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Abstract1 sensors is to construct a structural description from sensor
data and to match this description to a previously acquired
model [Crowley 85]. An alternative is to project
individual range measurements onto a previously acquired
model [Leonard and Durrant-Whyte 91]. It is also possible
to fuse range measurements directly using occupancy
grids [Elfes 86], [Schiele 94]. Recently it has been shown
that raw range data from nearby scans can be registered
using a technique known as scan correlation [Weiss et al
95]. The correction vector from this technique provides a
correction to position estimation. A thorough review in
the state of the art in position estimation is provided in
[Borenstein et al 96].

This paper describes a new approach to mobile robot
position estimation based on principal component
analysis of laser range data. An eigenspace is constructed
from the principal components of a large number of range
data sets. The structure of an environment, as seen by a
range sensor, is represented as a family of surfaces in this
space. Subsequent range data sets from the environment
project as a point in   this space. Associating this point
to the family of surfaces gives a set of candidate positions
and orientations (poses) for the sensor. These candidate
poses correspond to positions and orientations in the
environment which have similar range profiles. A
Kalman filter can used to select the most likely candidate
pose based on coherence with small movements.

All of the above techniques attempt to register the
observed sensor signal to an a priori model within a 3D
Cartesian coordinate frame defined by the external
environment. However, alternative coordinate spaces are
possible. For example,  for the case of a profile of range
measurements, each measurement can be considered as a
dimension in a space. In such an approach, a range
scanner with a 0.5 degree resolution and a 180 degree field
of view generates range observations which are points in
a 360 degree space. Analysis of the date from such a
scanner will show that adjacent range measurements are
highly correlated. This is to be expected as most
environments, particularly man made, have regular
structure. Thus it is possible to use principal components
analysis to determine a linear subspace with a minimum
number of dimensions for representing an environment
with a range sensor.  This approach is well founded
mathematically, which means that performance can be
analyzed and predicted. Unlike previous approaches to
position estimation, no ad hoc "tricks" are necessary. In
this paper we show that such an approach can lead to a
system which is reliable, robust to occlusions, and
computationally simple.

The first part of this paper describes how a relatively
small number of depth profiles of an environment can be
used to generate a complete eigenspace. This space is used
to build a representation of the range scan profiles
obtained from a regular grid of positions and orientations
(poses). This representation has the form of a family of
surfaces (a manifold).  This representation converts the
problem of  associating a range profile to possible
positions and orientations  into a table lookup.  As a side
benefit, the method provides a simple means to detect
obstacles in a range profile. The final section of the paper
reviews the use of estimation theory to determine the
correct pose hypothesis by tracking.

1. Introduction
Navigation is generally defined as controlling motion

to arrive at a given position. In the case of mobile robots,
navigation can be decomposed into the subproblems of
position estimation, path planning and local motion
control. Hypotheses of the vehicle position and
orientation are commonly derived from the interpretation
of sensor signals provided by range sensors, beacon
detectors or computer vision. It is common to maintain
an estimate of position and orientation using odometry.
Errors in this estimate are corrected using beacons or
range sensors.

The approach described here is a form of appearance
based method.  Similar methods have been adapted for
navigation using computer vision [Jones et al. 97], for
object recognition [Murase and Nayar 95] [Schiele 97] and
for interpretation of deformable objects such as faces
[Turk and Pentland 91]. In the work described here, we
show how this approach can be adapted to the problem of
position estimation using range sensors.

A common method for position estimation from range

The paper is structured as follows: in the next section
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the technique of principal component analysis of laser
range data is described.  The manner in which the
resulting eigen-scans represent a sensor position is
discussed. The third section compares different techniques
for searching position hypotheses in eigenspace. The
search is based on the detection of surrounding training
scans of which the position is known.  The question of
detection and recovery from noisy data and scene changes
is discussed in section 4. The final section shows how
sequences of position hypothesis may be integrated using
a  probability model obtained by tracking hypotheses.

2. Principal Component Analysis of
Laser Range Data

With a scanning range sensor, each individual range
measurement can be considered as an independent
dimension. Such a view is not commonly applied because
of the obvious correlation between adjacent
measurements. This redundancy means that the
dimensions in such a space are not orthogonal and that
the space is not minimal. Principal component analysis
(also known as Karhunen-Loëve expansion [Kirby and
Sirovich 90] ) provides a method to automatically
determine a linear subspace with a minimal number of
dimensions. Such a representation  is optimal in the
least-square error sense.

