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Abstract

In this paper, we address the server selection problem for streaming applications on the Internet. The architecture we
consider is similar to the content distribution networks consisting of geographically dispersed servers and user populations
over an interconnected set of metropolitan areas. Server selection issues for Web-based applications in such an environment
have been widely addressed; the selection is mostly based on proximity measured using packet delay. Such a greedy or heu-
ristic approach to server selection will not address the capacity planning problem evident in multimedia applications. For
such applications, admission control becomes an essential part of their design to maintain Quality of Service (QoS). Our
objective in providing a solution to the server selection problem is threefold: first, to direct clients to the nearest server; sec-
ond, to provide multiple sources to diffuse network load; third, to match server capacity to user demand so that optimal
blocking performance can be expected. We accomplish all three objectives by using a special type of Linear Programming
(LP) formulation called the Transportation Problem (TP). The objective function in the TP is to minimize the cost of serving
a video request from user population x using server y as measured by network distance. The optimal allocation between
servers and user populations from TP results in server clusters, the aggregated capacity of each cluster designed to meet
the demands of its designated user population. Within a server cluster, we propose streaming protocols for request handling
that will result in a balanced load. We implement threshold-based admission control in individual servers within a cluster to
enforce the fair share of the server resource to its designated user population. The blocking performance is used as a trigger
to find new optimal allocations when blocking rates become unacceptable due to change in user demands. We substantiate
the analytical model with an extensive simulation for analyzing the performance of the proposed clustered architecture and
the protocols. The simulation results show significant difference in overall blocking performance between optimal and sub-
optimal allocations in as much as 15% at moderate to high workloads. We also show that the proposed cluster protocols
result in lower packet loss and latencies by forcing path diversity from multiple sources for request delivery.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Streaming applications for video such as pay per
view and Video-on-Demand (VoD) have prolifer-
ated in the recent years spurred by the phenomenal
increase, about 58% in the last year or two [1] in
home-based Internet users. Industry-based stream-
ing solutions consist of Real Networks’ Real Media
[2], Microsoft’s Windows Media Services [3], Macro-
media’s Streaming Shockwave, and Apple’s Quick-
time Streaming [4]. Akamai [5] has moved closer to
finding an efficient solution by using Content Deliv-
ery Networks (CDN) that put content closer to end
users. However, we argue that moving the content
to the edge alone will not work for multimedia
applications where we use admission control as a
mechanism to provide QoS. For such applications,
capacity planning to realize better performance
and resource utilization becomes a prominent issue.
In this paper, we address system design issues to pro-
vide intelligent aggregation of server resources and
request handling protocols that result in optimal
blocking performance, server utilization and bal-
anced loads. The analytical models and performance
evaluation presented in this paper provide solutions
to enhance the pragmatic approach provided by the
CDNs. VoD-like applications require stricter QoS
for longer duration than Web applications. Unlike
Web servers, streaming servers are specially designed
to deliver content in a predictable, delay-sensitive
manner. These servers will use admission control
and other related techniques to prevent overload
and maintain QoS. Capacity planning to realize
optimum server utilization in such an environment
is the topic addressed in this paper.

In the spirit of CDNs, we consider metropolitan
areas that are close together and content server
nodes scattered throughout the area. We propose
a special type of LP formulation called the Trans-
portation Problem (TP) to obtain optimal server
allocation to each metropolitan user population
and aggregate those individual server nodes into
clusters to serve each of the metropolitan areas.
Organizing server clusters in this way provides dis-
tinct advantages: in an earlier work [31], we showed
that a cluster of servers streaming different parts of
the video to the client will result in better perfor-
mance in terms of packet loss and latency. Using
multiple sources that are physically separate, the
data transfer is forced on multiple network paths
and therefore, reduces the possibility of congestion.
Employing a cluster of servers will also help reduce
data granularity and achieve balanced load and
fault tolerance. More importantly, organizing indi-
vidual servers into clusters gives us a framework
for monitoring blocking performance and detecting
suboptimal server allocations when user demand
changes.

We implement threshold-based admission control
in individual servers within a cluster to enforce the
fair share of the server resource to its designated user
population. An arriving request will be rejected or
blocked during admission control if there is no avail-
able capacity or if the number of requests from the
user population exceeds its threshold. The blocking
performance is used as a trigger to find new optimal
allocations when blocking rates become unaccept-
able due to change in user demands and the current
allocations are no longer optimal. In addition to pro-
viding such an architectural solution, we design and
employ streaming protocols within server clusters
for their efficient operation. The network context
for our analysis is the best-effort IP-based net-
works. While we do not suggest any network related
modifications, the proposed cluster architecture is
expected to perform better by forcing path diversity
in the network. Our work on streaming protocols
and others suggest that such use of the network
results in better performance in terms of packet loss
and latency.

The TP formulation proposed in this paper is ide-
ally suited for finding optimal server allocations for
the server selection problem. The basic idea behind
the TP formulation is to assign server capacities to
user population demands by considering the cost
of providing service from server i to a request from
user population j. In mathematical programming
problems where TP is applied, the cost is typically
represented as distribution cost from manufacturing
plant i to warehouse j. For our purposes, we use the
round trip time (RTT) as the cost of serving a client
request from server i to user population j. The net-
work path metric RTT has long been used as a dis-
tance measure for proximity analysis in server
selection for Web services. Using RTT as the cost
metric in our TP formulation, the servers that are
close to the user population are grouped together
to provide service for that population.

