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1. INTRODUCTIONAutomated vehicles comprising platoons must ex-hibit both individual stability and stability as agroup, a property referred to as \string stability".String stability is typically de�ned as the require-ment that spacing errors (the di�erence betweenthe actual and desired intervehicle spacing) areattenuated as they propagate through the pla-toon, thus eliminating the so-called \slinky e�ect"and reducing the likelihood of collisions. Unfortu-nately, string stability analysis is complicated bythe presence of severe nonlinearities in realisticvehicle models. Linearized models are thus oftenused for this purpose, since for small deviationsfrom the nominal operating conditions they retainmuch of the information contained in the nonlin-ear model. Yanakiev and Kanellakopoulos (1996)proposed a simpli�ed framework in which the pla-toon is viewed as a (linear) mass-spring-dampersystem. This framework combines the tractabilityof linear analysis with the physical intuition ofmechanical systems, and yields transfer functionswhich characterize the spacing error response ofthe platoon. Analysis of these transfer functionscan be used to determine the string stability prop-erties of a platoon operating under a given control

scheme. Of course, the conclusions drawn fromthis linear approximation are to be used as guide-lines, rather than rules, for longitudinal controllerselection in AHS.Spacing error attenuation is generally viewed asthe only requirement for string stability. However,there is another issue to be addressed. Consider,for example, the following scenario. In a platoonwith one meter (1m) nominal intervehicle spac-ing, the lead vehicle accelerates and generates an8m positive spacing error between itself and itsfollower. This error is then propagated as a nega-tive spacing error of 1.5m between the second andthird vehicles, and a collision occurs. This exampleof unacceptable platoon performance illustratesthe fact that guaranteeing spacing error attenua-tion does not eliminate the possibility that a largepositive spacing error may generate a smaller, butnegative, error upstream. The issue here is notone of avoiding position overshoot during platoonbraking maneuvers, which is impossible. Rather,it is one of avoiding overshoot in response to leadvehicle acceleration. To eliminate this possibility,one must ensure that the impulse response of thespacing error (the inverse Laplace transform of thespacing error transfer function) remains positive.69



It is worth mentioning here that, although AHS-speci�c inputs do not take the form of impulsefunctions, position overshoot has been observed insystems that have impulse response undershoot,even during routine longitudinal maneuvers. Thisleads to the conclusion that a positive impulseresponse is not too stringent a requirement if onewishes to eliminate any possibility of overshootduring acceleration maneuvers.As shown in (Swaroop et al., 1994), requiringa positive impulse response has an additionalbene�t: it makes possible the use of frequency-domain analysis for string stability. If G(s) is thespacing error transfer function and g(t) its inverseLaplace transform, thenkg � zk1 � kgk1 kzk1 ; (1)where z(t) is the input spacing error andkgk1 = Z 10 jg(t)j dt : (2)Therefore, the necessary and su�cient require-ment for spacing error attenuation is that thecorresponding linear operator's L1-induced normis less than one, i.e., thatkgk1 � 1 : (3)From linear systems theory, it is known thatjG(0)j � kGk1 = max! jG(j!)j � kgk1 : (4)Using the de�nition of the Laplace transform,jG(0)j = jZ 10 g(t) dt j � Z 10 jg(t)jdt = kgk1 :(5)If the impulse response g(t) remains positive, thenkGk1 = jG(0)j = kgk1 : (6)This is the only case in which the L1 norm of g(t)can be evaluated in the frequency domain. In thiscase, the condition kgk1 � 1 is replaced by theequivalent conditionkGk1 � 1 ; g(t) � 0 8 t : (7)It is important to note that, if the impulse re-sponse is not positive, frequency-domain analysiswill guarantee string stability only in the L2 sense,since kGk1 is the frequency-domain equivalentof the L2-induced norm. Under this condition,ensuring L1 string stability requires analysis inthe time domain.String stability analysis reveals how spacing errorsare propagated through the platoon, but does noto�er much insight into the behavior of the initialspacing error generated by applying a control in-put to the lead vehicle. The framework for analysisused here lends itself to analyzing this initial error,by allowing computation of the transfer functionrelating the input force applied to the system to
