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Abstract: The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian
noise. Even if the noise is non-Gaussian, the Kalman filter is the best linear estimator. For nonlinear systems it
is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of
the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter,
the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are
powerful tools for state estimation, we might have information about a system that the Kalman filter does
not incorporate. For example, we may know that the states satisfy equality or inequality constraints. In this
case we can modify the Kalman filter to exploit this additional information and get better filtering
performance than the Kalman filter provides. This paper provides an overview of various ways to incorporate
state constraints in the Kalman filter and its nonlinear modifications. If both the system and state constraints
are linear, then all of these different approaches result in the same state estimate, which is the optimal
constrained linear state estimate. If either the system or constraints are nonlinear, then constrained filtering
is, in general, not optimal, and different approaches give different results.

1 Introduction
The Kalman filter is the minimum-variance state estimator
for linear dynamic systems with Gaussian noise [1]. In
addition, the Kalman filter is the minimum-variance linear
state estimator for linear dynamic systems with non-
Gaussian noise [2]. For nonlinear systems it is not possible,
in general, to implement the optimal state estimator in
closed form, but various modifications of the Kalman filter
can be used to estimate the state. These modifications
include the extended Kalman filter [2], the unscented
Kalman filter [3], and the particle filter [4].

Although the Kalman filter and its modifications are
powerful tools for state estimation, we might have
information about a system that the Kalman filter does not
incorporate. For example, we may know that the states
satisfy equality or inequality constraints. In this case we can
modify the Kalman filter to exploit this additional
information and get better filtering performance than the
Kalman filter provides.

An initial consideration leads us to believe that the
incorporation of constraints cannot improve the
performance of the Kalman filter. After all, since
the Kalman filter is minimum variance, it should not be
possible to improve it. However, there are two reasons that
the Kalman filter can indeed be improved. First, if the
system is nonlinear, the Kalman filter variations are only
approximately minimum variance, so it is not surprising
that improvements can be seen by incorporating state
constraints in the filter. Second, even if the system is linear,
if there are additional constraints beyond those explicitly
given in the system model, then the complete system
description is different than that assumed by the standard
Kalman filter equations, and a modification of the Kalman
filter may result in improved performance.

We see many examples of state-constrained systems in
engineering applications. Some of these examples include
camera tracking [5], fault diagnosis [6], chemical processes
[7], vision-based systems [8], target tracking [9, 10],
biomedical systems [11], robotics [12], navigation [13], and
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others [14]. This paper presents a survey of how state
constraints can be incorporated into the Kalman filter and
its nonlinear modifications. We discuss linear and
nonlinear systems, linear and nonlinear state constraints,
and equality and inequality state constraints.

Section 2 considers linear systems and linear constraints.
The various ways of enforcing linear constraints in the
linear Kalman filter include model reduction [15], perfect
measurements [8–10], estimate projection [13, 16], gain
projection [17, 18], probability density function (PDF)
truncation [2, 19, 20], and system projection [21]. Under
certain conditions, all these approaches result in the same
state estimate. We also briefly discuss inequality constraints
and soft constraints. We present an example illustrating the
conditions under which these approaches are equivalent,
and conditions under which these approaches differ.

Section 3 considers systems that are nonlinear or that have
nonlinear constraints. The approaches that can be used in
these cases include second-order expansion of the
constraints [22], the smoothly constrained Kalman filter
[23], moving horizon estimation [24–26], various
modifications of the unscented Kalman filter [2, 3], interior
point approaches [27], and particle filters [2, 28]. We
present an example showing that moving horizon
estimation performs the best relative to estimation error,
but this performance comes at a high computational expense.

2 The Kalman filter
Consider the system model

xk+1 = Fxk + wk, (1)

yk = Hxk + vk, (2)

where k is the time step, xk is the state, yk is the measurement,
wk and vk are the zero-mean process noise and measurement
noise with covariances Q and R respectively, and F and H are
the state transition and measurement matrices. The Kalman
filter was independently invented in the 1950’s by several
different researchers and is named after Rudolph Kalman
[29]. The Kalman filter equations are given as [2]

P−
k = FP+

k−1F T + Q, (3)

Kk = P−
k H T (HP−

k H T + R)−1, (4)

x̂−k = Fx̂+k−1, (5)

x̂+k = x̂−k + Kk(yk − H x̂−k ), (6)

P+
k = (I − KkH )P−

k , (7)

for k = 1, 2, . . . , where I is the identity matrix. x̂−k is the
a priori estimate of the state xk given measurements up to
and including time k 2 1. x̂+k is the a posteriori estimate of
the state xk given measurements up to and including time

k. Kk is the Kalman gain, P−
k is the covariance of the

a priori estimation error xk − x̂−k , and P+
k is the covariance

of the a posteriori estimation error xk − x̂+k . The Kalman
filter is initialised with

x̂+0 = E(x0), (8)

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ], (9)

where E(.) is the expectation operator.

When the noise sequences {wk} and {vk} are Gaussian,
uncorrelated, and white, the Kalman filter is the minimum-
variance filter and minimises the trace of the estimation
error covariance at each time step. When {wk} and {vk} are
non-Gaussian, the Kalman filter is the minimum-variance
linear filter, although there might be nonlinear filters that
perform better [30]. When {wk} and {vk} are correlated or
colored, (3)–(7) can be modified to obtain the minimum-
variance filter [2].

Now suppose that our system satisfies the equality
constraints

Dxk = d , (10)

or the inequality constraints

Dxk ≤ d , (11)

where D is a known matrix and d is a known vector. In this
case we might want to find a state estimate x̂k that satisfies the
constraints

Dx̂k = d , (12)

or

Dx̂k ≤ d . (13)

In the following sections we discuss several ways to modify
the Kalman filter to incorporate these linear equality and
inequality constraints.