The main contribution of this paper is the com-
bined approach of providing a clustered server archi-
tecture based on optimal server allocation and
protocols that efficiently operate those clusters.
The proposed TP formulation in addition to
addressing dynamic server selection problem, also
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provides solution to capacity planning issues. A
greedy or heuristic approach to server selection
will not address the capacity planning problem for
multimedia applications. The protocols proposed
for operating server clusters make use of central-
ized and distributed approaches to handle requests
resulting in better performance as shown through
simulation experiments. One of the strengths of this
work is its simulation. We model realistic Internet
topologies using topology generators such as Tiers.
We generate multimedia and background traffic
using results from network monitoring tools such
as Tstat. Using ns we implement an extensive simu-
lation to evaluate the proposed clustered server
architecture consisting of several server clusters
obtained as a result of the application of TP. We
demonstrate through simulation experiments, the
blocking performance for optimal and suboptimal
server allocations to user demands. We show that
we can dynamically reconfigure the server clusters
to match the changes in user demands by using the
TP. The simulation results show significant differ-
ence in overall blocking performance between opti-
mal and suboptimal allocations in as much as 15%
at moderate to high workloads. The proposed clus-
ter protocols are shown to result in lower packet loss
and latencies by employing multiple sources and
path diversity.

The paper is organized as follows. In Section 2,
we present related work citing in particular research
on modeling Internet topology and traffic distribu-
tions. In Section 3, we present the TP formulation
for optimal server allocation and details on server
cluster construction and reorganization. In Section
4, simulation setup and results are discussed. We
conclude the paper in Section 5. In Appendix 1,
we provide a brief description of the Transportation
Simplex Method as background material.

2. Related work

Though companies like Akamai, Inktomi, or
RealNetworks offer streaming applications in the
Web context, we are not aware of any published
works from them to indicate the use of analytical
solutions we present in this paper. While they may
offer low bitrate, Web-based, small interface stream-
ing solutions, we address issues related to more
persistent and pervasive VoD type of streaming
application. For such applications, admission con-
trol and blocking performance become an essential
part of their design. Whenever denial of service is
used to prevent server overload for maintaining
QoS, resource allocation issues become prominent.
The analytical solution presented in this paper
addresses the issue of matching server resources with
user population demands in an optimal way. The
distributed architecture by design results in an effi-
cient use of the best-effort IP network.

Our work in this paper differs from others in that
we provide an optimization technique for capacity
planning. We also incorporate realistic Internet
Topologies in our extensive simulation to analyze
the performance of the clustered architecture. For
Internet simulation, we use the Tiers topology gen-
erator mechanism proposed by Doar [20]. In
[35], the authors compare two classes of Internet
topology generators—degree-based versus struc-
tural—and conclude that Tiers topology generator
adequately generates networks that mimic the hier-
archical nature of the Internet when used for gener-
ating small scale regional networks like we do in this
paper. Degree-based generators are more appropri-
ate when generating large scale networks to reflect
the power law nature of the Internet. Modeling
Internet topology is also extensively discussed in
[21–27]. Mellia et al. [21] present measurement tech-
niques for traffic on the Internet using tools such as
Tstat which we use in our own simulation. Research
in [28] and others indicate the possibility of repre-
senting Web traffic using distributions such as
M/Pareto for sessions and Poisson for arrival pat-
terns. Trace collection for video traces is illustrated
in Fitzek and Reisslein [29]. Optimization tech-
niques including the TP are discussed in [32].

Much of server selection work is in the context
of Web services and clustering refers to client
groups being formed and directed to an appropriate
Web server. For instance, in [6] a system called the
Webmapper is presented to solve the problem of
client assignment in a distributed system of content
servers. Other research for server selection and load
balancing in the context of Web services focuses on
selecting from among a few mirrored servers and
downloading in parallel different document seg-
ments [7–12]. Though these works are not directly
relevant to streaming architectures, their measure-
ment and probing strategies may be used in an
actual deployment of our proposed architecture.
For instance, in [13], a variety of probing strategies
to measure and disseminate server and network
path metrics with low overhead is suggested for
Internet-wide service. Since in our architecture we
employ RTT as a cost metric for service, tools like
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IDMaps [14] or King [15] may be used to measure
RTT between the client and the server in a real imple-
mentation. Tools such as IDMaps measure and
disseminate distance information on the global Inter-
net. Application level services can use this informa-
tion to estimate the distances between any two IP
addresses.

In [16], the authors present server selection tech-
niques using Multiple Description Coding (MDC)
video servers. They demonstrate the advantage of
path diversity when combined with multiple sources
and MDC. They use GT-ITM transit-stub model to
generate the network topology. In [17], the authors
present a framework for streaming video from mul-
tiple senders simultaneously to a single client. Simi-
lar to our prior work, they adopt this approach to
force path diversity. However, their simulation envi-
ronment and network configuration are limited.
Same authors in an earlier work [18] employ a set
of mirrored servers using rate allocation and packet
partitioning algorithms to achieve high throughput.
Other such multiple source streaming architectures
can be found in the context of peer-to-peer net-
works, most notably the work on CoopNet [19]
where clients actively participate in distributing the
content and lessening the load on the server. There
are a number of other works in the context of
VoD that use hierarchical architectures and server
models, including our own prior work [30]. Most
of them do not explicitly model the network topol-
ogies or they use reservation-based protocols. Many
of the resource allocation strategies in those works
are based on greedy approach such as least loaded
servers or redirection from one level to the next in
a hierarchical architecture.

3. Distributed streaming architecture

Companies like Akamai push web content to the
edge of the network by strategically placing servers
such that the client can select a server with the
shortest RTT. For our streaming architecture, we
choose a similar environment consisting of several
individual video servers geographically dispersed
over a few interconnected metropolitan areas serv-
ing requests over the Internet. Our objective for this
architectural setup is threefold: first, to direct client
requests to a server that is close in network distance
as measured by RTT. Second, to provide multiple
sources so that different segments of the video can
be streamed in quick succession from those sources
to result in better performance; multiple sources
also help in server load balancing and fault toler-
ance as well as path diversity on the network. Third,
to match the server capacity to user demand so that
optimal blocking performance can be expected. We
accomplish the first and the third objective by pro-
viding a solution for server cluster formation using
the TP formulation. We propose protocols to oper-
ate the cluster of servers to achieve the second
objective.

