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Abstract
This study focuses on modelling the behaviour of single crystal tantalum in
Stage 0 characterized by the large activity of edge dislocations and relative
inactivity of screw dislocations. The multiplication of dislocation density is
investigated using dislocation dynamics (DD) simulations and a dislocation
density based continuum model of single crystal plasticity. The DD simulations
are used to guide the constitutive development of the continuum model and
to determine its material specific parameters. While not all of the material
constants needed by the continuum model can be determined, due to the limited
strain histories considered in the simulations, interpreting the DD simulations
through a dislocation mechanics based continuum plasticity model allows for
the efficient extraction of scaling laws controlling the growth of dislocation
density.

1. Introduction

The Stage 0 deformation behaviour of BCC single crystals is considered using two different
numerical simulation techniques. A dislocation dynamics (DD) technique and a continuum
crystal plasticity technique are used to quantitatively understand the dislocation density
multiplication mechanisms operating during the initial stages of plastic deformation in tantalum
single crystals. The Stage 0 deformation regime characterizes the initial onset of plastic
deformation in well-annealed BCC crystals after the stress–strain curve begins to deviate from
the linear elastic behaviour but before the macroscopic yield point and the onset of easy glide
typified by the Stage 1 deformation regime. During Stage 0, the dislocation density increases
by an order of magnitude from its initial state, and the density is observed to be composed of
predominantly long straight screw dislocations.

The quantitative aspects of DD simulations have mostly focused on the interpretation
of stress–strain curves and scalar relationships between stress and dislocation density.
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DD simulations contain a wealth of information concerning the evolving dislocation structure,
which has been described qualitatively through dislocation configuration snapshots at different
points during the course of a simulation, that may be more quantitatively described by
dislocation density evolution histograms differentiated by Burgers vector and tangent line
directions. Quantitative descriptions of the detailed dislocation density evolution have been
limited, mostly due to the inability of continuum crystal plasticity theories to interpret the
evolution of the complex system. Interpretation of fine scale simulation (DD) results by
coarser simulation (continuum visco-plasticity) methods is a crucial component of establishing
a multi-scale materials modelling framework.

The most common continuum crystal plasticity models focus on developing a hardening
matrix, Hαβ , relating the effect of plastic slip on a slip system, β, to an increase in plastic
resistance on the other slip systems, α [1–3]. The plastic behaviour of these models is con-
trolled through the evolution of the hardening matrix during the course of plastic deformation.
Unfortunately, the results of DD simulations cannot be easily related to the material constants
found in these hardening matrices, primarily because the hardening matrices are phenomeno-
logical generalizations developed to close a set of equations commonly used in continuum
plasticity at macroscopic length scales, and not directly based on any dislocation mechanisms.

Dislocation density based plasticity models [4, 5] are better suited to interpret and
incorporate the wealth of information in DD simulations than the slip-system strength based
models (employing hardening matrices) due to their richer description of the material state
and closer connection to the underlying physical processes—yet, no significant progress has
been made to date to establish formal connections with DD simulations. In principle, accurate
DD simulations could provide most, if not all, of the data required to determine the material
parameters in the density-based models. A few large scale DD simulations, both in terms
of the orders of magnitude spanned in dislocation density and of the amount of plastic strain
accumulated, would have to be conducted to inform a continuum model that could reasonably
predict the large deformation characteristics of crystalline materials, but such DD simulations
have yet to be performed due to their computational demands. However, much can be gained
from the current capabilities of DD techniques in guiding constitutive model development of
coarse grained continuum plasticity models.

