successive trial. This

way, both the least and most severe network conditions from the previous studies can be

examined, respectively.

Finally, the last study investigated LAMP's ability to forward unicast traffic. Here, LAMP was

compared to four leading unicast protocols; namely DSDV, AODV, DSR and TORA (all of

which were provided as part of the NS distribution). However, since LAMP was not developed

for its ' unicast ability, only the node mobility effects of this study are presented in this
dissertation.

5.4 Results and Discussion

In addition to the simulation parameters adopted in Section 5.3, the following protocol

parameters were used during each simulation (unless otherwise stated):

UPDATE INTERVAL = 15 seconds
CALLOUT SCHEDULE = 0.025 seconds
REQUEUE_LIMIT = 3

In the original unicast DSDV protocol, an UPDATE_INTERVAL of 15 seconds was chosen,

since this value gave a suitable tradeoff between routing overhead and table accuracy. Thus, for

comparative purposes, this value was also selected here. But, as will be explained later, LAMP
exhibits a better performance, when this value is set to 5 seconds.

However, unlike the UPDATE_INTERVAL, the CALLOUT_SCHEDULE was determined

through trial-and-error. It was found (on average) that when this time was reduced below 0.0025

seconds, a node would be required to re-transmit its ' data packet more than once, thus incurring

an unnecessary transmission overhead. But, since it takes CALLOUT_SCHEDULE *
REQUEUE_LIMIT seconds to detect a broken link, the larger CALLOUT_SCHEDULE was

made, the longer it takes LAMP to route a packet with a broken next-hop link. Thus, to ensure

-that the maximum packet delay was kept as small as possible, the CALLOUT_SCHEDULE
value was set to 0.025 seconds. Note that the back-off time of the IEEE 802.11(b) MAC

protocol may be randomly selected anywhere from 0 to 255 aSlotTime's (provided no carrier

signal is detected), where aSlotTime is set to 20J.lS (see 3.5.1.2). Hence, the minimum value that

CALLOUT_SCHEDULE could be set to is 0.005 seconds. But, since the original data packet
(to the one in the callout queue) will always be transmitted (in addition to other data) during this

time interval, it is advised that this time be increased well beyond 0.005 seconds.

As for the REQUEUE_LIMIT, this value was set to 3, as this value was found to be the norm
among the routing protocols surveyed.

94

Chapter 5 LAMP - Location Aided Multicast Protocol

5.4.1 Case Study One - Traffic Congestion

1.05

1.00 '

0.95

0.90

0.85

0.80

g 0.75

"~ ~
""'-" "- " ----_. __ .----..;:;---;:

0.70 -I------r-------,.---.....----.------.--__
o 10 20 30 40 50 60

Packet Rate (pkts/s)

·-$··- Multicasted DSDV -.......- Loc. Aided Flood --.-LAMP I
Figure 69: Showing the faction of application data packets that were successfully delivered
(packet delivery ratio) as a function of the transmission rate.

The first result, given in Figure 69, shows how the combination of the two protocols can

produce another, with a performance better than either alone. Since flooding causes congestion

and multiple packet collisions, it performs well, while the packet transmission rate is kept low.

But, as this is increased, congestion prevails, preventing flooding from reliably delivering

packets. MDSDV, on the other hand, drops all packets intended for a broken next-hop

neighbour. Since it takes 15 seconds for a route to become repaired (through the update

mechanism), MDSDV may drop approximately 15 x the packet rate packets, before fixing a

link. Hence, some packets are dropped due to out-dated table information, while others from

packet collisions. This, thus, causes a congestion cushioning effect to occur, allowing MDSDV

to quickly fall to a particular delivery ratio' (- 86%) and then maintain this delivery rate, until it

too becomes swamped by packet collisions. Since, LAMP uses MDSDV to reduce the

contention that results from multiple forwarding nodes, it is able to route packets with a greater

reliability than LAR, before it too is conquered by congestion. Note that LAMP only dips below

the 90% delivery ratio at the point where, (theoretically) four simultaneous, audio channels were

being transmitted. However, beyond this point, the network becomes too congested to handle

the vast volume of data being sent, causing a rapid decline in the delivery ratio of each scheme.

1.6
1.4 ,

E::~ / '// E 08
;: 0.6

0.4 //

0.2 1.==:::;:::±::::._~_='...r~:;::::. :: ::._.~~._::~~ .. .:.~_-,
0.0 ,111

10 20 30 40 so 60

Packtt Rate (pklsls)

-0- Multicast DSDV -ll-l.oc. Aided Flood -'-LAMP I

-;; 4
E
';' 3
E
;: 2

O +----r----~--~--~----~--~
o 10 20 30 40 50 60

Packtt Ratelpklsls)

I -II- Multicast DSDV -ll- l.oc. Aided Flood -'-LAMP I

Figur~ 70: Showing (a) the maxiinum and (b) average delay that an application data packet
experienced, when sent over a stationary set of nodes at varying transmission rates.

oc:

Chapter 5 LAMP - Location Aided Multicast Protocol

Figure 70(a) illustrates one of the downfalls of congestion. Flooding causes the back-off timers

of the IEEE 802.11 (b) MAC protocol to delay packets for a considerable amount of time, since

the back-off algorithm exponentially increases its CW (contention window) in the presence of

contention (see 3.5.1.1). However, since MDSDV drops all packets for which the next-hop link

is broken, the maximum transmission time of a successful packet is kept low (below 0.l4

seconds). In addition, LAMP uses MDSDV to route the majority of its packets, but reverts to a

flood for the exceptional cases. Hence, its delay characteristics are very similar to MDSDV,

making it suitable to time-critical audio applications
3

! .

This is also true for the average delay graph, illustrated in Figure 70(b). LAR is able to route

packets faster than the MDSDV and LAMP schemes, since it contains a smaller computational

complexity than the next-hop forwarding scheme of MDSDV
32

. As LAMP reverts to the LAR
scheme only once its next-hop forward scheme fails , it experiences a greater average packet

delay than MDSDV. However, as congestion increases, LAMP is forced to revert to LAR more

and more (due to next-hop entries being set to 255 in its ' routing table), causing the average

packet delay of LAMP to dip below that of MDSDV. Note that LAR may seem to initially

decrease the delay of an end-to-end packet, as the congestion rate is increased. However, this is

not true, since Figure 69 shows that less and less packets are being able to reach their intended

destination, causing a decrease in the latency curve, due to the average being calculated over

fewer packets. In addition, since the maximum delay curve increases exponentially, more and

more packets are being routed with a greater latency than the average, causing this curve to

increase when 50 packets per second was being transmitted.

90 l5

~80 ,c i;
E 70 " .' E 2.0It !:v --- .. .'

'E __ ---.. -0--
• 1.5

V ' ! 40 /
~ -- ..

"
.. .. . ,.-

i 30
;;. 1.0

, "~ ... ,.-
'0 20 . 0

.; 0.5
~ 10 c

I --0 0.0

0 10 20 j() 40 50 60 0 10 20 30 40 50 60

Packets Rat. (pkts/s} Packet Rate (pktsJs}

I Multicast DSDV -+-I.oc. Aided Flood -+-LAMP I I -+- Multicast DSDV I.oc. Aided Flood -+-LAMP I

Figure 71: Showing (a) the total number of protocol specific (acknowledgement + routing
update) packets sent as a function of the transmission rate and (b) its corresponding size (in
bytes).

The number of protocol specific packets that are transmitted as a function of the transmission

rate, is shown in Figure 71(a). Figure 71(a) also shows the point where the LAMP protocol

deviates from MDSDV. This is because MDSDV and LAMP employ two different schemes to

handle broken next-hop links. In LAMP, broken links are handled through the LAR algorithm,

while in MDSDV, a broadcast is sent out to all neighbouring nodes informing them of the

broken next-hop link. This feature is taken from the original DSDV protocol (known as a

triggered update [27]) and is used to prevent surrounding nodes from forwarding data to this

broken next-hop host. Thus, only when a collision deceives a stationary host into thinking that

its' next-hop neighbour has moved out-of-range, do these two schemes begin to differ;

31
32 LAMP's maximum end-to-end latency at a rate of 48.440 packets per second was 0.242 seconds.

MDSDV needs to re-build the d.estination and next-hop lists at each forwarding node. -

90

Chapter 5 LAMP - Location Aided Multicast Protocol

otherwise they exhibit the same amount of protocol specific overhead, since they use the same

callout algorithm. Hence, according to Figure 71(a), this break away point occurs at about 20

packets per second, where LAMP begins to flatten, due to the influence of LAR. Note that

LAR's independence to the transmission rate occurs because periodic updates are the only

protocol specific data that it incurs, since LAR negates the use of acknowledgements.

However, when the protocol specific data is viewed in bytes (Figure 71(b)), one notices both

LAR and LAMP producing more protocol overhead than MDSDV at low transmission rates.

This makes sense, since LAMP is required to handle both next-hop and location table data,

while MDSDV and LAR are only required to handle each type separately. On the other hand,

LAR uses three33 extra bytes for every packet entry (at every update interval), causing it to

exhibit a much larger initial protocol overhead than MDSDV. But, since the number of

acknowledgement packets required is directly proportional to the transmission rate, MDSDV's

dominance is quickly superseded by LAR.

_ 18 .
-: 16
:. 14

~~12
~ ~10 . ~
: i 8
.;.~ 6
.co 4 ..
'0 2
~ ~~~~~--~----~--~---,

10 20 30 40 so 60

Pocklt Rat. (ptks/s)

10 20 30 40 so 60

Pocket Rate (pkts/s)

.... !) ••. Muhicast DSDV · ·li··· l.oc. Aided Flood -.-LAMP I --Muhicost DSDV -lI- l.oc. Aided Flood -'-lAMP I

Figure 72: Showing (a) the total amount of bytes sent in a routed packet (excluding that which
constituted user data) and (b) the resultant sum of the protocol specific and routing overhead
graphs. .

Figure n(a) examines the amount of additional data that was sent (routing overhead), when

trying to forward user data to a specific destination. Since flooding makes use of multiple re­

transmissions, the same header information is transmitted several times over, causing a large

amount of routing overhead to occur. On the other hand, MDSDV forwards data along the

shortest path, resulting in fewer re-transmissions and less congestion. As LAMP is affected by

both schemes in differing quantities34
, it lies somewhere midway between these two bounds.

Nevertheless, comparing Figure n(b) with Figure n(a), one notices that while both MDSDV

and LAMP has increased slightly, LAR has remained largely unchanged. This can be

understood by reviewing Figure 71(b). Whilst, LAR contributed an addi.tional200,000 bytes of
protocol specific data to the total overhead, both MDSDV and LAMP produced a considerable

amount more. Hence, when Figures 71(b) and n(a) were summed together, the overhead
difference between these three protocols becomes less pronounced. However, note how the total

overhead graph of Figure n(b) resembles Figure n(a). This occurs because the routing

overhead size is about 10 times greater than the protocol overhead size. Hence, what Figure

n(b) shows, is that there are three main factors that cause congestion:

33 LAR uses 28 bytes for every entry in its protocol update packet, while MDSDV uses only 25.
34 LAMP is influenced initially by MDSDV and then by LAR. -

Q7

Chapter 5 LAMP - Location Aided Multicast Protocol

1. The packet transmission rate,
2. The number of nodes that re-forward routed data, and
3. The size of the header that is placed on an application packet.

Thus, if one is able to keep these criteria to a minimum, congestion will also be kept low.

5.4.2 Case Study Two - Mobility Effects

'0
g 1.05

'0 1.00 ~ ...l.. CIl_ __ ___

.~ ~ ~::~ ?\

.; ~ 0.85 ~/ ~ ~ .--c....
~ a 0.80 - -" "r '
[0.75

·_ _-"*--..... a -.- -

CIl u 1 ""../ '''-'''-''' / -"'-"
~ 0.70 +-------.,-------.,--------,
s: 1000 100

"""*-LAMP

Pause Time (5)

Mobility

10

~MDSDV

Figure 73: Showing the faction of application data packets successfully delivered as a function
of pause time, where a pause time of zero represents constant mobility.

This second study shows the effect that node mobility has on the performance of a protocol.

Figure 73 begins this study by showing how effective the pre-existing random way point model

was in capturing mobility effects. Although, one is able to conclude that LAMP was able to

deliver about 10% more of its packets than MDSDV, one is unable to observe the relationship

of node mobility on the packet delivery rate. To understand why this is so, one needs to fully

comprehend what the pause time represents. A pause time of 1000 seconds implies a stationary

network, while a pause time of zero represents a continuously moving network. However, note

that this description gives no indication to the speed that a node was moving. Hence, although

the random waypoint model is able to capture node movement, it is unable to be used to analyze

the effects of node speed. Thus, to correct this, the random waypoint model was modified in
such a way that a definite speed could be assigned to a mobile node. When this was done, a

completely different relationship resulted, as indicated in graphs of Figure 74 below.

1.00

! 0.95 r=:=-:. ===::=====*=::::::-_
-: _ 0.90 iI'/' • .-:--~
~ ~ 0.85 ",
: : 0.80 ' .. 'a

~ ~ 0.7S
~ :. 0.70
[0.65 2 0.60 • __ ... - -

0.55 +-----r---r--r---,---.------r-....;.----,
4 6

Speed of. node Im/s)

--Multicast DSDV l.oc.Aid,dFlood -.-lAMP I

0.95

g 0.90 ~ -a

-: 1: 0.85 '" .>------------__ -. -~..... -
:: O.sO ~
i ~ 0.75
: a.. 0.70 ...
,; 0.65

.. ,
. ~

....
" 0.60 +-----r---r--..-----.----r---,r-·...,;···e;....---,

Speed of a node Im/s)

--Multicast DSDV I.oc. Aided Flood -'-lAMP

Figure 74: Showing packet delivery ratio vs. node mobility speed, at a transmission rate of (a)
26.986 packets per second and (b) 40.649 packets per second.

98

Chapter 5 LAMP - Location Aided Multicast Protocol

As can be seen from Figure 74, both the LAMP and flooding schemes are relatively immune to

node mobility, while the next-hop tables of the MDSDV protocol are severely affected. This

happens because neighbouring nodes are being altered too quickly for the 15 second periodic

update mechanism to keep up. Hence, at high mobility rates, its ' next-hop scheme fails

altogether. On the other hand, however, flooding allows a packet to be routed with very little

state information, since any neighbouring node will do, making it applicable in highly mobile

environments [75]. Note that the difference between the two graphs of Figure 74 is the packet

transmission rate. As one can see, the packet rate determines by how much LAMP initially

deviates from LAR, confirming the results conducted in case study one (Figure 69). But, what is

noted is that LAMP's delivery ratio begins to converge towards that of the location aided flood,

as MDSDV performance decreases. This makes sense, since the only way LAMP can continue

to deliver its packets reliably, is to revert more and more to its' flooding mechanism.

456
Speed of. node (mls)

._+-- Mukicast DSDV· 5

....- Multicast DSDV· 15
-11- Multicast DSDV· 10
-;(- Mukicast DSDV· 20

0.98
.;
c 0.96
." --

5 . 6

Speed of. node (mIs)

l --lAMP.5 "'- lAMP·lO-lAMP·15 ,,*-lAMP·20 I

Figure 75: Showing the sensitivity of the delivery ratio to the update interval for (a) MDSDV and
(b) LAMP (at a transmission rate of 40.649 packets per second).

Figure 75 illustrates how the protocol update interval can affect the packet delivery ratio of both

MDSDV and LAMP. Note the plot in black is the same curve that was used in Figure 74(b) and

the numbers indicated after each protocol signifies the number of seconds that was used for the

UPDATE_INTERVAL. Figure 75(a) shows that MDSDV's packet delivery performance can be

increased by an extra 22%, simply by changing the update interval from 20 seconds to 5. On the

other hand, LAMP's performance increased only by an extra 5%, under the same conditions.

Hence, although LAMP primarily uses MDSDV as its routing scheme of choice, it is largely

unaffected by the value of the update interval. However, having said this, the larger the update

interval is made, the more LAMP is forced to mimic LAR. Since it is the combination of both

MDSDV and LAR that gives LAMP its superiority, the smaller the update interval is made, the

more chance LAMP has to outperform LAR (as will be seen throughout the remaining graphs of
this study).