Prior to formulating the TP, we use naturally
occurring metropolitan areas to define our user
group or population. The individual servers are
assumed to be geographically dispersed in the metro-
politan region under consideration. The TP formu-
lation will provide the technique to match the
aggregate demand from user groups to the overall
server capacity. All servers serving the same user
group will form a cluster and client requests originat-
ing from that user group will be directed to one of
the servers in the cluster. It is possible that a server
is shared between multiple user groups in which case,
each user group has access only to its allocated
capacity on that server.

An organization of clusters of servers for three
metropolitan regions is shown in Fig. 1. In our pro-
posed model, this organization is the result of solv-
ing the TP. Cluster c1 consists of servers 1, 2, 3 and
serves user community x; cluster c2 consists of
servers 3, 4, 5 and serves user community y. Notice
that server 3 appears in both clusters which means
that its capacity is shared between user communities
x and y. Three other servers in cluster 3 serve
requests from user community z.

3.1. Optimal server allocation model

Using the TP formulation, we allocate individual
servers to meet the demands of the user groups. The
result of this optimal allocation of server capacity is
the server clusters, each cluster designated to serve a
user population. We quantify three parameters to
formulate the transportation matrix: server capac-
ity, user community demand, and the cost of serving
a request from ith server to jth user community.
User group demand is estimated using the number
of active clients: each client requiring one stream
capacity from the server. Server stream capacity is
determined as the number of simultaneous requests
the server can serve based on its disk bandwidth.
Lastly, we define the cost matrix based on server’s
proximity to user community using RTT values.
The model parameters are shown in Table 1.
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Fig. 1. Clustered server architecture.

Table 1
Transportation problem model parameters

m Number of servers
n Number of user groups
si ith server stream capacity (number of requests)
dj jth user group demand (number of requests)
cij Cost of serving a request from server i to user community j
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Let Z be the total allocation cost and xij(i =
1,2, . . . ,m; j = 1,2, . . . ,n) be the number of stream
capacity allocated between server i and user group
j; the linear programming formulation of this
problem becomes

Minimize Z ¼
Xm

i¼1

Xn

j¼1

cijxij

subject to
Xn

j¼1

xij ¼ si for i ¼ 1; 2; . . . ;m;

Xm

i¼1

xij ¼ dj for j ¼ 1; 2; . . . ; n; and

xij P 0 for all i and j.

As seen in the TP formulation above, both server
capacity, si and user group demand, dj are expressed
as the number of simultaneous requests at a known
average bitrate: for the server, it is the disk band-
width which will determine the overall capacity;
for the user group, the estimated number of users
wanting to use the service at the same time will con-
stitute the overall demand. This type of request to
request matching using average bitrate is a simplifi-
cation. Within the TP formulation, it is easy to rep-
resent both server capacity and user group demand
in units of Mbps which will allow us to represent re-
quests of different bitrate. The cost cij is the average
RTT value between pairs of user communities and
servers. We find average RTT values by taking a
random sampling of RTT values from client nodes
in each group to individual servers by periodically
probing the network to get these measurements.

Average RTT as the cost metric in our model is
well justified. As Internet applications have prolifer-
ated in recent years, so has the number of mirrored
Web servers that can serve a client request.
Research on server selection problem for Web ser-
vices typically redirect a client request to the nearest
server as determined by the packet delay between
the host and the client. RTT is used as a basic mea-
sure of latency between two Internet hosts by using
ping or traceroute. Since many applications rely on
such proximity information, proposals for Inter-
net-wide services for providing that information
have resulted in tools like IDMaps [14]. The pro-
posed architecture in this paper will use RTT as a
distance measure to find nearest servers but it also
extends the idea to include server capacities in a
common framework using the TP formulation.



Table 2
Transportation matrix

Group 1 Group 2 Group 3 Max capacity

S1 276 350 399 95
S2 265 426 475 70
S3 329 274 383 40
S4 457 298 511 40
S5 417 422 301 55
Demand 100 100 100 300

Table 3
Optimal allocation

Server Group 1 Group 2 Group 3

S1 30 20 45
S2 70 0 0
S3 0 40 0
S4 0 40 0
S5 0 0 55
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Table 2 is an illustration of the average RTT-
capacity-demand matrix used for TP formulation.
The TP matrix shown is called a balanced transpor-
tation problem where we have the maximum capac-
ity equal to the overall demand. The aggregate
server capacity is 300 simultaneous requests. The
user demand as shown in Table 2, is assumed to
be the same for each user group and adds up to
the same as the maximum server capacity. This is
not a limiting assumption; the requests from the
user group can be generated in any other proportion
as illustrated in the simulation later. Optimal server
allocation to each user group is shown in Table 3
found after applying the Transportation Simplex
method to solve the TP [see Appendix 1 and [32]
for details on solving TP].

Server clusters generated from TP formulation in
Table 2 are:

• S1 and S2 serving User Group 1;
• S1, S3, and S4 serving User Group 2;
• S1 and S5 serving User Group 3.

This allocation will be used later in the simula-
tion to analyze blocking performance.

