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Abstract: A recently proposed strategy for evaluating the string stability properties
of longitudinal vehicle controllers used in Automated Highway Systems (AHS) is
to consider the platoon as a mass-spring-damper system. This simplified analysis
framework results in linear closed-loop systems, yielding transfer functions which
characterize the spacing error response of the platoon. These transfer functions are
then used to compare the string stability properties of a variety of longitudinal vehicle
controllers, sometimes with unexpected results.
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1. INTRODUCTION

Automated vehicles comprising platoons must ex-
hibit both individual stability and stability as a
group, a property referred to as “string stability”.
String stability is typically defined as the require-
ment that spacing errors (the difference between
the actual and desired intervehicle spacing) are
attenuated as they propagate through the pla-
toon, thus eliminating the so-called “slinky effect”
and reducing the likelihood of collisions. Unfortu-
nately, string stability analysis is complicated by
the presence of severe nonlinearities in realistic
vehicle models. Linearized models are thus often
used for this purpose, since for small deviations
from the nominal operating conditions they retain
much of the information contained in the nonlin-
ear model. Yanakiev and Kanellakopoulos (1996)
proposed a simplified framework in which the pla-
toon is viewed as a (linear) mass-spring-damper
system. This framework combines the tractability
of linear analysis with the physical intuition of
mechanical systems, and yields transfer functions
which characterize the spacing error response of
the platoon. Analysis of these transfer functions
can be used to determine the string stability prop-
erties of a platoon operating under a given control
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scheme. Of course, the conclusions drawn from
this linear approximation are to be used as guide-
lines, rather than rules, for longitudinal controller
selection in AHS.

Spacing error attenuation is generally viewed as
the only requirement for string stability. However,
there is another issue to be addressed. Consider,
for example, the following scenario. In a platoon
with one meter (1m) nominal intervehicle spac-
ing, the lead vehicle accelerates and generates an
8 m positive spacing error between itself and its
follower. This error is then propagated as a nega-
tive spacing error of 1.5 m between the second and
third vehicles, and a collision occurs. This example
of unacceptable platoon performance illustrates
the fact that guaranteeing spacing error attenua-
tion does not eliminate the possibility that a large
positive spacing error may generate a smaller, but
negative, error upstream. The issue here is not
one of avoiding position overshoot during platoon
braking maneuvers, which is impossible. Rather,
it is one of avoiding overshoot in response to lead
vehicle acceleration. To eliminate this possibility,
one must ensure that the impulse response of the
spacing error (the inverse Laplace transform of the
spacing error transfer function) remains positive.



It is worth mentioning here that, although AHS-
specific inputs do not take the form of impulse
functions, position overshoot has been observed in
systems that have impulse response undershoot,
even during routine longitudinal maneuvers. This
leads to the conclusion that a positive impulse
response is not too stringent a requirement if one
wishes to eliminate any possibility of overshoot
during acceleration maneuvers.

As shown in (Swaroop et al., 1994), requiring
a positive impulse response has an additional
benefit: it makes possible the use of frequency-
domain analysis for string stability. If G(s) is the
spacing error transfer function and ¢(t) its inverse
Laplace transform, then

(1)

g * zlloc < llglls [I2]loc »

where z(t) is the input spacing error and
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Therefore, the necessary and sufficient require-
ment for spacing error attenuation is that the
corresponding linear operator’s L,,-induced norm
is less than one, i.e., that

gl < 1.
From linear systems theory, it is known that

[GO)] < [|Glloe = max [G(jw)] < llg]|:-
(4)

gl =

(3)

Using the definition of the Laplace transform,

|mmw=%?mmsﬂmmam=nw%®

If the impulse response ¢(t) remains positive, then
1Glloe = 1G(O)] = llgllx - (6)

This is the only case in which the Ly norm of g(t)
can be evaluated in the frequency domain. In this
case, the condition ||g|[1 < 1 is replaced by the
equivalent condition

IGle <1, g(t)>0Vt. (7)
It is important to note that, if the impulse re-
sponse is not positive, frequency-domain analysis
will guarantee string stability only in the L, sense,
since |||l is the frequency-domain equivalent
of the Ls-induced norm. Under this condition,
ensuring L., string stability requires analysis in
the time domain.