2.1 Model reduction

Equality constraints in the form of (10) can be addressed by
reducing the system model parameterization [15]. As an
example, consider the system

xk+1 =
1 2 3
3 2 1
4 −2 2

⎡
⎣

⎤
⎦xk + wk, (14)

yk = 2 4 5
[ ]

xk + vk. (15)

Suppose that we also have the constraint

1 0 1
[ ]

xk = 0. (16)
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If we make the substitution xk(3) = −xk(1) in (14) and
(15), we obtain

xk+1(1) = −2xk(1) + 2xk(2) + w1k, (17)

xk+1(2) = 2xk(1) + 2xk(2) + w2k, (18)

yk = −3xk(1) + 4xk(2) + vk. (19)

(17)–(19) can be written as

xk+1 = −2 2
2 2

[ ]
xk +

w1k

w2k

[ ]
, (20)

yk = −3 4
[ ]

xk + vk. (21)

This example shows how to reduce an equality-constrained
filtering problem to an equivalent but unconstrained filtering
problem. The Kalman filter for this unconstrained system is
the optimal linear estimator, and thus it is also the optimal
linear estimator for the original constrained system. The
dimension of the reduced model is lower than that of the
original model, which reduces the computational effort of
the Kalman filter. One disadvantage of this approach is
that the physical meaning of the state variables may be lost.
Also this approach cannot be directly used for inequality
constraints in the form of (11).

2.2 Perfect measurements

State equality constraints can be treated as perfect
measurements with zero measurement noise [8–10]. If
the constraints are given by (10), where D is an s × n
matrix with s , n, then we can augment (2) with s perfect
measurements of the state.

yk

d

[ ]
= H

D

[ ]
xk +

vk

0

[ ]
. (22)

The state equation (1) is not changed, but the
measurement equation is augmented. The fact that the last
s components of the measurement equation are noise free
means that the a posteriori Kalman filter estimate of the
state is consistent with these s measurements [31]. That is,
the Kalman filter estimate satisfies Dx̂+k = d . This
approach is mathematically identical to the model reduction
approach.

Note that the new measurement noise covariance is
singular. A singular noise covariance does not, in general,
present theoretical problems [23]. However, in practice a
singular noise covariance increases the possibility of
numerical problems such as ill conditioning in the
covariance of the error estimate [32, p. 249], [33, p. 365].
Also the use of perfect measurements is not directly
applicable to inequality constraints in the form of (11).

2.3 Estimate projection

Another approach to constrained filtering is to project the
unconstrained estimate x̂+k of the Kalman filter onto the
constraint surface [13, 16]. The constrained estimate can
therefore be written as

x̃+k = argminx(x − x̂+k )T W (x − x̂+k ), (23)

such that

Dx = d , (24)

where W is a positive-definite weighting matrix. The solution
to this problem is

x̃+k = x̂+k − W −1DT (DW −1DT )−1(Dx̂+k − d ). (25)

If the process and measurement noises are Gaussian and
we set W = (P+

k )−1 we obtain the maximum probability
estimate of the state subject to state constraints. If we set
W ¼ I we obtain the least squares estimate of the state
subject to state constraints. This approach is similar to that
used in [34] for input signal estimation. See [2, p. 218] for
a graphical interpretation of the projection approach to
constrained filtering.

It is shown in [13, 16] that the constrained state estimate
of (25) is unbiased. That is,

E(x̃+k ) = E(xk). (26)

Setting W = (P+
k )−1 results in the minimum variance filter.

That is, if W = (P+
k )−1 then

Cov(xk − x̃+k ) ≤ Cov(xk − x̂+k ), (27)

for all x̂+k . Setting W ¼ I results in a constrained estimate that
is closer to the true state than the unconstrained estimate at
each time step. That is, if W ¼ I then

‖xk − x̃+k ‖2 ≤ ‖xk − x̂+k ‖2, (28)

for all k.

(25) was obtained for W = (P+
k )−1 in [14] in a different

form along with some additional properties and
generalisations. It is assumed in [13, 16] that the
constrained a priori estimate is based on the unconstrained
estimate so that the constrained filter is

x̂−k = Fx̂+k−1, (29)

x̂+k = x̂−k + Kk(yk − H x̂−k ), (30)

x̃+k = x̂+k − P+
k DT (DP+

k DT )−1(Dx̂+k − d ). (31)

If the constrained a priori estimate is based on the
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constrained estimate [14] then the constrained filter is

x̂−k = Fx̃+k−1, (32)

x̂+k = x̂−k + Kk(yk − H x̂−k ), (33)

x̃+k = x̂+k − P+
k DT (DP+

k DT )−1(Dx̂+k − d ). (34)

It can be inductively shown that (29)–(31) and (32)–(34)
result in the same state estimates when x̂+0 in (29) is equal
to x̃+0 in (32). It can also be shown that these constrained
estimates are the same as those obtained with the perfect
measurement approach [14, 35].

2.4 Estimate projection with inequality
constraints

The estimate projection approach to constrained filtering has
the advantage that it can be extended to inequality constraints
in the form of (13). If we have the constraints Dx̂k ≤ d , then
a constrained estimate can be obtained by modifying
(23)–(24) and solving the problem

x̃+k = argminx(x − x̂+k )T W (x − x̂+k ), (35)

such that

Dx ≤ d . (36)

This problem is a quadratic programming problem
[36, 37]. Various approaches can be used to solve
quadratic programming problems, including interior
point approaches and active set methods [38]. An active
set method uses the fact that it is only those constraints
that are active at the solution of the problem that are
significant in the optimality conditions. Suppose that we
have s inequality constraints, and q of the s inequality
constraints are active at the solution of (35)– (36).
Denote by D̂ the q rows of D that correspond to the
active constraints, and denote by d̂ the q components of
d that correspond to the active constraints. If the set
of active constraints is known a priori then the solution
of (35)– (36) is also a solution of the equality-constrained
problem

x̃+k = argminx(x − x̂+k )T W (x − x̂+k ), (37)

such that

D̂x = d̂ . (38)

The inequality-constrained problem of (35)– (36)
is equivalent to the equality-constrained problem of
(37)– (38). Therefore all of the properties of the equality-
constrained state estimate also apply to the inequality-
constrained state estimate.

2.5 Gain projection

The standard Kalman filter can be derived by solving the
problem [2]

Kk = argminK Trace[(I − KH )P−
k (I − KH )T + KRK ].

