
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

40

An Improved Q-learning Algorithm for Path-Planning of a
Mobile Robot

Pradipta K Das1, S. C. Mandhata2, H.S Behera3, S.N. Patro4

1,2,4
Dhaneswar Rath Institue of Engineering & Management Studies

Cuttack-754022, India
3
VSSUT, Burla-768018 Odisha, India

ABSTRACT

Classical Q-learning requires huge computations to attain

convergence and a large storage to save the Q-values for all

possible actions in a given state. This paper proposes an

alternative approach to Q-learning to reduce the convergence

time without using the optimal path from a random starting state

of a final goal state, when the Q-table is used for path planning of

a mobile robot. Further, the proposed algorithm stores the Q-

value for the best possible action at a state, and thus save

significant storage. Experiments reveal that the acquired Q-table

obtained by the proposed algorithm helps in saving turning

angles of the robot in the planning stage. Reduction in turning

angles is economic from the point of view of energy consumption

by the robot. Thus the proposed algorithm has several merits with

respect to classical Q-learning. The proposed algorithm is

constructed based on four fundamental properties derived here

and the validation of the algorithm is studied with Khepera-II

robot.

Keywords: Q-learning; Reinforcement learning; Motion

planning, Mobile Robot, Energy.

1.INTRODUCTION

Machine learning is often used in mobile robots to make the

robot aware about its world map. In early research on mobility

management of robots, supervised learning was generally

employed to train a robot to determine its next position in a given

map from the sensory readings about the environment.

Supervised learning is a good choice for mobility management of

robots in fixed maps. However, if there is a small change in the

robot’s world, the acquired knowledge is no longer useful to

guide the robot to select its next position. A complete training of

the robot with both old and new sensory data-action pairs is then

needed to overcome the said problem.

Reinforcement learning is an alternative learning policy, which

rests on the principle reward and punishment. No prior training

instances are presumed in reinforcement learning. A learning

agent here does an action on the environment, and receives a

feedback from the environment based on its action. The feedback

provides an immediate reward for the agent. The learning agent

here usually adapts its parameter based on the current and

cumulative (futuristic) rewards. Since the exact value of the

futuristic reward is not known, it is guessed from the knowledge

about the robot’s world map. The primary advantage of

reinforcement learning lies in its inherent power of automatic

learning even in presence of small changes in the world map.

Motion planning is one of the important tasks in intelligent

control of a mobile robot. The problem of motion planning is

often decomposed into path planning and trajectory planning. In

path planning, we need to generate a collision-free path in an

environment with obstacles and optimize it with respect to some

criterion [8], [9]. However, the environment may be imprecise,

vast, dynamical and partially non-structured [7]. In such

environment, path planning depends on the sensory information

of the environment, which might be associated with imprecision

and uncertainty. Thus, to have a suitable planning scheme in a

cluttered environment, the controller of such kind of robots must

have to be adaptive in nature. Trajectory planning, on the other

hand, considers time and velocity of the robots, while planning its

motion to a goal. It is important to note that path planning may

ignore the information about time/velocity, and mainly considers

path length as the optimality criterion. Several approaches have

been proposed to address the problem of motion planning of a

mobile robot. If the environment is a known static terrain and it

generates a path in advance, it is said to be off-line algorithm. It

is called on-line, if it is capable of producing a new path in

response to environmental changes.

Many studies have been carried out on path planning for different

types of mobile robots. The works in [5] involve mapping,

navigation, and planning tasks for Khepera II mobile robot. In

these works, the computationally intensive tasks, such as the

planning and mapping tasks were not performed onboard. They

were performed on a separate computer. The sensor readings and

the motor commands are communicated between the robot and

the computer via serial connection.

Usually, the planning involves an action policy to reach a desired

goal state, through maximization of a value function [1]-[3],

which designates sub-objectives and helps choosing the best path.

For instance, the value function could be the shortest path, the

path with the shortest time, the safest path, or any combination of

different sub-objectives. The definition of a task in this class may

contain, besides the value function, some a priori knowledge

about the domain, e.g., environmental map, environmental

dynamics, goal position. Such knowledge allows a robot

planning, while the lack of such knowledge obliges the robot

either to learn it previously or to make use of heuristic strategies,

such as moving to goal direction while avoiding obstacles.