String stability analysis reveals how spacing errors
are propagated through the platoon, but does not
offer much insight into the behavior of the initial
spacing error generated by applying a control in-
put to the lead vehicle. The framework for analysis
used here lends itself to analyzing this initial error,
by allowing computation of the transfer function
relating the input force applied to the system to
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Fig. 1. Mass-spring-damper system.

the spacing error between the first two vehicles.
Again, it is desirable that this transfer function
should result in a positive impulse response to
avoid a negative spacing error. As will be shown,
the relationship between the input force and the
initial spacing error may reveal important qualita-
tive information about the platoon’s performance
that is not contained in the spacing error transfer
function.

2. ANALYSIS
2.1 Analytical Framework

In the analysis presented here, the platoon is
viewed as a mass-spring-damper system (Yanakiev
and Kanellakopoulos, 1996). The vehicles are rep-
resented as masses, and the electronic couplings
between them are considered to be springs and
dampers. The spring and damping constants rep-
resent the control gains on the relative position
and velocity, respectively. Transfer functions de-
scribing the propagation of spacing errors are gen-
erated by deriving a state-space representation of
the system using the position of each vehicle as
a state, and then translating this representation
into error coordinates.

The two major classes of controllers considered
here are unidirectional (forward-looking ouly),
and bidirectional (forward and backward-looking),
originally proposed as a means to improve platoon
performance and safety (Yang and Tongue, 1996).
For the bidirectional controller, each mass is con-
sidered to be coupled by springs and dampers to
both the preceding and following masses, allowing
it to use information about the relative distance
and velocity of both the immediately preceding
and immediately following vehicles. In the unidi-
rectional control scenario, each mass is considered
to be connected only to its immediate predecessor
without being affected by its follower. This is not
representative of a physical mass-spring-damper
system, but is still useful for analysis of electron-
ically coupled vehicle strings.

Within the mass-spring-damper framework we
may consider several intervehicle spacing policies,
each of which has differing implications for string
stability.

2.2 Constant Intervehicle Spacing

The first controller we will consider employs con-
stant intervehicle spacing. In the unidirectional



scenario, it is well-known that string stability can-
not be achieved for autonomously operating vehi-
cles with constant spacing, so we will focus on the
stability properties of the bidirectional controller.
Using bidirectional control, the transfer function
relating spacing errors between adjacent vehicles
changes based on the position of the vehicle in
the platoon. This is because each vehicle feels the
combined effects of all the preceding and following
vehicles. Starting from the end of the platoon and
assuming a platoon of size n, the following transfer
function is obtained:

c k
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Zno1(s)

G1 (S) =

(8)

Zn—2(8)

where 2, 1 is the spacing error between the last
two vehicles, z,, - is the spacing error between the
—15% vehicle and its predecessor, ¢ is the damping
factor, k is the spring constant, and m is the vehi-
cle mass (for the derivation of transfer functions,
the reader is referred to (Yanakiev and Kanel-
lakopoulos, 1996)). In general, a necessary con-
dition for achieving a positive impulse response is
that the dominant pole of the system is real and
lies to the right of the dominant zero (Swaroop
and Niemann, 1996). In the above transfer func-
tion, the poles cannot be moved relative to the
zero in a way which satisfies this condition; the
poles and zeros are coupled and cannot be placed
independently. Hence, the impulse response of this
system always crosses the zero axis in some finite
positive time ¢, regardless of parameter choice. By
moving the dominant pole (and zero) closer to the
jw-axis, the magnitude of the undershoot of the
impulse response can be made arbitrarily small.
This improvement, in platoon performance comes
at the expense of individual vehicle performance,
however, and thus some tradeoff must be made
between the percentage of undershoot acceptable
(if any) and controller performance. One can an-
alytically determine the necessary and sufficient
conditions for which the magnitude of this transfer
function is less than one for all frequencies:

2

IG1(jw)| <1 Vw iff — >0.179.
km

(9)
Since the impulse response is not positive, how-
ever, this criterion guarantees only L, stability.

Moving forward through the platoon, we arrive at
the following iterative formula for computing the
spacing error transfer function:

zi(s)

zi—1(8)

— Gl
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It should be clear from inspection of the form
of G;(s) that, for platoons with more than three
vehicles, the analysis becomes quite difficult. It is
not possible to analytically determine conditions
under which the magnitude is less than unity;

Gi(s) = (10)

71

12

Minimum value of C

. . . . . I .
3 4 5 6 7 8 9 10 11
Number of Vehicles in Platoon

Fig. 2. Minimum value of C versus platoon size.

we must instead resort to numerical methods. It
can be shown, however, that the requirement will
always be of the form % > O, where C is a
constant that increases with platoon size. Analysis
has indicated that there is no upper bound on
C; as one would suspect, stability continues to
becomes more difficult to achieve as vehicles are
added to the platoon. Figure 2 plots the increasing

value of C' as a function of platoon size.

