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ABSTRACT  

Classical Q-learning requires huge computations to attain 

convergence and a large storage to save the Q-values for all 

possible actions in a given state. This paper proposes an 

alternative approach to Q-learning to reduce the convergence 

time without using the optimal path from a random starting state 

of a final goal state, when the Q-table is used for path planning of 

a mobile robot. Further, the proposed algorithm stores the Q-

value for the best possible action at a state, and thus save 

significant storage. Experiments reveal that the acquired Q-table 

obtained by the proposed algorithm helps in saving turning 

angles of the robot in the planning stage. Reduction in turning 

angles is economic from the point of view of energy consumption 

by the robot. Thus the proposed algorithm has several merits with 

respect to classical Q-learning. The proposed algorithm is 

constructed based on four fundamental properties derived here 

and the validation of the algorithm is studied with Khepera-II 

robot.  

Keywords: Q-learning; Reinforcement learning; Motion 

planning, Mobile Robot, Energy. 

1.INTRODUCTION 

Machine learning is often used in mobile robots to make the 

robot aware about its world map. In early research on mobility 

management of robots, supervised learning was generally 

employed to train a robot to determine its next position in a given 

map from the sensory readings about the environment. 

Supervised learning is a good choice for mobility management of 

robots in fixed maps. However, if there is a small change in the 

robot’s world, the acquired knowledge is no longer useful to 

guide the robot to select its next position. A complete training of 

the robot with both old and new sensory data-action pairs is then 

needed to overcome the said problem.  

Reinforcement learning is an alternative learning policy, which 

rests on the principle reward and punishment. No prior training 

instances are presumed in reinforcement learning. A learning 

agent here does an action on the environment, and receives a 

feedback from the environment based on its action. The feedback 

provides an immediate reward for the agent. The learning agent 

here usually adapts its parameter based on the current and 

cumulative (futuristic) rewards. Since the exact value of the 

futuristic reward is not known, it is guessed from the knowledge 

about the robot’s world map. The primary advantage of 

reinforcement learning lies in its inherent power of automatic 

learning even in presence of small changes in the world map.  

Motion planning is one of the important tasks in intelligent 

control of a mobile robot. The problem of motion planning is 

often decomposed into path planning and trajectory planning. In 

path planning, we need to generate a collision-free path in an 

environment with obstacles and optimize it with respect to some 

criterion [8], [9]. However, the environment may be imprecise, 

vast, dynamical and partially non-structured [7]. In such 

environment, path planning depends on the sensory information 

of the environment, which might be associated with imprecision 

and uncertainty. Thus, to have a suitable planning scheme in a 

cluttered environment, the controller of such kind of robots must 

have to be adaptive in nature. Trajectory planning, on the other 

hand, considers time and velocity of the robots, while planning its 

motion to a goal. It is important to note that path planning may 

ignore the information about time/velocity, and mainly considers 

path length as the optimality criterion. Several approaches have 

been proposed to address the problem of motion planning of a 

mobile robot. If the environment is a known static terrain and it 

generates a path in advance, it is said to be off-line algorithm. It 

is called on-line, if it is capable of producing a new path in 

response to environmental changes. 

Many studies have been carried out on path planning for different 

types of mobile robots. The works in [5] involve mapping, 

navigation, and planning tasks for Khepera II mobile robot. In 

these works, the computationally intensive tasks, such as the 

planning and mapping tasks were not performed onboard. They 

were performed on a separate computer. The sensor readings and 

the motor commands are communicated between the robot and 

the computer via serial connection. 

Usually, the planning involves an action policy to reach a desired 

goal state, through maximization of a value function [1]-[3], 

which designates sub-objectives and helps choosing the best path. 

For instance, the value function could be the shortest path, the 

path with the shortest time, the safest path, or any combination of 

different sub-objectives. The definition of a task in this class may 

contain, besides the value function, some a priori knowledge 

about the domain, e.g., environmental map, environmental 

dynamics, goal position. Such knowledge allows a robot 

planning, while the lack of such knowledge obliges the robot 

either to learn it previously or to make use of heuristic strategies, 

such as moving to goal direction while avoiding obstacles. 