3.2. Server admission control

As is often the case with multimedia applications,
each server in the cluster will implement admission
control to prevent overload. A capacity based admis-
sion control scheme will deny service to an incoming
request if there are not enough server resources to
serve the request. In addition, the servers in our
clustered architecture implement threshold-based
admission control and block incoming requests
beyond a threshold. Threshold-based admission con-
trol scheme allows us to share a server among differ-
ent types of requests by limiting access to each type of
request within a threshold capacity. We presented an
analytical model for computing blocking probabili-
ties under threshold-based admission control in
[33]. In our clustered server architecture, it is possible
that a server is shared by two or more user groups in
which case we need to implement a sharing policy.
For instance, server S1 in Table 3 is shared among
three clusters each serving requests from user groups
1, 2, and 3; requests from each group are limited to
the optimal allocation of the capacity of server S1
for that group. For instance, requests beyond a
threshold of 30 from user group 1 will be blocked
even if there is available capacity in S1. The idea is
to conserve capacity for requests from groups 2
and 3 to provide them their fair share. In general,
the admission control test at server i is represented
as follows. An arriving request from user group j

will be admitted at server i if both of these conditions
are met:

Ncurrentj þ 1 6 Nallocatedj

ðthreshold-based admission controlÞ;
Xn

j¼1

Ncurrentj þ 1 6 Ncapacity

ðcapacity-based admission controlÞ;

where Ncurrentj is the number of current requests at
server i from user group j, Nallocatedj is the number
of requests allocated to server i for user group j,
Ncapacity is the maximum capacity at server i. In
general, the threshold-based rule will suffice in our
model where the allocated capacities in a server
add up to its overall capacity. However, during
the transition phase as explained in the next section,
capacity-based rule has to be applied to make sure
that the servers are not overloaded.
3.3. Dynamic cluster reorganization

In addition to enforcing sharing, admission con-
trol helps us to quantify blocking performance. We
monitor the blocking performance with respect to
user groups and use that as a guide to maintain opti-
mal allocation of servers to user groups. Blocking
performance worse than an acceptable level is seen
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as an indicator of change in user demand or net-
work conditions. This will be used as a trigger to
reorganize the server clusters. We run the TP algo-
rithm again during reorganization but with changed
user demand to find new optimal allocations. New
allocations take effect dynamically by a change of
admission control policies in each server.

An important issue to consider during reorgani-
zation is the handling of requests that are already
in service if there are differences in allocation before
and after reorganization at a particular server with
respect to a user group. Let Nold be the number of
requests from the old allocation prior to reorganiza-
tion and Nnew be the number of requests to be allo-
cated to the server after reorganization. Two cases
arise at each server:

1. The old allocation is less than or equal to the new
allocation; Nold 6 Nnew.

2. The old allocation is more than the new alloca-
tion. Nold > Nnew.

jNold � Nnewj requests denote the maximum
number of requests from old allocation that could
have already been received at the server and in pro-
gress at the time of reorganization. For case 1, this
number is 0 and for case 2, the number lies between
0 and jNold � Nnewj.

In the first case, the transition from old allocation
to new allocation is smooth and can be assumed
immediately because the server capacity is not
overcommitted. In the second case, all or some of
jNold � Nnewj requests may still be in service at the
server. An instantaneous transition to the new orga-
nization will disrupt service for those requests from
the old allocation. A transition phase to allow for
the completion of previously scheduled requests is
essential. During this phase, the server in question
will be overcommitted in excess of a maximum of
jNold � Nnewj requests and therefore blocking will
continue to rise. Reduced blocking due to reorganiza-
tion is seen only after a certain time lapse; in fact, we
will see the benefits of new configuration after
jNold � Nnewj requests have been completed. Later
in our simulation, we show this behavior through
experiments. No reorganization is triggered during
the transition phase to prevent oscillations.

As an alternative to the transition phase, those
requests from old allocation could be migrated to
the servers in the new allocation. However, we do
not consider that option in our analysis because of
additional overhead and possible disruption in QoS
incurred in managing such migration of requests
already in progress.

3.4. Cluster protocols

We present in this section two protocols for
request handling in the server clusters. The first
protocol, called the Centralized Control Protocol
(CCP) uses a centralized load distribution algo-
rithm. All client requests are received by the central
server, which distributes them evenly within the
cluster using the global state information about
server loads. In the second protocol called the
Distributed Control Protocol (DCP), a token pass-
ing scheme is employed to split and distribute each

arriving client request equally across the servers in
the cluster. The distribution achieves diffusion of
the network traffic across several different routes.
We evaluate both protocols using average packet
loss and latency as the metrics. Our simulation
results show a significant decrease in packet loss
and latency with the two protocols. These protocols
were first introduced in [31].

3.4.1. Centralized control protocol (CCP)

In this protocol, a central server maintains the glo-
bal state and is aware of the load on each server as
communicated periodically by individual servers.
The precision of the load information in the central
server depends on how often the video servers send
messages about their load information to the central
server. Irrespective of the streaming protocol which is
usually UDP, TCP is used for interserver communi-
cation to prevent loss of messages from the video
server to the central server and vice versa. On an
incoming request for a video stream, the central ser-
ver forwards the request to the least loaded server in
the cluster. This protocol therefore, can be character-
ized as a single-stream single-server protocol as
exactly one server serves each client request in con-
trast to the DCP protocol described next. Fig. 2a
illustrates this protocol. If a video server fails to send
any message about its state information to the central
server, it is assumed to be inactive. No client requests
are forwarded to the video server until it becomes
active again and resumes sending status messages.

3.4.2. Distributed control protocol (DCP)

Most centralized solutions suffer from the over-
head of having a single point of failure. Limited
resource availability at the central server can also
be an overhead under high load. On the other hand,
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Fig. 2. (a) CCP protocol, (b) DCP protocol.
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they have the advantage of a simple implementa-
tion. To contrast the CCP protocol, we present a
second protocol that uses a distributed control
architecture. DCP employs a token passing scheme
to split and distribute each client request across
the servers in the cluster; request to an individual
server now refers to a segment of the same video.
Each server in the cluster would then stream the
appropriate video segment to the client (see Fig. 2b).

Let the number of servers in a cluster be K. When
a new client request is received by a server, it breaks
up the requested stream into K segments. Let each
segment take n seconds to stream. Each segment
has a sequence number i, 1 6 i 6 K. The server
which receives the request will stream the first seg-
ment. A period D seconds before it completes trans-
mission of the first segment, it hands over control
to another server, chosen at random. The second
server processes the second segment, and hands over
control to a third server, and so on. While forward-
ing the request, a sequence number and a server-list
are also forwarded. The sequence number indicates
the segment that is to be processed by the next ser-
ver. The server-list contains a list of servers which
have already processed segments of this stream.
While choosing a new server, a server not on the ser-
ver-list is chosen. While forwarding the request,
each server appends its id to the server-list. This
protocol can be characterized as multiple-server, sin-
gle-stream since a single stream is served in several
segments and each request is processed by several
servers serving request segments. When a new server
does not respond, a different server not present in
the server-list is chosen. In case servers not in ser-

ver-list fail to respond, a server already in server-list

will be chosen. The protocol can be described by the
two principal events shown below.

