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Abstract. When planning a new manufacturing system, the optimal investment in the system 
capacity is a major decision to make. The problem of capacity planning is not an easy because of the 
unpredictable character of the market demand and multi-criteria optimization character of the task. 
Therefore there is still no one complex methodology of the capacity planning and management. 
In this paper some mathematical models for capacity planning which can be used at the stage 
of manufacturing system design or expansion are presented. 

Introduction 

Manufacturers today face more challenges than ever before due to the highly volatile market, 
which creates large fluctuations in product demand and the frequent arrival of new technologies and 
new products [1]. To remain competitive, companies must design manufacturing systems that not 
only produce high-quality products at low cost but also respond to market changes in an economical 
way [2-5]. Therefore, making investments decisions in new manufacturing systems requires 
knowledge both in engineering and in finance and economics [6-7].  

Particularly, the system design is an iterative process that includes a sequence of following 
decisions [8]:  
1. Decide whether to invest at all in a new production system, and, if to invest, in which type of 

system. 
2. Based on product sale forecasting and estimated capital investment, determine whether to invest 

in dedicated, flexible, or portfolio capacity. 
3. Calculate the cycle time of each operation and the total time needed for the whole process to 

produce one product. 
4. Optimize the system configuration such that a proper line balancing maximizes system 

throughput, and tooling cost is minimized to reduce capital investment. 
5. Find out the buffer capacity that optimizes the system throughput. 
6. Determine the projected operations; it is more challenging when flexible system that produce 

several products are employed.  
7. Consider system responsiveness to changing orders of customers; responsiveness impacts the 

system throughput. 
8. Calculate the optimal speed of each machine; it will impact the whole system throughput. 

Therefore, when planning for a new manufacturing system to produce one or several products 
over a planning horizon, the key decision is how to select the optimal system’s capacity. In this 
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paper we presents mathematical, optimization models which can be used when planning the 
capacity level for the company which produces one or more products in the same time. 

Capacity Planning and Management Capacity Problem Formulation 

As defined in [9], flexible capacities “possess the ability to change over to produce a set 
of products very economically and quickly”. Therefore, flexible systems may alleviate unfavorable 
effects of demand uncertainties. However, the versatility to produce multiple products often requires 
higher investment costs compared to dedicated systems that can only produce one type of products. 

The sequence of events are as follows: at the beginning of the planning horizon, the company 
makes a strategic investment decision on the quantity and types of manufacturing systems 
to purchase. Once initial investment decisions are given, the company continually makes operating 
decisions every period on how to allocate its resources in the most profitable way across products. 

In most countries, capacity investment decisions are made before demand is observed and the 
optimal capacity choices may vary from one company to another even in the same industry. 
The investment decision on the amount and type of capacity – dedicated, flexible, or a portfolio 
of dedicated and flexible systems – is mainly influenced by the following factors [8]: 
1. The number of products to be produced simultaneously in the plant – flexible technology can 

deal with changes or uncertainty in demand mix. It enables to change the mix of products 
manufactured in a plant, and produce more of highly profitable products when their demand 
surges. Usually, if a plant produces more than four, five products simultaneously, the decision 
will be to invest in flexible capacity. 

2. Investment cost of dedicated versus flexible systems – when producing large quantities, the 
investment cost in flexible systems is always larger than that in dedicated lines. The margin may 
be 10-100% in large machining systems. Flexible capacities are usually favored more when their 
investment costs are closer to those of dedicated lines. When the manufactured quantities are 
small, dedicated lines are not cheaper than flexible systems, and the latter is the optimal solution. 

3. Product marginal revenues: higher profit margins and higher prices of the product produced 
warrant a higher investment level, since losing sales of products causes a significant financial 
loss. Installing flexible capacity in such cases is economically justified.  

4. Product demand volatility during the planning horizon – investment in flexible capacity hedges 
against uncertainty in future demand, since production can be easily shifted from a product with 
diminishing demand to a product with rising demand. Therefore, when market volatilities are 
high, an investment in flexible capacity is the right economic choice. 

5. The frequency of product changes and the expected lifetime of products – when a company plans 
to rapidly introduce new product models in the near future and expanding its product scope, the 
company should invest in flexible capacity. 
Generally, the problem of capacity planning must be sold in two stages. First, assuming that 

strategic investment decision is already given, we compute the maximum possible operating 
revenue during the entire lifetime of all products (i.e., the planning horizon). Next, we make the 
strategic capacity decision by choosing the recommended installed capacities that will generate the 
maximum profit that is corresponding to the highest operating revenue minus investment costs [10-
11]. To gain further insights, we provide below a formulation for the optimal capacity investment 
problems. In particular we present two mathematical optimization models for capacity planning for 
one- and multiproduct manufacturing processes. 