In this paper, we will develop and use a continuum plasticity model for the growth and
interaction of dislocation density to interpret the averaged behaviour of DD simulations of
tantalum single crystals in the Stage 0 deformation regime. The benefits of linking a continuum
plasticity model with DD simulations are twofold. First, the understanding of the DD behaviour
becomes more quantitative through comparisons with continuum level understanding of the
total system. Second, the constitutive equations developed for the continuum model are more
physically realistic because they are derived from observations at a finer scale. By considering
the entire DD cell as a representative volume element of a continuum simulation, the stress–
strain response, the flux history of both the edge and screw dislocation densities, and the
edge and screw dislocation density evolution are used to determine the constitutive form of
the continuum model. A series of simulations is conducted at two different crystallographic
orientations. The first orientation is used to construct the form and the material parameters
for the continuum model, and the second is used to compare the prediction of the continuum
model with the parameters determined from the previous orientation.

2. DD simulation details

A DD code based on a screw-edge representation of a general dislocation line, previously
developed to study the plastic deformation of BCC single crystals at low temperatures [6, 7],
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Table 1. The material constants input into both the DD and continuum simulations.

Elastic constants µ = 68.5 GPa
ν = 0.350

Screw mobility parameters lc = 4.295 nm
νD = 1013 s−1

v0 = 2.22 × 105 m s−1

�F = 1.298 × 10−19 J atom−1

τp = 248 MPa
p = 0.748
q = 1.172

Burgers vector |b| = 2.863 Å

is used here to study the Stage 0 deformation behaviour of BCC single crystals. In the DD
simulations, dislocation lines are discretized into piece-wise connected screw-edge segments
that move under local stress and interact with surrounding dislocations through their stress
fields and short-range reactions. The mobility of the dislocation segments is one of the key
inputs to the simulations.

The mobility of screw dislocations in BCC tantalum at the strain rate (3.7 × 10−4 s−1)
and temperature (160 K) of this study is controlled by the thermal activation of kink-pairs
on the dislocation line. The functional form for the activation enthalpy developed by Kocks
et al [8] was fit to empirical data and used to describe the motion of screw dislocations [6].
The resulting constitutive equation for the screw dislocation segment velocity took the form

v̄α
s = Lb2

l2
c

νD exp

[
−�F

kθ

(
1 −

( |τα|
τp

)p)q]
sign(τα), (1)

with

τα = mα · T̄nα, (2)

where L is the segment length of the mobile screw dislocation, b the magnitude of the
burgers vector, lc the critical length for double kink nucleation, νD the Debye frequency,
�F the activation enthalpy of kink-pair formation, k the Boltzmann constant, θ the absolute
temperature, τp the Peierls barrier, p and q are exponents detailing the effect of stress on the kink
formation enthalpy, mα is the Burgers vector direction of the gliding segment, nα the glide
plane, and T̄ the local value stress tensor at the position of the screw dislocation segment.
The values of the material constants may be found in table 1.

The mobility of the edge dislocations in the temperature and strain rate considered is
limited by phonon drag, and it is known to be orders of magnitude larger than that of screws.
The edges were treated as infinitely fast in the DD simulations allowing for a significant gain in
computation efficiency. The edge dislocations arrested only in positions of local equilibrium or
in positions where they formed junctions with other dislocations. To model strain hardening,
dislocation junctions were simulated with an average junction strength parameter obtained
from experimental data [7].

Due to the large difference between the screw and edge mobilities, there exists a character-
istic Stage 0 plastic deformation for BCC single crystals defined as the early stage of deforma-
tion before the macro-yield point is reached [9]. During Stage 0, the plastic flow is carried out
mainly by fast moving edge dislocations. The microstructural evolution is characterized by a
large density increase of extended screw dislocations on multiple slip systems due to the motion
of those highly mobile edge dislocations [10]. We have simulated the Stage 0 plastic deforma-
tion of single crystal tantalum for two families of single slip orientations, i.e. 〈4 8 19〉 and 〈1 2 3〉.
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Table 2. Catalogue of slip systems used in both the DD and dislocation density based continuum
simulations.