Event1: Connection request from client to a
server.

1. Start processing segment 1, (i = 1).
2. D seconds before completion, send to a server

chosen at random, {Connection Req, Seq num
i + 1 (next segment), server-list (server-ids)}.

Event2: (Connection req, seq num i, server-list})
received from another server.

1. Start processing segment i.
2. Update server-list to server-list + server id.
3. If (i = K), end of stream. Otherwise,
4. D seconds before completion, choose a server not

in server-list, and forward {Connection req, seq
num i + 1, server-list} to the server.

The advantage of the DCP protocol is a greater
distribution of load over the network and its lower
packet loss as seen later in simulation results. How-
ever, the disadvantage is that it works best when all
servers have equal capacities so that an incoming
request can be equally distributed among them.
When individual server capacities are different in a
cluster, a combination of both DCP and CCP has
to be implemented.



Table 4
Simulation parameters

Parameter Value

Number of WANs Nw = 1
Number of MANs/WAN Nm = 3
Number of LANs per MAN Nl = 15
Number of WAN nodes Sw = 5
Number of MAN nodes Sm = 10
Number of LAN nodes Sl = 20
Intranetwork redundancy Rw = 3, Rm = 2, Rl = 1
Internetwork redundancy Rmw = 3, Rml = 1
Total number of nodes Approximately 1000
Total number of links Approximately 2200
Link capacity 10 Mbps
Number of servers 5
Streaming request duration Average 15 min; exponential
Streaming request arrival pattern Poisson distribution
Multimedia traffic 100 kbps CBR
Background traffic M/Pareto ON/OFF periods
Simulation time 300–500 h
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4. Performance evaluation

We present details of the simulation of the pro-
posed streaming architecture in this section. Perfor-
mance is evaluated using blocking measurements,
packet loss and latency as evaluation metrics. The
architecture for our simulation study consists of five
video servers labeled S1, . . . ,S5. The delivery net-
work is the Internet, consisting of hierarchical struc-
ture of LANs, MANs, and WANs. The video
streams are served using UDP but control messages
between server nodes are sent using TCP. The five
servers are clustered with respect to each user popu-
lation using the transportation problem (see Tables 2
and 3). Within a cluster, CCP or DCP protocol as
appropriate is used. Threshold-based admission con-
trol will enforce the rightful share of a server for each
user population. We generate both multimedia
streaming traffic and background traffic to emulate
realistic network topologies. The evaluation metrics
used are request blocking percentage at server nodes
per user group, average packet loss and packet laten-
cies. We first present results on blocking analysis and
show performance with and without server reconfig-
uration. In Section 4.2, we present performance
analysis for the cluster protocols, CCP and DCP.
All results are averaged over five trials; confidence
interval analysis for 95% confidence level is con-
ducted over the sets of five experimental values. Each
trial is run for a length of 300–500 h simulation time
with average requests per hour ranging from 500 to
1200. This combined with 5 replications gives us
enough samples to generate a statistically significant
average performance. The graphs are shown with
error bars that show half-widths of the confidence
intervals. The error bars are quite narrow as seen
in the graphs indicating that the results we present
are statistically significant.

We use ns-2.26 [34] for implementing the simu-
lation. The Internet topology is simulated using
Tiers1.1 topology generators. Tiers is found to be
an appropriate topology generator when modeling
regional or geographically limited networks as we
do in our analysis [35]. Realistic values for different
network parameters such as nodes/LAN, LANs/
MAN, and MANs/WAN are used. In order to
model background traffic, we note a few general
characteristics of Web traffic: traffic on the Internet
is characterized by a large portion of TCP traffic
and a relatively smaller proportion of UDP traffic.
TCP traffic, notably, Telnet and FTP, have a Pois-
son arrival pattern. Telnet and FTP sessions can
be modeled by a Pareto distribution with heavy tail.
Background traffic can be modeled as superposi-
tions of ON/OFF periods expressed using Pareto
distributions [28]. We use all of the above factors
to generate realistic background traffic. Results
from Tstat, a network monitoring tool described
in [21] are used to provide quantitative information
regarding the proportion of TCP and UDP flows.
Results from Doar [20] are used to apply various
values for the network topology. The intranetwork
redundancy parameter refers to the number of edges
between nodes of the same type. The simulation
parameters are shown in Table 4.

4.1. Simulation results—blocking analysis

We construct three experiments for analyzing the
blocking performance for the distributed streaming
architecture. The metrics used are the percentage
of blocked requests from each user population and
for the overall system.

• For the first experiment, we use the transporta-
tion matrix shown in Table 2. The combined
stream capacity of the 5 servers is 300 requests.
We assume that each user population generates
requests equally in 1:1:1 proportion. The purpose
of this experiment is to illustrate optimal resource
allocation from TP and determine blocking
performance.

• For the second experiment, we use the transpor-
tation matrix shown in Table 5. The combined
stream capacity of the servers is still 300 requests.



Table 5
Transportation matrix

Group 1 Group 2 Group 3 Max capacity

S1 279 360 372 95
S2 269 398 448 70
S3 333 290 357 40
S4 461 311 485 40
S5 421 394 273 55
Demand 80 140 80 300
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However, the mix of requests from the three user
populations is changed to 1:1.75:1 proportion.
The purpose of this experiment is to show that
the allocation from Table 3 is no longer optimal
as indicated by high overall blocking.

