A MOBIUS AUTOMATON: AN APPLICATION
OF ARTIFICIAL INTELLIGENCE TECHNIQUES

by

Nils J.
Stanford Research
Menlo Park,

Summary

A research project applying artificial intel-
ligence techniques to the development of inte-
grated robot systems Is described. The experimen-
tal facility consists of an SDS-940 computer and
associated programs controlling a wheeled vehicle
that carries a TV camera and other sensors. The
primary emphasis is on the development of a system
of programs for processing sensory data from the
vehicle, for storing relevant information about
the environment, and for planning the sequence of
motor actions necessary to accomplish tasks in the
environment. A typical task performed by our
present system requires the robot vehicle to re-
arrange (by pushing) simple objects in its environ-
ment .

A novel feature of our approach is the use ofa
formal theorem-proving system to plan the execution
of high-level functions as a sequence of other,
perhaps lower-level, functions. The execution of
these, in turn, requires additional planning at
lower levels. The main theme of the research is
the integration of the necessary planning systems,
models of the world, and sensory processing sys-
tems into an efiicient whole capable of performing
a wide range of tasks in a real environment.

Key Words

Robot

Robot System
Visual Processing
Problem-Solving
Question-Answering
Theorem-Proving
Models of the World
Planning

Scene Analysis
Mobile Automaton

Acknowledgment

At least two dozen persons at the Stanford
Research Institute have made substantial contribu-
tions to the project that tne author has the good
fortune to describe in this paper. All of us ex-
press our appreciation to the Rome Air Development
Center and the Advanced Research Projects Agency,
who supported this research under Contract No.

F 30602-69-C-0056.

| Introduction

At the Stanford Research Institute we are im-
plementing a facility for the experimental study of
robot systems. The facility consists of a time-
shared SDS-940 computer, several core-loads of pro-
grams, a robot vehicle, and special interface
equipment.

Nilsson
Institute
California

Several earlier reports”" and papers2-* de-
scribing the project have been written; in this
paper we shall describe its status as of early
1969 and discuss some of our future plans.

The robot vehicle itself is shown in Fig. 1.
It is propelled by two stepping motors independent-
ly driving a wheel on either side of the vehicle.

It carries a vidicon television camera and optical
range-finder in a movable "head." Control logic on
board the vehicle routes commands from the computer
to the appropriate action sites on the vehicle.

In addition to the drive motors, there are motors
to control the camera focus and iris settings and
the tilt angle of the head. (A motor to pan the
head is not yet used by present programs.) Other
computer commands arm or disarm interrupt logic,
control power switches, and request readings of
the status of various registers on the vehicle.
Besides the television camera and range-finder
sensors, several "cat-whisker" touch-sensors are
attached to the vehicle's perimeter. These touch
sensors enable the vehicle to know when it bumps
into something. Commands from the SDS-940 computer
to the vehicle and information from the vehicle to
the computer are sent over two special radio links,
one for narrow-band telemetering and one for trans-
mission of the TV video from the vehicle to the
computer.

The purpose of our robot research at SRI is to
study processes for the real-time control of a
robot system that interacts with a complex environ-
ment. We want the vehicle to be able to perform
various tasks that require it to move about in its
environment or to rearrange objects. In order to
accomplish a wide variety of tasks rather than a
few specific ones, a robot system must have very
general methods. What is required is the integra-
tion in one system of many of the abilities that
are usually found separately in individual Artifi-
cial Intelligence programs.

We can group most of the needed abilities into
three broad classes: (1) problem-solving, (2) mod-
elling, and (3) perception:

(1) Problem-Solving

A robot system accomplishes the tasks given it
by performing a sequence of primitive actions, such
as wheel motions and camera readings. For effi-
ciency, a task should first be analyzed into a
sequence of primitive actions calculated to have
the desired effect. This process of task analysis
is often called planning, because it is accom-
plished before the robot begins to act. Obviously,
in order to plan, a robot system must "know" about
the effects of its actions.

-509-

(2) Modelling

A body of knowledge about the effects of ac-
tions is a type of model of the world. A robot
problem-solving system uses the information stored
in the model to calculate what sequence of actions
will cause the world to be in a desired state. As
the world changes, either by the robot's own ac-
tions or for other reasons, the model must be up-
dated to record these changes. Also, new informa-
tion learned about the world should be added to
the model.