(39)

The solution to this problem gives the optimal Kalman gain

Sk = HP−
k H T + R, (40)

Kk = P−
k H T S−1

k , (41)

and the state estimate measurement update is

rk = yk − H x̂−k , (42)

x̂+k = x̂−k + Kkrk. (43)

If the constraint Dx̂+k = d is added to the problem, then the
minimization problem of (39) can be written as

K̃ k = argminK Trace[(I − KH )P−
k (I − KH )T + KRK ],

(44)

such that

Dx̂+k = d . (45)

The solution to this constrained problem is [17]

K̃ k = Kk −DT (DDT )−1(Dx̂+k − d )(rT
k S−1

k rk)
−1rT

k S−1
k . (46)

When this value for K̃ k is used in place of Kk in (43), the
result is the constrained state estimate

x̃+k = x̂+k − DT (DDT )−1(Dx̂+k − d ). (47)

This estimate is the same as that given in (25) with W ¼ I.

Gain projection has been applied to inequality constraints
in [18]. If the a priori estimate x̂−k satisfies the constraints and
the unconstrained a posteriori estimate x̂+k does not satisfy
them, then x̂−k can be projected in the direction of x̂+k until
it reaches the constraint boundary. This effectively gives a
modified Kalman gain K (m)

k = bKk, where b [ (0, 1) and
Kk is the standard unconstrained Kalman gain.

2.6 Probability density function
truncation

In the PDF truncation approach, we take the PDF of the
state estimate that is computed by the Kalman filter,
assuming that it is Gaussian, and truncate the PDF at the
constraint edges. The constrained state estimate is equal to
the mean of the truncated PDF [2, 19, 20]. This approach
is designed for inequality constraints on the state although
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it can also be applied to equality constraints with a simple
modification. See [2, p. 222] for a graphical illustration of
how this method works.

This method is complicated when the state dimension is
more than one. In that case the state estimate is normalized
so that its components are statistically independent of each
other. Then the normalized constraints are applied one at a
time. After all the constraints are applied, the normalization
process is reversed to obtain the constrained state estimate.
Details of the algorithm are given in [2, 20].

2.7 System projection

State constraints imply that the process noise is also
constrained. This realisation leads to a modification of the
initial estimation error covariance and the process noise
covariance, after which the standard Kalman filter equations
are implemented [21]. Given the constrained system

xk+1 = Fxk + wk, (48)

Dxk = d , (49)

it is reasonable to suppose that the noise-free system also
satisfies the constraints. That is, DFxk = 0. But this result
means that Dwk = 0. If these equations are not satisfied,
then the noise wk is correlated with the state xk, which
violates typical assumptions on the system characteristics. If
Dwk = 0 then

DwkwT
k DT = 0, (50)

E(DwkwT
k DT ) = 0, (51)

DQDT = 0. (52)

This equation means that Q must be singular, assuming that D
has full row rank. As a simple example consider the three-state
system given in (14)–(15). From (14) we have

x1,k+1 + x3,k+1 = 5x1k + 5x3k + w1k + w3k. (53)

Combining this equation with (16) gives

w1k + w3k = 0, (54)

which means the covariance matrix Q must be singular for this
constrained system to be consistent. We must have Dwk = 0,
which in turn implies (52).

If the process noise covariance Q does not satisfy (52) then

it can be projected onto a modified covariance Q̃ that does

satisfy the constraint to make the system consistent. Q̃ then

replaces Q in the Kalman filter. The formulation of Q̃ is
accomplished as follows [21]. First we find the singular
value decomposition of DT .

DT = USV T = U1 U2

[ ]
Sr 0

[ ]
V T , (55)

where Sr is an r × r matrix, and r is the rank of D. Next we
compute N = U2U T

2 , which is the orthogonal projector onto
the null space of D. Next we compute Q̃ = NQN . This value
for Q̃ ensures that

DQ̃DT = (VST U T )(U2U T
2 QU2U T

2 )(USV T ) = 0, (56)

and thus (52) is satisfied. Similarly the initial estimation error
covariance can be modified as P̃

+
0 = NP+

0 N in order to be
consistent with the state constraints. It is shown in [21]
that the estimation error covariance obtained by this
method is less than or equal to that obtained by the
estimate projection method. The reason for this conclusion
is that Q̃ is assumed to be the true process noise
covariance, so that the system projection method gives the
optimal state estimate, just as the standard Kalman filter
gives the optimal state estimate for an unconstrained
system. But the standard Kalman filter, and estimate
projection methods based on it, might use an incorrect
covariance Q. However, if Q satisfies DQDT = 0 then the
standard Kalman filter estimate satisfies the state constraint
Dx̂+k = 0, and the system projection filter, the estimate
projection filter, and the standard Kalman filter are all
identical.

2.8 Soft constraints

Soft constraints, as opposed to hard constraints, are
constraints that are only required to be approximately
satisfied rather than exactly satisfied. We might want to
implement soft constraints in cases where the constraints
are heuristic rather than rigorous, or in cases where the
constraint function has some uncertainty or fuzziness. For
example, suppose we have a vehicle navigation system with
two states: x(1), which is north position, and x(2), which is
east position. We know that the vehicle is on a straight
road such that x(1) ¼ mx(2) + b for known constants m
and b. But the road also has an unknown nonzero width,
so the state constraint can be written as x(1) ≈ mx(2) + b.
In this case we have an approximate equality constraint,
which is referred to in the literature as a soft constraint. It
can be argued that estimators for most practical engineering
systems should be implemented with soft constraints rather
than hard constraints.

Soft constraints can be implemented in Kalman filters in
various ways. First, the perfect measurement approach can
be extended to soft constraints by adding small nonzero
measurement noise to the perfect measurements [9, 10,
39, 40]. Second, soft constraints can be implemented by
adding a regularization term to the standard Kalman filter
[6]. Third, soft constraints can be enforced by projecting
the unconstrained estimates in the direction of the
constraints rather than exactly onto the constraint surface
[41].

