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Figure 1: The proposed visual analysis of covariation is performed on three levels of abstraction, demonstrated on a mouse mandible: A static
overview (left) provides guidance to candidate points exhibiting non-trivial covariation patterns with the remaining shape. For a particular point p

a focus visualization (center) reveals the underlying covariation pattern to p. By interactively dragging around p, details of the correlated shape
variation can be investigated in a dynamic animation (right), uncovering also specific directional dependencies of covariation.

ABSTRACT

Gaining insight into anatomic covariation helps the understanding
of organismic shape variability in general and is of particular inter-
est for delimiting morphological modules. Generation of hypothe-
ses on structural covariation is undoubtedly a highly creative pro-
cess, and as such, requires an exploratory approach. In this work we
propose a new local anatomic covariance tensor which enables in-
teractive visualizations to explore covariation at different levels of
detail, stimulating rapid formation and (qualitative) evaluation of
hypotheses. The effectiveness of the presented approach is demon-
strated on a µCT dataset of mouse mandibles for which results from
the literature are successfully reproduced, while providing a more
detailed representation of covariation compared to state-of-the-art
methods.

Index Terms: J.3 [Computer Applications]: Life and Medi-
cal Sciences—Biology and genetics; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques

1 INTRODUCTION

Visualization is a core tool in understanding shape variability in
organisms from medical imaging data. In this paper we are partic-
ularly concerned with shape covariations and novel visual analytics
methods to reveal the (complex) interdependency between specific
structural parts and the shape as a whole. In biology and anthro-
pology the concept of morphological integration and modularity,
particularly of skull and mandible, has gained increasing interest
over the last decade (see [21], and references therein). Differences
in covariation within and between certain parts of a morphological
structure are described, aiming at a better understanding of mor-
phology in general as well as of underlying developmental, func-
tional, or genetic constraints.

At the core of this paper stands a new local shape covariance ten-
sor derived from the model-based deformation framework of Blanz
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et al. [4]. This new tensor summarizes covariation between a spe-
cific point and the remainder of the shape and thus generalizes the
global shape variance tensor used by Kindlman et al. [17]. A key
observation is that for linear shape models (which are probably the
most common type) the covariation between a point p and all other
points q on the shape is a linear relationship as well, and from that
we can define our tensor. Although linear analysis yields efficient
visualization algorithms for a single tensor field, there are as many
tensor fields as voxels in the dataset. Even for image data as small
as 643 voxels, manual examination of all possible tensor fields be-
comes prohibitive. On the other hand, a single tensor field is already
a simplified summary of the underlying linear relationship. There-
fore additional (visual) navigation strategies are required.

Following the visualization mantra “overview, zoom & filter,
then details-on-demand” [32] we provide three different visualiza-
tions with decreasing level of abstraction to make the huge amount
of tensor fields accessible and enable effective dissemination and
detailed investigation of complex shape covariation patterns. The
complete pipeline is illustrated in Fig.1. An initial overview vi-
sualization highlights strength and directional dependency of co-
variation associated with certain areas on the structure. Thereby it
provides guidance to potentially interesting substructures for fur-
ther exploration. Each tensor field of a candidate region can in turn
be looked at in greater detail in a second tensor glyph visualization.
This gives insight into the overall strength and proportions of co-
variation between a candidate region and global shape, but omits
directional dependencies. To examine the latter at the level of indi-
vidual shape variations, a third visualization provides the possibility
to perform model-based deformation interactively in a click-and-
drag style, inspired by recent works in facial animation.

In combination, the presented three visualizations provide an in-
tuitive and informative interface to visual analysis of shape covari-
ance. We demonstrate our approach on a standard model organ-
ism and structure, the rodent mandible, which received consider-
able attention in research on biological modularity. This allows us
to perform a comparison to state-of-the-art methods and a valida-
tion of our findings with results from literature. In summary, we
consider the following points to constitute the main contributions
of this work:

• Introduction of a new local shape covariance tensor, espe-
cially suited for visual analysis.



• A hierarchical set of three visualizations ranging from
overview to detailed exploration, based on analysis and in-
tegration of the local covariance tensor.

• Comparison with state-of-the-art methods performed on a
standard model organism, investigated for the first time (to
the best of the authors knowledge) at this degree of detail.