(3) Perception

Sensors are necessary to give a robot system
new information about the world. By far the most
important sensory system is vision, since it al-
lows direct perception of a good sized piece of
the world beyond the range of touch. Since we as-
sume that a robot system will not always have
stored in its model every detail of the exact con-
figuration of its world and thus cannot know pre-
cisely the effects of its every action, it also
needs sensors with which to check predicted con-
sequences against reality as it executes Its plans.

The integration of such abilities into a
smoothly-running, efficient system presents both
important conceptual problems and serious practical
challenges. For example, it would be infeasible
for a single problem-solving system (using a single
model) to attempt to calculate the long chains of
primitive actions needed to perform lengthy tasks.
A way around this difficulty is to program a number
of coordinating "action-units," each with its own
problem-solving system and model, and each respon-
sible for planning and executing a specialized
function. In planning how to perform its particu-
lar function, each action-unit knows the effects of
executing functions handled by various of the other
action-units. With this knowledge it composes its
plan as a sequence of other functions (with the
appropriate arguments) and leaves the planning re-
quired for each of these functions up to the
action-units responsible for executing them at the
time they are to be executed.

Such a system of interdependent action-units
implies certain additional problems involving com-
munication of information and transfer of control
between units. When such a system is Implemented
on a serial computer with limited core memory, ob-
vious practical difficulties arise connected with
swapping program segments in and out of core and
handling interrupts in real time. The coordinated
action-unit scheme serves as a useful guide in ex-
plaining the operation of our system, even though
practical necessities have dictated occasional de-
viations from this scheme in our implementation.
In the next section we shall discuss the problem-
solving processes and models associated with some
specific functions of the present SRI robot system.

Il SOME SPECIFIC FUNCTIONS OF THE ROBOT
SYSTEM AND THEIR ASSOCIATED PROBLEM-
SOLVING PROCESSES AND MODELS

A. Low Level Functions

The robot system is capable of executing a
number of functions that vary in complexity from
the simple ability to turn the drive wheels a cer-
tain number of steps to the ability to collect a
number of boxes by pushing them to a common area
of the room. The organization of these functional
action-units is not strictly hierarchical, al-

though for descriptive convenience we will divide
them into two classes: low level and high level
functions.

Of the functions that we shall mention here,
the simplest are certain primitive assembly lan-
guage routines for moving the wheels, tilting the
head, reading a TV picture, and so on. Two ex-
amples of these are MOVE and TURN; MOVE causes the
vehicle to roll in a straight line by turning both
drive wheels in unison, and TURN causes the vehicle
to rotate about its center by turning the drive
wheels in opposite directions. The arguments of
MOVE and TURN are the number of steps that the
drive wheels are to turn (each step resulting in a
vehicle motion of 1/32 inch) and "status" argu-
ments that allow queries to be made about whether
or not the function has been completed.”*

Once begun, the execution of any function
proceeds either until it Is completed in its
normal manner or until it is halted by one of a
number of "abnormal" circumstances, such as the
vehicle bumping into unexpected objects, overload
conditions, resource exhaustion, and so on. Under
ordinary operation, if execution of MOVE results
in a bump, mollon is stopped automatically by a
special mechanism on the vehicle. This mechanism
can be overridden by a special instruction from
the computer, however, to enable the robot to push
ob Jects.

The problem-solving systems for MOVE and TURN
are trivial; they need only to calculate what sig-
nals shall be sent to registers associated with
the motors in order to complete the desired number
of steps.

At a level just above MOVE and TURN is a func-
tion whose execution causes the vehicle to travel
directly to a point specified by a pair of (x,y)
coordinates. This function is implemented in the
FORTRAN routine LEG. The model used by LEG con-
tains information about the robot's present (x,y)
location and heading relative to a given coordinate
system and information about how far the vehicle
travels for each step applied to the stepping
motors. This information is stored along with
some other special constants in a structure called
the PARAMETER MODEL. Thus for a given (x,y)

* Our implementation allows a program calling
routines like MOVE or TURN to run in parallel
with the motor functions they initiate.

-510-

destination as an argument of LEG, LEG's problem-
solving system calculates appropriate arguments
for a TURN and MOVE sequence and then executes
this sequence. Predicted changes in the robot's
location and heading caused by execution of MOJE
and TURN are used to update the PARAMETER MODEL.