99

Chapter 5 LAMP - Location Aided Multicast Protocol

0.1 ~ ... M·~···O · •.....•... --...... M ••• ~._ . .. ti _ .. (•..... __ ... _ __(;

0.0 +-----r---.--...,....--.------.---..----.-----.
I

Speed of. node (mls) Speed of. node (mls)

__ Mu~icast DSDV Loc. Aided Flood -+-LAMP -!)- Mukicast DSDV -U- Loc. Aided Flood -+-LAMP I

Figure 76: Showing the maximum delay vs. node speed of a packet, when sent at a
transmission rate of (a) 26.986 packets per second and (b) 40.649 packets per second.

Similar to the previous study, the maximum delay experienced by a packet (Figure 76), was

substantially larger when floodirig was used. But, since the same packet rate was employed

throughout, these curves vary about a particular time value, which was different from the

sittiation found in Figure 70(a). Note that this variance occurs, due to the random, non-linear

nature of the IEEE 802.1 1 (b) MAC back-off algorithm. This point is particularly emphasized

when viewing Figure 76(a). Here, contention through multiple re-broadcasts is affecting the

back-off mechanism to varying amounts. MDSDV, which uses only a few nodes t~ forward data

to an intended destination, is almost completely flat; LAR, which uses many forwarding nodes,

exhibits a large, almost oscillatory action; and LAMP, which operates mid-way between these

two bounds, only shows a small deviation.

Similarly, Figure 76(b) exhibits the same back-off trends. But here, LAMP seems to have

utilized LAR more often than it did in Figure 76(a), causing it to mimic the same oscillatory

characteristic of the LAR scheme. Also note that when the transmission rate was increased to

40.649 packets per second, both LAR and LAMP appear to have non-linearly increased their

maximum delay bounds, which is not implied by Figure 70(a). Thus, it is quite feasible to

assume that there must be a different overriding mechanism that comes into play, when the

effects of transmission rate and mobility are combined. However, how this topic is dealt with in
the third case study (Section 5.4.3).

4.5

4

Speed of a nocII (m/s)

...... Multicast DSDV - Loc. Aided Flood -+-LAMP

4.0

~ _ 3.5 I -::::---j 3.0 - 'l\. ____

2.5 .. -. ~
~ _ .. --_._-_-11 I ---..... ______ -.-

2.0 +----..--.----.-----._--.-_--.-_.,....----,
I

Speed of I nocII (m/s)

..... MulticastDSDV -C-Loc.AidedFiood -+-LAMP

Figure 77: Showing the average delay vs. node speed of a packet, when sent at a transmission
rate of (a) 26.986 packets per second and (b) 40.649 packets per second.

The average delay that a packet experienced is given in Figure 77. Looking at Figure 77(a), it

seems that both LAR and LAMP's average delays are largely unaffected by node speed; while
MDSDV appears to route packets more effectively, as the node speed is increased. But, bear in

1()()

Chapter 5 LAMP - Location Aided Multicast Protocol

mind that MDSDV average is decreasing not because its protocol is becoming more efficient,

but rather the contrary. As the speed of a node is increased, MDSDV is routing less and less

packets (as indicated in Figure 74), causing a reduction in its' average delay. This fact is
verified by Figure 78, which shows the effect that the update interval had on the average packet

delay of MDSDV. Since more links can be repaired with faster update intervals, additional

packets can be routed (causing MDSDV to dip less), as the mobility speed of a node is

increased.

-.§. 3.5
Q)

~ 3.0

2.5

2.0 +---r------r---.---~-__,.--__r--.,_-__,

2 3 4 5 6 7 8
Speed of a node (m/s)

-+- Multicast DSDV - 5
-.-Multicast DSDV - 15

___ Multicast DSDV - 10
""*- Multicast DSDV - 20

9

Figure 78: Showing the average packet delay vs. node speed of MDSDV, for various packet
update intervals (all taken at a transmission rate of 40.649 packets per second).

Nevertheless, comparing Figure 77(a) and Figure 77(b), one notices that the average delay of

LAMP has decreased, as the transmission rate has increased. This occurs because LAMP is

reverting to LAR more and more, which is able to route packets faster than MDSDV. This point

is further emphasized by Figure 79(b), which illustrates a progressive decrease in the average

delay of a packet, as the update interval is increased.

0.67

0.62
0.57

_0.52

-; 0.47
! 0.42
... 0.37

OJ2

017

o~~~-~-~~-~-~~-~
456

$pHd at. nodo (mIs)

I -+-IAMP-5 __ lAMP-10 IAMP-15 ,,*"IAMp·20 I

3.9

.3.5
E
;- 3.3
E
t= 3.1

29

27~~-~-~-~~-~-~~

4 6

Spe.d at I nodo (mIs)

I -+-IAMP·5 ---. IAMP-1O IAMP·15 -*" IAMP·20 I

Figure 79: Showing (a) the maximum and (b) average delay that an application data packet
experienced, when transmitted at various update intervals (and a transmission rate of 40.649
packets per second).

Figure 79(a) shows the effect that the IEEE 802.1 1 (b) back-off algorithm had on the maximum

delay of a packet. As can be seen, there is no noticeable correlation between the maximum delay

and the update interval, due to the randomness of this algorithm. But, what can be deduced

(from Figure 79(a)) is that the maximum delay of a packet lies between 0.27 and 0.62 seconds,

when transmitted at 40.649 packets per second. However, from Figure 76, one concludes that

101

Chapter 5 LAMP - Location Aided Multicast Protocol

the upper latency bound (of LAMP) for all end-to-end data is well below 0.25 seconds, when

transmitted at 26.986 packets per second. Hence, although LAMP is able to route 90% of its

packets to their correct destinations (Figure 74), a few of these will be dropped when four audio

channels are being sent simultaneously, due to exceeding the latency 250ms requirement. On

the other hand, when only two audio channels are being transmitted, every packet that reaches

its ' destination will be handled by the receiving application, regardless of the mobility rate of a

node.

700 r----..-.
~ ~ ----~--~~---
~ 500 '" '" 'E 0.. _

:: 400 ..
.! 300
>-

----~ .. ,
..... _ .. _ _ .•. _--_.'"

~ 200 --_-·---II·--·---lIli- ---l!1I

~ 100

Speed of. node (m/s)

-. Mukicast DSDV -ll-Loc.Aided Rood -+-LAMP

1000

~900~
~ 800 ' , ... , ~
~ 700 ..•.•.•. ~ -
~ 600 ... ,., .••. - .• , ::

: 500
~ 400
~ 300
-0 200 .-•. --i/l.---.--I11--.-... -_----f!
0- 100

O ~~-~-~-r_~--~-~~

Speed of. node (m/s)

-e- MuhicastDSDV -ll- Loc.AidedFlood -+-LAMP I

Figure 80: Showing the total number of protocol specific bytes sent as a function node speed,
for a transmission rate of (a) 26.986 packets per second and (b) 40.649 packets per second.

_ 8

~ 7 ['.

~ .- 6 "'--tl--.--··--··--.·----.--illll_--­
.E~5
- >< c -• ~ 4 ...
.; -= 3 ::; -= 2 ___-_-

~
~ 0 +.------__r_ .. -- .. ---...... --... ---.--.~T____,.------...... :;:_-.-.... -...,.===:r. _

s ·
Speed of. node (m/s)

_ 14

· -: 12 r---e--___ ~~ __ ___
... ---... - .. ___ ----8
•• - 10
CO

i B. 8
• ~ I _.--.10-------...-----.1.------... .; 6-l.. -· . >..c 4 ...
!!
o
0- - ... '-... ~.-.... -............ --......•. -....... - - ...

Speod of. node (m/s)

9

-4) .. Multicast DSDV l.oc. Aided Rood -+-lAMP I -<- Multicast DSDV -ll- Loc. Aided Flood -+-LAMP I

Figure 81 : Showing routing overhead vs. node speed at a transmission rate of (a) 26.986
packets per second and (b) 40.649 packets per second.

~7 ~
~6 ~~~------------II-___ ---4

~ 5
.. 4 .
~3~_~~ __ -*-----...------a '; 2" --0
0- I ---.-.. - .. - --.- ... - .. - ... - --.... - -.- - _--.;a

---Multicast DSDV

4 6

Speed of. node (m/s)

-ll-Loc. Aided Rood -+-LAMP

14

-;;12 -.

:;. 10
----_---a

-c:
: 8l-----,6,.---___ ...-_----Ok------
!! 6
>­... ..
! 2 r-.__.. ___ -._._-. __ -.-. ___
O~~--~--__r_--~--r____,.--~--~

Speed of. node (m/s)

...... -Mukicast DSDV • ... ,-Loc. Aided Flood -+-LAMP I

Figure 82: Showing the total induced overhead (in bytes) as a function of node speed at a
transmission rate of (a) 26.986 packets per second and (b) 40.649 packets per second. '

The graphs of Figures 80, 81 and 82 reveal similar conclusions to those previously discovered in

case study one. In Figure 80, LAMP produces the most amount protocol specific data (as

explained in Figure 71(b)), but, comparing Figure 81 and Figure 82 together, this overhead is
largely unnoticeable, due to the vast amount of data that is forwarded in Figure 81. However,

102

Chapter 5 LAMP - Location Aided Multicast Protocol

what is interesting about these figures is that it clearly shows the extent that LAR has influenced

LAMP, especially when part (b) of these figures is compared to part (a). In Figure 80(b), LAMP

is able reduce its overhead, to the point that both MDSDV and LAMP are shown to produce

equal amounts of protocol specific data; while in Figure 81 (b) and Figure 82(b), LAMP is

forced into using more and more forwarding nodes (due to the LAR scheme), causing it to

produce a larger overhead as both the packet rate and node speeds are increased.

Nevertheless, what is also apparent from Figure 81 and Figure 82, is that both LAR and

MDSDV are slowly decreasing their overhead, as the speed of a node is increased. The reason

for this is that packets are being dropped (see Figure 74) due to increased congestion, causing

less data to be forwarded. Since it is the forwarded data that dominates Figure 82, a gradual

decrease in the total overhead graph is noticed.

2.4

~ 2.2 <) "".,,"

.?!. 2.0
~
::: 1.8

; 1.6
>-
~ 1.4

~1.2
1.0 +---.---.---.---.-------r-.....--.,.....---,

I 4

$pHd of. node Im/s)

....... - Multicast DSDV· 5
-+- Multicast DSDV· 15

-"- Multicast DSDV·IO
-7'-·MulticastDSDV·20

9.0

~8.5

E. 8.0

~ 7.5 : ..
.. 7.0 .
:: 6.5

!i 6.0
o
... 5.5

5.0 +---.---,---.---.-------r-.....--.,.....----,

Speed of. nodi Im/s)

I -+-LAMP· 5 ___ LAMp .. 10 -+-LAMP· 15 -7'-LAMP .. 20 I

Figure 83: Showing the total overhead of (a) MDSDV and (b) LAMP, at various update intervals
(for a transmission rate of 40.649 packets per second).

The last section of this study examines the effect the update interval had on the total overhead

produced by MDSDV and LAMP. As can be noted by Figure 83, smaller update intervals cause

a larger MDSDV overhead and a smaller LAMP overhead. The reason for this is two fold:

1. Smaller update intervals allow MDSDV to route more packets successfully, and hence
incur higher protocol and forwarding overheads (Figure 84).

2. Smaller update intervals allow MDSDV to route more packets successfully, and, thus,
LAMP has the opportunity to use MDSDV to route more of its packets. Since it is the
forwarding overhead that dominates the total overhead metric, LAMP is able to employ
MDSDV to route data . over less neighbouring nodes and hence reduce the total
overhead produced (Figure 85).

Hence, from the studies conducted herein35
, LAMP was able to route data in the most efficient

manner, when the five second update interval was employed.

35 Note tha: while rou?ng is performed sporadically, protocol update packets occur periodically. Hence,
even dunng the penods where no data is being sent, update packets will still continue to be broadcast.
Thus, to maintain the efficiency of a protocol over an extended period of time, a higher update interval
may be found to be favorable. . ..

1 ()~

Chapter 5

1.21
~ 1.1 .-........ -...... -...
E 1 0 -........ ------........ -~--.. -._ ... _~ --<Io. i: ¥-.... - 1£.... ----..,..

- 08 "~-X - .. _
~ -.. _..... ---'----n
~ 09 I" ." -.tt.. __ _

- 07 -. ___ ., --_.

~ 06 '-'-.--.---. ----~-____ ______ _ .

05 iii iii

4 5 6
Speed of. node (mIs)

__ Muhicast DSDV· 5

~ Muhicast DSDV· 15

..... Muhicast DSDV • 10

._)<;-- Muhicast DSDV • 20

LAMP - Location Aided Multicast Protocol

Speed of. node (mls)

--+- Muhicast DSDV • 5
~ Multicast DSDV • 15

-Iol- Muhicast DSDV · 10
-'''" Muhicast DSDV· 20

Figure 84: Showing the contribution that (a) the protocol updat~ a.nd (b) forwarding mechanisms
(of MDSDV) had on the total induced overhead (for a transmission rate of 40.649 packets per
second).

1.6 1

~ 1.4 -.- - --_
)(. ---._. __ ._._--.
i" 1.2 .
: l.0 ·· ___ 11

• - .- --.----.. __e i- 0.8 ._.~ __

.. ---.--~ --~ 0.6 C"'C-~
0.4 .l--~~~___.,.-__r_----r--...,.._-..--___,

I

Speed of. node (m1s) Speed of. node (mIs)

I -+-LAMP'5 LAMp· 10 ~LAMP·15 ""*""LAMP·201 I -+- LAMP·5 -II-LAMp· 10 ~LAMP·15 -)(- LAMp·20 I

Figure 85: Showing the contribution that (a) the protocol update and (b) forwarding mechanisms
(of LAMP) had on the total induced overhead (for a transmission rate of 40.649 packets per
second).

5.4.3 Case Study Three - Combined Trials

1.05
ci
c:

"'C 0.95
CD
> c:

Gi CD
0.85 u I/)

CD I/)
I/) CD ~ 0.75 CD u
~ !.
III

0.65 Co
ci
c:

0.55

2 3 4 5 6

Trial

--4l!-- Multicast DSDV ---Loc. Aided Flood --.-LAMP

Figure 86: Showing the packet delivery ratio of various multicast algorithms, under varying trials.

Figure 86 starts this case study, by looking at the packet delivery ability of each protocol at the

given trial points. Note, however, that an update interval of 15 seconds is still used throughout

this case study, so that consistency can be maintained between this study and the previous two.

Thus, although Figure 86 shows very little performance gain between LAMP and LAR, bare in

mind that this can be altered through the manipUlation of the update interval. Nevertheless, what

104

Chapter 5 LAMP - Location Aided Multicast Protocol

is apparent from Figure 86 is that LAMP's performance (above LAR) depends on the

performance of MDSDV. While MDSDV was able to route 75% of its packets successfully,

LAMP was able to out perform LAR by 6.8%. However, as MDSDV dropped off (due to

congestion), LAMP could only manage a 2% increase over LAR. Hence, from the analysis of

this graph alone, it is obvious that LAMP reverted to LAR more dramatically after trial 3 .

.
~ 2

Trial Trial

--f}- Muhicast DSDV __ l.oc. Aided Flood LAMP I --Muhicast DSDV l.oc. Aided Flood LAMP

Figure 87: Showing (a) the maximum and (b) average delay that an application data packet
experienced, as the severity of the network environment is increased.

The maximum delay taken by all packets during the simulation time is illustrated in Figure

87(a). Comparing this graph to Figure 70(a), one notices similar results. However, here, LAR

did not increase its' delay as rapidly as it did in Figure 70(a). This reason for this lies in Figure

76. There one observed an oscillatory motion, which resulted from the randomness of the IEEE

802.1 1 (b) back-off timer. Hence, the absolute maximum latency of LAR will vary, depending

on the surrounding congestion level. Since it is expected that the congestion will increase with

each trial point, it is logical to conclude that the variance will also increase with each trail point.

Therefore, if error bars were placed at each trail point (with increasing magnitude), then the

trend of Figure 70(a) would still be obtainable. This point may be verified by looking at how the

size of the oscillations grew from Figure 76(a) to Figure 76(b). Nevertheless, what is also

apparent from Figure 87(a), is that LAMP"s maximum delay doubled from trial 3 to trial 4,
confirming LAR's influence after trial 3.