Slip system index m n

1 [111] (011̄)

2 [111] (1̄01)

3 [111] (11̄0)

4 [1̄11] (1̄01̄)

5 [1̄11] (01̄1)

6 [1̄11] (110)

7 [1̄1̄1] (01̄1̄)

8 [1̄1̄1] (101)

9 [1̄1̄1] (1̄10)

10 [11̄1] (101̄)

11 [11̄1] (011)

12 [11̄1] (1̄1̄0)

The simulations were performed under conditions of uniaxial tension at 160 K and at
a constant tensile strain rate of 3.7 × 10−4 s−1. The dislocation density was constrained to
lie in the twelve 〈1 1 1〉 {1 1 0} slip systems indexed in table 2, and the initial dislocation
configuration contained a total density of 1011 m−2 composed of screw and edge dislocations
uniformly distributed over all the slip systems. The initial dislocation segment lengths were
randomly distributed around an average value of 1 µm. Isotropic elastic constants [11], given
in table 1, were used to approximate the anistropic elastic constants of tantalum at 160 K for
computational efficiency in the DD simulations.

The simulations were terminated at the end of Stage 0, which we defined as the point when
the plastic strain rate reached the applied strain rate. While keeping the initial dislocation
configuration constant, the tensile stress was applied to each of the twenty-four equivalent
directions within each orientation family. The typical simulation box was orthorhombic with
lateral dimensions ranging from 15 to 18 µm, and periodic boundary conditions were imposed
to simulate the behaviour of a bulk crystal. The dimensions of the simulation boxes were
deliberately chosen to avoid unnatural dislocation self-annihilation due to the imposed periodic
boundary conditions [12].

The tensile stress, density evolution history, and flux history of the edge and screw
dislocations on all the slip systems were output by the series of simulations. The data from each
orientation family was averaged to reduce the noise associated with a single DD simulation.
Figure 1 depicts a typical dislocation configuration at the end of Stage 0 as calculated by the
DD method, and figure 2 depicts the raw data that was extracted and used to develop and test
a continuum level understanding of the discrete system.

3. Continuum model description

The single crystal continuum model developed to interpret the results of the DD simulations
can be categorized as an internal state variable model in which crystallographic dislocation
densities, their average segment lengths, and the elastic deformation gradient completely
describe the state of the crystal. It is an extension of a crystal plasticity model developed
previously by Arsenlis and Parks [5]. The dislocation densities are crystallographic in the
sense that two dislocation densities for each crystal slip system are used to capture the general
dislocation state of the crystal similar to the manner in which general dislocation lines are
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Figure 1. Dislocation configuration, with a total density of 1.2 × 1012 m−2, at the end of Stage 0
for a crystal oriented with the [8 4̄ 19] direction parallel to the tensile axis. The orthorhombic
shape of the simulation box limits the spurious annihilation of density due to periodic boundary
conditions.

decomposed into piece-wise connected screw-edge segments in the DD simulations. Since the
screw and edge (non-screw) dislocations behave differently in BCC crystals, a state variable is
assigned to capture the density of each on every slip system. The dislocation density evolution
equations will focus on the statistical generation of density solely and not the statistical
annihilation of density due to the small strains considered.

Although the study is presently limited to small strains, the continuum model will be
developed with the intent to extrapolate the plastic behaviour at large strains based on the DD
results at small strains. The large deformation kinematics of Asaro and Rice [13] are employed
in which the total deformation gradient, F, is multiplicatively decomposed into an elastic, Fe,
and plastic, Fp, component such that

F = FeFp. (3)

A stress measure, T̄, corresponding to the second Piola–Kirchhoff stress in the intermediate
configuration is defined as

T̄ = det(Fe)Fe−1TFe−T, (4)

where T is the Cauchy stress. The stress measure, T̄, is related to an elastic strain measure,
Ee = 1

2 {FeTFe − I2}, corresponding to Cauchy–Green strain in the intermediate configuration,
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Figure 2. Data output from the DD simulations in the 〈4 8 19〉 family of orientations used as input for
fitting the material parameters of the continuum model. The data is averaged over 24 orientations,
and the behaviour of all twelve slip systems is followed.

by the fourth order elasticity tensor L, through the expression

T̄ ≡ L[Ee]. (5)