Ascending one more level in our system, we en-
counter a group of FORTRAN "two-letter" routines
whose execution can be initiated from the tele-
type. Our action-unit system ceases to be strict-
ly hierarchical at this point, since some of the
two-letter commands can cause others to be exe-
cuted .

One of these two-letter commands, EX, takes as
an argument a sequence of (x,y) coordinate posi-
tions. Execution of EX causes the robot to travel
from its present position directly to the first

point in the sequence, thence directly to the
second, and so on until the robot reaches the last
point in the sequence. The problem-solving system

for EX simply needs to know the effect caused by
execution of a LEG program and composes a chain of
LEG routines, each with arguments provided by the
successive points specified in the sequence of
points. Under ordinary operation, if one of these
LEG routines is halted due to a bump, EX backs the
vehicle up slightly and then halts. A special
feature of our implementation is the ability to
arm and service interrupts (such as caused by
bumps) at the FORTRAN programming level.

Another two-letter command, PI, causes a pic-
ture to be read after the TV camera has been aimed
at a specified position on the floor. The problem-
solving system for Pl thus calculates the appro-
priate arguments for a TURN routine and a head-
tilting routine; PI then causes these to be exe-
cuted, reads in a picture from the TV camera, and
performs processing necessary to extract informa-
tion about empty areas on the floor. (Details of
the picture processing programs of the robot sys-
tem are described in Sec. IIl below.)

The ability to travel by the shortest route to
a specified goal position along a path calculated
to avoid bumping into obstacles is provided by the
two-letter command TE. Execution of TE involves
the calculation of an appropriate sequence of
points for EX and the execution of EX. This appro-
priate sequence is calculated by a special problem-
solving system embodied in the two-letter command
PL.

The source of information about the world used
by PL is a planar map of the room called the GRID
MODEL. The GRID MODEL is a hierarchically orga-
nized system of four-by-four grid cells. Initially
the "whole world" is represented by a four-by-four
array of cells. A given cell can be either empty
(of obstacles), full, partially full, or unknown.
Each partially full cell is further subdivided into
a four-by-four array of cells, and so on, until all
partially full cells represent areas of some suit-
ably small size. (Our present system splits cells
down to a depth of three levels, representing a
smallest area of about 12 Inches.)

Special "model maintenance" programs insure
that the GRID MODEL is automatically updated by
information about empty and full floor areas
gained by either successful execution or inter-
ruption of MOVE commands.

The PL program first uses the GRID MODEL to
compute a network or graph of "nodes." The nodes
correspond to points in the room opposite corners
of obstacles; the shortest path to a goal point
will then pass through a sequence of a subset of
these nodes. In Fig. 2 we show a complete GRID
MODEL of a room containing three objects. The
robot's position, marked "R," and the goal posi-
tion, marked "G," together with the nodes A,B,C,D,
E,F,H,lI,J and K are shown overlaid on the GRID
MODEL. The program PL then determines that the
shortest path is the sequence of points, R,F,I,
and G by employing an optimal graph-searching algo-
rithm developed by Hart, et al.5

If the GRID MODEL map of the world contains
unknown space, PL must decide whether or not to
treat this unknown space as full or empty. Cur-
rently, PL multiplies the length of any segment of
the route through unknown space by a parameter k.
Thus if k=I, unknown space is treated as empty;
values of k greater than unity cause routes through
known empty space to be preferred to possibly
shorter routes through unknown space.

Execution of TE is accomplished by first read-
ing and processing a picture (using Pl with the
camera aimed at the goal position) and taking a
range-finder reading. The information about full
and empty floor areas thus gained is added to the
GRID MODEL. A route based on the updated GRID
MODEL is then planned using PL, and then EX is exe-
cuted using the arguments calculated by PL. If the
EX called by TE is halted by a bump, a procedure
attempts to manuever around the interfering ob-
stacle, and then TE is called to start over again.
Thus, vision is used only at the beginning of a
journey and when unexpected bumps occur along the
journey.

