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Elliptic incoherent solitons in saturable nonlinear media
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We identify elliptic incoherent spatial solitons in isotropic saturable nonlinear media. These solitary states
are possible, provided that their correlation function is anisotropic. The propagation dynamics of this new
class of solitons are investigated by use of numerical simulations. We find that, during a collision event of
two such elliptic solitons, their intensity ellipse rotates, and at the same time their centers of gravity tend to
revolve around each other. © 2000 Optical Society of America
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Since their first experimental observation, spatial
incoherent solitons have been the focus of considerable
attention.1 In general, spatial incoherent solitons are
multimode self-trapped entities, which are possible
only in materials with noninstantaneous nonlinear-
ities. Thus far, the theory of incoherent spatial
solitons has proceeded along three paths: (i) the
coherent density method,2 – 4 (ii) self-consistent multi-
mode theory,5 – 7 and (iii) the mutual coherence function
propagation method.8 Approximate ray-transport
methods also exist that are valid in the case of very
broad incoherent beams.9 – 11 Analytically, incoherent
Gaussian spatial solitons were first demonstrated in
systems with logarithmic nonlinearities,3 in which
the strong link between the properties of these
self-trapped soliton solutions and their correlation sta-
tistics became apparent. The self-focusing collapse of
two-dimensional incoherent beams in Kerr nonlinear
media was also recently investigated,12 along with the
modulation instability properties of incoherent wave
packets.13

It is well known that two-dimensional coher-
ent solitons are always circular in materials with
isotropic saturable nonlinearities. Furthermore, if a
coherent elliptic beam is launched into an isotropic
self-focusing medium, the beam always undergoes
significant oscillations in the transverse plane.14 In
other words, isotropic nonlinear media cannot support
coherent elliptic solitons. Very recently, however,
elliptic incoherent solitons were theoretically pre-
dicted in saturable nonlinear media of the logarithmic
type.6 These solitons were found to be possible, pro-
vided that their correlation function is appropriately
anisotropic. It is therefore natural to ask whether
such elliptic incoherent entities exist in general in
other nonlinear systems besides the logarithmic.
These other systems may include, for example, biased
photorefractive crystals and materials with thermal
nonlinearities. Even more importantly, at this point,
there is to our knowledge no information whatsoever
regarding the propagation dynamics and collision
properties of such incoherent elliptic soliton entities.

In this Letter we identify elliptic incoherent solitons
in isotropic saturable nonlinear media. We do this by
0146-9592/00/130972-03$15.00/0
employing a two-dimensional version of the coherent
density approach2 – 4 and by assuming that the material
nonlinearity depends on the optical intensity I in a way
similar to that in photorefractives (i.e., Dnnl ~ 1�1 1 I ).
We find that, even in this case, elliptic solitary states
exist, provided that their mutual coherence function
is anisotropic. Therefore these soliton states can pos-
sibly be excited from anisotropic incoherent sources
such as edge-emitting LED’s or lasers operated below
threshold.15 The propagation dynamics of this new
class of solitons are further studied by use of numerical
simulations. Collisions between two such elliptic in-
coherent solitons are also investigated. In particular,
we show that in certain collision regimes the intensity
ellipse for the two solitons rotates, whereas at the same
time their centers of gravity tend to revolve around
each other. This interaction behavior is possible even
though these states are launched parallel to the propa-
gation axis.

Following Refs. 2–4, we note that the coherent den-
sity function f �x, y, z, ux,uy � evolves according to
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where, at the origin z � 0,

f �x, y, 0, ux, uy � � r1�2GN
1�2�ux,uy �F0�x, y� . (3)