2 RELATED WORK

Remarkably, the advent of modern shape analysis started off with
purely visual methods [34], whose mathematical formalization as
statistical shape models many years later was celebrated as a “rev-
olution” in Morphometrics [1]. Nowadays efficient visualization
algorithms operating on these models have enabled interactive ex-
ploration systems [20, 9, 14]. However, their emphasis is on nav-
igation in shape space and less on exploratory analysis of shape
covariation. This section will first review the two shape models
targeted at, before relating to other interactive approaches.

2.1 Shape models

This paper works with linear shape models, split here into two ma-
jor classes, distinguished by their representation of shape.

Point distribution models (PDM) [10, 11] can be considered
state-of-the-art in applications in morphology of organisms, par-
ticularly Zoology and Anthropology [5], as well as in many medi-
cal imaging applications (see [13] and references therein). A PDM
represents a shape by a set of points (landmarks) specified on corre-
sponding (homologous) positions on all shapes under investigation.
Most of the related interactive systems operate on PDM.

Statistical deformation models (SDM) [2], a major tool in com-
putational anatomy [12], try to include all information gained from
medical imaging data. To this end shape variation is described via
dense deformation fields, mapping the mean shape to each partic-
ular individual of the dataset. Although computationally more ex-
pensive, efficient representations based for instance on a B-spline
parameterization [30] or carefully performed dimensionality reduc-
tion [14] are available. Since a SDM includes more shape details
than a PDM, it is an ideal choice for exploratory visualization of
shape variability and we will present and demonstrate our methods
in this setting. Even though, the underlying approach could as well
be applied to a PDM.

2.2 Related interactive approaches

In the last years a rich set of interactive visual analysis tools for
landmark data and PDM’s has been released [20, 9, 27, 24, 37]
and recently, a first system for the exploration of SDM’s [14]. All
systems feature a principal component analysis (PCA) model for
exploration, while some additionally provide support for canoni-
cal variates analysis (CVA) and regression tools like partial-least
squares (PLS). CVA can be used to analyze covariation with respect
to specific groups of individuals in the dataset, providing an orthog-
onal parameter space similar to PCA for exploration. A PLS regres-
sion can be calculated between two pre-selected landmark groups
(shape parts) to visually analyze covariation between them in a 2D
correlation plot [20, 37]. Once a hypotheses on co-varying groups
of individuals or landmarks is formed, CVA and PLS methods pro-
vide a valuable tool for further exploration. To generate hypotheses
on shape covariation in the first place, only the PCA model remains
as an exploration vehicle.

Inspiration for the presented interaction method comes from
works in facial animation. Direct manipulation approaches, where
a 3D face model is predicted from manipulation of only a small sub-
set of the vertices, are found for blend shapes [25] and part-based
models [33]. Although these works are a great source of inspiration
and we will internally use the same least-squares minimization [4],
the ultimate goals of artistic animation and visual analysis of shape
variation are quite contrary.

3 PRELIMINARIES

The general approach to formalize shape difference is based on
the notion of transformations, describing mappings of one shape
into the other. Decomposing these transformations enables to fac-
tor out differences (in shape representation) due to different “mo-
tions”. After factoring out similarity transformations in our case,
eventually a common coordinate frame arises in which the remain-
ing elastic deformations constitute the shape differences of interest.
This is the starting point for a statistical deformation model (SDM)
which describes a normal distribution of elastic deformations, typ-
ically identified with displacement fields, around an average tem-
plate serving as the mean shape.

3.1 Statistical deformation model

3D images of the same modality serve as input data, showing the
shape of an organism in different individuals. Let {I1, . . . ,In}
denote the set of 3D input images treated here as scalar func-
tions Ii : Ω → R defined over a common spatial domain Ω ⊂ R

3.

The deformations between the template image Î and each indi-
vidual are described by coordinate mappings φi : Ω → Ω such that

Î (x)≈Ii(φi(x)) for x ∈ Ω. Note that thereby all φi share the tem-
plate’s coordinate system as their base domain. Each mapping φi is
given as φi

..= Id+di with a displacement vector field di : Ω → R
3

and Id denoting the identity transform. The vector fields di encode
the displacement from the template image and can thus be repre-
sented as vectors di ∈R

3m where m is the number of discrete image

samples, i.e. voxels in Î .