Example 1: Consider a navigation problem. The first two
state components are the north and east positions of a land
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vehicle, and the last two components are the north and east
velocities. The velocity of the vehicle is in the direction of
u, an angle measured clockwise from due east. A position-
measuring device provides a noisy measurement of the
vehicle’s north and east positions. Equations for this system
can be written as

xk+1 =

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦xk +

0
0

T sin u

T cos u

⎡
⎢⎢⎣

⎤
⎥⎥⎦uk + wk, (57)

yk =
1 0 0 0
0 1 0 0

[ ]
xk + vk, (58)

where T is the discretisation step size and uk is an acceleration
input. The covariances of the process and measurement noise
are Q = diag(4, 4, 1, 1) and R = diag(900, 900).
The initial estimation error covariance is P+

0 = diag(900,
900, 4, 4). If we know that the vehicle is on a road with a
heading of u then we have

tan u = x(1)/x(2) = x(3)/x(4). (59)

We can write these constraints in the form Dixk = 0 using
one of two Di matrices.

D1 = 1 −tan u 0 0
0 0 1 −tan u

[ ]
, (60)

D2 = 0 0 1 −tan u
[ ]

. (61)

D1 directly constrains both velocity and position. D2 relies on
the fact that velocity determines position, which means that a
velocity constraint implicitly constrains position. Note that we
cannot use D = 1 −tan u 0 0

[ ]
. If we did then position

would be constrained but velocity would not be constrained.
But it is velocity that determines position through the system
equations, therefore this value of D is not consistent with the

state equations. In particular it violates the DF ¼ D condition
of [14].

At this point we can take several approaches to state
estimation. For example, we can use Q and P+

0 to run the
standard unconstrained Kalman filter and ignore the
constraints, or run the perfect measurement filter, or project
the unconstrained estimate onto the constraint surface, or
use the PDF truncation method, or use constrained moving
horizon estimation (MHE). MHE is discussed later in this
paper since it is a general nonlinear estimator. Alternatively
we can use the projected Q̃ and P̃

+
0 and then run the

standard Kalman filter. Since Q̃ and P̃
+
0 are consistent with

the constraints, the state estimate satisfies the constraints
for all time if the initial estimate x̂+0 satisfies the
constraints. This approach is the system projection
approach. Note that neither the perfect measurement filter,
the estimate projection filter, the PDF truncation filter, nor
MHE, changes the estimate in this case, since the
unconstrained estimate is implicitly constrained by means
of system projection. In addition to all these options, we
can choose to use either the D1 or D2 matrix of (60)–(61)
to constrain the system.

MATLABw software was written to implement these
constrained filtering algorithms on a 150-s simulation
with a 3-s simulation step size [42]. We used the
initial state x0 = 0 0 10 tan u 10

[ ]T
and perfect

initial state estimates. Table 1 shows the RMS state
estimation errors averaged for the two position states, and
the RMS constraint error. Each RMS value shown is
averaged over 100 Monte Carlo simulations. Table 1 shows
that all of the constrained filters have constraint errors that
are exactly zero. All of the constrained filters perform
identically when D1 is used as the constraint matrix.
However, when D2 is used as the constraint matrix, then
the perfect measurement and system projection methods
perform the best.

Table 1 Filter results for the linear vehicle navigation problem

Filter type RMS estimation error (D1, D2) RMS constraint error (D1, D2)

unconstrained 23.7, 23.7 31.7, 2.1

perfect measurement 17.3, 19.2 0, 0

estimate projection 17.3, 21.4 0, 0

MHE, horizon size 2 17.3, 20.3 0, 0

MHE, horizon size 4 17.3, 19.4 0, 0

system projection 17.3, 19.2 0, 0

PDF truncation 17.3, 21.4 0, 0

Two numbers in each cell indicate the errors that are obtained using the D1 and D2 constraints respectively. The numbers
shown are RMS errors averaged over 100 Monte Carlo simulations

6 IET Control Theory Appl., pp. 1–16

& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-cta.2009.0032

www.ietdl.org



3 Nonlinear constraints
Sometimes state constraints are nonlinear. Instead of
Dxk = d we have

g(xk) = h. (62)

We can perform a Taylor series expansion of the constraint
equation around x̂−k to obtain

g(xk) ≈ g(x̂−k ) + g′(x̂−k )(xk − x̂−k )

+ 1

2

∑s

i=1

ei(xk − x̂−k )T g′′i (x̂−k )(xk − x̂−k ), (63)

where s is the dimension of g(x), ei is the the ith natural basis
vector in Rs, and the entry in the pth row and qth column of
the n × n matrix g′′i (x) is given by

[g′′i (x)]pq =
∂2gi(x)

∂xp∂xq

. (64)

Neglecting the second-order term gives [8, 9, 13, 31]

g′(x̂−k )xk = h − g(x̂−k ) + g′(x̂−k )x̂−k . (65)

This equation is equivalent to the linear constraint
Dxk = d if

D = g′(x̂−k ), (66)

d = h − g(x̂−k ) + g′(x̂−k )x̂−k . (67)

Therefore all of the methods presented in Section 2 can
be used with nonlinear constraints after the constraints
are linearized. Sometimes, though, we can do better
than simple linearization, as discussed in the following
sections.

3.1 Second-order expansion

If we keep the second-order term in (63) then the constrained
estimation problem can be approximately written as

x̃+k = argminx(x − x̂+k )T W (x − x̂+k ), (68)

such that

xT Mix + 2mT
i x + mi = 0 (i = 1, . . . , s), (69)

where W is a weighting matrix, and Mi, mi, and mi are
obtained from (63) as

Mi = g′′i (x̂−k )/2, (70)

mi = (g′i(x̂
−
k ) − (x̂−k )T g′′i (x̂−k ))T

/2, (71)

mi = gi(x̂
−
k ) − g′i(x̂

−
k )x̂−k + (x̂−k )T Mix̂

−
k − hi. (72)

This idea is similar to the way that the extended Kalman
filter (EKF), which relies on linearization of the system and
measurement equations, can be improved by retaining
second-order terms to obtain the second-order EKF [2].
The optimization problem given in (68)-(69) can be solved
with a numerical method. A Lagrange multiplier method
for solving this problem is given in [22] for s ¼ 1 and M
positive definite.