In Eqs. (1)–(3), k � 2pn0�l0 is the wave number, n0
is the linear refractive index, Dn is the maximum non-
linear refractive-index change, and IN � I�IS is the
normalized intensity with respect to the satura-
tion intensity. The intensity ratio r is defined
as r � Imax�IS , and Imax is the initial maxi-
mum beam intensity. ux and uy represent the
angles at which the density propagates with re-
spect to the propagation direction in the �xz� and
© 2000 Optical Society of America
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� yz� planes, respectively, and GN �ux, uy � is the
normalized angular power spectrum of the incoherent
beam [i.e.,
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2` GN �ux, uy�duxduy � 1]. F0�x, y� is
a spatial modulation function, and for simplicity we
assume here a Gaussian distribution for GN �ux, uy�,
i.e.,

GN �ux,uy � � �pu0xu0y�21 exp
µ
2

ux
2

u0x
2 2

uy
2

u0y
2

∂
, (4)

where u0x and u0y are associated with the widths of
the angular power spectrum in the x and y directions,
respectively. Equations (1)–(4) were solved with a
multiple-beam-propagation method program.2 In all
cases presented in this Letter, 625 components (on
a rectangular grid) were used. The accuracy of the
method was checked against the elliptic analytical
solutions reported in Ref. 6.

In the examples to follow, we consider elliptic
partially incoherent Gaussian beams, whose initial
spatial modulation function is given by F0�x, y� �
exp�2�1�2� ��x�v0x�2 1 � y�v0y�2��, wherev0x and v0y
are associated with the beam widths along the x and
y axes.

As a first example, let us study the evolution of a
circular partially coherent Gaussian beam. The spot
size of this beam is v0 � 10 mm (its intensity FWHM
is 16 mm), r � 3, and u0x � u0y � 0.4±. The free-space
wavelength is taken here to be l0 � 0.448 mm, and the
refractive index is n0 � 2.3. In the absence of any non-
linearity, this beam expands to a FWHM of 388 mm
after a distance of 3 cm. Conversely, in the non-
linear regime, computer simulations indicate that
stable self-trapping is achieved when the maxi-
mum nonlinear index change is approximately Dn �
3.15 3 1024. For this set of values the intensity f luc-
tuations remain very small during propagation, which
in turn indicates that a quasi soliton has been formed.
We have also found that a departure from this set
of values (nonlinearity, v0, u0) leads to breathing
behavior, during which the beam continually expands
and contracts. This observation is in agreement
with recently found behavior in logarithmic nonlinear
media.16

Next, we consider an elliptic partially coherent beam
with beam widths v0x � 20 mm (33 mm FWHM) and
v0y � 9 mm (15 mm FWHM). Our simulations indi-
cate that, when the angular widths are u0x � 0.283±

(4.93 mrad) and u0y � 0.2± (3.5 mrad), stable self-
trapping of this elliptic beam can be achieved, provided
that the nonlinear index change is Dn 	 1.42 3 1024.
Figures 1a and 1b show the intensity evolution of
this elliptic incoherent beam along the x and y cross
sections, respectively, to a distance of 4 cm. Fig-
ures 1c and 1d depict the input and output intensity
distributions of this soliton beam. Again, during
propagation the intensity profile remains almost
unchanged, indicating that a quasi soliton has been
formed. Note that this stationary elliptic soliton is
possible in spite of the isotropic nature of the non-
linearity that is assumed. Instead this soliton owes
its existence to the anisotropic coherence function.
When the nonlinear index change is different from the
one used in the latter example (say, Dn � 2.84 3 1024)
or when the incoherent source is isotropic (e.g.,
u0x � u0y � 0.2±), the initially elliptic beam undergoes
substantial oscillations in terms of its intensity and
width. To understand better the formation of such
elliptic incoherent solitons, we may find it useful
to discuss first their diffraction properties. In the
linear regime the spot size of a Gaussian–Schell beam
along x and y (vx and vy ) expands according to6