Figure 87(b) shows the average delay of all packets, for each trial point. Comparing this graph

to Figure 70(b), one again notices a resemblance. However, due to the influence of Figure 77,

MDSDV begins to slowly improye its delay after trail point 2, since fewer packets are being
routed. Other the other hand, both LAMP and LAR begin to increase their average delay just
prior to trial point 3. This happens due to the influence that the maximum value has on the
average delay. Previously in Figure. 70(b), contention was the only factor that affected the delay
of a packet. Here, however, the constant change in neighbouring nodes was also contributing to

further delay (as noted by the gradual increase in LAR's tread in Figure 77). Hence, instead of

LAR remaining below MDSDV throughout simulation period (as observed in Figure 70(b)),

LAR is forced to mimic its' maximum delay curve. Since LAMP is relying on LAR to route its

packets after trial 3, LAMP begins to inherit the same qualities of LAR, preventing it from
dipping below MDSDV (as seen in Figure 70(b)).

II

Chapter 5

.. $
.$> ••••. ..

,.,
.... ,>«I

Trial

....,- Multicast DSDV Loc. Aided Flood -.-lAMP I

LAMP - Location Aided Multicast Protocol

1200

~ IOOO
" ~ 800 · : 600 · ~ 400 .. "

.f!> .

!. 200 :-;- ' - -·5------tl-- --4i.-.. -.. -.

Trial

-'Z- Muhicast DSDV ~ Loc. Aided Flood -'-lAMP I

Figure 88: Showing (a) the total number of protocol specific packets sent as a function of various
network conditions and (b) its corresponding size (in bytes).

Figure 88(a) shows the number of protocol specific (acknowledgement + routing update)

packets that were transmitted during the simulation time period. By comparing Figure 88(a) and

Figure 71(a) together, many parallels can observed. In both cases, LAMP begins by tracing

MDSDV and then reverts to LAR, causing it to flatten; whilst MDSDV continues to rise

indefmitely. However, what is interesting about this graph is its ' initial circular shape, which

differs from the linear trend found in Figure 71. The reason for this can be explained from

Figure 80. There, one observed that the number of protocol packets decreased, with increasing

node speed, but increased as the transmission rate was increased. Thus, since one variable

increases, while the other decreases, a circular action was noticed.

When Figure 88(a) is viewed in bytes (Figure 88(b» , one observed an increased offset in both

LAMP and LAR. As described in Figure 71(b), this comes about due to the differing sizes of the

periodic update entries employed by each protocol. LAMP uses 29 bytes for each of its entries,

LAR 28 bytes and MDSDV 25. Since an update packet is transmitted every

UPDATE_INTERVAL seconds, these differing bytes add up throughout the simulation period,

causing each protocol to experience an offset (which is proportional to the original entry size).

_ 25
o
:. 20

Trial

-+- Multicast DSDV ---Loc. Aided Flood -'-lAMP I

25

~ 20
.!!.

~ 15 ..
•
.! 10
~

~ s ...

Trial

.... - Multicast DSDV ___ Loc. Aided Flood -'-lAMP I

Figure 89: Showing (a) the total routing overhead induced by each scheme and (b) the resultant
graph when the protocol specific and routing overhead metrics were summed.

The number of bytes that were forwarded by each protocol is given in Figure 89(a). Again one

notices the dominance that LAR had on LAMP just prior to trial point 3, which caused LAMP

to "s-bend" towards LAR. However, comparing Figure 72(a) and Figure 82 together, one

notices two different trends concerning both MDSDV and LAR. Whilst Figure 72(a) shows

these two schemes increase with increasing transmission rate, Figure 82 indicates that they both

decrease with increased node speed. Since the increase of the packet rate is greater than the

106

Chapter 5 LAMP - Location Aided Multicast Protocol

decrease in the node speed, Figure 89(a) displays a subdued increase with increasing trial points.

Nevertheless, what is re-emphasized by Figure 89(a) and (b) is that the forwarding mechanism

of each of these protocols contributes the most overhead, as indicated in Figure 89(b).

5.4.4 Case Study Four - LAMP's Unicast Ability

o
c::

1.05

"C
III

1.00 ~----<G~-------<Ir--------<O~----"

> - if-.-.... .a; ; 0.95 ~ _::::::::-!-----e---___ _
~ II) I" -= ~:---------....I._A----_-_:; ~ II) ~ ~ ~

~ Qj 0.90 ---~
III~
~ U
[[0.85 -"*_ __________ _

~ 0.80 I /" -~)(------ .
g !(

0.75 Iii i

2 3 4 5 6 7 8

Speed ofa node (m/s)
9

--.-AODV --G-- DSDV ___ DSR __ LAMP --*- TORA I

Figure 90: Showing the packet delivery ratio vs. node mobility speed for various unicast
algorithms, at a transmission rate of 40.649 packets per second.

The final study takes a look at LAMP36 as a unicast protocol. Although LAMP was not designed

for its' unicast ability, such a study allows one to assess whether a separate scheme is required

to send unicast transmissions or whether this same protocol can be used for both multicast and

unicast purposes. Figure 90 begins this study by showing a comparison of the packet delivery

performance of various leading unicast protocols, at a rate of 40.649 packets per second. As can

be seen from this graph, the DSDV algorithm decreases in a similar manner to the MDSDV

scheme (indicated in Figure 73), confirming its' correctness. In addition, Figure 90 indicates

that LAMP is comparable to DSR (in its' packet delivery ability) and that it was able to increase

its' packet delivery performance from that of Figure 74(b) (under the same conditions). The

reason for this is two fold; Firstly, a smaller update interyal was used, and, secondly, application

data is only being sent to a single destination, which meant that fewer forwarding nodes were

being employed to route data, resulting in less congestion (and hence fewer collisions).

Note that DSR was unable to route all its packets to the required destination, due to the way it
selects a route. DSR chooses a route based on hop-count and not freshness (as is done by

LAMP, DSDV and AODV), which may cause DSR to select an obsolete route for a packet

(from its' route cache) [41]. Thus, DSR's packet delivery performance will deteriorate as the

speed of a node is increased. On the other hand, TORA is shown to deliver only 80% of its'

packets. This occurs because the link reversal scheme of TORA can introduce short-lived

routing loops, which, according to the NS implementation of TORA, causes a packet to be

automatically dropped [45]. Nevertheless, Figure 90 shows that the unicast protocol with the

best performance is AODV, since it was able to deliver 99% of all packets it routed. This

happens because AODV selects a route in an on-demand fashion and bases it on freshness

(destination sequence-numbers). Therefore, AODV is able to out perform all four protocols,

36
Note that throughout this case study a 5 second update interval was used for LAMP.

1{)7

Chapter 5 LAMP - Location Aided Multicast Protocol

since it does not suffer from the same UPDATE INTERVAL dependence that is inherent in the

DSDV protocol.

Speed of a node (m/5)

I __ AODV _ - DSDV -a:- DSR -+-lAMP ""*-TORA I I -+- AODV -4 - DSDV -tr- DSR -+-lAMP ""*- TORA I

Figure 91: Showing (a) the maximum and (b) average delay of various unicast algorithms, as the
speed of node was increased from one to eight meters per second.

Figure 91(a) shows the niaximtim delay of each protocol. Due to DSR selecting obsolete routes,

it exhibits the greatest delay, which rises indefinitely with increased node mobility. However,

DSDV showed peculiar results when compared to MDSDV in Figure 76. The reason for this is

that DSDV queues all broken next-hop packets, until a valid neighbouring node has been found

to forward each stored packet. Since this storage process may happen at each forwarding host,

the time taken to route a packet becomes unpredictable, causing it to exhibit a large oscillatory

pattern. This drawback is what forced the author of LAMP to implement a LAR flood when the

next-hop neighbour becomes invalid. As shown in Figure 91(a), this strategy allowed LAMP to

keep its' maximum delay bound down to a minimum, making it suitable for audio

communications. In fact, a packet in LAMP experienced anything from 4 to 8 times less delay

than its nearest competitor (AODV). This is because AODV is required to initiate a new route

request every time a next-hop link becomes invalid. Since this process requires a network wide

flood (or blind flood) followed by a unicast reply, LAMP is able to route data faster than AODV

as illustrated in Figure 91(b). On the other hand, the link reversal technique of TORA allows

packets to be routed with half the average delay of LAMP. This is because once the DAG has

been established (Section 2.2.2.2.4), multiple unicast paths are known to a destination. Thus,

when one path becomes invalid in the presence of mobility, an alternate path is simply used.

This is the benefit of using trees. However, when these alternate paths become invalid, a new

DAG is required to be re-established for the whole network, causing TORA to produce a higher
maximum delay than LAMP.

i; 20] .;(
";; '" ,., :l(-- _-;)1(11£-------:> fS[· · - .
., 1.0 --,\-.
t _~ -"-...,
~osr' .,-........,._--
"0 ,. • • •
.. 0.0 , t , , , f i !

..

I 234 S 6 7 8 9 I 234 5 6 7 8 9
Speed of. node (mIs) Speed Of. node (mIs)

1--AODV -+-DSDV -a:- DSR -+-lAMP """"*-TORA 1 I __ AODV -+-DSDV -r-DSR -+-lAMP -l'-TORAI

Figure 92: Showing (a) the total number of protocol specific packets transmitted as a function of
node mobility and (b) its corresponding size (in bytes), for various unicast protocols.

Figure 92(a) shows the number of protocol specific packets that were transmitted, as a function

of node speed. As shown, LAMP transmits the most number of packets. This occurs because

108

Chapter 5 LAMP - Location Aided Multicast Protocol

LAMP employs broadcasting to communicate to neighbouring nodes and hence assumes an

unreliable next-hop link, due to the nature of the IEEE 802.11(b) MAC architecture. Thus,
unlike the other protocols (which send unicast packets), LAMP additionally uses

aclmowledgement packets to detect broken links. On the other hand, the other schemes use the

unicast link-layer breakage detection of the IEEE 802.11(b) MAC to detect these anomalies and

thus do not require the use of acknowledgement packets (in the routing layer) [Ill]. Having

said this, however, TORA is shown to deliver more protocol specific data that LAMP (Figure

92(b)). This is due to TORA's DAG establishment, which is used to assign a height to each

node. Since TORA uses very little header information to forward data (Figure 93(a)), it uses this

protocol specific stage to establish each path and, thus, dominates the overhead produced in

Figure 92(b). Nevertheless, comparing DSR, AODV and DSDV together, one notices DSR

exhibiting the most protocol overhead. This is because DSR transmits, the full routing path to

each forwarding node, so these nodes may update their local cache memory; whereas both

AODV and DSDV forward only the destination address [8]. But, the mechanism used to

determine where to forward a packet next is different for DSDV than AODV. DSDV makes use ,

of protocol updates, while AODV uses route requests. Since route requests are only created as

needed, AODV is able to produce less protocol specific data than DSDV (Figure 92(b)).

~ 7 ..
:. 6
.5~s
~E4 V . ~
: ~ 3 _..------6--------1\--.
;. ~ 2 .-"

~ 1 ~~."....,$ • ...

! 0
1 3 S 7 9

Speed or a node ImIs)

i;'B
K ~.-~--~~----i 6 V
• WI

: 4 _--*--_ _ ~_.a.

f:r~: i : i :-~
Speed or a node (m/s)

I -+- AODV __ DSDV - r-DSR -+-LAMP -X-TORAI

Figure 93: Showing (a) the amount of bytes sent in a routed packet and (b) the total overhead
produced by each unicast scheme.

The total header size of all routed packets is illustrated in Figure 93(a). As indicated here,

DSDV, AODV and TORA, are able to route data with a ~ of the overhead of LAMP; while

DSR was only capable of achieving a 'l'2. The reason DSR was so expensive, compared to other

unicast schemes, is that, like LAMP, it embeds additional information in the header of a routed

packet. DSR does this to eliminate the need of a routing table, since each packet contains the
full routing path, which is discovered via a 'locally established cache. But, as shown in Figure

93 (b), this methodology causes DSR to incur a large amount of overhead. However, since

LAMP additionally floods broken next-hop packets to their required destination, it was able to
exceed DSR in terms of overhead. Nevertheless, what Figure 93(a) also shows is that AODV,

DSDV and TORA exhibit almost equal amounts of routed overhead. This happens because each
of these seems have already established a path for a packet in Figure 92. Thus, very little data is
required to perform routing.

However, unlike the multicast case studies, being efficient in Figure 92(a) does not imply a low

total overhead, since, in unicasting, the protocol specific graphs are comparable to those found

during routing. Hence, to TORA's detriment, both AODV and DSDV become superior to

TORA in Figure 93(b). This occurs because of the dominance TORA had in Figure 92(b). But,
what is interesting here is that both AODV and DSDV are shown to incut the same amount of

total overhead. By comparing Figure 92(b) to Figure 93(a), one notices a reversal in the

109

Chapter 5 LAMP - Location Aided Multicast Protocol

supremacy of these two schemes. Thus, when summed together, comparable results were

witnessed.

Therefore, although LAMP was able route data with a minimal latency and an acceptable

delivery ratio, it incurred a large total overhead (compared to other dedicated unicast schemes)

due to the following reasons:

1. Deficiencies in the IEEE 802.11 (b) MAC architecture. Since acknowledgement packets

are ignored by this protocol during broadcasted traffic, these structures are required to

be handled in the routing layer, causing greater latencies in the detection of broken links
and the transmission of unnecessary data bits (compare the number of bytes contained

in a LAMP ACK (Table 5), with the number of bytes contained in a MAC ACK (see

Figure 48)). In addition, current MAC protocols can only handle the transmission of one

simultaneous next-hop address. Hence, to accommodate for extra addresses, a list

needed to be appended as part of the LAMP header, causing additional overhead.

2. Deficiencies that resulted from IP. IP can only support one destination address. Hence,

if more is required, these need to be additionally supplied by the protocol concerned.

Thus, instead of using the same structures to route multicast data, LAMP should simply employ

a unicast transmission whenever a single destination is required, since this will negate the need

for acknowledgements. In addition, the two lists used to address multiple destinations should be

dropped, whenever unicast routing is needed. This way, overhead will be reduced by more than

half (compare LAMP to the other unicast schemes of Figure 93(b)), causing LAMP to exhibit

improved unicast characteristics.

5.5 Conclusion

LAMP is a novel routing algorithm that combines a table-driven unicast protocol with a location

aided flood. The table-driven scheme is used to identify neighbouring nodes that will aid in the

forward progression of a packet to all required hosts, while the location aided flood is employed

to find alternate paths to destinations when some peer-to-peer link is no longer valid. Results

have shown that such a combination negates the dependency of the update interval on the packet

delivering ability of a scheme (especially during high mobility), but does so at an added

congestion cost that is well below that of bind-flooding. Since Williams et al [77] demonstrated

that blind-flooding was suitable for sparsely connected networks, LAMP offers an alternate

solution that displays better delay, packet delivery and congestion characteristics than any other
flood-limiting technique Williams researched.

In addition, LAMP was able to route multicast data directly to all intended recipients and thus

negated the need of group addresses. Since groups require a spanning tree, LAMP is not

constraint to the same storage requirements needed by these schemes, making it appropriate to
high-end embedded handheld applications such as defined by the PCS.

Results have shown LAMP to be comparable to other unicast routing schemes in terms of its

latency and packet delivering ability. However, due to the amount of overhead it produced,

suggestions have been made to use unicast techniques during the forwarding of single

destination data. Hence, if these procedures are adhered to, LAMP will be able to provide both

unicast and multicast capabilities to sparsely connected ad-hoc environments, and thus will be

deemed suitable for the delivery of delay sensitive data, such as that found in real-time audio
communication subsystems.

110

Implementation Status

6.1 Introduction

This chapter describes the current implementation status of LAMP within the ARM Linux

kerneL In this regard, details are given on the task of each developed process, and how these

processes interacted to forward (and display) multicast data. Once this has been achieved, a

brief overview is given of the elementary tests that were conducted to validate LAMP' s multi­

hop functionality.

6.2 The Interaction of the Developed Modules

As mentioned in Chapter 5, a table-driven forwarding strategy was selected for two reasons:

• The PCS required up-to-date position information. This was done so that the GUI locations
(Figure 5) of all hosts contained within a particular cell (i.e. the hosts contained within the

. dashed circle of Figure 4) could be continuously refresh.

• The location aided flooding algorithm required the use of an up-to-date location service. This
was done so that the flood could be restricted to a localized area.

Since "up-to-date" information can only be obtaine,d from a periodic update mechanism, the

DSDV protocol was chosen over other unicast strategies. However, the bullets above indicate

that the same location information was required by two separate processes; one that refreshed

GUI information and one that refreshed table information. In addition, since location

information was updated by the location service (a mechanism that resided within LAMP), a

strategy was required to allow the GUI application to gain read-only access to the routing table

of LAMP.