3.2 The smoothly constrained
Kalman filter

Another approach to handling nonlinear equality constraints
is the smoothly constrained Kalman filter (SCKF) [23]. This
approach starts with the idea that nonlinear constraints can be
handled by linearizing them and then implementing them as
perfect measurements. However, the resulting estimate only
approximately satisfies the nonlinear constraint. If the
constraint linearization is instead applied multiple times at
each measurement time then the resulting estimate is
expected to get closer to constraint satisfaction with each
iteration. This idea is similar to the iterated Kalman filter
for unconstrained estimation [2]. In the iterated Kalman
filter the nonlinear system is repeatedly linearized at each
measurement time. In the SCKF the nonlinear constraints
are linearized at each time step and are repeatedly applied
as measurements with increasing degrees of certainty. This
idea is motivated by realizing that, for example,
incorporating a measurement with a variance of 1 is
equivalent to incorporating that same measurement 10
times, each with a variance of 10. Application of a scalar
nonlinear constraint g(x) ¼ h by means of the SCKF is
performed by the following algorithm, which is executed
after each measurement update.

1. Initialize i, the number of constraint applications, to
1. Initialize x̂ to x̂+k , and P to P+

k .

2. Set R′
0 = aGPGT , where the 1 × n Jacobian G = g′(x̂).

R′
0 is the initial variance with which the constraint is

incorporated into the state estimate as a measurement.
Note that GPGT is the approximate linearized variance of
g(x), therefore R′

0 is the fraction of this variance that is
used to incorporate the constraint as a measurement. a is a
tuning parameter, typically between 0.01 and 0.1.

3. Set R′
i = R′

0 exp(−i). This equation is used to gradually
decrease the measurement variance that is used to apply the
constraint.

4. Set Si = maxj(GjPjj Gj)/(GPGT ). Si is a normalized
version of the information that is associated with the
constraint. When Si exceeds the threshold Smax then
the iteration is terminated. A typical value of Smax is 100.
The iteration can also be terminated after a predetermined
number of constraint applications imax, since a convergence
proof for the SCKF does not yet exist. After the iteration
terminates, set x̂+k = x̂ and P+

k = P.
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5. Incorporate the constraint as a measurement using

K = PGT (GPGT + R′
i)
−1, (73)

x̂ = x̂ + K (h − g(x̂)), (74)

P = P(I − KG). (75)

These equations are the standard Kalman filter equations for
a measurement update, but the measurement that we are
incorporating is the not-quite-perfect measurement of the
constraint.

6. Compute the updated Jacobian G = g′(x̂). Increment i by
one and go to step 3 to continue the iteration.

The above algorithm executes once for each inequality
constraint at each time step.

3.3 Moving horizon estimation

Moving horizon estimation (MHE), first suggested in [43],
is based on the fact that the Kalman filter solves the
optimization problem

{x̂+k } = argmin{xk}‖x0 − x̂0‖2
I+
0
+

∑N

k=1

‖yk − Hxk‖2
R−1

+
∑N−1

k=0

‖xk+1 − Fxk‖2
Q−1 , (76)

where N is the number of measurements that are available
[24–26]. {x̂+k } is the sequence of estimates x̂+0 , . . . , x̂+N ,
and I+0 = (P+

0 )−1. (76) is a quadratic programming
problem. The {x̂+k } sequence that solves this problem gives
the optimal smoothed estimate of the state given the
measurements y1, . . . , yN .

The above discussion motivates a similar method for
general nonlinear constrained estimation [25, 26, 44]. Given

xk+1 = f (xk) + wk, (77)

yk = h(xk) + vk, (78)

g(xk) = 0, (79)

solve the optimization problem

min
{xk}

‖x0− x̂0‖2
I+
0
+
∑N

k=1

‖yk−h(xk)‖2
R−1 +

∑N−1

k=0

‖xk+1− f (xk)‖2
Q−1 ,

(80)

such that

g({xk}) = 0, (81)

where by an abuse of notation we use g({xk}) to mean g(xk)
for k = 1, . . . , N . This constrained nonlinear optimization

problem can be solved by various methods [36, 45, 46],
therefore all of the theory that applies to the particular
optimization algorithm that is used also applies to
constrained MHE. The difficulty is the fact that the
dimension of the problem increases with time. With each
measurement that is obtained, the number of independent
variables increases by n, where n is the number of state
variables.

MHE therefore limits the time span of the problem to
decrease the computational effort. The MHE problem can
be written as

min
{xk}

‖xM − x̂+M‖2
I+
M
+

∑N

k=M+1

‖yk − h(xk)‖2
R−1

+
∑N−1

k=M

‖xk+1 − f (xk)‖2
Q−1 , (82)

such that

g({xk}) = 0, (83)

where {xk} is the set {xM , . . . , xN }, and N 2 M + 1 is the
horizon size. The dimension of this problem is
n(N 2 M + 1). The horizon size is chosen to give a
tradeoff between estimation accuracy and computational
effort. The information matrix I+M is the inverse of P+

M .
The approximate estimation error covariance P+

M is
obtained from the standard EKF recursion [2].

Fk−1 = ∂f

∂x

∣∣∣∣
x̂+

k−1

, (84)

Hk =
∂h

∂x

∣∣∣∣
x̂−

k

, (85)

P−
k = Fk−1P+

k−1F T
k−1 + Q, (86)

Kk = P−
k H T

k (HkP−
k H T

k + R)−1, (87)

P+
k = (I − KkHk)P

−
k . (88)

Some stability results related to MHE are given in [47].
MHE is attractive in the generality of its formulation, but
this generality results in large computational effort
compared to the various constrained EFKs and unscented
Kalman filters (UKFs), even for small horizons.

Another difficulty with MHE is its assumption of an
invertible P+

0 in (76) and (80), and an invertible P+
M in

(82). The estimation error covariance for a constrained
system is usually singular [13]. We can get around this by
using the covariance of the unconstrained filter as shown in
(88), but this makes MHE suboptimal even for linear
systems.
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Another way to deal with this is to use the singular
constrained covariance shown in [13] and reduce it to a
diagonal form [48, pp. 30–31]. This results in a
corresponding transformation of the state estimate. Some
of the transformed state estimates will have a zero variance,
which means that those estimates will not change from one
time step to the next in (82). This gives a more optimal
implementation of MHE, but at the cost of additional
complexity.

Recursive nonlinear dynamic data reconciliation and
combined predictor-corrector optimization [7] are other
approaches to constrained state estimation that are similar
to MHE. These methods are essentially MHE with a
horizon size of one. However the ultimate goal of these
methods is data reconciliation (that is, output estimation)
rather than state estimation, and they also include
parameter estimation.