Although our present robot system does not
have manipulators with which to pick up objects,
it can move objects by pushing them. The funda-
mental ability to push objects from one place to
another is programmed into another two-letter
FORTRAN routine, called PU. Execution of PU causes
the robot to push an object from one named position
along a straight line path to another named posi-
tion. The program PU takes five arguments: the
(x,y) coordinates of the object to be pushed, the
"size" or maximum extent of the object about its
center of gravity, and the (x,y) coordinates of the
spot to which the object is to be pushed. The
problem-solving system for PU assembles an EX, a
TURN, and two MOVE commands into a sequence whose
execution will accomplish the desired push. First
a location from which the robot must begin pushing
the object is computed. Then PL is used to plan a
route to this goal location. The sequence of
points along the route serves as the argument for
EX that is then executed. (Should EX be stopped by
a bump, PU is started over again.) Next, PU's

-511-

problem-solving system (using the PARAMETER model)
calculates an argument for TURN that will point
the robot in the direction that the object is to
be pushed. A large argument is provided for the
first MOME command so that when it is executed, it
will bump into the object to be pushed and auto-
matically halt. After the bump and halt, the
automatic stopping mechanism on the vehicle is
overridden and the next MOVE command is executed
with an argument calculated to push the object the
desired distance.

B. Higher Level Functions

As we ascend to higher level functions, the
required problem-solving processes must be more
powerful and general. We want our robot system to
have the ability to perform tasks possibly requir-
ing quite complex logical deductions. What is
needed for this type of problem-solving is a gen-
eral language in which to state problems and a
powerful search strategy with which to find solu-
tions. We have chosen the language of first-order
predicate calculus in which to state high level
problems for the robot. These problems are then
solved by an adaptation of a "Question Answering
System" QA-3, based on "resolution" theorem-
proving methods.®®

As an example of a high level problem for the
robot, consider the task of moving (by pushing)
three objects to a common place. This task is an
example of one that has been executed by our pres-
ent system. If the objects to be pushed are, say,
OBI, 062, and 0B3, then the problem of moving them
to a common place can be stated as a "conjecture"
for QA-3:

C7p,s{POSITION (0BI,p,s)
A POSITION (OB2,p,s)
A POSITION (0B3,p,s)}

"There exists a situation s and a
place p, such that OBI, 0B2, and OB3 are all at
place p in situation s.") The task for QA-3 is to
"prove" that this conjecture follows from "axioms"
that describe the present position of objects and
the effects of certain actions.

(That is,

Our formulation of these problems for the
theorem-prover involves specifying the effects of
actions in terms of functions that map situations
into new situations. For example, the function
PUSH (x,p,s) maps the situation s into the situa-
tion resulting by pushing object x into place p.
Thus two axioms needed by QA-3 to solve the push-
ing problem are:

(Vx,p,s){POSITION PUSH (x,p,s))}

(x,p,
and

(Vx,y,p,q,s){POSITION (x,p,s) A ~ SAVE (x,y)
*= POSITION (x,p,PUSH (y,q,s))}

The first of these axioms states that if in an
arbitrary situation s, an arbitrary object x is
pushed to an arbitrary place p, then a new

PUSH (x,p,B), will result in which the
object x will be at position p. The second axiom
Btates that any object will stay in its old place
in the new situation resulting by pushing a dif-
ferent object.

situation,

In addition to the two axioms Just mentioned,
we would have others describing the present posi-
tions of objects. For example, if OBl is at co-

ordinate position (3,5) in the present situation,
we would have:
POSITION (OBI, (3,5), PRESENT)

(This information is provided automatically by
routines that scan the GRID MODEL, giving names to
clusters of full cells and noting the locations of
these clusters.)

In proving the truth of the conjecture, the
theorem-prover used by QA-3 also produces the
place p and situation s that exist. That is,
determines that the desired situation s is:

QA-3

s = PUSH (0B3, (3,5), PUSH (0B2, (3,5), PRESENT)).
All of the information about the world used by QA-3
in solving this problem is stored in the form of
axioms in a structure called the AXIOM MODEL. In
general, the AXIOM MODEL will contain a large num-
ber of facts, more than are necessary for any

given deduction.