The plastic deformation gradient evolves according to the flow rule

Ḟ
p = LpFp, (6)

where Lp is the plastic flow rate composed of the tensorial sum of the crystallographic plastic
shear rates, γ̇ α , such that

Lp =
∑

α

γ̇ αmα ⊗ nα , (7)

where mα and nα are unit lattice vectors in the intermediate configuration corresponding to
the slip direction and the slip plane normal direction, respectively, for a given slip system α.
The crystallographic plastic shear rates result from the combined motion of edge and screw
dislocation densities, ρα

e and ρα
s . Following Orowan’s relation,

γ̇ α = ρα
e bv̄α

e + ρα
s bv̄α

s , (8)

where b is the magnitude of the Burgers vector, and v̄α
e and v̄α

s are the average velocities of the
edge and screw dislocation densities, respectively.

The dislocation densities evolve with plastic deformation according to

ρ̇α
e = 2ρα

s |v̄α
s |

l̄αs
, (9)

ρ̇α
s = 2ρα

e |v̄α
e |

l̄αe
, (10)
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where l̄αe and l̄αs are the average segment lengths for the edge and screw densities, respectively
[5]. Equations (9) and (10) capture the dislocation density generated by mobile dislocation
segments leaving dislocation dipoles in their wake. Snapshots of the dislocation configuration
in the DD simulations clearly show this mechanism of dislocation growth due to the disparity
in the mobility between the edge and screw segments.

The average segment lengths evolve with plastic deformation according to

˙̄lαe = l̄αe

ρα
e

ρ̇α
e − (

l̄αe
)3 (

Hαβ
ee ρ̇β

e + Hαβ
es ρ̇β

s

)
, (11)

˙̄lαs = l̄αs

ρα
s

ρ̇α
s − (

l̄αs
)3 (

Hαβ
se ρ̇β

e + Hαβ
ss ρ̇β

s

)
, (12)

where H
αβ
ee , H

αβ
es , H

αβ
se and H

αβ
ss are the average segment length interaction matrices [5]. The

first terms in equations (11) and (12) capture the elongation of dislocation line segments as
density is generated by the dipole mechanism outlined above, and the second term in each of
the equations captures the shortening of the average dislocation length as dislocation sources
inject nascent loops into the crystal. The dislocation density and average segment length
combine to quantify the total dislocation line length and number density of dislocations per
unit volume.

To close the model, constitutive equations are required for the average segment length
interaction matrices, and the average dislocation velocities. The average segment length
interaction matrices will be assumed constant, with the value of the constants to be determined
from the DD simulations. The average dislocation velocity functions for the edge and screw
dislocation densities will take different forms due to the kink-pair formation mechanism
controlling screw dislocation motion and the high mobility of edge (non-screw) dislocation
density. The average velocity function for the screw density will be the same as the velocity
function in the DD simulation for the screw dislocation segments found in equation (1).
Whereas the glide activity of each individual screw dislocation was a function of each segment’s
length, the length of the screw dislocation density associated with equation (1) was assumed
to be constant during the continuum simulation. The stress dependence of the screw velocity
is more sensitive to the material parameters inside the exponential and not as sensitive to
the pre-exponential terms so long as the correct order of magnitude is input for those terms.
A representative value of 5 µm was used for L in equation (1) in the continuum simulations.

The glide activity of the screw dislocation density is limited to the end of the
DD simulations, and their motion is dominated by their ability to nucleate a kink-pair and
not by forest type interactions with other dislocations. Therefore, any interaction with the
forest density that affects the motion of the screw density will be neglected in the continuum
model. Various constitutive forms for the interaction between dislocations in BCC crystals have
been previously suggested [7,14]; however, there is not enough information in the histograms
depicted in figure 2 to determine the appropriate function.