Our research applies reinforcement learning techniques to real-

world robots. Reinforcement learning has been tested in many 

simulated environments [3]- [11] but on a limited basis in real-

world scenarios. A real-world environment poses more 

challenges than a simulated environment, such as enlarged state 

spaces [2], increased computational complexity, significant safety 

issues (a real robot can cause real damage), and longer 

turnaround times for results. This research measures how well 

reinforcement-learning technique, such as Q-learning, can apply 

to the real robot for navigational problem, and in our research we 

modified the classical Q-learning algorithm, hereafter called 

improved Q-learning for increasing its performance one in the 

path-planning problem.  

In Extended Q-learning [17], every state has got fixed action that 

has to be performed in order to reach the given goal. Naturally, if 

the environment is changed after learning then the agent has to 
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learn the changed environment again. This problem is overcome 

in the algorithm proposed here. In the Extended Q-learning, 

sometime the robot needs more energy because the robot needs to 

rotate in selecting the best action. In the newly proposed 

algorithm, this problem is rectified.  

The rest of the paper is organized as follows. Classical Q-

learning is introduced in section II. Some properties of the Q-

learning based on the concept of locking of states are derived in 

section III. The algorithm for the Improved Q-learning is given in 

section IV. The algorithm for the path planning is given in 

section V. Computer Simulation is shown in section VI. 

Experimental details are included in section VII. Conclusions are 

listed in section VIII. 

2.THE CLASSICAL Q-LEARNING 

In classical Q-learning, all possible states of an agent and its 

possible action in a given state are deterministically known. In 

other words, for a given agent A, let S0, S1, S2, ..., Sn, be n- 

possible states, where each state has m possible actions ,0a  

,1a
 

,2a
 
..., ma . At a particular state-action pair, the specific 

reward that the agent acquires is known as immediate reward. For 

example r(Si, ja ) denotes the immediate reward that the agent A 

acquires by executing an action ja  at state Si. An agent selects 

its next state from its current states by using a policy. This policy 

attempts to maximize the cumulative reward that the agent could 

have in subsequent transition of states from its next state. For 

example, let the agent be in state Si and is expecting to select the 

next best state. Then the Q-value at state Si due to action of ja  is 

given in (1). 

       )),,((  )  ,S r() ,S Q( /

jiji /
 aaSQMaxaa ji

a
                 (1)   

where (Si, ja ) denotes the next state due to selection of action 

ja  at state Si. Let the next state selected be Sk. Then Q( (Si , a j 

), 
/a ) = Q(Sk, 

/a ). Consequently selection of 
/a  that 

maximizing Q(Si, ja ) is an interesting problem. One main 

drawback for the above Q-learning is to know the Q-value at a 

state Sk for all possible action 
/a . As a result, each time it 

accesses the memory to get Q-value for all possible actions at a 

particular state to determine the most appropriate next state.  So it 

consumes more time to select the next state. Since the action 
/a  

for which Q(Sk, 
/a ) is maximum needs to be evaluated, we can 

remodel the Q-learning equation by identifying the 
/a   that 

moves the agent closer to the goal.  

In the proposed Improved Q-learning, we have only one field for 

storing the Q-value and one for storing lock variable of the 

particular state. In this way the space requirement for storing the 

Q-table gets reduce.   

3. PROPERTIES OF  THE IMPROVED Q-

LEARNING 

Let for any state Sk, the distance between the goal state and the 

next feasible state of Sk are known.  Let the next feasible state of 

Sk be S{Sa, Sb, Sc,Sd }. Let G be the goal and the city block 

distance between Sa, Sb, Sc, Sd and G be daG, dbG, dcG and ddG  

respectively. Let the distance in order be  dbG  <daG <dcG <ddG . 

Then the agent should select the next state Sb from its current 

state Sk.  If the Q-value of the state Sb is known. We can evaluate 

the Q-value of state Sk by the following approach. 

). , Q(Sγ0 ) , Q(S

(3)                                            :  have    we(3)     and  (2)     Combining

)d()., Q(S 

},S|S|S|Q{SMax  

)  ),  ,(  (  

Therefore,

 operator.   OR    denotes |    where,S|S|S|S),(Sδ  Now

                                         (2)                                             )),,S((Q  Maxγ 0

)),,((      ),(),(

//

b

/

k

aG

//

b

//

dcb

///

dcb

/

k

///

k

/////

//

//

//

//

aa               

                                ddd   a             

a             

aaS QMax              

a 

aa               

aaSQMaxaSraSQ

dGcGbG

a
a

k
a

a

a

k
a

kk





















 

Thus if the next state having the shortage distance with the goal is 

known, and the Q-value of this state is also known, then the Q-

value of the current state is simply ×Q-value of the next state. 