3.4 Unscented Kalman filtering

The unscented Kalman filter (UKF) is a filter for nonlinear
systems that is based on two fundamental principles [2, 3].
First, although it is difficult to perform a nonlinear
transformation of a PDF, it is easy to perform a nonlinear
transformation of a vector. Second, it is not difficult to find
a set of vectors in state space whose sample PDF
approximates a given PDF. The UKF operates by
producing a set of vectors called sigma points. The UKF
uses between n + 1 and 2n + 1 sigma points, where n is
the dimension of the state. The sigma points are
transformed and combined in a special way in order to
obtain an estimate of the state and an estimate of the
covariance of the state estimation error. Constraints can be
incorporated into the UKF by treating the constraints as
perfect measurements, which can be done in various ways
as discussed below.

One possibility is to base the a priori state estimate on the
unconstrained UKF a posteriori state estimate from the
previous time step [14, 49]. In this case the standard
unconstrained UKF runs independently of the constrained
UKF. At each measurement time the state estimate of the
unconstrained UKF is combined with the constraints,
which are treated as perfect measurements, to obtain a
constrained a posteriori UKF estimate. This filter is referred
to as the projected UKF (PUKF) and is analogous to (29)–
(31) for linear systems and constraints. Note that nonlinear
constraints can be incorporated as perfect measurements in
various ways, such as linearization, second-order expansion
[22], unscented transformation [5], or the SCKF, which is
an open research problem.

Another approach is to base the a priori state estimate on
the constrained UKF a posteriori state estimate from the
previous time step [14]. At each measurement time the
state estimate of the unconstrained UKF is combined with
the constraints, which are treated as perfect measurements,

to obtain a constrained a posteriori UKF estimate. This
constrained a posteriori estimate is then used as the initial
condition for the next time update. This filter is referred to
as the equality constrained UKF (ECUKF) and is also
identical to the measurement-augmentation UKF in [14].
The ECUKF is analogous to (32)–(34) for linear systems
and constraints. A similar filter is explored in [5], where it
is argued that the covariance of the constrained estimate is
expected to be larger than that of the unconstrained
estimate since the unconstrained estimate approximates the
minimum variance estimate.

The two-step UKF (2UKF) [5] projects each a posteriori
sigma point onto the constraint surface to obtain
constrained sigma points. The state estimate is obtained by
taking the weighted mean of the sigma points in the usual
way, and the resulting estimate is then projected onto the
constraint surface. Note that the mean of constrained sigma
points does not itself necessarily satisfy a nonlinear
constraint. 2UKF is unique in that the estimation error
covariance increases after the constraints are applied. The
argument for this increase is that the unconstrained
estimate is the minimum variance estimate, so changing the
estimate by applying constraints should increase the
covariance. Furthermore, if the covariance decreases with
the application of constraints (for example, using the
algorithms in [13, 49]) then the covariance might become
singular, which might lead to numerical problems with
the matrix square root algorithm of the unscented
transformation.

Unscented recursive nonlinear dynamic data reconciliation
(URNDDR) [50] is similar to 2UKF. URNDDR projects
the a posteriori sigma points onto the constraint surface,
and modifies their weights based on their distances from
the a posteriori state estimate. The modified a posteriori
sigma points are passed through the dynamic system in the
usual way to obtain the a priori sigma points at the next
time step. The next set of a posteriori sigma points is
obtained using a nonlinear constrained MHE with a
horizon size of 1. This approach requires the solution of a
nonlinear constrained optimization problem for each sigma
point. The a posteriori state estimate and covariance are
obtained by combining the sigma points in the normal way.
The constraints are thus used in two different ways for the
a posteriori estimates and covariances. URNDDR is called
the sigma point interval UKF in [49]. A simplified version
of URNDDR is presented in [51].

The constrained UKF (CUKF) is identical to the standard
UKF, except a nonlinear constrained MHE with a horizon
size of 1 is used to obtain the a posteriori estimate [49].
Sigma points are not projected onto the constraint
surface, and constraint information is not used to modify
covariances.

The constrained interval UKF (CIUKF) combines
the sigma point constraints of URNDDR with the
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measurement update of the CUKF [49]. That is, the
CIUKF is the same as URNDDR except instead of using
MHE to constrain the a posteriori sigma points, the
unconstrained sigma points are combined to form an
unconstrained estimate, and then MHE is used to
constrain the estimate.

The interval UKF (IUKF) combines the post-
measurement projection step of URNDDR with the
measurement update of the standard unconstrained UKF
[49]. That is, the IUKF is the same as URNDDR except
that it skips the MHE-based constraint of the a posteriori
sigma points. Equivalently, IUKF is also the same as
CIUKF except that it skips the MHE-based constraint of
the a posteriori state estimate.

The truncated UKF (TUKF) combines the PDF
truncation approach described earlier in this paper with the
UKF [49]. After each measurement update of the UKF,
the PDF truncation approach is used to generated a
constrained state estimate and covariance. The constrained
estimate is used as the initial condition for the following
time update.

The truncated interval UKF (TIUKF) adds the PDF
truncation step to the a posteriori update of the IUKF [49].
As with the TUKF, the constrained estimate is used as the
initial condition for the following time update.

In [52], the UKF is combined with MHE for constrained
estimation. This is done by using a constrained UKF to
estimate the first term on the right side of (76).

3.5 Interior point approaches

A new approach to inequality-constrained state estimation is
called interior point likelihood maximization (IPLM) [27].
This approach is based on interior point methods, which
are fundamentally different from active set methods for
constraint enforcement. Active set methods for inequality
constraints, as discussed earlier in this paper, proceed by
solving equality-constrained subproblems and then
checking if the constraints of the original problem are
satisfied. One difficulty with active set methods is that
computational effort grows exponentially with the number
of constraints. Interior point approaches solve inequality-
constrained problems by iterating using a Newton’s method
that is applied to a certain subproblem. The approach in
[27] relies on linearization. It also has the disadvantage that
the problem grows linearly with the number of time steps.
However, this difficulty could possibly be addressed by
limiting the horizon size, similar to MHE.