One method of achieving this is through the use of a shared memory area, which reserves a

portion of memory that starts from a specific address. However, since this memory area will be

common among different processes, a technique is needed to ensure that no two processes can

gain access to the same memory area simultaneously. This is because variables in this area may

be altered by one process, during the read/write cycle of another. Since this can lead to

unpredictable process behavior, a key is used to lock the memory area prior to a process gaining

access. Once this process has fmished reading/writing data to the shared area, it is unlocked,

allowing another process to gain access to it. This way, only one process may gain access at a

time, ensuring variable consistency among each process. An illustration of this process

interaction is given in Figure 94, below.

"'>
Userspace m,

Routing Daemon l i\ Shared Memory Area

Un ~ Lock
LAMP's .

LAMP Routing GUI

LCI ~ Table Unloc~
Application

Figure 94: Showing the shared memory interaction of the GUI application and the LAMP routing
. protocol. -

111

Chapter 6 hnplementation Status

Since the routing table of LAMP could now be accessed from any process, it was decided that

an additional module should be developed to decode the required GPS NMEA string, which

would update a nodes' local position directly within the routing table (Figure 95). This way, a

modular structure was introduced into the project, allowing each process to be coded and

debugged independently.

Userspace

Shared Memory Area

Unloclc Lock

NMEA
LAMP's

GUI
Module

Routing Application
Lock Table Unlock

.,.
Loc" Unlock

I

I LAMP

I I
Routing Daemon I

Figure 95: Showing the shared memory interaction of the all three application processes.

The NMEA standard defmes both the transmission medium and the format of each GPS string.

The output of NMEA is specified to be EIA-422A [122], but for most purposes one can

consider this be RS-232 compatible. Hence, the GPS module was simply connected to the on­

board serial port of the iPAQ (see Figure 41). Code was then written in the NMEA module to

open the serial port driver37
, which allowed the GPS module to stream ASCII strings to the

NMEA module.

The NMEA-I083 standard states that each string must begin with a "dollar" ($) and end with

"carriage return" (CR) and "linefeed" (LF) characters [122]. In addition, fields within the string
are "comma" delimited, followed by an "asterisk" (*) and a 16-bit XOR (exclusive-or)

checksum of the full ASCII string. However, because many NMEA strings exist, the first field

indicates the type of string being read. "For purposes of this dissertation, only the GPGGA string
will be discussed. Its' format is indicated in Table 9.

37 The serial port was configured to operate at 4800 bps, 8 data bits, no parity and one stop bit (known as
NMEA-I083). -

11 2

Chapter 6 Implementation Status

Table 9: Showing the format of the GPGGA NMEA string [122].

Field #

String

Where:

1 1 2 1 3 141 5 16 17 181 9 1101111121131141 15 116
$GPGGA,hhrnmss.ss,ll l l . ll,a , yyyyy.yy,a , x , xx,x . x , x . x , M,x .x , M, x . x , xxxx*hh

1 Global Positioning System (Fix Data)
2 UTe of Position
3 Latitude
4 NorS
5 Longitude
6 EorW
7 GPS quality indicator (O=invalid; 1 =GPS fIx; 2=Differential GPS fIx)
8 Number of satellites in use [not those in view]
9 Horizontal dilution of position
10 = Antenna altitude abovelbelow mean sea level
11 = Meters (Antenna height unit)
12 = Geoidal separation (Difference between WGS-84 earth ellipsoid and mean sea level)
13 = Meters (Units of geoidal separation)
14 = Age in seconds since last update from differential reference station
15 = Differential reference station ID number
16 = Checksum

Hence, the task of the NMEA module was to ensure that the seventh field value of the serial

stream was non-zero and that *e <checksum> was valid, before passing fields 3,4, 5 & 6 to the

shared memory table. With this in mind, Figure 95 can be extended to reflect both the netfilter

framework (described in Section 3.7) and the serial modules required to obtain the GPGGA
NMEA string, as given in Figure 96.

In addition, the following should be noted with reference to Figure 96:

• The "kernel packet filter" represents the module that was used to apply the netfilter
rules to each packet, causing a response of either NF_DROP, NF_ACCEPT,
NF_STOLEN or NF_QUEUE to be returned back to the netfiler framework (see
Section 3.7).

• The "IP packet queue" was used to send NF_QUEUE'ed packets to the background
routing daemon for modification, after which the original packet was either accepted,
dropped or replaced (Section 3.7).

• The routing daemon required the use of a datagram socket to transmit data via the NIC,
so that data, not intended for this local host, may be re-forwarded (Section 5.2.2).

• A "multiplexer module" was required to connect four serial streams· (or pipes, as they
are known in Linux) to one physical port, as illustrated in Figure 41.

• A "PSCP (positional Communication System Protocol) module" was inserted to convert
GUI interactions to peripheral interactions.

• The "TRDCS (Tactical Radio Data Communications Standard) module" was used to
interact with the protocol stack of the tactical radio network. However, note that only
text messages are currently able to be transmitted over the tactical radio network,
through the use of two iPAQ's.

• The "image module" conveyed CMOS images to the GUI.
• A "voice application" was developed to record an 8 kHz real-time audio channel

received from the headset (Figure 41), which was transmitted and played-back over the
established ad-hoc network (more about this in Section 6.3).

113

Chapter 6 hnplementation Status

Userspace

Shared Memory Area
r I

Unlod i i:-ock

LAMP's r-
GUI NMEA

Routing
Application PCSP

Module Lock Table Unlock

,

~ • J

r. Lock Unlock

f r
Image TRDCS Pipe

11
Module Module

Voice
... ... " !.

LAMP
+ Application

Multiplexer
Module Routing Daemon Datagram

\. SOCk~" ...
I

J ~ Netlink ...
Linux Kernel Socket

UDP

IP Packet
Routines

Queue
~

Netfilter &
Kernel

-"" ~ Packet
IP Routines

Filter
I l : It

Serial Network I
Driver Driver

... " t
~ ...

Serial NIC
Port

RS·232

~ ! .- (EIA-422A compatiable)
Air Interface ... 1-

CMOS Tactical GPS
Camera Radio Module

Figure 96: Showing the interaction of all participating modules.

114

Chapter 6 Implementation Status

6.3 The Elementary Routing Tests
In order to test the multi-hop functionality of LAMP, a few elementary tests were necessary to

ensure that LAMP conformed to the requirements of the PCS. However, to conduct these tests,

two applications were needed.

The first application that was developed (APP I) simply pre-pended a hard-coded destination list

to a 125 byte data packet, which was transmitted at a rate specified by the user through the use

of the Linux . prompt. In addition, a signal handler was constructed to print the number of

packets that was transmitted, once the user terminated the application. This way, an end-to-end

delivery ratio could be calculated at each source/destination pair.

The second application (APP2) performed the sample and play-back of the real-time 8 kHz

voice stream. Here a sampling thread38 was used to quantize a voice signal (obtained from the

microphone of the headset) into frames, which was then transmitted over the NIC through the

use of the netfilter architecture. On the receiving end, another thread was used to queue each

received packet, which was buffered for playback (on the headset). In each case, the encoding

and decoding phase of the raw audio data was accomplished through the use of an on-board

DSP, which could be configured to handle different sample rates. The sample rate opted for in

this project was that of an 8 kHz mono (single channel) data stream, which (when coded by the

Pulse Code Modulation (pCM) scheme) translated to packet size of 125 bytes, transmitted at a

rate of 10 packets per second. An illustration of the voice application (with its ' two threads) is

given in Figure 97, below.

Userspace

Parent Process

Voice
Application

t t

Child Process ~ !
Sample Play-back '
Thread Thread

-'" - .c:

UnuxKemel
" on-board .

DSP

i l
... •

Headset Headset
Earphones Microphone

Figure 97: Showing the components on the voice application.

38 A thread is a special type of process in Linux.

115

Chapter 6 Implementation Status

6.3.1 The Outdoor Tests

The first test that was performed examined the transmission range ofthe NIe. Here, two iPAQ's

were loaded with APP1 and were taken out into the University of Natal (Durban) campus to

establish the line-of-sight distance that could be achieved between these two devices. It was

found that when a distance of -200m was established, very few packets (below 5%) were

received correctly, with occasional "dead spots" (deriving from noise and the multi-path

interference of buildings, cars, trees and people) occurring at distances of 120m and more.

This test was then modified to include a third iP AQ, which was employed as a router to forward

data between the two previous devices, since such a strategy would allow one to assess LAMP's

routing ability. However, in order to ensure that data was in fact being forwarded, APP1's

destination list was adjusted to include the router. This way, end-to-end delivery ratios could be

calculated at both the router and the intended destination node, allowing the multicast ability of

LAMP to be assessed. It was found that when both the router and destination nodes were placed

near each other (but 50m away the source) a delivery ratio of 95% (and above) was received by

each, even when a transmission rate of 50 packets per second was being sent. However, when

the destination node was moved to distance of 150m, the router's delivery ratio dropped to 80%

and the destination node received only 75% of the packets that were received from the router

(i.e. an end-to-end delivery ratio of 60%).

One explanation for this has been the following: While the two destination nodes were together,

any packet that was not acknowledged was re-broadcast via the LAR algorithm, causing both

destination nodes to forward the data to one another. Since this increased the likelihood of each

node receiving the packet, a ratio of 95% was achieved. However, when the two destination

nodes were separated, very few packets were able to reach the distant node directly (from test

1), causing that node to be almost completely reliant on the router. Hence, when a packet was

not acknowledged and the source reverted to a LAR flood, a re-broadcast was only sent through
the router, causing a reduction in both ratios.

Nevertheless, the following can be noted from these two tests:

• Nodes 250m (or less) away did not always receive a transmission due to interference and

noise, which was not evident by the NS distribution. This is because NS assumes that each

transmission is perfectly circular (see Section 4.5). Hence, other than a collision, a node in

NS will always receive a packet if it is within transmission range of sending node. However,
in reality, this was not found to be the case. In fact, the probability of a packet being received

correctly was dependent on distance, with occasional "dead spots" occurring. Thus, if there

are three nodes, where one is in the middle of the other two and each node is within 200m of

one another, then the nodes on either end may experience an oscillatory hop count to each

other that varies from 1 to 2. This is because the probability of the routing update packet
being received correctly by these two nodes is less than 5% (from the first test). Hence, it is

more likely that the routing table will show these nodes to be two hops away, when if fact

they can be reached in one. This was confirmed by an application (APP3) , which simply

viewed the routing table of LAMP from the shared memory area, described previously.

• LAMP was able to forward multicast traffic, but the results obtained were poorer than those

observed during simulation. In Chapter 5, LAMP was shown to deliver 83% of its packets to
all intended destinations, when transmission rate of 50 packets per secdnd was used {Figure

116

Chapter 6 Implementation Status

69). However, in reality, this value fell to 60%. In addition, when LAMP was replaced with a

blind-flooding scheme, the end-to-end delivery ratio fell to 50% (under the same conditions),
confirming LAMP's superiority over such schemes. Hence, although simulation predicted

that four audio transmissions could be routed simultaneously, it is suggested that this value

should be reduced to 2 or 3 transmission instead. However, as will be explained in the next

section, work is still needed to confirm this.

6.3.2 The Indoor Test
To prevent the hop count from oscillating, an indoor test was conducted. This is because it was

found that when a node was moved behind the lift of the School of Electrical, Electronic and

Computer Engineering building that node became completely isolated from other nodes withi~

the postgraduate lab, as shown in Figure 98.

Postgraduate
Digital

Lab Stairs Processes

/ ~
Lab

II
I'

0 M G
Node

Sending - behind
node lift

position -I- Corridoor

Offices

Figure 98: Showing the position of the isolated node, within the School of Electrical, Electronic
and Computer Engineering building.

However, being indoors meant that GPS information would no longer be available to each node,

since the GPS antenna was unable to "view" any satellites. Hence, LAMP was modified to

perform blind-flooding under these conditions, allowing the more optimal LAR algorithm to be

initiated when location data was available. This way, the PCS will still be able to function when
GPS information was unattainable.

Nevertheless, to ensure that the hop count within the routing table did .not oscillate, APP3 was

loaded onto three nodes; with one placed in the postgraduate lab (the sending node), one in the
corridor, and another behind the lift (see Figure 98). Hence, in this configuration, the nodes on

either end were unable to communicate, without the intervention of the node in the corridor.

When this was done, it was found that the hop count was indeed stable, and that each end

contained one hop to the router and two hops to each other. Also, when the node in the corridor

was moved closer to either end, the other became isolated, as expected. With this new location

investigated, the audio application (APP2) was loaded onto the iP AQ' s for testing.

The audio that was received (from the end-to-end nodes) was clear and when the router moved

closer to either end, the audio signal terminated (at the point where the other node became

isolated), but was re-established when moved back towards the centralized position. However,

117

Chapter 6 hnplementation Status

note that this scenario can only validate the reception of one audio channel. This is because the

reception from multiple voice sources requires mixing.

Mixing is the .process of adding multiple audio streams together, in order to produce a single

voice stream that can be played-back on the headset. Work was conducted to place each

received stream into a separate buffer, which was then de-queued and digitally added for output

on the headset. However, when this was done, it was found that the resulting stream was

verbally indistinguishable. Suggestions (to solve this dilemma) have been to use a 2's
complement adding scheme (instead of the ordinary arithmetic approach), but this still needs to

be confirmed.

Hence, although the above test was able to prove that a single voice channel was able to be

routed over the ad-hoc network, work is still required to determine the number of audio

channels that can be handled by each iPAQ simultaneously.

6.4 Conclusion

Although Chapter 5 was able to demonstrate LAMP's supremacy over other flooding schemes,

this chapter has motivated the need for protocol verification through a physical implementation.

This disagreement arises from assumptions that were made during simulation, such as the

transmission of perfectly circular emissions. Since assumptions such as this negates the

likelihood of noise and multi-path interference; discrepancies occur in the theoretical
performance of a protocol.

Nevertheless, this chapter was able to illustrate the interaction (and modularization) of the

developed modules and was able to demonstrate the progress that has been made to ensure that

LAMP is able to comply with the requirements of PCS. In this regard, LAMP was shown to

route an 8 kHz mono voice channel, as well as, operate both indoors and outdoors, through a
modification made to its' flooding algorithm.

118

Conclusion

7.1 Dissertation Summery

An ad-hoc network is a network that consists of an autonomous set of wireless nodes. Since

these nodes are liberated to roam about in a non-deterministic manner, routing protocols are

required to be adaptive, distributed and employ a multi-hop scheme, so that each node may act

as a router for each of its neighbours, causing a large degree of network connectivity.

However, the ad-hoc routing problem is diverse in nature and contains many contradictions. For

instance, delivering packets with minimal delay and maximum reliability, usually results in

large protocol overheads, which consume both energy and bandwidth. Therefore, a tradeoff (or

compromise) is generally made, whereby one property is sacrificed for another. The task of the

protocol designer is thus to find the optimal balance of all these constraints, so that the pitfalls

of the resulting scheme may be negligible for the particular environment (andlor application)

under consideration. Hence, many routing schemes currently exist today, with each offering a

unique balance of such properties.

Proactive unicast protocols make use of a next~hop table to determine an implicit path to an

intended destination node. Reactive schemes, on the other hand, first search the network space

to establish a forwarding path and then perform routing. Thus, proactive schemes are able to

routing data immediately, while reactive schemes are required to delay their routing sequence,

until an appropriate path is found. Hence, proactive schemes are capable of routing data faster

than their reactive counterparts, but are obligated to do so through the use of an "up-to-date"

table, which contains knowledge of every node within the network. Since these tables become

large for large networks, reactive schemes are favored over those of proactive (due to storing

next-hop information when needed), making them both scalable and efficient.

The same balance is true for multicast protocols. While source-based algorithms construct a

spanning tree for every multicast source present, core-based schemes only establish one

spanning tree per multicast group. Thus, although core-based schemes consume less protocol

overhead to maintain its' trees, they suffer from suboptimal forwarding paths ,and a single point

of failure. Nevertheless, both these strategies were suited to slow moving networks, as each

spanning tree required continual repair. Therefore, to improve the mobility constraint of

multicasted networks, mesh-based algorithms were developed, which kept knowledge of

multiple routes to each group member. Thus, when one route became broken due to mobility,

other alternate routes were available. Although such schemes proved to be more resilient to

mobility, they induced greater protocol overheads than previous schemes and hence were still

deemed unacceptable in highly ~obile environments. Therefore, new methodologies were
required.