A Model of Capacity Planning for Single Product Manufacturing Process 

Let consider a capacity management problem for a company that produces only one type of good 
over a finite N-unit time horizon under stochastic market demand. It is assumed that no inventory 
of finished products is allowed in that company. Capacity management is performed by observing 
the current capacity and the probability distribution of the market demand at each time period 
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and making optimal decisions to change the capacity based on these observations for the next 
period. The company can belong to an oligopoly market, but the effects of the policy is neglected, 
and it is assumed that there exists only one decision maker with perfect recall who makes the 
optimal decisions to manage the capacity of the company based on the centralized information. 

The market demand is stochastic with independent distributions. It can be represented by 
a stochastic sequence of positive independent variables Dk with a priori continuous cumulative 
probability distribution functions ψk(Dk). The general structure of the market demand as described 
above is shown in Figure 1 where φk(Dk) are the probability density functions of the stochastic 
demand process. 

 

 
Fig. 1. Distributions of the market demand [12] 

 
The capacity management dynamics evolves in discrete time. It is assumed that there is delay 

time from when the capacity is ordered until it can be utilized, shown by T. The dynamic capacity 
evolution is represented by: 

 );min( kkk DCy =     

Tkkk XCC −+ +=1                                                                                                                                             (1) 

where Ck represents the capacity level of the company at time k, Xk is the control input which 
defines the addition of removal of capacity, and yk represents the sales of the firm. The delay time T 
is limited to be a multiple of the time increment, k. 

The production of the produced good or service costs γP per unit to produce, and is sold at a fixed 
price P per unit with (P - yk) profit. Unsatisfied market demand has a penalty cost γS per unit. The 
available capacity of the company is Ck at time k, and it takes a proportional holding or overhead 
cost, γH per unit of capacity at each time period, to maintain this level of capacity. The holding cost 
consist of the costs of maintenance and staffing of the capacity. Effect of all these costs at time 
period k, represents the one-period expected operating cost function, Gk(Ck) incurring at period 
[k,k+1) which is evaluated at time k as: 

}),0max(),min(){()( kHkkSKKPkk CCDDCPECG γγγ +−+−=                                  (2) 

There is a cost involved with adding capacity to the company. Addition of X units of capacity to 
the firm costs aX, where a is the proportional ordering cost. Decreasing capacity has a cost rX (X<0) 

which is a return from selling extra capacity, and r is the reward of selling one unit of capacity. 
Effect of addition and reduction of capacity represents the management or control cost at time k, 

Mk(Xk), which is the cost of expanding/subtracting capacity incurred at time k. At the end of the time 
horizon (i.e., k=N) the remaining capacity can be sold for a salvage value γN per unit of terminal 
capacity. The opportunity cost of money for the firm is represented by ρ and the discount factor is 
represented by β=1/(1+ρ).  
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Given an initial capacity, the problem is to find and optimal decision sequence, or a policy that 
minimizes the expected discounted cost: 
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At each time k, the decision maker observes the current capacity Ck, and the demand distribution 
ψk(Dk) and makes the decision Xk to generate the new optimal capacity level. The demand 
realization Dk is generated according to the given probability measure, and the operating cost Gk 
and control cost Mk are incurred and added to the previous costs. The terminal cost is the additional 
cost, which incurs at time N and it will be added to the previous costs. Assume that the company 
operates at time k+1, and it Has a minimal or optimal cost-to-go Vk+1(Ck+1) which represents the 
cost of the optimal policy to go from time k+1 to the terminal time N. Assuming the optimality of 
the cost-to-go function Vk+1(Ck+1), one can write the optimal cost-to-go function for the firm at time 
k, 
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X
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where: VN(CN) represents the final salvage value of the company’s capacity at time N. Equations (4) 
are optimality equations for the capacity management problem represented by stochastic dynamic 
programming. Based on the optimality theorem [13], a Markov policy exists and is optimal if and 
only if the minimum at (4) is achieved. To obtain the minimum value, it is shown that the optimal 
cost-to-go Vk(Ck) is convex in Ck and then the functions Xk which make it minimal for k=0,1,2,…N-

1 are obtained. 
The structure of the derived optimal policy for this problem is shown in Figure 2. The optimal 

policy is written based on two optimal thresholds. If the current capacity is lower than the lower 
optimal threshold L, the new capacity level should be chosen to be equal to L. If the current capacity 
is higher than the upper optimal threshold U, then the new capacity level should be chosen to be 
equal to U. And finally, for the capacity levels between L and U, the optimal decision is to maintain 
the current capacity (i.e. no change). 

 

 
Fig. 2. Optimal Capacity Management Policy [12] 

Optimal thresholds levels L and U are obtained numerically by solving Equations (4). It is also 
shown that there exists optimal lower and upper limits for L and U shown by L*, and U* and the 
sufficient condition for a policy to be optimal is to be located within these two limits. Thus, in 
numerically finding the optimal policy, one only needs to search for an optimal policy in the region 
between L*, and U*. The model was characterized in detail in [12]. Moreover some numerical 
results were there presented.  
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A Model of Capacity Planning for Multiproduct Manufacturing Process 

Consider a manufacturing company that produces two types of products over a time horizon 
consisting of several periods. Marginal revenues of pA and pB are received for each unit of type A 
and B product, respectively. 