3.6 Particle filters

Particle filters operate by propagating many state estimates,
called particles, that are distributed according to the PDF
of the true state [2, 28]. A UKF can loosely be considered

as a type of particle filter, but UKFs and particle filters
differ in several fundamental ways. First, the time update of
a particle filter includes randomly generated noise that is
distributed according to the known process noise PDF,
while the UKF time update is deterministic. Second, the
UKF has a specific number of sigma points, commonly
chosen to be n + 1 or 2n or 2n + 1, where n is the
dimension of the state. The number of particles in a
particle filter has no upper bound but typically increases
exponentially with n. Third, the UKF estimates the mean
and covariance of the state to third-order accuracy. The
particle filter does not directly estimate the mean and
covariance, but rather estimates the PDF of the state, and
the PDF estimate converges to the true PDF as the
number of particles approaches infinity [53]. Just as the
UKF can be considered as a generalization of the EKF,
the particle filter can be considered as a generalization of
the UKF. Given enough particles, a particle filter always
performs better than a UKF, but this might be at the
expense of unacceptable computational requirements.

State-constrained particle filtering has been solved by
various methods. Some of these approaches can be used
with Kalman filtering, such as reparameterizing the
problem [54]. Other approaches are specific to particle
filtering, such as modifying the particles’ likelihood
functions based on their level of constraint satisfaction
[55, 56] or generating process noise which ensures that the
propagated particles satisfy the constraints [57]. Also, many
of the methods discussed in this paper can potentially be
applied to constrained particle filtering, such as projection,
PDF truncation, or the SCKF. These methods could be
applied to individual particles or they could be applied only
to the state estimate at each time, giving rise to a large
family of constrained particle filters.

Example 2: This example is taken from [14]. A discretized
model of a pendulum can be written as

uk+1 = xk + Tvk, (89)

vk+1 = vk − (Tg/L) sin uk, (90)

yk =
uk

vk

[ ]
+ vk, (91)

where u is angular position, v is angular velocity, T is the
discretization step size, g is the acceleration due to gravity,
and L is the pendulum length. By conservation of energy
we have

−mgL cos uk + mL2v2
k/2 = C, (92)

where C is some constant. This equation is a nonlinear
constraint on the states uk and vk. We use L ¼ 1,
trapezoidal integration with step size T ¼ 0.05, g ¼ 9.81,
m ¼ 1, and x0 = p/4 p/50

[ ]T
. The covariance of the

measurement noise is R = diag(0.01, 0.01), and the
initial estimation error covariance is P+

0 = diag(1, 1).
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We do not use process noise in the system simulation, but in
the Kalman filters we use Q = diag( 0.0072, 0.0072)
to help with convergence.

At this point we can take one of several approaches to the
filtering problem.

1. Run the standard unconstrained EKF and ignore the
constraints.

2. Linearize the constraint and run the perfect measurement
EKF, or project the unconstrained EKF estimate onto the
constraint surface, or use the PDF truncation method on
the EKF estimate.

3. Use a second-order expansion of the constraint to project
the EKF estimate onto the constraint surface.

4. Use the constrained nonlinear MHE.

5. Use the SCKF.

6. Use the UKF and either ignore the constraint, or project
the a posteriori estimate onto the constraint surface using a
linearized expansion of the constraint, or use the
constrained a posteriori estimate to obtain the a priori
estimate at the next time step.

7. Use the two-step UKF. Note that the corrected Q̃ and P̃
+
0 ,

obtained using first order linearization and system projection,
can also be used with these filtering approaches.

The results of MATLAB software that implements these
constrained filtering algorithms [42] are shown in Table 2.
The table shows the RMS state estimation errors averaged for
the two states and the RMS constraint error. Each RMS value
shown is averaged over 100 Monte Carlo simulations. Table 2
shows that MHE performs the best relative to estimation error.
However this performance comes at a high computational
expense. The Mathworks’ Optimization ToolboxTM has a
constrained nonlinear optimization routine called FMINCON
that can be used for MHE, but for this example we use
SolvOpt [58, 59]. If computational expense is a consideration
then the equality constrained UKF performs the next best.
However UKF implementations can also be expensive because
of the sigma point calculations that are required. Table 2 shows
that several of the estimators result in constraint errors that are
essentially zero. The constraint errors and estimation errors are
positively correlated, but small constraint errors do not
guarantee that the estimation errors are small.

3.7 Summary

For nonlinear systems and nonlinear constraints, our
simulation results indicate that of all the algorithms we
investigated, MHE results in the smallest estimation error.
However, this performance comes at the expense of
programming effort and computational effort that is orders
of magnitude higher than other methods. Given this
caveat, it is not obvious what the “best” constrained
estimation algorithm is, and it generally depends on the
application. The possible approaches to constrained state
estimation can be delineated by following a flowchart that

Table 2 Filter results for the nonlinear pendulum example

Filter type RMS estimation error (Q, Q̃) RMS constraint error (Q, Q̃)

unconstrained 0.0411, 0.0253 0.1167, 0.0417

perfect measurement 0.0316, 0.0905 0.0660, 0.0658

estimate projection 0.0288, 0.0207 0.0035, 0.0003

MHE, horizon size 2 0.0105, 0.0067 0.0033, 0.0008

MHE, horizon size 4 0.0089, 0.0067 0.0044, 0.0007

system projection N/A, 0.0250 N/A, 0.0241

PDF truncation 0.0288, 0.0207 0.0035, 0.0003

2nd order constraint 0.0288, 0.0204 0.0001, 0.0000

SCKF 0.0270, 0.0235 0.0000, 0.0000

unconstrained UKF 0.0400, 0.0237 0.1147, 0.0377

projected UKF 0.0280, 0.0192 0.0046, 0.0007

equality constrained UKF 0.0261, 0.0173 0.0033, 0.0004

two-step UKF 0.0286, 0.0199 0.0005, 0.0000

Two numbers in each cell indicate the errors that are obtained when Q and Q̃ respectively are used in the filter. The numbers
shown are RMS errors averaged over 100 Monte Carlo simulations
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asks questions about the system type and the constraint type
as shown in Figure 1. The acronyms used in the flowchart are
given below, and the reference numbers show where the
relevant equations can be found.