• For the third experiment, we find the optimal ser-
ver allocation for the change in demand and
show that the blocking performance goes down
with reconfigured server clusters. We also use this
experiment to explain the transition between old
and new allocations.
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The RTT values for the cost matrix in TP formu-
lation are found using a random sampling of indi-
vidual RTT values between pairs of client and
server nodes by implementing the ping utility in
our simulation. The RTT values shown in Tables
2 and 5 are on the high side as these values represent
the average over a wide range of samples from cli-
ents. Within the transportation matrix RTT values
are however, used to represent the distance or prox-
imity of a client to a server node. While absolute
values have no impact, they collectively represent
a cost for providing service between a client and a
server node. A more accurate measurement will be
needed if RTT values are used as indicators of net-
work congestion.

In the first experiment, we analyze blocking per-
formance using the optimal allocation from Table 3.
Fig. 3a shows the blocking performance for the
overall system. The number of requests per hour
range from 600 to 1200 and average duration of
each request is 15 min generated using exponential
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distribution. The system shows very low blocking
until about 1100 requests per hour after which it
increases steadily. Fig. 3a and b show blocking per-
formance for user groups 1, 2, and 3. Notice that in
Table 2, we set up the demand for all user groups to
be equal and therefore, we expect that their blocking
performance will also be the same as illustrated in
Fig. 3a and b for the curve labeled optimal.

Note: Performance curve labeled optimal indi-
cates favorable server clusters; performance curve
labeled suboptimal indicates server clusters no longer
catering to the change in demand.

The results of the second experiment where we
change the user demand are shown by the curve
labeled suboptimal in Fig. 3a–c. The performance
shows the need for server reconfiguration to find
new optimal allocation. As seen in Table 5, the
demand from user groups 1 and 3 go down from
100 to 80 and the demand from user group 2 goes
up by about 40. Within the simulation, we generate
requests in the following proportion, 1:1.75:1, with
user group 2 generating 1.75 times more requests
than user groups 1 and 3. The RTT cost matrix is
also updated using the newly probed values. As seen
from Fig. 3a–c, the allocation from Table 3 is no
longer optimal and results in high blocking for user
group 2. Blocking for user groups 1 and 3 is close to
0 as the servers allocated to them are underutilized.
Overall blocking is also high as shown in Fig. 3a
Table 6
New optimal allocation

Server Group 1 Group 2 Group 3

S1 0 (30) 95 (20) 0 (45)
S2 70 0 0
S3 10 (0) 5 (40) 25 (0)
S4 0 40 0
S5 0 0 55
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Fig. 4. (a) Snapshot of new allocation and requests in progress from
requests in progress from old allocation at Server 1.
(curve labeled suboptimal) and 3d (curve labeled
w/o reconfig).

The third experiment involves running the trans-
portation solution on the new matrix in Table 5
resulting in the allocation shown in Table 6, with
the old allocation shown in parenthesis. Fig. 3d
shows blocking performance with and without ser-
ver reconfiguration. Reconfiguration is triggered
when the overall blocking performance exceeds a
threshold; in our simulation, we use 3.5% blocking
at 850 streams per hour as the threshold to trigger
reconfiguration; if the allocation is optimal, block-
ing at this workload should be 0 as shown in Fig. 3a.

Fig. 3d shows the performance comparison
between old and new allocation. Without reconfigu-
ration and using the old allocation, some of the
servers are over utilized and some others underuti-
lized resulting in high blocking. The reconfiguration
being optimal for the new demand pattern should
result in decreased blocking. However, we observe
a transition phase where some of the requests from
old allocation are still in progress and need to be
completed before the new allocation takes effect as
explained in Section 3.3. During this transition
phase, blocking continues to rise and finally, starts
to decrease. This behavior is demonstrated in
Fig. 3d. Without reconfiguration, overall blocking
at a workload of 1100 requests/h is at 17.5%
whereas with reconfiguration blocking at the same
workload is brought down to 2.35%.

4.1.1. Transition phase analysis

A snapshot of server requests in progress at serv-
ers S3 and S1 at the end of 300 h with 850 streams
per hour when the reconfiguration is triggered is
shown in Fig. 4a and b. Server S3 under new alloca-
tion has fewer requests from user group 2 than it
had before. However, requests allocated from previ-
ous configuration are still in progress and as a result
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blocking of over committed newly arriving requests
goes on at this server. This explains the hump
in Fig. 3d. During the transition phase, we could
migrate requests at the over committed server to
other underutilized servers. Such request migration
is not considered in this paper since that will entail
migrating requests already in progress and the over-
head incurred as a result and the possibility of
disruption of QoS. A snapshot of Server S1 in
Fig. 4b shows the new allocation to be higher than
the old allocation for user group 2. However, all
requests shown to be in progress must be completed
before the blocking performance for the new alloca-
tion (0 for user group 1, 95 for user group 2, and 0
for user group 3) materializes. During the transition
phase, there is about 0.5% increase in blocking from
the threshold of 3.5% before we start to see the
reduction due to reconfiguration even as we increase
the workload (see Fig. 3d).

4.2. Simulation results—protocols analysis

In this section, we present the performance anal-
ysis for the CCP and DCP protocols within a clus-
ter. The metrics used are percent packet loss and
packet latency in milliseconds (ms). A cluster of 4
identical video servers is used for this analysis and
the average number of requests from 100 clients is
varied in the range of 50–300 requests per hour.
The clients generate requests based on Poisson dis-
tribution. Network related parameters are as shown
in Table 4. The two protocols are compared against
a base scenario where no attempts are made to dis-
tribute the traffic across servers. The server which
receives a client request processes it in its entirety.
The base scenario indicates a situation where there
is no load balancing while both CCP and DCP offer
better load balancing by design.