Figure 1a.  An example of a scan from a laser range
sensor. The scan is composed of 361 range readings over

an angular field of 180°.

The principal component vectors from a covariance
matrix of range data form an orthogonal basis set, which
are the eigen-modes (or eigen-scans in the case of sets of
range data) of the range sensor in that environment. By
using only the most important eigen-vectors as defined by
the corresponding eigen-values, the dimension of the
eigenspace  can be significantly reduced with a minimal
loss in precision and reliability. This reduction can
greatly reduce the memory and computing requirements.

For a N scans S
→

n, n=0,..., N-1 the mean scan is a
vector is defined using the expectation operator E{}:

µ→ =  E{S
→

n} =   
1
N

  ∑
n-0

 N-1

 S
→

n

the covariance matrix A  is defined as the expectation
of the outer product of the scan vector after subtraction of
the mean.

A  =  E{(S
→

n–µ→) (S
→

n–µ→)T}

Eigen vector analysis determines a rotation matrix 

which projects A  into an diagonal matrix .  The

rotation matrix,   and the diagonal matrix  are

determined by solving the equation :
T A    = 

Such a solution is easily obtained using the Jacobi
Transformation or the more efficient Householder
transformation, as described in  [Press et al 92], and found

in standard mathematical libraries.  The matrix   is

composed of N rotation vectors (eigenvectors), ϕn.  Each
vector has unit length and is orthogonal to the other
vectors.

Figure 1b. An image of the center part  of the scene
observed in  figure 1a.

The approach is currently implemented and tested
using a commercial time-of-flight laser range scanner
which gives data sets (called scans) which consist of 361
range values covering an angular field of 180°. Figure 1
illustrates the measuring properties of the laser scanner
which detects obstacles between 4 cm and 50m.

 = [ ϕ0 | ϕ1 | ... |ϕN-1]

The  diagonal matrix  is composed of N diagonal
terms λn, which are the variances (or eigenvalues) of the

data in each dimension or row of . Principal



components analysis algorithms commonly provide the
principal values in decreasing order of magnitude. The

rows of the matrix  constitute an orthogonal

transformation for a data scan, S
→

. Let S
→

o represent a

range scan.  A normalized scan, S
→

, is obtained by

subtracting the mean vector, µ→,

to determine the relative positions and orientations of
these scans. The scans are then assembled into a
composite scan in a common reference frame. The
composite scan can be used to predict new scans for the
dense grid of positions and orientations (poses).  Note
that this process is robust  because only raw sensor data
are used.

Given a set of overlapping data scans taken from
unknown positions and orientations, scan correlation will
determine the relative rotation and position at which the
scans best overlap. Applying these transformations to the
data projects the set of range readings to a common
coordinate system. An example of a composition of four
range scans is shown in figure 2.

S
→

 = S
→

o – µ→ (1)

Multiplication of  S
→

  by the matrix   gives a vector

α
→

 = [ α0, ...αN-1 ]  of N coefficients

 α
→

  =   T  S
→

 (2)
If all dimensions are preserved, this transformation is

reversible, and the scan can be recovered as a sum of the
eigen vectors.

Having constructed a composite scan, it is possible to
generate a synthetic scan from any position and
orientation. Each measurement in the synthetic scan
corresponds to the nearest intersection of a ray with a data
point from the composite scan, as shown in figure 3.

S
^
 = ∑

n=0

 N-1

 αn ϕn (3)

We obtain a dense sample of possible range data
measurements by placing the synthetic scan generator at a
grid of positions ever 50 cm. That is a total of 4
synthetic data sets per square meter. From each synthetic
data set we can extract 720 different synthetic scans of
360 measurements each. Each synthetic scan covers 180
degrees, with half degree shifts in direction, thus
simulating our range sensor. This gives a total of 2880
synthetic sub scans with half degree angular precision per
square meter.  We compute the mean and covariance of
these synthetic sub-scans. The covariance matrix has 360
x 360 dimensions, but this one-time calculation is well
within the bounds of Householders method for principal
components analysis.

When scans are correlated, the true dimension of the
data is much less than N. In this case, The first M
principal components can be used to form an M row by N
column transformation matrix. The number of
dimensions is commonly determined by eliminating
dimensions for which the eigenvalues are small. The
quality of the reconstruction can be evaluated by the
energy in the error between the reconstruction and the
observed scan.