Our research applies reinforcement learning techniques to real-

world robots. Reinforcement learning has been tested in many

simulated environments [3]- [11] but on a limited basis in real-

world scenarios. A real-world environment poses more

challenges than a simulated environment, such as enlarged state

spaces [2], increased computational complexity, significant safety

issues (a real robot can cause real damage), and longer

turnaround times for results. This research measures how well

reinforcement-learning technique, such as Q-learning, can apply

to the real robot for navigational problem, and in our research we

modified the classical Q-learning algorithm, hereafter called

improved Q-learning for increasing its performance one in the

path-planning problem.

In Extended Q-learning [17], every state has got fixed action that

has to be performed in order to reach the given goal. Naturally, if

the environment is changed after learning then the agent has to

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

41

learn the changed environment again. This problem is overcome

in the algorithm proposed here. In the Extended Q-learning,

sometime the robot needs more energy because the robot needs to

rotate in selecting the best action. In the newly proposed

algorithm, this problem is rectified.

The rest of the paper is organized as follows. Classical Q-

learning is introduced in section II. Some properties of the Q-

learning based on the concept of locking of states are derived in

section III. The algorithm for the Improved Q-learning is given in

section IV. The algorithm for the path planning is given in

section V. Computer Simulation is shown in section VI.

Experimental details are included in section VII. Conclusions are

listed in section VIII.

2.THE CLASSICAL Q-LEARNING

In classical Q-learning, all possible states of an agent and its

possible action in a given state are deterministically known. In

other words, for a given agent A, let S0, S1, S2, ..., Sn, be n-

possible states, where each state has m possible actions ,0a

,1a

,2a

..., ma . At a particular state-action pair, the specific

reward that the agent acquires is known as immediate reward. For

example r(Si, ja) denotes the immediate reward that the agent A

acquires by executing an action ja at state Si. An agent selects

its next state from its current states by using a policy. This policy

attempts to maximize the cumulative reward that the agent could

have in subsequent transition of states from its next state. For

example, let the agent be in state Si and is expecting to select the

next best state. Then the Q-value at state Si due to action of ja is

given in (1).

)),,(() ,S r() ,S Q(/

jiji /
 aaSQMaxaa ji

a
 (1)

where (Si, ja) denotes the next state due to selection of action

ja at state Si. Let the next state selected be Sk. Then Q( (Si , a j

),
/a) = Q(Sk,

/a). Consequently selection of
/a that

maximizing Q(Si, ja) is an interesting problem. One main

drawback for the above Q-learning is to know the Q-value at a

state Sk for all possible action
/a . As a result, each time it

accesses the memory to get Q-value for all possible actions at a

particular state to determine the most appropriate next state. So it

consumes more time to select the next state. Since the action
/a

for which Q(Sk,
/a) is maximum needs to be evaluated, we can

remodel the Q-learning equation by identifying the
/a that

moves the agent closer to the goal.

In the proposed Improved Q-learning, we have only one field for

storing the Q-value and one for storing lock variable of the

particular state. In this way the space requirement for storing the

Q-table gets reduce.

3. PROPERTIES OF THE IMPROVED Q-

LEARNING

Let for any state Sk, the distance between the goal state and the

next feasible state of Sk are known. Let the next feasible state of

Sk be S{Sa, Sb, Sc,Sd }. Let G be the goal and the city block

distance between Sa, Sb, Sc, Sd and G be daG, dbG, dcG and ddG

respectively. Let the distance in order be dbG <daG <dcG <ddG .

Then the agent should select the next state Sb from its current

state Sk. If the Q-value of the state Sb is known. We can evaluate

the Q-value of state Sk by the following approach.

). , Q(Sγ0) , Q(S

(3) : have we(3) and (2) Combining

)d()., Q(S

},S|S|S|Q{SMax

)), ,((

Therefore,

 operator. OR denotes | where,S|S|S|S),(Sδ Now

 (2))),,S((Q Maxγ 0

)),,((),(),(

//

b

/

k

aG

//

b

//

dcb

///

dcb

/

k

///

k

/////

//

//

//

//

aa

 ddd a

a

aaS QMax

a

aa

aaSQMaxaSraSQ

dGcGbG

a
a

k
a

a

a

k
a

kk





















Thus if the next state having the shortage distance with the goal is

known, and the Q-value of this state is also known, then the Q-

value of the current state is simply ×Q-value of the next state.