The infinite mobility of the edge dislocations in the DD simulations is impossible to
implement in a continuum model because the discrete dislocation positions are not defined in
the continuum simulation; therefore, an empirical power law dependence [15] will be employed
for the edge velocity, of the form

v̄α
e = B

(
τα − µb

√
G

αβ
ee ρ

β
e + G

αβ
es ρ

β
s

)n

, (13)

where B is a reference edge mobility factor, n the stress sensitivity, and G
αβ
ee and G

αβ
es are the

dislocation strength interaction matrices for gliding edge dislocation density. A square root
dependence on the dislocation density was chosen for the forest resistance. Although the
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infinite edge mobility acted to speed up the DD simulations, it hindered the extraction of the
correct scaling law of the dislocation resistance; therefore, the simple square root dependence
commonly used in FCC crystals was assumed [16].

4. Continuum model parameter estimation

The results of the 〈4 8 19〉 tensile tests, depicted in figure 2, and the material constants input
to the DD simulations [6] were used to determine the material constants in the continuum
constitutive equations. The elastic constants, magnitude of the Burgers vector, and screw
mobility parameters found in table 1 were taken directly from the input values of the
DD simulations. The values of the edge mobility parameters and of the average segment
length matrix coefficients had to be determined by fitting the continuum constitutive functions
to the aggregate dislocation segment behaviour of the DD simulations.

The representation of general dislocation lines by piece-wise connected edge and screw
segments allowed for a simple extraction of the average velocity of the edge densities. The
crystallographic fluxes, defined as the product of the crystallographic densities and their
respective velocities, were simply divided by the dislocation density associated with that flux to
extract the average velocities of all twelve edge dislocation densities in the crystal. Taking the
symmetry of the BCC crystal into account, there are seven unique coefficients in the G

αβ
ee

matrix and three unique coefficients in the G
αβ
es matrix. The positions of the coefficients in the

matrices are given in table 3, and the matrix indices correspond to the list of slip systems given

Table 3. Strength interaction matrices, G
αβ
ee and G

αβ
es , between the gliding edge density and the

forest edge and screw densities, respectively. The average segment length interaction matrices,
H

αβ
ee , H

αβ
es , H

αβ
se and H

αβ
ss ; take the same form, but with different values. The coefficient values

determined by fitting the constitutive functions to the DD results are given below.