E
→

 = S
→

  – S
^
 (4)

An estimate of the quality of the reconstruction and
thus the reliability of the projection is give by the energy
in the error vector.

e = ||  E
→

  ||

3. Acquiring a Sample Grid of Scans
Principal components will only be useful for position

estimation if they reliably represent all possible sensor
scans. When principal components are computed from
scans taken at random positions (e.g. positions the robot
has visited), scene characteristics which have often been
observed will dominate.  In order to obtain principal
components which include all possible environmental
appearances, the positions where data are collected should
form a relatively dense sample grid.

The collection of a dense data grid at precise positions
and orientations presents practical difficulties. The effort
of training data collection can be greatly reduced by
computing the training set synthetically. This can be
done by assembling a composite description of the
environment from an overlapping set of range scans taken
at arbitrary positions and orientations. The technique of
scan correlation described in [Weiss et al 95] can be used

Figure 2 .   The composition of 4 range scans from the
interior of the office of second author. The range scans were
made at the 4 points marked with an icon. Each range scan

covers 180° with 361 range measurements.

In  our experiments, the eigen-value terms beyond the
3rd or 4th term are negligibly small. This is natural, as
the underlying environment is a rectilinear structure in 2



dimensions. The range data is dominated by flat walls,
concave and convex corners, and hallways.   In a non-
rectilinear environment, a larger number of dimensions
would be necessary to adequately represent the range data.
In our environment, 2 or 3 dimensions are generally
sufficient for a more than adequate reconstruction.

projection of the grid in eigenspace is non-Euclidean. The
curvature of the grid in eigenspace determines the
precision of a linear approximation, and thus the required
sample density in pose-space. We can use the synthetic
scan generator to sample the manifold to any required
precision.

For purposes of discussion, let us consider a three
dimensional eigenspace whose axes are defined by the first
three principal components:  (ϕ0, ϕ1, ϕ2). The
environment is described by a grid of synthetic scans
generated at a discrete set of positions and orientations (x,
y, θ) with a sample density of ∆x, ∆y, and ∆θ. In the
experiments described below we used a fix sample grid of
∆x=∆y = 50cm and ∆θ = 0.5 degrees.   Apart from the
limited number of discontinuities, the mapping from
pose-space to eigenspace is conformal:  that is,
continuous but curved. Scans from a triangle of points in
pose-space will project to a non-Euclidean triangle of
points in eigenspace. Assuming that curvature is small
with respect to the triangle, the borders can be
approximated by straight lines, as shown in figure 4.

Figure 3.Synthetic range measurements every π/8 made
from a composite scan. The actual scan synthesis

program gives samples 720 measurements over an angle
of 2π.
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4. Representing the Pose-Space in
Eigenspace

Consider the first few principle components from the
covariance matrix of the synthetic scans from a collection
of rooms. These components are orthonormal vectors
which define a normed orthogonal space.  For purposes of
discussion, we will describe an eigenspace composed of
three dimensions.  A range scan at a particular position
and orientation in the set of rooms is a point in this
space. The set of possible range scans from a region of an
environment at a particular orientation defines a surface in
this space. Rotating the sensor deforms this surface. Thus
the set of all range scans from an environment projects
into a family of surfaces, or a manifold. This manifold is
generally continuous but can contain discontinuities. To
use this manifold for position estimation we must sample
it at a discrete grid of positions  and orientations.

Figure 4.   A triangle in pose-space maps to a triangle
in eigenspace.
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Figure 5.   A tetrahedron in pose-space maps to a
tetrahedron in eigenspace.

Four non-planar points in 3-D pose space define a
tetrahedron, composed of four triangles. Assuming that
curvature is small over the sides of the triangles, the
corresponding volume in eigenspace can be approximated
by a tetrahedron, as shown in figure 5.  It is possible to
refine the position estimation by interpolating in
eigenspace, but such an interpolation is a linear
approximation to a non-linear function.

The gird of positions and orientations constitutes a
discrete sampling of a three dimensional Euclidean "pose-
space" whose dimensions are (x, y, θ). For each pose-
space sample, the range data set projects to a point in
eigenspace. This collection of eigenspace points makes
up a curved manifold in eigenspace.  In most cases this
manifold is continuous, although it is possible to have
discontinuities near doorways and around convex corners.
We can use a local linear approximations to this manifold
as a model of the environment as observed by a range
sensor.