Let Sp, Sn and SG be the present, next and the goal states 

respectively. Let Qp and Qn be the Q-value at the present and the 

next states Sp and Sn respectively. Let dxy be the city block 

distance between the states Sx and Sy. We use a Boolean variable 

Lock: Lx to indicate that the Qx value of a state is fixed 

permanently. We set lock Ln=1 if the Q-value of the state n is 

fixed, and won’t change further after Ln is set to 1. The Lock 

variable for all states except the goal will be initialized zero in 

our proposed Q-learning algorithm. We observe four interesting 

properties as indicated below. 
 

Property 1: If Ln=1 and dpG < dnG then 
np Q  γ Q  and set  

Lp = 1. 
Proof.  Let the neighborhood state of Sp be S{Sa ,Sb,Sc ,Sn}, and 

the agent selects Sn as the next state as dnG < dxG for 

}.,,,{ ncbax  

Now, 
 ) ,(S  Q pp aQ  

                   /

pp ),SδQγ ) ,r(S 
/
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),S|S|S|Q(Sγ0 /
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  

        
xGnG dda  (  ),(SQγ /

n
 for        

                                                            

}),,,{ ncbax  

            =
nQγ .                                                         

Since Ln =1, and 
nGpG dd  , ,np QQ  and thus 

nQγQp  for 10   is the largest possible value of 

pQ , and pQ should not be updated further. So, Lp = 1 is set. 

 

Property 2: If Ln=0 and 
nGpG dd  then  

).Qγ,Max(QQ pp n  
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Proof.  Let the neighborhood state of Sp be S {Sa , Sb, Sc, Sn }, 

and the agent selects Sn as the next state as dnG  dxG for 

}.,,,{ ncbax  

Now,  
 ) ,(S  Q pp aQ  

                   /

pp ),SδQγ ) ,r(S 
/

aaMaxa
a

 

       ),S|S|S|Q(Sγ0 /

ncba/
aMax

a
  

                  
xGnG dda  (  ),(SQγ /

n
for     

                                                                            }),,,{ ncbax  

                  
nQγ .                                                     (4) 

 

Since
nGpG dd  , .np QQ  So, 

np QQ   is logically 

satisfied. However, as Ln=0, Qn is not yet stable at the current 

iteration. So, Qp is also not stable yet. Let t be the current 

iteration. Then 

 

      )()( tQtQ np   if ).()1( tQtQ np        

                   ),1(  tQp
 otherwise. 

 

The two alternatives in (5) can be put together as in (6). 

       ))(),1(()( tQtQMaxtQ npp                               (6) 

Ignoring the notion of time t from (6), we obtain 

),()( npp QQMaxtQ   .                                                 

 
 

Property 3: If Lp = 1 and 
pGnG dd  then 

pQγQn  and 

set Ln = 1. 

Proof. Let the neighborhood of the next state Sn be S {Sa ,Sb 

,Sc ,Sp }. Since 
xGpG dd   for },,,{ pcbax , the agent will 

select the state Sp during its transition form Sn. 

 

Now, ),( aSQQ nn   

                  ),S|S|S|Q(S),( /
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a
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              ),S|S|S|Q(Sγ0 /
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              ).,(  ),(SQγ /
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pQγ . 

Since ,dd pGnG   .pn QQ  So, 
pn QQ   is logically 

acceptable for 10   . Further, as Lp=1, and Sn is the nearest 

state to Sp with respect to given distance metric, therefore Ln is 

set to 1.      

 

 

 

 

 

 

 

 

                                                     

                                

Property 4: If Lp=0 and 
pGnG dd  then 

).Qγ,Max(QQ nn p  

Proof. Let the neighborhood of state Sn be S {Sa, Sb, Sc, Sp}. 

Let 
xGpG dd  for }.,,,{ pcbax Then the agent will select 

Sp during its transition from Sn, 

 

Now, ),( aSQQ nn   
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n/
aaMaxaSr

a
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pQγ . 

Since ,dd pGnG    .pn QQ  So, 
pn QQ   for 10    is 

logically satisfactory. Now, as Lp=0, Qp is not fixed until this 

iteration; So Qn is also not fixed in the current iteration. Now, 

adding the notion of iteration t in Qn and Qp, we have; 

 

     ),()( tQtQ pn   if ),()1( tQtQ pn    

                ),1(  tQn
otherwise. 