Let Sp, Sn and SG be the present, next and the goal states

respectively. Let Qp and Qn be the Q-value at the present and the

next states Sp and Sn respectively. Let dxy be the city block

distance between the states Sx and Sy. We use a Boolean variable

Lock: Lx to indicate that the Qx value of a state is fixed

permanently. We set lock Ln=1 if the Q-value of the state n is

fixed, and won’t change further after Ln is set to 1. The Lock

variable for all states except the goal will be initialized zero in

our proposed Q-learning algorithm. We observe four interesting

properties as indicated below.

Property 1: If Ln=1 and dpG < dnG then
np Q γ Q  and set

Lp = 1.
Proof. Let the neighborhood state of Sp be S{Sa ,Sb,Sc ,Sn}, and

the agent selects Sn as the next state as dnG < dxG for

}.,,,{ ncbax

Now,
) ,(S Q pp aQ

  /

pp),SδQγ) ,r(S
/

aaMaxa
a

),S|S|S|Q(Sγ0 /

ncba/
aMax

a



xGnG dda  (),(SQγ /

n
 for

}),,,{ ncbax

 =
nQγ .

Since Ln =1, and
nGpG dd  , ,np QQ  and thus

nQγQp  for 10   is the largest possible value of

pQ , and pQ should not be updated further. So, Lp = 1 is set.

Property 2: If Ln=0 and
nGpG dd  then

).Qγ,Max(QQ pp n

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

42

Proof. Let the neighborhood state of Sp be S {Sa , Sb, Sc, Sn },

and the agent selects Sn as the next state as dnG  dxG for

}.,,,{ ncbax

Now,
) ,(S Q pp aQ

  /

pp),SδQγ) ,r(S
/

aaMaxa
a

),S|S|S|Q(Sγ0 /

ncba/
aMax

a


xGnG dda  (),(SQγ /

n
for

 }),,,{ ncbax

nQγ . (4)

Since
nGpG dd  , .np QQ  So,

np QQ   is logically

satisfied. However, as Ln=0, Qn is not yet stable at the current

iteration. So, Qp is also not stable yet. Let t be the current

iteration. Then

)()(tQtQ np   if).()1(tQtQ np  

),1( tQp
 otherwise.

The two alternatives in (5) can be put together as in (6).

))(),1(()(tQtQMaxtQ npp  (6)

Ignoring the notion of time t from (6), we obtain

),()(npp QQMaxtQ   .



Property 3: If Lp = 1 and
pGnG dd  then

pQγQn  and

set Ln = 1.

Proof. Let the neighborhood of the next state Sn be S {Sa ,Sb

,Sc ,Sp }. Since
xGpG dd  for },,,{ pcbax , the agent will

select the state Sp during its transition form Sn.

Now,),(aSQQ nn 

),S|S|S|Q(S),(/

pcba/
aMaxaSr

a
n 

),S|S|S|Q(Sγ0 /

pcba/
aMax

a


).,(),(SQγ /

p xdda xGpG  

pQγ .

Since ,dd pGnG  .pn QQ  So,
pn QQ   is logically

acceptable for 10   . Further, as Lp=1, and Sn is the nearest

state to Sp with respect to given distance metric, therefore Ln is

set to 1.

Property 4: If Lp=0 and
pGnG dd  then

).Qγ,Max(QQ nn p

Proof. Let the neighborhood of state Sn be S {Sa, Sb, Sc, Sp}.

Let
xGpG dd  for }.,,,{ pcbax Then the agent will select

Sp during its transition from Sn,

Now,),(aSQQ nn 

),) ,(SQ(),(/

n/
aaMaxaSr

a
n 

),S|S|S|Q(S),(/

pcba/
aMaxaSr

a
n 

),Q(Sγ0 /

p a),(xdd xGpG 

pQγ .

Since ,dd pGnG   .pn QQ  So,
pn QQ   for 10   is

logically satisfactory. Now, as Lp=0, Qp is not fixed until this

iteration; So Qn is also not fixed in the current iteration. Now,

adding the notion of iteration t in Qn and Qp, we have;

),()(tQtQ pn   if),()1(tQtQ pn  

),1( tQn
otherwise.