For a 3-vehicle platoon, the transfer function re-
lating the input force F(s) to the spacing error
z1(s) between the first two vehicles is the follow-
ing:
2., 2 2%
85+ =ts+ =0
RYR kY
e+ + s+ 5

m(s? +

By careful choice of parameters ¢ and k, it is
possible to ensure a positive impulse response and
hence avoid position overshoot between the first
two vehicles.

2.3 Speed-dependent Intervehicle Spacing

2.3.1. Unaidirectional controller

Speed-dependent spacing has been suggested for
use in the unidirectional scenario as a method of
achieving string stability for autonomously oper-
ating vehicles. For a platoon with constant time
headway h, the spacing error transfer function
becomes
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The introduction of the time headway term allows
the poles of the system to be moved independently
from the zero, resulting in a positive impulse
response if h > ™. Previous analysis (Yanakiev
and Kanellakopoulos 1996) has shown that the

magnitude of the transfer function is less than one
when

G(s) =

»

+
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v

(12)
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In this case, the condition leading to a positive
impulse response is more restrictive than that for
magnitude attenuation. Therefore, string stability
can be guaranteed if h > “*.

For this controller, the relationship between the
input force and the initial spacing error is

z1(s 1—%
F((S)) = T EE T (14)

Because it has the same poles as (12) and no zeros,
this system has the advantage of having a positive
impulse response when G(s) does.

2.3.2. Bidirectional Controller

In the bidirectional scenario, speed-dependent
spacing has several possible implementations. If
a vehicle’s desired separation from its predecessor
varies as a function of its own velocity, the spacing
error transfer function (again, starting from the
end of the platoon) becomes the following;:

- Zn—1(8) Ls4 £
Gi(s) = = m m_
= o T (2ER)s + 38 (15)

As in the previous case, the impulse response of
this system will be positive when h > =. Closed-
form analysis of the magnitude of the transfer
function is only possible for the case in which there
are three vehicles in the platoon, when we obtain
the following:

|G (jw)| < 1V wiff

¢ 2hk 1 [/hE\? k
— > —4+4/(—) +1.608—. (16)
m 3m 3 m m

If £ > 179(= L8%) which is the condition
derived for magnitude attenuation when a con-
stant spacing policy is used, this requirement
will be satisfied for any h > 0. In addition, for
any choice of system parameters there exists an
h > 0 for which this condition will be satisfied.
The requirements for achieving error attenuation,
therefore, are less restrictive than those derived
for the bidirectional controller with constant in-
tervehicle spacing. Figure 3 illustrates the effect
of increasing h on the magnitude of the transfer
function. Parameters selected from the region to
the left of the curve will result in magnitudes of
greater than one, while in the region to the right
of the curve the magnitude will be less than one.
It is clear that, as one would assume, increasing h
expands the region of stability.

The iterative formula for this spacing policy is of
the same form we have seen earlier:

G
SN 1C) . (17)
1-— G1 (S)szl(s)
If, in addition to the forward-looking speed-
dependent spacing term considered above, the

Gl(s)
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Fig. 3. Regions of error attenuation for 3-vehicle
platoon under bidirectional control

vehicle’s desired separation from its follower de-
pends on the following vehicle’s velocity, it can be
shown that G (s) = G (s). The iterative formula,
however, is no longer of the familiar form. It is
modified to:

GZ(S) = MS .
m >G1 (s)

2c+kh 2k
S2+ 2R g4 =2

1— (@1(S)+

One may suspect, after comparing G; to Gl that
error attenuation is more easily achieved with the
forward-looking only time headway approach. For
i > 1, these transfer functions are not amenable
to closed-form analysis, but we have been able
to confirm the verity of our intuition for a 4-
vehicle platoon using numerical analysis, and ex-
pect similar results for larger platoons. Figure 4
shows the regions of error attenuation for 4-vehicle
platoons using zero time headway, forward-only
time headway, and forward and backward time
headway. Again, choice of parameters in the area
to the right of the curve results in transfer func-
tion magnitudes of less than unity. These curves
were generated by varying the parameters < and
% and evaluating the magnitude of the transfer
function over the range of frequencies for which
it is maximized. Points at which the magnitude
became equal to one are plotted as small circles,
with a curve interpolated between them.