 

Combining the expressions under (7) by a single expression, we 

write: 

 

       ))(),1(()( tQtQMaxtQ pnn                            (8) 

 

Now, eliminating t from both sides of (8), we obtain, 

 

           ),( pnn QQMaxQ   .                               (9) 

 

4. THE IMPROVED Q-LEARNING 

ALGORITHM 
In the new Q-learning algorithm to be proposed, only two fields 

for each grid are required, one is used to store Q-value and other 

is used to store the Lock variable. In the new algorithm every 

state stored only the Q-value and not the best action to reach the 

goal state. The best path between the current state to the goal is 

given by the city-block distance; therefore there will be more 

than one best path to reach the goal. As a result selection of the 

best action is deferred till the path planning by doing so the 

energy required by the robot can be minimized. The newly 

proposed algorithm has four steps. Initialization of Q-table is 

done in step 1, in step 2, value of  and starting state of the robot 

are initialized. Q-table is updating only after the robot reaches the 

goal state for the first time. Thus the robot is allowed to come to 

the goal state without updating Q-table. This is done in step 3. 

The updating of the Q-table is done in step 4 using the properties 

introduced in section III. 

 

 

 

 

 

 

 

 

  (7) 
  (5) 
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Pseudo Code for Improved Q-learning  
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Space-Complexity:  In classical Q-learning, if there are n 

states and m action per state, then the Q-table will be of n)(m  

dimension. In the Improved Q-learning, for each state 2 storages 

are required, one for storing Q-value and other for storing value 

of the lock variable of a particular state. Thus for n number of 

states, we require a Q-table of n)(2  dimension. The saving in 

memory in the present context with respect to classical Q thus is 

given by mn  2n = n(m  2). 

 

Time-Complexity: In classical Q-learning, the updating of Q-

values in a given state requires determining the largest Q-value, 

in that cell for all possible actions. Thus if there are m possible 

actions at a given state, maximization of m possible Q-values, 

require m 1 comparison. Consequently, if we have n states, the 

updating of Q values of the entire Q table by classical method 

requires n(m 1) comparisons. Unlike the classical case, here we 

do not require any such comparison to evaluate the Q values at a 

state Sp from the next state Sn. But we need to know whether state 

n is locked i.e., Q-value of Sn is permanent and stable. Thus if we 

have n number of states, we require n number of comparison. 

Consequently, we save n(m 1)  n = nm  2n= n(m2). 

 

5. PATH PLANNING ALGORITHM 
In newly proposed Improved Q-learning, best action at each state 

is selected dynamically. This help in reducing the energy required 

by the agent while moving. In the planning algorithm the best 

action is selected by comparing the Q-value of the 4-neighbour 

states. If there are more than one state with equal Q-value than 

the action that requires minimum energy for turning is selected.  

 

 
 

Fig. 1: Portion of environment with Q-value and robot at 

center. 

 

In Fig. 1 the robot is at the centre facing toward east. Next 

feasible states are the 4-neighbour states and corresponding Q-

value are given in each state. There are two states with maximum 

Q-value of 88.  If the next state is located at south then the robot 

has to rotate toward right by 900 and if the next state is located at 

west then the robot has to rotate by 1800. Therefore, the 

presumed next state will be the state at south as the robot requires 

less energy to move to that state. During path planning the robot 

selects one out of several best actions at a given state. If an 

obstacle is present in the selected direction then next optimal path 

is selected. If there is no action to be selected then a signal is 

passed to the robot to backtrack one step. 

 

Pseudo Code for Path Planning 

END

GOALNEXT

NEXTCURRENT

NEXT

NEXTCURRENT

NEXTNEXT

statestartingCURRENT

BEGIN

; until 2  step fromRepeat   5.      

; 4.      

;  toGo 3.      

free;-Obstacle is   and  of oodneighbourh  the          

in  value-Q    theof value-Q  where, statenext Get   2.      

;  1.      









 
6. COMPUTER SIMULATION 

We designed an environment of 20×20 grids. Every grid is 

given a state number. For a state at (x, y),  

                            (10) 

where  x is the no of block in x direction 

 y is the no of block in y direction 

          is the length of the row  

 

We make the agent learn the environment with the proposed 

new algorithm and the original classical Q-learning algorithm for 

verifying the applicability of the proposed algorithm. We stop the 

classical Q-learning after 50 thousand iterations. For the new 

algorithm we allow to learn till all the Lock variables are set. 