[
G

αβ
ee

]
α=1,12
β=1,12

=




G0
ee G2

ee G2
ee G3

ee G1
ee G3

ee G5
ee G6

ee G4
ee G4

ee G5
ee G6

ee

G2
ee G0

ee G2
ee G5

ee G4
ee G6

ee G6
ee G5

ee G4
ee G1

ee G3
ee G3

ee

G2
ee G2

ee G0
ee G6

ee G4
ee G5

ee G3
ee G3

ee G1
ee G4

ee G6
ee G5

ee

G4
ee G5

ee G6
ee G0

ee G2
ee G2

ee G3
ee G1

ee G3
ee G5

ee G6
ee G4

ee

G1
ee G3

ee G3
ee G2

ee G0
ee G2

ee G5
ee G4

ee G6
ee G6

ee G5
ee G4

ee

G4
ee G6

ee G5
ee G2

ee G2
ee G0

ee G6
ee G4

ee G5
ee G3

ee G3
ee G1

ee

G5
ee G6

ee G4
ee G4

ee G5
ee G6

ee G0
ee G2

ee G2
ee G3

ee G1
ee G3

ee

G6
ee G5

ee G4
ee G1

ee G3
ee G3

ee G2
ee G0

ee G2
ee G5

ee G4
ee G6

ee

G3
ee G3

ee G1
ee G4

ee G6
ee G5

ee G2
ee G2

ee G0
ee G6

ee G4
ee G5

ee

G3
ee G1

ee G3
ee G5

ee G6
ee G4

ee G4
ee G5

ee G6
ee G0

ee G2
ee G2

ee

G5
ee G4

ee G6
ee G6

ee G5
ee G1

ee G1
ee G3

ee G3
ee G2

ee G0
ee G2

ee

G6
ee G4

ee G5
ee G3

ee G3
ee G4

ee G4
ee G6

ee G5
ee G2

ee G2
ee G0

ee




[
G

αβ
es

]
=




G0
es G1

es G6
es G6

es

G0
es G6

es G6
es G1

es

G0
es G6

es G1
es G6

es

G6
es G0

es G1
es G6

es

G1
es G0

es G6
es G6

es

G6
es G0

es G6
es G1

es

G6
es G6

es G0
es G1

es

G6
es G1

es G0
es G6

es

G1
es G6

es G0
es G6

es

G1
es G6

es G6
es G0

es

G6
es G6

es G1
es G0

es

G6
es G1

es G6
es G0

es




Fitted strength interaction coefficients:
G0

ee = G2
ee = G3

ee = G4
ee = G5

ee = 0,

G1
ee = 1, G6

ee = 2.89 × 10−1

G0
es = 8.60 × 10−2, G1

es = 0,

G6
es = 3.47 × 10−2

Fitted length interaction coefficients:
H 0

ee = H 1
ee = H 2

ee = H 3
ee = 0.00

H 4
ee = H 5

ee = H 6
ee = 0.00,

H 0
es = H 1

es = H 6
es = 0.00,

H 0
se = H 1

se = H 2
se = H 4

se = H 5
se = 0.00,

H 3
se = 1.44 × 102, H 6

se = 1.12 × 101,

H 0
ss = H 1

ss = 0, H 6
ss = 2.01 × 10−2
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Figure 3. Comparison of the average edge dislocation velocities from the DD simulations of the
〈4 8 19〉 orientation family and the continuum constitutive function in equation (13) with fitted
material parameters. The eleven curves in each subplot are the edge velocities on the different slip
systems in the crystal.

in table 2. The G
αβ
es matrix shown has been compressed by summing the screw dislocation

densities with the same Burgers vector before multiplying them by the interaction matrix.
Along with the the reference edge mobility factor, B, and stress sensitivity, n, a total of twelve
material parameters were simultaneously fit to the output of the DD simulation.

The fit was conducted by minimizing the error between the logarithms of the average
velocities in the DD simulation and the velocities from the constitutive function in equation (13)
for the eleven edge velocities that rose above the simulation noise level with the constraint
that the strength interaction coefficients lie between zero and unity. The quality of the fitting
procedure can be seen in figure 3, and the values of the strength interaction coefficients are
found in table 3. The best-fit values for B and n were 5.50×10−9 m s−1 and 1.81, respectively.

After the constitutive equations for the average edge dislocation velocities were fit, the
material parameters controlling the dislocation density evolution were determined using the
continuum velocity functions and the initial dislocation densities of the DD simulations.
Equations (9) and (10) were numerically integrated to generate dislocation density histories
for comparison to the dislocation density histories output by the DD simulations. Attempts
to fit the dislocation density evolution using constitutive equations for the average segment
length previously developed [4,5] failed because the average segment length in those models is
proportional to the inverse square root of the dislocation density. As the density increases, the
average segment length is assumed to decrease in those constitutive models. Using the inverse
square root dependent constitutive functions led to systematic overestimates of the dislocation
density near the macro-yield point.

Although the inverse square root scaling may hold at moderate strains, Stage 0 deformation
in BCC metals leads to longer screw dislocation segments with increasing density, a property
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twelve crystallographic edge densities in the crystal are plotted.