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xn xn�1 x2 x1Fig. 1. Mass-spring-damper system.the spacing error between the �rst two vehicles.Again, it is desirable that this transfer functionshould result in a positive impulse response toavoid a negative spacing error. As will be shown,the relationship between the input force and theinitial spacing error may reveal important qualita-tive information about the platoon's performancethat is not contained in the spacing error transferfunction. 2. ANALYSIS2.1 Analytical FrameworkIn the analysis presented here, the platoon isviewed as a mass-spring-damper system (Yanakievand Kanellakopoulos, 1996). The vehicles are rep-resented as masses, and the electronic couplingsbetween them are considered to be springs anddampers. The spring and damping constants rep-resent the control gains on the relative positionand velocity, respectively. Transfer functions de-scribing the propagation of spacing errors are gen-erated by deriving a state-space representation ofthe system using the position of each vehicle asa state, and then translating this representationinto error coordinates.The two major classes of controllers consideredhere are unidirectional (forward-looking only),and bidirectional (forward and backward-looking),originally proposed as a means to improve platoonperformance and safety (Yang and Tongue, 1996).For the bidirectional controller, each mass is con-sidered to be coupled by springs and dampers toboth the preceding and following masses, allowingit to use information about the relative distanceand velocity of both the immediately precedingand immediately following vehicles. In the unidi-rectional control scenario, each mass is consideredto be connected only to its immediate predecessorwithout being a�ected by its follower. This is notrepresentative of a physical mass-spring-dampersystem, but is still useful for analysis of electron-ically coupled vehicle strings.Within the mass-spring-damper framework wemay consider several intervehicle spacing policies,each of which has di�ering implications for stringstability.2.2 Constant Intervehicle SpacingThe �rst controller we will consider employs con-stant intervehicle spacing. In the unidirectional70



scenario, it is well-known that string stability can-not be achieved for autonomously operating vehi-cles with constant spacing, so we will focus on thestability properties of the bidirectional controller.Using bidirectional control, the transfer functionrelating spacing errors between adjacent vehicleschanges based on the position of the vehicle inthe platoon. This is because each vehicle feels thecombined e�ects of all the preceding and followingvehicles. Starting from the end of the platoon andassuming a platoon of size n, the following transferfunction is obtained:G1(s) = zn�1(s)zn�2(s) = cms+ kms2 + 2cms+ 2km ; (8)where zn�1 is the spacing error between the lasttwo vehicles, zn�2 is the spacing error between then�1st vehicle and its predecessor, c is the dampingfactor, k is the spring constant, and m is the vehi-cle mass (for the derivation of transfer functions,the reader is referred to (Yanakiev and Kanel-lakopoulos, 1996)). In general, a necessary con-dition for achieving a positive impulse response isthat the dominant pole of the system is real andlies to the right of the dominant zero (Swaroopand Niemann, 1996). In the above transfer func-tion, the poles cannot be moved relative to thezero in a way which satis�es this condition; thepoles and zeros are coupled and cannot be placedindependently. Hence, the impulse response of thissystem always crosses the zero axis in some �nitepositive time t, regardless of parameter choice. Bymoving the dominant pole (and zero) closer to thej!-axis, the magnitude of the undershoot of theimpulse response can be made arbitrarily small.This improvement in platoon performance comesat the expense of individual vehicle performance,however, and thus some tradeo� must be madebetween the percentage of undershoot acceptable(if any) and controller performance. One can an-alytically determine the necessary and su�cientconditions for which the magnitude of this transferfunction is less than one for all frequencies:jG1(j!)j < 1 8! i� c2km > 0:179 : (9)Since the impulse response is not positive, how-ever, this criterion guarantees only L2 stability.Moving forward through the platoon, we arrive atthe following iterative formula for computing thespacing error transfer function:Gi(s) = zi(s)zi�1(s) = G11�Gi�1G1 : (10)It should be clear from inspection of the formof Gi(s) that, for platoons with more than threevehicles, the analysis becomes quite di�cult. It isnot possible to analytically determine conditionsunder which the magnitude is less than unity;