Total numbers of iteration varies from 11 thousand to nearly 25 

thousand as the position of the goal changes. Learning is done 

without any obstacle. After completion of learning we have kept 

the agent, facing left, in different environments and allow 

traversing to the goal using the stored Q-table by both the 

algorithm.  The results are shown in the Fig. 2-Fig. 6 and Table 1.  
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Path taken by the robot with stored Q-table by Classical Q-learning 

Path taken by the robot with stored Q-table by Improved Q-learning 

 

Figure 2: Environment 1 without obstacle. 
 

 

 

 
Obstacle 

Path taken by the robot with stored Q-table by Classical Q-learning 

Path taken by the robot with stored Q-table by Improved Q-learning 

 

Figure 3: Environment 2 with obstacles. 
 

 
Obstacle 

Path taken by the robot with stored Q-table by Classical Q-learning 

Path taken by the robot with stored Q-table by Improved Q-learning 

 

Fig. 4: Environment 3 with obstacles. 
 

TABLE I.  COMPARISON OF TIME TAKEN BY THE 

ROBOT AND NO. OF 900
 TURN REQUIRED BY THE 

ROBOT IN DIFFERENT ENVIRONMENT BY CLASSICAL 

Q-LEARNING (CQL) AND IMPROVED Q-LEARNING 

(IQL) 

S.No Environment 
Time Taken in sec No. of 900 Turn 

IQL CQL IQL CQL 

1 1 22.13 25.65 1 19 

2 2 30.98 35.32 17 25 

3 3 32.35 66.40 24 70 

4 4 17.85 32.24 10 27 

5 5 22.85 33.72 11 31 

 

 

 
Obstacle 

Path taken by the robot with stored Q-table by Classical Q-learning 

Path taken by the robot with stored Q-table by Improved Q-learning 

 

Fig. 5: Environment 4 with obstacles. 
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Obstacle 

Path taken by the robot with stored Q-table by Classical Q-learning 

Path taken by the robot with stored Q-table by Improved Q-learning 

 

Fig. 6: Environment 5 with obstacles. 

7.EXPERIMENTS WITH KHEPERA II 

ROBOT 

Khepera II (Figure 7) is a miniature robot (diameter of 8 cm) 

equipped with 8 built-in infrared range and light sensors, and 2 

relatively accurate encoders for the two motors. The range 

sensors are positioned at fixed angles and have limited range 

detection capabilities. We numbered the sensors clockwise from 

the leftmost sensor to be sensor 0 to sensor 7(Figure 8). Sensor 

values are numerical ranging from 0 (for distance > 5 cm) to 

1023 (approximately 2 cm).The onboard Microprocessor has a 

flash memory size of 256KB, and the CPU of 8 MHz. Khepera 

can be used on a desk, connected to a workstation through a 

wired serial link. This configuration allows an optional 

experimental configuration with everything at hand: the robot, 

the environment and the host computer. 

 
 

Fig. 7: The Khepera II Robot 

 
Experimental world map with and without obstacle is shown in 

Fig 9 and Fig 10. The Improved Q-learning algorithm is used in 

the first phase to learn the movement steps from each grid in the 

map to its neighbor. After the learning phase is over, the path 

planning algorithm is executed. The snapshots with and without 

obstacles are indicated in Fig. 11 and Fig. 12 respectively. 

 
 

Fig. 8: Position of the sensors of Khepera II 
 

 

Fig. 9. Experimental world map without obstacle. 

 

 

Fig. 10. Experimental world map with obstacle. 

 

 

 

 

Fig. 11. Snapshots of experimental planning (without 

obstacle) instances in order. 

 

S 
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Fig.  12. Snapshots of experimental planning (with one 

obstacle) instances in order. 

 

8. CONCLUSIONS 

The paper proposes a novel approach to reduce both time – and 

space-complexity of the Classical Q-learning algorithm. A 

mathematical foundation of the proposed algorithm indicates the 

correctness, and the experiments on simulated and real platform 

validate without losing the optimal path in path-planning 

applications of a mobile robot. The algorithm is coded in C-

language and tested on IBM Pentium based simulation 

environment. The field study is performed on Khepera-II 

platform. Simulation results also confirm less number of 900 

turning of the robot around its z-axis with respect to classical Q-

learning, and the proposed algorithm helps in energy saving of 

the robot in path-planning application. 
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