2.4 Intervehicle Communication

Achieving string stability for a unidirectional con-
troller with constant intervehicle spacing requires
the introduction of some form of intervehicle
communication. The string stability properties of
controllers using several possible communication
schemes will be examined here.
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Fig. 4. Regions of error attenuation for 4-vehicle
platoon under bidirectional control

The first method considered is one in which
the platoon leader broadcasts its current velocity
to other platoon members. In the mass-spring-
damper framework, this can be represented by
connecting an additional unidirectional damper
between each vehicle and the platoon leader. Fol-
lowing vehicles, then, would still be able to use
information about the position and velocity of
their predecessor while also having access to in-
formation about the platoon leader’s speed. This
controller results in the following spacing error
transfer function

G(s) = als) st s
zic1(s) %4 ctlagy B (19)

where cq represents the additional damping with
respect to the platoon leader.

In addition,

1
m

2 ctcea k7
S +—m S+m

z(s) _

(20)

which, as in the previous case, has the benefit of
having no zeros and the same poles as (19).

We can also consider the possibility of disre-
garding the velocity of each vehicle’s predeces-
sor (while still using relative position informa-
tion) and referencing only the platoon leader’s
speed (Shladover, 1978). Although at first glance
it may seem counterintuitive, ignoring the preced-
ing vehicle’s velocity actually improves both the
impulse response and the magnitude response of
the linear system by removing the zero from the
transfer function. Simulations of this controller us-
ing the full nonlinear longitudinal platoon model
confirm that it results in a string-stable platoon.
It should be noted, however, that the mass-spring-
damper analysis framework is a simplified repre-
sentation of a complex physical system, and while
useful for qualitative analysis and comparison of
control methods it may not illuminate all the
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possible disadvantages of ignoring the preceding
vehicle’s speed. This control method corresponds
to removal of the damper between each vehicle
and its predecessor, while retaining the damper
connection to the platoon leader. The resulting
transfer function is

3
_m
2 4 Cd k-
8%+ Ss+ -

G(s) = (21)
Since this is a second-order system without zeros,
the impulse response will be strictly positive when
the poles are real.

An alternative communication scheme (Shladover,
1978; Yanakiev and Kanellakopoulos, 1996) is for
the platoon leader to transmit its desired rather
than actual velocity, which would presumably re-
sult in less frequent intervehicle transmissions and
hence reduced bandwidth. Intuitively, it is ex-
pected that this controller will result in smoother
transitions, because all vehicles in the platoon
are given preview information about their desired
velocity. This scheme is represented with the ad-
dition of a “virtual” mass traveling in front of
the platoon at the desired speed, to which every
other mass (including the leader) is connected via
a unidirectional damper. Again, it is possible to ei-
ther use or disregard the preceding vehicle’s speed
in the controller design. An interesting result of
our analysis is that this control scheme yields
spacing error transfer functions identical to those
derived for the case in which the actual velocity
of the platoon leader is transmitted. One would
be tempted to conclude, then, that the benefits of
transmitting the desired rather than actual veloc-
ity are minimal. However, analysis of the initial
spacing error reveals an important advantage to
the former method: the initial spacing error is
always zero. Mathematically,

z1(s)
F(s)

regardless of the choice of input force, F(s). The
fact that the initial spacing error is zero implies
that, in the absence of disturbances, all subse-
quent spacing errors will also be zero. Therefore,
once the platoon is in steady state, a control input
applied to the lead vehicle will not generate spac-
ing errors. An even more interesting result is that
there will be zero spacing errors even when the
effects of actuator delays are included, assuming
there are no communication delays and that all
vehicles are identical.

=0, (22)

3. CONCLUSION

In this paper, it has been demonstrated that the
mass-spring-damper platoon representation can
be used to qualitatively compare the string stabil-
ity properties of longitudinal vehicle controllers.



From analysis of both impulse and magnitude
responses of various controllers, one can conclude
that the introduction of time headway improves
both responses, and that its exclusion eliminates
the ability to avoid position overshoot in response
to lead vehicle acceleration. It has also been shown
that communication of desired velocity has an
important benefit; namely, that the initial spacing
error will be zero regardless of the control input
applied to the lead vehicle. Somewhat surpris-
ingly, analysis of the transfer functions result-
ing from the intervehicle communication methods
considered here indicates that there may actually
be an advantage to ignoring the immediately pre-
ceding vehicle’s velocity, and instead referencing
only the desired (or actual) velocity of the platoon
leader.
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