One such strategy was blind-jlooding, which distributed a single copy of a packet to all nodes

within the network, regardless of the indented recipients. But, this scheme re-transmitted a

packet n times, where n was equal to the number of nodes present in the network. Since this lead

to the broadcast storm problem, alternate schemes were constructed to limit forwarding nodes,

so that all nodes could be reached in m transmissions, where m was less than n. However, such

strategies were only feasible in large networks, since little performance could be gained over

blind-jlooding when employed in sparsely connected networks. Hence, for such

119

Chapter 7 Conclusion

environments, another strategy had to be developed. This scheme became known as LAMP, a

Location Aided Multicasting Protocol.

LAMP uses an underlying unicast protocol to identify specific next-hop neighbours that are

suitable to forward a packet on towards the intended recipients. However, instead of sending a

unicast transmission to each identified neighbour, LAMP broadcasts its' packets to all

neighbouring nodes, so that a single transmission can be used instead. But, to achieve this, a list

had to be appended to each packet, so that neighbouring nodes may determine if they are

responsible for handling data at each successive hop. Thus, through this strategy, a shortest-hop

spanning tree could be implicitly defined, allowing data to be routed over a minimum number

of re-transmissions.

Had the underlying protocol been able to maintain an "up-to-date" state of all links within the

network, then ·this strategy would suffice in forwarding multicast data to all intended recipients.

However, in reality, proactive unicast schemes require a period of time (known as the update

interval) to refresh links and thus· a potential exists that some links have since become broken,

causing invalid routing paths to occur. During such situations, LAMP employs a location

limited flood, in order to discover alternate paths to a particular destination without exploiting

unnecessary bandwidth. But, since flooding cannot guarantee that a path will be found, it is only

suited to situations where the reception of a packet is delay critical, as used in time-bound audio

applications.

Nevertheless, simulation results have shown LAMP to perform well as both a unicast and a

multicast strategy, offering a suitable, alternate routing methodology to other pre-existing

multicast and flood-limiting algorithms, which were deemed unacceptable to sparsely connected

handheld terminals. But, since simulation only necessitates the formulation, testing and

comparison of a protocol under various repeatable scenarios, it, alone, is insufficient for

protocol verification. In addition, simulation can never represent the real world, no matter how

accurate its' underlying protocol models are. Thus, to confirm a protocols' correct operation,
physical implementation is imperative.

However, due to protocol simplifications made during simulation and the lack of dedicated

hardware, difficulties can arise during the migration process. One such "difficulty" is the use of

an operating system, which often requires routing protocols to conform to pre-defmed
interfaces. Thus, without prior knowledge of what these interfaces are, many simulated

protocols never reach implementation or have to be modified, often resulting in the re­
development of the whole protocol. Therefore, prior to developing LAMP, an appropriate

operating system for high-end mobile devices was selected. This system, known as ARM Linux,

facilitated the incorporation of kernel manipulation modules, which permitted calling functions
to be altered during the transmission and reception of packets.

One such module was netfilter. Netfilter allows hooks to be placed throughout the kernel, so that

additional rules can be applied to a packet, in order to determine whether it should be queued to

a user-defined, background application for modification or sent via the usual IP routines. Hence,

through this architecture, protocols such as LAMP can be implemented in user-space, giving the
protocol developer all the necessary resources needed to readily incorporate new algorithms into
ARM Linux.

120

Chapter 7 Conclusion

7.2 Future Work

7.2.1 Scalability

Previous work on LAMP has been geared towards the development of a table-driven strategy

for the identification of neighbouring nodes. However, table-driven strategies suffer from

scalability issues, preventing such schemes from being deployed in large networks. Hence, to

extend LAMP' s application to bigger networks, this scheme needs to be replaced by some

reactive forwarding methodology. But, to do so, a spanning tree would be necessary, since these

structures have the ability to use one address, the multicast group address, to represent all

intended recipients, thus negating the need of a next-hop forwarding list. Since this defeats the

very incentive of LAMP, it is not perceived that LAMP will ever be used outside sparsely

connected ad-hoc environments. Also, reactive strategies require a certain amount of time to

search for the required recipients, in order to build the desired spanning tree. Since this time

will depend on the number of nodes present in the network and the current congestion level,

care will need to be taken to ensure the maximum latency bound of a packet does not exceed the

delay that is acceptable for playback in real-time audio applications.

Therefore, future work should not focus on making LAMP scalable, but rather look at

congestion issues, since congestion is related to both bandwidth and energy consumption.

7.2.2 Congestion

The main disadvantage of LAMP is that data is flooded until the periodic update interval of the

underlying unicast protocol is able to fix broken next-hop links. Although this strategy permits

the delivery of a packet during route failure, it induces high bandwidth consumption. Thus, to

reduce the time between updates, a technique (borrowed from reactive protocols) can be

adopted, whereby a reverse path is established in conjunction with the flooding process. This

way, the flooding process will not only act as a temporary routing strategy, but also a repairing

mechanism. Since repairs will now be made on an on-demand basis, flooding will be required

less often, causing a better utilization of the available bandwidth.

Another technique than can be employed is the distance effect (See section 2.2.1.2.1), which

allows the update interval to adapt to the current mobility conditions of the network. Since this

will cause the underlying unicast protocol to respond quicker to link breakages, unnecessary
flooding can be prohibited.

7.2.3 Implementation

In Chapter 3, an architecture, known as netfilter, was given to incorporate new routing schemes

into the existing IP stack. However, what was not mentioned is that this method of protocol

implementation is not the only scheme that can be used. An alternate solution is to implement

protocols directly within the kernel [123]. However, implementing routing protocols in this

manner relies on intricate knowledge of the Linux IP stack, making this strategy very operating

system dependent. With constant developments still being made to both the ARM Linux kernel

and the routing algorithm, it was predicted that portability issues could result, which would have

detrimental effects to the progress of the project. Thus, to avoid this dependency, netfilter was
selected instead.

121

Chapter 7 Conclusion

Nevertheless, full kernel implementations do offer two advantages. Since packets can be

manipulated directly, transportation to user-space is no longer required, permitting code to be

both efficient and fast [124]. In addition, the use of an IP queue will no longer be necessary,

causing savings in both the memory and processing requirements of the routing daemon.

122

Appendix A - Tracing Through the Linux IP Stack

This chapter gives a detailed description of how packets are sent/received to/from the 2.4.18

Linux kernel. Due to the rapid development of the Linux operating system, many documents

describing the journey of packets through the IP stack were found to be obsolete, with the most

recent detailing the 2.0.34 kernel [4]. However, with the aid of the Internet, many documents

were found pertaining to either a particular aspect of the 2.4.x kernel or the changes made since

kernel 2.2.x. Therefore, with reference to these documents, a thorough understanding of the

responsibilities of each netfilter hook was gained, which aided in the incorporation of LAMP

into the existing Linux framework. However, since details of the Linux 2.4.18 IP stack do not

form the focus of the dissertation, it is expected that this endeavor will be placed in the public

domain, so other research groups need not undergo this same work again:.

Please note, however, that all the call directories indicated, are referenced with regards to the

main Linux source code directory, usually found in / usr / src / linux-2. 4.

I.I Reception of a Packet

We begin this journey by first looking at the calls that are made within the kernel, which involve

the reception of a packet. This sequence starts when the NIC senses the transmission of data

over the air interface.

1.1.1 Reception from the NIC to the IP Packet Handler

Since this project deals with wireless communication, all packets sensed within the NIC's radio

range are received and transferred into memory. Once fully received, an interrupt request is

generated by the NIC to get the attention of the interrupt service routine, which resides as part of

the kernel network driver [125]. When the interrupt service routine is invoked, a test is

performed to determine whether the packet is intended for this host. This is done by comparing

the MAC address of host with the destination MAC address of the packet. Provided the packet

was not broadcasted or the NIC was not put into promiscuous mode, only packets with matching

MAC addresses are accepted, while others are ignored. Those accepted are allocated ask_buff

structure (through dev_alloc_skb() and then invoked with netif_rx(). The

dey _ alloc _ 5 kb () function is responsible for copying the packet from the memory of the NIC

to the newly allocated skb (a packet contairied within the sk_buff structure). Note that there

are a number of ways to achieve this, such as using DMA transfers, but details of this is not
given here.

The sk_buff structure (defined in linclude/linux/skbuff .h) is a double-linked buffer

[107] that resides in the kernels' memory to store (and manage [126]) network packets to/from

the socket interface. Essentially, the 5 k _buff structure is an efficient control structure that has

a block of memory attached, with pointers to each header within its payload, as shown in Figure
99.

123

Appendix A Tracing Through the Linux IP Stack

NULL ·prev ·prev ·prev

~
Q)
."
co
Q)
.s:

·next ·next

·th r--- · th

·uh r- ·uh .,
·iph ·iph r--- Qj

."

·arph - co ·arph Q)
.s:

·raw - ·raw

·eth I--- ·eth

Data ~ Data

*th (TCP header pointer)
*uh (UDP header pointer)
*iph (IP header pointer)
*arph (ARP header pointer)
*raw (raw IP header pointer)
*eth (Ethernet header pointer)

·next NULL

~ ·th ~

r- · uh r-
r- ·iph r---
r- ·arph r---
r- ·raw r---
r--- ·eth r---

!

I I I ,

~-
I

Data

I

Figure 99: Showing three double-linked socket buffer structures, each containing header
pointers to the corresponding data section of the packet.

The netif_rx () (given in / net / core / dev . c) is a generic receive handler [125] that first

timestamps the received packet [127] and then disables its interrupts. A test is then done to

determine whether there is space to place the s kb into a receive CPU FIFO queue, and, if so, the

skb is queued and a software interrupt request (softirq) is scheduled by" setting the

NET RX SOFfIRQ flag (through _cpu_raise_softirq(this_cpu,

NET_RX_SOFTIRQ) [128]); else the packet is dropped and the skb freed. Once a softirq has

been raised, its interrupts are re-enabled and congestion level returned. Since this code resides
within the interrupt service routine, it is required to be fast [125], so that awaiting packets of the
NIC are not dropped. Thus the computational processing of the packet is delayed until the

CPU(s) become idle. This is the purpose of the softirq, which are only triggered when the
CPU is not busy handling any interrupts.

Soft irq's provide a means for multiple CPU (SMP) machines to process received network

packets [127] and is handled through the do_softirq () function (located in

/kernel/softirq. c). This routine basically determines the appropriate handling routine
required (if any), through various defines in the kernel source code [128]. The routine that

corresponds to the NET_RX_SOFfIRQ flag is net_rx_action (). Note that since softirq's
are only flagged, do _ softirq () is required to be called regularly within the kernel, to ensure

softirq's are continually processed. This is achieved by placing the do softirq () call in
the following three positions [125]:

•

•

•

In do_IRQ () (found in / arch/i386 / kernel/irq. c), which is the generic interrupt
handler,

In schedule () (given in /kernel/sched. c), which is the main process (application)
scheduling function,
And just before the terminations of system calls (described later).

124

Appendix A Tracing Through the Linux IP Stack

The task of the net rx action () function (defined in / net / core / dev . c) is to dequeue the

first packet obtained from the FIFO queue and pass it to the appropriate protocol handler
function. However, many protocol handlers may be registered with the kernel [125, 128] and

thus each is called in sequence, starting with the generic protocol handlers (ETH_P _ALL) first.

Nevertheless, the protocol handler that deals specifically with IP packets (ETH_P _IP) is called

ip_rcv () .

1.1.11 From the IP Packet Handler to the UDP Packet Handler

ip_rcv () (located in / net / ipv4 / ip_input. c) is the protocol handler responsible for

processing IPv4 packets. Once ip _ rcv () obtains a packet, it first checks to see that is was

received properly. It achieves this by ensuring the following [127]:

• The packet is at least 20 bytes long (the size of the IP header),
• The IP version field contained within the IP header is indeed 4,
• The checksum field of the IP header corresponds to that re-calculated by ip JCvO.

If any of these tests fails, the packet is dropped, or else the size of the IP packet is recalculated

and the skb trimmed, but only if the network driver had padded the buffer out with zero's [127].

Once resized, the first of the netfilter hooks is called, through the use of the "NF _HOOK

(PF_INET, NF_IP_PRE_ROUTING, ip_rcv_f~nish)" macro. As can be seen by this

macro, the packet is sent through the NF _IP _PRE_ROUTING hook, after which the function

ip_rcv _finish () is invoked, but only ifthe hook returned with ACCEPT [107].

ip_rcv_finish() (defmed in /net/ipv4/ip_input.c) deals with the routing aspects of

incoming IP packets [125]. However, ip _ rcv _ finish () only deals with where to send the

packet next, which is achieved by examining the skb->dst structure. The skb->dst->input

structure is a function pointer that contains the function that.is to receive the packet next. If this

structure is blank (NULL), the ip_route_input () function is invoked to fill-in this structure.

This is because, from this point on, the packet may continue to one of four possible routines,
namely [127]:

•

•

•

•

ip _local_deli ver () (given in /net! ipv4 / ip _input. c) is called when the packet is
destined locally and hence will result in the IP packet continuing to transverse up the IP
stack.

ip_forward () (located in Inet/ipv4 lip_forward. c) is called when the packet is
required to be forwarded and hence this host is only acting as a router for this IP packet.
Tracing of the IP forwarding routines are not covered in this description, but may be
followed by examining [127].

ip_error () (shown in Inet/ipv4/route. c) is called when ip 'route input () was
unable to determine a route for the packet. - -

ip_mc_input () (found in Inet/ipv4/ipmr. c) is called when the IP packet is intended
for a multicast route.

Once the ip_route_input() function returns, ip_rcv_finish() makes a call to the

function pointed by skb->dst->input. However, in order to gain a better understanding as to
the conditions that must exist for a particular choice of function, an examination into the
ip _route_input () function is required.

The ip_route_input () function (defined in I net/ipv4/route. c) is the function that

inspects the cache memory of the host, in order to determine where the packet is to be_processed

1?'\

Appendix A Tracing Through the Linux IP Stack

next. If one is found the skb->dst structure is set and the ip route input () function is , - -
returned; else a check is made to determine whether the packet is part a multicast route. If so,
ip _ route _input _ mc () is called, or else ip _route_input _slow () is invoked [129].

Since this description does not deal with multicasting, only ip _route_input _slow () will be

examined. The ip_route_input_slow () function (given in / net/ipv4 / route.e) looks

through the routing tables (the Forward Information Base (FIB)) of a host [130], in order to find
a route for the packet. Before doing so, however, a number of error checking routines are
performed. If all these checks are passed, then the FIB lookup commences through the use of

the fib_lookup () function [129]; else the skb->dst->input pointer is set to the

ip_error () function. The fib_lookup () function is used to search through the routing table

of the host, in order to find a route. If a route is found, fib_lookup () returns with a res

(result) structure that indicates the type of route found; else res.type is set to

RTN_UNREACHABLE. If the returned res. type structure contains either

RTN_BROADCAST or RTN_LOCAL, the skb->dst->input () pointer is set to

ip_local_deliver() [130]. Once a route is found within the FIB, it is placed within the

quicker routing cache, so that it may be found by ip _route_i nput () on the next packet
arrival.

Assuming res. type was indeed set to either RTN BROADCAST or RTN_LOCAL,

ip_loeal_deliver() is invoked by ip_rev_finish(). The ip_loeal_deliver()

function (located in Inet/ipv4/ip_input. e) is the function that deals with IP fragmentation

reassembly [125] (through ip_defrag ()). Once the packet has been fully reassembled, a call

is made to another netfilter hook, namely the "NF_HOOK (PF_INET, NF_IP_LOCAL_IN,

ip_loeal_deliver_finish)" macro.

The ip_local_deliver_finish() function (found in / net / ipv4 / ip_input.e) is
responsible for completing any outstanding tasks that are required by IP, before the packet is

transported to the INET protocol handlers [125]. But, before doing so, the IP header is trimmed

and a test is performed to determine whether the packet is intended for a raw IP socket, in which

case the raw_ v4 _input () function is invoked (see [125] for more details on raw IP packets).
In most cases, however, the packet will not be sent to raw sockets and hence the proper INET
protocol will need to be determined. This is done by taking the protocol field of the IP header

and using it as an index into the inet _protos [] array. The returned inet _protocol

structure (defmed in linclude/net/protocol.h) contains the correct protocol handler,

which is then invoked. These protocol handler functions include tep _ v4 _rev () , udp _rev () ,

icmp_rcv () and igmp_rev (), corresponding to the TCP, UDP, ICMP and IGMP protocols,

respectively [125]. Since this project deals with UDP packets only, just the udp _rev ()
function will be considered.