Linear model and synthesis The displacement fields consti-
tute the data matrix X = [d1, . . . ,dn] ∈ R

3m×n for further analysis.
Based on this data the SDM establishes a linear model

X = BC (1)

with coefficients C ∈ R
n×n and a basis B ∈ R

3m×n. In the naviga-
tion process, novel deformations φ are synthesized from the SDM
via

φ = Id+d = Id+Bc , (2)

where c = (c1, . . . ,cn)
T should be chosen with ci ∈ [−3σi,+3σi]

conforming to the standard deviation σi of the underlying normal
distribution model.

Estimating an average template We use generalized Pro-
crustes analysis [11] to estimate a mean shape. The algorithm
works iteratively and is initialized with one of the individuals from
the dataset, which is refined stepwise until convergence. In each
step, all images are registered against the current estimate I ′,
yielding intermediate deformation fields d

′
i. The average deforma-

tion d′ = 1
n ∑

n
i=1 d

′
i describes the remaining bias towards the ini-

tialization, since by definition d′ = 0 for the true mean. To gain a
refined estimate which is closer to the true mean, I ′ is deformed
according to d′ to I ′. The procedure is repeated until d′ is close to
zero. After convergence, the final estimate and deformation fields

facilitate the template Î and data matrix X for the SDM.

3.2 PCA model

The linear model (1) of an SDM is chosen to have decorrelated
and orthogonal basis vectors. Those are the result of a principal
component analysis (PCA), which basically diagonalizes the sam-
ple covariance matrix. Since we established our data matrix X

with respect to the average template, the first moment of the data is

zero and the covariance estimate is 1
n−1 XX

T . Since in our setting

n ≪ 3m the rank of the covariance matrix is at most n′ = n− 1. A
diagonalization XX

T = US
2
U

T is found via singular value decom-
position of X = USV

T , where U is the set of orthonormal eigen-
vectors, S

2 a diagonal matrix containing the eigenvalues and V an



orthogonal matrix. As basis we will use the set of scaled eigenvec-

tors B = n′−1/2
US yielding coefficients C = n′1/2

S
+

U
T

X = V
T ,

where S
+ is a pseudo-inverse, only inverting the non-zero diagonal

entries of S.
PCA estimates a normal distribution [15] on the displacement

fields modeled as a random variable. By construction, the corre-
sponding coefficients c follow a centered normal distribution of unit
variance and the probability density takes the form

p(c) = (2π)−n′/2
e−

1
2
‖c‖2

.

In the following we will make use of the negative log-likelihood of
the above

− log p(c) =
1

2
‖c‖2 + const. (3)

as a measure for penalizing unlikeliness of a displacement field.

3.3 PLS analysis

A state-of-the-art approach to assess shape covariation is to perform
a partial least-squares analysis (PLS), pioneered by Tucker [35]
and Wold [40] and introduced to morphometrics by Rohlf and
Corti [29]. It requires a precise hypothesis about a two-block sep-
aration of the shape. By reordering the rows of our original data
matrix we can represent the two blocks as X

T =
[

X1
T

X2
T
]

. PLS
is technically similar to PCA, but instead of the covariance matrix
C = XX

T , the cross-covariance matrix C12 = X1X2
T is diagonal-

ized. Since C12 is no longer symmetric, this yields not an eigen-
value but a singular value decomposition C12 = LS12R

T with dif-
ferent left and right singular vectors. Where the first PCA eigenvec-
tor u maximizes the covariance |Cov(XT

u,XT
u)|, the first pair of

singular vectors maximizes the cross-covariance between the two
blocks |Cov(X1

T
l,X2

T
r)|. The same holds for further pairs of sin-

gular vectors in the respective orthogonal subspaces. Extensions
to three and more blocks exist [6], although lacking a closed form
solution. By stacking singular vector pairs, full deformation fields
for the complete shape can be constructed for visualization pur-
poses. The different size of the blocks has to be taken into account
though [23].

So far, PLS analysis provides the major visual tool to study shape
covariation (e.g. [22] and references in Sec. 6). However, it does
not allow inspection of covariation at a finer level than the selected
blocks, which have to be selected a-priori, and individual covaria-
tion patterns remain superimposed in the singular vectors.