Combining the expressions under (7) by a single expression, we

write:

))(),1(()(tQtQMaxtQ pnn   (8)

Now, eliminating t from both sides of (8), we obtain,

),(pnn QQMaxQ   . (9)

4. THE IMPROVED Q-LEARNING

ALGORITHM
In the new Q-learning algorithm to be proposed, only two fields

for each grid are required, one is used to store Q-value and other

is used to store the Lock variable. In the new algorithm every

state stored only the Q-value and not the best action to reach the

goal state. The best path between the current state to the goal is

given by the city-block distance; therefore there will be more

than one best path to reach the goal. As a result selection of the

best action is deferred till the path planning by doing so the

energy required by the robot can be minimized. The newly

proposed algorithm has four steps. Initialization of Q-table is

done in step 1, in step 2, value of and starting state of the robot

are initialized. Q-table is updating only after the robot reaches the

goal state for the first time. Thus the robot is allowed to come to

the goal state without updating Q-table. This is done in step 3.

The updating of the Q-table is done in step 4 using the properties

introduced in section III.

 (7)
 (5)

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

43

Pseudo Code for Improved Q-learning













































 i; allfor 1 Un til}

}Q{QThen

)Q(Q if Else

}1;L;Q{QThen

0L ifThen

 1L if Else

};QγQ {Then

)Qγ(Q if Else

} 1;L;Qγ{QThen

0L ifThen

1L ifThen

)d(d If

;d and d Determine b)

}; ..., , ,{A from Select a)

 {

Repeat

:tableQ Update4.

;S S Until}

}; ..., , ,{A from Select

 {

Repeat 3.

;S state initial and 1) (0,in Assign γ 2.

100;)S goal(for Q

1;)S goal(for L

0;Q0;L{set

SSexcept n to1i ,S allFor

tionInitializa .1

pn

pn

npn

n

p

np

np

pnp

p

n

pGnG

pGnG

21

GP

21

p

GG

GG

ii

Gii

i

mi

mi

L

aaaa

aaaa







Space-Complexity: In classical Q-learning, if there are n

states and m action per state, then the Q-table will be of n)(m

dimension. In the Improved Q-learning, for each state 2 storages

are required, one for storing Q-value and other for storing value

of the lock variable of a particular state. Thus for n number of

states, we require a Q-table of n)(2 dimension. The saving in

memory in the present context with respect to classical Q thus is

given by mn  2n = n(m  2).

Time-Complexity: In classical Q-learning, the updating of Q-

values in a given state requires determining the largest Q-value,

in that cell for all possible actions. Thus if there are m possible

actions at a given state, maximization of m possible Q-values,

require m 1 comparison. Consequently, if we have n states, the

updating of Q values of the entire Q table by classical method

requires n(m 1) comparisons. Unlike the classical case, here we

do not require any such comparison to evaluate the Q values at a

state Sp from the next state Sn. But we need to know whether state

n is locked i.e., Q-value of Sn is permanent and stable. Thus if we

have n number of states, we require n number of comparison.

Consequently, we save n(m 1)  n = nm  2n= n(m2).

5. PATH PLANNING ALGORITHM
In newly proposed Improved Q-learning, best action at each state

is selected dynamically. This help in reducing the energy required

by the agent while moving. In the planning algorithm the best

action is selected by comparing the Q-value of the 4-neighbour

states. If there are more than one state with equal Q-value than

the action that requires minimum energy for turning is selected.

Fig. 1: Portion of environment with Q-value and robot at

center.

In Fig. 1 the robot is at the centre facing toward east. Next

feasible states are the 4-neighbour states and corresponding Q-

value are given in each state. There are two states with maximum

Q-value of 88. If the next state is located at south then the robot

has to rotate toward right by 900 and if the next state is located at

west then the robot has to rotate by 1800. Therefore, the

presumed next state will be the state at south as the robot requires

less energy to move to that state. During path planning the robot

selects one out of several best actions at a given state. If an

obstacle is present in the selected direction then next optimal path

is selected. If there is no action to be selected then a signal is

passed to the robot to backtrack one step.

Pseudo Code for Path Planning

END

GOALNEXT

NEXTCURRENT

NEXT

NEXTCURRENT

NEXTNEXT

statestartingCURRENT

BEGIN

; until 2 step fromRepeat 5.

; 4.