Another LISP program examines the composition
of functions calculated by QA-3 and determines
those lower level FORTRAN two-letter commands
needed to accomplish each of them. In our present
example, a sequence of PU commands would be assem-
bled. In order to calculate the appropriate argu-
ments for each PU, QA-3 is called again, this time
to prove conjectures of the form:

(*p,w){POSITION (OB2,p,PRESENT) A SIZE (OB2,w))

Again the proof produces the p and w that exist,
thus providing the necessary position and size
arguments for PU. (Size information is also auto-
matically entered into the AXIOM MODEL by routines
that scan the GRID MODEL.)

In transferring control between LISP and
FORTRAN (and also between separate large FORTRAN
segments), use Is made of a special miniature moni-
tor system called the VALET. The VALET handles
the process of dismissing program segments and
starting up new ones using auxiliary drum storage
for transferring information between programs.

The QA-3 theorem-proving system allows us to
pose quite general problems to the robot system,
but further research is needed on adapting theorem-
proving techniques to robot problem-solving in
order to Increase efficiency.* The generality of

* We can easily propose less fortunate axlomatiza-
tlons for the "collecting objects task" that
would prevent QA-3 from being able to solve it.

-512-

theorem-proving techniques tempts us to use a
single theorem-prover (and axiom set) as a problem-
solver (and model) for all high level robot abili-
ties. We might conclude, however, that efficient
operation requires a number of coordinating action-
unit structures, each having its own specialized
theorem-prover and axiom set and each responsible
for relatively narrow classes of functions.

Another LISP program enables commands stated
in simple English to be executed.””*'" It also
accepts simple English statements about the en-
vironment and translates them into predicate cal-
culus statements to be stored as axioms. English
commands are ordinarily translated into predicate
calculus conjectures for QA-3 to solve by produc-
ing an appropriate sequence of subordinate func-
tions. For some simple commands, the theorem-
prover is bypassed and lower level routines such
as PU, TE, etc., are called directly.

The English program also accepts simple
English questions that require no robot actions.
For these, it uses QA-3 to discover the answer,
and then it delivers this answer in English via
the teletypewriter. (Task execution can also be
reported by an appropriate English output.)

Il VISUAL PERCEPTION

Vision is potentially the most effective means
for the robot system to obtain information about
its world. The robot lives in a rather antiseptic
but nevertheless real world of simple objects—
boxes, wedges, walls, doorways, etc. Its visual
system extracts information about that world from
a conventional TV picture. A complete scene analy-
sis would produce a description of the visual scene,
including the location and identification of all
visible objects. Currently, we have two separate
operating vision programs. One of these produces
line drawings, and has been used for some time to
identify empty floor space, regions on the floor
into which the robot is free to move. The other,
which is more recent, locates and identifies the
major, non-overlapping objects. In this section
we shall give brief descriptions of how these pro-
grams operate.

A. Line Drawing Program

The line drawing program produces a line draw-
ing representation of a scene by a series of essen-
tially local operations on a TV picture.* Fig. 3a
shows a typical digitized picture, which is stored
in the computer as a 120 x 120 array of 4-bit (16-
level) intensity values. The scene shown is fairly
typical, and includes some of the problems of mild
shadows and reflections, some faint edges, and ob-
jects not completely in the field of view.

Most of these operations were adaptations of
earlier work by Roberts.'? Details of our pro-
cedures, together with a description of special
hardware for doing them efficiently, are given
in Refs. 1 and 4.

The first of the local operations is a digital
differentiation used to find points where there are
significant changes in light intensity. These
changes usually occur at or near the boundaries of
objects, as can be seen from Fig. 3b. The next
step is to determine the local direction of these
boundaries. This is done by systematically plac-
ing small masks over the differentiated picture,
and looking for places where the masks line up well
with the gradient. Fig. 3c shows the locations and
orientations of masks that responded strongly.

The next step is to fit these short line seg-
ments with longer straight lines. This is done by
first grouping the short line segments, and then

fitting a single straight
ments in a group. Grouping is a systematic pro-
cedure in which short segments are linked if they
are sufficiently close in location and orientation.
Fig. 3d shows the results of fitting longer lines
to the segments in each group. The final step is
to Join the endpoints of these long lines to pro-
duce a connected line drawing. This is done by
considering the endpoints one at a time and creat-
ing candidate connections—straight connections to
neighboring endpoints, extrapolations to points of
intersection, extrapolations to T-junctions, etc.
The candidate that best fits the corresponding part
of the derivative picture is the one selected. The
final line drawing produced by this procedure is
shown in Fig. 3e.

line to all of the seg-

While the line drawing preserves much of the
information in the quantized picture in a compact

form, it often contains flaws due to missing or
extra line segments that complicate its analysis.
Currently, the only information we extract from

the line drawing is a map of the open floor space.
A program called floor boundary first finds a path
along those line segments that bound the floor
space in the picture. These lines are typically
the places where the walls or objects meet the floor,
or where sides of objects obscure our view of the
floor. Fig. 3f shows the floor boundary extracted
from the line drawing.