3.4 Global anatomic covariance field

An interesting alternative to PCA visualization to convey the over-
all variability contained in a dataset is that of anatomic covariance
fields presented by Kindlmann et al. [17]. This work uses a glyph-
based visualization of the covariance tensor at each point in the
dataset. For the set of displacement vectors {dp,1, . . . ,dp,n} at point

p ∈ Ω with dp,i ∈ R
3 the 3×3 covariance tensor is defined as

Tglobal(p) =
1

n−1

n

∑
i=1

dp,id
T
p,i (4)

We adopt the same visualization for our local covariance ten-
sor (10). To distinguish this global approach from our analysis of
local interactions, we will refer to (4) as global covariation in the
following.

4 LINEAR ANALYSIS OF COVARIATION

Our approach builds upon the least-squares framework introduced
by Blanz et al. [4] for model-based deformation, which we briefly
summarize in the following sub-section, before introducing a local
covariance and overview tensor in Sec. 4.2 and 4.3.

4.1 Model-based deformation

For linear shape models Blanz et al. [4] propose a model-based de-
formation framework which allows the user to produce plausible
shapes via displacement of single vertices. The “plausibility” of a
shape is defined via its probability according to the Gaussian nor-
mal distribution underlying all PCA shape models, see Sec. 3.2.

In a least-squares optimization, the coefficients c in PCA space
of a plausibly deformed shape are estimated where the displaced
vertices dp (the user edit) are considered as soft-constraints and the
optimization is additionally regularized by the shape’s probability,
penalizing improbable outcomes. Using a squared data term and
the negative log-likelihood (3) the optimization can be expressed
via the following energy functional

E(c) = ‖dp −Bpc‖2
2 + γ‖c‖2

2 (5)

where dp is the stacked vector of displacements and Bp is the shape
space basis matrix reduced to the rows corresponding to the dis-
placed vertex coordinates in dp. At the constrained positions p the
minimizer of E(c) will try to match the edited shape dp while the
remaining vertices are deformed to yield a highly probable shape,
depending on the choice of the regularization parameter γ ∈ R. In
this work we take on the view that the result of the above optimiza-
tion gives us the shape variation correlated to the edit dp, at least
for a fixed γ . The regularization parameter γ is chosen via cross-
validation in a leave-one-out fashion benchmarked on the average
reconstruction error. In our applications the resulting error function
is found to be smooth and in particular stable around the optimum
allowing for a robust choice of γ .

4.2 A linear operator for point-wise covariation

The same model-based deformation framework (5) can directly be
applied to statistical deformation models, where instead of vertices
now displacement vectors are constrained. Restricting to the spe-
cial case of a single constrained position p, we now derive a linear
operator for covariation between the point p and any other point
q ∈ Ω. The displacement predicted from (5) at q to a variation at p
is what we interpret in this paper as the correlated shape change, or
interaction, between p and q.

Once optimal coefficients copt minimizing Eq. (5) are found, the
corresponding displacement dq at q co-varying with the change dp

at p is given by

dq = Bqcopt where copt := argc minE(c). (6)

To solve for copt consider the fact that a minimum of E(c) must
have vanishing gradient

∂

∂c
E = B

T
p Bpc−B

T
p dp + γc

!
= 0

yielding a linear system

(BT
p Bp + γI) = B

T
p dp

of the form Ac = const. which can be solved by direct inversion
since the n×n system matrix A is symmetric and

copt = A
−1

B
T
p dp. (7)

Expanding (7) into (6) we arrive at

dq = Bq(B
T
p Bp + γI)−1

B
T
p dp = Zpqdp (8)

where the relationship between displacements at p and q is given
by the 3× 3 matrix Zpq. Note that Zpp 6= I in general because the
regularization term penalizes improbable edits. It can also happen
that the edit is not contained in the span of B, meaning it has zero
probability. One should further keep in mind that the relationship
is not symmetric and Zpq 6= Z

−1
qp in general.



4.3 A new local shape covariance tensor

For a given displacement at point p in the shape, Eq. (8) predicts the
most probable corresponding displacement at q. To visualize this
relationship encoded in Zpq we resort to statistical covariance anal-
ysis. There, covariance structure of a random vector x is defined as
Σ(x) = E

{

(x−E(x))(x−E(x))T
}

with expectation E. Assuming
that input displacements dp are random vectors drawn from a distri-
bution with covariance Σ(dp), the covariance structure at q follows
directly from the linearity of expectation:

Σ(dq) = Σ(Zpqdp) = ZpqΣ(dp)Z
T
pq (9)

For our directed interaction we want an unbiased estimate of Σ(dq)
and assume thus a prior of isotropic covariance at p. By setting
therefore Σ(dp) = I we arrive at the following simple definition of
a local covariance tensor at q for a fixed p:

Tp(q) = ZpqZ
T
pq (10)

From the properties of the linear operator, i.e. Zpp 6= I and

Zpq 6= Z
−1
qp , it follows that Tp(q) describes a one-sided, directed

interaction from p towards q and in general a posterior covariance
Tp(p) 6= I at p.