; toGo 3.

free;-Obstacle is and of oodneighbourh the

in value-Q theof value-Q where, statenext Get 2.

; 1.









6. COMPUTER SIMULATION

We designed an environment of 20×20 grids. Every grid is

given a state number. For a state at (x, y),

 (10)

where x is the no of block in x direction

 y is the no of block in y direction

 is the length of the row

We make the agent learn the environment with the proposed

new algorithm and the original classical Q-learning algorithm for

verifying the applicability of the proposed algorithm. We stop the

classical Q-learning after 50 thousand iterations. For the new

algorithm we allow to learn till all the Lock variables are set.

Total numbers of iteration varies from 11 thousand to nearly 25

thousand as the position of the goal changes. Learning is done

without any obstacle. After completion of learning we have kept

the agent, facing left, in different environments and allow

traversing to the goal using the stored Q-table by both the

algorithm. The results are shown in the Fig. 2-Fig. 6 and Table 1.

87

7

86

85

86

87

88

89 88

N

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

44

Path taken by the robot with stored Q-table by Classical Q-learning

Path taken by the robot with stored Q-table by Improved Q-learning

Figure 2: Environment 1 without obstacle.

Obstacle

Path taken by the robot with stored Q-table by Classical Q-learning

Path taken by the robot with stored Q-table by Improved Q-learning

Figure 3: Environment 2 with obstacles.

Obstacle

Path taken by the robot with stored Q-table by Classical Q-learning

Path taken by the robot with stored Q-table by Improved Q-learning

Fig. 4: Environment 3 with obstacles.

TABLE I. COMPARISON OF TIME TAKEN BY THE

ROBOT AND NO. OF 900
 TURN REQUIRED BY THE

ROBOT IN DIFFERENT ENVIRONMENT BY CLASSICAL

Q-LEARNING (CQL) AND IMPROVED Q-LEARNING

(IQL)

S.No Environment
Time Taken in sec No. of 900 Turn

IQL CQL IQL CQL

1 1 22.13 25.65 1 19

2 2 30.98 35.32 17 25

3 3 32.35 66.40 24 70

4 4 17.85 32.24 10 27

5 5 22.85 33.72 11 31

Obstacle

Path taken by the robot with stored Q-table by Classical Q-learning

Path taken by the robot with stored Q-table by Improved Q-learning

Fig. 5: Environment 4 with obstacles.

S

G

S

G

S

G

S

G

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

45

Obstacle

Path taken by the robot with stored Q-table by Classical Q-learning

Path taken by the robot with stored Q-table by Improved Q-learning

Fig. 6: Environment 5 with obstacles.

7.EXPERIMENTS WITH KHEPERA II

ROBOT

Khepera II (Figure 7) is a miniature robot (diameter of 8 cm)

equipped with 8 built-in infrared range and light sensors, and 2

relatively accurate encoders for the two motors. The range

sensors are positioned at fixed angles and have limited range

detection capabilities. We numbered the sensors clockwise from

the leftmost sensor to be sensor 0 to sensor 7(Figure 8). Sensor

values are numerical ranging from 0 (for distance > 5 cm) to

1023 (approximately 2 cm).The onboard Microprocessor has a

flash memory size of 256KB, and the CPU of 8 MHz. Khepera

can be used on a desk, connected to a workstation through a

wired serial link. This configuration allows an optional

experimental configuration with everything at hand: the robot,

the environment and the host computer.

Fig. 7: The Khepera II Robot

Experimental world map with and without obstacle is shown in

Fig 9 and Fig 10. The Improved Q-learning algorithm is used in

the first phase to learn the movement steps from each grid in the

map to its neighbor. After the learning phase is over, the path

planning algorithm is executed. The snapshots with and without

obstacles are indicated in Fig. 11 and Fig. 12 respectively.

Fig. 8: Position of the sensors of Khepera II

Fig. 9. Experimental world map without obstacle.

Fig. 10. Experimental world map with obstacle.

Fig. 11. Snapshots of experimental planning (without

obstacle) instances in order.

S

G

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

46

Fig. 12. Snapshots of experimental planning (with one

obstacle) instances in order.