Now corresponding to any point in the picture
is a ray going from the lens center of the camera
through the picture point and out into space. This
ray is the locus of all points that can produce the
given picture point. If we follow the rays going
through points on the floor boundary to the points
at which they pierce the floor, we obtain an ir-
regular polygon on the floor that bounds space
known to be empty. In this way the line drawing
is used to identify empty floor space, and the
vision system enters information about open area
into the GRID MODEL.

B. Object Identification Program

Were the line drawing program able to produce
a perfect line drawing, the analysis needed to
locate and identify objects in the scene would be
relatively straightforward. However, the line
drawing often contains flaws that seriously com-
plicate its analysis. Some of these flaws could
be corrected by more elaborate local processing.

-513-

However, there is a limit to how well local pro-
cessing can perform, and when significant edges
cannot be told from insignificant edges on the
basis of local criteria, the goal of producing a
perfect line drawing in this way must be abandoned.

The object identification program locates and
identifies non-overlapping objects by gathering
and interpreting evidence supplied by local opera-
tors. The program consists of two parts: a reper-
toire of local operators and an executive. The
local operators process the gradient picture to
perform tests such as deciding whether or not there
is a line between two points, or finding all lines
leaving a given point. Each operator returns not
a single answer, but a set of possible answers with
associated confidences (ideally, probabilities)
that each answer is in fact correct. The executive
explores the scene by calling local operators and
evaluating the results in the light of both prior
test results and built-in knowledge of the world.

The executive program is organized as a deci-
sion tree. Each node in the tree specifies that a
particular test is to be performed. The branches
leaving a node correspond to the possible test out-

comes, and since each outcome has an associated
confidence, these confidences are attached to the
branches.

A given node in the tree can be thought of as
representing a hypothesis about the contents of the
scene. This hypothesis is simply that the scene is
partially described by the test results specified
by the path from the start node to the given node.
The hypothesis is given a confidence by combining
the confidences of these test results. The test
called for at the given node is designed to provide
an answer that will tend to confirm or infirm the
hypothesis.

An analysis of a scene proceeds as a search of
the decision tree described. At any stage in the
search we have a partially expanded tree corres-
ponding to the tests already performed. The nodes
at the tips of this partial tree, which we shall
call open nodes, present us with a choice of pos-
sible next tests (or, alternatively, hypotheses to
be further investigated). The open node with high-
est associated confidence is selected for expansion,
i.e., the test called for by that particular node
is performed. The search proceeds until the open
node with highest confidence is a terminal node of
the tree. A terminal node typically represents a
complete description of at least a portion of the
scene, and hence constitutes at least a partial
"answer," (Certain terminal nodes correspond to
impossible physical situations; in this event, the
search Is resumed at the next most confident node.)
After returning a partial answer the portion of the
scene containing the object found is deleted and
the analysis begins again. Thus the tree search is
iterated until the scene contains no further ob-
jects.

The decision tree itself embodies the strategy
for searching the scene. The basic ideas behind
this strategy are simple, and will be illustrated
by following the operation of the program on the

scene of Fig. 3a. The first operation called for is
a search for vertical lines, since these are usually
both reliably detectable and significant. Fig. 4a
shows that the appropriate operator found three ver-
tical lines, which happened to rank in confidence as
numbered.