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Fig. 2. Minimum value of C versus platoon size.we must instead resort to numerical methods. Itcan be shown, however, that the requirement willalways be of the form c2km > C, where C is aconstant that increases with platoon size. Analysishas indicated that there is no upper bound onC; as one would suspect, stability continues tobecomes more di�cult to achieve as vehicles areadded to the platoon. Figure 2 plots the increasingvalue of C as a function of platoon size.For a 3-vehicle platoon, the transfer function re-lating the input force F (s) to the spacing errorz1(s) between the �rst two vehicles is the follow-ing:z1(s)F (s) = s2 + 2cm s+ 2kmm(s2 + cms+ km )(s2 + 3cm s+ 3km ) :(11)By careful choice of parameters c and k, it ispossible to ensure a positive impulse response andhence avoid position overshoot between the �rsttwo vehicles.2.3 Speed-dependent Intervehicle Spacing2.3.1. Unidirectional controllerSpeed-dependent spacing has been suggested foruse in the unidirectional scenario as a method ofachieving string stability for autonomously oper-ating vehicles. For a platoon with constant timeheadway h, the spacing error transfer functionbecomesG(s) = zi(s)zi�1(s) = cms+ kms2 + ( c+khm )s+ km : (12)The introduction of the time headway term allowsthe poles of the system to be moved independentlyfrom the zero, resulting in a positive impulseresponse if h > mc . Previous analysis (Yanakievand Kanellakopoulos, 1996) has shown that themagnitude of the transfer function is less than onewhen c > 2m� kh22h : (13)71



In this case, the condition leading to a positiveimpulse response is more restrictive than that formagnitude attenuation. Therefore, string stabilitycan be guaranteed if h > mc .For this controller, the relationship between theinput force and the initial spacing error isz1(s)F (s) = 1� chms2 + ( c+khm )s+ km : (14)Because it has the same poles as (12) and no zeros,this system has the advantage of having a positiveimpulse response when G(s) does.2.3.2. Bidirectional ControllerIn the bidirectional scenario, speed-dependentspacing has several possible implementations. Ifa vehicle's desired separation from its predecessorvaries as a function of its own velocity, the spacingerror transfer function (again, starting from theend of the platoon) becomes the following:�G1(s) = zn�1(s)zn�2(s) = cms+ kms2 + ( 2c+khm )s+ 2km : (15)As in the previous case, the impulse response ofthis system will be positive when h > mc . Closed-form analysis of the magnitude of the transferfunction is only possible for the case in which thereare three vehicles in the platoon, when we obtainthe following:j �G1(j!)j < 1 8 ! i�cm > �23 hkm + 13s�hkm �2 + 1:608 km : (16)If c2km > :179(= 1:6089 ), which is the conditionderived for magnitude attenuation when a con-stant spacing policy is used, this requirementwill be satis�ed for any h � 0. In addition, forany choice of system parameters there exists anh > 0 for which this condition will be satis�ed.The requirements for achieving error attenuation,therefore, are less restrictive than those derivedfor the bidirectional controller with constant in-tervehicle spacing. Figure 3 illustrates the e�ectof increasing h on the magnitude of the transferfunction. Parameters selected from the region tothe left of the curve will result in magnitudes ofgreater than one, while in the region to the rightof the curve the magnitude will be less than one.It is clear that, as one would assume, increasing hexpands the region of stability.The iterative formula for this spacing policy is ofthe same form we have seen earlier:�Gi(s) = �G1(s)1� �G1(s) �Gi�1(s) : (17)If, in addition to the forward-looking speed-dependent spacing term considered above, the