8. CONCLUSIONS

The paper proposes a novel approach to reduce both time – and

space-complexity of the Classical Q-learning algorithm. A

mathematical foundation of the proposed algorithm indicates the

correctness, and the experiments on simulated and real platform

validate without losing the optimal path in path-planning

applications of a mobile robot. The algorithm is coded in C-

language and tested on IBM Pentium based simulation

environment. The field study is performed on Khepera-II

platform. Simulation results also confirm less number of 900

turning of the robot around its z-axis with respect to classical Q-

learning, and the proposed algorithm helps in energy saving of

the robot in path-planning application.

9. REFERENCES
[1] Dean, T., Basye, K. and Shewchuk, J. “Reinforcement

learning for planning and Control”. In: Minton, S. (ed.)

Machine Learning Methods for Planning and Scheduling.

Morgan Kaufmann 1993.

[2] Bellman, R.E., “Dynamic programming “, Princeton, NJ:

Princeton University Press, p. 957.

[3] Watkins, C. and Dayan, P., “Q-learning,” Machine

Learning, Vol. 8, pp. 279- 292, 1992

[4] Konar, A., Computational Intelligence: Principles,

Techniques and Applications. Springer-Verlag, 2005

[5] Busoniu, L., Babushka, R., Schutter, B.De., Ernst, D.,

Reinforcement Learning and Dynamic Programming Using

Function Approximators, CRC Press, Taylor & Francis

group, Boca Raton, FL, 2010.

[6] Chakraborty, J., Konar A., Jain, L.C., and Chakraborty, U.,

“Cooperative Multi-Robot Path Planning Using Differential

Evolution” Journal of Intelligent & Fuzzy Systems, Vol. 20,

Pp.13-27, 2009.

[7] Gerke, M., and Hoyer, H., Planning of Optimal paths for

autonomous agents moving in inhomogeneous

environments, in: Proceedings of the 8th Int. Conf. on

Advanced Robotics, July 1997, pp.347-352.

[8] Xiao, J., Michalewicz, Z., Zhang, L., and Trojanowski, K.,

Adaptive Evolutionary Planner/ Navigator for Mobile

robots, IEEE Transactions on evolutionary Computation 1

(1), April 1997.

[9] Bien, Z., and Lee, J., A Minimum–Time trajectory planning

Method for Two Robots, IEEE Trans on Robotics and

Automation 8(3).PP.443-450, JUNE 1992.

[10] Moll, M., and Kavraki, L.E., Path Planning for minimal

Energy Curves of Constant Length, in: Proceedings of the

2004 IEEE Int. Conf. on Robotics and Automation, pp.2826-

2831, April 2004.

[11] Regele, R., and Levi, P., Cooperative Multi-Robot Path

Planning by Heuristic Priority Adjustment, in: Proceedings

of the IEEE/RSJ Int Conf on Intelligent Robots and

Systems, 2006.

[12] Yuan-Pao Hsu, Wei-Cheng Jiang, Hsin-Yi Lin, A CMAC-

Q-Learning Based Dyna Agent, in: SICE Annual

Conference, 2008, pp. 2946 – 2950, The University Electro-

Communications, Tokyo, Japan.

[13] Yi Zhou and Meng Joo Er, A Novel Q-Learning Approach

with Continuous States and Actions, in: 16th IEEE

International Conference on Control Applications Part of

IEEE Multi-conference on Systems and Control, Singapore,

1-3 October 2007

[14] Kyungeun Cho, Yunsick Sung, Kyhyun Um, A Production

Technique for a Q-table with an Influence Map for Speeding

up Q-learning, in : International Conference on Intelligent

Pervasive Computing, 2007.

[15] Deepshikha Pandey, Punit Pandey, Approximate Q-

Learning: An Introduction, in : Second International

Conference on Machine Learning and Computing, 2010.

[16] S. S. Masoumzadeh and G. Taghizadeh, K. Meshgi and S.

Shiry, Deep Blue: A Fuzzy Q-Learning Enhanced Active

Queue Management Scheme, in : International Conference

on Adaptive and Intelligent Systems, 2009.

[17] Indrani Goswami (Chakraborty), Pradipta Kumar Das, Amit

Konar, R. Janarthanan. “Extended Q-learning Algorithm for

Path-Planning of a Mobile Robot”, in: Eighth International

Conference on Simulated Evolution And Learning (SEAL-

2010), Indian Institute of Technology Kanpur, India,

December 2010.