I.I.III From the UDP Packet Handler to Userland Reception

The udp_rev () function (defined in Inet/ipv4/udp. e) is the UDP INET protocol handler.
This function starts by performing some integrity checks to see if the packet length and
checksum fields are correct. If so, then a further check is performed to determine whether the

packet is part of a broadcast or multicast, in which case, the udp _ v4 _ mcast _deli ver ()
function is called; else the pac~et is intended as part of a unicast transmission and thus

126

Appendix A Tracing Through the Linux IP Stack

udp_v4_lookup () is invoked to establish the receiving socket [131] from the port address of

the packet. If udp _ v4 _l ookup () was unable to find the correct socket, then udp _ rcv ()
received a packet on a port that did not contain a corresponding receiving application and hence

the packet is discarded [131]. However, if a socket was found, then udp _queue _ rcv _ s kb () is

called upon.

The udp_v4_rncast_deliver() function (given in / net / ipv4 / udp.c) basically sends the

packet to every socket that contains listeners. For each socket found, udp _queue _ rcv _ s kb ()

is invoked.

The udp_queue_rcv_skb() function (found in / net /ipv4/udp .c) applies UDP kernel

packet filtering (if defined) and then calls socket_queue _ rcv _ s kb () [129].

The socket_queue_rcv_skb () function (located in /include /net/sock.h) places the

UDP packet onto the socket's receive queue [131]. Each protocol family contains its own
received queue and when this queue becomes full, the packet is dropped. Once queued, the

function pointed to by sk->data_ready is invoked [131]. However, before doing so, a user

defined filter may be applied to the packet, through the s k _ fi It e r () call. This function is

only invoked if a filter was attached to the socket, through the setsockopt () system call
[131]. Depending on the rules set for this filter, the packet may be discarded, trimmed or
accepted with change [131].

In order to discover which function is actually called by sk->data_ready, one needs to

examine the sock_init_data () function [132] (defmed in / net /core/sock. c), which

configures the socket with error, read & write queues during its initialization stage. On line

1194 of the source code, the'assignment "sk->data_ready = sock_def_readable;" will

be seen. Hence, the call will continue with the sock _ def _readable () function.

The sock def readable () function (located in /net /core/sock. c) makes a call to the

function wake_up _interruptible () , if the sockets' process has been put into sleep mode

and the sleep queue for the socket is defined [132]. The wake _up_interruptible () function

(given in /include/linux/ sched. h) is actually an alias for the _wake_up () function. The

_wake_up () function (found in /kernel/sched. c) simply calls the kernels' core scheduler

wakeup function _wake_up_cornmon () [132]. This function invokes try_to_wake_up ()

that wakes up processes), by placing them on the run_queue and marking them as
TASK_RUNNING. Once awoken, the packet is transferred to all processes (userland
applications) waiting on the socket (via the sk_wake_async () function call [133, 134]). The

reason application processes needed to be awoken is that receiving sockets are generally
blocked until data becomes available for them. To see this occurrence, one needs to follow the
calls that occur when the user executes the "read (socket, data, length)" statement.

I.I.IV Blocked Sockets

The "read (socket, data, length)" (defined in the libc. a C library) statement causes

libc to issue a system call software interrupt, via the Ox80 assembly instruction [135]. The

interrupt handler (defined in /arch/i38 6/kernel/entry. s) then identifies which system

call is requested, by examining the EAX register of the CPU. The value of this register can be

found in /include/asrn/unistd.h, which defines the values for each system call. The

system call value that involves the "read ()" statement is _NR_ read. This value is-then used

127

Appendix A Tracing Through the Linux IP Stack

as an index into the sys_call_table [135] array, which calls the s ys_read () system
function.

The sys read () function (found in / fs / read_write.c) is part of the kernels' Virtual File

System [107]. It tests whether the given file descriptor has the FMODE_READ flag set, which
is used to inform the kernel that the user has opened this file (socket) with read permissions
enabled, and that the data buffer (contained within userland) is able to be accessed (using the

locks_verify_area () function). If this flag is indeed set, the file- >f_op->read function

is invoked. This function can be determined by looking at sock_map _ fd () function (given in

/ net l socket. c) that is invoked during the creation of the socket. There one will find the

following code assignment: "file->f_op sock->inode->i fop

&socket_file_ops;". The socket_file_ops structure is defined (in / net/socket.c) as
follows:

} ;

read: sock_read,
write: sock_write,

Hence, the sys_read () function will call the sock_read () function.

At this point, the user call has entered into the socket layer. The sock_read () function

(located in /net / socket. c) is the read function written for BSD sockets [109]. It calls

socki_lookup () to associate the sockets data structure with the file descriptors' inode [134].

Once associated, the "data" buffer allocated in userland is then placed in a msg structure (so that

it may be transported into kernel space) and the function sock _ recvmsg () invoked.

The sock_recvmsg() function (given in / net/socket.c) allocates a blank socket control

message that accompanies the msg structure throughout its journey. Once allocated, the protocol

specific sock->ops->recvmsg () function is called [136]. If this function returns without

errors, then the accompanying control message is sent ~o the scm _ recv () function for further

processing. The sock->ops->recvmsg () function is defmed during kernel startup, through

the inet_stream_ops and inet_dgram_ops structures (found in /netlipv4/af_inet. c).

Both of these structures direct the sock->ops->recvmsg () function to the inet_recvmsg ()
function [134], hence this is the function that is actually invoked next.

The inet_recvmsg () function (located in Inet/ipv4/af_inet. c) IS the recelvmg

function for the INET layer. It calls the sk- >prot->recvmsg (), which points to the TCP,

UDP or RAW message receive functions (registered by the inetsw _array [J array structure
during kernel startup), depending on the socket type used [136]. Since this project deals just
with UDP packets, only the udp _ recvmsg () function will be considered.

The udp_recvmsg() function (defmed in /net / ipvv4/udp.c) checks that a valid address

was passed to it and then invokes skb_recv_datagram(). Once this function returns

correctly, the received data IS copied to userland through either

skb_copy_datagram_iovec () or skb_copy_and_csum_datagram_iovec (), depending

on whether a checksum is required [133]. Finally the sock _ recv _timestamp () function is

128

Appendix .f\. Tracing Through the Linux IP Stack

called, the datagram freed (from the sockets' receive buffer), and the number of bytes retrieved

returned.

However, one will be asking how the above trace shows the user process going to sleep. This is

shown by exammmg the skb_recv_datagram () function (given m

/ net / core / datagram. c). It contains a code snippet that resembles the following:

do

skb = skb_dequeue (&sk->receive_queue) ;
if (skb)

return skb;
error = -EAGAIN;
if (! timeo)

goto no packet;
while (wait_for_packet (sk, err, &timeo) 0) ;

return NULL;

no_packet:
*err = error;
return NULL;

Here s kb _dequeue () is called to return the fIrst packet stored in the sockets receive queue,

and wait_for_packet () is invoked to place the process onto the sk->sleep wait queue,

marking it as TASK_INTERRUPTIBLE [136].

I.IITransmission of a Packet

We now look at how the kernel deals with the transmission of a packet from userland. This

sequence of calls starts when a running application issues a "write" system call to a socket.

1.11.1 Transmission from Userland to the UDP Packet Handler
The "write (socket, data, length)" (defmed in the libc.a C library) statement

causes libc to issue the Ox80 assembly instruction [135], which invokes the interrupt handler

(found in /arch/i386/kernel/entry.S) with an index of NR write (given in

/include/asm/unistd. h). When this index is placed within the sys_call_table [135]
'array, the sys write () system function is called [137].

The sys_write () function (located in /fs/read_write. c) is part of the kernels' Virtual
File System [107]". It tests whether the given fIle descriptor has the FMODE_ WRITE flag set,
which is used to inform the kernel that the user has opened this me (socket) with write
permissions enabled, and that the data buffer (contained within userland) is able to be accessed
(using the locks_verify_area() function). If this flag is indeed set, the file->f_op­

>write function is invoked. As mentioned previously, this points to the sock_write ()
function.

At this point, the user's call has entered into the socket layer. The sock_write () function

(defined in /net/ socket. c) is the write function written for BSD sockets [109]. It checks that

"length" is not zero and, if true, calls socki_lookup () to associate the sockets' data structure

with the me descriptors' inode. Once associated, the "data" contained within the . userland

129

Appendix A Tracing Through the Linux IP Stack

memory is then placed in a msg structure (so that it may be transported into kernel space) and

the function sock _ sendmsg () invoked [136] .

The sock_sendmsg () function (given in / net / socket. c) attaches a socket control message

for the msg structure, through the scm_send () function. If allocated correctly, the protocol

specific sock->ops->sendmsg () function is called [137] and socket control message

destroyed. The sock->ops- >sendmsg () function is defined during kernel startup, through the

inet _stream _ ops and inet _ dgram _ ops structures (located in / net / ipv4 / af _ inet . c).

Both of these structures direct the sock->ops->sendmsg () function to the inet _ sendmsg ()

function [107], hence this is the function that is actually invoked next.

The inet_sendmsg() function (found in / netlipv4/ af_inet.c) is the sending function

for the INET layer. It calls the sk->prot - >sendmsg (), which points the UDP message

sending function udp_sendmsg(), through the inetsw_arraYl] array structure indicated

earlier [109].

1.11.11 From the UDP Packet handler to the IP Packet Handler

The udp_sendmsg() function (defined in / netlipvv4 / udp.c) performs numerous checks

to ensure that valid address and data lengths were passed to it. If these tests return without error,

another series of tests are initiated to determine whether sk_dst_check() or

ip _route_output () is required to find a route to the destination host [130]. Once a route has

been found, segments of the fake UDP header is constructed and ip _build _ xmi t () invoked

[136]. The reason a fake header is constructed is that selected fields of the IP header is required
for the UDP checksum calculation (see section 3.5.3).

The sk_dst_check() function (located in / include/net / sock.h) is used to search the

sockets' cache memory for a route [130]~ while ip_route_output () is used to search the

relevant routing tables of the host [137]. Since routing information is more likely to be found in

the routing tables, sk_dst_check () is only invoked if udp_sendmsg () is sure that a route
exists in the socket cache, and hence will find a route there relatively faster.

The ip_route_output () function (found in /include/net/route.h) is used to create a
key [130], which is needed to index a particular chain within the routing cache (hash table) of a

host. Once the key has been created, control is handed over to ip _route_output _ key () to
actually search for a route. The ip_route_output_key () function (shown in

/net/ipv4/route.c) iterates through the selected bucket, until either a route was found or
the chain ended [130]. If a route was found, the expiry time of this entry within the chain is

updated and the function returned; else ip_route_output_slow () is invoked to fmd a route
within the hosts' FIB.

The ip_route_output_slow () function (given in / net / ipv4 / route. c) is responsible for
searching the FIB and placing the resolved route into the routing cache, if found [130]. First

tests are performed on the source to determine whether the address is part of a multicast,
badclass or zero net, and if so, terminates the search and returns with the appropriate error.
Next, the outgoing device is determined, followed by further testing to determine whether the
destination is a broadcast address, part of a multicasting address, or the local loopback address

(IP address 127.0.0.1) [130]. If this was the case, a search through the FIB is skipped, or else a

search is initiated through either fib lookup () or main_table->tb_lookup (r: Once a

130

Appendix A Tracing Through the Linux IP Stack

route is found, it is placed within the route cache through rt_intern_hash () , which also

invokes ARP to resolve the MAC address of the next hop router [l30]. Note that

fib_lookup () (defined in l include / net / ip_fib. h) tries to determine the outgoing router
by applying the more specific network masks first, before moving on towards the more general

ones [129]. If, after applying all the network masks, the router is still not resolved, the default

router is used instead (if defined) [l30].

1.11.111 From the IP Packet Handler to the Network Driver

The ip_build_xmit () function (found in I net/ ipv4 / ip_output. c) starts by issuing a test
to determine whether the IP header has been attached. If it has not, the packet length is
increased to include the IP header, after which a further tests is performed to determine wheth~r

IP fragmentation is required [l30]. If so, the packet is sent to ip _build _ xmit _ slow () for

further processing; else the hardware (Ethernet) header is allocated and the IP header built (if

necessary). Once built, the "NF HOOK (PF _ INET, NF _ I P _LOCAL_OUT,

output_maybe_reroute)" macro is called [l30] .

The ip _ build_ xmit_ slow () function (given in Inetlipv4 l ip _ ouput. c) builds and sends

fragments, starting with the segment containing the highest offset (which helps for both the
transmission and the reception of fragments, since the fake UDP header checksum can be

calculated and sent on the last fragment, through getfrag ()). This routine starts by

calculating the number of fragments required and then repeats the following steps for each
fragment:

• The hardware header is allocated,
• The IP header is built,
• The offset is adjusted for the next fragment,
• The "NF HOOK (PF _ INET, NF IP LOCAL_OUT, output _maybe_reroute) " macro

is called.

The output_maybe_reroute () function (located in Inet / ipv4 / ip output. c) is defined
as follows [130]:

static inline int output_maybe_reroute(struct sk buff *skb) {
return skb->dst->output(skb);

As one can see, this function simply calls skb->dst->output [136]. The reason

output_maybe_reroute () was invoked within the netfilter hook and not skb->dst­

>output is simply for precaution, since the routing daemon called by netfilter may change the
route and hence affect the function pointed by skb->dst->output.

To determine where the code proceeds next, one needs to look back at the

ip _route_output _ slow () function, since it was the function that set this pointer. There
skb->dst->output is set to the following [l36]:

111

Appendix A Tracing Through the Linux IP Stack

• ip _output () for unicasts,
• ip mc output () for both broadcasts and multicasts,
• ip = rt = bug () for bugs that may have occurred somehow (not considered here).

Since this discussion does not include multicasting, only the broadcasting aspects of

ip_mc_output () will be considered. The ip_mc_output () function (defmed In

/ net lipv4 / ip output. c) creates a duplicate copy of the broadcasting packet (a making a

clone of the socket buffer structure) and invokes the copy through the "NF _HOOK (PF _ I NET,

NF_IP_POST_ROUTING, ip_dev_loopback_xmit) " macro. Once the copy has been sent,

the original packet IS sent to ip _ f inish_output () . Note that the

ip_dev_loopback_xmit () function (given in / net / ipv4 / ip_output. c) simply sends the

duplicate packet to the loopback device, so that local applications can receive a copy of the

broadcasted data.

The ip_output () function (located in /net/ipv4 / ip output. c) performs NAT (Network

Address Translation), provided the Linux operating system was configured with this option, and

then makes a call to ip_finish....:output ().

The ip_finish_output() function (found in / net / ipv4 lip_output.c) sets the MAC

layer output device and protocol type (ETH_P _IP), and then invokes the "NF HOOK

(PF_INET, NF_IP_POST_ROUTING, ip_finish_output2)" macro.

The ip_finish_output2 () function (given in / netlipv4 / ip_output.c) calls either hh­

>hh_output or dst->neighbour->output, depending on whether hh or dst->neighbour

was defined, respectively [130]. To discover where these function point, one needs to look at the

ARP constructor (arp constructor ()), which is invoked during the ARP initialization stage

of the kernel startup mechanism [128]. The arp constructor () function (located in

/ net/ipv4/arp.c) attaches different neigh_ops structUres that define both of the above

function calls [128]. Generally, these will point to dev _queue _ xmi t () .

I.I1.IV From the Network Driver to Transmission

The dev _queue _xmit () function (defmed in /net/core/dev. c) is responsible for queuing

a given s kb for transmission by the NIC. If the NIC does not support checksumming, the MAC

layer checksum is first computed; else the checksum is left for the NIC. Next a test is done to

determine whether the output device (set by ip_finish_output () contains a queue, and if

so, invokes its enqueue function (q->enqueue) and then makes a call to qdisc_run () [136],

or else, if the output device is UP (IFF_UP), then dev _queue _ xmi t () will try to send the

packet directly, by invoking dev->hard_start_xmit (); else the packet is dropped [129].

Depending on the NIC driver used, dev->hard_start_xmit () will be mapped to some

driver specific transmission handler function [128] . The qdisc_run () function (given in

/include/net/pkt_sched. h) attempts to flush the outgoing device queue, by repeatedly

calling qdsc_restart (), which dequeues a skb from the queue and then calls dev­

>hard_start_xmit () [129].