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Fig. 3. Regions of error attenuation for 3-vehicleplatoon under bidirectional controlvehicle's desired separation from its follower de-pends on the following vehicle's velocity, it can beshown that Ĝ1(s) = �G1(s). The iterative formula,however, is no longer of the familiar form. It ismodi�ed to:Ĝi(s) = Ĝ1(s)1� Ĝ1(s)+ khm ss2+ 2c+khm s+ 2km !Ĝi�1(s) :(18)One may suspect, after comparing �Gi to Ĝi, thaterror attenuation is more easily achieved with theforward-looking only time headway approach. Fori > 1, these transfer functions are not amenableto closed-form analysis, but we have been ableto con�rm the verity of our intuition for a 4-vehicle platoon using numerical analysis, and ex-pect similar results for larger platoons. Figure 4shows the regions of error attenuation for 4-vehicleplatoons using zero time headway, forward-onlytime headway, and forward and backward timeheadway. Again, choice of parameters in the areato the right of the curve results in transfer func-tion magnitudes of less than unity. These curveswere generated by varying the parameters cm andkm and evaluating the magnitude of the transferfunction over the range of frequencies for whichit is maximized. Points at which the magnitudebecame equal to one are plotted as small circles,with a curve interpolated between them.2.4 Intervehicle CommunicationAchieving string stability for a unidirectional con-troller with constant intervehicle spacing requiresthe introduction of some form of intervehiclecommunication. The string stability properties ofcontrollers using several possible communicationschemes will be examined here.72
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possible disadvantages of ignoring the precedingvehicle's speed. This control method correspondsto removal of the damper between each vehicleand its predecessor, while retaining the damperconnection to the platoon leader. The resultingtransfer function isG(s) = kms2 + cdm s+ km : (21)Since this is a second-order system without zeros,the impulse response will be strictly positive whenthe poles are real.An alternative communication scheme (Shladover,1978; Yanakiev and Kanellakopoulos, 1996) is forthe platoon leader to transmit its desired ratherthan actual velocity, which would presumably re-sult in less frequent intervehicle transmissions andhence reduced bandwidth. Intuitively, it is ex-pected that this controller will result in smoothertransitions, because all vehicles in the platoonare given preview information about their desiredvelocity. This scheme is represented with the ad-dition of a \virtual" mass traveling in front ofthe platoon at the desired speed, to which everyother mass (including the leader) is connected viaa unidirectional damper. Again, it is possible to ei-ther use or disregard the preceding vehicle's speedin the controller design. An interesting result ofour analysis is that this control scheme yieldsspacing error transfer functions identical to thosederived for the case in which the actual velocityof the platoon leader is transmitted. One wouldbe tempted to conclude, then, that the bene�ts oftransmitting the desired rather than actual veloc-ity are minimal. However, analysis of the initialspacing error reveals an important advantage tothe former method: the initial spacing error isalways zero. Mathematically,z1(s)F (s) = 0 ; (22)regardless of the choice of input force, F (s). Thefact that the initial spacing error is zero impliesthat, in the absence of disturbances, all subse-quent spacing errors will also be zero. Therefore,once the platoon is in steady state, a control inputapplied to the lead vehicle will not generate spac-ing errors. An even more interesting result is thatthere will be zero spacing errors even when thee�ects of actuator delays are included, assumingthere are no communication delays and that allvehicles are identical.3. CONCLUSIONIn this paper, it has been demonstrated that themass-spring-damper platoon representation canbe used to qualitatively compare the string stabil-ity properties of longitudinal vehicle controllers.73



From analysis of both impulse and magnituderesponses of various controllers, one can concludethat the introduction of time headway improvesboth responses, and that its exclusion eliminatesthe ability to avoid position overshoot in responseto lead vehicle acceleration. It has also been shownthat communication of desired velocity has animportant bene�t; namely, that the initial spacingerror will be zero regardless of the control inputapplied to the lead vehicle. Somewhat surpris-ingly, analysis of the transfer functions result-ing from the intervehicle communication methodsconsidered here indicates that there may actuallybe an advantage to ignoring the immediately pre-ceding vehicle's velocity, and instead referencingonly the desired (or actual) velocity of the platoonleader. ACKNOWLEDGMENTThis work is supported by the California Depart-ment of Transportation (CalTrans) under PATHMOUs 240 and 293. The contents of this paperre
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