Efficient local tensor sampling To speed up the computation
of local tensor fields we split Zpq into two factors, depending each
solely on p and q, respectively:

Zpq = BqZp where Zp = (BT
p Bp + γI)−1

B
T
p

Thereby the matrix inversion in Zp has only to be done once on
positioning the probe, while the associated tensor field (10) can be
sampled at the cost of a matrix multiplication per sample.

4.4 Measuring directional interaction strength

Since a covariance tensor T is symmetric it can be diagonalized
as T = RΛ2

R
T into a rotation R from the unit to an eigenvector

basis and a diagonal matrix Λ2 = diag(λ1,λ2,λ3) of corresponding
eigenvalues, sorted in descending order λ1 ≥ λ2 ≥ λ3. The ratios
between the eigenvalues delineate the anisotropy of the local shape
variation [38].

For an overview visualization we want to assess which directions
of displacement dp at a point p will result in large deformations
on the remaining shape, describing potentially interesting covaria-
tion. The strength of interaction inflicted by dp can be measured
by averaging the squared magnitude of the displacement responses
dq = Zpqdp via

ηp(dp) =
1

|Ω| ∑
q∈Ω

‖Zpqdp‖
2 =

1

|Ω| ∑
q∈Ω

d
T
p Z

T
pqZpqdp.

The average of the occurring quadratic forms Z
T
pqZpq,

Γ′(p) =
1

|Ω| ∑
q∈Ω

Z
T
pqZpq

is already a tensor representation of interaction strength. We want
to stress that this is not an average of the local covariance tensor but
Z

T
pqZpq. The spectrum of the average Γ′ informs on which editing

directions dp impact the shape stronger (large λi) and weaker (small
λi). In the derivation, ηp treats all edit directions as equally impor-
tant, irregardless of their probability due to the shape model. Since
improbable directions are of lesser interest for analysis of covaria-
tion we weight Γ′ with the global covariance tensor. The weighted
variant takes the form

Γ(p) = T
T
global(p)Γ′(p)Tglobal(p) (11)

and is the tensor used for overview visualization shown in Fig. 2.
To exaggerate tensors with smaller trace we take the square-root of
eigenvalues for scaling the glyphs.

Figure 2: Overview visualization of Mus dataset. Glyph size indi-
cates strength of the interaction pattern Tp associated with a partic-
ular point (compare Fig. 8 to point B). Principal axes inform on edit
directions dp with strong responses (compare Fig. 6 to point A).

5 VISUALIZATION METHODS

5.1 Direct deformation visualization

Visualizing a synthesized deformation (2) requires that the corre-

sponding mapping φ is applied to the template Î , producing a de-
formed shape. Computing the actual deformed volume is compu-
tationally expensive, thus we resort to direct space warping tech-
niques [7], applied on-line during rendering. The basic idea, due to
Barr [3], is that casting straight rays into the scene will show the
undeformed object, while deforming the rays with a mapping φ−1

will result in an image of the object, as if it was deformed with φ .
The same idea is realized in our GPU raycaster.

In raycasting, a ray is traversed through positions x in the tem-
plate’s coordinate system. To yield a deformed image I from the

template Î , the ray is displaced according to I (x) = Î (φ−1(x)).
The inverse mapping is approximated here by negating the orig-
inal displacement, φ̃−1 = Id − d. For a maximum displacement
magnitude of γ the approximation error amounts to φ̃−1(φ(x)) =

Id+o(γ2) 1 which we found sufficiently accurate for our homoge-
neous dataset exhibiting mostly small-scale and very smooth dis-
placements. The basis functions B used in the computation of φ are
kept in GPU memory and the linear combination (2) is evaluated
in a shader, exploiting trilinear interpolation capability of modern
graphics hardware.