Starting with the highest confidence line and
checking to see that its lower endpoint was within
the picture, the program next looked for other
lines leaving that endpoint. A failure here would
have led to the conclusion that something was
strange, and therefore to a transfer to the next
most confident node in the tree. However, a "spur"
was detected, as shown in Fig. 4b. Hypotheses that
the lower endpoint was connected to the lower end-
points of other verticals were rejected because the
direction of the spur was not correct. Thus, at
this point attention was shifted to the top of the
vertical. A spur was found there, as expected, and
that spur was followed to its endpoint as shown in

Fig. 4c. The fact that its endpoint was on the
picture, coupled with the fact that the program had
failed in its attempt to connect the vertical to

other verticals, provided strong evidence that a
wedge had been found. A further check of the angle
at the top of the vertical confirmed the wedge hy-
pothesis, and the same calculations used in the
floor boundary program were used to locate the
vertices.

lower

At this point one object had been found and
identified, and a search for other objects began.
On the second iteration, the remaining verticals
were successfully Joined at their lower endpoints,
as shown in Fig. 4d, and various spurs were found,
as shown in Fig. 4e. A similar attempt to spot a
wedge failed to produce strong evidence, as shown
in Fig. 4f, and the final output indicated the ex-
istence and location of an object partly out of
view without specifying what it was. At this point
there were no more vertical lines, and the analysis
was completed.

The object identification program is capable of
locating and often identifying non-overlapping ob-
jects on the basis of partial information. There
are a number of obvious ways in which it can be
improved and extended, and further research will be
devoted to these tasks. However, even as it stands
it can provide the robot with much valuable infor-
mation about the robot's world.

IV CONCLUSIONS

There are several key questions that our work

has helped to put into focus. Given that a robot
system will involve the successful integration of
problem-solving, modelling, and perceptual abilities,

there are many research questions concerning each
of these. Let us discuss each in turn.

A. Problem-Solving

Our somewhat hierarchical organization of
problem-solvers and models seems a natural, even if
ad hoc, solution to organizing complex behavior.
Are there alternatives? Will the use of theorem-
proving techniques provide enough generality to

-514-

permit a single general-purpose problem-solver, or
will several "specialist" theorem-provers be needed
to gain the required efficiency?

Other questions concern the use of theorem-
proving methods for problem-solving. How do they
compare with the "production methods" as used by
the General Problem Solver (GPS) or with the pro-
cedural language approach as developed by Fikes?'3
Perhaps some combination of all of these will prove
superior to any of them; perhaps more experience
will show that they are only superficially dif-
ferent .

Another question is: To what level of detail
should behavioral plans be made before part of the
plan is executed and the results checked against
perceptual information? Although this question
will not have a single answer, we need to know
upon what factors the answer depends.

Our problem-solving research will also be
directed at methods for organizing even more com-
plex robot behavior. We hope eventually to be

able to design robot systems capable of performing
complex assembly tasks requiring the intelligent
use of tools and other materials.

B. Modelling

Several questions about models can be posed:
Even if we continue to use a number of problem-
solvers, must each have its own model? To what
extent can the same model serve several problem-
solvers? When a perceptual system discovers new
information about the world, should it be entered
directly into all models concerned? In what form
should information be stored in the various models?
Should provisions be made for forgetting old in-
formation? Can a robot system be given a simple
model of itB own problem-solving abilities? En-
suing research and experience with our present
system should help us with these questions.

C. Visual Perception

The immediate vision problems involve includ-
ing more tests in the object identification program
to complete unfinished analysis, and removing the
restriction to non-overlapping objects. Beyond
these improvements there are still longer range
problems to be solved. The scene analysis programs
implicitly store information about the world in
their structure. Changes in the robot's world can
require extensive changes to the whole program.
What program organization would minimize these
problems? How can the scene analysis program in-
terrogate and use facts stored in the model to
advantage? Since "facts" obtained from either the
model or the subroutines are subject to error, it
is natural to accompany them by a confidence mea-
sure. How should these confidences be computed
and how should they be combined, since, loosely
speaking, we operate under conditions of strong
statistical dependence?
rent repertoire of subroutines with others to make
use of such properties as color, texture and range?
Future vision research will be devoted to answering
questions such as these.

How can we augment the cur-

The main theme of the project has been, and
will continue to be, the problem of system integra-
tion. In studying robot systems that interact with
the real world, it seems extremely important to
build and program a real system and to provide it
with a real environment. Whereas much can be
learned by simulating certain of the necessary func-

tions (we use this strategy regularly), many im-
portant issues are likely not to be anticipated at
all in simulations. Thus questions regarding, say,

the feasibility of a system of interacting action-
units for controlling a real robot can only be con-
fronted by actually attempting to control a real
robot with such a system. Questions regarding the
suitability of candidate visual processing schemes
can most realistically be answered by experiments
with a system that needs to "see" the real world.
Theorem-proving techniques seem adequate for solv-
ing many "toy" problems; will the full generality
of this approach really be exploitable for direct-
ing the automatic control of mechanical equipment
in real-time?