2E second-order expansion of nonlinear constraints
[22]

2UKF two-step UKF [5]

CIUKF constrained IUKF [49]

CUKF constrained UKF [49]

ECUKF equality constrained EKF [14]

EKF extended Kalman filter [2]

EP estimate projection [2]

GP gain projection [17]

IPLM interior point likelihood maximization [27]

IUKF interval UKF [49]

MHE moving horizon estimation [25, 47]

MR model reduction [2]

PDFT probability density function truncation [2]

PF particle filter [2]

PM perfect measurement [2]

PUKF projected UKF [49]

SCKF smoothly constrained Kalman filter [23]

SP system projection [21]

TIUKF truncated IUKF [49]

TUKF truncated UKF [49]

UKF unscented Kalman filter [2, 3]

URNDDR unscented recursive nonlinear dynamic data
reconciliation [50]

Note that some of the acronyms refer only to filter
methods, some refer only to constraint incorporation

Figure 1 Possible filter and constraint-handling choices for various combinations of system types and constraint types

Note that some of the acronyms refer only to filter options, some refer only to constraint incorporation options, and some refer to a
combination filter/constraint incorporation algorithm
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methods, and some refer to a combination filter/constraint
incorporation algorithm. In addition, sometimes the same
acronym can refer to both a filter without constraints, and
also a filter/constraint handling combination. For example,
MHE can be used as an unconstrained state estimator, and
then the MHE estimate can be modified by incorporating
constraints using EP; or, MHE can be used as a
constrained state estimator by incorporating the constraints
into the MHE cost function.

4 Conclusion
The number of algorithms for constrained state estimation
can be overwhelming. The reason for the proliferation of
algorithms is that the problem can be viewed from many
different perspectives. A linear relationship between states
implies a reduction of the state dimension, hence the
model reduction approach. State constraints can be viewed
as perfect measurements, hence the perfect measurement
approach. Constrained Kalman filtering can be viewed as a
constrained likelihood maximization problem or a
constrained least squares problem, hence the projection
approaches. If we start with the unconstrained estimate and
then incorporate the constraints to adjust the estimate we
get the general projection approach and PDF truncation. If
we realize that state constraints affect the relationships
between the process noise terms we get the system
projection approach.

Nonlinear systems and constraints have all the possibilities
of nonlinear estimation, combined with all the possibilities
for solving general nonlinear equations. Nonlinear systems
give rise to the EKF, the UKF, MHE, and particle
filtering for estimation. These estimators can be combined
with various approaches for handling constraints, including
first order linearization (which includes the SCKF). If first
order linearization is used then any of the approaches
discussed above for handling linear constraints can be used.
In addition, since state estimation incorporates multiple
steps (the a priori step and the a posteriori step), we can use
one approach at one step and another approach at another
step. The total number of possible constrained estimators
seems to grow exponentially with the number of nonlinear
estimation approaches and with the number of constraint
handling options.

Theoretical and simulation results indicate that all of the
constrained filters for linear systems and linear constraints
perform identically, if the constraints are complete.
Therefore in spite of the numerous approaches to the
problem, we have a pleasingly parsimonious unification.
However, if the constraints are not complete, then the
perfect measurement and system projection methods
perform best in our particular simulation example.

For nonlinear systems and nonlinear constraints, MHE
resulted in the smallest estimation error in our simulation
results. However, this improved performance required

programming and computational effort many times higher
than the other methods. The “best” constrained estimation
algorithm depends on the application.

Constrained state estimation is becoming well established
but we see interesting possibilities for future work. For
instance, in Example 2 we see that the linearly constrained
filters perform identically for the D1 constraint, but
differently for the D2 constraint. Some of these
equivalences are already proven, but conditions under
which the various approaches are identical are not yet
completely established. In addition, the numerical
properties of the various algorithms have yet to be explored.

The second-order constraint approximation is developed
in [22] and implemented in this paper in combination with
the estimate projection filter. The second-order constraint
approximation can also be combined with other filters, such
as MHE, the UKF, and the SCKF. Algorithms for solving
the second-order constraint approach can be developed and
investigated for the case of multiple constraints.

More theoretical results related to convergence and
stability are needed for nonlinear constrained filters such as
the SCKF, MHE, and the UKF. MHE can be modified to
use the optimal (singular) estimation error covariance
obtained using system projection in its cost function.
Second-order or iterated Kalman filtering can be combined
with MHE to get a more accurate approximation of the
estimation error covariance.

Various combinations of the approaches discussed in this
paper can be explored. For example, PDF truncation can
be combined with MHE, or the SCKF can be combined
with the UKF. Conditions that are amenable to the
combination of these approaches can be delineated.

The system projection approach for the nonlinear system
of Example 2 uses a first-order approximation to obtain Q̃
and P̃

+
0 , but a second-order approximation might give

better results. In general, the extension of system projection
to nonlinear systems might be a worthwhile study.

Particle filtering is a state estimation approach that is
outside the scope of this paper, but it has obvious
applications to constrained estimation. The theory and
implementation of constrained particle filters is a topic with
much room for future work.

The development of interior point methods for
constrained state estimation has just begun. Further work
in this area can include higher order expansion of nonlinear
system and constraint equations in interior point methods,
moving horizon interior point methods, the use of
additional interior point theory and algorithms beyond
those used in [27], and generalization of the convergence
results.
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It is difficult to give general guidelines for constrained
filtering because each individual problem is unique.
However, it appears that for either linear or nonlinear
systems, the projection approaches of Sections 2.3 and 2.4
provide a good tradeoff between ease of implementation,
low computational cost, and flexibility (by using different
projection matrices). For soft constraints, the approaches of
Section 2.8 can usually be tuned to give good performance.

For nonlinear constraints, recommended options can be
listed in order of improving performance, which corresponds
to greater complexity and greater computational cost. The
projection approaches (Section 3) are the simplest to code
and the least expensive computationally, but often provide
the worst performance. These are followed in turn by the
various UKF approaches (Section 3.4), MHE (Section 3.3),
and finally particle filtering (Section 3.6), which can usually
be expected to provide the best performance but at the
highest computational cost.

The results presented in this paper can be reproduced by
downloading MATLAB source code from [42].
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