Due to the dev->hard _start _ xmit () function being driver specific, a generic description of

its functionality is very difficult. However, the network driver will generally re-queue a s kb and

invoke netif _schedule () (located in / include / linux/ netdevice. h) to raise a

132

Appendix A Tracing Through the Linux IP Stack

NET_TX_S OFf IRQ , if the device is busy; else it will copy the packet to the memory of the

NIe and transmit it [129]. The do softirq () function (described previously) will then see the

NET_TX_SOFfIRQ flag set and thus initiate ne t _tx_action () . The net_tx_action ()

function (given in / net/core / dev . c) will then test if it can get a lock on the device queue

and, if so will call qdisc_run () ; else it will re-schedule the softirq (through

neti f _ schedule ()), to try to send the packet again, until it is eventually sent.

133

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

References

S. Corson and J. Macker, "Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations," Request For Comments 2501,
January 1999.
B. A. Chambers, "The Grid Roofnet: a Rooftop Ad Hoc Wireless Network," in
Electrical Engineering and Computer Science: Massachusetts Institute of Technology
(MIT), 2002.
R. Morris, 1. Jannotti, F. Kaashoek, 1. Li, and D. De Couto, "CarNet: A Scalable Ad
Hoc Wireless Network System," inproc. Associationfor Computing Machinery (ACM)
Special Interest Group on Communications (SIGCOMM), 2000.
S. T. Satchell and H. B. 1. Clifford, Linux IP Stacks Commentary: Guide to Gaining
Insider's Knowledge on the IP Stacks of the Linux Code: Coriolis Open Press, 2000.
S.-J. Lee, M. Gerla, and C.-K. Toh, "A Simulation Study of Table-Driven and On­
Demand Routing Protocols for Mobile Ad Hoc Networks," IEEE Network Magazine,
1999.
J. Walrand and P. Varaiya, High-Performance Communication Networks, Second ed:
Morgan Kaufmann, 2000.
M. Corson, S. Batsell, and J. Macker, "Architectural Considerations for Mobile Mesh
Networking," 1996, available from
http://tonnant.itd.nrl.navv.mil/mmnetlmmnetRFC. txt.
E. M. Royer and C.-K. Toh, "A Review of Current Routing Protocols for Ad Hoc
Wireless Mobile Networks," IEEE Personal Communications, pp. 46-55, 1999.
S. R. Das, R. Castaneda, J. Van, and R. Sengupta, "Comparative Performance
Evaluation of Routing Protocols for Mobile, Ad hoc Networks," in proc. IEEE
International Conference on Computer Communications and Networks (ICCCN), 1998.
M. Mauve, J. Widmer, and H. Hartenstein, "A Survey on Position-Based Routing in
Mobile Ad-hoc Networks," IEEE Network Magazine, vol. 15, no. 6, pp. 30-39, 2001.
E. D. Kaplan, Understanding GPS: Principles and ApplicatiOns: Artech House Inc.,
1996.
S. Capkun, M. Hamdi, and 1.-P. Hubaux, "GPS-free positioning in mobile Ad-Hoc
networks," inproc. 34th Hawaii International Conference on System Sciences, 2001.
J. Hightower and G. Borriello, "Location Systems for Ubiquitous Computing," IEEE
Computer Society Press, vol. 34, no. 8, pp. 57-66, 2001.
Z. 1. Haas and B. Liang, "Ad Hoc Mobility Management With Uniform Quorum
Systems," IEEE A CM Transactions on Networking, vol. 7, 1999.
N. K. Guba and T. Camp, "GLS: a Location Service for an Ad Hoc Network," inproc.
Grace Hopper Celebration, 2002.
S. Basagni, I. Chlamtac, V. Syrotiuk, and B. Woodward, "A Distance Routing Effect
Algorithm for Mobility (DREAM)," in proc. ACMIIEEE Internatiorzal Conference on
Mobile Computing and Networking (MobiCom), 1998.
H. Takagi and L. Kleinrock, "Optimal Transmission Ranges for Randomly Distributed
Packet Radio Terminals," IEEE Transactions on Communications, vol. COM-32, no. 3,
pp. 246-257, 1984.

T.-C. Hou and V. o. K. Li, "Transmission Range Control in Multihop Packet Radio
Networks," IEEE Transactions on Communications, vol. COM-34, pp. 38-44, 1986.
E. Kranakis, H. Singh, and J. Urrutia, "Compass Routing on Geometric Networks," in
proc. 11th Canadian Conference on Computational Geometry, 1999.
R. Nelson and L. Kleinrock, "The Spatial Capacity of a Slotted ALOHA Multihop
Packet Radio Network with Capture," IEEE Transactions on Communications, vol.
COM-32, no. 6, pp. 684-694, 1984.

134

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

B. Karp and H. T. Kung, "GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks," in proc. ACMIIEEE International Conference on Mobile Computing and
Networking (MobiCom), 2000.
G. Toussaint, "The relative neighborhood graph of a finite planar set," Pattern
Recognition, vol. 12, pp. 261-268, 1980.
K. Gabriel and R. Sokal, "A new statistical approach to geographic variation analysis,"
Systematic Zoology, vol. 18, pp. 259-278, 1969.
T. Camp, J. Boleng, B. Williams, L. Wilcox, and W. Navidi, "Performance Comparison
of Two Location Based Routing Protocols for Ad Hoc Networks," in proc. IEEE
INFOCOM - The Conference on Computer Communications, 2002.
Y-B. Ko and N. H. Vaidya, "Location-Aided Routing (LAR) in Mobile Ad Hoc
Networks," in proc. ACMIIEEE International Conference on Mobile Computing and
Networking (MobiCom), 1998.
K. Wu and J. Harms, "Location Trace Aided Routing in Mobile Ad Hoc Networks," in
proc. International Conference on Computer Communications and Networks (ICCCN) ,
2000.
C. E. Perkins and P. Bhagwat, "Highly Dynamic Destination-Sequenced Distance­
Vector Routing (DSDV) for Mobile Computers," Computer Communications Review,
pp. 234-244, 1994.
c.-C. Chiang, H.-K. Wu, W. Liu, and M. Gerla, "Routing In Clustered Multihop,
Mobile Wireless Networks With Fading Channel," in proc. IEEE Singapore
International Conference (SICON), 1997.
A. Iwata, C.-C. Chiang, G. Pei, M. Ger1a, and T.-W. Chen, "Scalable Routing Strategies
for Ad hoc Wireless Networks," IEEE Journal on Selected Areas in Communications,
pp. 1369-1379, 1999.
A. Ephremides, J. E. Wiese1thier, and D. J. Baker, "A Design Concept for Reliable
Mobile Radio Networks with Frequency Hopping Signaling," in proc. Proceedings of
the IEEE, 1987.
M. Gerla and J. T.-C. Tsai, "Mu1tic1uster, Mobile, Multimedia Radio Network," ACM­
Baltzer Journal of Wireless Networks, vol. 1, no. 3, pp. 255-265, 1995.
A. D. Amis, R. Prakash, D. Huynh, and T. Vuong, "Max-Min D-C1uster Formation in
Wireless Ad Hoc Networks," inproc. IEEE INFOCOM - The Conference on Computer
Communications,2000.
A. D. Amis and R. Prakash, "Load-Balancing Clusters in Wireless Ad Hoc Networks,"
in proc. IEEE Symposium on Application-Specific Systems and Software Engineering
(ASSET), 2000.
J. Sucec and I. Marsic, "Clustering Overhead for Hierarchical Routing in Mobile Ad
hoc Networks," in proc. IEEE INFOCOM - The Conference on Computer
Communications, 2002.
S. Murthy and J. J. Garcia-Luna-Aceves, "An Efficient Routing Protocol for Wireless
Networks," ACM Mobile Networks and Applications Journal, pp. 183-197, 1996.
T.-W. Chen and M. Geria, "Global State Routing: A New Routing Scheme for Ad-hoc
Wireless Networks," in proc. IEEE International Conference on Communications
(ICC), 1998.
L. Kleinrock and K. Stevens, "Fisheye: A Lens1ike Computer Display Transformation,"
Computer Science Department of UCLA, Technical Report 1971.
J. Postel, "The Internet Protocol Specification," USClInformation Sciences Institute,
Request For Comments 791, September 1981.
C. E. Perkins and E. M. Royer, "Ad-hoc On-Demand Distance Vector Routing," in
proc. IEEE Workshop on Mobile Computer Systems and Applications, 1999.
D. B. Johnson and D. A. Maltz, "Dynamic Source Routing in Ad Hoc Wireless
Networks," Mobile Computing, pp. 153-181, 1996.
S. R. Das, C. E. Perkins, and E. M. Royer, "Performance Comparison of Two On­
demand Routing Protocols for Ad Hoc Networks," in proc. IEEE INFOCOM _ The
Conference on Comput~r Communications, 2000.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

M. S. Corson and A. Ephremides, "A Distributed Routing Algorithm for Mobile
Wireless Networks," ACMIBaltzer Wireless Networks Journal, vol. 1, no. 1, pp. 61-81 ,
1995 .
V. D. Park and M. S. Corson, "A Highly Adaptive Distributed Routing Algorithm for
Mobile Wireless Networks," inproc. IEEE INFOCOM - The Conference on Computer
Communications, 1997.
E. Gafni and D. Bertsekas, "Distributed Algorithms for Generating Loop-Free Routes in
Networks with Frequently Changing Topology," IEEE Transactions on
Communications, 1981.
J. Broch, D. A. Maltz, D. B. Johnson, Y.-c. Hu, and J. Jetcheva, "A Perfonnance
Comparison of Multi-Hop Wireless Ad Hoc Networking Routing Protocols," in proc.
ACMIIEEE International Conference on Mobile Computing and Networking
(MobiCom),1998.
C.-K. Toh, "A Novel Distributed Routing Protocol To Support Ad-Hoc Mobile
Computing," in proc. IEEE 15th Annual International Phoenix Conference on
Computers and Communication, 1996.
R. Dube, C. D. Rais, K.-Y. Wang, and S. K. Thripathi, "Signal Stability based Adaptive
Routing (SSA) for Ad-Hoc Mobile Networks," IEEE Personal Communications, pp.
36-45, 1997.
Z. J. Haas and M. R. Pearlman, "The Zone Routing Protocol (ZRP) for Ad Hoc
Networks," IETF, Internet Draft, November 1997.
J. Moy, "OSPF Version 2," Ascend Communications Incorporated, Request For
Comments 2328, April 1998.
G. Malkin, "RIP Version 2," Bay Networks, Request For Comments 2453, November
1998.
B. Cain, S. Deering, 1. Kouvelas, B. Fenner, and A. Thyagarajan, "Internet Group
Management Protocol, Version 3," Request For Comments 3376, October 2002.
Internet Assigned Numbers Authority, "Internet Multicast Addresses," 2003, available
from http://www.iana.orglassignments/multicast-addresses.
D. Waitzman, C. Partridge, and S. Deering, "Distance Vector Multicast Routing
Protocol," Request For Comments 1075, November 1988.
A. Adams, J. Nicholas, and W. Siadak, "Protocol Independent Multicast - Dense Mode
(PIM-DM): Protocol Specification (Revised)," IETF, Internet Draft, February 2003.
S. Deering, "Multicast Routing in Internetworks and Extended LANs," in proc. ACM
Special Interest Group on Data Communications (SIGCOMM) , 1988.
Y. K. Dalal and R. M. Metcalfe, "Reverse Path Forwarding of Broadcast Packets,"
Communications oftheA9M, vol. 21 , no. 12, pp. 1040-1048, 1978.
J. Moy, "Multicast Extensions to OSPF," Request For Comments 1584, March 1994.
C.-K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems: Prentice Hall,
2002.
A. J. Ballardie, P. F. Tsuchiya, and J. Crowcroft, "Core Based Trees (CBT)," in proc.
ACM Special Interest Group on Data Communications (SIGCOMM), 1993.
B. Fenner, M. Handley, H. Holbrook, and 1. Kouvelas, "Protocol Independent Multicast
- Sparse Mode (PIM-SM): Protocol Specification (Revised)," IETF, Internet Draft,
March 2003.
S.-J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia, "A Perfonnance Comparison Study
of Ad Hoc Wireless Multicast Protocols," in proc. Annual Joint Conference of the IEEE
Computer and Communications Societies, 2000.
S.-1. Lee, W. Su, and M. Gerla, "On-Demand Multicast Routing Protocol (ODMRP) for
Ad Hoc Networks," IETF, Internet Draft, June 1999.
c.-c. Chiang, M. Gerla, and L. Zhang, "Forwarding Group Multicast Protocol (FGMP)
for Multihop, Mobile Wireless Networks," Baltzer Ciuster Computing, vol. 1, no. 2, pp.
187-196, 1998.

136

[64] Y-B. Ko and N. H. Vaidya, "Location-Based Multicast in Mobile Ad Hoc Networks,"
Department of Computer Science at the Texas A&M University, Technical Report 98-
018, September 1998.

[65] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of
NP-completeness: W.H. Freeman, 1979.

[66] M. Gerla, c.-C. Chiang, and L. Zhang, "Tree Multicast Strategies in Mobile, Multihop
Wireless Networks," ACMIBalzter Mobile Networks and Applications Journal, 1998.

[67] C.-K. Toh, G. Guichala, and S. Bunchua, "ABAM: On-Demand Associativity-Based
Multicast Routing for Ad Hoc Mobile Networks," in proc. IEEE International
Conference on Vehicular Technology, 2000.

[68] E. M. Royer and C. E. Perkins, "Multicast Operation of the Ad-hoc On-Demand
Distance Vector Routing Protocol," in proc. ACMIIEEE International Conference on
Mobile Computing and Networking (MobiCom), 1999.

[69] T. Kunz and E. Cheng, "Multicasting in Ad-Hoc Networks: Comparing MAODV and
ODMRP," inproc. International Conference on Distributed Computing Systems, 2002.

[70] P. M. Mohan, J. J. Johnson, K. Murugan, and V. Ramachandran, "A Comparative and
Performance Study of On Demand Multicast Routing Protocols for Ad Hoc Networks,"
in proc. International Conference on High Performance Computing, 2002.

[71] M. Liu, R. R. Talpade, A. McAuley, and E. Bommaiah, "AMRoute: Adhoc Multicast
Routing Protocol," University of Maryland and the Institute for Systems Research,
Technical Report CSHCN T.R. 99-1(ISR T.R. 99-8), 1999.

[72] H. Eriksson, "MBONE: The Multicast Backbone," Communications of the ACM, vol.
37, no. 8, pp. 54-60,1994.

[73] C. W. Wu and Y C. Tay, "AMRIS: A Multicast Protocol for Ad hoc Wireless
Networks," in proc. IEEE Military Communications Conference (MILCOM) , 1999.

[74] J. J. Garcia-Luna-Aceves and E. L. Madruga, "The Core-Assisted Mesh Protocol,"
IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp. 1380-1394,
1999.

[75] K. Obraczka and G. Tsudik, "Multicast Routing Issues in Ad hoc Networks," in proc.
IEEE International Conference on Universal Personal Communications (ICUPC) ,
1998.

[76] S.-Y Ni, Y-C. Tseng, Y-S. Chen, and J.-P. Sheu, "The Broadcast Storm Problem in a
Mobile Ad Hoc Network," in proc. ACMIIEEE International Conference on Mobile
Computing and Networking (MobiCom), 1999.

[77] B. Williams and T. Camp, "Comparison of Broadcasting Techniques for Mobile Ad
Hoc Networks," inproc. ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MOBIHOC), 2002.

[78] F. Tobagi and L. Kleinrock, "Packet Switching in Radio Channels: Part IT - The Hidden
Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution,"
IEEE Transactions on Communications, vol. COM-23, no. 12, pp~ 1417-1433, 1975.

[79] H. Lim and C. Kim, "Multicast Tree Construction and Flooding in Wireless Ad Hoc
Networks," in proc. ACM International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWIM), 2000.

[80] W. Peng and X. Lu, "On the Reduction of Broadcast Redundancy in Mobile Ad Hoc
Networks," inproc. ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MOBIHOC), 2000.

[81] A. Qayyum, L. Viennot, and A. Laouiti, "Multipoint Relaying: An Efficient Technique
for Flooding in Mobile Wireless Networks," INRIA, Technical Report RR-3898, March
2000.

[82] W. Peng and X. Lu, "AHBP: An Efficient Broadcast Protocol for Mobile Ad Hoc
Networks," Journal of Science and Technology, 2002.