Fig. 5a shows the average packet loss as the num-
ber of streams is increased. The distributed protocol
performs best, since it achieves the highest degree of
load distribution across the network. Each client
request is diffused across several different routes,
and thus no particular route gets a higher amount
of traffic than others. Packet losses due to local con-
gestion conditions are minimized. The centralized
control protocol performs slightly worse since the
global state is updated only periodically and there-
fore, the load distribution is not ideal. Fig. 5b shows
the average packet latencies for the same workload
as before. The distributed control protocol shows
slightly worse performance than the centralized pro-
tocol since each stream is served by all servers, both
near and far from the client. Both protocols perform
better than the base scenario. For more details on
other experiments, we refer the readers to [31].

CCP and DCP differ in performance and neither
protocol proves superior to the other in both met-
rics, packet loss and latency. It is easier to imple-
ment the CCP protocol in the distributed multiple
cluster architecture as there is no guarantee that
the optimal allocation will result in identical capac-
ity servers in a cluster. The DCP protocol works
best when the cluster of servers is identical in indi-
vidual server capacity. The blocking performance
will be unaffected by either CCP or DCP.

5. Conclusion

We presented an analytical model for matching
user demands with server capacities dynamically.
By incorporating RTT as a cost metric in our
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analytical model, we provided a server selection
scheme that takes proximity into consideration.
Clustered servers are already used in CDNs by
RealNetworks and other providers for Web-based
services. Such current streaming solutions can lever-
age the proposed clustered architecture and experi-
ence significantly better performance. Realistic
modeling of the Internet and traffic patterns in an
extensive simulation strengthens this paper. The
design and analysis of streaming protocols for
within the cluster provides a comprehensive end-
to-end architecture for streaming applications. Our
simulation results for blocking analysis and cluster
performance show that the proposed schemes per-
form better than other schemes where server alloca-
tions are not optimal.

Appendix 1. Background on transportation problem

The Transportation Problem (TP) is a special
type of Linear Programming problem that is used
with the distribution of resources from supply
centers, called Sources, to receiving centers called
Destinations. This formulation can be viewed as a
simplified version of facility location problem where
the facility locations with their capacities are
already known and the task is to determine a mini-
mum cost assignment of receiving centers to these
facilities. In general, source i (i = 1,2, . . . ,m) has a
supply of si units to distribute to the destinations,
and destination j (j = 1,2, . . . ,n) has a demand for
dj units to be received from the sources. A basic
assumption in the TP formulation is that the cost
of distribution, cij is directly proportional to the
number distributed between source i and destina-
tion j. We have adapted this formulation for our
problem by representing the servers with a known
stream handling capacity as the Sources and User
Groups with their stream requests as the Destina-
tions. The cost to be minimized is the RTT which
is used as a distance measure between the server
and the user groups.

The special structure of the general TP formula-
tion lends itself to a solution procedure based on
the Simplex method that automatically results in
an integer-based solution to the allocation problem.
As is explained in [32], the special structure of the
TP results in great computational savings in the
Simplex method.

Constructing an initial basic feasible solution can
be done using one of three methods—Northwest
corner rule or Vogel’s approximation method or
Russell’s approximation method. The initial feasible
solution is iteratively improved to get the optimal
solution using either the Vogel’s approximation or
Russell’s approximation method.

Northwest corner rule: Start in the northwest
corner of the transportation simplex tableau by
selecting x11. If xij is the last basic variable selected,
move one column to the right to choose xi,j+1 if
source i has any supply remaining. Otherwise, move
one row down to select xi+1,j. The initial feasible
solution obtained by this method could be far from
optimal solution and may result in more number of
iterations than the other two methods.

A summary of the Transportation Simplex
Method [32] is presented below:

Initial step: Obtain a basic feasible solution from
one of three alternatives mentioned above.

Optimality test: Derive the ui and vj (which are
the dual variables) by setting ui = 0 for the row hav-
ing the largest number of allocations and solving the
set of equations cij = ui + vj for each (i,j) such that
xij is a basic variable. The current solution is opti-
mal if the (cij � ui � vj) is greater than or equal to
0 for every nonbasic xij. If any of the (cij � ui � vj)
is negative, go to the iterative step.

Iterative step:

1. Select the nonbasic variable xij having the largest
negative value of (cij � ui � vj) as the entering
basic variable.

2. Determine the leaving basic variable as the one
having the smallest value by identifying a chain
reaction required to retain feasibility. This will
give us a set of donor cells and receiving cells
where the allocation is decreased and increased,
respectively.

3. Determine the new feasible solution by adding
the value of the leaving variable to the allocation
of the receiving cell and subtracting this value
from the allocation of donor cell.

4. Test the new feasible solution for optimality.
References

[1] Akamai Technologies, Akamai Streaming—When Perfor-
mance Matters, White Paper, 2004.

[2] RealNetworks, RealNetworks Production Guide for Release
8, September 2002.

[3] Alexander Ferreira, Optimizing Microsoft Windows Media
Services 9 Series, Technical Brief, Microsoft New Media
Platforms Division, February 2003.

[4] QuickTime Streaming: End-to-end Solutions for Live Broad-
casting and On-Demand Streaming of Digital Media,



P. Mundur, P. Arankalle / Computer Networks 50 (2006) 3608–3621 3621
Technology Brief, Mac OS X Server: QuickTime Streaming,
2004.

[5] Akamai Technologies, Internet Bottlenecks: the Case for
Edge Delivery Services, White Paper, 2000.

[6] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, F.
Zane, Clustering and server selection using passive monitor-
ing, in: Proc. IEEE INFOCOM, 2002.

[7] A. Myers, P. Dinda, H. Zhang, Performance characteristics
of mirror servers on the Internet, in: Proc. of IEEE
INFOCOM, 1999.

[8] M. Crovella, R. Carter, Dynamic server selection using
bandwidth probing in wide-area networks, in: Proc. of IEEE
INFOCOM, 1997.

[9] M. Conti, E. Gregori, F. Panzieri, Load Distribution among
Replicated Web Servers: A QoS-based Approach, WISP,
ACM Press, 1999.