Our raycaster provides direct volume rendering (DVR) and in-
direct isosurface rendering. While DVR makes interior struc-
tures accessible (see video), it requires additional techniques to be
employed for color-coding due to color-mixing along a cast ray.
For simplicity we encode additional information like displacement
magnitude only in the isosurface rendering. Picking a point on the
shape for model-based editing is also realized in the raycaster by
selecting the first hit point on an arbitrary, user-selected isosurface.
Our implementation achieves on average 11 fps during editing on
a Intel Core2 Q6600 CPU at 2.4GHz equipped with a Nvidia GTX
460 graphics card.

5.2 Tensor field visualization

For the visualization of covariance tensor fields we use the same
glyph-based technique as Kindlmann et al. [17]. In a glyph based
approach, an effective visualization is achieved by scaling and ro-
tating a geometrical primitive, typically a sphere, according to R

and Λ. Instead of a sphere, we follow Kindlmann et al. and use a
superquadric glyph [16] because of its qualities for visual disam-
biguation of linear, planar and spherical shaped tensors, relevant to
our visual analysis.

1Proof: By definition f := φ̃−1(φ(x)) = φ(x)− d(φ(x)) = x+ d(x)−
d(x+ d(x)). Taylor expansion of the last term yields f = x−∇d(x)d(x)+
o(|d(x)|2 where ∇d(x) denotes the Jacobi matrix. Rewriting d(x) = γg(x)
with |∇g(x)g(x)| ≤ 1 gives an upper bound |∇d(x)d(x)| ∈ o(γ2). Utilizing

|d(x)| ≤ γ we finally arrive at f = x+o(γ2). �



The geometric encoding of tensor properties is accompanied by
color-coding the glyph according to local anisotropy. In deforma-
tion models the anisotropy informs on the amount of directional de-
pendency of shape variation and is particularly helpful for our local
analysis in understanding the exact interaction between two points.
A suitable measure in this context is fractional anisotropy, defined

as FA :=
(

3
2
(λ1−µ)2+(λ2−µ)2+(λ3−µ)2

(λ1+λ2+λ3)2

)1/2
, which interpolates be-

tween the spherical case (λ1 = λ2 = λ3 and FA = 0) and the linear
one (λ1 ≫ λ2 ≈ λ3 = 0 and FA = 1), irregardless of tensor norm
‖T‖F . The final visualization is produced by sampling the tensor
field on a regular grid and placing a corresponding superquadric
glyph with color mapped FA at each sample position.

For the local covariance visualization the tensor field Tp serves
as input, for which a probe is positioned in 3D at a point p of in-
terest in advance. The overview visualization is generated from the
precomputed tensor field Γ. For all visualizations and computa-
tions the image domain Ω is thresholded to the Hounsfield range of
bone structures. Additional methods like glyph packing [18] and
halos [31] could be applied to enhance visual disambiguation of the
often observed highly anisotropic patterns.

6 VISUAL ANALYSIS OF THE MOUSE MANDIBLE

The mouse mandible is a standard model for morphometric analy-
ses, including the study of morphological integration and modular-
ity, partly because of its relatively simple structure [22, 41, 8, 28].
Irregardless of this simplicity, finding modules and modeling their
interaction is considered a difficult task. In the majority of studies
so far, hypotheses of the existence and position of modules have
been formulated a priori and tested subsequently. PLS analysis is
the primary method to investigate correlation and provide visual-
izations of shape covariation.

Structure of the mouse mandible Each separate half of the
mandible consists of a single bone with three processes in the back,
a row of molar teeth and the single incisor, whose posterior end
lies far back in the mandible, below or behind the coronoid pro-
cess, see Fig. 3. A common functional segmentation is the sepa-
ration into two parts, the frontal region, bearing incisor and molar
teeth, and the rear processes with muscle attachments. However it
is speculated that there could be an additional set of modules at a
smaller scale [22] and in recent work several finer scale subdivi-
sions [41, 8, 28] are addressed.

Figure 3: Anatomical parts of the mouse mandible referred to in this
work. A common subdivision [22] into 2 functional subunits is shown.