The questions that we have posed in this sec-
tion are among those that must be answered in order
to develop useful and versatile robot systems.
Experimenting with a facility such as we have de-
scribed appears to be the best way to elicit the
proper questions and to work toward their answers.

REFERENCES
1. N. Nilsson, et al, "Application of Intelligent
Automata to Reconnaissance," Contract AF30(602)-

4147, SRI Project 5953, Stanford Research
Institute, Menlo Park, California (four Interim
Reports and one Final Report dated December
1968).

2. C. A. Rosen and N. J.
Automaton," |EEE

Nilsson, "An Intelligent
International Convention

Record, Part 9 (1967).
3. B. Raphael, "Programming a Robot," Proc. IFIP
Congress 68, Edinburgh, Scotland (August 1968).

4. G. E. Forsen, "Processing Visual Data with an
Automaton Eye," in Pictorial Pattern Recogni-

tion (Thompson Book Company, Washington, D.C.,
1968).
5. P. Hart, N. Nilsson, and B. Raphael, "A Formal

Basis for the Heuristic Determination of Mini-
mum Cost Paths," |IEEE Trans, on Systems Science
and Cybernetics, Vol. SSC-4, No. 2, pp. 100-
107, (July 1968).

6. C. Green and B. Raphael, "The Use of Theorem-
Proving Techniques in Question-Answering
Systems," Proc. 1968 ACM Conference, Las Vegas,
Nevada (August 1968).

7. B. Raphael, "Research on Intelligent Question-
Answering Systems," Final Report, Contract AF
19(628)-5919, SRI Project 6001, Stanford
Research Institute, Menlo Park, California
(May 1968).

-515-

8.

10.

11.

12.

13.

C. Green, "Theorem-Proving by Resolution as a
Basis for Question-Answering Systems," Machine
Intelligence 4, B. Meltzer and D. Michie, Eds.
(Edinburgh University Press, Edinburgh, Scot-
land; to appear 1969).

C. Green, "Applications of Theorem-Proving to
Problem-Solving," Proc. of the International
Joint Conference on Artificial Intelligence,
Washington, D.C., (May 1969).

L. S. Coles, "An On-Line Question-Answering
System with Natural Language and Pictorial
Input," Proc. 1968 ACM Conference, LAS Vegas,
Nevada (August 1968).

L. S. Coles, "Talking with a Robot in English,"
Proc. of the International Joint Conference

on Artificial Intelligence, Washington, D.C.,
(May 1969).

L. G. Roberts, "Machine Perception of Three-
Dimensional Solids," Optical and Electro-
Optical Information Processing (MIT Press,
Cambridge, Massachusetts, 1965).

R. Fikes, "A 9tudy in Heuristic Problem-
Solving: Problems Stated as Procedure,"”
Proc. of Fourth Systems Symposium, held at
Case Western Reserve University, Cleveland,
Ohio, November 1968 (to be published).

-516-

TELEVISION
CAMERA

RANGE
FINDER

CASTER
WHEEL

MOTOR WHEEL

TA-IPS3 - 24

FIG. 1 THE ROBOT VEHICLE

-517-

6 J Ll

1%
[}

ITR
h

p o

e

FIG. 2 A GRID MODEL OF A ROOM WITH THREE OBJECTS

-518-

in) Digivzed Imege (b} Differentinted {mage

A IR N TR Al

le] Lina-Saginant Maek A {d) Long-Line Fity

R L e B R LR N R R R N IR R

{e} Jolned Lines 1} Floor Boundsry

FIG. 3 PICTURE PAOCESSING BY THE LIKE-DRAWING PROGRAM

=-519-

{a} Verticll Lines {b] Spur Deteciad

{el Spur Followed {tl Lowsw Enda Connactad

(o} Spurs Detected il Sour Followed

FIG. 4 PICTURE PROCESSING BY THE OBJECT IDENTIFICATION PROGRAM

-520-