of the dislocation density that those constitutive equations fails to capture. The constitutive
equations for the average dislocation segment length of Arsenlis and Parks [5] were modified
to include the lengthening of dislocation segments with dislocation loop expansion forming the
average segment length evolution equations in equations (11) and (12), and the systematic error
was eliminated. With the equations proposed, the inverse square root scaling of the average
segment length would be retained at larger strains associated with higher density levels. To
bolster confidence in our evolution equations, the initial dislocation segment lengths along
with the coefficients in the length interaction matrices, were fit to the DD simulation profiles.
The symmetry of the length interaction matrices, Hαβ , was assumed to be the same as for
the strength interaction matrices, Gαβ , reducing the number of interaction coefficients that
had to be found from 576 to 20. With the constraint that the length interaction coefficients
be non-negative, the error between the logarithm of the dislocation density histories from the
DD simulations and the integrated continuum evolution equations was minimized to determine
the 20 constants and initial dislocation segment length simultaneously. An initial segment
length of 1 µm, the same value input to the DD simulations, was found to best fit the dislocation
evolution data. The independent confirmation of the initial segment length led us to believe that
the underlying physical processes controlling dislocation accumulation were being captured
correctly by the continuum model. The results of the fitting procedure for the dislocation
evolution are shown graphically in figure 4, and the values of the segment length interaction
matrix coefficients are given in table 3.
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Figure 5. Continuum prediction of the stress–strain behaviour and dislocation density evolution of a
〈1 2 3〉 oriented crystal in uniaxial tension compared to the average behaviour of the DD simulations
under the same loading conditions. The screw densities sharing a Burgers vector are consolidated,
and all twelve crystallographic edge densities in the crystal are plotted.

5. Model comparisons and discussion

Using the constitutive function parameters fit to the simulated behaviour of the 〈4 8 19〉 oriented
crystal, the continuum model was used to predict the behaviour of a crystal with the [1 2 3]
direction parallel to the tensile axis. The purpose of the predictions was to test how well the
system of constitutive equations reproduced the growth of dislocation density observed in the
DD simulations and to validate our understanding of the scaling laws governing that growth.
The predictions of the continuum model are compared to results of the averaged DD simulations
in figures 5 and 6. By all measures—stress–strain response, dislocation density evolution,
edge density flux, and screw density flux—the continuum model agrees well with the more
complex DD simulations for this new orientation. The macro-yield point of the stress–strain
response is predicted to within 2%, and although the stress–strain response appears to be purely
linear elastic during below 0.1% strain, the edge density flux and the associated screw density
evolution, at that strain regime, show evidence of micro-yielding.

The dislocation density evolution is also well predicted. The screw density accumulates
with the motion of the edge density during the course of the simulation, and the relative densities
of the screw dislocations with different Burgers vectors is well predicted. Furthermore,
the mechanism of screw dislocation multiplication is solely due to the motion of the initial
edge dislocation segments within the system, which is deduced from the fact that the best-fit
coefficients for the H

αβ
ee and H

αβ
es are zero (see table 3). Interpretation of the evolution history

of the screw dislocation density with the appropriate physics-based constitutive equations leads
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Figure 6. Continuum prediction of the edge and screw dislocation density flux history of a 〈1 2 3〉
oriented crystal in uniaxial tension compared to the average behaviour of the DD simulations under
the same loading conditions. The different curves correspond to the flux of edge and screw densities
on different slip systems in the crystal.

to the deduction that the number of edge dislocations in the DD simulation volume cannot have
changed significantly. The dislocation configurations within the DD volume do not even have
to be considered to come to this conclusion.

According to the continuum model, the edge density begins to accumulate only when the
screw density begins to flow. The same behaviour is observed in the DD simulations. The
continuum model somewhat underestimates the edge dislocation density level on the primary
slip system found in the DD simulations; however, the rates of edge density growth are similar.
The continuum model is unable to predict the small increase in the edge dislocation density
on the secondary and tertiary slip systems seen towards the end of the DD simulation. In the
DD simulations, close encounters between dislocations can lead to large fluctuations in the
local stress field causing certain screw segments to move before the far-field stress has reached
a level needed to induce a global response from the screw density; a feature not captured by
the continuum model.

The screw and edge dislocation flux histories are also well predicted by the continuum
model. Not only is the activation of the edge and screw density on the primary slip system
captured, but the activation of edge dislocation density on the secondary and tertiary slip
systems is also in good agreement with the DD simulations. A feature of the DD simulations
that the model is able to capture uniquely is the order of magnitude increase in the edge
dislocation flux of the primary slip system towards the end of the simulation. There is only
a small increase in the stress as the material reaches the macro-yield point, but the edge
dislocation flux increases dramatically due to an order of magnitude increase in the edge



Simulations on the growth of dislocation density 263

dislocation density, which does not significantly increase the resistance of that same density to
glide. Through the explicit use of Orowan’s relation in equation (8), this dislocation density
based model is able to capture the behaviour correctly. To our knowledge, there is no existing
strength-based crystal plasticity model that would be able to reproduce this feature of the edge
flux history.