6.1 Dataset and preprocessing

The analysis is conducted on left mandibles of 30 house mice (Mus
musculus) whose skull µCT scans are reduced to an image resolu-
tion of 200× 200× 400 voxels and semi-automatically segmented
into upper skull and mandibles [39]. Damaged left mandibles were
replaced with their mirrored right counterpart. Differences due to
translation, rotation and scale are factored out with an image based

similarity alignment. The alignment is optimized based on L2 in-
tensity error on histogram equalized images using the elastix tool-
box [19]. Elastic registration is performed with the symmetric log-
domain diffeomorphic demons algorithm [36]. Bootstrapping the
template is started with an arbitrary reference individual. Because
of the homogenity of the dataset at hand, 3 iterations of GPA were
sufficient to reach convergence. In the PCA model 93% of shape
variability is captured by the first 5 components, see Fig. 4. For syn-
thesis and model-based editing the PCA model was reduced to these
first five modes, while all tensor computations were performed on
the full model.

Figure 4: PCA eigenmodes of Mus dataset capturing 93% of the total
variance. Shown are the vectorfields on a representative iso-surface
decomposed into a surface orthogonal and tangential part, visualized
color-coded and as vector glyphs respectively with glyphs of max.
magnitude scaled to same length. (Visualization based on [42].)

6.2 Global analysis and PLS

For later comparison, we will first describe results achieved with
previous methods of related work in morphometrics, applied to our
dataset. Particularly PCA [41, 26], PLS [8] and a combination of
both [28, 22] was used. Additionally we will apply the global co-
variance tensor [17].

Global methods like PCA give us an impression of the overall
variability contained in the dataset. Fig. 4 shows the relevant PCA
eigenmodes. We observe that processes and incisor are each influ-
enced by several modes, so the PCA does not reveal a clear sepa-
ration into modules. A more concise overview of shape variation
is provided by the anatomic covariance field in Fig. 5. It can be
read from the glyph pattern that the three processes have different
principal directions of variation. At the posterior part of the incisor,
inside the mandible, a strongly anisotropic region is visible follow-
ing nicely the incisor curvature. Note that the global covariance



field shows pointwise variation of the dataset but does not convey
information on covariance between different points on the shape.

Figure 5: Global anatomic covariance field [17] for Mus dataset.
A lateral view is shown in the inset for comparison with Fig. 10.

Results of a PLS analysis are visualized in Fig. 11. The visible
similarity in PLS1 of the rear processes to (minus) PC1 is also en-
countered in landmark analyses [22] and can probably be attributed
to the fact that the processes constitute a great proportion of global
variation. The PLS2 modes specifically indicate an interaction be-
tween coronoid and condylar process and between incisor and an-
gular process. Modes beyond PLS1 are harder to interpret because
they only represent covariation orthogonal to previous mode pairs.

6.3 Results

In this section we validate our approach by reproducing hypotheses
on module delimitations and interactions from literature [22, 41, 8,
28]. Additionally new observations of our analysis are described,
pointing to a finer-scaled hypothesis on module segmentation. Our
analysis follows the pipeline illustrated in Fig. 1, going back-and-
forth between the different views.

Starting from the overview shown in Fig. 2 one can identify
several candidate regions. Among them, in agreement with lit-
erature [22], the rear processes and tip of the incisor (visible in
frontal view) exhibit strong impact on covariation, as indicated by
glyph sizes. Additionally the posterior end of the incisor inside
the mandible also shows up prominently. The latter could not be
observed in previous approaches based on landmark data and fo-
cusing on the outline of mandible shape; therefore it is excluded in
the following as it can not serve for validation.

Figure 6: Model-based editing on Mus dataset at coronoid process.
Color coded from cool to warm (0 max) is the displace-
ment magnitude from the template, whose silhouette is overlaid. In-
set bar plots describe the first 5 PC coefficients in units of standard
deviations. Observe that varying the coronoid position is strongly
associated with the condylar process (a), while changing its length
impacts the rear of the mandible at a larger scale (b).

A main advantage of our approach is that one can assess co-
variation at the level of individual displacements. This enables to
distinguish directional dependencies in covariation as for instance
found at the coronoid process. The overview suggests at least two
different covariation patterns: Principal direction of the correspond-
ing glyph at (A) in Fig.2 predicts a stronger response on variation
of length (vertical) versus position (horizontal) of the process. The
specific shape variations are quite different as an investigation in
detail view shows, illustrated in Fig. 6. Editing the coronoid pro-
cess also reveals a coupled interaction to the adjacent condylar pro-

Figure 7: Local covariance fields for probes at coronoid and condy-
lar processes, probing points highlighted in red. A strong interaction
in-between the two processes becomes apparent and shows the di-
minishing impact on angular process and incisor. This finding is in
agreement with PLS analysis and results of Zelditch et al. [41].

cess. The existence of an interaction between these processes was
known already [41] and is confirmed by PLS analysis, but the spe-
cific pattern of covariation visualized in focus view in Figs. 7 and
10 provides a new level of detail not seen previously.