5. Using the Range Manifold for
Position Estimation

A range scan from the real sensor projects to a point in
eigenspace.  Listing all sample points within a given
distance of the observed point gives a list of candidate

 Movements along a straight line in pose-space will
not generally give a straight line in eigenspace.  The



poses (positions and orientations) for the sensor.
Multiple hypothesis points occur because different parts
of the environment look similar to local view of the
range sensor.  Thus the projection of the grid representing
the pose-space folds on itself. Some points in eigenspace
may be traversed by several parts of the manifold. Thus
indexing into the pose-space with a range scan can
generate multiple hypotheses of pose.

Correct
Hypothesis

Other 
Hypotheses

Figure 7.   Hypotheses from volume search

5.1 Associating a Range Data Scan to the
Eigenspace Manifold

The projection of a range scan gives the address of a
cell in Eignespace and the cell provides a list of possible
poses.  If sufficient memory is available, the eigenspace
can be represented directly as three dimensional array of
cells. Each cell points to a list of poses for which a range
scan projects to that cell. Alternatively, it is possible to
use a hierarchical tree as an data structure.

5.2 Improving Precision by Interpolation in
Eigenspace

The pose-space is sampled relatively densely in
orientation, but somewhat sparser in position. We can
improve the precision in position by interpolating using
the three nearest poses. A simple interpolation algorithm
works as follows. Give an associated pose grid cell, pk,

with scan projection, α
→

k, determine the three adjacent grid

cells in pose-space whose projections enclose α
→

.
Determine the grid point, p0,  with the smallest values of
x, and y. Determine the direction in eigenspace of the grid
axes corresponding to a change in x, and a change in y.
Project the scan onto these axes and measure the ratio of
the distance from the point po to the distance in
eigenspace to the next grid sample. These ratios
correspond to the correction factors, dx, and dy  that can
be applied to the pose corresponding to po.

The simplest association algorithm is to list the K
nearest pose-grid points within a specified volume in
eigenspace. These points can be sorted by distance in
eigenspace to the scan projection.   While the nearest
point is very often close to the true pose, this is not
always the case, and it is necessary to test the candidates.

The obvious means to reduce the number of pose
hypotheses is to use the connectivity of the manifold
structure.  For example, when a surface passes through
the volume around the projection of the scan, only the
nearest point on the surface need be considered. We can
extend this idea to the manifold using planar patches
defined by triangles, or by using volumes defined by
tetrahedron, as shown infigure 7.

Correct
Hypothesis

Other 
Hypotheses

6. Obstacle Detection
Once a number of potential scan-positions have been

estimated, the range data can be analyzed by comparing
them with a scan which was predicted for that position.

Using the notation introduced above, let  S
→

o be an

observed scan and S
→

 be the observed scan after subtraction
of the mean vector. Within the precision of the error
introduced by the reduction of eigenspace to M
dimensions, an error vector can be computed from the
difference between an observed scan and a reconstructed
scan, as given in equation 4 above.

Figure 6.  Hypotheses from nearest neighbor search.

E
→

 = S
→

 – S
^
  = S

→
  – ∑

n=0

 M-1

 αn ϕn

Regions of the scene which are occluded appear as
regions of large values in the error vector.  The confidence
in the projection can be estimated from the energy of the
error vector.

A mask, M,  can be derived by applying a threshold to



the error vector. Whenever the value of an estimated range
reading exceeds the observed range reading be more than
the threshold, the corresponding term of M is set to 0.
When the difference is less than the threshold, the term is
set to 1. This mask can be used to detect unexpected
obstacles. We have also experimented with improving the
precision of position estimation, however, eliminating
occluded range values tends to introduce a bias in position
estimation.

W =   ∆T2  






 vx2 vxy vxθ

vyx  vy2 vyθ
vθx  vθy vθ2

Thus for a hypothesized trajectory, the initial estimated
precision  when the hypothesis is first created at time T
is.

C
^
T  = C

the predicted precision after a time step ∆ t is given by

C
*
t+∆ t = C

^
t  + W7. Confirming Pose Hypotheses by

Tracking Given a set of observed pose hypotheses, Yk, and a set
of tracks Xi, the probability that an observed pose
belongs to a track can be computed by a normal
probability density function.

In most cases pose hypotheses have very different
positions and orientations. If even an approximate
estimate of position and orientation is available, this can
generally be used to reject incorrect hypotheses. If the
sensor is mounted on a vehicle equipped with an
odometric position estimation system, this can be
sufficient to reject incorrect hypotheses. If, for example,
the odometric position estimation system is based on a
Kalman filter [Crowley and Reignier 93], then the
rejection is accomplished by the validation gate.
However, if no prior information about position or
orientation is available, then the hypotheses must be
sorted by tracking multiple hypotheses while the robot
makes local movements.

p(Yk | Xi)  =

 
1

2π det(C)
1
2

   e 

–  
1
2 (Yk –  X i)

T
C

*
i  

–1
(Yk –  X i

 
)

The observed pose is associated to the track for which
this probability is maximum.  If the maximum
probability is less than a threshold then a new track is
created. If more than one pose is associated to a track
then, the pose is forked into multiple hypotheses.