[83] G. Dommety and R. Jain, "Potential Networking Applications of Global Positional
Systems (GPS)," The Ohio State University Computer Science Dept., Technical Report
TR-24, April 1996. .

1i7

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Compaq Information Technologies Group, "QuickSpecs - Compaq iPAQ Pocket PC
H3800 Series," 2002, available from
http://h18000.wwwl .hp.comlproducts/quickspecsll 0977 nall0977 na.HTML.
J. Epplin, "Exploring Linux PDA Software Alternatives," 2001, available from
http://www.linuxdevices.com/articles/AT3058975992.html.
Cygnus Solutions, "eCos (Embedded Cygnus Operating System)," 2003, available from
www.cygnus.com.
Wind River, "VxWorks," 2003, available from
http://www.windriver.comlproducts/vxworks5/index.html.
QNX Software Systems LTD, "QNX Real-Time Operating Systems," 2003, available
from http://www.qnx.coml.
Lynx Works, "LynxOS® RTOS," 2003, available from
http://www.lynuxworks.com/products/lynxos/lynxos.php3 .
C. Halsall, "Linux on an iPAQ," 2001, available from
http://linux.oreillynet.comlpub/allinuxl200 1/0610 1 Ilinux ipaq.htm\.
The Familiar Project, "The Familiar Linux Distribution," 2003, available from
http://familiar .handhelds.org/.
Century Software, "The Microwindows Project," 2002, available from
http://embedded.centurysoftware.coml.
Trolltech, "The QtiEmbedded Environment," 2003, available from
http://www.trolltech.com/products/embeddedl.
Transvirtual Technologies Inc., "Pocket Linux," 2003, available from
http://www .pocketlinux.org/.
Transvirtual Technologies Inc., "The Kaffe Java Virtual Machine," 2002, available from
http://www.kaffe.org/.
M. Hauben, "History of ARPANET," 1994, available from
http://www.dei.isep.ipp.ptldocs/arpa.html. .
D. M. Ritchie, "The Evolution of the Unix Time-sharing System," 1984, available from
http://cm.bell-labs.comlcmlcs/who/dmr/hist.html.
The Trustees of Indiana University, "History of UNIX," 1996, available from
http://www.uwsg.iu.eduiusaiVconcepts/unixhx.html.
Bell-Labs, "The Creation of the UNIX Operating System," 2002, available from
http://www.bell-labs.comlhistorylunixi.
D. Teare, "Designing Cisco Networks," 1999, available from
http://www.cisco.comlunivercdlcc/td/doc/cisintwklitodoc/introint.htm.
D. D. Clark, "Realizing the Information Future - A Recent National Research Council
Report," 1994, available from http://web.mit.edulcomm-forumlwww/forums/941110-
S.htm.
The IEEE Standard 802.11, "Wireless LAN Medium Access Control (MAC) and
Physical Layer (PRY) specifications," The Institute of Electrical and Electronics
Engineers, Inc 1999.
The IEEE Standard 802.l1(b), "Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4
GHz Band," The Institute of Electrical and Electronics Engineers, Inc 1999.
The IEEE Standard 802.2, "Logical Link Control," The Institute of Electrical and
Electronics Engineers, Inc 1998.
J. Postel, "The User Datagram Protocol," USClInformation Sciences Institute, Request
For Comments 768, August 1980.

G. Insolvibile, "Linux Socket Filter: Sniffing Bytes over the Network - Kernel Korner­
Issue 86," 2001, available from http://www.linuxjournal.com.
C. Rodrigues, "Netfilter Paper," 2000, available from
http://www.gis.netl-craigr/netfilter paper.pdf.

B. ~all, "Beej's Guide to Network Programming - Using Internet Sockets," 2001,
avaIlable from www.ecst.csuchico.edul-beeilguide/netl.

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

M. Beck, U. Kunitz, R. Magnus, M. Dziadzka, and D. Verworner, Linux Kernel
Internels, Second ed: Addison-Wesley, 1997.
P. Russell, "Linux 2.4 NAT HOWTO," 2001, available from
http://www.netfilter.org/unreliable-guidesINAT-HOWTO/.
N. J. Dearham and S. A. McDonald, "A Handheld Implementation of a Location Aided
Multicasting Protocol (LAMP)," in proc. Military Information and Communications
Sy mposium of South Africa (MICSSA), 2003. <Accepted for Publication>
S. McCanne and S. Floyd, "NS - Network Simulator," 2003, available from http://www­
mash.cs.berkeley.edu/ns/.
S. Keshav, "REAL: A Network Simulator," Computer Science Department of UC
Berkeley, Technical Report 88/472, 1988.
D. F. Bacon, A. Dupuy, J. Schwartz, and Y. Yernini, "NEST: A Network Simulation
and Prototyping Testbed," inproc. Winter USENIXTechnical Conference, 1988.
K. Fall and K. Varadhan, "The NS Manual," 2003, available from http://www­
mash.cs.berkeley.edu/ns/.
T. S. Rappaport, Wireless Communications: Principles and Practice. New Jersey:
Prentice Hall, 1996.
S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley, A. Helmy, J.
Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie, P. Sharma, K. Varadhan, Y.
Xu, H. Yu, and D. Zappala, "Improving Simulation for Network Research," University
of Southern California, Los Angeles, Technical Report 99-702, 1999.
The CMU Monarch Project, "Wireless and Mobility Extensions to NS," Computer
Science Department, Carnegie Mellon Univ~rsity, Technical Report 1999.
J. Elson and D. Estrin, "Time Synchronization for Wireless Sensor Networks," in proc.
International Parallel and Distributed Processing Symposium (IPDPS), 2001.
H. Baker, "Computing "Great Circle Distances" from Latitudes and Longitudes," 1995,
available from http://home.pipeline.coml-hbaker IIF AO-Iat-long.txt.
P. Johansson, T. Larsson, and N. Hedman, "Scenario-based Performance Analysis of
Routing Protocols for Mobile Ad-hoc Networks," in proc. ACMIIEEE International
Conference on Mobile Computing and Networking (MobiCom), 1999.
K.H. Hirschelmann, "NMEA 0183," 2002, available from http://www.kh-gps.de/nmea­
faq.htm.
D. A. Maltz, J. Broch, and D. B. Johnson, "Experiences Designing and Building a
Multi-hop Wireless Ad hoc Testbed," CMU School of Computer Science, Technical
Report CMU-CS-99-116, 1999.
E. M. Royer and C. E. Perkins, "An Implementation Study of the AODV Routing
Protocol," inproc. IEEE Wireless Communications and Networking Conference, 2000.
G. Insolvibile, "Inside the Linux Packet Filter, Part I - Kernel Korner - Issue 94," 2002,
available from http://www.linuxjournal.com.
H. Welte, "skb Linux Network Buffers," 2000, available from
ftp:/lftp.gnumonks.orglpub/doc/skb-doc.ps.gz.
H. Welte, "The journey of a packet through the linux 2.4 network stack," 2000,
available from ftp://fW.gnumonks.org!pub/doc/packet-journey-2.4..ps.gz.
J. Khoo, "Linux Kernel Programming (Network) - Layer 2 Processing," 2000, available
from http://www.aist-nara.ac.jp/-jonath-kllinuxllayer2.html.
G. Herrin, "Linux IP Networking: A Guide to the Implementation and Modification of
the Linux Protocol Stack," Department of Computer Science - University of New
Hampshire, Technical Report TR 00-04, May 2000.
J. Dobbelaere, "Linux Kernel Internals - IP Network Layer," Computer Science
Department of the College of William & Mary, Presentation Slides, Fall 2001.
G. ~solvibile, "Inside the Linux Packet Filter, Part II - Kernel Komer - Issue 95," 2002,
avatlable from http://www.linuxjoumal.com.

J. Khoo, "Linux Kernel Programming (Network) - Layer 3 Processing," 2000, available
from http://www.aist-nara.ac.jp/-jonath-kllinuxllayer3.html.

11Q

[133] P. Dwerryhouse, "The Linux IPv4 UDP kernel code," 2001 , available from
http://leapster . org/l inuxlkernel/udp/.

[134] C. M. Homan, "Computer Science Notes - Receive," 2000, available from
www.cs.rochester.edulu/choman/cs573Ireceive.html.

[135] J. Khoo, "Linux Kernel Programming (Network) - Layer 4 Processing," 2000, available
from http://www.aist-nara.ac.jpHonath-kllinuxilayer4.html.

[136] Y. Zhang, "Lecture 17 of Linux Networking (III), " 2002, available from
http://www.cs. utexas.eduiusers/ygzJ3 78-02S/1ecture 17 .html.

[137] C. M. Homan, "Computer Science Notes - Send," 2000, available from
www.cs.rochester.edululchoman/cs573/send.html.

lL1f1

	Dearham_Nicholas_J_2003.front.p001
	Dearham_Nicholas_J_2003.front.p002
	Dearham_Nicholas_J_2003.front.p003
	Dearham_Nicholas_J_2003.front.p004
	Dearham_Nicholas_J_2003.front.p005
	Dearham_Nicholas_J_2003.front.p006
	Dearham_Nicholas_J_2003.front.p007
	Dearham_Nicholas_J_2003.front.p008
	Dearham_Nicholas_J_2003.front.p009
	Dearham_Nicholas_J_2003.front.p010
	Dearham_Nicholas_J_2003.front.p011
	Dearham_Nicholas_J_2003.front.p012
	Dearham_Nicholas_J_2003.front.p013
	Dearham_Nicholas_J_2003.front.p014
	Dearham_Nicholas_J_2003.front.p015
	Dearham_Nicholas_J_2003.front.p016
	Dearham_Nicholas_J_2003.front.p017
	Dearham_Nicholas_J_2003.p001
	Dearham_Nicholas_J_2003.p002
	Dearham_Nicholas_J_2003.p003
	Dearham_Nicholas_J_2003.p004
	Dearham_Nicholas_J_2003.p005
	Dearham_Nicholas_J_2003.p006
	Dearham_Nicholas_J_2003.p007
	Dearham_Nicholas_J_2003.p008
	Dearham_Nicholas_J_2003.p009
	Dearham_Nicholas_J_2003.p010
	Dearham_Nicholas_J_2003.p011
	Dearham_Nicholas_J_2003.p012
	Dearham_Nicholas_J_2003.p013
	Dearham_Nicholas_J_2003.p014
	Dearham_Nicholas_J_2003.p015
	Dearham_Nicholas_J_2003.p016
	Dearham_Nicholas_J_2003.p017
	Dearham_Nicholas_J_2003.p018
	Dearham_Nicholas_J_2003.p019
	Dearham_Nicholas_J_2003.p020
	Dearham_Nicholas_J_2003.p021
	Dearham_Nicholas_J_2003.p022
	Dearham_Nicholas_J_2003.p023
	Dearham_Nicholas_J_2003.p024
	Dearham_Nicholas_J_2003.p025
	Dearham_Nicholas_J_2003.p026
	Dearham_Nicholas_J_2003.p027
	Dearham_Nicholas_J_2003.p028
	Dearham_Nicholas_J_2003.p029
	Dearham_Nicholas_J_2003.p030
	Dearham_Nicholas_J_2003.p031
	Dearham_Nicholas_J_2003.p032
	Dearham_Nicholas_J_2003.p033
	Dearham_Nicholas_J_2003.p034
	Dearham_Nicholas_J_2003.p035
	Dearham_Nicholas_J_2003.p036
	Dearham_Nicholas_J_2003.p037
	Dearham_Nicholas_J_2003.p038
	Dearham_Nicholas_J_2003.p039
	Dearham_Nicholas_J_2003.p040
	Dearham_Nicholas_J_2003.p041
	Dearham_Nicholas_J_2003.p042
	Dearham_Nicholas_J_2003.p043
	Dearham_Nicholas_J_2003.p044
	Dearham_Nicholas_J_2003.p045
	Dearham_Nicholas_J_2003.p046
	Dearham_Nicholas_J_2003.p047
	Dearham_Nicholas_J_2003.p048
	Dearham_Nicholas_J_2003.p049
	Dearham_Nicholas_J_2003.p050
	Dearham_Nicholas_J_2003.p051
	Dearham_Nicholas_J_2003.p052
	Dearham_Nicholas_J_2003.p053
	Dearham_Nicholas_J_2003.p054
	Dearham_Nicholas_J_2003.p055
	Dearham_Nicholas_J_2003.p056
	Dearham_Nicholas_J_2003.p057
	Dearham_Nicholas_J_2003.p058
	Dearham_Nicholas_J_2003.p059
	Dearham_Nicholas_J_2003.p060
	Dearham_Nicholas_J_2003.p061
	Dearham_Nicholas_J_2003.p062
	Dearham_Nicholas_J_2003.p063
	Dearham_Nicholas_J_2003.p064
	Dearham_Nicholas_J_2003.p065
	Dearham_Nicholas_J_2003.p066
	Dearham_Nicholas_J_2003.p067
	Dearham_Nicholas_J_2003.p068
	Dearham_Nicholas_J_2003.p069
	Dearham_Nicholas_J_2003.p070
	Dearham_Nicholas_J_2003.p071
	Dearham_Nicholas_J_2003.p072
	Dearham_Nicholas_J_2003.p073
	Dearham_Nicholas_J_2003.p074
	Dearham_Nicholas_J_2003.p075
	Dearham_Nicholas_J_2003.p076
	Dearham_Nicholas_J_2003.p077
	Dearham_Nicholas_J_2003.p078
	Dearham_Nicholas_J_2003.p079
	Dearham_Nicholas_J_2003.p080
	Dearham_Nicholas_J_2003.p081
	Dearham_Nicholas_J_2003.p082
	Dearham_Nicholas_J_2003.p083
	Dearham_Nicholas_J_2003.p084
	Dearham_Nicholas_J_2003.p085
	Dearham_Nicholas_J_2003.p086
	Dearham_Nicholas_J_2003.p087
	Dearham_Nicholas_J_2003.p088
	Dearham_Nicholas_J_2003.p089
	Dearham_Nicholas_J_2003.p090
	Dearham_Nicholas_J_2003.p091
	Dearham_Nicholas_J_2003.p092
	Dearham_Nicholas_J_2003.p093
	Dearham_Nicholas_J_2003.p094
	Dearham_Nicholas_J_2003.p095
	Dearham_Nicholas_J_2003.p096
	Dearham_Nicholas_J_2003.p097
	Dearham_Nicholas_J_2003.p098
	Dearham_Nicholas_J_2003.p099
	Dearham_Nicholas_J_2003.p100
	Dearham_Nicholas_J_2003.p101
	Dearham_Nicholas_J_2003.p102
	Dearham_Nicholas_J_2003.p103
	Dearham_Nicholas_J_2003.p104
	Dearham_Nicholas_J_2003.p105
	Dearham_Nicholas_J_2003.p106
	Dearham_Nicholas_J_2003.p107
	Dearham_Nicholas_J_2003.p108
	Dearham_Nicholas_J_2003.p109
	Dearham_Nicholas_J_2003.p110
	Dearham_Nicholas_J_2003.p111
	Dearham_Nicholas_J_2003.p112
	Dearham_Nicholas_J_2003.p113
	Dearham_Nicholas_J_2003.p114
	Dearham_Nicholas_J_2003.p115
	Dearham_Nicholas_J_2003.p116
	Dearham_Nicholas_J_2003.p117
	Dearham_Nicholas_J_2003.p118
	Dearham_Nicholas_J_2003.p119
	Dearham_Nicholas_J_2003.p120
	Dearham_Nicholas_J_2003.p121
	Dearham_Nicholas_J_2003.p122
	Dearham_Nicholas_J_2003.p123
	Dearham_Nicholas_J_2003.p124
	Dearham_Nicholas_J_2003.p125
	Dearham_Nicholas_J_2003.p126
	Dearham_Nicholas_J_2003.p127
	Dearham_Nicholas_J_2003.p128
	Dearham_Nicholas_J_2003.p129
	Dearham_Nicholas_J_2003.p130
	Dearham_Nicholas_J_2003.p131
	Dearham_Nicholas_J_2003.p132
	Dearham_Nicholas_J_2003.p133
	Dearham_Nicholas_J_2003.p134
	Dearham_Nicholas_J_2003.p135
	Dearham_Nicholas_J_2003.p136
	Dearham_Nicholas_J_2003.p137
	Dearham_Nicholas_J_2003.p138
	Dearham_Nicholas_J_2003.p139
	Dearham_Nicholas_J_2003.p140