vx,y �z� � v0x, y�1 1 �1 1 Vx,y
2� �z�kv0x, y

2�2�1�2, where
Vx,y � kv0x,yu0x, y . For the particular example con-
sidered above (u0x � 0.283±, u0y � 0.2±, v0x � 20 mm,
v0y � 9 mm, n0 � 2.3, l0 � 0.488 mm), the x y beam
widths of this elliptic beam become vx 	 vy 	 105 mm
after 2 cm. Thus, in the linear regime, after 2 cm
this elliptic formation diffracts to a beam of almost
circular shape, as shown in Fig. 2e. In essence, this
diffraction is equivalent to self-trapping of coherent
circular solitons (the diffraction of which is isotropic),
where isotropic diffraction results from proper en-
gineering of the coherence properties of this elliptic
beam. Similar conclusions could have been derived
analytically from the logarithmic model.6 Note that
if this same beam were totally coherent, because of
diffraction the beam widths would have expanded to
vx � 39 mm and vy � 76 mm after the same propaga-
tion distance (2 cm); i.e., in the far field, the intensity
ellipse will f lip by 90±.

Next we investigate interactions between two such
elliptic incoherent solitons. We first assume that the
centers of two such solitons (those shown in Fig. 1) are
located on the y axis and are 28 mm apart. These
solitons are mutually incoherent with respect to each
other; their major axes are parallel to the x direction
and are launched parallel to the z axis. In this case
our simulations show that these solitons continuously
coalesce and separate during propagation in a way
similar to what one may have expected from the in-
teraction of two circular solitons. An interesting col-
lision regime arises when the two beams are allowed
to interact when their major axes are initially tilted

Fig. 1. Intensity evolution of an elliptic Gaussian soliton
beam when r � 3, u0x � 0.283±, u0y � 0.2±, and Dn � 1.42 3
1024: a, along the x axis; b, along the y axis. Gray-scale
images: c, input and d, output elliptic soliton and e, its
diffraction after 2 cm.
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Fig. 2. Gray-scale images of (a–d) the total intensity dis-
tribution and (e–h) the intensity distribution of a single
elliptic soliton beam at (a, e) z � 0 cm, (b, f) z � 1.6 cm,
(c, g) z � 2.12 cm, and (d, h) z � 4.7 cm.

Fig. 3. Trajectories of the centers of gravity in the trans-
verse plane of two elliptic soliton beams initially centered
on the y axis and tilted at 45± with respect to x axis.
Points A, B, C, and D occur at z values of 0, 1.6, 2.12,
and 4.7 cm, respectively.

(Fig. 2a). The elliptic solitons considered are again
those shown in Fig. 1. The distance between their
centers is 28 mm, and their major axes are tilted by 45±

with respect to x. Figure 2 shows gray-scale images
of (a–d) the total intensity and (e–h) the intensity of
a single soliton beam up to a distance of 	5 cm. The
size of the windows depicted is 100 mm 3 125 mm. In
this case, the off-axis interaction generates a torque
on each elliptic incoherent soliton, which in turn tends
to rotate them around their center. This is clear in
Figs. 2f (at z � 1.6 cm) and 2g (at z 	 2.12 cm), where
the two ellipses have rotated by more than 45±. We
point out that this rotation is unique to the elliptic
character of these incoherent soliton beams, since it
is totally absent in interactions involving circular soli-
tons. The position of the gravity center of each beam
is shown in Fig. 3. The dashed arrows show the di-
rection along the trajectory. As before, initially the
two solitons continuously coalesce and separate during
propagation, and they almost fuse near 5 cm. The be-
ginning of this fusion process can be seen in Fig. 2g,
in which some light from one elliptic soliton starts to
leak toward the other. This effect becomes more pro-
nounced later at z 	 4.7 cm. It is also clear from
Fig. 3 that the centers of the solitons tend to rotate
around the overall center of gravity of the total in-
tensity distribution [(0, 0) point]. Unlike with spiral-
ing involving coherent solitons,17 this rotation occurs
even though the two beams are launched parallel to
the z axis.

In conclusion, we have identified elliptic partially in-
coherent solitons in saturable nonlinear media. These
soliton states are possible by proper engineering of
their coherence function. We found that during a col-
lision event of two such elliptic solitons their intensity
ellipse rotates and at the same time their centers of
gravity tend to revolve around each other.
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