[10] R.B. Bunt, D.L. Eager, Achieving load balance and effective
caching in clustered web servers, in: Proc. of the 4th
International Web Caching Workshop, San Diego, CA, 1999.

[11] M. Colajanni, P.S. Yu, D.M. Dias, Analysis of task
assignment policies in scalable distributed web-server sys-
tems, IEEE Transactions on Parallel and Distributed
Systems 9 (6) (1998) 585–600.

[12] P. Rodriguez, E.W. Biersack, Dynamic parallel access to
replicated content in the Internet, IEEE Transactions on
Networking 10 (4) (2002).

[13] L. Amini, H. Schulzrinne, On probe strategies for dynamic
multimedia server selection, in: Proc. of ICME, August 2002.

[14] P. Francis, S. Jamin, C. Jin, V. Paxon, D. Raz, Y. Shavitt, L.
Zhang, IDMaps: a global Internet host distance estimation
service, in: Proc. IEEE INFOCOM, March 2000.

[15] K.P. Gummadi, S. Saroiu, S.D. Gribble, King: estimating
latency between arbitrary Internet hosts, in: Proc. of the 2nd
ACM SIGCOMM Workshop on Internet Measurement, 2002.

[16] M. Guo, Q. Zhang, W. Zhu, Selecting path-diversified
servers in content distribution networks, in: Proc. of IEEE
GLOBECOM, 2003.

[17] T. Nguyen, A. Zakhor, Multiple sender distributed video
streaming, IEEE Transactions on Multimedia 6 (2) (2004).

[18] T. Nguyen, A. Zakhor, Distributed video streaming over the
Internet, in: Proc. of MMCN, 2002.

[19] V.N. Padmanabhan, H. Wang, P. Chou, K. Sripanidkulchai,
Distributing streaming media content using cooperative
networking, in: Proc. NOSSDAV, 2002.

[20] M. Doar, A better model for generating test networks, in:
Proc. of GLOBECOM, 1996.

[21] M. Mellia, R. Lo Cigno, F. Neri, Measuring IP, TCP
behavior on the edge node, Planet IP and Nebula Joint
Workshop, 2002.

[22] H.J. Burch, F. Ercal, Mapping the Internet, Computer 32 (4)
(1999).

[23] A. Broido, K. Claffy, Internet topology: connectivity of IP
graphs, CAIDA (July) (2001).

[24] S. McCreary, K. Claffy, Trends in Wide Area IP Traffic
Patterns. Available from: <http://www.caida.org/outreach/
papers/>.

[25] E. Zegura, K.L. Calvert, M.J. Donahoo, A quantitative
comparison of graph-based models for Internet topology,
IEEE/ACM Transactions on Networking 5 (6) (1997).
[26] K.L. Calvert, M. Doar, E. Zegura, Modeling Internet
topology, IEEE Communications Magazine (1997).

[27] The Mercator Internet Mapping Project at <http://www.
isi.edu/scan/mercator/maps.html>.

[28] T.D. Neame, M. Zukerman, Modeling broadband traffic
streams, in: Proc. of GLOBECOM, 1999.

[29] F. Fitzek, M. Reisslein, MPEG-4 and H.263 video traces for
network performance evaluation, IEEE Network Magazine
15 (6) (2001).

[30] P. Mundur, R. Simon, A. Sood, End-to-end analysis of
distributed video on demand systems, IEEE Transactions on
Multimedia (February) 6 (1) (2004).

[31] A. Matthur, P. Mundur, Dynamic load balancing across
mirrored multimedia servers, in: Proc. of ICME, 2003.

[32] F. Hillier, G. Lieberman, Introduction to Operations
Research, McGraw-Hill Publishers, 1986.

[33] P. Mundur, A. Sood, R. Simon, Class-based access policies
for distributed video on demand systems, IEEE Transactions
on Circuits and Systems for Video Technology 15 (7) (2005).

[34] NS—Network Simulator at <http://www.isi.edu/nsnam/ns/>.
[35] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, W.

Willinger, Network topology generators: degree-based vs.
structural, in: Proc. of SIGCOMM, 2002.

Padma Mundur received the M.E. degree
in systems engineering from the Univer-
sity of Virginia, Charlottesville, VA, in
1990 and the Ph.D. degree in informa-
tion technology from George Mason
University, Fairfax, VA, in 2000. Her
undergraduate degree is in industrial and
production engineering.

She is currently an Assistant Professor
in the Department of Computer Science
and Electrical Engineering at the Uni-

versity of Maryland, Baltimore County, Baltimore, MD. Her
research interests are in distributed systems, multimedia net-

working, performance evaluation and analytical resource allo-
cation techniques. She serves on the editorial board of IEEE
Communications Surveys and Tutorials Journal, and has served
on program committees of ICDCS 2004, 2006 and ICME 2004,
2005 among others. She has been a reviewer for the National
Science Foundation panels, journals and conferences.
Poorva Arankalle received the B.E.
degree in computer science from Cum-
mins College of Engineering in Pune,
India in 2002, and the M.S. degree in
computer science from the University of
Maryland, Baltimore County, MD in
2004. During her Masters, she interned
at RealNetworks in the summer of 2004.
She is currently employed at Google,
after working at Yahoo! for two years as
a server side software engineer.

http://www.caida.org/outreach/papers/
http://www.caida.org/outreach/papers/
http://www.isi.edu/scan/mercator/maps.html
http://www.isi.edu/scan/mercator/maps.html
http://www.isi.edu/nsnam/ns/

	Optimal server allocations for streaming multimedia applications on the Internet
	Introduction
	Related work
	Distributed streaming architecture
	Optimal server allocation model
	Server admission control
	Dynamic cluster reorganization
	Cluster protocols
	Centralized control protocol (CCP)
	Distributed control protocol (DCP)


	Performance evaluation
	Simulation results-blocking analysis
	Transition phase analysis

	Simulation results-protocols analysis

	Conclusion
	Background on transportation problem
	References