The estimated position and orientation for a track is
computed using recursive estimation.

C
^
t := ( C*t

–1
 + C

–1
)
 –1

Integrating successive pose estimations is a text-book
case of data association and tracking, using estimation
theory. Association of poses to tracks requires an estimate
of the precision of each estimate. Such an estimate may
be obtained from the spacing of samples in the pose grid
∆x, ∆y, and ∆θ. As a first approximation, we take the
grid sample sizes as the standard deviation of a pose
estimate. In fact the true error is somewhat smaller
because of interpolation.

The new pose estimate for time t  can then be
computed as a weighted average:

 X̂ 
t
 
 : = C

^
t (  C*t

–1 
Xt* + C

–1 
Yk)

Of course, if no pose hypothesis is associated with a
track, the predicted pose and covariance for the track are
taken as the new estimate.

Scans are integrated in an existing sequence if their
difference in position does not exceed a maximum defined
by the observation cycle and the maximum robot
velocity. To a sequence of scans taken at the positions.
Under the assumption that the robot is located inside the
grid area, the probabilities of all sequences are normalized
to '1'. Tracks are eliminated when their probability drops
below a threshold.  Figure 9 shows an example of
hypothesis generation and trajectory reconstruction.
Shown in each figure is the position of all hypothesis
which form  a trajectory and the actual probability of this
trajectory. The robot  moves from the low-left corner to
the upper right corner.







σx

σy
σy

  =  






∆x

∆y
∆θ

The covariance matrix, Cp, is an estimation of the
error

C  =    






 σx2 σxy σxθ

σyx  σy2 σyθ
σθx  σθy σθ2

When a new pose estimate is created, it is assigned a
covariance of Cp.  If there is no knowledge about the
robot's motion, we can estimate a loss of position
information from the maximum velocity of the robot in
Vx, Vy, and Vθ.  This maximum velocity is multiplied
by the time step, ∆T, to estimate a growth in the
covariance matrix.

Hypothesis which can not be associated with an
existing scan sequence, create a new sequence to which a
default minimum probability is assigned. A number of
refinements which will only briefly be mentioned are the
split of sequences in case two hypothesis are available,
the unification of hypothesis and a time factor which



decreases the probability of sequences for which no longer
hypotheses are generated and finally deletes them. Figure
9 gives an example for the current state of
implementation of the approach. The square structure of
the room in which the robot moves generates four
potential hypothesis. The in symmetries of the room
confirm the correct path within few observation cycles.

8. Conclusion and Perspective
This paper presents a new approach to position

estimation for a mobile robot based on principal
component analysis of range data. From each set of range
data, a number of hypothesis which include a position
estimation and the probability of this estimation is
computed. The hypothesis are combined to sequences of
estimation which describe a robot trajectory. The main
advantages of this approach are computational efficiency
and robustness to occlusion errors.

Figure 9a.   Three initial hypothesis trajectories with
their probabilities tracked over 3 observations.

Figure 9b.   The same hypothesis trajectories with their
probabilities tracked over 5 observations

Because no a priori position knowledge is required, the
approach can be used as a stand alone process to re-
localize the robot or to track its current position. In this
case, it is difficult to guarantee a precision for the final
position estimation, especially if the robot moves in a
changing scene. None-the-less, the probability model of
scan sequences will reliably detect such cases and indicate
the confidence of the position.  The technique can also be
used in combination with other estimation techniques.
When combined with other approaches with other
estimation techniques such as odometry, it is possible to
survey and correct this techniques.

Because of space limitations, this article is restricted to
explaining the foundation of the method and presenting
examples. A much more complete set of evaluation
experiments has been performed and is presented in
[Wallner 97]. Currently the technique is applied to larger
scenes. In that case, a number of overlapping subspaces
are defined for regions such as rooms or hallways and each
scan is transformed separately for each subspace.
Resulting hypothesis are processed in the same manner as
described above, even the ambiguities of the situation are
much higher.

Figure 9c   The hypothesis trajectories with their
probabilities tracked after 15 observations.



Figure 9d   The hypothesis trajectories with their
probabilities tracked after 26 observations.
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