The dislocation density based continuum model is able to reproduce many of the important
features of the DD simulation with a great decrease in computational cost. The DD simulations
required 50 CPU hours on a Compaq workstation with an ev67 processor, whereas the
continuum simulations required less than a CPU minute on a Pentium III based desktop
computer. The superior computational efficiency of the continuum model is not without a
price. The exact dislocation positions detailed in the DD simulations are lost in the continuum
model.

At the low strain levels that were used to determine the material constants, there was not
enough sensitivity to all of the material parameters for the plastic behaviour to be extrapolated
to large strains. Particularly, there was not enough glide activity among the screw dislocation
densities to determine their interaction with the forest density, and the zero coefficients in the
H

αβ
ee and H

αβ
es matrices that best fit the screw dislocation density evolution at these strains will

most likely not hold at larger strains where loop multiplication may dominate the evolution.
However, the ability of the model to reproduce the DD results means that the correct scaling
laws for density evolution at these low strain levels are included in the continuum model, and
a meaningful method of interpreting DD simulations results within the context of continuum
plasticity has been established. By conducting a series of DD simulations reaching larger
strain levels, material constants could be obtained and evolution equations evaluated from
a single orientation by fitting the slip activity on all the slip systems simultaneously, rather
than conducting a large number of simulations in an attempt to isolate specific interaction
coefficients. The latent hardening characteristics of the crystal, the evolution of strength on
a particular slip system due to slip on another, would surface from the relative activity of
the secondary and tertiary slip systems with changing dislocation density and stress states.
Accurate DD simulations would only need to reach moderate strains to determine all the
material constants of the continuum model required to accurately extrapolate the plastic
behaviour of the crystal at large strains. The accuracy of the DD simulations is being
continuously improved by appealing to atomistic investigations of dislocation mobility in
BCC metals [17, 18].

6. Conclusion

There are currently two paradigms within the multi-scale materials modelling framework.
There is an embedding scheme in which fine scale models are embedded within coarse grained
models, and both are solved simultaneously. There is also an information passing scheme in
which coarse grained models are informed by the simulation results of fine scale models with
both models run independently. Following the second paradigm, a dislocation density based
continuum model of crystal plasticity is developed to interpret DD simulation results. Evolution
equations for the growth of crystallographic density and their average segment lengths are
derived from observations in DD simulations, and the material constants are determined by
fitting the slip activity and dislocation evolution on all the slip systems simultaneously from
simple tension simulations on a single orientation.

The agreement of the fitted continuum model and DD simulations for another orientation
demonstrates that the continuum model captures the underlying physics in the DD simulations
and that the fitting procedure is robust at these strain levels. Comparisons of the two models
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enabled efficient extraction of the critical phenomena and functional dependences concerning
the growth of dislocation density during the Stage 0 deformation of BCC metals, characterized
by the elongation of screw dislocations, through the motion of edge dislocations and by the
multiplication of dislocation sources with ensuing screw motion.

The strength of the current dislocation density based continuum model lies in its ability
to differentiate between the behaviour of edge and screw densities providing a consistent
framework to model all deformation stages of BCC single crystals; however, more work is
needed to extend DD simulations to moderately larger strains and higher dislocation densities
before a continuum model informed by information passing from the DD simulations will
be able to accurately extrapolate the material behaviour at large strains. This study focused
mainly on the growth of dislocation density at strains of the order of 0.1%. Studies must be
conducted that also reflect dislocation recovery processes and dislocation forest interactions
of screw dislocation densities whose influences were observed to be negligible in the Stage 0
deformation regime.
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