Looking further at the condylar process in the overview suggests
a separation between a tip part and a proximal part, closer to the
mandible center. While the pattern near the tip is quite homoge-
neous, the proximal one is more diverse. In fact, editing the condy-
lar process shows different reactions depending on the exact posi-
tion of the probe on the process. This suggests a more fine-scaled
analysis, proposed also in recent work [8, 28], with the here pre-
sented methods.

Figure 8: Local covariance fields for probes at incisor and angular
process, probing points highlighted in red. Note that the incisor ten-
sor field is scaled by a factor of 2.5 compared to all other fields, at-
tributed to the smaller overall interaction strength (see also Fig. 2).
While the incisor probe produces a global covariation pattern, the
covariation response of the angular process is locally concentrated.

Examining incisor and angular process in focus view provides
good examples of two extremes of global and local patterns, visi-
ble in Fig. 8. The angular probe is locally concentrated but still ex-
hibits highly directed (λ1 ≫ λ2 ≈ λ3 ≈ 0) interaction with the upper
two processes. The strength of interactions for incisor and angular
probes again reproduce PLS findings. Since the complete incisor
structure spans throughout the mandible, an effect on the rear pro-
cesses is expected on variation in the incisor tip. Editing the tip
of the incisor as shown in Fig. 9 reveals further that the associated
variation can be decomposed into two parts, depending roughly on
the principal axes of the local tensor near the incisor tip. Pulling in
directions of the principal axis (a),(b) inflicts a deformation at the
upper coronoid and the lower angular process, while pulling orthog-
onal (c) to the axis has associated variation at the central condylar
process and the rear part of the mandible. This is another example



of directional dependencies, which can not be explored with previ-
ous methods.

Figure 9: Model-based editing on Mus dataset at incisor, same leg-
end as in Fig. 6. Pulling the incisor in directions (a) and (b) leads to
the expected elongation / foreshortening, seemingly correlated with
the shape of the tips of the rear processes. Dragging the incisor
orthogonally (c)-(d) keeps the front nearly rigid showing minor inter-
action in the posterior part.

The anisotropy pattern in the focus view in Fig. 10 also nicely
illustrates some properties of our local tensor, setting it apart from
the global covariance field. Anisotropy near the probe is expected
to be similar to that of the probe, indicating strong local covaria-
tion (typical for stiff bone structures). That anisotropy is higher in
the process opposite of the probe indicates a structured covariation.
Note that these patterns are distinct from the global anatomic co-
variation field shown in the inset in Fig. 5. From this we conclude
that our system allows one to focus on particular components of the
global pattern attributed to specific inter-part interactions.

Figure 10: Close-ups of local covariance fields for coronoid and
condylar processes show their consistent interaction. While the lo-
cal region close to each probe (highlighted in red) exhibits more
isotropic covariation, the reaction pattern at the other process is more
directed. This reveals which part of the global covariance field can
be attributed to this particular interaction between the two processes.

7 SUMMARY AND CONCLUSION

Starting from an existing method for shape animation and recon-
struction, we developed a complete visual analysis pipeline for ef-
fective exploration of shape covariation in statistical deformation
models. To this end a new local covariance tensor was derived
and integrated, yielding two novel visualizations accompanying the
model-based deformation of Blanz et al. [4]. Together, all three
methods complement each other in a visual analysis of interactions
between different parts of the shape at varying degrees of detail.

Exploratory analysis on a scientific dataset was carried out on
the backdrop of morphological integration, illustrating the utility of
the visual analysis in the search for module boundaries. Compari-
son to state-of-the-art techniques (PLS, PCA and global anatomic
covariance tensor) showed that the presented approach enables an

exploration at a finer level of detail including for the first time di-
rectional dependencies. Reproducing several results from recent
works in morphometry can be taken as sanity check here. Further
applications in morphometric studies are expected a) on datasets
with higher diversity consisting of different species and b) on more
complex structures like the rodent skull. It would also be interest-
ing to see how effective the approach is in uncovering other, non-
anatomic sources of shape variation like (structured) registration or
reconstruction errors. Realtime sampling and interactive filtering of
local covariance fields is subject to future work.
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