Demands for each product at each period are uncertain. For capacity planning purposes, the 
company employs demand forecasts for each type of product. These forecasts lead to probability 
density functions for product demands across periods. As future periods posses higher levels of 
uncertainty, the forecast accuracy decreases with time. According to the problem defined by Koren 
[8] in this study we consider a scenario where an existing product A is gradually replaced by a new 
product – product B. Figure 3 illustrates typical demand distributions for the products where t

iΨ and 
t

id denote, respectively, the probability density function and mean demand in period t  for product i, 

i = A,B. For a three-period analysis, we let d = (dA, dB) denote the realization of all product 
demands, where ),,( 321

AAAA dddd =  and ),,( 321
BBBB dddd = . 

 
 

 
 

Fig. 3. Demand distributions for products A and B for a planning horizon of three periods [14] 
 

The manufacturing capacity investment decision is carried out at the beginning of the planning 
horizon when only forecasts for products are available. Let ),,( ABBA kkkk = denote the variables 
expressing the size of the capacity, where kA, kB and kAB are the dedicated capacities for products A 
and B, and the flexible capacity AB, respectively. In terms of investment costs, let ),,( ABBA cccc =  

denote the investment cost per unit capacity in dedicated line for product A, dedicated line for 
product B and flexible (for A and B), respectively. It is assumed that 

BAABBA ccccc +≤≤, . The 

right term, 
BABA cccc +≤, , gives the upper bound on the cost of flexible system.  

We follow a capacity investment cost structure as presented in [8] and [14] and assume that both 
dedicated and flexible capacities are purchased in discrete batches where the increments of the 
dedicated capacity are much larger than that of the flexible capacity. In practice, companies may 
incur additional costs to simultaneously operate and maintain dedicated and flexible systems. 
Therefore, lower bounds on capacity purchases must be applied; a certain type of capacity below the 
bound will not be purchased. 

Let },0{ jj Sk ∈ where }{ +∈+= ZwwkS jjjjj δ for j = A, B, AB denote the feasible set of 

capacity selections for each type of manufacturing system where kj and δj denote the minimum 
capacity purchase and capacity increment sizes. 

In that case, the problem of capacity planning must be solved in two stages. First, assuming that 
a strategic investment decision is already given, the maximum possible operating revenue during 
the planning horizon are computed. Next, the strategic capacity decision is made by choosing 
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the recommended installed capacities that will generate the maximum profit that is corresponding to 
the highest operating revenue minus investment costs. 

So, the problem may be formulated as a linear program with an optimization cost index. Cost 
index ),( kdR expresses the revenue that can be achieved for a given capacity investment decision 
k, and for any fulfillment of product demands d over the planning horizon.  
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subject to constraints: 
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The decision variables
t

Ax and
t

Bx denote, respectively, how many units of dedicated capacity A 

and B are needed to fill period t  demand, whereas the decision variables 
t

Ay and
t

By denote the 

optimal allocation of the flexible capacity between products. In addition, β is the discount factor 

per period that is used to calculate the NPV of the revenues, )1/(1 r+=β , where r is the annual 
rate of return. Constraints (6)-(10) guarantee that one will assign neither more capacity than the 
maximum available, nor more capacity than demand (i.e., the production quantities within a period 
do not exceed available capacity and are bound by the demand). 

Having obtained the maximum operating revenue, it is possible now to write the strategic 
decision problem of determining the optimal capacity investments k. 

 

'*)),((max kckdREd
k

−                                                                                                                  (7) 

In above formulation, Ed[R(d,k)] is expected value of the operative revenue where the 
expectation is taken over demand distributions and c*k’ represents the total investment costs. As 
was described previously, we have },0{ AA Sk ∈  where }.{ +∈+= ZwwkS AAAAA δ  with },0{ BB Sk ∈  

and },0{ ABAB Sk ∈  The company’s objective is to maximize Ed. Numerical example exploited above 
presented model for the firm producing two products over a planning horizon during which product 
demands possess uncertainties was presented in [14]. 

Summary 

Capacity planning and expansion of manufacturing systems could be seen as a system’s feature 
that might provide a significant increase of potentials for resolving a number of problems in 
manufacturing systems design and operation. In other words, manufacturing systems capacity might 
provide further optimization of the manufacturing systems design and operation or enable the 
development of paradigmatically new manufacturing systems for the sustainability and wellbeing 
society. Besides functional aspects of capacity planning and expansion, which could be seen 
as a primarily technical issues, by considering the wider social concerns the capacity feature might 
also seen as an instrument for value increase (following request for value creation and sustainable 
society).  
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Two approaches to the capacity management problem were presented in this paper. First of them 
is based on Markov decision process and is dedicated for manufacturing systems which are able to 
produce only one type of product. The second approach is suitable for optimizing the capacity of the 
system in case of manufacturing more than one type of product. It allows to determine a range of 
investment cost parameters, product revenues and demand uncertainties influence and finally to 
select the optimal strategy to whether invest in pure flexible, pure dedicated or a portfolio of both 
types of systems. 
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